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Abstract

This thesis presents a technique for obtaining the response of linear structural

systems with parameter uncertainties subjected to either deterministic or random

excitation. The parameter uncertainties are modeled as random variables or random

fields, and are assumed to be time-independent. The new method is an extension

of the deterministic finite element method to the space of random functions.

First, the general formulation of the method is developed, in the case where

the excitation is deterministic in time. Next, the application of this formulation

to systems satisfying the one-dimensional wave equation with uncertainty in their

physical properties is described. A particular physical conceptualization of this

equation is chosen for study, and some engineering applications are discussed in

both an earthquake ground motion and a structural context.

Finally, the formulation of the new method is extended to include cases where

the excitation is random in time. Application of this formulation to the random

response of a primary-secondary system is described. It is found that parameter

uncertainties can have a strong effect on the system response characteristics.
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Chapter 1

Introduction

Many real engineering problems have uncertainty in their definition. One com

mon source of this uncertainty is the structural characteristics. Such randomness or

uncertainty can arise from several sources. Among these are randomness in material

properties because of variations in material composition; manufacturing processes or

lack of understanding of the material's constitutive behavior; randomness in struc

tural dimensions due to geometrical variations; randomness in boundary conditions

because of assembly procedures; randomness or uncertainties in measurements due

to testing errors, etc. Another source of uncertainty in many analyses is in the

specification of the external loads. In fact, many structural excitations encountered

in practice exhibit a stochastic nature. For example, some random-like excitations

are seismic excitations, blast loadings on structures, wind excitations, water wave

excitations, aerodynamic turbulences, etc. These excitations are often modeled as

stochastic processes.

The uncertainty of structural characteristics has a direct relationship to the re

liability of many engineering structures. For example, the response of primary and

secondary systems associated with structures such as nuclear power containment,

space vehicles, offshore platforms, and industrial structures may be quite sensitive

to parameter uncertainties. In these cases, it is necessary to pursue an analysis
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that takes into account all the features of a structure and its excitation, includ

ing uncertainties. If these uncertainties are not accounted for, then the computed

response represents only one result in a spectrum of possibilities. Clearly, the high

degree of structural complexity of most modern structural systems requires the use

of advanced analytical and numerical techniques, such as the finite element method,

to obtain their response behavior. Thus, a challenging task to the analyst is to ac

curately account for the randomness in a given problem and to obtain the response

in the form of statistical quantities.

A number of papers have been published demonstrating the application of prob

ability theory and random field theory in the study of physical systems with random

parameters. Early applications used simulation methods to investigate the effects of

uncertainty in structural properties [1,2,3,4,5]. Later, first and second order pertur

bation methods were used to compute second-moment statistics of response quan

tities in structural and geotechnical applications [6,7,8,9,10,11,12,13,14,15,16,17].

Shinozuka and various co-workers have investigated probabilistic models for the

spatial distribution of materials properties [18,19,20,21,22]. They have used simula

tion and perturbation methods to obtain the statistical properties of the response.

Vanmarcke has presented specific models for the description of the spatial correla

tion of soil properties [23,24]. In general, the spatial correlation is taken into account

by assuming an exponentially decaying function of distance for the strength of the

correlation.

As mentioned above, both simulation and perturbation methods have been used

to investigate the effects of uncertain variability in structural properties. Simulation

methods are quite powerful, but in general, are very costly in terms of computational

resources. In addition, they provide limited insight into the behavior and sensitivity
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of the system under different parameter uncertainties. Perturbation methods are

quite general and they are easily integrable into any deterministic solution tech

nique. However, they usually suffer from questions of accuracy and convergence.

These questions become more crucial as the degree of uncertainty becomes more

pronounced, and when dynamic, particularly transient and wave propagation prob

lems must be considered [25,26].

It is the objective of this thesis to develop an alternative method for the dyna

mic analysis of linear structural systems with parameter uncertainties subjected

to either deterministic or random excitation. The parameter uncertainties are de

scribed in a probabilistic sense and are assumed to be time-independent. The new

method is an extension of the deterministic finite element method to the space of

random functions.

Chapter 2 presents the formulation of the new method for a particular class of

partial differential equations with random coefficients. The type of system modeled

by this equation is one of significant engineering importance since it contains many

common physical systems. The random coefficients, which represent the material

properties, are modeled as random variables or random fields. The externally ap

plied load is permitted to have spatial random properties but is assumed to be

deterministic in time. Later in Chapter 2, the strong form of the problem and its

variational counterpart are presented. Next, the variational formulation is solved

using Galerkin's method together with the finite element method for the spatial

discretization. A system of linear ordinary differential equations for the unknowns

of the problem is derived and then it is integrated in time. Finally, the response

variability is computed.
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Chapter 3 describes the application of this new procedure to a typical class of

problems: systems satisfying the one-dimensional wave equation with uncertainty in

their physical properties. Validation calculation results are presented and compared

with solutions which are obtainable by other techniques. Engineering applications

of the results obtained in this particular example are discussed to highlight the

influence of parameter uncertainty.

In Chapter 4, the formulation of the method described in Chapter 2 is ex

tended to include cases where the excitation is random in time. The applied forcing

function is modeled as a modulated Gaussian white noise process. Two procedures

to derive the random state-space Liapunov equation for the response covariance

matrix are presented, and their differences are discussed. The Liapunov equation

is then integrated in time and the response variability is computed.

Finally, Chapter 5 describes the application of the solution method, presented

in Chapter 4, to the random response of a primary-secondary system. The effects

of uncertainty in the system parameters and applied loads on the response of the

secondary system and on its reliability are discussed.
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Chapter 2

Formulation of the Random Finite Element Method

2.1 Introduction

This chapter describes the general linear continuous system with random coef

ficients which is the subject of this investigation. This is followed by a description

of the numerical implementation of the mathematical solution algorithms and by

the characterization of the response variability.

2.2 Problem Definition

Consider the continuous linear system described by the partial differential

equation

\7. r(k(x), u) - Q(c(x), u) - m(x)ii + f(x, t) = 0

on OX]O,To[,

where

o = O(x) is the spatial domain,

]0, To [ is the time interval of length To > 0,

u = u(x, t) is the dependent variable representing the displacement field,

(2.1)
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k(x) and c(x) are stiffness and damping parameter fields, respectively,

m(x) is the mass distribution in the system,

f(x, t) is the externally applied load,

1" is the linear stress operator of first order on the displacements u and stiffness

function k(x),

Q is the linear damping operator on the velocities u and damping function

c(x), and

V'. is the divergence operator.

The material properties k(x) and c(x), as well as the external load f(x, t) are

permitted to have spatially random properties, so the stiffness, damping, and the

external load are modeled as random fields. On the boundary r, the following

homogeneous boundary conditions are assumed to hold:

B(g) (u) = 0 on r g

B (n) (u) = 0 on r n ,

(2.2)

(2.3)

where r g and r n are complimentary sets such that r = r g urn, and B(g) and B(n)

are linear operators representing the geometric and natural boundary conditions,

respectively. Finally, let the initial conditions be given by

u(x,O) = uo(x)

u(x,O) = uo(x) .

(2.4)

(2.5)

Note that terms, such as 1", u and x in equation (2.1) represent indexed sets.

These may be scalars, vectors, or tensors, depending on the number of indices

required to describe the particular physical quantity under consideration.
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Many systems of engineering interest can be modeled in the form of equation

(2.1), for example, axial vibration of a rod, torsional vibration of a shaft, vibration

of a shear beam, vibration of a string, vibration of a membrane, propagation of

plane waves in a continuum, etc. Thus, the general form of equation (2.1) allows

treatment of a wide class of engineering problems.

In the next section, the characterization for random fields which will be used

to represent the spatial variation of the material properties of the system and the

spatial variation of the external load is presented in detail.

2.3 Random Fields Representation

Let S(x) denote a random process, function of the position x over the domain

n. Let S(x) denote the expected value of S(x) over all possible realizations of the

process, and R(x,y) denote its covariance function associated with locations x and

y, which by definition is symmetric and positive semi-definite. The random process

S (x) can be defined in terms of its mean value plus its deviatoric component as

S(x) = S(x) + Z(x) , (2.6)

where Z(x) is a process with zero mean and covariance function R(x,y). That is

E(Z(x)) = 0 and

E(Z(x) Z(y)) = R(x,y) ,

(2.7)

(2.8)

where E(·) is the operator of mathematical expectation.

In practice, the correlation data is defined at a finite set of discrete points in n.

This suggests that the correlation data may be represented as a variance-covariance

matrix of the form

(2.9)
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where Xi and xi represent points in n where the correlation data is known. In the

same manner, the expected value of the process may be represented as a vector of

the form

(2.10)

Then, the representation of the random field is defined in terms of a mean

value vector and a covariance matrix defined at such set of discrete points. The

discretized version of equation (2.6) can now be written as

s=s+z, (2.11)

where s is a random vector that represents the spatial variation of S(x) at the finite

set of discrete points, s is the mean value vector of the process, and z is a vector

of random variables with zero mean and covariance matrix C, whose components

are defined in equation (2.9). Recall that the covariance matrix is symmetric and

positive semi-definite.

By means of the spectral decomposition of the covariance matrix, the random

field can now be described in terms of a vector of uncorrelated random variables.

It can be shown that equation (2.11) becomes

s = s + ~b, (2.12)

where ~ is the matrix of eigenvectors of the covariance matrix C, and b is a vector

of uncorrelated random variables with zero mean and covariance matrix A given by

(2.13)

Note that the covariance matrix of the new set of variables is diagonal, and

their variances are the eigenvalues of the covariance matrix of the original variables.
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Also note that if S(x) is a Gaussian process, the new set of random variables are

jointly Gaussian and since they are uncorrelated, they are also independent.

Equation (2.12) gives the discretized representation of the random process

S(x). In order to define its representation in the entire domain n, define the

following functions of x.

NR

S(x) = L SiWi(X)
i=l

NR

S(x) = L SiWi(X)

NR

Sn(x) = L <PinWi(X)
i=l

(2.14)

(2.15)

(2.16)

where N R is the dimension of the vector of random variables z and it is equal

to the number of points in n where the correlation data is known, Si is the ith

component of the random vector s, Si is the ith component of the mean value

vector S, <Pin is the ith component of the nth eigenvector of the covariance matrix,

and Wi (X), i = 1, ... , N R, are linearly independent known interpolation functions

of x, satisfying

(2.17)

where xi represents the points in n where the random field is defined, that is, where

the correlation data is known.

Equations (2.14) through (2.16) together with equation (2.12) give the following

representation for the random process

NR

S(x) = S(x) + L Sn(x)bn ,

n=l

where bn is the nth component of the random vector b.

(2.18)
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A

The function S(x) represents an approximation of the expected value of the

random process S(x), while the functions Sn(X), n = 1, ... , N R, denote a con-

tinuous representation in 11 of the eigenvectors of the covariance matrix, that is,

Sn(Xi) = ~in, i = 1, ... , N R. Equation (2.18) is the characterization for random

fields which will be used in the present formulation.

An alternative characterization for random fields has been suggested by Spanos

et al. [27], based on the Karhunen-Loeve orthogonal expansion of nonstationary

random processes. This expansion consists of the projection of the process onto a

space of orthogonal random variables and an expansion similar to equation (2.18)

can be defined. This characterization, however, requires the solution of an integral

eigenvalue-eigenfunction problem instead of a matrix eigenvalue-eigenvector prob-

lem.

Finally, it is interesting to note that if the random process is fully correlated,

the process reduces to a random variable. Therefore, the characterization of a

random variable is a special case of the general characterization of a random field.

If the covariance function is other than a constant function, that is, if the process

is not fully correlated, the random process S(x) will be assumed to be Gaussian.

For a constant covariance function, the random process which now is a random

variable will not be restricted to be Gaussian. In fact, several probability density

functions, in addition to Gaussian, are used in the numerical illustrations described

in Chapters 3 and 5 when the process is fully correlated.

2.4 Strong Form of the Problem

Making use of the characterization given by equation (2.18) for random fields,

the material properties k(x) and c(x), and the external load f(x,t) can be
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represented as

r

k(x) = k(x) + L kn(x)bn
n=l

r

C(X) = c(X) + I: cn(x)bn
n=l

r

f(x, t) = f(x, t) + L fn(x, t)bn ,
n=l

where

(2.19)

(2.20)

(2.21)

r is the total number of random variables used for the representation of the

random fields,

k(x), c(x), and f(x, t) denote the expected value of the stiffness, damping and

external load fields, respectively, and

kn(x), cn(x), and fn(x,t) represent the continuous representation in n of the

eigenvectors of the corresponding covariance matrices.

Considering the linearity of operators rand Q it follows that

r

r(k(x), u) = r(k(x), u) + L r(kn(x), u)bn
n=l

r

Q(c(x), u) = Q(c(x), u) + L Q(cn(x), u)bn .

n=l

(2.22)

(2.23)

Substituting equations (2.21) through (2.23) into the differential equation (2.1)

yields

r

\7 .r(k(x), u) - Q (c(x), u) + L (\7 .r(kn(x), u) - Q (cn(x), u) ) bn
n=l

r

- m(x)u + f(x, t) + L fn(x, t)bn = 0 .
n=l

(2.24)
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Equation (2.24) is a partial differential equation with random coefficients rep-

resented by the random variables bn . This equation, together with its initial and

boundary conditions, which are defined in Section 2.2, represent the strong or c1as-

sical form of the initial-boundary-value problem.

In order to obtain an approximate solution of equation (2.24) a variational for-

mulation is first defined. Then, the variational equations are solved using Galerkin's

method together with the finite element method for spatial discretization. This pro-

cedure will be described in the next section.

To simplify the notation, assume that the dependent variable u(x, t) is just a

scalar, u(x, t). Formulations similar to that which follows are easily developed for

cases where u is a vector.

2.5 Weak Formulation

In order to characterize the weak, or variational counterpart of equation (2.24),

define the following two sets of functions

v = {V(., b, III B(g) (v) = 0 on f g , E(IIv<·, b,1111~'(oJ < 00,

I E[0, To] , bED} , and

w = { w ( . , b) Iw satisfies homogeneous boundary conditions

onfg , E(llw(.,b)II~,(o)) <00, bED},
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where

D is the probability space,

b is the random vector with components bn , n = 1, ... , r, defined on D,

E(·) is the expectation operation defined on D,

H 1 (D) is the Sobolev space of degree 1, which consists offunctions that possess

square-integrable generalized derivatives through order 1,

II ·IIHI(O) is the Sobolev norm defined on Hl(D),

and all other terms are as previously defined.

Now, multiplying the partial differential equation (2.24) by a weighting function

W E W, integrating by parts over the domain D, and taking the expectation yields

the following weak formulation.

Find u(x, b, t) E V, XED, bED, t E [0, To], such that for all w(x, b) E W,

(mu'W)E + (T(k(x),u),Vw)E + (Q(c(x),u),W)E

+t {(T(kn(x),u)bn,Vw)E + (Q(cn(X),U)bn,w)E}
n=l

r

= (!(x,t),w)E + L (tn(x,t)bmw)E'
n=l

(mu(x,b,O),W)E = (muo(x),w)E'

(mu(x,b,O),W)E = (muo(x),w)E'

(2.25)

(2.26)

(2.27)
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where (', ')E denotes the expectation of the inner product, that is,

(2.28)

where <P and t/J are scalar functions defined on 0 x D x [0, To] and 0 x D, respectively.

In order to define finite-dimensional approximations yh and W h to Y and W,

respectively, let the domain 0 be subdivided into N EL elements oe such that

NEL

0= U Oe
e=l

where

oe is the domain of the eth element, and

N EL is the number of finite elements in the domain.

(2.29)

Further, let ue(x, b, t), x E oe denote the restriction of u(x, b, t) to oe, so

e( b t) _ {u(x, b,t)u x, , - 0
"Ix E oe
"Ix (/. oe . (2.30)

Then, from equation (2.29), the solution field is represented as the summation

of all these restrictions,

NEL

u(x, b, t) = L ue(x, b, t) .
e=l

(2.31)

In the present formulation, the dependent variable ue(x, b, t) is expanded as a

double series over x and b. The approximation of the solution in the spatial domain

is assumed to be given by the finite element shape functions, while an orthogonal

set of polynomials with respect to the mean operation is used to approximate the

solution in the probability space. Then, the solution takes the form of a double series

of space dependent interpolation functions and orthogonal polynomials weighted by

time dependent functions. Thus, the dependent variable ue(x, b, t) is expressed as:
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NEN r

ue(x, b,t) = L L uj£l ...£.(t)¢j(x) II H~:(b,,) ,
i=l o~lll~NP ,,=1

where

N P is the order of approximation in the probability space,

N EN is the number of nodes per element,

¢j(x) is the finite element shape function for node J' of element e,

uje
1

••. £. (t) is an unknown deterministic function of time,

I. is a vector with components i", s = 1, ... ,r,

11.1 stand for the norm of I. defined by

r

II.I = l:= ill , and
,,=1

(2.32)

(2.33)

{H~g (b,,) }:o is an orthogonal set of polynomials with respect to the mean

operation, that is,

(2.34)

The selection for the set of polynomials depends on the probability density

function of the random variable b". For example, the Hermite polynomials satisfy

equation (2.34) for Gaussian random variables, the Legendre polynomials do like-

wise for uniform random variables, the Laguerre polynomials are appropriate for

exponential random variables, etc.
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It follows from equations (2.31) and (2.32) that the discretization of u(x, b, t)

can be expressed as

NELNEN r

u(x, b, t) = L L L: ujel ...e. (t)<j>j(x) II H;:(b~)
e=l :j=l o~lll~NP ~=1

(2.35)

Note that the unknown nodal values ujel ...er(t) are deterministic functions of time.

Next, let the set of functions define as

{ q);(x) IT H~:(b.) } ;=l, ... ,NTOT

e.=O,l, ...

(2.36)

be a base for Vh and Wh, where NTOT is the total number of nodes in the finite

element discretization, and <j>j(x) is the global shape function for node J.. Then the

variational formulation previously defined becomes:

find uh(x, b, t) E Vh, X E 0, bED, t E [0, To], such that for all wh(x, b) E wh,

r

+ L: {(r(kn(x), uh)bn, \lwh) E + (Q(cn(x), uh)bn, wh) E}
n=l

r

= (!(x, t), wh)E + L (fn(X,t)bn,wh)E'
n=l

where all terms are as defined previously.

(2.37)

(2.38)

(2.39)
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The equations (2.37) through (2.39) represent the semidiscrete Galerkin formu

lation of the governing equation (2.1) with boundary and initial conditions defined

by equations (2.2) through (2.5).

Finally, it is noted that an expansion similar to equation (2.32) has been pro

posed in reference [28]. A Fourier~series expansion in the probability space was used

to compute the mean and variance of the response of a single-degree-of-freedom sys-

tem with uncertain natural frequency. It was concluded that this expansion works

well for one uncertain parameter, but becomes cumbersome if the parameter space

is of higher dimension.

2.6 Matrix Equations

The semidiscrete Galerkin formulation defined in Section 2.5 leads to a coupled

system of linear ordinary differential equations for the unknowns. In order to obtain

the set of equations, the following recurrence relation for the orthogonal set of

polynomials {H~'(bs)}:o [29] will be needed

n = 1, ... ,r

in = 0,1, ...

(2.40)

where the coefficients a~: depend on the probability density function of the random

variable bn .

The set of equations for the element e of the finite element mesh is obtained

using the equations (2.37) through (2.39) together with the characterization of V h

and Wh described in Section 2.5, the independence property of the random variables
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bn , the orthogonality of the set of polynomials defined in equation (2.34), and the

recurrence relation (2.40). This leads to the following set of equations

:~{[ fa. m(x)<,bj (x) <,bi(x) dO] "jl,.dt ) + [fa. Q(e(x), <,bj(x)) <,bf(x) dO]

i = 1, ... ,NEN,

r r

( agn IT OlsO + a~n IT OlsOOln 1 ) ,

8=1 s=1
s"n

NEN[
~ 1e m(x)</>j (x) </>i(x) dO] ujll ... l. (0)
3=1 (1

£8=0,1, ...

s = 1, ... ,r

i = 1, ... , N EN, (2.42)

= (fa. m(x)uo(x)<,bi(x) dO) gOl.O, £8=0,1, ...

s = 1, ... ,r
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NEN[ ]f; fa, m(x) <6f (x) <61(x) dlJ uf" ...'. (0)

i= 1, ... ,NEN, (2.43)

flJ = 0,1, ...

s = 1, ... ,T

Equations (2.41), (2.42) and (2.43) can be written now in terms of the components

of elemental matrices and vectors as

(2.44)

( )

i = 1, ,NEN,

= Ii IT .',0 +t I~i a~' IT .'.0 + a~' TI .'.0.'.1 , t. = 0,1, .

• ¢n S = 1, ,T

NEN r

~ mt;·u~b b (0) = uoe . II Ob 0L- tJ J<"I···<", t <-.'
j=1 8=1

NEN r

~ mt; 'U~b b (0) = uoe . II oe 0L- tJ J<"I·"<", t . '

j=1 8=1

i = 1,.o.,NEN,

f lJ = 0,1, ...

s = 1, .. . ,T

i=l, .. o,NEN,

flJ = 0,1, ...

s=l, ... ,T

(2.45)

(2.46)
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where

m'ti = Joe m(x)¢>'[(x) ¢>j (x) dO, which defines the element mass matrix,

c'fi = Joe Q(c(x), ¢>j(x))¢>'[(x)dO, which defines the nominal element damping

matrix,

kii = Joe T(k(x), ¢>j(x)) \7¢>'[(x) dO, which defines the nominal element stiffness

matrix,

C~i3' = Joe Q(cn(x)¢>j(x))¢>'[(x)dO, which defines the element damping matrix

that accounts for the uncertainty in damping parameter field,

k~ii = Joe T(kn(x), ¢>j(x)) \7¢>'[(x) dO, which defines the element stiffness matrix

that accounts for the uncertainty in stiffness parameter field,

it = Joe f(x, t)¢>'[(x) dO, which defines the nominal element force vector,

f~i = Joe fn(x, t)¢>,[(x) dO, which defines the element force vector that accounts

for the uncertainty in force field,

uZ i = Joe m(x)uo(x)¢>'[(x)dO, which defines the element initial condition vector

on displacement, and

uZi = Joe m(x)uo(x)¢>'[(x)dO, which defines the element initial condition vector

on velocity.

The coupled system of linear ordinary differential equations for the unknowns

is found by assembling equations (2.44) through (2.46) for all elements, into a set

of global equations. This leads to a deterministic equation of the form

Md(t) + Cd(t) + Kd(t) = p(t) , (2.47)
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where d(t) is the global vector of unknowns with components Ujll ...lr (t), p(t) is the

total effective load vector, and M, C and K are the mass, damping and stiffness

matrices for the system, respectively.

The initial conditions are given by

d(O) = do and

d(O) = do ,

(2.48)

(2.49)

where do and do are vectors whose elemental components are defined by the equa

tions (2.42) and (2.43), respectively. Note that homogeneous boundary conditions

are satisfied for all nodes on r g'

It is interesting to note that the dimension of the matrices M, C and K increase

very rapidly with both the number of random variables bn , and the order of approx

imation of the finite element solution in the probability space D (equation (2.35)).

Nevertheless, these matrices are thinly populated, that is, there are relatively few

nonzero terms.

In order to illustrate the manner in which the dimension of the matrices of the

system increase, the number of unknowns per node as a function of the number of

random variables and the order of approximation in the probability space is pre

sented in Table 2.1. The same order of approximation is considered for each one

of the random variables. In general, however, the approximation of the response in

terms of a random variable with a small variance requires lower order of approx

imation than for a random variable with a large variance. Thus, the number of

unknowns per node can be reduced significantly. An example in which different

orders of approximation are used for the random variables is presented in Chapter

3.
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~ 1 2 3 4

1 2 3 4 5

2 3 6 10 15

3 4 10 20 35

4 5 15 35 70

5 6 21 56 126

Table 2.1 Number of unknowns per node.

Finally, it is reiterated that the elemental matrices of the system defined by

equation (2.44) are sparse, that is, the number of nonzero terms is relatively small.

2.7 Discrete Time Solution

Equation (2.47) can be integrated in time to find the global vector of unknowns

d(t) for all time. Most time integration schemes fall into one of two classes: implicit

or explicit. An implicit algorithm requires solution of a matrix equation at every

time step to advance the solution. In contrast, explicit algorithms do not demand

a simultaneous equation solution, but do require smaller time step to maintain

stability and accuracy. As previously pointed out, the size of the matrices M, C and

K may become very large, so the time integration algorithm should be chosen such

that computer high-speed memory requirements are minimized. Low order explicit

algorithms are very memory efficient, thus allowing solution of large problems in a

. .
gIven memory sIze.
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The modified Euler scheme is an explicit, second order accurate integration

procedure which is well suited to solve the first order state space equation corre

sponding to equation (2.47). This algorithm is conditionally stable, with stability

guaranteed for a sufficiently small time step t1t [30,31].

In order to convert the 2nd order differential equation (2.4 7) to a 1st order

state space equation, define the system state vector s (t) as

(2.50)

Then, using this definition, the governing discrete equation (2.47) can be writ-

ten

where

s(t) = As(t) + F(t) , (2.51)

(2.52)

is the system matrix, and

(2.53)

is the state space load vector. In the above expression, I is the identity matrix

of appropriate dimension.

The Euler algorithm begins at step k, time tk, when S(tk) is known, and com

putes the updated vector s(tk+d as follows:
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1. Predictor equation: Compute predicted s(!k+d and s(tk+d from

2. Corrector equation: Compute corrected new s(tk+d and s(tk+d from

S(tk+l) = S(tk) + .6.t (S(tk) + s(tk+d)
2

s(tk+d = AS(tk+d + F(tk+d

(2.54)

(2.55)

(2.56)

(2.57)

Note that only the nonzero terms of A need to be stored for computer im-

plementation to produce a more memory efficient scheme. In addition, since no

matrix decompositions are involved, the scheme is efficiently implemented in a vec-

tor processing computer environment. Also note that if a diagonal or "lumped"

mass matrix is employed for the element mass matrix in the finite element formula-

tion, then the mass matrix M will be diagonal and the construction of the system

matrix A will be immediate.

This completes the specification of the solution procedure. The next section

describes the probabilistic characterization of the response process.

2.8 Response Uncertainty and Statistics

Once the unknowns ujel ...er(t) have been determined, an analytical approx

imation to the solution in the spatial and probability space is completely defined

by equation (2.35). The response, which is random, will be described by its proba-

bility density or cumulative probability function, or by its statistical moments. Of

particular importance is the second moment representation defined by the mean or
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expected response of all possible outcomes, and by the variance and covariance of

the response.

Using equation (2.32), the mean value, variance and covariance response for

the element e are given by

E(ue(x, b,t)) = Nf L ujel ...er(t)~j(x)E (tr H::(bs))
3=1 O~lll~NP s=l

e = 1, ... ,NEL,

NENNEN

Var(ue(x, b,t)) = L L L L
i=l i=l O~lll~NP O~lkl~NP

NENNEN

L L L L uiel ...er(t)U~·kl ...k)t)~Hx)~j(x)
i=l i=1 O~lll~NP O~lkl~NP

(2.58)

(2.59)

e = 1, ... ,NEL,
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NEN NEN

I: I: I: I: u:i1 ...er (t 1)uj11...k r (t2)4>? (x)4>? (y)
i=l i=l o:<:::lll~NP o:<:::lkl:<:::NP

(2.60)

Finally, using the orthogonality of the set of polynomials as defined in equation

(2.34), the second moment representation for the element response is given by

NEN

E(ue(x, b, t)) = I: ujo ...o(t)4>j(x), e = 1, ... , N EL
i=l

(2.61)

NEN NEN

Var(ue(x,b,t)) = I: I:
i=l i=l

and

I: uiel ...er (t)ujel •••er (t)4>i{x)4>j(x),
l:<:::lll~NP

e=1, ... ,NEL

(2.62)

00TJ (u e1 (x, b, t1)' ue~ (y, b, t2))
NEN NEN

= I: I: I: u:l1...er (tdujL ..er(t2)4>? (x)4>? (y) ,
i=l i=1 l:<:::j l l:<:::NP

e1,e2 = 1, ... ,NEL

(2.63)

where equations (2.61), (2.62) and (2.63) represent the mean value, variance and

covariance response, respectively.
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This characterization of the response is completely defined by the nodal un

knowns ujel ...e)t), and does not require the solution of a multiple integral in the

probability space. A similar characterization can also be defined for the velocity,

acceleration, strain and stress response fields. Finally, it is noted that using the

analytical approximation for the response, given by equation (2.35), higher statis

tical moments can be computed as well as the probability function. These higher

statistical moments can be computed using higher order recurrence relations for the

orthogonal set of polynomials, while the probability function can be computed by

numerical integration.

This completes the formulation of the random finite element method for the

governing second order partial differential equation described in Section 2.2. The

next chapter describes the application of this technique to the solution of one specific

system of engineering interest.
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Chapter 3

Application to One-Dimensional Wave Equation

3.1 Introduction

This chapter describes the application of the newly developed solution method

to one specific problem. Before beginning discussion of the particular problem to be

studied, it is appropriate to consider the objectives of such a numerical investigation.

The numerical illustrations described in this chapter are chosen with the fol

lowing goals in mind. The first motive is to exercise the new technique and acquire

facility in its application. The second, is that it is important to validate the accuracy

of the new method by comparing it against other available solution techniques. Fi

nally, it is of engineering interest to assess the influence of uncertainties in structural

properties on the structural response of an example system.

The system chosen for study in this chapter is a one-dimensional continuum

described by the wave equation in which the physical properties exhibit a one

dimensional spatial random variation. This spatial variability is modeled as an

homogeneous Gaussian random field, or random process [32]. The class of systems

modeled by the wave equation is one of significant engineering importance since it

contains many common physical systems, such as axial vibration of a rod, propaga

tion of plane waves in a continuum, and vibration of a shear beam. The particular



- 29-

problem chosen for study will be described later. In what follows, the discretization

of the random field will be discussed in detail.

3.2 Random Field Discretization

The finite element analysis involves the discretization of the parameter-space

of a random field of material properties into a random vector representation. Two

methods of discretization have generally been used. In one method, the field values

are defined at a finite set of discrete points, which typically corresponds to either:

the mesh nodes, the midpoint of the elements, or the integration points. Then,

the representation of the random field is defined in terms of a mean value vector

and a covariance matrix defined at such points. These two statistical moments are

obtained in terms of the mean and covariance functions of the process from well

known results in random field theory [32].

In the second method, the field values are defined at a finite set of elements,

called random field elements. Their values are represented by the spatial average

of the process over the element, as originally suggested by Vanmarcke et al. [32].

A key component of this approach is the treatment of the correlation structure of

the random material property in terms of the variance function and its principal

parameter, the scale of fluctuation. In this context, the variance function represents

the dependence of the variance of spatial averages on the size of the averaging ele

ment, while the scale of fluctuation measures the distance within which the random

process shows relatively strong correlation from point to point. Similar to the first

method, the representation of the random field is defined in terms of a mean value

vector and a matrix of covariances between local spatial averages associated with

pairs of random field elements. One of the advantages of this formulation is that
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detailed knowledge about the correlation structure of the process, which in practice

is seldom available, is unnecessary.

Both methods of discretization of the random field imply that its representa-

tion will consist of a vector of random variables with a jointly Gaussian probability

density function. As indicated in Section 2.3, the random field can be described in

terms of a vector of independent random variables by using the spectral decompo-

sition of the covariance matrix. To show this result in detail, let z be the vector of

random variables that describe the random field, and let C be its covariance matrix

with components Cii' Depending on which method of discretization has been used,

i and J represent either points or random field elements in the spatial domain. By

the spectral decomposition theorem, the covariance matrix can be represented as a

summation of the form
N

C = L4>!.4>I~l'
l=1

where N is the dimension of the vector of random variables z, ~l are the eigen-

values of the covariance matrix ordered in a decreasing manner, and 4>l are the

corresponding eigenvectors, normalized such that

(3.2)

To obtain an uncorrelated set of random variables, the random vector z 1S

transformed into a new vector of random variables b, defined by

b = epT z ,

where ep is the matrix of eigenvectors of the covariance matrix.

(3.3)

The orthogonality property of the eigenvectors (3.2) together with the unique

ness of the spectral decomposition (3.1), imply that the covariance matrix of the
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new set of variables is diagonal, and their variances are simply the eigenvalues of

the covariance matrix of the original variables. So, the new random variables are

uncorrelated and since they are Gaussian, they are also independent.

The contribution of each successive eigenvalue-eigenvector pair to the total

correlation (equation (3.1)) is observed to decrease steadily for many problems of

interest [14,33,34]. Consequently, there is the possibility of truncating the series

in (3.1) at some value n < N without significant loss of accuracy. This reduction

of variables is particularly important in the representation of strongly correlated

fields, allowing their description by a proper set of uncorrelated random variables.

Another important issue related with finite element analysis and the discretiza

tion of the random field is the selection of the mesh size. When the material prop

erties exhibit spatial variability two separate factors should be considered for this

selection. One is the expected gradient of the stress field [30], and the other is the

expected rate of fluctuation of the random field, as measured, for example, by the

corresponding strength of correlation [15,19,22]. The two requirements do not nec

essarily coincide in each region of the structure and, hence, it is usually necessary to

consider two or more separate meshes. In the present application, the finite element

mesh is selected such that both sets of requirements in each region of the structure

are satisfied. Then for a given random field, a separate mesh is considered which

is equal to or coarser than the finite element mesh, such that each random field

element is a block of one or more finite elements.

3.3 Description of the Physical System

The particular problem chosen for study is a shear beam whose rigidity varies

randomly along its axis. As shown in Figure 3.1, the beam lies along the x axis.
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The transverse displacement in an inertial coordinate frame is denoted by v(x, t),

while the displacement relative to the base of any point x at time t is denoted by

u(x, t). The beam is assumed to have constant mass, m, per unit of length. The

base acceleration ij(t) is taken to be an earthquake-like excitation.

The equation of motion for this system is easily shown to be

ar ..
ax = mv,

or in terms of relative displacement

ar .. ..ax = mu+mq,

(3.4)

(3.5)

where r is the shear stress, and all other terms are as defined above. The shear

stress is related to the relative displacement by the equation

au
r = k(x) ax '

where k(x) is the shear stiffness defined by

k(x) = G(x) A(x) ,

where G(x) is the elastic shear modulus and A(x) is the cross-sectional area.

(3.6)

(3.7)

Substitution of equations (3.6) and (3.7) into equation (3.5) yields the equation

of motion in terms of displacement relative to the base as

a (k( )au) .. ..ax x ax = mu + mq . (3.8)

This system is cast into the general form, described in Chapter 2 (equation 2.1),

by letting the stiffness parameter k(x) represent the shear stiffness, the divergence

operator V represent the derivative with respect to the variable x, and the external



- 33-

load f represent the load due to the base excitation, with the operator T( . ) defined

as

au
T(k(x),u) = k(x) ax . (3.9)

To complete the formulation of the system, it is necessary to add some amount

of damping to the mathematical model. Often the physical mechanisms producing

damping in a given system are not well understood, and the addition of damping

is based on experience or experimental data rather than rigorous derivation. One

form of damping widely used in structural calculations is Rayleigh damping, where

the damping matrix is constructed as a linear combination of the stiffness and mass

matrices. This form of damping is achieved in the model by defining the operators

T( . ) and Q( . ), which are described in equation (2.1), as

(
au a2u )

T(k(x), u) = k(x) ax + Cl axat

Q(c(x),u) = c(x)u ,

where

(3.10)

(3.11)

(3.12)

and c 1 and C2 are constant parameters reflecting the participation of damping pro-

portional to stiffness and mass, respectively. All other terms are as previously

defined. Frequently, mass proportional damping is referred to as external damping,

and stiffness proportional damping is also known as internal damping. It is em-

phasized that the new method of analysis is not restricted to Rayleigh damping in

any way, and that many other techniques could equally well be used to incorporate

damping into the model.
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3.4 Representation of the Random Field

In order to consider the uncertainty in the beam rigidity along its axis, the

spatial variation of the shear stiffness k(x), is assumed to be a one-dimensional

homogeneous Gaussian random field. It is defined in terms of a mean value plus a

deviatoric component, that is

k(x) = k(x) + Z(x) , (3.13)

where k(x) is the shear stiffness mean value and Z(x) represents its fluctuating or

deviatoric component.

The fluctuating component is assumed to have zero mean, that is

E(Z(x)) = 0,

and covariance function defined by

R(x, x + s-) = E(Z(x) Z(x + s-)) ,

(3.14)

(3.15)

where x and x + s- are points along the x axis.

Since the random field is assumed to be homogeneous, the covariance function

of the spatial variation is a function only of the distance between the two points.

While the new method of analysis is not restricted to any particular form of the

covariance function, the following exponential function is considered in the present

analysis:

(3.16)

where (J' is the standard deviation of the random process, S- is the distance between

two points along the x axis, L is the length of the shear beam, and {; is a dimen

sionless parameter. The parameter {; is a measure of the correlation length and the
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product oL is usually defined as the scale or strength of correlation [22,32]. Note

that 0 = 00 corresponds to a fully correlated random field and the process reduces

to a random variable. In contrast, the random field is completely uncorrelated and

becomes white noise when 0 = o.

Next, the random field is discretized in accordance with a suitable finite element

mesh. This suitable mesh should satisfy the requirements pointed out in Section

3.2. Then, the discretized version of equation (3.13) is given by

k=k+z, (3.17)

where k is the random vector that represents the spatial variation of the shear

stiffness at a set of discrete points, k is the mean value vector of the process, and z

is a vector of Gaussian random variables with zero mean and covariance matrix C,

whose (i,J) component is given by

(3.18)

where Zi and zJ" are the i-th and J-th components of the random vector z, respec

tively. The Cii components are obtained in terms of the covariance function defined

in equation (3.16).

Finally, by means of the transformation defined in equation (3.3), the repre

sentation of the discretized random field can be written in terms of a vector of

uncorrelated and independent random variables. Then, multiplying equation (3.3)

by the matrix of eigenvectors of the covariance matrix <1>, and substituting into

(3.17) yields

k = k + <1>b , (3.19)
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where b is a vector of independent Gaussian random variables with zero mean. As

mentioned in the previous section, there is the possibility of considering only a few

of these random variables to represent the random field without significant loss of

accuracy. The actual number of random variables that are retained in the analysis

depends on the correlation length parameter of the random field. A particular

example will be considered in Section 3.6.

This completes the description of the physical system and the representation

of the random field, which have been cast into the general formulation described

in Chapter 2. The next two sections describe the comparison of the new method

against other techniques and the application of the method to the solution of some

particular examples of the physical system considered in Section 3.3.

3.5 Performance Evaluation

3.5.1 Introduction

In order to evaluate the performance of the newly developed method on prob

lems involving uncertainty in physical properties, two examples are solved and their

solutions are compared with solutions which are obtainable by other techniques.

Early applications used the Monte Carlo simulation method to investigate the

effect of uncertain variability in structural properties. Later, first and second-order

Taylor series or perturbation methods were used to compute second-moment statis

tics of response quantities in structural and geotechnical applications. In Monte

Carlo simulation, the computer is used to generate a particular realization of the

structural properties, and the deterministic solution is found using classical analysis

techniques. This process is repeated until the ensemble of realizations of the struc

tural properties represent the statistical distribution to a desired degree of accuracy.
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Then, statistics are computed across the ensemble of responses obtained from these

particular properties. Although this method is very powerful, it is very costly in

terms of computational resources and may become prohibitively expensive.

In perturbation methods, parameter uncertainties are assumed to be "small,"

and the expressions for the response are expanded by perturbation about the mean

values to obtain the second-moment statistics. These methods are quite general

and they are easily integrable into any deterministic solution technique. However,

perturbation methods usually suffer from questions on their accuracy and conver

gence. These questions become more crucial as higher order solutions are sought, as

the degree of the material property variability becomes more pronounced, and when

dynamic, particularly transient and wave propagation problems must be considered.

In fact, when perturbation methods are applied to transient analysis secular terms

result in the higher order solution and hence, in all statistical results [14,26]. Conse

quently, the solution is valid only for a short duration and the accuracy deteriorates

rapidly thereafter. Although some methods have been proposed to numerically elim

inate secular terms in probabilistic finite element methods [26], their effectiveness

is still under investigation.

3.5.2 First Validation Problem

As a first check on the accuracy of the newly developed method, a problem

with only one degree-of-freedom is solved. The finite element model corresponding

to this problem is shown in Figure 3.2. Note that this model represents a single

degree-of-freedom system. For this one element model, a constant mass per unit

of length and uniform mean value properties throughout its length are used. The

natural frequency of the system is 2 Hz and a damping corresponding to 5% of
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critical is added. The variability of the shear stiffness is modeled as a fully correlated

random field, that is, as a random variable. As previously discussed in Chapter

2, the probability density function of this random variable is not restricted to be

Gaussian. In fact, a uniform probability density function is assumed in this example.

The effect of the particular choice for the probability function on the accuracy of

the method will be discussed later. The model is subjected to a base excitation, and

the variability of the response is studied. In particular, the absolute acceleration

response at the free node of the element is considered.

The base excitation is taken to be an earthquake-like excitation. It is gen

erated using the procedure described in reference [35]. In brief, a sample function

is generated to represent stationary Gaussian white noise. The sample function

is constructed from a sequence of independent normally distributed numbers with

zero mean and unit variance. These numbers are used as ordinates of the function

at equally spaced time intervals, ilt. The function is assumed to vary linearly over

each interval. The numerically generated unit variance sample function is multiplied

by a scaling factor to give a process with a power spectral density approaching to

a constant. Next, the sample function is multiplied by a shaping function in time

O(t), to produce a single sample of a nonstationary process. In the present example,

the shape function chosen is

O(t) = te-vt , (3.20)

where v is a free parameter which may be interpreted physically as the reciprocal

of the time required for the excitation to build up to its maximum intensity. Fi

nally, the excitation chosen to represent the base excitation is obtained by passing

the nonstationary process through a filter with prescribed transfer function. The
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resultant base excitation is therefore a sample of a filtered, modulated white noise

process. Figure 3.3 shows the base excitation for the present validation problem.

Figures 3.4 and 3.5 show a comparison of the results of the proposed method

to those obtained by an "exact" solution for both the mean value and the standard

deviation responses of the absolute acceleration of the system. In the "exact"

solution, the first two statistical moments are computed numerically. The numerical

integration is performed using 200 equally spaced points over the range of shear

stiffness values. Three values for the coefficient of variation of the shear stiffness are

considered: 10%, 20% and 30%. Recall that the coefficient of variation is the ratio

between the standard deviation and the mean value of the random variable. These

figures show that the agreement between the proposed method and the "exact"

solution is excellent. The two solutions are coincident in every place. Note that

the response variability increases with increasing coefficient of variation of the shear

stiffness.

In the case of the proposed method, different orders of approximation in the

probability space are used as the shear stiffness variability becomes more pro

nounced. A third order approximation is used for a coefficient of variation of 10%,

and a fourth and a fifth order approximation are used for coefficients of variation

of 20% and 30%, respectively. The need to use such a high order of approximation

clearly shows the high degree of nonlinearity of the response as a function of the

shear stiffness parameter. It also indicates that a low order approximation is not

adequate to approximate such a nonlinearity.

At this point, it is interesting to compare the relative amounts of computational

effort required to obtain the results by the proposed method versus that for the

Monte Carlo simulation method. The computer time required by the proposed
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method is equivalent to the time required to perform approximately 15 simulations.

This number is much less than the number of simulations usually required to obtain

dependable results from a simulation study. In fact, more than 100 simulations are

needed to obtain the same accuracy that is obtained by the proposed method.

Therefore, it is concluded that for this test problem, the new formulation is more

efficient than simulation.

In order to illustrate the difficulties of the second-order perturbation method in

probabilistic finite elements, the comparison of the results of the "exact" solution

to those obtained by the perturbation method are presented in Figure 3.6. A

coefficient of variation of 20% is considered in this case. This figure shows that

the perturbation method does not give acceptable results. For higher coefficients of

variation, it can be shown that the inaccuracy of the perturbation method is even

more dramatic. As mentioned before, one of the factors that affects the accuracy

of the perturbation method is the existence of secular terms in the higher order

solutions. At the same time, the second-order perturbation method is not adequate

to approximate the high nonlinearity of the response as a function of the uncertain

system parameters.

Finally, an investigation of the effect of different probability density functions

for the shear stiffness parameter on the accuracy of the proposed method is per

formed. In addition to a uniform distribution, three different types of probability

density functions are applied in this example, including: Gaussian, Parabolic, and

Ultraspherical. The mathematical expressions for these distributions are given in

reference [29]. The analysis shows that for all these distributions, the results are
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qualitatively similar to those of the corresponding uniform case. That is, the pro-

posed method gives excellent agreement with the "exact" solution, while the perfor-

mance of the second-order perturbation method is poor. To graphically illustrate

these results, the case of a Gaussian distribution of the shear stiffness parameter

with a 20% coefficient of variation is presented in Figure 3.7. The results are self-

evident.

3.5.3 Second Validation Problem

A second validation problem presented considers the variability of the

response of a two element model. As before, the absolute acceleration response

at the free end of the model is considered. A diagram of the finite element mesh

is shown in Figure 3.8. Here, as in the first validation problem, a constant mass

per unit of length and uniform mean value properties throughout its length are

assumed. The nominal or mean value system is assumed to have 5% of critical

damping in both modes, and a fundamental frequency of 2 Hz. Once again, the

model is subjected to the base excitation described previously.

The variability of the shear stiffness in space is modeled as a Gaussian ran-

dom field, which is discretized into two random field elements. Their correlational

characteristic is assumed to be specified in terms of the following covariance matrix

2 (1.0C=a
p

(3.21)

where a is the standard deviation of the process, and p is the coefficient of corre-

lation between the two random field elements. Three values of p are considered:

p = 1.0,0.5, and 0.0. In the first case, the random field elements are fully corre-

lated, while they are completely uncorrelated in the third case. In the second case,
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the random field elements can be considered as medially correlated. Note that the

covariance matrix corresponding to these three cases can be generated by the covari

ance function defined in equation (3.16). In fact, if the field value over an element is

represented by its value at the midpoint of the element, then the evaluation of the

covariance function at ~ = 1.0, with parameter {; equal to 00, 0.6 and 0.0. gives the

off-diagonal terms of the covariance matrix for the three cases, respectively. Note

that ~ = 1.0 corresponds to the distance between the midpoints of elements 1 and

2.

Figures 3.9 and 3.10 show a comparison of the results of the proposed method

to those obtained by an "exact" solution for both the mean value and the standard

deviation responses of the absolute acceleration at the free end of the model. A 20%

coefficient of variation of the shear stiffness is considered. In the "exact" solution,

the mean value and the standard deviation responses are computed by numerical

integration over the range of shear stiffness values. The agreement between the

proposed method and the "exact" solution is excellent. These figures also show

that the fully correlated case produces the largest response variability. That is,

the uncertainty in the absolute acceleration response tend to decrease as the two

random field elements become uncorrelated. In the case of the proposed method,

the following orders of approximation in the probability space are used: A fifth

order approximation is used for a coefficient of correlation of 1.0, and a fourth order

approximation is used for coefficients of correlation of 0.5 and 0.0.

Figure 3.11 shows the inadequacy of the second-order perturbation method

in this second validation problem. A coefficient of correlation of 0.5 between the

random field elements and a coefficient of variation of 20% of the shear stiffness

are considered in this case. Once again, the perturbation method does not give
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acceptable results. As stated previously, some of the factors that affect the accuracy

of the perturbation method are the existence of secular terms in the higher order

solutions and the inability of approximating the high nonlinearity of the response

as a function of the uncertain system parameters.

In order to illustrate the high nonlinearity of the response as a function of the

shear stiffness parameter, the absolute acceleration response at the free end of the

model is presented in Figure 3.12 as a function of the two random variables that

describe the random field under consideration. This figure depicts the response

of the system in the neighborhood of the response of the nominal system at two

specific times. The response is plotted for values of the random variables less or

equal than one standard deviation about their mean values. The selected times

are the time in which the mean value response is maximum and the time in which

the standard deviation response is maximum. It is clear from this figure that the

response as a function of the two random variables is highly nonlinear. Thus, low

order approximations are not appropriate to approximate such a nonlinearity.

Finally, it is interesting to note that the computer time required by the pro

posed method is equivalent to the time to perform approximately 8 simulations in

each one of the two random variables that describe the random field. On the other

hand, the total number of simulations needed to obtain the same accuracy that is

obtained by the proposed method is more than 400. Thus, once again, the new

formulation is more economical than simulation.

Based on the results of the above two validation calculations, the proposed

method is judged to produce accurate results for the response variability of the

system under consideration.
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3.6 Description of the Example Problem

In Section 3.3, the physical system chosen for study was described. The ef

forts of this section together with the following sections are directed toward gaining

physical insight into the response of a continuous shear beam whose rigidity varies

randomly along its axis. To this end, two sets of calculations are performed to

illustrate the influence of uncertain stiffness on the response of the beam. In par

ticular, the absolute acceleration response at the top of the beam is considered. The

continuous system is taken to have uniform mean value properties throughout its

length, with a fundamental frequency of 2 Hz.

In the first set of calculations, the system is assumed to have a 20% of critical

damping in the first two modes. The random field that describes the spatial vari

ation of the shear stiffness is assumed to have a 40% coefficient of variation. The

system is subjected to a single sample of a modulated white noise process, which

is generated using the procedure described in reference [35]. Figure 3.13 shows the

base excitation for this set of calculations. For convenience, this first set of calcu

lations will be referred as Case I of the example problem. One specific engineering

application of the results of these calculations will be discussed in Section 3.8.

In the second set of calculations, the system is assumed to have a 5% of critical

damping in the first two modes. A coefficient of variation of 20% of the random field

that describes the spatial variation of the shear stiffness is considered in this case.

The system is subjected to the same base excitation that was used for the validation

calculations in Section 3.5. The application of the results of these calculations in a

structural engineering context will be discussed in Section 3.8. Finally, this set of

calculations will be referred as Case II of the example problem.
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In both sets of calculations, two values of correlation length parameter bare

considered: b = 00, and b = 0.5. As it was indicated before, b = 00 corresponds to

a fully correlated random field, while 8 = 0.5 corresponds to a random field which

may be considered as medially correlated. The covariance functions corresponding

to the above correlation length parameters are shown in Figure 3.14.

The assumption of a Gaussian distribution for the components of the random

vector b (equation 3.19) implies a probability of generating negative values of shear

stiffness. This probability is not negligible for high coefficients of variation, such as

40%. Consequently, when high levels of uncertainty are considered, a new proba

bility density function is introduced to avoid the mathematical complications that

would arise if the shear stiffness indeed becomes negative. The newly introduced

probability density function is of the so-called Ultraspherical type. This name arises

from the fact that the set of Ultraspherical polynomials is orthogonal with respect

to the mean operation defined by this distribution [29].

Figure 3.15 shows a Gaussian and an Ultraspherical distribution with a coef

ficient of variation of 40%. It is clear from this figure that the assumption of a

Gaussian distribution implies that the probability of generating negative values for

the random variable is not zero. On the other hand, it can be shown that this prob

ability is negligible for smaller coefficients of variation, such as 20%. Therefore, an

Ultraspherical distribution is assumed in Case I of the example problem, while a

Gaussian distribution is used in Case II.

3.1 Finite Element Discretization

As discussed in Section 3.2, one of the factors that should be considered in

the selection of the mesh size for the finite element analysis is the expected rate of
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fluctuation of the random field. Therefore, in order to assure that the mesh used for

this example problem adequately represents the physical behavior of the system, a

parametric study of mesh size is conducted. For the given range of the correlation

length parameter, the response variability of the absolute acceleration at the top of

the beam is analyzed using uniform meshes of 10, 15, 20, and 25 elements.

For the uniform mesh of 20 elements, shown in Figure 3.16, it is found that

the statistical fluctuations of the random field with correlation length parameter

6 = 0.5 is very small within each element. That is, the random field is almost fully

correlated within each element. Note that the random field with correlation length

parameter 6 = 00 is fully correlated in the entire beam, and therefore is also fully

correlated within each element. At the same time, it is found that the response is

nearly invariant to a finer mesh, such as the 25 element mesh. Hence, the mesh

shown in Figure 3.16 satisfies the two sets of requirements discussed in Section 3.2.

Based on these results, the uniform 20 element mesh is judged adequate for the

current problem. The results for Cases I and II of the example problem, using this

uniform mesh of 20 elements, are presented in the next section.

The finite element mesh introduced above implies that the discretized random

field is represented by 20 independent random variables (equation 3.19). However,

the two values of the correlation length parameter that are considered in the ex

ample problem allow truncation of the eigenvectors-eigenvalues of the random field

covariance matrix. Thus the number of eigenvectors, and hence the number of ran

dom variables in equation 3.19 can be reduced. It is clear that for 6 = 00, the

number of random variables can be reduced to one, since the process is fully corre

lated. For 6 = 0.5, the number of variables that are retained in the analysis is three.

The influence of lower eigenvector-eigenvalue pairs is found to have little effect on
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the response variability of the system. Figures 3.17 and 3.18 show the three most

significant pairs of eigenvectors-eigenvalues of the random field covariance matrix

for Case I and Case II of the example problem, respectively.

3.8 Results of the Example Problem

3.8.1 Case I

The response variability of the absolute acceleration at the free end of the

shear beam, for the 40% coefficient of variation random field, is presented in Fig

ures 3.19 and 3.20. Figure 3.19 shows the second moment characterization of the

response for the fully correlated random field case, and Figure 3.20 shows the sec

ond moment characterization of the response for the random field with correlation

length parameter {) = 0.5. The top graph of these figures shows the mean value

response, the middle one shows the standard deviation response, and the bottom

graph shows the variability parameter defined as the ratio between the standard

deviation and the maximum mean value. The maximum values of the variability

parameter are about 0.58 and 0.50, that is, 58% and 50% of the maximum mean

value. These values illustrate the relatively high variability of the response. At the

same time, comparison between the bottom graphs in Figures 3.19 and 3.20 shows

the influence of the correlation length parameter on the variability of the absolute

acceleration response at the top of the beam. The fully correlated case produces

the largest response variability. That is, the uncertainty in the response tend to

decrease as the random field become medially correlated.

As mentioned previously, the number of random variables that are retained in

the analysis for the random field with correlation length parameter {) = 0.5 is three.

Figure 3.21 shows the uncertainty in the response due to each one of the three most
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significant pairs of eigenvectors-eigenvalues of the random field covariance matrix.

It is clear that the contribution of each successive eigenvector-eigenvalue pair to the

response variability decreases steadily. The first three random variables capture

the major characteristics of the random field. Therefore, the contribution of lower

eigenvector-eigenvalue pairs of the random field covariance matrix to the response

variability is negligible.

Finally, it is noted that a fourth order approximation in the probability space is

used for the fully correlated random field case. In the case of the medially correlated

random field, different orders of approximation of the response in the probability

space are used for three random variables that are retained in the analysis. A

third order approximation is used for the first random variable, and a second and

a first order approximation are used for the second and third random variables,

respectively. The influence of higher order approximation is found to have negligible

effect on the response.

3.8.2 Application of the Results to Earthquake Engineering

One specific engineering application of the above results is in the area of

geotechnical and earthquake engineering. In this context, one might conceptualize

the shear beam as a column of soil excited by motions of underlying bedrock during

an earthquake. Then, the surface motions are represented by the free end of the

shear beam, and the uncertainty of such motions is represented by the response

variability at the top of the beam. In this case, the coefficient of variation of the

random field reflects uncertainty in the knowledge of soil properties but assuming

that the soil behaves linearly.
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The effects of the uncertainty of the surface motions on the response of a simple

single-degree-of-freedom system located at the top of the soil column are presented

in Figures 3.22 and 3.23. Two values of critical damping for the simple system are

considered: 2% and 5%. It is noted that the single-degree-of-freedom system can be

represented by a finite element model consisting of one element with linear shape

functions (Figure 3.2). Therefore, this simple system can be cast into the general

formulation described in Chapter 2, where the physical properties of the system are

deterministic, and the externally applied load is random. Note that the external

load is characterized by an expression similar to equation (2.35-).

Figures 3.22 and 3.23 depict the maximum mean value and the maxImum

mean plus one standard deviation value of the absolute acceleration response of

this simple system for a range of values of periods. Figure 3.22 corresponds to the

fully correlated random field case. It is noted that for some periods of the simple

system, the maximum mean plus one standard deviation value of the response

is more than 50% of the maximum mean value of the response. For the medially

correlated random field case (Figure 3.23), similar differences between the maximum

mean plus one standard deviation value of response and the maximum mean value

of the response are observed. These values clearly illustrate the high variability of

the response of this simple system. The peaks of the curves in Figures 3.22 and

3.23 correspond to the first two fundamental frequencies of the soil column and to

some of the predominant frequencies of the base excitation.

Note that the curve that represents the maximum mean value of the response

may be interpreted as the mean acceleration response spectrum of the simple sys

tem, while the curve that represents the maximum mean plus one standard deviation
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value of the response may be interpreted as the probabilistic (one standard devi

ation) acceleration response spectrum of the system. Also note that these figures

suggest that the maximum mean value response may be considered unconservative

for design as a consequence of the high variability of the response about its mean.

3.8.3 Case II

The response variability of the absolute acceleration at the top of the shear

beam, for the 20% coefficient of variation random field, is presented in Figures 3.24

and 3.25. Figure 3.24 shows the second moment characterization of the response for

the fully correlated random field case, and Figure 3.25 shows the second moment

characterization of the response for the medially correlated random field case. The

analysis shows that the results are qualitatively similar to those reported for Case

1. That is, the relatively high variability of the response and the increase of the

response uncertainty with increasing correlation length parameter. The maximum

values of the variability parameter are about 0.57 and 0.51 for correlation length

parameters equal to 00, and 0.5, respectively.

It is noted that a similar level of response uncertainty is obtained for the lightly

damped shear beam system (Case II) and for the more heavily damped shear beam

system (Case I), even though the coefficient of variation of the random field in Case

II (20%) is much smaller than that of the random field in Case I (40%). This result

suggests that for lightly damped systems great caution must be exercised when

interpreting calculated response if the physical properties are not precisely known.

Figure 3.26 shows the uncertainty in the response due to each one of the three

most significant pairs of eigenvectors-eigenvalues of the random field covariance

matrix. As before, the contribution of each successive eigenvector-eigenvalue pair
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to the response variability decreases steadily, and the major characteristics of the

random field are captured by the first three random variables.

Finally, it is noted that a fifth order approximation in the probability space is

used for the fully correlated random field case. In the case of the medially correlated

random field, different orders of approximation of the response in the probability

space are used for the three random variables that are retained in the analysis.

A fourth order approximation is used for the first random variable, and a second

and a first order approximation are used for the second and third random variables,

respectively. The influence of higher order approximation is found to have negligible

effect on the response.

3.8.4 Application of the Results to Structural Engineering

From a structural engineering point of view, one might consider the shear

beam to be a shear structure, like a shear building. Then, the response uncertainty

at the free end of the shear beam represents the last floor response variability.

The effects of this response variability on the response of a substructure located at

the top of the building are presented in Figures 3.27 and 3.28. The substructure,

which may represent a piece of equipment or a secondary system, is idealized as

a single-degree-of-freedom system. Recall that this simple system can be cast into

the general formulation described in Chapter 2. Two values of critical damping

for the secondary system are considered: 2% and 5%. Additionally, the mass ratio

between the equipment and the structure is assumed to be small such that the

equipment-structure interaction can be neglected.

Figures 3.27 and 3.28 depict the maximum mean value and the maximum

mean plus one standard deviation value of the absolute acceleration response of the
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secondary system for a given range of periods. Figure 3.27 corresponds to the fully

correlated random field case. For some periods of the substructure, the maximum

mean plus one standard deviation value of the response is more than 50% of the

maximum mean value of the response. For the medially correlated random field

case (Figure 3.28), similar results are obtained. These levels of response uncertainty

clearly indicates that the presence of uncertainties in the superstructure physical

properties can markedly alter the substructure response characteristics, and in many

cases these effects render a deterministic analysis unconservative for design. Finally,

it is noted that the peaks of the curves in these figures correspond to the fundamental

frequency of the shear beam and to some of the predominant frequencies of the base

excitation.

In summary, this example problem has shown that the variability of physi

cal properties of a system can have a strong effect on its response characteristics.

Therefore, these uncertainties should be properly accounted for in the analysis of

such systems.
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Figure 3.2: Finite element model for first validation problem.
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Figure 3.12: Absolute acceleration response as a function of the two random
variables that describe the random field. (a) Response at the time in which
the mean value response is maximum. (b) Response at the time in which the
standard deviation response is maximum.'
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- 69-

x

··.

.

·. ..
.
.,.,

, .. ,..
'\
", ,
" \. .

, ., .

...

.

···········,·······

· .· .· .·.·.
'/
"""

/i..
-40% -20% 0% 20% 40%

COEFFICIENT OF VARIATION

Figure 3.17: Coefficient of variation along the beam axis of the three most sig
nificant pairs of eigenvectors-eigenvalues of the random field covariance matrix.
Case I of the example problem.



- 70-

x

,.
,

,

·,·,,.,.

0% 20% 40%

·
.
.

,

···,·,·····
···
··
··..

~ :.., .'."""•
~..........·.

····,·,······ .· .· .·.·.""
""·'·.· .· ', "· .· .· .·

,,,,,

,

..
····

-40% -20%

COEFFICIENT OF VARIATION

Figure 3.18: Coefficient of variation along the beam axis of the three most sig
nificant pairs of eigenvectors-eigenvalues of the random field covariance matrix.
Case II of the example problem.



-71-

0.3 r--r------r-~---...,._----_,

0.2 mean value

-0.1

--.
'Jl-- -0.2

Z
0- -0.3
f-4 15< 0.18
~
~
.....:l standard deviation
~

U
U
< 0.12

0.4

TIME (SEC)

Figure 3.19: Second moment characterization of the absolute acceleration re
sponse. Case I of the example problem, 6 = 00.



-72-

0.3 .....---;----r---:-----r--------,

0.2 mean value

0.1

o

-0.1

0.12

standard deviation

10 15o
0.18 ...------...------....-------,

-0.2

0.06

oJF------4-------:--+:.::-----~o
0.6....------r------r--------,

0.4

TIME (SEC)

Figure 3.20: Second moment characterization of the absolute acceleration re
sponse. Case I of the example problem, 6 = 0.5.



- 73-

0.18 ,--------,------,-------,

0.12

II

..-
~

----
Z
0 0.12-E-!
~

(b)~
~
~

~ 0.06
U
U
~

0.12 f- -

(c)

0.06 f- -

TIME (SEC)

Figure 3.21: Standard deviation of the response due to each one of the three
most significant pairs of eigenvectors-eigenvalues of the random field covariance
matrix. Case I of the example problem, S = 0.5. (a) First random variable. (b)
Second random variable. (c) Third random variable.



- 74-

2.5 ,..-------r-----r-----r-----r-----r------.

(a)

----(1)
•••••••••••••. (2)

'., ., ,, ,, .,······......... ~ .. _/..-...

···'.'.'.'.,.',, ., ,

f \· ..· '., '.: ::

~J V
. 't', ...
... ~ l.,, ,
""'.'.
~•

2

1.5

0.5
..-
~--

Z
0 0....
E-- 0 1.5
-<
~
~ 2.5
i-:l
~

U
U (1 )
-< 2 •••••••••••••. (2)

1 .5

0.5

.....
:"". I· , ,, , ,, .,
, ", .., ... ':, t II I

, I ",\r .
. ..
'- .... t..'

(b)

.........

o
0~--~:;;;---~;;----~'l!""'""---';------:~..-----.'1.5

PERIOD (SEC)
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Figure 3.23: Effects of the uncertainties in the parameters of the soil column
on the response of a single-degree-of-freedom system. (1) Maximum mean value
of the response. (2) Maximum mean plus one standard deviation value of the
response. Case I of the example problem, {) = 0.5. (a) 2% of critical damping.
(b) 5% of critical damping.
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Figure 3.21: Effects of the uncertainties in the parameters of the shear beam
on the response of a substructure. (1) Maximum mean value of the response.
(2) Maximum mean plus one standard deviation value of the response. Case II
of the example problem, 0 = 00. (a) 2% of critical damping. (b) 5% of critical
damping.
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Figure 3.28: Effects of the uncertainties in the parameters of the shear beam
on the response of a substructure. (1) Maximum mean value of the response.
(2) Maximum mean plus one standard deviation value of the response. Case II
of the example problem, 6 = 0.5. (a) 2% of critical damping. (b) 5% of critical
damping.
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Chapter 4

Formulation of the Random Finite Element

Method for Stochastic Excitation

4.1 Introduction

In this chapter, the formulation of the random finite element method described

in Chapter 2 is extended to include cases where the excitation is random in time. In

the previous formulation, the external load was permitted to have spatial random

properties but was assumed to be deterministic in time. An additional source of

uncertainty is the specification of the external load in time. This uncertainty often

arises when the loads result from a physical mechanism so complex that it is best

modeled as a random process in time, or a stochastic process.

The classical deterministic approach to deal with stochastic excitation is to

assume some average or best estimate functions of time for use in the analysis.

At best, a parameter study is conducted to examine the sensitivity of the anal

ysis results to variations in the time history of the applied loading. In contrast,

a random vibration analysis acknowledges and quantifies these uncertainties, and

thereby provides more useful information to the engineer. The analysis can provide

not just one solution, but a spectrum of solutions and their relative likelihoods of

occurrence.

Many real excitations result from the combination of a number of different phys

ical processes. According to the central limit theorem of probability theory, under
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certain conditions, the sum of a large number of independent statistical distribu

tions converges to a Gaussian distribution. Hence, a Gaussian time dependence for

the loading seems like a good first approximation. In addition, for many engineer

ing problems, particularly those where the response is narrow banded, a reasonable

starting point is to consider the case of white noise excitation with zero mean, where

the power spectrum is uniform across the entire frequency band.

Finally, many processes of engineering relevance are of sufficiently short dura

tion that they must be considered transient, or nonstationary. In order to consider

the transient nature of the excitation, the Gaussian white noise process is modu

lated by a deterministic function of time. Therefore, the applied forcing function

will be modeled as a modulated Gaussian white noise process.

4.2 Development of the Covariance Equation

Under present assumptions, the external load, f(x, t) is characterized by

f(x, t) = O(t) n(t) g(x) ,

where

(4.1)

O(t) is a deterministic modulating time function,

n(t) is stationary Gaussian white noise with zero mean and constant power

spectral density So, and

g(x) is a spatial random field.

The response uncertainty is now caused by the spatial randomness in material

properties and external loads as well as the time history uncertainty of the forcing

function. For a given set of deterministic spatial properties, the system described in
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Chapter 2 becomes a deterministic linear system subjected to a zero mean Gaussian

input. Consequently, the displacement and velocity vectors of the discrete linear

system (equation 2.47) are zero mean jointly Gaussian processes. A Gaussian pro

cess is completely described by its mean vector and covariance matrix, but due to

the uncertainties in spatial properties this description is itself random, that is, the

coefficients of the covariance matrix are random variables. This covariance matrix

contains the variance of the displacement and velocity for all degrees of freedom,

plus all of the cross-covariances as well. A procedure to derive the random response

covariance matrix is described below.

First, equation (2.47) becomes a stochastic matrix equation of the form

Md(t) + Cd(t) + Kd(t) = O(t) n(t) p , (4.2)

where p is a time-invariant vector which depends on the spatial distribution of the

loads.

Next, equation (4.2) is converted to a 1st order state space equation of higher

dimension as follows

s(t) = As(t) + F(t) , (4.3)

where s(t) is the system state vector defined in (2.50), A is the system matrix

defined in (2.52), and

F(t) = {M~lp} O(t) n(t)

is the state space load vector.

(4.4)

Multiplying equation (4.3) by ST, adding the result to its transpose and taking

expected value with respect to randomness in the time domain, gives the Liapunov
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equation for the covariance response as

+ O(t)Et(s(t) n(t)) (0 M-1p)

+ O(t) { M~lp } Et (sT (t) n(t)) ,

(4.5)

where (.) denotes a row vector, Et ( .) is the conditional expectation with respect

to uncertainty in the time domain, and

(4.6)

is the state space covariance matrix.

Equation (4.5) is a first order ordinary differential equation for the evolution

of the nonstationary covariance matrix with time.

The 3rd term on the right-hand-side of the covariance equation can be simplified

recalling that s(t) satisfies equation (4.3). Then, using the principal matrix solution

q>(t), s(t) can be written as

s(t) = q>(t) s(O) + q>(t) it q>-l(T)F(T)dT,

where q,(t) satisfies

~(t) = A q,(t)

q>(0) = I .

Using the expression for the load vector (4.4) in this equation yields

(4.7)

(4.8)

(4.9)

s(t) = q>(t) s(O) + q>(t) it O(T) q,-l(T) {M~lp} n(T)dT, (4.10)
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Multiplying by n(t) and taking expectation gives

(4.11)

For stationary random Gaussian white noise with zero mean, the autocorrela-

tion function takes the form

Et(n(t) n(7)) = 27l" So l5(t - 7) ,

and thus equation (4.11) reduces to

(4.12)

(4.13)

Observing that the 4th term on the right-hand-side of the covariance equation is

simply the transpose of the 3rd term, it follows immediately that

(4.14)

Finally, using the simplified expressions (4.13) and (4.14) in the general covari

ance equation (4.5) gives

QIIII(t) = AQIIII(t) + QIIII(t)AT

+ 471" So (;2(t) {M~lp} (0 M-1p) .
(4.15)

This equation is a first order ordinary differential equation for the evolution of

the nonstationary covariance matrix with time.

4.3 Response Uncertainty and Statistics

The Liapunov equation (4.15) for the evolution of the system covariance matrix

QSII(t) can now be integrated in time. The modified Euler algorithm described in
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Section 2.7 will be used herein. The same observation mentioned in Section 2.6

and 2.7 regarding the size and sparseness of the system matrix involved in the

differential equation, and the remarks made about the simplicity and efficiency of

this numerical scheme are still valid for the Liapunov equation.

Once equation (4.15) has been solved, the characterization for the Gaussian

response process can be stated. Using equation (2.32), it follows that the mean

value and variance, in the time domain, for the element response are given by

NEN r

Et(ue(x, b,t)) = I: I: Et(ujll.o.lJt))4>j(x) IT H::(bs)
j==1 O$lll$NP s==1

=0, e=I, ... ,NEL,

(4.16)

NEN NEN

Et(ueJ(x,b,t)) = L L L
i==1 j==1 O$Jll$NP

r r

Et (Uil1o.olr(t)ujk1o ..kr (t) )4>i(x)4>j(x) IT H:: (bs) IT HZ: (bs) ,
s==1 s=1

e= 1, ... ,NEL,

(4.17)

where the coefficients Et(uil1 ...eJt)ujk1 ...kr(t)) are the components ofthe covariance

matrix QIIII(t). Equation (4.16) shows that the mean for the Gaussian response

process IS zero.

The second moment representation for the Gaussian response process is defined

by the first two statistical moments of the variance. The first moment, which

corresponds to the expected value is computed directly from equation (4.17). Taking
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conditional expectation with respect to uncertainty in spatial properties and using

the orthogonality of the set of polynomials {H~g (bl!) }:0' equation (4.17) becomes

NEN NEN

2: 2: 2: Et (Uil1 ...l)t)ujll ...lr (t))
i=l j=l O$Jll$NP

¢>f(x)¢>j(x) , e = 1, ... , N EL ,

(4.18)

where E( .) IS the conditional expectation with respect to uncertainty in spatial

space.

As mentioned before, equation (4.18) expresses the expected value of the Gaus-

sian response process variance due to randomness in spatial properties. The second

statistical moment of the variance can not be derived directly from equation (4.17),

and the use of higher order recurrence relations for the orthogonal set of polynomials

is required.

An alternative formulation for Gaussian white noise excitation is described in

the following section, where the characterization of the second moment representa-

tion for the Gaussian response process is completely defined by the components of

the covariance matrix.

4.4 Alternative Formulation for Gaussian White Noise Excitation

4.4.1 Weak Formulation and Matrix Equations

In order to derive an alternative formulation for Gaussian white noise ex-

citation, consider equation (2.24) and assume for the moment that the random

variables bn are constant coefficients. Then, the characterization of the variational
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counterpart of this equation is obtained by redefining the set of weighting functions

W, defined in Section 2.5, as follows

W = {w(.)I wsatisfies homogeneous boundary

conditions on r g, Ilw( .) IIHl(O) < 00 } .

Note that in the present definition, functions in W do not depend on the set

of random variables bn • Multiplying the partial differential equation (2.24) by a

weighting function wand integrating by parts over the domain 0 gives the weak

form of the governing equation as:

find u(x, b, t) E V, x E 0, bED, t E [0, To], such that for all w(x) E W

(mu,w) + (r(k(x),u), Vw) + (Q(e(x),u),w)

+ t {(r(kn(x),u)bn,Vw) + (Q(cn(x),u)bn,w)}
n=l

r

= (!(x,t),w) + L (fn(x,t)bn,w) ,
n=l

(mu(x,b,O),w) = (muo(x),w) ,

(mu(x,b,O),w) = (muo(x),w) ,

where h,) denotes the inner product, that is,

(¢>, tf;) = l ¢>tf; dO ,

(4.19)

(4.20)

(4.21)

(4.22)

where ¢> and tf; are scalar functions defined on 0 X D x [0, To] and 0, respectively. All

other terms in equations (4.19) through (4.21) are as previously defined in Chapter

2.
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The semidiscrete Galerkin formulation corresponding to equations (4.19),

(4.20) and (4.21) is now achieved using the following finite element approximation

within the element oe

NEN

ue(x, b, t) = L uj(b, t) </>j (x) ,
:i=1

(4.23)

where N EN and </>j(x) are as defined in Section 2.5, and uj(b, t) is the unknown

random function of time for node J'. Then, the base for the finite-dimensional

approximations Vh and Wh to V and W, respectively (equation (2.36)), becomes

{</>:i(x)} :i=1, ... ,NTOT ' (4.24)

where NTOT is the total number of nodes in the finite element discretization, and

</>j(x) is the global shape function for node j. Then, the variational formulation

previously defined becomes:

find uh(x, b, t) E V h, X E 0, bED, t E [0, To], such that for all wh(x) E Wh

r

+ L {(r(kn(x),uh)bn, \7wh) + (Q(Cn(X),uh)bn,wh)}
n=1

r

= (l(x,t),wh) + L (tn(x,t)bn,wh) ,
n=1

(muh(x, b,O),wh) = (muo(x),wh) ,

(muh(x,b,O),wh) = (muo(x),wh).

(4.25)

(4.26)

(4.27)
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This variational formulation, together with the characterization of V h and W h
,

leads to the following set of equations for element e

:~ {[fa. m(x)4>i (x)4>i(x) dO] !li(b, t)

+ [1. Q(e(x), <pj(x)) <pi(x) dO] uj(b, t)

+ [1. T(k(x), <pj(x)) V<pi(x) dO] uj(b, t)

+~ ([ fa. Q(cn(x), 4>i(x»4>i(x) dO] ui(b, t)

+ [fa. r(kn(x), 4>i(x)) V'4>i(x) dO] ui(b, t)) bn} = fa. [(x, t)4>i(x) dO

+~ [l/n(X,t)4>i(X) dO]bn, i = 1, ... ,NEN ,

(4.28)

(4.30)

NEN [
~ 1.m(x)<pj(x)<pi(x) dO] uj(b, 0) = 1.m(x)uo(x)<pitx ) dO, (4.29)
)::;:1 0 0

i= 1, ... ,NEN,

NEN [f; 1. m(x)4>i(x)4>f(x) dO] ui(b,O) = fa. m(x)uo(x)4>i(x) dO ,

i=l, ... ,NEN.

Assembling equations (4.28) through (4.30) for all elements into a set of global

equations, gives a random matrix equation of the form

Md(b,t) + C(b)d(b,t) + K(b)d(b,t) = p(b,t) , (4.31)

where
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d(b, t) is the global random vector of unknowns with components ui(b, t),

P (b, t) is the total effective random load vector,

M is the mass matrix,

C (b) is the random damping matrix, and

K(b) is the random stiffness matrix.

The initial conditions of the system are given by

d(b,O) = do and

d(b,O) = do,

(4.32)

(4.33)

where do and do are vectors whose elemental components are defined by the equa-

tions (4.29) and (4.30), respectively.

Note that equation (4.28) allows the following representation for the damping

matrix, stiffness matrix, and load vector

r

C(b) = C + L Cnbn ,
n=l

r

K(b) = K + L Knbn ,
n=l

r

p(b, t) = p(t) + L Pn(t)bn ,
n=l

(4.34)

(4.35)

(4.36)

where C, Cn, K and K n are deterministic matrices and p(t) and Pn(t) are time

dependent vectors, independent of the random variables bn .

Further, under white noise excitation, equation (4.36) becomes

p(b,t) = (p +~ pnbn) O(t)n(t) (4.37)
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where p and Pn are deterministic vectors, and O(t) and n(t) are as defined in Section

4.2.

4.4.2 Development of the Covariance Equation

Once the set of global equations (4.31) has been established, the Liapunov

equation for the covariance response may be defined as in Section 4.2, and equation

(4.15) takes the form

where

is the random system matrix,

Qss(b, t) is the random state space covariance matrix, and

(4.38)

(4.39)

p(b) is a random time-invariant vector which depends on the spatial distribu-

tion of the loads, and defined by

r

p(b) = P + L Pnbn ,
n=l

where p and Pn are defined in equation (4.37).

(4.40)

It follows from equations (4.34) and (4.35) that the system matrix may now be

expressed as:
r

A(b) = A + L Anbn ,
n=l

(4.41)
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where A and An are deterministic matrices. Using equations (4.40) and (4.41) In

the Liapunov equation gives

r

+ L {AnQss(b, t) + Qss(b, t)A~}bn
n=1

(4.42)

This last equation is a random first order ordinary differential equation for the

evolution of the nonstationary covariance matrix with time. In order to solve it, let

the covariance matrix Qss(b, t) be expressed as

r

.,=1

where

Qss(b, t) = L QSSl1 ...lr (t) II HX: (b.,) ,
o~lll~NP

(4.43)

Qs8l1 . .. lr (t) is an unknown deterministic matrix of time, and the remaining

terms are as previously defined.

In addition to the first order recurrence relation for the orthogonal set of poly

nomials defined in Section 2.5, the followi;g second order recurrence relation [29]

will be also needed

n = 1, ,r

in = 0,1, ,

(4.44)

where the coefficients a~: depend on the probability density function of the random

variable bn .
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The set of differential equations for the coefficients QSSll ... lr (t) will be derived

using the weighted residual method. Multiplying equation (4.42) by the weighting
r

function IT H;: (b..,) , then taking expectation with respect to spatial uncertainties,
..,=1

and finally considering the recurrence relations (2.40) and (4.44) of the orthogonal

set of polynomials gives

+~ { An H:-lQ••£, ...'.-1...£.(I) + a~:Q••£, ...£•... ,.(t)
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r r r

+ L (agnII be80 + a~n II be.obenl
n=1 8=1 8=1

8;01'

n,m=l 8'=1
n;em 8:F-n.m

£8 = 0,1, ...

s=l, ... ,r.

4.4.3 Response Uncertainty and Statistics

(4.45)

Equation (4.45) can be integrated in time using the modified Euler algorithm

described in Section 2.7. Once the equation for the coefficients QSSe1 ...er(t) has been

solved, the second moment representation for the Gaussian response process can be

defined. In particular, using equation (4.43), it follows that the expected value and

the variance for the (i, J) component of the covariance matrix are given by

Var ( (Qss(b,t))i,i) = L (Qsse1 ...er(t))~,i·
1~lll~NP

(4.46)

(4.47)
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Finally, using equations (4.23), (4.46) and (4.47) gives the second moment

characterization for the element response process as

NEN NEN

E(Et(ue~(x,b,t)))= L L (Qllllo...O(t))i,icf>j(x)cf>i(x),
i=l i=l

e=l, ... ,NEL

NEN NEN NEN NEN

Var(Et(ue~(X,b,t)))= L L L L L (Qllllll ...~dt))i,i
i=l i=l k=l 11=1 l~lll~NP

(Q IIlIlI ... lr (t)) k,ll cf>i(X) cf>j (x )cf>k (X)cf>: (X) ,

e=l, ... ,NEL.

(4.48)

(4.49)

Equations (4.48) and (4.49) express the expected value and the variance, re-

spectively, of the Gaussian response process variance, due to randomness in spatial

properties.

Note that this characterization of the response is completely defined by the

components of the covariance matrix, unlike the previous formulation. Also note

that, using the analytical approximation for the covariance matrix, given by equa-

tion (4.43), a more complete probabilistic description for the Gaussian response

process can be defined. For example, higher statistical moments can be computed

as well as the probability function. These higher statistical moments can be com-

puted using higher order recurrence relations for the orthogonal set of polynomials,

while the probability function can be computed by numerical integration.
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Chapter 5

Application to Primary-Secondary Systems

5.1 Introduction

This chapter describes the application of the solution method presented in

Chapter 4 to the dynamic response of primary-secondary systems. These systems

consist of a primary structure supporting a secondary system. The secondary sys

tem may be a piece of equipment or a substructure which is distinguished from the

primary structure. Secondary systems are usually characterized by a mass which is

small in comparison with the mass of the structure by which they are supported.

Frequently, such substructures, are essential for the safety of the occupants of the

primary structure and may have even greater importance. This is true especially

in the design of crucial facilities such as a nuclear reactor. Therefore, the survival

of such subsystems in an earthquake is often essential, and a dynamic analysis is

called for.

Additional examples of structural systems consisting of light, secondary com

ponents supported on heavier primary structures, which are frequently encountered

in engineering practice are: piping in industrial structures, drilling and exploration

equipment on offshore platforms, communications and control devices on space ve

hicles, etc.
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The objective of the numerical illustrations described in this chapter is to obtain

insight concerning the sensitivity of the response of a secondary system by taking

into account the statistical uncertainties of the parameters describing the load and

structural properties.

In the next section, a particular problem chosen for study is discussed in detail.

5.2 Description of the Physical System

A simple five degree-of-freedom model representing a shear building is chosen

as the primary system. A diagram of the finite element model is shown in Figure

5.1. The displacement relative to the base of the i-th degree-of-freedom at time

t is denoted by Ui(t). A nonuniform distribution of mass and stiffness along the

height of the building is assumed. The floor masses are: ml = m, m2 = m,

ms = O.7m, m4 = O.7m, ms = O.6m, and the interstorey stiffnesses are: k 1 = k,

k2 = k, ks = O.8k, k4 = O.8k, ks = O.7k. The specification of the parameters m

and k is discussed in Section 5.5. The primary system is assumed to be classically

damped with 5% of critical damping in the first two modes. The secondary system

is idealized as a single-degree-of-freedom oscillator of frequency w3' damping ratio

/33 and mass m 3 , which is attached to the k-th d.oJ. of the primary system. Finally,

the base acceleration q(t) is taken to be a random process.

The equation of motion of the combined primary-secondary system can be

written as

Md + Cd + Kd = -Mlq(t) (5.1)
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in which

M= [Mp :J (5.2)OT

C = [Cp

~] + C 8 ,
(5.3)OT

K= [Kp

~] +K8 , (5.4)OT

d = {:: } , (5.5)

where

M p is the mass matrix associated with the primary structure,

Cp is the damping matrix associated with the primary structure,

K p is the stiffness matrix associated with the primary structure,

C8 is the damping coupling matrix associated with the secondary system,

K 8 is the stiffness coupling matrix associated with the secondary system,

1 is the unitary vector,

Up is the unknown displacement vector of the primary system, and

U 8 is the unknown displacement of the secondary system relative to the base

of the primary system.

The matrices previously defined are of size l x l where l = n + 1 with n being

the number of degrees-of-freedom of the primary structure. For this example n =

5. Note that in general, the combined primary-secondary system is nonclassically

damped.
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As mentioned before, the system is subjected to a random base excitation q(t).

The particular model for the stochastic seismic excitation to be used in this example

is described in the following section.

5.3 Ground Motion Model

Theoretically, the class of possible ground motion could be determined if infor

mation were available regarding the local conditions, material properties, neighbor

ing fault systems and the nature of expected fault rupture processes. However, the

lack of such information and the complexity of the analytical problem that must

be solved make this approach impractical for the present example. Defining the

excitation as belonging to a general class of signals with prescribed time and/or

frequency domain properties, such as duration, peak acceleration, total energy dis

tribution over the frequency range, etc., appears to be a more suitable approach.

Stochastic models of the seismic excitation are an example of such an approach, and

often have been used in examining the seismic response of structural systems. It

is reiterated that the actual earthquake process is understood to be deterministic,

but it is replaced by a stochastic process in order to reflect the uncertainty of our

knowledge in the process.

Most of the stochastic models for seismic excitation that have been proposed

fall into one of two subclasses: stationary or nonstationary models. Stationary

models have often been used for the representation of the frequency content of long

duration seismic ground motion. Clearly, such models can only be used to represent

the central high-intensity part of a strong-motion record. It cannot be expected to

model short-duration earthquakes, or the buildup or tail of the ground motion. This

type of model allows complete freedom in specification of the frequency content of
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the earthquake. However, this frequency content must be consistent throughout

the earthquake. Also, the duration of the ground motion is not explicitly included

in the model, and must be artificially accounted for. This has often been done by

considering a finite portion of the stationary process. For long-duration earthquakes,

the beginning and ending phases may be expected to be unimportant. The effect of

ignoring these phases is not clear, however, especially in the case of medium- and

short-duration earthquakes.

The transient nature of the earthquake process may be modeled explicitly by

modulating a stationary process with a deterministic function of time. Several forms

of envelopes have been proposed [36,37]. In general, envelopes are chosen with only

a few parameters to be estimated, such as intensity, duration, and buildup time.

Note that stationary models are actually a special case of modulated stationary

processes. A finite segment of stationary ground motion may be produced by an

envelope which has a "boxcar" shape.

The parameters of the modulated stationary model are the stationary frequency

content and the modulating function. This type of model is able to represent the ma

jor features of strong-motion (average frequency content, intensity, and duration),

however it is unable to reproduce time-varying frequency content. To represent

such cases, Saragoni and Hart [38] introduced an excitation model defined by three

distinct, modulated stationary processes accounting for the arrival of longitudinal,

shear and surface waves.

One drawback of modulated stationary processes is the lack of physical sig

nificance of the envelope. A model which has a more physically solid basis is the

filtered, modulated white noise process. This process is obtained by passing a de

terministic modulated Gaussian white noise signal through a filter with prescribed
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transfer function. This model visualizes the earthquake process as a white noise

source which is deterministically modulated, and then filtered by a transmission

path. The envelope in this case is associated with the source mechanism, and

the filter characteristics are determined in part by source properties as well as the

transmission path. As in the case of a modulated stationary process, the param

eters available are the modulating function and the frequency characteristics of the

filter.

The artificial records produced by this model exhibit a slight frequency shift

with time due to transient behavior of the filter, but it is unlikely that this is

related to the actual phenomenon observed in strong-motion records, that is, a

shift from higher frequencies to lower frequencies toward the end of the record.

However, it is believed that the filtered modulated white noise process remains the

best compromise between physical authenticity and computational or mathematical

convenience.

Mathematically, the filter modulated white noise process can be defined as

follows. Consider the excitation, q(t), defined as

where xg(t) is the solution of the following equation

Ln'J (xg(t)) = O(t)n(t) ,

(5.6)

(5.7)

where O(t) is a deterministic modulating time function, n(t) is a zero mean Gaussian

white noise excitation with constant power spectral density So, and M n1 and Ln'J

are nl and n2 order linear operators with nl < n2.
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The particular model for the earthquake ground motion acceleration, q(t), to

be used in this application, is defined as

(5.8)

where

(5.9)

and ~{l' wg are model parameters reflecting the local conditions. A boxcar type

envelope function, O(t), of duration To, is employed, where

O(t) = {I if t E [0, To]
o otherwise

(5.10)

Note that this is a special case of the model described by the equations (5.6) and

(5.7), corresponding to nl = 1,n2 = 2 and

(5.11)

(5.12)

This model corresponds in frequency content to the Kanai-Tajimi model [39,40],

which is frequently used in earthquake engineering. Physically, the Kanai-Tajimi

model may be interpreted as corresponding to an ideal white noise excitation at

bedrock level filtered through the overlaying soil deposit, which is modeled as a

second-order linear filter. Within this context, the Kanai-Tajimi parameters are

interpreted as the soil overburden effective damping coefficient ~g and natural fre-

quency wg • Although of a very simple form, this model is capable of defining the

basic features of earthquake ground motion, such as duration, strength and fre-

quency content.
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5.4 Formulation of the Covariance Equation

In this section, the general formulation of the covariance equation, described

in Chapter 4, is specialized for the particular problem under consideration.

Using the particular model for the earthquake ground motion acceleration q(t),

described in the previous section, the equation of motion of the combined primary-

secondary system becomes

Md + Cd + Kd = -Mlq(t)

where xg(t) is the solution of the equation

and all other terms are as previously defined.

(5.13)

(5.14)

(5.15)

The first-order state space equation corresponding to equations (5.13) through

(5.15) takes the form

s = As+F,

where the system state vector, s, is

Up

x g
s=

up

x g

the system matrix, A, is given by

0 0 I 0

OT 0 OT 1
A=

-M-1K w21 -M-1C 2eg wglg
OT _w2 OT -2eg wgg

(5.16)

(5.17)

(5.18)
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and the state space load vector, F, is

o
o

F=
o

O(t)n(t)

(5.19)

As indicated in Chapter 4, the damping matrix and the stiffness matrix can be

represented by
r

C(b) = C+ L Cnbn ,
n=l

(5.20)

(5.21)
r

K(b) = K + L Knbn ,
n=l

where C, K, Cn and K n are deterministic matrices and bn are independent random

variables with zero mean.

In addition to uncertainties in the material properties of the combined primary-

secondary system, the randomness in the transmission path of the ground motion

model is considered. To allow uncertainties in the path, the model parameters eg

and wg are modeled as random variables and represented by

(5.22)

(5.23)

(0001), (5.24)

where Eg and wg denote the expected value of the filter damping coefficient and

filter natural frequency, respectively, eg1 and wg1 are deterministic coefficients, and

br+1 and br+2 are random variables with zero mean and unit variance.

The differential equation for the evolution of the nonstationary covariance ma-

trix with time, may be defined as in Chapter 4, and takes the form

o
o
o
1
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where

A(b) is the random system matrix,

QlIlI(b, t) is the random state space covariance matrix, and

b is the vector of random variables, with components bi, i = 1, ... ,r + 2.

It follows from equations (5.20) through (5.23) that the system matrix may

now be expressed as:

where A and An' n = 1, ... , r + 4 are deterministic matrices.

Using equation (5.25) in the Liapunov equation (equation (5.24)), gives

r+2

+ L {AnQlIlI(b, t) + Qss(b, t)A~ }bn
n=l

(5.25)

(5.26)

a
a
a
1

(0001) .

This last equation is a random first-order ordinary differential equation for the

covariance matrix. As before, in order to solve this equation, let the covariance

matrix Qss(b, t) be expressed as

r+2

QlIlI(b, t) = L QlIlIll ...l r +2 (t) II H:: (bl!) ,
O~lll~NP -,,=1

(5.27)
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where

QlIlIl l .•• l r +2 (t) is an unkno~n deterministic matrix of time, and the remaining

terms are as previously defined.

Finally, the set of differential equations for the coefficients QlIlIl l ••.lr+2 (t) can

be derived as in Chapter 4, and takes the form

(5.28)

o
o
o
1

r+2

(000 1) IT 81. 9 0 ,

8=1
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where

(5.29)

(5.30)

and all other terms are as previously defined.

5.5 Description of the Example Problem

In Section 5.2, the physical system chosen for study was described. In what

follows, the nominal properties of the primary-secondary system as well as the mean

value properties of the filter parameters are presented.

The mass parameter m and stiffness parameters k of the primary system, pre-

viously defined, are chosen in such a way that the nominal natural frequencies of

the primary system are as given in Table 5.1. It is noted that the fundamental
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period of the system is 0.5 sec. A Rayleigh damping is considered with a 5% of

critical damping in the first two modes.

mode frequencies (Hz)

1 2.0

2 5.1

3 8.3

4 10.1

5 12.1

Table 5.1 Natural frequencies of the primary system.

As noted previously, the secondary system is idealized as a single-degree of

freedom oscillator, which is attached to the k-th d.oJ. of the primary system. In

this particular example, the point of attachment is at the top of the primary system.

The secondary system is assumed to have 2% of critical damping.

Due to their composite nature, primary-secondary systems possess some dyna

mics characteristics which significantly affect their response [41,42,43]. Among these

are: (1) Tuning - which is the coincidence of the natural frequency of the secondary

system with one or more natural frequencies of the primary system; and (2) Inter

action - which is the feedback between the motions of the secondary system and the

primary structure and results from the coupled nature of their equations of motion.

Tuning gives rise to closely spaced modes in the composite primary-secondary sys

tem, and interaction reduces the response of the secondary system, particularly

when the system is tuned and the ratio of secondary system to primary structure

masses is sufficiently large.
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In order to consider the effect of tuning on the response variability of the sec

ondary system, four different ratios between the natural frequency of the secondary

system W s and the fundamental frequency of the primary system Wl are chosen.

These are: Ws/Wl = 0.5, 0.75, 1.25, and 1.5. The cases Ws/Wl = 0.75 and 1.25

correspond to a nearly tuned condition for the secondary system. The effect of in

teraction on the response variability of the secondary system is taken into account

by considering two different secondary system-to-floor mass ratio values "'Y. The

selected values are "'Y = 0.01 and "'Y = 0.1.

The filter parameters of the ground motion model are selected to be W g = 4.0

Hz and eg = 0.3 to represent a narrow banded excitation with high-frequency

content, and W g = 1.0 Hz and eg = 0.3 to represent a narrow banded excitation

with low-frequency content.

This completes the specification of the mean value properties of the system

under consideration. The description of the uncertainties in the primary-secondary

system, as well as in the filter parameters, is now discussed in detail.

In order to compare the relative importance of uncertainties in the system

parameters on the response variability of the secondary system, three types of un

certainty are considered: uncertain ground motion parameters, eg and W g ; uncertain

primary system interstory shear stiffness and damping; and uncertain secondary

system support stiffness and damping ratio. In each type of uncertainty, only one

parameter is treated as being random at a time. Furthermore, possible correlation

between two different parameters is not taken into account. The representation of

the uncertainties in the system parameters, under these assumptions, is presented

in appendix A.
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The probability density function for the system parameters is assumed to be

of ultraspherical type, with a coefficient of variation of 40% for the damping coef-

ficients, 30% for the stiffnesses, and 15% for the filter natural frequency wg • These

degrees of variability of the system parameters have been used elsewhere, and they

are believed to be adequate to model the uncertainty of such parameters [44,45,46].

Figure 5.2 shows ultraspherical probability density functions with coefficients of

variation of 15%, 30% and 40%.

As stated previously, the objective of this chapter is to investigate the influence

of uncertainties in the system parameters and applied loads on the response vari-

ability of the secondary system. The response quantities to be considered in this

example are the absolute acceleration of the secondary system and its displacement

relative to the primary system. Then, the response processes are given by

U~ relative = U~ - Us ,

where

rna is the mass of the secondary system,

Ca is the damping coefficient of the secondary system,

ka is the stiffness of the secondary system support,

(5.31)

(5.32)

Us is the displacement relative to the base of the fifth degree-of-freedom of the

primary system, and

U a is the displacement of the secondary system relative to the base of the

primary system.
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Recall that, for a given set of deterministic system parameters, the response

process described by equations (5.31) and (5.32) is a Gaussian process with zero

mean. Due to the uncertainties in the system parameters, the standard deviation

of this process is itself random, and it is completely defined by the components of

the random covariance matrix QlI8(b, t).

The effects of the statistical uncertainties in the system parameters on the

response processes, previously defined, are presented in the following section.

5.6 Results of the Example Problem

Figures 5.3 through 5.6 show the influence of uncertainties in the filter param

eters on the absolute acceleration response of the secondary system for the case

of an excitation with high-frequency content (wg = 4.0 Hz). The duration of the

excitation is equal to To = 15T1 , where T 1 is the fundamental period of the primary

system. For each of these plots, the transient R.M.S. value of absolute acceleration

of the secondary system is normalized by the stationary standard deviation response

of the nominal system.

As these plots show, there is very little influence of the uncertainties in the

filter parameters on the acceleration response of the secondary system. It is also

noted that the effect of interaction is negligible. That is, the effect of the uncer

tainties in the filter parameters is nearly the same for both mass ratios. Thus, the

uncertainties in the filter parameters has little influence on the response variability

of the secondary system.

The influence of uncertainties in the primary system parameters are shown

in Figures 5.7 through 5.10. Small influence is observed on the variability of the
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absolute acceleration response by the uncertainty in the damping coefficient. At

the same time, it is noted that the effect of interaction is almost negligible.

On the contrary, the uncertainty in the shear stiffness shows an important

influence on the acceleration response variability of the secondary system. For the

case Ws/Wl = 1.25 (Figure 5.8a) the mean plus one standard deviation value of the

stationary solutions is more than twice the nominal stationary solution. Thus, the

uncertainty of this parameter is of the same order of importance as the uncertainty in

the input excitation. It is also noted that the effect of the uncertainty in the shear

stiffness is strongly dependent of the mass ratio. The interaction effect reduces

the response variability of the secondary system in more than 50% for the cases

Ws/Wl = 0.75 and Ws/Wl = 1.25 (nearly tuned cases). For the other two cases, the

feedback effect is less significant.

From these results, it is clear that uncertainty in the shear stiffness is much more

significant than uncertainty in the damping parameter, even though the coefficient

of variation of the stiffness (30%) is smaller than that of the damping (40%). This

is due to the strong influence of tuning on the secondary response, particularly for

small mass ratios, and the likelihood of such tuning when the stiffness is uncertain.

Finally, Figures 5.11 through 5.14 show the influence of uncertainties in the

secondary system parameters on the absolute acceleration response process. Once

again, it is clear that the uncertainty in stiffness is more significant than the un

certainty in damping. For all cases, the mean plus one standard deviation value

of the stationary solution is less than 20% larger than the nominal stationary so

lution, when the damping coefficient is uncertain. The effect of uncertainty in this

parameter is nearly the same for both mass ratios.
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The uncertainty in stiffness has significant influence on the response process of

the secondary system. For the case W~/Wl = 0.75 (Figure 5.11b), the mean plus one

standard deviation value of the stationary solution is more than twice the nominal

stationary solution. Therefore, uncertainty in the stiffness parameter is again of the

same order of importance as uncertainty in the stochastic input. It is also noted

that the feedback effect on the response variability of the secondary system is quite

significant. For example, the response variability is reduced in more than 45% for

the cases W~/Wl = 0.75 and W~/Wl = 1.25 (nearly tuned cases).

The effects of the statistical uncertainties in the system parameters on the

relative displacement response of the secondary system are qualitatively similar to

those reported for the absolute acceleration response. That is, the high sensitivity of

the response to uncertainty in the stiffness of the primary and secondary system, and

the relatively low sensitivity of the response to uncertainty in the filter parameters.

For the case of the excitation with low-frequency content (wg = 1.0 Hz), sim

ilar results are obtained concerning the sensitivity of the response process of the

secondary system when the primary and secondary system parameters were kept

uncertain. However, the uncertainty in the filter natural frequency is more sig

nificant than in the case of the excitation with high-frequency content. This is

reasonable, since the natural frequency of the filter is closer to the fundamental

frequency of the primary system. To illustrate this result, Figure 5.15 shows the in

fluence of uncertainties in the filter parameter on the absolute acceleration response

of the secondary system for the case W~/Wl = 0.75. It is noted that the mean plus

one standard deviation value of the stationary solution is about 40% higher than

the nominal one, when the filter natural frequency is uncertain. Small influence is

observed on the response variability by the uncertainty in the damping coefficient.
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It is also noted that the effect of uncertainties in the filter parameters is nearly

uniform for both mass ratios.

In summary, this analysis has shown that uncertainty in the stiffness parameters

of the primary-secondary system may have equal or greater influence on the response

variability of the secondary system than uncertainty in the input. As previously

pointed out, the stiffness parameters determine the fundamental frequencies of the

two systems which strongly influence the system response due to the effect of tuning.

Also, uncertainty in the filter natural frequency may have some influence on the

response variability of the secondary system, in particular, when "the nominal ground

motion model is nearly tuned with the primary system.

Finally, it is noted that the following orders of approximation in the probability

space are used throughout this example. A fourth order approximation is used when

the stiffness of the primary and secondary system are uncertain, and a second order

approximation is used for the rest of the uncertainties. The influence of higher order

approximation is found to have negligible influence on the response.

5.7 Application of the Results to Reliability Analysis

In the study of the response of dynamical systems to random excitation, a

classical problem is to determine the probability that the value of some response

variable will remain below a given threshold throughout a specified time interval.

The probability distribution of the time required for the variable to first exceed

the threshold is referred to as the first passage probability distribution. Knowledge

of this distribution is of great practical importance in many engineering problems.

Since first passage probabilities are often associated with failure probabilities, it is

appropriate to use the term "safe" or "unsafe" to refer to the domain where the
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random process is respectively below or above the threshold. The first passage

problem consists of determining the probability distribution of the time when the

trajectory of the response first leaves the safe region and enters the unsafe region.

Let W(T) be the probability that the magnitude of the relative displacement

of the secondary system U ll relative does not exceed a level." throughout the interval

[0, T]. Hence,

W(T) = Pr [Iu.., relative(t) Imax < 1] ;°~ t ~ T] , (5.33)

where Pr [ • ] denotes the probability that the bracketed expression is true. W(T) is

called the reliability function and is related to the first passage probability density

through

P(T) = _ dW
dT '

(5.34)

where P(T)dT is the probability that the first passage occurs on the interval [T,T+

dT].

Although the first passage problem for a linear oscillator may be precisely

formulated [47], no closed-form solution for this problem has yet been presented.

In the absence of an exact analytical solution, numerous approximate solutions

have been proposed [48,49,50,51]. For the purpose of this example, the reliability

function is evaluated using the analytical approach of Mason and Iwan [51]. It has

been observed that the results of this method show generally good agreement with

simulation results.

In this approach, the reliability function for the nonstationary response is given

by

W(T) = exp (-f a(t)dt) , (5.35)
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where aCt) is the limiting decay rate of the first crossing density or the average

crossing rate. The approximation of this parameter is given by

)
-2v(7], t) Ln(P* (t))

art = [ ] [ ] ,
1 + q;1(t) / a;(t) 1 - v (7], t) / v (0, t)

(5.36)

where v(7], t) is the expected frequency of up-crossing of a level 7] and defined by

J&tQ [ (<P117]2) ~ (7]2)V(7],t) = exp - - 7]<P12 -- exp ---
27rqll 2 2<P22 2qll

erfc ( 7]<P12 )]
J2<P22

for which erfc( . ) is the complementary error function,

(5.37)

(5.38)

and Q(t) is the covariance matrix of the joint probability density of 'U.., relative and

it.., relative at time t,

V(O, t) is the expected frequency of zero crossings with positive slope and defined

by

P*(t) is a function of time and defined by

(5.39)

(5.40)
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for which erf( . ) is the error function,

(
-7rC )C = exp ,

y'l-e

where Cis the fraction of critical damping of the secondary system, and

(5.41)

(5.42)

(5.43)

o;(t) is the stationary response variance of the secondary system associated

with the instantaneous value of the excitation.

Note that the solution of the covariance matrix equation (equation 5.26) allows

one to arrive at the response statistics necessary to compute the reliability function

of the secondary system (equation 5.35). Also note that the randomness of the

covariance matrix, due to the uncertainties in the system parameters, implies the

randomness of the reliability function.

As it was shown in the previous section, the response of the secondary system

is highly sensitive to uncertainties in the stiffness parameters of the system, partic-

ularly when the secondary system is nearly tuned and the mass ratio is small. The

effects of the statistical uncertainties in the stiffness parameters on the reliability

of the secondary system are shown in Figures 5.16 and 5.17.

These figures depict the probability of exceedancy PE (T) versus time for the

most sensitive cases presented in the previous section, that is, the system with

uncertainty in the stiffness parameter of the primary system with Ws/Wl = 1.25,

and the system with uncertainty in the stiffness parameter of the secondary system

with Ws/Wl = 0.75. In these cases, the probability of exceedance is computed using
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the mean plus one standard deviation value for the components of the covariance

matrix. The time is normalized by the natural period of the secondary system

and the duration of the excitation approaches infinity. Two threshold levels Tf are

considered: Tf = an and Tf = 2an , there an is the stationary standard deviation of

the nominal system. Finally, note that PE (T) is defined in terms of the reliability

function as

PE(T) = 1 - W(T) . (5.44)

From these results, it is clear that uncertainty in the stiffness parameter has

very significant influence on the reliability of the secondary system. The nominal

case may considerably underestimate the probability of exceedance. The higher the

threshold level, the more significant is the effect of stiffness uncertainty.

Finally, it is interesting to note that it is normally assumed that uncertainties

in the parameters of a structural system, such as stiffness, have negligible effects

on the response of the system to stochastic input. However, as it has been shown

in this example, uncertainty in the stiffness parameters of a primary-secondary

system, may have a strong influence on the reliability of the system. Therefore,

these uncertainties should be properly accounted for in the reliability analysis of

such systems.
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Figure 5.1: Finite element model for the primary system.
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(3) Normalized mean plus one standard deviation value of the solution when the
damping is uncertain. (a) Ws/Wl = 1.25,/, = 0.01. (b) Ws/Wl = 1.50,/, = 0.01.
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on the response variability of the secondary system. Nominal filter parameters:
wg = 4.0 Hz, eg = 0.3. (1) Normalized nominal solution. (2) Normalized mean
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(3) Normalized mean plus one standard deviation value of the solution when the
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on the response variability of the secondary system. Nominal filter parameters:
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Chapter 6

Summary and Conclusions

This thesis presents a new method for the dynamic analysis of linear structural

systems with parameter uncertainties. The motivation of this investigation together

with a brief description of existing analysis approaches are presented in Chapter l.

In Chapter 2, the problem is specified and a general form of the governing par

tial differential equation with random coefficients is given. This is followed by the

characterization for random fields which is used to represent the spatial variation of

the material properties of the system and the spatial variation of the external loads.

The strong form of the problem and its variational counterpart are then presented.

The variational formulation of the problem is solved using Galerkin's method to

gether with the finite element method for the spatial discretization. Random shape

functions are introduced to approximate the solution in the spatial domain and in

the probability space. A system of linear ordinary differential equations for the un

knowns of the problem is then derived and integrated in time. Finally, the response

variability is computed.

It is observed that the newly developed solution method represents an extension

of the deterministic finite element method to problems involving parameter uncer

tainties. The application of this new method to the solution of one specific system

of engineering interest is described in Chapter 3. The system chosen for study is
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a one-dimensional continuum described by the wave equation in which the phys

ical properties exhibit a one-dimensional spatial random variation. As a physical

conceptualization of this equation, a base-excited shear beam whose rigidity varies

randomly along its length is chosen for study. It is observed that the response

variability of the absolute acceleration at the free end of the beam is relatively

high.

Some engineering applications of these results are discussed in both an earth

quake ground motion and a structural context. In an earthquake ground motion

context, one might think of a shear beam as a column of soil excited by bedrock

motions. Then, the surface motions are represented by the free end of the beam,

and the uncertainty of such motions is represented by the response variability at

the top of the beam. The computed surface motions from the soil column are used

as a base excitation for a simple single-degree-of-freedom system, and the effects

of the uncertainty of these surface motions on this simple system are discussed.

It is observed that this uncertainty may cause significant changes in the dynamic

characteristics of the simple system.

From a structural engineering point of view, one might consider the shear beam

to be a shear structure, such a shear building. Then, the response uncertainty at

the top of the beam represents the top floor response variability. The effects of

this response variability on the response of a substructure located at the top of the

building are discussed. The substructure, which may represent a piece of equip

ment or a secondary system, is idealized as a single-degree-of-freedom system. It is

observed that the presence of uncertainties in the superstructure rigidity properties

can markedly alter the substructure response characteristics.
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The validation calculations presented in Chapter 3 show that the results from

the new method agree well with those of Monte-Carlo simulation and numerical in

tegration. It is observed that, for the test problems considered in these calculations,

the new formulation is more economical than simulation. These validation calcu

lations also show the inaccuracy of the perturbation method in dynamic problems,

and the high nonlinearity of the response as a function of the uncertain system

parameters.

The extension of the method described in Chapter 2 to cases where the exci

tation is random in time is developed in Chapter 4. The response uncertainty is

now caused by the spatial randomness in material properties and external loads as

well as the time history uncertainty of the forcing function. The forcing function is

modeled as a modulated Gaussian white noise process. It follows that the response

of the system given its properties is a Gaussian process which is characterized by

its covariance matrix, but due to the uncertainties in spatial properties, this char

acterization is itself random, that is, the coefficients of the covariance matrix are

random variables.

Two procedures to derive the random response covariance matrix are presented.

In the first, the Liapunov equation for the response covariance matrix is derived

directly from the system of linear ordinary differential equations for the unknowns

defined in Chapter 2. Then, the Liapunov equation is integrated in time and the

response statistics are computed. In the alternative procedure, a random first order

differential equation for the evolution of the nonstationary covariance matrix with

time is first derived. Next, a set of differential equations for the unknowns is

obtained, and this set is integrated in time to find the response variability and

statistics. One of the advantages of this alternative formulation is that the second
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moment characterization of the Gaussian response process is completely defined

by the components of the random covariance matrix defined herein, and does not

require the solution of a multiple integral in the probability space, unlike the first

procedure.

Chapter 5 describes the application of the solution method described in Chapter

4 to the random response of primary-secondary systems. A simple five degree-of

freedom model representing a shear building is chosen as the primary system while

a single-degree-of-freedom oscillator is used to model the secondary system. The

combined primary-secondary system is subjected to a random base excitation. Some

stochastic models of ground motions are discussed and the particular model for the

random base excitation used in this application is presented.

Later in Chapter 5, the general formulation of the covariance equation, de

scribed in Chapter 4, is specialized for the particular problem under consideration.

This is followed by the description of the nominal properties of the system, and by

the description of the uncertainties in the primary-secondary system as well as the

uncertainties in the parameters of the ground motion model.

In the last part of Chapter 5, the effects of statistical uncertainties in the

system parameters on the absolute acceleration response of the secondary system

and on its displacement relative to the primary system are presented. It is found

that uncertainty in the stiffness parameters of the primary-secondary system may

have equal or greater influence on the response variability of the secondary system

than uncertainty in the stochastic input. Finally, the application of these results to

reliability analysis is presented. The reliability function of the secondary system is

evaluated using the analytical approach given by Mason and Iwan, and the effects

of statistical uncertainties in the system parameters on this reliability function are
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discussed. It is found that the uncertainty in the stiffness parameters of the primary

secondary system has very significant influence on the reliability of the secondary

system.

In conclusion, the newly developed method is seen to be a powerful tool for

obtaining the random response of a linear continuous or discrete system in which

the system parameters are permitted to have spatially random properties, and the

external loads are permitted to have time history uncertainties as well as spatially

random properties. It has been shown to perform well on two application problems.

Although the numerical solution of problems involving parameter uncertainties is

quite computationally intensive when compared with deterministic analysis, this

method could handle complex engineering problems using present supercomputers.

This capability is expected to grow rapidly in the coming years given the current

rate of progress in supercomputing power.

Finally, the following paragraphs suggest some possible applications and ex

tensions of the present work.

It is noted that the new formulation could be easily extended to consider par

tial differential equations of order higher than two. This class of equations allows

the modeling of many structures of interest in mechanical and civil engineering.

Among these are structures modeled with beam elements, plate elements, and shell

elements. Therefore, the new method could be extended to the area of structural

finite elements. This extension would allow random response solutions for a broad

range of complex engineering problems.

As mentioned in Chapter 2, the response variability of structural quantities

other than displacements and accelerations could also be computed. For example,
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stresses, strains, and member forces could be computed. These quantities are obvi

ously useful in assessing the structural response. Modifications in the formulation of

the new method to permit randomness in the mass of the system, and randomness

in boundary and initial conditions could also be considered. These would permit

consideration of a wide variety of problems.

Additional areas of possible applications of the present work are those of sensi

tivity of structural performance to parameter variations, design optimization, and

reliability analysis. Finally, an area for further work involves the extension of the

method to systems exhibiting nonlinear behavior.
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Appendix A

Representation of the Uncertainties in the

Primary-Secondary System Example Problem

As it was stated in Section 5.5, three types of uncertainty are considered to

compare the relative importance of uncertainties in the system parameters on the

response varaibility of the secondary system. These are: uncertain filter parameters,

uncertain primary system parameters and uncertain secondary system parameters.

The representation of the uncertainties in the filter parameters is given directly

by equations (5.22) and (5.23).

The uncertain parameters of the primary system are the interstory shear stiff

ness and damping. The uncertainty in the interstory shear stiffness is defined by

the uncertainty in the shear stiffness parameter k. Defining this parameter in terms

of a mean value plus a deviatoric component, it is easily shown that equation (5.21)

becomes

(A.l)

where [( is the mean value of the stiffness matrix, and K 1 is the derivatoric com

ponent of the stiffness matrix due to the uncertainty in k.

The uncertainty in the damping matrix of the primary system is character

ized by the uncertainty in the parameters that reflect the participation of damping

proportional to the stiffness matrix and damping proportional to the mass matrix
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(Rayleigh damping). Defining these parameters in terms of a mean value plus a

deviatoric component, it can be shown that equation (5.20) becomes

(A.2)

where C is the mean value of the damping matrix, and C1 is the deviatoric com

ponent of the damping matrix due to the uncertainty in the parameters mentioned

above.

Finally, the uncertain parameters of the secondary system are the support

stiffness and damping ratio. The uncertainty in the support stiffness is defined by

the uncertainty in the stiffness parameter of the secondary system k 3 • As before, it

can be shown that equation (5.21) becomes

(A.3)

where K is the mean value of the stiffness matrix, and K 1 is the deviatoric com

ponent of the stiffness matrix due to the uncertainty in k3 • In the same manner,

the uncertainty in the damping ratio is defined by the uncertainty in the damping

coefficient of the secondary system c3 • Once again, equation (5.20) becomes

(AA)

where C is the mean value of the damping matrix, and C1 is the deviatoric compo

nent of the damping matrix due to the uncertainty in c3 •
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