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ABSTRACT

Accelerogram records were recovered from 12 stations of the California Institute of Technology

strong-motion a.rray following the Whittier Narrows ea.rthquake of October 1, 1981 and its major

aftershock on October 4, 1987. This" report presents the unprocessed accelerograms as well as

the seismological characteristics of these two events. The locations of the Ca.ltech strong-motion

stations are described in detail, and some preliminary results are deduced from the accelerograms.

The damage produced in the Los Angeles area is also briefly described.
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ACCELEROGRAMS RECORDED AT CALTECH DURlNG THE WmTTIER

NARROWS EARTHQUAKES OF OCTOBER 1 AND 4, 1987:

A PRELIMINARY REPORT

1. INTRODUCTION

1.1 Earthquake Description

The Whittier Narrows earthquake of October 1, 1987 occurred 5 to 10 km northwest of the

northwestern end of the Whittier fault, below the Puente Hills. This area is located approximately

15 km east of downtown Los Angeles and 10 km southeast of Pasadena, where the campus of

the California Institute of Technology is situated (Figure 1). The mainshock which occurred at

7:42 (P.D.T.) has an estimated magnitude ML = 5.9. Preliminary investigations suggest that the

causative fault is a gently north-dipping thrust fault with an east-west strike, located at a depth

of 11 to 16 kms [3]. This fault mechanism is somewhat different from that of the larger Whittier

fault, which is a steeply dipping strike-slip fault with a small reverse component. In a preliminary

analysis, Caltech seismologists suggest that the main shock was a double event which was separated

by a 1 to 2 second interval. The first source m~chanism corresponds to an east-west striking and

gently dipping thrust fault, and the shallower second source location corresponds to a more steeply

dipping fault further to the south [3].

The main aftershock occurred on October 4, 1987 at 3:59 (P.D~T.). Its estimated magnitude

is ML = 5.3. Its epicenter is located 2.5 km northwest of the main event, so it occurred closer

to Pasadena. Also, the fault mechanism of this aftershock is very different from that of the main

event, since it is predominantly that of a north-northwest right-lateral strike-slip vertical fault,

at an estimated depth of 12 km. The focal mechanisms of both the main event and the major

aftershock are illustrated in Figure 2.

Because of the proximity of these earthquakes to the Caltech campus, the recorded accelero­

grams were able to show the different focal mechanisms. As will be seen later, the main event

records indicate relatively high vertical accelerations, whereas the major aftershock records show

very important horizontal accelerations.

The California Division of Mines and Geology (CDMG) [2) reports that the maximum ground

acceleration for the main shock from their network was 63%g, recorded at the Tarzana station,

2 miles south of Reseda in the San Fernando Valley (Figure 1). This value is surprisingly high

compared to peak accelerations recorded at CDMG stations close to the epicenter which were less
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than 45%g, and may be due to anomalous site effects [2J. The USGS network recorded a peak

horizontal ground acceleration of 63%g in the basement of the Whittier Tower on Bright Avenue,

which is located in Whittier close to the causative fault. However, all the other records nearby

indicate that ground motions were less than 50%g [l1J. The maximum ground response measured

by the Caltech strong-motion network during the mainshock is 36%g. These records also indicate

that the duration of significant shaking was about 4 to 5 seconds.

In general, the October 4 aftershock records are characterized by smaller peak accelerations,

35%g maximum ground response was recorded by CDMG instruments at Obregon Park in Los

Angeles, and shorter durations (1-2 seconds). However, initial estimates from the Caltech array in

Pasadena indicate that peak ground accelerations for this aftershock may have reached as much as

59%g on campus. Because the recording site lies along the path defined by the strike of the fault

at about a 10 km distance, such a high peak acceleration may be due to focusing of seismic waves

in the strike direction.

1.2 Structural Danlage

Because of the events' moderate accelerations and short durations, the Whittier Narrows

earthquakes caused relatively little damage to engineered structures in the Los Angeles area. Most

of the damage was concentrated around the cities of Whittier and Rosemead during the main

shock of October 1, 1987. Losses due to this sequence of earthquakes are estimated to exceed $360

million.

The types of buildings most affected by the temblors were old unreinforced masonry build­

ings that had not been retrofitted, and single family hodses whose foundations were not properly

attached to the structure or whose chimneys cracked or collapsed during the earthquakes. Most

retrofitted masonry buildings behaved properly during the earthquakes, except for a few which

suffered minor damage such as cracking of wall piers and of unbraced exterior brick walls.

Several tilt-up type buildings experienced partial roof collapse due to inappropriate wall an­

chors for out-of-plane loads. Much damage was also witnessed on the campus of the California

State University at Los Angeles, located several miles away from the epicenter of the October

1 event. The damage at that site included a fallen panel along a two-story parking structure,

which was poorly anchored to its reinforced-concrete spandrel beam, shear cracks on the interior

walls of a reinforced concrete building, and shear cracks on the support columns of a walkway

which connected two wings of the library. Other major structural damage included an unoccupied,

reinforced-concrete frame parking structure in Whittier, which was L-shaped in plan and which

failed mainly because of shorter columns around the perimeter than within the interior, causing

an imbalance in stiffness which produced shear failures in many of the exterior columns; a large



-3-

four-story steel frame building in Rosemead, designed in 1982, where the third and fourth story

brace members buckled; and a skewed two-span reinforced-concrete highway overpass at the junc­

tion of the 5 and 605 freeways, several miles south of Whittier, that suffered shear cracking in the

shorter columns along one of the bents. References [6], [7] and [20] give more details about the

failures mentioned above, and both conclude that, despite the strong ground motions in the Los

Angeles area, the total amount of damage was relatively small and generally limited to structures

that were not seismically sound.

None of the buildings on the Caltech campus in Pasadena suffered structural damage. However,

Spalding administrative building, a three story reinforced-concrete structure, located on the south­

west side of campus (Figure 3), suffered significant nonstructural damage.

1.3 Caltech Strong-Motion Network

Twelve of the fourteen stations of the California Institute of Technology strong-motion

array recorded the October 1, 1987 Whittier Narrows earthquake and its major aftershock on

October 4, 1987, for a total of 87 channels of recorded data. Nine of these stations are located

on the Caltech campus, as illustrated in Figure 3, two are on the JPL campus, about 10 km

north-west of Caltech, and one is located on a hillside about 5 km west of the Caltech campus.

The four force;.balance accelerometers comprising the ten channel CRI recording system located

in Millikan Library monitor the structural response of this nine-story reinforced-concrete building

at the basement, the sixth floor and at two locations on the roof in two horizontal directions

(east-west and north-south) and at the basement and on the roof in the vertical direction. All

other accelerographs on the Caltech campus measure nominally ground response in the east-west,

north-south and vertical directions. An inner ring of 4 instruments is located at less than 300

feet around Millikan. Library, in the basements of Mudd, Bridge, Keck and Noyes Laboratories

(Figure 3). These buildings are all two-story reinforced-concrete structures built on mat-type

foundations, so the ground motions recorded at these sites will also include soil-structure interaction

effects due to the stiff foundations. The accelerograph in Noyes malfunctioned and no records

were recovered from the Whittier Narrows earthquake or its major aftershock. However, these

earthquakes were properly recorded on all the other instruments within this inner ring. Millikan

Library is equipped with a CRI recording system, whereas the other buildings were monitored

with SMA-l accelerographs.

An 04ter ring of five instruments is located at more than a 500 feet radius around Millikan

Library. These sites are at the Brown Gymnasium and a house on California Boulevard on the

south side of campus, the Athenaeum Faculty Club and the Industrial Relations Center (IRC) on

the east side of campus, and a house on Lura street on the north side of campus (Figure 3). For
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the houses on Lura Street and California Boulevard, and the two-story wood structure of the IRC,

the instruments were positoned at ground level in the garage. Because of the type of structure,

little soil-structure interaction is expected at these sites. The other instruments within the outer

ring are also located at ground level, but because these foundations are more rigid, the records

of the "ground" accelerations will also reflect some soil-structure interaction. All instruments

within the outer ring functioned properly, and recorded the main earthquake as well as its major

aftershock. All the instruments in the outer perimeter are SMA-l accelerographs, which record all

three components of shaking (north-south, east-west and vertical).

In addition to studying soil-structure interaction, a purpose of having these two rings of

instruments on campus is to study the variations in ground motion within an urban (as opposed

to a free-field) environment.

The three other locations of the Caltech strong-motion array are situated on the campus of

the Jet Propulsion Laboratory (JPL) in La Canada, which is 10 km to the northwest of Pasadena

(Figure 1). Base and structural responses were monitored in two multistory buildings. The first

one is Building 180, which is a nine-story, steel-frame structure, instrumented with two RFT-250

accelerographs located at the basement and roof levels. This building has been extensively studied

in past earthquakes and ambient vibrations tests [10]. The other is Building 183, which is a nine­

story, steel-frame structure, instrumented with three SMA-l accelerographs, located at the first

floor, fifth floor and roof levels. Unfortunately, the Building 183 instruments did not turn off at

the end of the main shock and so did not record the major aftershock because the recording film

was depleted. Also, a CRI system in Building 238 jammed and failed to record any of the Whittier

Narrows events.

A SMA-l accelerograph was also installed to measure ground motions next to the Kresge

seismological laboratory located off campus, approximately 5 km to the west of Pasadena. Because

Kresge laboratory is situated on a hilltop, it is expected that the ground response will have a smaller

amplitude and a higher frequency content than the accelerograms recorded at the nearby campus.

Recently, a digital accelerograph has been installed next to the SMA-I, and, hence, the next time

these instruments are triggered it will be possible to' make a direct comparison between recording

and processing results for both analog and digital records. Unfortunately, the digital instrument

was not installed at the time the Whittier Narrows sequence occurred in October 1987.

As a cooperative project with Caltech, six digital, three-component, GEOS instruments were

. installed in Millikan Library by the USGS on October 5, to monitor the response of roof levels

at the north-east, south-east and north-west corners. These sensors recorded motions due to

two aftershocks, one on October 16 (ML = 2.8) and another on October 21 (ML = 2.2), which
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demonstrated significant rocking motions of the Library's foundation in phase with the north-south

fundamental mode, as discussed later. These data provide useful background for the planned study

of the digitized versions of the Millikan Library records described in this report.

2. ACCELEROGRAM ANALYSES

The following analyses of the Whittier earthquake records is based on direct interpretation of

the unprocessed 70-mm film traces, and is thus only preliminary. Final results will be published

once the records have been digitized and processed.

Ground and structural response film records for both the main event and the major aftershock

are reproduced in Appendix A. These records are given in the same order as they appear in Table 1

and Table 2. The station locations, trace components, as well as the maximum accelerations for the

ground response during both events, and the time they occurred after triggering, are summarized

in Table 1. Similar information relating to the structural response obtained from the Caltech

strong-motion network is summarized in Table 2. Peak motions were directly measured off the film

traces, and multiplied by each of the instruments' sensitivity obtained in previous calibrations, to

come up with the corresponding values of the acceleration in 'units of g. Because there is some

uncertainty involved in the way these peaks were measured, and because no instrument correction

or filtering has been applied to the records, the values given for the peak accelerations (Tables 1

and 2) are approximate. Final values for these maximum accelerations will be published once the

records are digitized and corrected. The Kresge Seismological Laboratory mainshock and major

aftershock records are not given in Appendix A because the developed film trace is very dark and

could not be properly photocopied. The peak horizontal accelerations in the October 1 event at

this site were 8%g to the north and 11%g to the east.

2.1 Ground and Basement Response

2.1.1 Whittier Narrows Earthquake of October 1, 1987 (ML = 5.9)

The October 1,1987 Whittier Narrows "ground" response accelerograms recorded

on the Caltech campus are mainly characterized by relatively high vertical accelerations and

motions in the horizontal east-west and north-south directions of comparable amplitudes. The

duration of significant shaking lasted approximately 4 to 5 seconds. The responses were the high­

est in the accelerograms recorded in the garages of the houses on California Boulevard and Lura

Street in which soil-structure interaction effects should be small and, hence, the records should

nearly reproduce free-field motion. Peak vertical accelerations were O.26g in the Lura Street house,

with maximum accelerations of O.36g in the east-west direction and O.35g in the north-south direc­

tion; these were also the highest horizontal ground accelerations recorded on campus. For the house
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on California Boulevard, peak accelerations were 0.20g (up), 0.26g (N), and 0.17g (E), respectively,

and in general maximum ground responses were usually lower for all components for records ob­

tained from the basements of the larger campus structures. It is also important to note that sites

where nearly free-field conditions are expected, such as the Lura Street and California Boulevard

houses and the I.R.C. building, recorded overall higher response amplitudes over a longer period

of time, than stations located at the foundation level of reinforced concrete structures such as the

Brown Athletic Center and Keck Laboratories. The frequency content of the accelerograms for

both of these types of recording sites is also significantly different. Comparison of the records ob­

tained at the Lura Street house and at Keck Laboratory, which are less than 200 feet apart, shows

that, for all three components, higher frequencies have been filtered out by the stiff foundation sys­

tem of Keck Laboratory, which also considerably attenuated the amplitudes of the vertical trace.

These differences constitute direct evidence of how soil-structure interaction can substantially alter

the frequency content of the recorded ground response. Hence, when earthquake records are used

as base excitation for dynamic response analyses of structures, consideration should be given as to

where these ground accelerations have been originally recorded.

The fact that the October 1, 1987 Whittier Narrows earthquake records exhibited relatively

high vertical accelerations, especially at the "free~field" stations (Lura Street house, California

Boulevard house and the I.R.C. building), is consistent with the source mechanism of the causative

thrust fault. Also, as has been mentioned earlier, preliminary seismological analyses suggest that

this temblor might have been a double event along the same thrust fault. This phenomenon is

substantiated by a double train of P-waves arriving, separated by a 1.4 sec to 1.8 sec interval, and

is particularly visible in some of the vertical accelerogram traces, such as the I.R.C., Athenaeum

Faculty Club, and Lura Street house ground responses.

Once the traces are digitized and processed, more detailed analyses will be performed on these

accelerograms. For instance, spectral analysis would reveal the predominant frequency content of

each of the records, and comparisons between the free-field traces and basement responses will

uncover information on the changes in frequency content due to soil-structure interaction. In

particular, it will be interesting to see how much the response of a tall structure, such as Millikan

Library, can contribute to the surrounding ground shaking. Also, cross-correlation techniques can

be used to study wave propagation phenomenon within an extensively-monitored small urban area.

Since the fault geometry is fairly well known and the accelerograph stations are close to the

epicenter, the digitized records should provide useful "high frequency" information about the source

mechanism.
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2.1.2 Whittier Narrows Aftershock of October 4, 1981 (ML = 5.3)

Similar analyses can be performed on the accelerograms obtained for the major

Whittier Narrows aftershock on October 4, 1987, measuring 5.3 on the Richter scale. The records

are mainly characterized by a sharp horizontal double pulse, usually stronger in the north-south

components than in the east-west components, and by smaller vertical motion. The duration of

significant shaking lasted approximately 1-2 seconds, hence, the aftershock was significantly shorter

th"an the main event. As was noticed in the analysis of the October 1 earthquake, the responses were

the highest at the sites which best simulated free-field conditions in that soil-structure interaction

was not expected to be substantial. The largest accelerations were recorded in the north-south

trace of the Lura Street house accelerogram and measured O.59g, the highest reported ground

acceleration from the aftershock in the Los Angeles basin. On that same accelerogram, the east­

west trace peaked at O.28g. For the California Boulevard house, maximum accelerations were O.52g

in the north-south direction, and O.32g in the east-west component, whereas for the I.R.C. building,

these reached O.28g and O.23g, respectively. The other measured peak accelerations recorded on

campus are listed in Table 1, and are consistently larger in the north-south components than in

the east-west ones.

The fact that these Whittier Narrows aftershock records exhibit large horizontal motions,

especially at the "free-field" stations, is consistent with the source mechanism of the causa~ive

right-lateral strike-slip fault along a north-northwest axis, which is almost in perfect alignment

with the Caltech campus in Pasadena. From Table 1, it can also be seen that the peak ground

r~sponses are all much larger in the north-south than in the east-west component, which agrees

with the fault strike orientation relative to the recording sites. There is a strong·double pulse in the

initial accelerations of all horizontal components. The waveform corresponding to the first .half­

second of this pulse should produce a half-second "hump" to the north in the displacement, which

is consistent with the far-field displacement pattern of a strike-slip fault. Also, it suggests that

buildings of five or so stories may have been hit relatively severely during the major aftershock

because the predominant ground frequency coincided with the fundamental frequency of these

structures.

Analyses similar to those proposed for the October 1 earthquake can be performed on the

October 4 aftershock, such as identification of the waves emitted by the source, wave propagation

effects, and soil-structure interaction. Since the two events are very different, this should prove to

be a good way of testing the theories us.ed to perform the above analyses.
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2.2 Structural Response

2.2.1 Millikan Library

The Millikan Library building is a nine-story, reinforced concrete structure built

in 1966. The library is 69 by 75 feet in plan and is 158 feet high above the basement level (Figure

4). Reinforced concrete shear walls located at the east and west end of the structure resist lateral

loads in the north-south direction. The reinforced concrete central core, which houses the elevator

and the staircase, provides partial resistance to the east-west loads. The foundation system consists

of a 32 feet wide concrete pad below the central core, extending through the east-west length of the

building, and by 10 feet wide beams positioned below the columns on the north and south sides of

the structure. These beams are connected to the central pad by stepped beams. The foundation

is built on alluvium composed of medium to dense sands, 900 feet above the bedrock. It did not

suffer any structural damage during the Whittier earthquake or its major aftershock.

The location of the accelerometers in the basement, sixth floor and on the roof is illustrated in

Figure 4. The recorded accelerograms are reproduced in Appendix A, Figures A.l and A.2. During

the main event, maximum accelerations in the NS (north-south) direction of 0.60g and 0.51g were

recorded at the east and west sides of the roof, respectively. The approximate fundamental period

of vibration in that direction is 0.15 sec. For the EW (east-west) components, the maximum

accelerations recorded at the roof are 0.30g and 0.27g, with a fundamental period of about 1.00

sec. Table 3 summarizes the natural periods of Millikan Library, determined from both small

amplitude, ambient vibration tests and strong-motion earthquake records. It can be noticed that

there is a definite lengthening of the periods, especially in the NS direction. The results obtained

during the October 1 Whittier event can be compared to those results from the stronger, but

more distant, San Fernando earthquake of February 9, 1911 (ML =: 6.5), for which the recorded

maximum ground accelerations of 20%g in the NS direction is similar, but yet the maximum

acceleration of 31%g at the roof was almost half that of this last event. Clearly, the amplitudes

around the NS fundamental frequency for the San Fernando earthquake were much lower than for

the recent earthquake and, hence, did not excite the building's NS fundamental mode as much.

At the time of the San Fernando event, the response of Millikan Library had been exten­

sively studied, and many post-earthquake forced vibration tests had been performed, such as those

reported in [4], [51, [8] and [9]. The temporary 11% lengthening during the earthquake of the

fundamental period in the NS direction, from 0.53 sec to 0.62 sec, can possibly be attributed to

micro-cracking of the east and west end shear walls, loosening of connections between the non­

structural components and structural system, and foundation softening. During the main Whittier

event, the same fundamental period lengthened by 39%, from 0.54 sec prior to the earthquake to
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0.75 sec, suggesting a temporary loss of stiffness in the NS direction of almost 50%. This, again,

may be due to the same reasons suggested for the San Fernando earthquake stiffness reduction.

Two separate studies have been published which analyze Millikan Library and its response to

earthquake motion and forced excitation. Luco, et a1. [8] concluded that the observed 8% change

after the San Fernando earthquake in the NS fundamental period was due to a permanent loss

of about 17% of the NS structural stiffnesses during the earthquake, rather than by loss of soil­

foundation stiffness in that direction, as inferred by Foutch and Jennings [17]. As will be discussed

later, the GEOS instruments installed after the Whittier Narrows earthquakes may give additional

information on this point.

For the EW fundamental mode, the Millikan Library system experienced a temporary increase

in the period of 40% during the San Fernando earthquake, and a permanent increase of 14% after

the event. According to Luco, et al. [8], this may be attributed to both a permanent decrease

of the structural stiffness of about 25%, and a smaller loss in the foundation stiffness. During

the Whittier Narrows earthquakes, the structure-soil-foundation system suffered an increase in its

EW fundamental period of 25%, and again the GEOS instrument records may help determine

the share of structural versus soil-foundation yielding. However, based on past experience, it is

possible to assume that part of the loss of structural stiffness can be attributed to micro-cracking

of the central core, which is meant to resist the EW motions, and to loosening of nonstructural

components within the building.

Once the accelerograms are digitized and processed, it will be possible to separate the transla­

tional and torsional motions at the roof by respectively adding and subtracting the motions at both

east and west ends. Using system identification techniques [12], the torsiona! fundamental mode

qf the structure during the earthquake can be identified, and could be compared to the results ob­

tained during post-San Fernando earthquake forced-vibration tests. From ambient vibration tests

performed on Millikan Library in 1968, Udwadia and Trifunac have reported that the fundamental

torsional period is about 0.35 sec [16].

During the major Whittier Narrows aftershock on October 4, 1987 (ML = 5.3), the records

of the Millikan Library show that the maximum accelerations at the roof were 0.40g in the NS

direction and 0.33g in the EW direction, versus 0.25g and 0.17g, respectively, at the base. Hence,

even though the NS ground peak measured during the aftershock was greater than that recorded

during the main event by 30%, the peak roofresponse was smaller by 31%, which may be attributed

to the different frequency content of both earthquakes around the fundamental NS frequency. The

increase in the NS fundamental period was not as-severe, increasing to 0.75 sec during the main

shock, but only 0.70 sec during the aftershock. In the EW direction, for comparable ground

excitation levels in the two events, the peak response recorded at the roof was greater by 14%
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during the aftershock, with a 2% increase in the fundamental EW period from 1.00 sec to 1.02 sec

between the two events. It will be necessary to perform more extensive studies of the digitized

records in order to better understand the behavior of this structure during both events.

Soil-structure interaction and the loss of stiffness of the structure-foundation-soil system of

Millikan Library can also be studied in the records obtained with the six U.S.G.S. GEOS instru­

ments installed after the major Whittier Narrows shocks. These instruments successfully recorded

three components of motions at the NW, NE and SE corners of the basement and the roof during

two aftershocks on October 16 (ML = 2.8) and October 21 (ML = 2.2). The results obtained for

the October 16 aftershock by Hanks et al. [13] are reproduced in Figures 5 through 11. Figures

5, 6 and 7 are the recorded velocity traces at the basement SE, NE and NW corners, and the

roof SE, NE and west center for the vertical, NS and EW components, respectively. Hanks et al.

also studied the frequency content of each of these traces as indicated by the Fourier spectra of

Figure 8 for the roof velocities, and of Figure 9 for the basement velocities. These instruments

were located in such a way that is is possible to separate the translational motions from the tor­

sional motions by respectively adding and subtracting the records. Hanks et al. [13] concluded

that the NS fundamental mode was accompanied by rocking of the foundation and its period had

decreased from about 0.75 sec during the Whittier Narrows earthquake to 0.59 sec. Since the level

of shaking was very small during the October 16 aftershock (approximately 0.06%g maximum NS

ground acceleration versus 19%9 for the main !lhock), it can be argued, from the change in periods

in Table 3, that the soil-structure system suffered a permanent loss of stiffness of about 16% in

the NS direction (9% increase in period since the ambient tests of May 1976) as a result of the

October 1 and 4 earthquakes. Similarly, in the EW direction, the fundamental structural period

during the October 16 aftershock showed a 5% increase from the 1976 ambient tests, and reflects

a 9% permanent loss of stiffness arising from the Whittier Narrows events. Hanks et at were also

able to detect the structure's torsional mode in the spectra at 0.43 sec.

Because the GEOS instruments are digital recorders, it is easy to exactly align the traces in

time. Comparison of the vertical basement and roof traces (Figure 10) clearly shows the propa­

gation of the first arriving P-wave through the structure. This set of traces, recorded during the

October 16 aftershock, displays a 0.02 sec delay between the basement and the roof, which are

about 35 m apart, hence, indicating that the approximate velocity of the propagating wave was

about 1.75 km/sec. Careful analysis of these traces should also reveal the existence of the initial

propagating wave being reflected down from the roof.

By filtering the vertical basement traces and the NS roof traces around the 0.59 sec funda­

mental mode of the system, and by then aligning these traces in time (Figure 11), it is possible

to witness clear evidence of base rocking. Along line AA', the roof motions at all three locations
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are perfectly in phase moving to the north, and the records at the base show that at the same

time, the south side of the foundation is going up, while the north side is going down. Similarly,

along line BB', the roof motions remain in phase moving to the south, while the south side of

the base is going down and the north side is going up. Hence, the NS fundamental mode of the

structure-foundation-soil system of Millikan Library is a combination of near-rigid foundation slab

rocking about the EW axis, and the structure deforming in the NS direction.

In March 1988 a very low-level forced shaking test was performed on Millikan Library. This

test showed the fundamental NS mode to be at 0.59 sec, and the fundamental EW mode at 0.85 sec,

as indicated in Table 4. The forced shaking test also measured the building's fundamental torsional

mode at 0.41 sec. These figures are very close to those obtained by Hanks, et aI. with the GEOS

instruments during the October 16 aftershock (ML = 2.8). This validates the fact that Millikan

Library suffered a permanent loss of stiffness during the Whittier Narrows events as discussed

above.

The extensive amount of data recorded throughout Millikan Library during the main shock of

October 1, during the aftershocks of October 4, 16 and 21, and through forced-shaking tests will

enable researchers to perform a complete study of the structure's linear and nonlinear dynamic

behavior, which should include the rocking motions at the base, as well as the torsional response

. of the building.

2.2.2 JPL Building 180

Building 180 is a nine-story steel-frame structure built in 1961. The building is 40

by 220 feet in plan and is 146 feet high above the basement level (Figure 12). The lateral loads in

the NS direction are resisted by welded steel spandrel trusses and by steel columns partially encased

in concrete. The longitudinal loads are carried by a frame consisting of steel girders and columns.

The foundation system consists of continuous strip footing running longitudinally. This structure

was strengthened after the 1971 San Fernando earthquake and did not suffer any structural damage

during the Whittier Narrows main event or major aftershock.

The locations of the accelerometers in the basement and on the roof are illustrated in Figure 12.

The recorded accelerograms for the October 1 and October 4 events are reproduced in Appendix

A (Figure A.ll and A.12). Building 180 has been extensively studied in the past [10,14], and the

summary of previous dynamic analyses as well as the current results are listed in Table 4.

.The ground response recorded at JPL for both the main event and major aftershock are lower

than those obtained on the Caltech campus. This is expected, since JPL is located about 10 km

away from Pasadena and the propagating waves have attenuated in amplitude. However, the
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predominant characteristics of the two events are still apparent in both sets of traces. The main

shock, which was mainly a thrust-fault mechanism, has a relatively large vertical component and

high NS response. The major aftershock, produced by a north-northwest trending strike-slip fault,

exhibits a periodic waveform in the NS component, with a period of about 0.2 sec, and very little

motion in either the vertical or EW traces. The periodic appearance of the NS basement response

recorded at JPL is visually very different from the ground motion recorded at Caltech for the same

event. These differences may be attributed to the combination of wave propagation and dispersion

phenomena, local site effects and structure-foundation interaction.

The structural responses of Building 180 to both the October 1 and October 4 events are

shown in Figures A.11a and A.12a of the appendix. These records are characterized by relatively

high vertical motions; for the main event, the maximum vertical ground acceleration is 18%g,

compared to the peak vertical roof response of 29%g, and for the major aftershock, these figures

are 11%g and 32%g, respectively. This is consistent with the behavior of the structure during the

San Fernando earthquake in 1911, for which the maximum vertical accelerations were 13%g at the

ground and 25%g at the roof. As suggested by J. Wood [14], the high vertical roof response may

in part be due to the floor system's flexible steel trusses. However, a 3-D modal analysis of the

structure should be performed to determine the contribution to these vertical motions of possible

north-south roof slab rotation about the east-west axis.

The building's response along its longitudinal axis to both major Whittier events was relatively

small, since peak E-W accelerations at the roof were only 12%g for the October 1 earthquake and

11%g for the October 4 earthquake, compared to maximum ground accelerations of lO%g and

8%g, respectively. However, the records show that the structure's motions were much larger along

its transverse axis, since peak roof accelerations reached 40%g versus 17%g at the ground for the

October 1 event, and 26%g versus 18%g, respectively, for the October 4 event. These values are

summarized in Table 2 and again in Table 4 where they can be compared to the ones obtained during

the San Fernando earthquake, for which the structure seems to have behaved quite differently, since

peak accelerations were relatively much higher in the EW than in the NS records. Changes in the

building's dynamic behavior may be due in part to the strengthening performed in 1974.

The approximate values of Building 180's EW fundamental period during the two major

Whittier events are listed in Table 4, as well as results previously obtained from small-amplitude

ambient vibration tests, the Lytle Creek earthquake (1970) and the San Fernan~o earthquake

(1911) for both the EW and NS directions. Because the building was strengthened, its original

dynamic properties were altered, and the results obtained during the Whittier Narrows earthquakes

should be compared to the ambient vibration test results of July 1975 and June 1976, for which

the fundamental period of the structure was about 0.95 sec along the longitudinal EW axis and
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1.05 sec along the transverse NS axis. During the Whittier Narrows event of October 1, 1987,

the building's fundamental period was approximately 1.3 sec longitudinally, which, compared to

the post-strengthening results, reflects a period increase of 37%. It is difficult to identify the NS

fundamental modal period of the structure from the undigitized film traces. The records will have

to be processed before any conclusion about the building's earthquake response in its fundamental

transverse mode can be made. However, these records show that Building 180 responded strongly

to the October 1 event in its second transverse mode, for which the period is approximately 0045

sec. McVerry [5] had identified the second transverse modal period to be 0.33 sec for the 1970

Lytle Creek earthquake and 0040 sec for the 1971 San Fernando event. Hence, the period of the

second NS mode increased by an extra 12% during the main Whittier Narrows earthquake. During

the major aftershock, the longitudinal EW modal period appears to be 1.3 sec, which is the same

as the structure's fundamental period during the main event of October 1. These values are close

to those obtained through system identification techniques for the 1971 San Fernando earthquake

[5,10]. Even though the building was strengthened in 1975, this may suggest that it behaved

similarly to all three events in its longitudinal fundamental mode. As for the main Whittier

Narrows earthquake, it is difficult to observe the building's fundamental transverse modal period

directly from the film traces obtained during the major aftershock. However, the structure seems

to have responded primarily in its second transverse mode, with a period of about 0040 sec, with

strong contribution from the third mode estimated to be at around 0.25 sec. This value for the

third transverse modal period agrees with the results obtained by McVerry and Beck using system

identification techniques on the synchronized San Fernando records [19].

Previous analyses of Building 180 from ambient vibration tests had identified the fundamental

torsional mode period to be very close to that of the fundamental EW modal period. However,

when time-invariant identification techniques were applied in the time domain by Beck [10] and in

the frequency domain by McVerry [5] to the EW components of the base and roof records obtained

during the San Fernando earthquake, this torsional mode could not be detected. Spectral analysis

of the roof response revealed the existence of a double peak around the second longitudinal mode

frequency, making it difficult to properly identify the modal properties of the structure. Both

Beck and McVerry concluded that this double peak was caused by the time variation of the second

longitudinal mode parameters, as the structure was behaving nonlinearly, and not by torsional

response. However, since these analyses were made, modal identification techniques have improved

in that they can now use at once all three components of shaking recorded at all the instrumented

locations [12]. Applying this multiple input-multiple output modal identification method to both

sets of records obtained at Building 180 during the two major Whittier Narrows events should

locate the torsional modes, if they were excited.
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The preliminary analyses of the Building 180 records obtained during the Whittier Narrows

sequence show that it sustained strong levels of shaking, comparable to those measured during the

San Fernando earthquake. Initial estimates of the fundamental periods indicate that the structure

behaved nonlinearly during the temblors, and that it possibly suffered permanent loss of stiffness.

Further investigations are required to determine the building's dynamic behavior during the two

events, and to determine the effects of the post San Fernando earthquake structural strengthening.

2.2.3 JPL Building 183

JPL 183 is an asymmetric steel frame building comprised of a nine-story structure,

140 feet by 65 feet in plan, and an adjoining three-story structure at the east side, 113 feet by 65

feet in plan. Building 183 is partially embedded into the hillside along its north side up to the third

floor, and measures 126 feet at its highest from the first floor to the roof level (Figure 13). The floor

system consists of a concrete slab supported by I-beams. In the main structure, the transverse NS

load is carried by the I-beams and by steel columns encased in concrete. The longitudinal loads are

carried by the concrete slabs and steel columns. The foundation system consists of two strips of

stepped concrete footing pads running longitudinally below each side of the structure. The location

of the accelerometers is illustrated in Figure 13, and this is the first time that this structure has

provided earthquake response records. Witnesses of the Whittier Narrows earthquake on October

1 and the major aftershock on October 4 have reported unusually high motions in the building,

which is supported by the large accelerations in the NS direction observed in the accelerograms

(Figure A.13).

Unfortunately, the accelerometer located at the fifth floor malfunctioned approximately 18

seconds after triggering by the main event, jamming the start-up and cut-off mechanism of the

recorder. Hence, the response of JPL 183 to the major aftershock could not be recorded. The main

shock traces are reproduced in Figure A-13 of the appendix; the roof record is much darker than

the other traces because of photographic processing reasons.

As shown in Table 2, the peak accelerations in the NS components of Building 183 obtained

at the fifth floor and roof levels are relatively large (37%g and 54%g, respectively) compared to

the recorded ground peak acceleration of 20%g. The structural records show that Building 183

responded primarily in its two first transverse modes, with very little contribution from longitudinal

motions. These two transverse'modes are estimated to have periods of about 0.75 sec and 0.25 sec,

making the ratio of the two first frequencies equal to 3. This ratio is consistent with theoretical

results obtained for structures modeled as shear beams on fixed foundations. Fortunately, even

though the instruments malfunctioned, they have recorded enough of the response of Building
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183 to the Whittier Narrows main event to make it possible to properly investigate its dynamic

behavior and properties.

3. CONCLUSION

The Whittier Narrows earthquake of October 1, 1987 (ML = 5.9) and its major aftershock on

October 4, 1987 (ML = 5.3), which had epicenters only 10 km away from Pasadena, have been

the most extensively monitored events in the history of the Caltech local strong-motion array.

Preliminary analyses, based on the raw film traces, have suggested that the digitized and processed

records will provide a wealth of information about ground motion variations and structural response

mechanisms.
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Table 1. Ground and basement response to the Whittier Narrows earthquakes, October 1987

recorded on the Caltech strong-motion network. (The time given is relative to the

triggering time.)

Max Accelerations

Station
Oct. 1,1987 Oct. 4,1987

Component (ML = 5.9) (ML =5.3)

%g time (sec) %g time (sec)

N -19 5.5 -25 2.6

Millikan Library Up +18 1.25 -11 2.7

E -17 3.65 -17 2.45

N +19 5.05 -29 2.35

Mudd Laboratory Up -16 0.9 -17 2.65

E -19 3.45 +17 2.25

N -17 5.35 +18 2.4

Inner Ring Bridge Laboratory Up -14 0.85 +10 0.6

E +19 3.2 -17 2.5

N -20 3.25 -20 2.2

Keck Laboratory Up -10 3.95 -8 2.9

E +19 4.75 +15 2.25

Brown N -19 2.7 -36 2.5

Athletic Up +16 3.8 -13 0.45

Center (Gym) E +18 3.3 -19 2.40

N -26 3.3 -52 2.5

California Blvd. House Up -20 2.5 +17 2.2

E -17 3.4 -32 2.7

N -21 3.3 -26 2.4

Outer Ring Athenaeum Club Up -15 3.3 +17 2.05

E +12 3.9 +16 2.25

Industrial N +25 4.75 -28 2.4

Relations Up -21 3.2 +13 2.1

Center (IRC) E +27 4.7 +23 2.2

N +35 3.7 -59 2.5

Lura St. House Up -26 2.5 -17 0.35

E +36 4.45 -28 2.4



Table 2. Structural response to the Whittier Narrows earthquakes, October 1987,

recorded on the Caltech strong-motion network.

Max Accelerations (%g)

Station Level Oct. 1, 1987 Oct 4, 1987
Component

(ML =5.9) (ML =5.3)

S +19 +25

Basement Up +18 -11

E -17 -17

S +28 ---
Sixth Floor

E +22 ---
Millikan Library

S +57 +43

West Roof Up -27 +21

E -27 +33

S +60 +36
East Roof

E -30 +33

E +10 +8

Basement Up -18 -11

N -17 +18
JPL Building 180

E -12 +11

Roof Up +29 +32

N -40 -26

N -20 --
First Floor Up +11 ---

W -9 ---
N +37 ---

lPL Building 183 Fifth Floor Up +11 ---
W -10 ---
N +54 ---

Roof Up -19 ---
W -10 ---



Table 3. Fundamental periods for Millikan Library deterniined from small-amplitude ambient

vibrations and strong-motion earthquake response. The Whittier earthquake results are

from interpretation of the 70-mm film records and are preliminary. The table was

adapted from [5].

Date North-South East-West

A=Ambient Ground Roof Natural Ground Roof Natural

E=Earthquake Peak Peak Period Peak Peak Period

F=Forced (%g) (%g) (s) (%g) (%g) (s)

July 1969 (A) 0.53 0.69

Sept 12, 1970 (E) 1.9 5.4 0.52 1.9 3.5 0.71

(Lytle Creek)

Feb. 9, 1971 (E) 20 31 0.62 18 34 0.98

(San Fernando)

March 1971 (A) 0.56 0.80

May 1976 (A) 0.54 0.79

Oct. I, 1987 (E) 19 58 0.75 17 29 1.00

(Whittier, ML = 5.9)

Oct. 4, 1987 (E) 25 40 0.70 17 33 1.02

(Whittier, ML = 5.3)

Oct. 16, 1987 (E) 0.59 0.83

(Whittier, ML = 2.8)

March 1988 (F) 0.59 0.85



Table 4. Fundamental periods for JPL Building 180 detennined from small-amplitude ambient

vibrations and strong-motion earthquake response. The Whittier earthquake results are

from interpretation of the 70-mm film records and are preliminary. All other results

are from [5].

Date S82E (Longitudinal) E S08W (Transverse) N

A=Ambient Ground Roof Natural Ground Roof Natural

E=Earthquake Peak Peak Period Peak Peak Period

(%g) (%g) (s) (%g) (%g) (s)

1963 (A) 0.91 0.88

Sept. 12, 1970 (E) 1.5 2.5 1.02 2.4 3.7 1.13

(Lytle Creek)

Feb. 9, 1971 (E) 21 38 1.25 14 21 1.42

(San Fernando)

July 1971 (A) 1.05 1.11

Feb. 1972 (A) 1.00 1.15

July 1975 (A) 0.96 1.04

(After Strengthening)

June 1976 (A) 0.95 1.05

Oct. 1, 1987 (E) 10 12 1.30 17 40 ?

(Whittier ML = 5.9)

Oct. 4, 1987 (E) 8 11 1.30 18 26 ?

(Whittier ML = 5.3)



October 4 October 1

1 - SAN ANDREAS FAULT

2 - SAN JACINTO FAULT

3 - SAN GABRIEL FAULT

4 - HOLSER FAULT

5 - SAN GAYETANO FAULT

6 - OAK RIDGE FAULT

7 - LIEBRE FAULT ZONE

8 - CLEARWATER FAULT

9 - BEE CANYON FAULT

10 - SAN FRANCISQUITO FAULT

11 -VASQUES CANYON FAULT

12 - MINT CANYON FAULT

13 - GREEN RANCH FAULT

14-S0LEDAD FAULT

15 - POLE CANYON FAULT

16 - MAGIC MOUNTAIN FAULT

17 - ACTON FAULT

18 - TRANSMISSION LINE FAULT

19 - PACIFIC MOUNTAIN FAULT

20 - SI ERRA MADRE FAULT ZONE

21 - CUCAMONGA FAULT ZONE

22 - SANTA SUSANA THRUST

23 - SANTA ROSA FAULT

24 - NORTHRIDGE HILLS FAULT

25 - CHATSWORTH FAULT

26 - MALIBU COAST FAULT

27 - SANTA MONICA FAULT

28 - SEPULVEDA FAULT

29 - TUJUNGA FAULT

30 - VERDUGO FAULTS

31- RAYMOND HILL FAULT

32 - NEWPORT INGLEWOOD FAULT ZONE

33 - CHARNOCK FAULT

34 - PALOS VERDES FAULT ZONE

35 - CABRILLO FAULT

36 - NORWALK FAULT

37 - WORKMAN MILL FAULT EXTENSION

38- WALNUT CREEK FAULT

39 - SAN JOSE FAULT

40 - WHITTIER FAULT ZONE

41 - CHINO FAULT ZONE

42 - ELSINORE FAULT

Figure 1 Lo~ Angeles area fault map [1] (October 1, 1987 epicenter, October 4, 1987
eplcenter) .
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Figure 8 Velocity spectra of the GEOS, NE, west-center and SE roof locations for the three
measured components.
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Figure 9 Velocity spectra of the GEOS NW I SE, NE basement locations for the three
measured components.
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PHOTOCOPIED ACCELEROGRAMS

FROM THE CALTECH NETWORK
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Figure A.3 Mudd Laboratory
(a) Whittier earthquake, October 1, 1987 (ML = 5.9).
(b) Main aftershock, October 4, 1987 (ML = 5.3).
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Figure A.4 Bridge Laboratory
(a) Whittier earthquake, October 1, 1987 (ML =5.9).
(b) Main aftershock, October 4, 1987 (ML = 5.3).
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(a) Whittier earthquake, October 1, 1987 (ML = 5.9).
(b) Main aftershock, October 4, 1987 (ML = 5.3).
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Figure A.6 Brown Athletic Center
(a) Whittier earthquake, October 1, 1987 (ML = 5.9).
(b) Main aftershock, October 4, 1987 (ML = 5.3).
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Figure A.7 California Boulevard house
(a) Whittier earthquake, October 1, 1987 (ML =5.9).
(b) Main aftershock, October 4, 1987 (ML = 5.3).
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Figure A.8 Athenaeum Faculty Club
(a) Whittier earthquake, October 1, 1987 (ML =5.9)
(b) Main aftershock, October 4, 1987 (ML = 5.3). .
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Figure A.9 Industrial Relations Center
(a) Whittier earthquake, October 1, 1987 (ML = 5.9).
(b) ¥ain aftershock, October 4,1987 (ML = 5.3).
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Figure A.10 Lura Street house
(a) Whittier earthquake, October 1, 1987 (ML = 5.9).
(b) Main aftershock, October 4, 1987 (ML = 5.3).
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Figure A.ll JPL Building 180, Whittier earthquake, October 1, 1987 (ML = 5.9)
(a) Roof
(b) Basement
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Figure A.12 3PL Building 180, Main Aftershock, October 4, 1987 (ML = 5.3)
(a) Roof
(b) Basement
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(b) Fifth floor
(c) First floor
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