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ABSTRACT

This study addresses the problem of obtaining reliable velocities and displace-
ments from accelerograms, a concern which often arises in earthquake engineering.
A closed-form acceleration expression with random parameters is developed to test
any strong-motion accelerogram processing method. Integration of this analytical
time history yields the exact velocities, displacements and Fourier spectra. Noise
and truncation can also be added. A two-step testing procedure is proposed and
the original Volume IT routine is used as an illustration. The main sources of error
are identified and discussed. Although these errors may be reduced, it is impossible
to extract the true time histories from an analog or digital accelerogram because of
the uncertain noise level and missing data. Based on these uncertainties, a prob-
abilistic approach is proposed as a new accelerogram processing method. A most
probable record is presented as well as a reliability interval which reflects the level
of error-uncertainty introduced by the recording and digitization process. The data
is processed in the frequency domain, under assumptions governing either the initial
value or the temporal mean of the time histories. This new processing approach
is tested on synthetic records. It induces little error and the digitization noise is
adequately bounded. Filtering is intended to be kept to a minimum and two op-
timal error-reduction methods are proposed. The “noise filters” reduce the noise
level at each harmonic of the spectrum as a function of the signal-to-noise ratio.
However, the correction at low frequencies is not sufficient to significantly reduce
the drifts in the integrated time histories. The “spectral substitution method” uses
optimization techniques to fit spectral models of near-field, far-field or structural
motions to the amplitude spectrum of the measured data. The extremes of the
spectrum of the recorded data where noise and error prevail are then partly altered,
but not removed, and statistical criteria provide the choice of the appropriate cut-
off frequencies. Thi‘s'céfre\ction method has been applied to existing strong-motion
far-field, near-field and structural data with promising results. Since this correction
method maintains 't'he whole frequency range of the record, it should prove to be

very useful in studying the long-period dynamics of local geology and structures.
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Chapter 1

INTRODUCTION

Strong-motion accelerograph records are an important source of data in earth-
quake engineering, be it for research or design. It is crucial that the information
retrieved from these records be as faithful as possible to the actual motions occurring
at the site during the seismic event. The transducer in a strong-motion accelero-
graph can usually be modelled as a single-degree-of-freedom oscillator which records
the relative displacement, due to the acceleration at the site, between the transducer
and the instrument housing. Typically these motions are recorded on an analog pho-
tographic film trace, which means that the data must be digitized and interpolated
at equal time intervals before any processing can be done. This process gives rise
to errors and it is desirable to correct for these. In recent years strong-motion ac-
celerographs with digital recorders have been developed. But as yet, there are far
less digitally recorded earthquake data available compared to the extensive number
of analog records. The nature of the problems involved with processing the two
types of data are mathematically quite similar, arising from digitization noise and
error in the baseline of the signals. The processing methodology proposed herein
can be applied to both analog and digital accelerograph records. However, for ana-
log records the problems are more acute because of larger error levels. They should
provide a better test for the validity of the proposed processing technique. Thus,
the following discussion will emphasize analog earthquake records, although most

of the theory presented applies equally well to data from digital accelerographs.

Over the years, many signal processing methods have been proposed for analog
earthquake records, the most popular one being the one developed by Trifunac
& Lee at Caltech [1973]. The Volume II routine within this method performs

all the processing in the time domain, integrates the acceleration data with the
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trapezoidal rule, and uses the Ormsby filter as its main tool to correct for both high-
frequency and low-frequency errors. However, the original Volume II processing
routine has been shown to have certain deficiencies, which have been corrected
for in various ways. This has yielded many versions, such as those used by the
California Division of Mines and Geology (CDMG) [Porter, 1982|, and by the
U.S. Geological Survey (USGS) [Converse et al., 1984]. Other processing methods
have also been developed. The one proposed by Sunder & Connor [1982|, which
also corrects the signal in the time domain, uses the Schuessler-Ibler integration rule
and an elliptic high-pass filter with an infinite impulse response and nonlinear phase
distortion. Khemici & Chiang [1984] suggested a method which is very similar to
the Volume II processing routine, except that all the operations are done in the
frequency domain, thus replacing the equivalent convolution integral operation by
a simple multiplication. However, since the original Volume II routine remains the
one that has been the most widely used and studied, it is chosen in Ch. 2 as an
example for applying a procedure for testing of earthquake accelerogram correction
and integration methods. Also, a discussion of how the other methods, as well as
the improvements made on the original Volume II routine, change the processed

data is included at the end of the chapter.

Up to now, most methods have been tested by either processing a given earth-
quake signal, such as El Centro 1940, or a digitized straight line {Trifunac et al.,
1973]. Neither of these is completely satisfactory since in the first case the actual
velocity and displacement are not known accurately, and in the second case the pro-
cessing routine may behave differently when used for an earthquake signal, which
has the appearance of a highly erratic time series. Some methods are even tested
by comparing the obtained results with those of another processing routine, which
may itself have some flaws [Khemici & Chiang, 1984]. It is the purpose of Ch. 2 to
suggest a systematic and unbiased method to study processing-induced errors by
proposing an analytical expression for the acceleration, which has the main charac-
teristics expected from an earthquake, and which can be integrated exactly to yield
a closed-form expression for the velocity and displacement. The exact signals are
then compared to those obtained through the earthquake processing methods to

test their reliability in certain situations such as when noise is included to simulate
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recording and digitization errors, or when the start of the record is truncated to
model the trigger and start-up time of an analog accelerograph. Another effect
that can be studied is the way the processing routine deals with cases where final
displacements are expected, as along a fault or in a partially collapsed structure. It
is shown that errors imparted by the processing techniques may in some ways be
improved by careful inspection of their corresponding mathematical representation,
for example, continuous filters which must be discretized to be used in computer
codes. It is also shown that the errors found in the time histories are mostly due
to digitization and processing noise and uncertainties in the acceleration baseline
because of trigger cut-offs. These errors contaminate the whole spectrum of the

signals, and not just the lower and upper frequencies.

Because these errors are uncertain, it is impossible to retrieve the exact motions
at the time of the event from the contaminated signal. So, regardless of the level of
sophistication of the processing method, the corrected signal will still contain errors,
Also, the degree of inaccuracy of the corrected data, especially the displacements
which are obtained after double integration, and other data massaging methods,
may not be well understood by users unfamiliar with the limitations of digital signal
processing. In view of these arguments, a novel approach to accelerogram processing
is presented in Ch. 3, in which the integration is performed in the frequency domain
without the use of any filters. The measured and recorded acceleration is treated
as a signal contaminated with random noise and which has a random number of
points removed. These random sources of error are modelled by probabilistic laws
which can be incorporated into the integration scheme to produce the most probable
acceleration, velocity and displacement. So that the user is aware of the margin
of confidence with which these signals can be used, the corrected time histories,
which are also the most probable ones, are presented with their respective standard
deviations. Accounting for uncertainties in records of either ground or structural

motions should prove to be particularly useful for future research.

As is shown in the results presented in Ch. 3, the range in which the unfiltered

acceleration and velocity may depart from the most probable value is very small;
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meaning that the time history presented as the best estimate is indeed a good rep-
resentation of the motion at the site. The unfiltered displacements, however, show
a very large degree of uncertainty. This implies that the true displacement is very
difficult to recover, as is well known, and that the proposed displacement record
may not be an adequate representation of the actual motion, although mathemat-
ically it is the most probable on the basis of the information used. Hence, the
processed displacement data turns out to be of little use for analysis of structures
or for extraction of seismic information. In general, the expected value of the dis-
placements exhibits a parabolic drift due to low-frequency errors. The traditional
method of dealing with this problem is to completely remove the low-frequency end
of the signal, below some frequency cut-off value, through the use of filters. As
demonstrated in Ch. 2, one of the inconveniencies of this approach lies in the fact
that digital filters do not always remove frequency contributions properly within the
rejection band, sometimes even increasing the amplitude at the cut-off. Two other
frequently-voiced complaints against this approach are the arbitrary way the cut-
off frequency is chosen, and the possibility that important structural and seismic

information is lost within the rejection band.

Ch. 4 investigates two new approaches to error correction that reduces these
three previously mentioned sources of error arising in a band-pass filtering approach.
The first method is one that was initially suggested by Wiener [1950|. It uses
a probabilistic approach and prior information on the true signal and the noise
level, to produce the optimal noise filter for the measured signal. Although this
method seems promising, and can be applied to the probabilistic description of
the noisy signal given in Ch. 3, it assumes that the necessary prior information
is known and available. Unfortunately, this is not often the case when processing
earthquake records. Applying Wiener’s mathematical derivation to compute a noise
filter, based on the measured data and prior information about the noise level,
results in a transfer function equal to unity (thus proving that the optimal way of
removing noise from the accelerogram is not to use a filter at all!). However, some
hybrid versions of the optimal noise filter Wiener originally intended are used on the
synthetic records. It will be shown that these filters are effective on signals which

have a low signal-to-noise ratio, but do not remove enough noise within the spectrum
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of signals with large signal-to-noise ratios to make a significant improvement on the

corrupted record.

Traditional digital filtering methods (i.e., infinite and finite impulse response
filters) and optimal methods (i.e., Wiener) treat the recorded and digitized accelero-
gram as it would any other signal. The second approach, studied in Ch. 4, uses
the particular characteristics that make up the signature of an earthquake accelero-
gram to correct, but not completely remove, the noise-contaminated portions of the
record. Using the Bayesian formulation applied to system identification techniques
iBeck, 1989], a model for the seismic source or structural spectrum is fitted to the
recorded data to obtain the model parameters. One of these parameters is the
d.c. value of the velocity spectrum, which, if properly identified, can capture any

possible final displacement offset.

The general methodology and analytical derivation used to perform accelero-
gram processing, inferred by the spectral minimization of the source and structural
parameters, is presented in detail in Sec. 4.3.1. The data are replaced by the best
fit model in the upper and lower ranges of the spectrum, where the signal-to-noise
ratio appears to be small. The probability density function of the error between
the data and the model is used to define the proper cut-off frequencies at which the
substitution occurs. Hence, this new approach to accelerogram processing offers the
extra advantages of incorporating the whole spectral range of the corrected signal,
as well as a systematic criterion for choosing the appropriate cut-off frequencies for

correction.

Within the last twenty years, substantial advances have been made in earth-
quake source modelling of body wave spectra. These waves provide the main con-
tribution to the signals recorded by the strong-motion accelerograph. There is still
heated debate among seismologists about the proper seismic source spectrum, espe-
cially regarding the high-frequency decay for near-field and far-field records [Joyner
& Boore, 1988]. However, most agree on the behavior of the displacement spec-
tra at low frequencies. A general review of the existing models is presented in
Sec. 4.3.2; the first one of which was initially suggested by Brune [1970]. So that

an appropriate model characterization is available for both free-field and structural
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records, two different types of model spectrum are chosen for the identification of
the parameters from the accelerogram. One is meant to be a general representation

of strong ground motion, and the other models structural response.

In Secs. 4.3.4 and 4.3.5 , the spectral substitution method is applied to ground
motion and structural response records obtained during the 1979 Imperial Val-
ley earthquake. The records from the severely damaged Imperial County Services
Building {ICSB), and the strong ground motion array which crosses the Imperial
fault, prove to be a good test for the validity of both the proposed correction method

and the spectral models used for the system identification.

A case study is presented in Ch. 5. Trace 3 of the ICSB records obtained
during the October 15, 1979 Imperial Valley earthquake is taken as an example
of complete processing with this new probabilistic method. This particular record
measured the northern component of motion at the west end of the roof of the
ICSB. The results which are presented show the most probable value of the accel-
eration, velocity and displacement, with and without spectral corrections, as well
as their respective levels of uncertainty, as described in Chs. 3 and 4. The results
of the probabilistically processed record are then compared to those provided by
CDM{G in Volume II.

Finally, a general analysis of the advantages and disadvantages of the new
correction and integration method is presented in Ch. 6, as well as recommendations

for future research to improve the present version of the processing method.



Chapter 2

TESTING OF EARTHQUAKE ACCELEROGRAM PROCESSING
AND INTEGRATION METHODS WITH SYNTHETIC RECORDS

2.1 Errors in Data Processing of Analog Accelerograms

When acceleration data recorded on a photographic film is to be analyzed,
the first step that is performed is digitization of the signal. This leads to both
high-frequency errors from digitizing a point not exactly at the center of the actual
signal trace and from interpolation of the data at equally spaced time intervals,
and low-frequency errors which occur when the baseline of the signal is shifted.
These digitization errors have been extensively studied by Trifunac et al. [1973],
Hudson [1979], Shakal & Ragsdale [1984], and others. The contribution from the
high-frequency digitization noise decreases with integration, so that the velocity and
the displacement data obtained by integrating the acceleration will not be affected
much by this type of noise. However, velocities and especially displacements are

sensitive to low-frequency errors in the acceleration.

It has been shown that the noise spectrum of such errors can be modelled
for accelerograms as a constant over a wide frequency range and corresponds to
stationary white noise with standard deviation of the order of a thousandth of a g.
When a strong-motion accelerograph is triggered, it not only records the earthquake
signal but also a straight line which is used as a reference for the digitization, so
that it can be assumed that the baseline of the digitized acceleration is only off by a
constant amount, However, a constant mean error of only 0.001 ¢ in the acceleration,
after double integration over a 20 sec time span, leads to a parabolically increasing
error of 198 ¢m in the displacement, which is clearly unacceptable and makes it

difficult to determine the final displacement that can be expected in certain cases.
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For this reason, most processing methods focus mainly on ways to filter out longer-
period errors in the acceleration. How well these filters perform can be studied

using the analytical earthquake formulation proposed in this chapter.

The signal that is digitized is that of the relative displacement, z(t), of the
transducer with respect to the instrument housing, but which is calibrated as an ac-
celeration, The accelerometer can usually be modelled as a single-degree-of-freedom
oscillator, whose characteristic frequency and damping are found from calibration
tests. The absolute ground acceleration, a(t), can be obtained from the application

of the equation of motion of the transducer:
E(t) + 2¢woi(t) + wiz(t) = —a(t) , (2.1.1)

where the relative velocity, £(t), and relative acceleration, Z(t), could be found by
numerical differentiation of z(t). Also, since the accelerometer only gives reliable
records up to frequencies of the order of the natural frequency, the data must be
low-pass filtered; typically for the standard analog strong-motion instrument in the
U.S., the cut-off frequency is chosen near 25 Hz. The above process is called instru-
ment or transducer correction. Because this step of the earthquake processing uses
a well-defined equation, it is assumed that little error is introduced in the record,
except maybe for some high-frequency noise introduced by the low-pass filter and
the numerical differentiation, to which the integrated velocity and displacement are
not very sensitive. However, filter errors can be studied in other steps of the pro-
cessing method. Thus, the analytical earthquake equation proposed in this report
is assumed to represent the absolute instrument-corrected acceleration. In future
work, small modifications to the testing procedures can be made to study the effects

of instrument corrections on the data.

Another problem that arises in the integration of the earthquake signal is that
of the unknown initial conditions to use for the velocity and displacement. Typically,
an accelerometer triggers for signals higher than a hundredth of a g, by which time
the initial velocity and displacement are no longer exactly zero, even though they
should still be very small. The Volume II processing routine treats this problem

by performing least square fitting of straight lines to the acceleration, velocity and



-9 -

displacement, from which it indirectly assigns initial values to the integrated data.
The original Volume II processing method is explained in more detail in Sec. 2.3,

and how well it estimates these initial quantities is discussed in Sec. 2.4.

In Sec. 2.4, a new method of studying the errors induced in accelerograms
is presented. This method uses synthetic accelerograms generated by closed-form
expressions for the accelerations, which can be exactly integrated to produce the
corresponding velocities and displacements, and spectra. The derived analytical
expression of the acceleration does not attempt to reproduce exactly the motion of
any specific earthquake, but is intended to be general enough to capture the fea-
tures common to most strong-motion accelerograms. The equation for the synthetic
acceleration calls for parameters that are randomly chosen within specified bounds.
This allows the generation of a multitude of different sorts of earthquake-like ac-
celeration signals. The accelerogram processing and integration methods can then
be tested with the synthetic records, and comparison of the differences between the
processed and analytical solutions can help detect and confirm the source of the

processing-induced errors.

2.2 Synthetic Earthquake Accelerograms
2.2.1 Earthquake Characteristics

As is illustrated in Fig. 2.1 [Hudson, 1979], earthquake ground ac-
celerations come in all shapes and sizes, and further differences occur when the
records are those from vibrating structures. Some are of short duration, such as the
M =5.3 San Francisco earthquake of 1957, or the M =5.4 Lytle Creek earthquake
of 1970. Others are longer in duration with uniform acceleration levels such as the
M =6.7 El Centro earthquake of 1940. Some records have sharp peaks such as
the M =4.6 Stone Canyon earthquake of 1972, or have very strong shaking levels
and fast decay as the M =6.4 San Fernando earthquake of 1971. The frequency
content of the earthquakes also varies; the M =6.5 Koyna earthquake of 1967 has
a very high-frequency content, but the near-field records from the 1966 M =5.6
Parkfield earthquake shows a low-frequency component, and of course earthquake
acceleration responses of tall buildings are predominantly composed of long-period

harmonics. Even though these accelerograms all have distinct features, they do
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have some common characteristics: they start initially at zero, and decay down to
zero after a certain amount of time, they can be represented as a sum of sinusoidal
functions with various frequencies and phases, and they have zero temporal mean
since the corresponding velocity end conditions are zero. The analytical expression
for the accelerogram must also take into account the fact that the integrated veloc-
ity and displacement start at zero and the velocity must also decay to zero when the
earthquake is over. If the constraint of having zero mean velocity is added then this
automatically assures that the final displacement is zero. In some cases however,
when the instrument is located along a fault or in a damaged structure for instance,

some final offset is expected, thus making the final displacement non-zero.

2.2.2 Existing Earthquake Accelerogram Models

Synthetic accelerograms can be generated by using a time series rep-
resentation. For instance, a Fourier series with an exponential decay could be

constructed to simulate the accelerations such that:

Z(t) = Cte™*t Z ag cos(wit + dg) (2.2.1)
k=1
where wy and ¢, are the discrete frequency and phase of the n harmonics of the
model. C is a scaling factor. The amplitudes a; could be computed to represent
the spectral amplitude model of the seismic source. One such model is proposed by
Brune [1970], and is of the form:
2
— ke _g-ARuk (2.2.2)

¥

ay =
2 2

we + Wi
where ( is the shear wave velocity, w, is the corner frequency and R is the wave

attenuation factor. It should be noted that the envelope function in Eq. 2.2.1 does

alter the low-frequency content somewhat from that given in Eq. 2.2.2. Trifunac

[1974] proposed a spectral model where the amplitude of the k" harmonic is given
by:
D
ax = Ao exp (—;’;—R) , (2.2.3)

and where Ao is the stress drop along the fault and D the distance from the source.
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These previous models may be suitable to reproduce the ground acceleration
near the earthquake epicenter. However, to test accelerogram processing methods,
the analytical expression does not have to specifically simulate the source mecha-
nism. For example, a more general model has already been proposed by Brady &

Mork [1984}, who suggested a displacement equation of the form:
z(t) = > axt®e " sin(wit) (2.2.4)
k=1

where the amplitudes ax and frequencies wy. are chosen arbitrarily, and the envelope
parameters ay assigned for each of the harmonics are a function of the time at which
the peak value occurs. Expressions for the velocity and acceleration are obtained
by differentiating Eq. 2.2.4. Such an approach is not completely satisfactory since
it assumes a shape for the displacement signal, of which, in fact, less is known. It
is preferable to assume an expression for the acceleration, and derive the velocity
and displacement equations by integration assuming zero initial conditions. The
model proposed by Brady & Mork forces the displacement to decay to zero, which
physically is not always the case, as was mentioned above. Their model also allows
for phase shifts in the harmonics by selecting different start times for each of the
frequency components, and by using trial and error to generate earthquake-like

motions. This makes it tedious to generate many signals at a time.

Schiff & Bogdanoff [1967] suggested an analytical expression for the acceleration

of the form:

x(t) = Z te”** cos(wit + ox) , (2.2.5)
k=1

where the amplitude of the signal is constant and equal to 1, o, are positive arbitrary
constants in the range 0.35 to 0.50, w; are the equally spaced angular frequencies
chosen between the bounds 6 to 40 rad/sec (1.9 to 12.7 Hz), ¢, are the indepen-
dent random phase variables uniformly distributed over the interval 0 to 27, and
the number of harmonics is arbitrarily set to 40. The analytic expression for the
acceleration given by Eq. 2.2.5 can be integrated to obtain closed-form solutions
for the velocity and displacement in which the constants of integration are set to

obtain zero initial conditions. The acceleration time history that is generated by
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such a procedure does not generally have zero temporal mean. This implies that
the integrated time histories may not behave as expected from earthquake motions.

The same is also true for the formulation in Eq. 2.2.1.

In the following, a formulation and methodology is proposed which automat-
ically generates time histories without using trial and error methods, and which

have most of the features expected from earthquake motions.

2.2.3 Proposed Analytical Earthquake Accelerogram Model

Any of the above models could have been chosen for the synthetic ac-
celerograms, but the following form is based on the Schiff & Bogdanoff model. The
analytical expression for the acceleration is very similar to the one in Eq. 2.2.5, with
the exception that each harmonic is allowed to have a different amplitude aj, and
the envelope a;, is chosen such that it follows the decay expected in accelerograms.
The parameters are now chosen randomly in such a way that certain characteristics
required for an earthquake are respected, as explained below. Hence, this approach
is different from all those mentioned previously in that the parameters are not com-
puted using seismic source properties, or are not selected using trial-and-error. It
is stressed that the intent is to generate analytical time histories which have similar
general characteristics to real earthquake motions, and not to model any particular

event.

Eq. 2.2.5 can be rewritten as the sum of n acceleration harmonics Zx(t) such

that:

n

()= &lt), (2.2.6)
and,

ix(t) = axte™ *** cos(wrt + éx) - (2.2.7)

The acceleration boundary conditions are satisfied since %;(0) is equal to zero,

and Zx(t) decays to zero as ¢ goes to infinity. Each harmonic k is assigned an

individual amplitude a; which is randomly chosen in the range 0 to 1, as is the
T

phase ¢ between —Z and +7. The frequencies wy are equally spaced between

any prescribed bounds for any given number of harmonics n. The added condition
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that the mean acceleration is zero selects what values to choose for the harmonic
envelope parameters ay. Indeed, assuming zero mean acceleration is equivalent to
forcing the d.c. component of the acceleration Fourier transform X (w=0) to also
be zero. The expression for the acceleration Fourier transform can also be put in

closed form:

}“(k(w) = f arte” *** cos{wyt + qSk)e'i“’tdt , (2.2.8)
0
which reduces to,
Xi(w) = Rl 5 { [(ar + iw)? — w}] cos ¢k — 20 + iw)wy sin d)k} .
[(ox + 1w)? + wz]
(2.2.9)
Applying the condition that X x(0) = 0, leads to
sin ¢ + 1
= —_— 2.2.10

where o« must always be positive for the envelope to decay. From physical consid-
erations of earthquakes, other conditions must be applied to determine the bounds
for ay. The envelope function of the &** harmonic, ¢ exp(—ayt), reaches its maxi-
mum value at time t = aik. Typically these peak values are reached after at least
1 sec of excitation, so that ay should be less than or equal to 1. For harmonics to
decay fast enough the lower bound for a4 is arbitrarily set to 0.4. This constraint
forces the records to be of short duration, to limit the amount of data to be stored.
Synthetic records of longer duration could easily be generated by allowing oy to
become smaller. Also, to limit the effects of very high or very low frequencies, the

following bounds are used for &y instead of 0.4 and 1.0:

0.25 0.25
wr <025 Hz , 0d X — < ap<10x —
Wi Wy
W Wy
> 10. A4 x — < <1.0x —.
wy > 10.0 Hz , 0 Xlouak_ )(10

Analytical formulations for the velocity and displacement are obtained by inte-

gration of Eq. 2.2.7 where the integration constants are found by setting the initial
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conditions to be zero. Thus,

z(t) = zn: T {t) = zn: /t Zx(t)dt (2.2.11)
k=0 k=070

where,
, g~ xkt ]
$k(t) = —Vk -+ ak—ﬂT [(Wkﬁkt -+ 20!ka) Sln(Wkt + ¢k)
k
— (cwBrt + i) cos(wit + ¢k)] : (2.2.12)
Vi = _%(20%0% sin ¢ + Yk cos $x) (2.2.13)
k

and f8; and «; are defined below in Eq. 2.2.17 and Eq. 2.2.18 respectively. Also,

x(t) = Zn::ck(t) = i ftik(t)dt : (2.2.14)
k=0 k=0"0

where,

-t

e .
T (t) = —ag —ﬁ§~—{(2akwktﬂk + 2wy + 4aiwy) sin(wgt + B
k

— (aftBr + 2o — wEBKt — dagw]) (2.2.15)

cos(wyt + gbk)} — Vit — Dy,

and,
2a .
Dy = —F:- {(’kak + 202wy ) sin @k + (2axwy — Yrox) COS ¢k} ’ (2.2.16)
k
Br = o2 +w?, (2.2.17)
o= o2 —w? . (2.2.18)

The program which generates the synthetic accelerograms (Fig. 2.2) automati-
cally computes the values of the equally spaced frequencies according to the number

of harmonics and bounds prescribed. Then it randomly selects the amplitude and
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phase for each of the components, and computes the corresponding envelope param-
eter. If the latter does not fall within the bounds defined above, then other values
for the phase ¢r are randomly chosen until a proper o is found. The algorithm
then computes the acceleration, velocity and displacement by summing up all the
harmonics for each time step using the appropriate analytic expression, as given
in Egs, 2.2.6, 2,2.7 and 2.2.11 through 2.2.18. It is also possible to obtain the an-
alytically generated Fourier amplitude spectrum of the acceleration to check the

frequency content of the signal.

The analytic velocity, given by Eqgs. 2.2.11 through 2.2.13, does not assume
that the velocity has mean zero, so the displacement time history obtained from
Eqgs. 2.2.14 through 2.2.16 is expected to have a final offset, However, if required,
a corrective term can be added to the velocity equation to remove the mean and
impose the final displacement to be zero. This is done by fitting a sinusoidal function
to the velocity. Define Z#(t) and z(t) as the quantities obtained with no correction

for the mean velocity, and §(t) and g(¢) as the mean corrected signal, such that:
y(t) = z(t) + pte™“°* sinwot , (2.2.19)

where the frequency wy is a function of the total duration ¢4 of the record at which

no more excitation is occurring, such that:

wo = 2T (2.2.20)
ta

In practice, t; is selected as the time at which the digitized synthetic accelerograms
are zero within the data storage precision. As will be seen in Ch. 3, this causes
errors in the temporal mean of the acceleration of the order of the data precision.
The envelope parameter &g is associated with wy and a phase angle of 7/2, and the

constant p is a function of the final displacement C = z(t4) and is given by:

C
= —— , 2221
P Jo te~=otsinwodt ( )
which reduces to: ” oo
o
= _(_?_O__t_(ﬂl)_ (2.2.22)

2&0(4)0



This added corrective term changes the analytical expression for each of the quan-

tities in the following way:

4(t) = i(t) + pe”"“’t(sin wot — apt sinwet + two cos(wot)) , | (2.2.23)
/
and,

e—aot Qg .
y(t) =z(t) - p 52 (aot + -B-) sin(wot)
0 02 (2.2.24)
plg
+ (wot + B ) cos(wnt)} +C,
and,
0 .
Yi(w) = Xlw) + i —Pewolaot iw) (2.2.25)

[(ao + w)? + wg] 2’
where B¢ and ~g are given by Egs. 2.2.17 and 2.2.18 for frequency wo and constant

Og .

The process for generating earthquake signals is summarized in Fig. 2.2. Ex-
amples of the type of records generated by this model are given in Figs. 2.3 through
2.8. Fig. 2.3 illustrates one of the analytically obtained earthquake signals, Q1U,
for the acceleration, velocity, displacement and acceleration Fourier amplitude spec-
trum. Q1U was generated by randomly choosing oy, ax and ¢ for 200 frequencies
equally spaced within the range 0.05 Hz to 25.0 Hz. The main characteristics sought
in an earthquake record are respected: initial conditions are zero, acceleration and
velocity decay down to zero after 20 sec (within the three decimal points of the
storage precision), the frequency content of the acceleration is mainly within the
range 0.1 Hz to 10 Hz, and the final displacement is nonzero. The signal can be
scaled to any size. For instance in Fig. 2.3, Q1U has a peak acceleration of about
5.0, which can be interpreted as 5 m/sec? (approximately 50% g) for a large earth-
quake, and thus the peak velocity is 0.40 m/sec and the peak displacement is 0.35 m
with a final offset of 0.20 m. However, Q1U can also be scaled down to a small
earthquake level, in which case the peak acceleration is 0.5 m/sec? (approximately
5% g), the peak velocity is 0.040 m/sec, with a peak displacement of 0.035 m and

a final offset of 0.02 m. The concept of earthquake size is important in defining
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signal-to-noise ratios and instrument trigger levels; this will be discussed in more

detall in Sec. 2.2.4.

Fig. 2.4 represents the analytically generated earthquake QI1C, which has the
same characteristics as Q1U (Fig. 2.3), except that the mean is removed from the
velocity, forcing the final displacement to be zero. The overall form of the signal
is unaltered, which implies that the corrective term has little effect other than
removing the final displacement offset. However slight changes can be observed,
such as small variations in the amplitudes of the peak velocity and displacement.
Also, the Q1C acceleration spectrum has a slightly higher peak at 0.05 Hz, which
corresponds to the frequency of the corrective term for the 20 sec record. In the
following discussion the letter “U” will always refer to an uncorrected signal (i.e.,
nonzero final displacement), and the letter “C” will always stand for a mean-velocity

corrected signal (i.e., zero final displacement).

Figs. 2.5 and 2.6 show the uncorrected and mean-velocity corrected signals of
another analytically simulated earthquake, @2U and Q2C. Even though both Q1
and Q2 have been generated using the same number of frequencies over the same
frequency range, they do not have the same characteristics because ¢, o and
a;, are chosen randomly. The simulated earthquake Q2 (Figs. 2.5 and 2.6) decays
faster than Q1 (Figs. 2.3 and 2.4), however @2 has a very pronounced peak in
the acceleration record, and has higher peak velocities and displacements than Q1.
This type of behavior can be expected in an earthquake, as can be seen in the 1972

Stone Canyon ground acceleration in Fig. 2.1.

The simulated earthquake signal Q8C, illustrated in Fig. 2.7, is composed of 200
harmonics within the frequency range 0.4 Hz and 25.0 Hz. Hence, it differs from the
two previous signals @1 and Q2 since it does not have harmonics between 0.05 Hz
and 0.4 Hz. The velocity and displacement have a very pronounced 2.5 sec period,
which could be expected in the response of a tall building. Thus, the analytical
approach that is proposed in this report to simulate earthquakes is general enough
to generate a wide range of signals, yet the formulation still complies with most of
the important features common to seismic records. This is useful to test the effects

of processing methods on a large number of different accelerograms.
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Also, to study the effect of the processing routine on each individual harmonic
of the carthquake, a signal is created which contains a modulated harmonic at
frequency 1 Hz, and which still has the required characteristics. This signal, SIN1C,
illustrated in Fig. 2.8, will be very useful in detecting how each harmonic is modified

or affected by the correction and integration method.

2.2.4 Simulation of Noise and Instrument Trigger

Trifunac & Lee [1973] studied the noise due to digitization of straight
lines and concluded that it could be modelled as Gaussian distributed white noise,
with zero mean and standard deviation of about a thousandth of a g. Thus, to
simulate the noise obtained after digitization of a true earthquake accelerogram,
Gaussian distributed white noise, with zero mean and standard deviation of a thou-
sandth of a ¢ is added to the synthetic accelerogram. The signal-to-noise ratio of the
record will depend on the size of the seismic event. As mentioned above, two earth-
quake sizes are considered here. If on the acceleration scale of Figs. 2.3 through
2.7, the value 5 represents 5 m/sec?, or approximately 50% g, then the signal is
said to represent that of a large earthquake, however if 5 represents 0.5 m/sec?, or
approximately 5% g, then the record is said to be that of a small earthquake. The
synthetic signal, modelled both as a small and large record, is contaminated with
the same noise sample which is scaled to the simulation size. Hence, there will be 10
times larger noise-to-signal in the accelerogram of a small event than that of a large
omne, as can be observed in the plots of the acceleration noise and in the tail-portion
of the acceleration time histories (Fig. 2.9). Also, the approximate noise-to-signal
ratio for this particular example is 0.4% for large event simulations, and 4% for

small event simulations.

Typical strong motion analog accelerographs will trigger at levels of a hun-
dredth of a g. To reproduce the effect of the transducer start-up time, the ana-
lytically generated accelerogram is truncated at the beginning of the record until
the trigger level is reached, so that for small events a longer portion of the record
will be missing than for a larger earthquake. Typically results from the synthetic
records show that instruments are triggered for large events at the very first data

point, whereas for small events over 10 points may go by unrecorded. Hence, it can
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be assumed that for large events, the instruments are modelled to trigger at the

first arrival of the P waves,

The type and amount of recording and digitization errors suggested above apply
primarily to records obtained from analog accelerographs. Synthetic accelerograms
can also be corrupted to simulate errors commonly found in records obtained from
digital accelerographs. In this latter case however, data missing due to trigger
truncation does not apply because of the pre-event memory, and the amount of

quantization noise will depend on the digitization precision.

These analytical records, in which noise is added and the first few data points
are truncated, will be used to study how well the processing methods remove noise
and estimate initial conditions. Since the noise-to-signal ratio and the truncation
are larger in the small level earthquakes, it is expected that they will be harder to
correct and integrate accurately than larger level accelerograms. Thus, the small
analytic earthquakes will be very useful in determining the types of errors that are

induced by the processing routines.

It should be noted that the errors modelled above are those that are most
commonly found in earthquake accelerograms. Other sources of errors that may
occur, such as loosening of the instrument housing during the event, or instrument

malfunction are not considered here.

2.3 The Original Volume II Processing Routine

Before testing any earthquake accelerogram correction and integration tech-
nique, it is very important to understand how the processing changes the signal and
at which steps errors might be introduced. In the following, the original Volume
II routine developed at Caltech by Trifunac & Lee [1973] is used as an example of
how processing methods can be tested with the use of the synthetic accelerograms
developed in Sec. 2.2. This processing method was chosen because it has been the
most extensively used and studied, and also because its computer code was readily
available, but the methodology applied hereafter can be used on any other kind of

digital processing and correction method.
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Some of the sources of the Volume II processing errors have already been
reported in several papers [Fletcher et al., 1980; Converse et al., 1984; Joyner &
Boore, 1988; and others] and improvements have already been proposed to reduce
the level of these errors. However, the purpose of the following chapter is to show
how it is theoretically possible, but tedious, to investigate the errors in each process-
ing step by an equivalent mathematical formulation, and how, on the other hand,
these same processing-induced errors can be identified by simple visual inspection
through the use of the synthetic accelograms, using only a limited knowledge of
digital signal processing techniques. The artificial record testing method has the
added advantage that it can also be used to study how the correction routine han-
dles uncertainties such as trigger truncation and digitization noise, which cannot

be described by a deterministic equation.

The original Caltech processing routine is separated into four different parts.
The first one, refered to as Volume I, performs the interpolation to equal time steps
and the instrument calibration of the raw, or uncorrected, acceleration data as
digitized from the photographic film. In Volume II the raw data is first instrument
corrected, and then filtered and integrated, to produce the corrected acceleration,
velocity and displacement. This is the section of the Caltech routine that is studied
in depth within this chapter. The response spectra and the Fourier spectra are
computed in Volume III and Volume IV, respectively. All the operations within the

processing program are performed in the time domain.

Volume II, the part of the original Caltech processing routine which performs
the high-pass filtering and integration of the raw acceleration, is schematically rep-
resented in Fig. 2.10 [Hudson, 1979]. Each of the steps are numbered. It is assumed
that the data has already been digitized, interpolated at 0.02 sec intervals, instru-
ment corrected, and that the high frequencies have been filtered out. Each step is

explained in the following sections.

2.3.1 Linear Trend Removal

In step 1, the acceleration, a(t), is least square fitted to a straight line
to remove the mean and any linear trend that might be in the signal. The linearly

corrected acceleration ay(t) is then integrated using the trapezoidal rule to obtain
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»
the velocity vy (t), assuming zero initial conditions. The velocity vy (¢) is in turn least
square fitted to a straight line in step 3. This will impose the final displacement to
be zero, if the initial displacement is also zero. Thus, this step makes it impossible
to obtain any final offset in the displacement record. The linear velocity corrective
term aq, is then added in step 4 to the linearly corrected acceleration ay(t) to yield

a new acceleration signal ax(t).

2.3.2 Low-Pass Running-Mean Filter and Decimation

The baseline-corrected acceleration data, as(t), is then low-pass filtered
in the time domain using convolution, which implies that the data must be extended
both at the beginning and at the end of the record by the width of the filter window,
as is done in step 5. To reduce the computational effort, Volume II decimates the
data in step 7 by saving every tenth point, so that the new time increment is
increased from 0.02 sec to 0.2 sec, and the Nyquist frequency is thus reduced from
25 Hz to 2.5 Hz. Because of the change in the Nyquist frequency, decimation of
the data creates aliasing, and all the frequencies in the signal between 2.5 Hz and
25 Hz are wrapped around, and appear as frequencies between 0 Hz and 2.5 Hz,
thus changing the low-frequency content of the signal. To minimize the aliasing
effect of the decimation, the data must first be low-pass filtered to remove any
frequencies beyond 2.5 Hz. In Volume II this is done in step 6 with an equal-
weight running-mean filter hy(t) of width 7\, equal to 0.4 sec which has the transfer
function Hy(f) illustrated in Fig. 2.11. Up to 0.1 Hz this filter has an amplitude
equal approximately to 1, leaving the signal unaltered in that range, but it decreases
in amplitude between 0.1 Hz and 2.5 Hz, thus changing the low-frequency content
of the record. Also, it does not remove all the frequencies beyond 2.5 Hz, so that
some aliasing still occurs when the data is decimated. It should be noted that the
remaining frequency content between 2.5 Hz and 5 Hz, 7.5 Hz and 10 Hz, and so

on, will have a 180° phase shift relative to the unfiltered data.

2.3.3 Low-Pass Ormsby Filter

To high-pass filter the accelerogram, the Volume II processing routine
first subjects the data to a low-pass filter, and then substracts the long-period

components of the earthquake record from the unfiltered data. The ideal low-pass
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filter is the boxcar filter illustrated as a dashed line in Fig. 2.12.b. It should remove
from the data all frequencies beyond a specified cut-off value f.. In the time domain,

this nonrecursive filter is defined by:

“+o0
Yo = Z hkxn—k 3 (2'3~1)

k=—o0

where z; and y; are, respectively, the unfiltered and filtered data array, and h; are
the discrete symmetric filter weights (Fig. 2.12.a). Equivalently, the boxcar function

is described exactly in the frequency domain by the discrete infinite Fourier series:

H(f) = +f hy exp (ika) , (2.3.2)

where fn is the Nyquist frequency of the digitized signal. Because of numerical
limitations however, this filter cannot be represented as an infinite sum in the
time domain, and hence the series must be truncated and the discontinuity of the
transfer function at the cut-off frequency cannot be captured properly. The failure
of the truncated series to converge at the discontinuity produces a ringing effect
both before and after the cut-off frequency. This effect is also known as the Gibbs
phenomenon, and is illustrated in Fig. 2.12.b. Increasing the number of weights in
the filter will decrease the width of the ringing in the transfer function, however
the amplitude of the error does not decrease by the same proportions. Hence, as
the number of terms in the series, given by Eq. 2.3.2, goes to infinity, the Gibbs

phenomenon appears as a sharp overshoot above and below the discontinuity.

One way to reduce the error due to the Gibbs phenomenon is to decrease the
order of the discontinuity at the cut-off frequency. One such filter is the Ormsby
filter, which is used in the Volume II processing routine to indirectly remove low-
frequency errors from the data. The low-pass Ormsby filter transfer function, Ha(f),
has a linear ramp between its roll-off and cut-off frequencies, f, and f,, as illustrated
in Fig. 2.13.a. As is the case for the ideal filter, the Ormsby filter is a nonrecursive

filter, and it is given in its ideal form by:

Yn = Z hokTn—k 5 (2.3.3)
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where hoy are the discrete symmetric filter weights defined as:

cos(2n fokAt) — cos(27 frkAt)
272k2 At? (w, — w,)

how = h_o = : (2.3.4)

The equivalent transfer function for the ideal Ormsby filter with an infinite number
of weights is illustrated in Fig. 2.13.a. However, because of numerical limitations,
only a finite number of filter weights can be used to define the Ormsby filter in the
time domain. Thus, the digital filter will exhibit the Gibbs phenomenon both before
and after the discontinuity (Fig. 2.13.a). For this type of filter the overshoot or ripple
error 1s not only a function of the number of weights, M, but also of the steepness of
the slope between the cut-off and roll-off frequencies. As the slope becomes steeper,
the discontinuities at f, and f. become sharper, and the amplitudes of the Gibbs
overshoot increase. Ormsby suggests that the upper-bound error in the digital filter

transfer function is [Trifunac, 1970]:

(=]

~0.012
MM

€ (2.3.5)

where the size of the transition region, represented by constant A,, is given by:

A = (f, — f.)At. (2.3.6)

The Volume II method chooses the number of weights M to be equal to:

1
(fr - fc)At )

Hence, whatever the order of decimation, or the roll-off to cut-off frequency interval,

M=)1= (2.3.7)

the program chooses the number of weights such that the error in the discontinuity
is constant and bounded above by 1.2%. Therefore, for the same number of filter
weights the amount of expected error remains less than that of the boxcar filter
mentioned previously. As the number of Ormsby filter weights are increased, the
errors are concentrated over a narrower frequency range, but this also requires more
computation time for the convolution. This is why the data is decimated before
it is filtered, so that larger time steps At can be used. Nevertheless, the Ormsby
filter remains appropriate for the Volume II earthquake processing method since

it does not change the phase of the signal. This is a property of all nonrecursive
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symmetric filters. To remove long-period errors due to uncertainties in the velocity
and displacement initial values, these integrated time histories must also be filtered,
and it is important that the phase difference between the acceleration, velocity and

displacement be respected.

2.3.4 Interpolation

Once the acceleration is low-pass filtered as part of the high-pass filter-
ing steps 5 through 10 (Fig. 2.10), it is interpolated back to the original time interval
(At =0.02 sec), from the decimated time interval (AT = 0.2 sec). Hence, the order
of the decimation p is 10, with AT = pAt, and M = p N, where m =0,1,...,M
is the index of the data points for the record interpolated at At = 0.02 sec, and
n=0,1,..., N is the index for the decimated signal at AT = 0.2 sec. The linearly
interpolated data, y,,, can be reconstructed from the decimated data, z,,, using the
following equation:

Yo = Tn + ?—’%:ﬁ K, (2.3.8)

where K is an integer which takes values between 0 and (p — 1), and relates the
indices m and n such that:

m=np+ K . (2.3.9)

For discrete band-limited waveforms and for even values of p, the transfer function

of this interpolation filter can be shown to be expressed by:

1 iy 2Kk
Hsy, = Ha(wk) = - p+ Z 2(p — K) cos ( 7;\4 )} . (2.3.10)
K=1

This tranfer function is illustrated in Fig. 2.14 for order of decimation p equal to
10. This filter unfolds the decimated signal over p times its Nyquist frequency with

decreasing amplitudes, thus creating spurious frequency components into the signal.

2.3.5 Numerical Example of Low-Pass Filter Errors

In effect the original acceleration signal has been low-pass filtered four
times, once through the running-mean filter in step 6, once through the decimation
in step 7, once through the Ormsby filter in step 8, and finally once through the

interpolation in step 9. Each of these steps changes the low-frequency content of the
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data, and in extreme cases can alter it to a point where it is considerably different

from the original input signal.

The changes in the input signal as it is processed by each of these steps can be
worked out analytically, As an illustration of this, consider a signal composed of 4
harmonics, at 0.05 Hz and 0.1 Hz with amplitude 0.1, and at 5.05 Hz and 5.10 Hz
with amplitude 10.0. The time domain equivalent of this signal is composed of 4
pure sine functions with no decay term, and thus cannot be compared directly to an
earthquake signal. However, it can still be used as a first approximation to locate
the problems in the processing method. The input is assumed to be interpolated
at a 0.02 sec interval, over a 20 sec time span. The running-mean filter has a time
window of width T, equal to 0.4 sec. The Ormsby low-pass filter uses 250 weights,
has a cut-off frequency of 0.05 Hz and a roll-off frequency of 0.1 Hz. The decimation
order p is equal to 10. These correspond to the typical values used when processing
earthquake data with the Volume II routine. The numerical results are summarized
in Table 2.1.

The running-mean filter has little effect on the long-period end of the spectrum,
yet it reduces the amplitudes of the higher frequencies by one to two orders of
magnitude. Ideally, the magnitudes of these high-frequency components, at 5.05 Hz
and 5.10 Hgz, should have been zero, but after application of the running-mean filter

are now comparable in size to the 0.1 Hz and 0.05 Hz harmonics.

In the next step, because of aliasing due to decimation, the 5.05 Hz component
will appear to have a frequency of 0.05 Hz, and the 5.1 Hz harmonic will wrap
around as a 0.1 Hz signal, since the Nyquist frequency has gone down from 25 Hz
to 2.5 Hz. At this point of the processing, which corresponds to step 7 of the Volume
IT routine, both high-frequency components have disappeared from the signal, but
the low-frequency harmonic 0.05 Hz has doubled in amplitude, whereas the 0.1 Hz

harmonic has nearly tripled.

These two components are now used as input to the Ormsby low-pass filter.
It is assumed that because of the Gibbs phenomenon, the amplitude error at the
cut-off frequency, 0.05 Hz, and at the roll-off frequency, 0.1 Hz, are about 1.2%

of the input (this evaluation of the error percentage comes from Eq. 2.3.5, and
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from numerical tests performed on the filter). Thus, after step 8, the signal is now
composed of a 0.05 Hz harmonic with twice the amplitude of the original one, and
a 0.1 Hz component for which the amplitude is reduced by two orders of magnitude
but with reverse sign, meaning that this component is now 180° out-of-phase with

the original input.

Finally in step 9, the data is interpolated back to its original time interval. It
has been shown above, that in the frequency domain the harmonics must be “un-
wrapped” from the 2.5 Hz, to the 25 Hz Nyquist frequency, by applying the transfer
function given in Eq. 2.3.10. Numerically, the 0.05 Hz component is reproduced
into 4.95 Hz, 5.05 Hz, 9.95 Hz,... harmonics, and the 0.1 Hz component is period-
ically extended into 4.9 Hz, 5.1 Hz, 9.9 Hz,... harmonics, as shown in Table 2.1.
Applying the interpolation transfer function does not have much effect on the low-
frequency components, however it generates noise at the aliased frequencies which
did not exist in the original input signal. In this particular example, the aliased
frequencies were close to the zeroes of the interpolation transfer function, which for
a time interval of 0.2 sec are located at 5 Hz, 10 Hz, 15 Hz, 20 Hz and 25 Hz. The
noise level would have been much higher had the aliased frequencies coincided with

the maxima of the function.

Thus, the final low-passed signal no longer has much in common with the
input acceleration data, since the amplitude of the 0.05 Hz harmonic has doubled,
the amplitude of the 0.1 Hz component is reduced to 3.5% of its original value, but
with a 180° phase shift, and the new low-passed data now contains higher frequency

noise generated by the interpolation.

2.3.6 High-Pass Ormsby Filter

After the interpolation back to the original time interval is performed,
the data is high-pass filtered by subtracting out the low-frequency content obtained
in step 9, from the unfiltered signal in step 4. Using the low-pass Ormsby filter
and substraction to get a high-passed acceleration, is equivalent to using a filter for
which the transfer function is equal to (1 — Hz(f)), as is illustrated in Fig. 2.13.b.

Because of the Gibbs phenomenon, the amplitude at the roll-off frequency f, is
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increased by 1.2% with respect to the original input data. Hence, this filter ampli-
fies the content of the record at that frequency, in the same way as the low-pass
Ormsby filter described previously. Thus conceivably, the Volume II processing
method may disproportionatly amplify a low-frequency component within the sig-
nal, which, after applying step 10 and obtaining the “high-passed” acceleration,

could be misinterpreted as a true phenomenon at the recording site.

Returning to the example in Table 2.2, the 0.05 Hz component, which corre-
sponds to the cut-off frequency of the Ormsby filter, is still present in the data but
with a small amplitude and a 180° phase shift. The amplitude of the signal at the
low-pass Ormsby filter roll-off frequency of 0.1 Hz, has increased by 3.5%. How-
ever the higher frequencies remain almost unchanged except for the aliased noise
introduced by the interpolation step. The errors in the low-frequency content will
become even more important when the acceleration data is integrated to obtain the

velocity and displacement.

2.3.7 Velocity and Displacement Corrections

After integration of the high-passed acceleration obtained in step 10,
the velocity may no longer have zero mean. To avoid the velocity from drifting off,
the process applied in steps 1 through 3 is used a second time in steps 10 through
13, which will force the integrated displacement to have zero final displacement,
since zero initial conditions are assumed. Again this step makes it impossible to

detect any final offset that may have occured after the earthquake.

In step 11 the acceleration signal is integrated using the trapezoidal rule, which
can be considered as the convolution with a digital filter defined by the finite-impulse

response equation:

At
Yn = Y-t + o (Zamt + 2n) - (2.3.11)

In the frequency domain, this digital filter has transfer function, Hy:
ﬂ
|Hyp| = —2—. (2.3.12)

(%)



- 28 ~

The exact integration transfer function, H, is:
At
|Hot| = —Wg’:— : (2.3.13)
(%)

Comparison of Egs. 2.3.12 and 2.3.13 shows that the trapezoidal rule integrates
data digitized at 0.02 sec accurately to about 10 Hz, after that the error grows
rapidly up to the Nyquist frequency. However, the high-frequency errors introduced
by the trapezoidal rule integration scheme into the velocity and displacement output
signals remain small compared to those due to any pre-existing low-frequency error
in the acceleration. Indeed, after exact integration, low-frequency errors in the
acceleration are increased as w™?! in the velocity, and as w™2 in the displacement.
To decrease the effect of long-period errors after integration of the acceleration -
which errors it must be noted are either due to the digitization process or added
in by the “high-pass” filtering steps of the processing routine - the velocity is also
high-pass filtered using the equivalent low-pass Ormsby filter in steps 14 and 17.
As was the case for the acceleration in step 8, this filter spuriously enhances the

component of the roll-off frequency yet another time.

To make the velocity signal exactly obtainable by integration of the accelera-
tion, the low-frequency error removed from the velocity is also removed from the
acceleration. Even though differentiation reduces the effect of long-period com-
ponents, step 15 will still add more low-frequency error from the Ormsby filtered
velocity into the acceleration signal. Continuing the example of Table 2.1, the final
“corrected” acceleration signal, as would be obtained in step 16, has a 0.1 Hz com-
ponent whose amplitude is 4.8% higher than expected. Because the low-frequency
errors of the velocity are also removed from the acceleration in steps 14 and 15 this
signal has a very small, but negative, amplitude at the 0.05 Hz component. Hence,
the high-passed acceleration still contains low-frequency information with negative

phase, and high-frequency noise has been introduced by the process.

The amplitudes for each of the harmonics for both the exact and the filtered ve-
locity and displacement signals could also be worked out numerically. In the Volume

IT routine the displacements are obtained from the integration of the high-passed
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velocity, and are in turn also high-passed using the equivalent low-pass Ormsby fil-
ter with the same characteristics as for the acceleration and velocity filtering. Thus,
the error due to the high-pass Ormsby filter is entered twice into the processing of
the velocity data, and three times for the displacement data which also includes er-
ror due to double integration of the acceleration using the trapezoidal rule. Finally
the “corrected” velocity has approximately a +5% amplitude error compared to
the exact value for the 0.1 Hz harmonic, and the displacement has about a +5.8%

amplitude error at that frequency.

When using the Volume II routine, the velocity and displacement traces are
also decimated before being Ormsby low-pass filtered, as was the acceleration. After
the low-pass filter is applied, the integrated signals are also interpolated, which, as
in step 9, generates high-frequency noise at the aliased frequencies. This effect is
expected to be minimal for the velocity and displacement, since integration greatly
decreases the energy of the high-frequency components. However, this will have an
effect on the acceleration, since the velocity high-frequency noise is differentiated
in step 15, thus increasing the noise proportionally to the aliased frequency value
before being injected back into the acceleration data, in step 16. Hence, the Volume
II processing routine adds high-frequency noise in the acceleration at two different

steps.

2.3.8 Limitations of Analytical Testing Methods

Theoretically, missing data at the beginning and at the end of the ac-
celerogram changes the mean of the signal. The estimate of the initial values after
triggering depend on how this uncertain value of the mean is treated. In the case
of Volume II, it is impossible to estimate how well the routine evaluates the initial
conditions, since the mean of the signal is removed and altered in several steps, by
adding or subtracting out constants and low-frequency components of the data in
the acceleration, velocity and displacement signals. Thus the initial values, which
are estimated in an indirect way, depend more on the nature of the input accelero-
gram, and the amount of missing data, than on the processing method itself. The

only way to judge how well the Volume II routine evaluates the initial conditions is



- 30 -

to test it with data for which the initial conditions are known. This is one of the

applications of the synthetic accelerogram to test earthquake correction procedures.

The example worked out above illustrates how some errors introduced by the
Volume 1T processing method can be identified and measured. The example case was
a relatively simple one, with only four frequency components and no modulation,
yet the testing procedure was somewhat long and tedious, involving mathematical
derivations of the transfer functions, and careful bookkeeping of the changes occur-
ring at each of the frequencies. Such an analytical approach would become very
difficult to implement in practice for cases where many harmonics with exponential
decays are summed up to simulate earthquake motions. Also, the analytical testing
method is not suitable to study how well random noise {which does not have a
deterministic representation) is removed from the original signal, and how it affects
the integrated velocity and displacement, since, in those cases, errors due to the
modelled digitization noise and those induced by the processing routine become

indistinguishable.

The simplified transfer function testing approach described above is useful in
providing a better understanding of how the accelerogram processing routine works,
and where problems are to be expected. Thus, it should be used as a quick pre-
liminary step to a more detailed investigation of the processing method, in which
the synthetic fest signal used now contains most of the features expected in an

accelerogram, as will be done in the next section.

2.4 Analysis of the Original Volume II Method using Synthetic
Signals

2.4.1 Analysis Procedure

The synthetic accelerograms developed in Sec. 2.2 can also be used to
test problems expected to occur in processing and integration methods for either
analog or digital records. The methodology described below is intended to be gen-
eral enough to be applicable to a wide variety of processing methods. The original

Volume II routine is used as an example for testing procedures.

A processing method may be judged through two different criteria. The first

question is: how much distortion or error does the correction method add into
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the input signal and its integrals, when the continuous, time-limited, and complete
signal is quantized and sampled at A¢? This can be defined as a measure of the
“internal performance” of the method, and can be studied either analytically as
in Sec. 2.3, or numerically with the synthetic signals as described below. The
second question is: how well does the processing method correct the errors of the
input signal, which errors are often of an uncertain nature (i.e., digitization noise,
missing data, etc)? Or equivalently, how well does the processing algorithm extract
a continuous signal and its integrals from a sampled, noise-corrupted and truncated
version? This is a measure of the “correction effectiveness” of the method, and
it can only be studied by applying the processing method to signals containing
accelerogram-like features. It should be noted that, a prior:, there is no reason why a
method could not have poor correction effectiveness but good internal performance,

Or vice versa.

When synthetic signals are used, the answer to the first question (i.e., what is
the internal performance of the routine?) requires only a basic understanding of
how the processing method works, and where problems may be expected to occur,
as opposed to the analytical approach described in Sec. 2.3, which required lengthy
derivation of the equivalent transfer functions and careful numerical bookkeeping.
In the case of Volume II, as is shown in the flowchart Fig. 2.10, the processing can
be separated into two main subroutines. The first one, BAS (steps 1-10), performs
the linear correction, decimation and filtering for the acceleration. The second
one, HYPSVD (steps 11-20), performs the integration to obtain the velocity and
displacement, and also uses BAS for filtering and correction. Each of the functions
of the subroutine can be isolated and tested, either by altering the program to
monitor the signals before and after the step that is being studied, or by adjusting
the processing parameters to activate only one of the steps at a time. The second
alternative is easier to implement since it does not require an in-depth understanding

of the way the program is written.

The next step is to choose a set of reference values for the variables of the
processing method which are to be used for the correction of the synthetic signals.

These processing parameters are then altered one at a time, and the change in the
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output result is monitored. This part of the analysis identifies the errors added
into the original input signal after recording and digitization by the correction
scheme, and therefore evaluates the internal performance of the processing method.
Testing should be performed on a reference signal, that is, one of the analytically
generated accelerograms which has zero final displacement, no noise, and no trigger
truncation. The results of this part of the analysis are of the same type as those

arrived at analytically in Sec. 2.3.

In the case of the Volume Il method, the steps that are expected to create errors
within the processing routine are the decimation, interpolation, and integration
schemes, and the application of the running-mean and the Ormsby filters. The effect
of each of these steps on the signal can be studied independently. The parameter
describing the decimation and interpolation steps is the order p. When p is set
equal to one, the input signal is kept at its original time increment, and so there
is no decimation or interpolation error in the output signal. However, when p is
varied, and all other variables are kept at the reference values, the change in the
amount of error in the output result can be attributed to the decimation step. In
the same manner, the effect of the running-mean filter can be studied by varying the
width T, of the window, and that of the Ormsby filter by changing the number of
filter weights, and the values of the cut-off and roll-off frequencies. The errors due
to the repeated BAS subroutine corrections of the acceleration and the integrated
velocity and displacement, can be separated out, either by skipping BAS (steps 1-
10, Fig. 2.10) and using the “uncorrected” acceleration as input to HYPSVD(steps
11-20), or by bypassing BAS within the integration steps of HYPSVD.

It is advisable to first test the method with a simple synthetic “accelerogram,”
such as SIN1C (Fig. 2.8), which is composed of a modulated harmonic at 1 Hz, Any
change in the modulated 1 Hz component or any other existing components outside
of the modulation bandwidth obtained after “correction” must then be attributed
to one of the steps of the processing method. The errors imparted to each of the
steps can then be identified by the procedure described above. Narrow-band signals,
such as SIN1C, are useful in studying which of the steps of the processing routine

introduce errors, and by what amount. These types of signals are certainly the
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best to use in the study of the internal performance of the processing method, but
accelerogram-like data remains useful to observe how each type of error combines

in a multi-harmonic signal.

Signals which have all the features of a digitized accelerogram must be used to
answer the second question, that is, how does the processing method correct the
errors that exist within the input signal, or alternatively how correction-effective is
it? This is where the synthetic accelerogram with added noise to model digitization,
with missing data to simulate instrument trigger, and with or without any final
displacement offset, becomes particularly useful. The synthetic accelerogram is then
put through the processing routine. The correction is judged to be effective if it
significantly reduces the amount of noise, and estimates other parameters properly,
such as the initial conditions and the final displacement. Because the method in
which earthquake motions are modelled, as described in Sec. 2.2, is very flexible,
a multitude of signals can be created. The uncertain features of the accelerogram
can then be added separately to the original synthetic signal to study how well the

processing routine corrects for each source of error.

The testing of the internal performance and the correction effectiveness of the
processing routine is accomplished by comparing the “corrected” signal at the out-
put of the program, to its corresponding exact analytical representation. Hence, the
quantities of interest for the study are the errors between the processed and ana-
lytical acceleration, velocity, and displacement at each step. The Fourier transform
of these errors can also be used to identify the specific frequencies where errors are

introduced.

Both internal performance and correction effectiveness have been extensively
studied on many test cases. The results from only a few significant examples will

be presented below in Secs. 2.4.2 and 2.4.3.

2.4.2 Internal Performance of the Original Volume II Method

Only the two main sources of error induced by the original Volume II
processing method will be analyzed below. These are the aliasing introduced by

the decimation-interpolation process, and the effect of the Ormsby filter. The other
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errors such as those introduced by the trapezoidal integration rule, the repeated
removal of the mean in the signal, and digit truncation of the stored data will be

pointed out in some of the figures, but will not be analyzed in detail.

2.4.2.1 Aliasing

A preliminary analysis of the Volume II processing method would
show that aliased frequency components are introduced by the steps involving the
running-mean filter, the decimation and the interpolation (steps 5, 6, 7 and 9 in
Fig. 2.10). As mentioned earlier, each of these steps are described by different
parameters: the width 7}, the decimation step size, and the interpolation step size,
respectively. It is theoretically possible to study the effect on the output signal
of each of these parameters taken individually. However, in the original Volume
II routine, these three steps form a whole, and cannot be separated. That is,
the running-mean filter width is chosen as a function of the new Nyquist period
after decimation, which is itsell a function of the decimation step size. Then, the
interpolation step restores the decimated data back to its original time step. This
reduces the analysis of the aliasing effect to the variation of a single parameter: the

decimation step size.

To study the aliasing problem due to decimation, the synthetic signal SINIC
(Fig. 2.8), which is composed of a single modulated harmonic with frequency 1 Hz,
is subjected to the Volume II routine. The program normally sets the decimation
order to be 10 throughout the whole processing routine. However, it has been altered
to allow for specified decimation orders in the acceleration (variable NSKIPA), in
the velocity (variable NSKIPV}), and in the displacement (variable NSKIPD). Also,
the subroutine BAS, which performs the acceleration corrections in steps 1 through
10 {Fig. 2.10), can be bypassed in order to study the effect of the velocity and
displacement correction separately. When subroutine BAS of the program is not
used, the acceleration that is input at steps 11 and 13 is that of the exact synthetic

signal in which no correction has been made.

In the following figures, the titles AN, VN, DN refer to the Volume II-corrected
acceleration, velocity and displacement signals; ERA, ERV, ERD are the error be-

tween the exact and Volume Tl-corrected accelerations, velocities and displacements;
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FFT ERA, FFT ERV, FFT ERD refer to the plots of the fast Fourier transform of
the acceleration, velocity and displacement errors. These will help locate at which
frequencies the processing adds errors into the signal. Note that for each of the
following figures, the scales are altered as to permit the best observation of the
errors. In the figures, the captions also indicate how many Ormsby filter weights
are used, and what the cut-off frequency, f,, and roll-off frequency, f,, of the filter

are.

The effects of the decimation aliasing are shown in the four cases illustrated in
Figs. 2.15 through 2.18. Each figure represents the Volume I-corrected output (AN,
VN, DN), the error (ERA, ERV, ERD), and the frequency content of the error (FFT
ERA, FFT ERV, FFT ERD) for the acceleration, velocity and displacement signals
respectively. The Ormsby filter characteristics are kept constant for all four cases,
so that only the differences due to the decimation are observed. All the synthetic
records used in the study of Volume 1I are stored with a precision of six decimal
digits and at constant time increments of 0.02 sec, with the exception of Q1C which
is stored with a precision of three decimal points to duplicate accelerogram-like

conditions.

The reference test, Case 1, is that of SINIC subjected to the Volume II pro-
cessing method in its usual operating mode: the acceleration correction step, BAS,
is not bypassed and all three decimation orders are equal to 10. This increases the
time increment between two data points from 0.02 sec to 0.2 sec, or alternatively
decreases the Nyquist frequency from 25 Hz to 2.5 Hz, in all three of the quantities
- acceleration, velocity and displacement. Fig. 2.15, which represents plots of the
acceleration quantities AN, ERA, and FFT ERA, for Case 1, show that the error
ERA induced by the Volume IT routine is about a thousandth of the maximum ac-
celeration AN. Thus, it is well within the expected noise level of a real accelerogram.
However, SIN1C is only composed of ocne harmonic; in an earthquake-like signal the
acceleration is made up of many harmonics, at each of which errors are introduced
by the program, thus making the error level larger as will be seen later in Fig. 2.19,
when the effect of processing realistic synthetic seismic records is discussed. In the

FFT ERA plot (Fig. 2.15) the aliasing error due to the decimation really stands
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out. In this plot, the first peak is located at about 0.12 Hz, which coincides with the
roll-off frequency of the Ormsby filter, this effect will be discussed in Sec. 2.4.2.2.
The other peaks are at frequencies 1 Hz, 4 Hz, 6 Hz, 9 Hz, 11 Hz, 14 Hz, 16 Hz,
19 Hz, 21 Hz, and 24 Hz. These correspond to the original and aliased frequencies
of 1 Hz for a signal that has a 2.5 Hz Nyquist frequency, which is the case here
since NSKIPA is equal to 10. The errors introduced by the aliased 1 Hz frequency
is apparent in ERA (Fig. 2.15) where the error signal exhibits contributions from
higher frequencies. As has been studied in the example of Sec. 2.3, a dominant error
is located at the sigﬁal harmonic frequency, which is 1 Hz for SIN1C, and the error
at the corresponding aliased components decreases as the value of the frequency in-
creases. Also as expected, the corresponding error at the aliased frequencies in the
velocity, FF'T ERV, and in the displacement, FFT ERD, have almost disappeared.
The aliasing error in the acceleration is a mirror image of the signal AN, as seen in
the time domain ERA plot. This effect is still apparent in ERV, but has completely
disappeared in ERD. The main source of error in these integrated signals arises
from the low-pass Ormsby filter. The errors found in the velocity, ERV, are mainly
that of the Ormsby filter at 0.125 Hz which are twice as large as the decimation
error at 1 Hz. Also, the predominant error in the displacement signal, ERD, is by
far due to the Ormsby filter, which gives some insight as to how this filter can alter
the signal, and how it could become difficult to distinguish this type of error from

the signal itself.

In Case 2, illustrated in Fig. 2.16, no decimation is required for the velocity and
displacement corrections (NSKIPV = 1, NSKIPD = 1), however NSKIPA remains
equal to 10. The case shows what happens to the signals when decimation is only
applied to the acceleration, and no such error can be introduced by the velocity
or displacement correction back into the acceleration (step 15, Fig. 2.10). The
final corrected acceleration still displays proof of aliasing, but beyond 4 Hz the
frequency content of the error is negligible compared to the error at 1 Hz (ERA,
Fig. 2.16), which is almost two times greater than for the previous case (ERA,
Fig. 2.15). The error in the velocity (ERV, Fig. 2.16) and in the displacement
(ERD, Fig. 2.16) are again mainly due to the Ormsby filter, with some contribution

from the 1 Hz component which comes from the integration of the acceleration
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error. Also, the velocity signal in this case contains no directly aliased frequencies

(FFT ERV, Fig. 2.16) since no decimation is performed.

In Case 3, illustrated in Fig. 2.17 the acceleration used to produce the velocity
and the displacement is not corrected, since the BAS subroutine is bypassed (i.e.,
NSKIPA = 0), and the velocity and displacement are decimated with order 10 (i.e.,
NSKIPV = 10, NSKIPD = 10). This case can be viewed as the complement of Case
2 to Case 1, the reference test case. Even though the acceleration is not corrected
initially, some changes are made in that signal through the velocity correction terms
in step 15 (Fig. 2.10); thus the acceleration errors apparent in Fig. 2.17 come from
the velocity processing only. The two main errors are at 1 Hz and 4 Hz, with
almost no error due to the Ormsby filter at 0.125 Hz. In the ERA plot (Fig. 2.17),
the error has a step function appearance which can be attributed to quantization
error when the velocity corrective term is added into the acceleration. This step
is also responsible for the 1 Hz aliasing error, and could be investigated in more
detail. In Case 4 no decimation is used, but BAS is implemented {i.e., NSKIPA =1,
NSKIPV = 1, NSKIPD = 1) (Fig. 2.18). The aliasing error arising from decimation
has disappeared, and the dominant source of error in the processed and integrated
time histories are induced by the Ormsby filter. Thus, it can be concluded that the
predominant acceleration aliasing seen in Fig. 2.15 is produced by the decimation of
the acceleration and by the differentiation of the decimated velocity, which is added
into the acceleration trace in step 15 of the processing. Proof of this statement can

be further confirmed by studying other cases where the decimation steps are varied.

Studying the effect of aliasing on SIN1C, which is composed of only one modu-
lated harmonic, helps in better understanding and separating the errors observed in
an earthquake-like synthetic signal such as Q1C which is made up of a combination
of 200 frequencies between 0.05 Hz and 25 Hz. In Fig. 2.19, @1C is subjected to
the Volume II routine with the same parameters as SINIC in Case 1 (Fig. 2.15):
the decimation orders are set at 10 for all quantities, the acceleration is filtered in
BAS, and the Ormsby filter characteristics are the same. In Fig. 2.19, the ERA
plot of the acceleration for Q1C shows that the error is of the order the noise level

expected in accelerograms of large events (Fig. 2.9), and that most of it comes from
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the Ormsby filter roll-off frequency, with evidence of some high-frequency noise and
aliasing from the velocity decimation superimposed over it. In this case, the step-
like error at the end of the signal must be attributed to digit truncation of the stored
data. In the ERV plot (Fig. 2.19), the error is again mainly due to the Ormsby
filter, and represents about 5% of the velocity signal maximum amplitude. The
high-frequency velocity error which is superimposed on the long-period error is due
to the trapezoidal rule, as will be explained later on in this section. The long-period
error becomes very predominant in the displacement (25% of the maximum), since
integration diminishes the contribution of high-frequency components, and because
the Ormsby filter error is added into the signal at three different steps before the

displacement is obtained.

In the results for SINIC signal processing, the corrected acceleration, velocity
and displacement contain errors, but these are very small and the aliased frequencies
are well separated without having any influence on other existing harmonics. Thus
the overall shape of the new signals are practically unchanged from their original
form. However, when many harmonics are used to model the signal as in QIC, the
processing method, through the filtering and decimation steps, completely change
the content at each of the components which correspond to an aliased frequency,
thus altering the overall appearance of the “corrected” signal. Indeed, the differ-
ences between the exact integrated signals (Fig. 2.4) and the processed integrated
signals (Fig. 2.19) are apparent to the “naked eye.” In the velocity and displacement
signals, the long-period drift is clearly visible, the initial values have substantial er-
rors (they should be zero), and the peak values are slightly different. These same
remarks hold for a wide range of synthetic accelerograms tested on the original

Volume II processing method.

2.4.2.2 The Ormsby Filter

Comparison of various plots and cases shows that the main source
of the processing-induced error comes from the Ormsby low-pass filter. To help
identify more clearly the key sources of errors, preliminary analysis is performed of

the errors induced by the Ormsby filter on a narrow-banded signal such as SIN1C.,
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More complex earthquake-like signals can subsequently be used to investigate the

combined effect of filter errors on the accelerograms.

As discussed in Sec. 2.3, the largest source of error is induced by the rippling
of the Ormsby filter at the cut-off and roll-off frequencies, due to the Gibbs phe-
nomenon (i.e., the inability of a truncated Fourier series to represent a discontinuity
in the frequency domain). The nature and size of the rippling is controlled by the
order of the discontinuity and by the number of filter weights taken to compute the
time series. When applied to the Ormsby filter, this translates into a study of the
changes in the ripples due to variations in the roll-off to cut-off frequency interval,
and the number of weights used to describe the filter in the time domain. These
changes can be directly observed by plotting the transfer function of the filter as it
is actually implemented within Volume II. The following concern is then to inspect

what effect the changes in the ripples have on the output signal.

In the examples discussed previously, Cases 1 through 4 of SIN1C, the roll-off
and cut-off frequencies of the filter have been kept the same for all cases. The
number of weights were computed as a function of the difference between these two
frequencies and the order of decimation, and is meant to give a maximum overshoot
of the Ormsby filter due to the Gibbs phenomenon of 1.2% at the cut-off and roll-off
frequencies (Eq. 2.3.5). Thus, for f, = 0.105 Hz and f, = 0.125 Hz, the filter is
computed with 250 weights if the order of decimation p is equal to 10 (At = 0.2 sec),
or with 2500 weights if the p is equal to 1 (At = 0.02 sec). Comparison of the plots
FFT ERA for p = 10 (Fig. 2.15}, and for p = 1 (Fig. 2.18), shows that the error
in the acceleration that occurs at the filter roll-off frequency is approximately the
same. This proves that the way the number of weights is computed does keep the
ripple error within the same order of magnitude, when the number of filter weights

are modified to comply with the decimation step.

But why does the error show up at the roll-off frequency f, of the low-pass
Ormsby filter (Fig. 2.13)? There is further evidence of this behavior when SINIC
is tested for other values of the cut-off frequency. In the following two cases, Case 6,
fo = 0.23 Hz, and Case 8, f, = 0.15 Hz, the data is decimated with order p = 10, the
roll-off frequency f, is kept at 0.25 Hz, and the number of filter weights are estimated
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as to conserve a 1.2 % Gibbs’s phenomenon overshoot at the discontinuities of the
Ormsby filter. The respective Fourier transforms of the error in the output records,
FFT ERA, FFT ERV, and FFT ERD, are shown in Figs. 2.20 and 2.21. All the plots
consistently indicate a sharp peak at frequency 0.25 Hz, which coincides exactly with

the chosen roll-off frequency, regardless of the value of the cut-off frequency.

Insight into this observation can be gained by considering not just the transfer
function of the Ormsby filter, but that of the complete input-to-output relationship.
Indeed, as was described in Sec. 2.3, each time-domain operation of the Volume II
processing method can be represented by a transfer function. These steps are the
application of the running-mean filter, the decimation, the low-pass Ormsby filter,
the interpolation and the removal of this low-passed signal from the original input to
obtain a high-pass filtered record. In the frequency domain, this succession of steps
is analytically represented by the combined product of each of the corresponding
transfer functions. In particular, one must consider the product of the running-mean
filter transfer function H,(f) for T,, = 0.4 sec (Fig. 2.11), and that of the Ormsby
filter Ha(f), for f. = 0.23 Hz and f, = 0.25 Hz (Fig. 2.13.a). Fig. 2.22 shows H;(f),
as well as the blown-up views of the behavior of the resulting transfer function
H,y(f) * Ha(F) at the cut-off and roll-off frequencies. These figures illustrate the
transfer functions governing the output signals obtained in Case 6. The runnning-
mean filter transfer function (Fig. 2.11) decreases by about 1.5%, from 1 at d.c.,
to 0.985 at 0.25 Hz, and the amount of error induced by the Gibbs phenomenon
at fr and f, in the Ormsby filter is approximately 1.2%. When both filters are
multiplied, the resulting transfer function (Fig. 2.22) is always less than 1, except
at d.c.. In particular, the ripples at the cut-off frequency are always below 1, with
a maximum overshoot error close to 1, and after the roll-off frequency the ripples
oscillate about the zero axis and are either negative or positive, with a maximum
overshoot error of about -1.1%. When this resulting low-pass filter is tranformed
into a high-pass filter, by subtracting 1 from the product of the transfer functions
(Fig. 2.13.b), the amplitude at the cut-off frequency f. is nearly zero, hence no
error is introduced, but that at the roll-off frequency is now equal to 1.011, which
increases the contribution of the aliased frequencies by 1.1%. Similar conclusions

can be reached from the study of the transfer function for Case 8 (Fig. 2.23) for
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fo = 0.15 Hz with 50 filter weights. In Case 8, it can also be seen that the value of
the combined transfer function H; x H is slightly greater than 1 at f,. When the
high-pass filtering step is implemented (i.e., 1 — Hy * Hz), Volume II will generate
an error at f, with negative phase. Hence, in general the original Volume II routine
will spuriously increase the component at the roll-off frequency regardless of the
cut-off frequency f,, and, for low enough values of f,, components with negative
phase can be generated. The resulting errors in the output signal are a function of
the Gibbs overshoot and the value of the running-mean filter’s transfer function at

the roll-off and cut-off frequencies.

In Case 6 and 8 (Figs. 2.20 and 2.21) the interval between the roll-off and cut-
off frequencies have been increased from 0.02 Hz to 0.10 Hz, thus decreasing the
number of weights from 250 to 50, to maintain a maximum ripple overshoot of 1.2 %
in the Ormsby filter transfer function. However, these plots show that the errors in
the acceleration, velocity and displacement are decreased as the width of the ramp
is increased. The error in the acceleration, FFT ERA, at the roll-off frequency is
0.0038 when A f = 0.02 Hz (Case 6, Fig. 2.20), and .0017 when Af = 0.1 Hz (Case
8, Fig. 2.21).

The latter phenomenon can be partly explained by the fact the amplitude of
the transfer function for the running-mean filter H,(f) becomes closer to 1 as f,
becomes smaller. Comparison of the behavior of the combined transfer functions
H,(f)*Hs(f) near the cut-off and roll-off frequencies for each of the cases (Figs. 2.22
and 2.23) shows that the amplitude of the overshoots at f, and f, are reduced,
although the maximum errors in the Ormsby filter at both f, and f. are still of
the order of 1.2%. Also, the ripple interval of the Gibbs phenomenon at the roll-off
frequency increases in almost the same proportions as the number of filter weights
and the width of the filter ramp. For large transition bands, the ripples at the cut-off
frequency have virtually disappeared and have been replaced by a slowly increasing
ramp with a smooth transition at f, (Fig. 2.23). Although Eq. 2.3.7 appears to
provide an adequate estimate of the amplitude of the maximum overshoot error at

the discontinuity of the Ormsby filter H5(f), it does not reflect how spread out
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the rippling of the error is, what frequency range is affected by it, and what the
amplitude of the error of the combined filter Hy(f) * Ha(f) is.

Another source of error which has been studied is the repeated filtering of the
acceleration, velocity and displacement, to produce the “corrected” signals. It was
concluded that the errors in the velocity time history increase with the number of
times the Ormsby filter is implemented in the routine. Such a conclusion could
not be made for the displacement signals. It appeared that the main source of
error arises from the correction in the temporal means. As will be seen in Sec. 4.3,
forcing the unknown temporal mean of a truncated accelerogram to be zero creates
a discontinuity at the ends of the time histories. This appears as a S—irf‘—i-type error
in the spectrum, which is centered at d.c. This error in the d.c. of the spectrum

increases as the discontinuity becomes larger.

Using the narrow-banded signal SINIC has helped to pinpoint the sources of
errors within the processing method by comparing the spurious frequencies as a
function of the characteristics of the Ormsby filter. It is also possible to use a
synthetic signal such as Q8C (Fig. 2.7) to study the errors induced by the Ormsby
filter. Recall that this signal was generated by combining 200 harmonics between
0.4 Hz and 25.0 Hz. As an example, this synthetic accelerogram is processed with
Volume II, in its normal operating mode, for two diflerent locations of the low-pass
filter ramp. The output displacement results, as well as the error with the exact
analytical displacement signal, are illustrated in Fig. 2.24. In the first case, shown
on the left of the figure, the roll-off frequency of the Ormsby filter f,. = 0.125 Hz and
the cut-off frequency f. = 0.105 Hz. In the second case, shown on the right of of the
figure, f. = 0.18 Hz and f, = 0.20 Hz. Since the cut-off ramps, which are of equal
width, are located far below the smallest modulated harmonic present in Q8C at
0.4 Hz, there should be very little difference in the signal after processing. Hdwever,
as can be seen in Fig. 2.24, this is not the case. The error in the displacement varies
between 8% to 11% of the maximum, depending on the location of the cut-off ramp
and the amount of aliasing induced by the decimation steps at that location. In
both examples, the source of the error is clearly a sine-like function, with a period

in the range of the selected Ormsby filter transition band. This is also a good
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illustration of how a spurious harmonic can be added without altering the “look” of
a signal, and how it might result in misleading conclusions. In the example on the
left of Fig. 2.24, it is rather obvious that the behavior at the end of the record is not
physically possible, and that it must be due to some error induced by the processing
method. But in the example on the right, the displacement record decays properly,
even though the filter added an erroneous component at the roll-off frequency with
an amplitude equivalent to about 10% of the maximum. An engineer, not familiar
with processing-induced errors in the accelerations, might be tempted to conclude
that this strong component may be due to the response of a structure or of the

underlying soil at resonance.

Separating the true harmonic composition of a record from the error added in
by the Ormsby filter becomes even more difficult when the cut-off ramp coincides
with frequencies existing within the signal. Synthetic record Q1C, represented in
Fig. 2.4, is used to illustrate this case. @1C is composed of 200 harmonic compo-
nents between 0.05 Hz and 25 Hz. It is subjected to the original Volume II routine, in
its normal operating mode. The Ormsby filter roll-off frequency is equal to 0.125 Hz,
and the ramp is 0.02 Hz wide for the high-pass filtering. The results, presented in
Fig. 2.19, show the output acceleration, velocity and displacement, as well as the
error with the corresponding exact analytical signals. The error in the processed
acceleration represents less than 0.5% of the maximum and is mainly composed of
a combination of the filter error and digital storage truncation error. Most of the
synthetic signals processed with Volume II showed that the method-induced errors
in the acceleration were comparable or below the normal noise level found in real
analog accelerograms. Hence, the corrected accelerations obtained with the original

version of Volume II can be used with confidence.

This is not always the case with the processed velocity and displacement. The
difference between the processed and the exact signals are clearly visible, and the
error plots for the velocity and the displacement confirm that the difference is a sine-
like function that has a period which coincides with the Ormsby filter transition
band. In real accelerograms, the processed signal could be misinterpreted as having

a predominant resonant frequency in that range.
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The values of the peak velocity and displacement of the “corrected” signal are
inaccurate. This results from the uncertain manner in which the processing errors
and the uncorrected accelerogram combine, and depends on the frequency content
of the seismic event. For instance in Fig. 2.19, the error in the acceleration of
Q1C represents about 0.5% of the maximum, the error in the velocity about 5%,
and in the displacement about 25%. These numbers were more or less consistent
for a large number of tested cases with signals that did not simulate digitizing
noise, trigger truncation or expected final offsets in the displacements. The latter
sources of uncertainties are expected to increase the errors in the final oﬁtput, as
will be shown when the processing method is tested for its correction effectiveness in
Sec. 2.4.3. Hence, as has been speculated previously, the amount of processing error
increases as the signal becomes more complex, but the amount of error that is added
into an input accelerogram by the processing method varies from one case to the
next, and cannot be exactly quantified. However, application of many analytically
generated accelerograms to the processing routine can help get a better feel for the

internal performance of the method.

The way the processing-induced errors contaminate the input signal may also
have significant implications on the choice of the high-pass filter cut-off frequency.
Earthquake engineers traditionally emphasize the contamination of accelerogram
by long-period noise. Their emphasis is motivated by the observations of many
processed velocity and displacement records which exhibit long-period drifts. They
rely on high-pass filters to remove these errors, and they choose the cut-off in such a
way that the long-period behavior is no longer apparent in the processed records. In
view of the previous discussions, this can compound the problem. Indeed, as shown,
the largest source of long-period error when using the original Volume I method
may not be the one contained in the recorded accelerogram, but that introduced
by the Ormsby filter at the cut-off and roll-off frequencies. In the process, actual
low-frequency information of significant scientific importance may also have been

removed.
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Another source of error that can be observed in the velocity (Fig. 2.19) is
high-frequency noise, which is strongest at the beginning of the signal, but de-
cays rapidly. This high-frequency error is almost nonexistent in the displacement
record, compared to the level of the filter-induced error. This processing noise is
produced by the trapezoidal integration rule, which cannot integrate properly at
high frequencies, as is shown in the comparison of its transfer function to the exact
integration (Eqgs. 2.3.12 and 2.3.13). Because of the initial arrival of the P waves
in the accelerogram, or because of the faster decay of the high-frequency harmonics
in the synthetic records, the acceleration usually exhibits high—freqﬁency motions
mostly at the beginning. Hence, after using the trapezoidal rule to integrate the
acceleration into the velocity, the error is expected to be greatest at the beginning
of the signal, as is shown in Fig. 2.19. Integration emphasizes the contribution of
the lower frequency components over the higher frequencies. Hence, integration
from velocity to displacement with the trapezoidal rule creates a lesser amount of

error, as shown in Fig. 2.19.

In summary, this section illustrated the versatility of the synthetic records in
identifying the errors induced by a processing method and in evaluating its inter-
nal performance. This approach can be used on any processing method, without
requiring expertise in digital signal processing, to pinpoint the exact source of the
error, as well as the added amount it contributes to the input signal. The synthetic
signals also prove to be quite useful in showing how the procesing errors and the
input signals could combine to produce errors in the output signal which could have
gone by unnoticed, had it not been for the comparison with the exact analytical
counterpart. Synthetic signals are next shown to be even more useful in evaluating

the correction effectiveness of a processing method.

2.4.3 Correction Effectiveness of the Original Volume II
- Method

A processing method is defined to have perfect correction effectiveness
if it is capable of reproducing the exact acceleration, velocity and displacement at
the recording site. This implies that the method can remove all the digitizing noise
from the raw data, identify the missing initial conditions due to instrument trigger,

and cope with the final displacements that may occur along a fault or within a
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damaged structure. Although this ideal can never be achieved, it is possible for one

processing method to correct better than others the errors in the input signal.

Some aspects of the correction effectiveness of a method have been tested by
monitoring both the acceleration and the displacement produced on a shaking table,
and comparing the measured displacement with the one obtained after process-
ing and integration of the acceleration [Trifunac et al., 1973; Khemici & Chiang,
1984]. These tests can only provide information on the processing method’s ca-
pacity to identify final displacements, and possibly initial conditions, but are not
flexible enough to measure and vary the noise level within the acceleration. This
manner of testing a processing method’s correction effectiveness is not only very
time-consuming, but it also requires an elaborate and expensive laboratory setup.
It is the purpose of this section to show how the correction effectiveness can be

tested very simply and thoroughly with the synthetic accelerograms.

In Sec. 2.3 an analytic expression was derived to describe an earthquake ac-
celerogram with or without final displacements, Methods to simulate the missing
initial points due to trigger and added digitizing noise, for various earthquake sizes,
were also presented. Each of these features: final displacement, initial truncation
of the data, and digitizing noise, can be incorporated one at a time into the ex-
act synthetic acceleration. These can model accelerogram records for either large
events (e.g., 0.5 g maximum acceleration) or small events (e.g., 0.05 g maximum
acceleration). Separating the sources of error in the input will help to evaluate the
correction effectiveness of the processing method in each of the cases. The correc-
tion effectiveness of the processing method can also be studied on the synthetic
records contaminated with combined sources of error. Also, because of the ease
with which the synthetic signals can be generated, the processing method can be

tested with many different accelerograms.

The following conclusions of the analysis are illustrated through the results
obtained for only one of the synthetic signals, Q1. In the previous section, this same
synthetic signal was used in its “simplest” form to study the internal performance
of the Volume II method: it contained no noise to simulate the digitization process,

it did not have missing initial points to model trigger truncation, and the final
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displacement was zero. This signal is refered to as @1C. To distinguish it from the
other forms of the signal the following notation convention is used. The added letter
“N” means that the signal has added noise, “T” means that the initial points have
been removed to simulate trigger effects, “U'” means that the final displacement is
nonzero, as opposed to “C” which corresponds to the case where there is no offset
in the final displacement. The levels at which these effects are incorporated into the
synthetic signal are denoted by letter “L” for a large earthquake and “S” for a small
earthquake. For example Q1UNTS is the synthetic signal @1, which has nonzero
final displacement, with added noise and initial trigger truncation to simulate small

seismic events.

Figs. 2.25 through 2.28 show the output acceleration, velocity and displace-
ment, as well as their respective errors based on the exact “uncontaminated” ana-
lytical values. All the signals are processed with the original Volume II method, in its
normal operating mode. Unless it is mentioned otherwise, the low-pass Ormsby fil-
ter that is used in the high-pass filtering stages has a cut-off frequency f, = 0.105 Hz
and a roll-off frequency f, = 0.125 Hz. The input signals used to illustrate this
study of the Volume II method are, in the same order as the figures, Q1U, Q1CNL,
QICNS, QIUNTS. The conclusions obtained from each of these tests are described

below.

2.4.3.1 Effects of Final Displacement Offsets

The way Volume II processes a record, which exhibits a final dis-
placement offset, is illustrated by the processing of synthetic signal @Q1U (Fig. 2.25);
the exact analytical data is shown in Fig. 2.3. As expected, because of the mul-
tiple linear correction steps within Volume II, the final offset cannot be recovered.
Comparisons with the processing results of Q1C (Fig. 2.19), also show that the two
signals produce very similar output records, providing no clue as to the possibility
of a final offset. This could have been predicted since the only difference between
a signal that has an oflset in the displacement and one that does not, lies in the
difference in the mean of the velocity. It is a nonzero mean in the velocity that
produces a final offset in the displacement, when the initial value is equal to zero.

Hence, removing the mean in the velocity, as is done in Volume II, regardless of
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whether a final offset is expected or not, should indeed produce approximately the
same displacement after integration. Consequently, this processing method cannot
be used to study possible final displacement offsets, such as would be expected for

motions recorded along a fault or within a damaged structure.

The inability of Volume II to cope with permanent offsets can create other very
large errors within the displacement signals. Comparison of the exact displacement
Q1U (Fig. 2.3), and its processed and integrated counterpart (Fig. 2.25), shows how
much the processing has altered the signal. The most noticeable error occurs at the
maximum of the record, which is decreased from its true value of 0.35, down to
0.16. This is an error of over 90% at the peak. This is a particularly good example
of how a processing method can significantly alter a signal to such an extent that

it is no longer even an approximate representation of the actual motions.

The large error in the displacement, due to the method’s inability to recover
permanent offsets, also produces additional errors in the processed acceleration and
velocity. This is due to the steps within Volume II which adjust the velocity by a
constant obtained from the least squares fit of the displacement, and subsequently
to the equivalent steps which correct the acceleration from the velocity, as shown
steps 11, 12 and 13 of Fig. 2.10. Compare the results obtained after processing of
QR1C (Fig. 2.19) and QIU (Fig. 2.25). The error in the velocity, which in both
cases is a maximum at the initial value, has more than tripled from Q1C to Q1U,
increasing from 0.020 which represents 5% of the peak value, to 0.070 which is 18%
of the peak. The high-frequency error at the beginning of the record, due to the
trapezoidal integration rule, is still noticeable in the error of @1U. In QIC, the
integration-induced error is of the same order as that resulting from the Ormsby
filter (i.e., 5%). However, in Q1U, the trapezoidal rule error in the velocity is still
5%, and contributes much less to the overall 18% error than does the long-i)eriod
oscillation about the Ormsby filter transition frequency band. Similarly, comparison
of the acceleration errors show that the level has more than doubled from Q1C to
Q1U. This trend is noticeable in other synthetic traces. This is due to the way
the signal must adjust itself to comply with the zero mean velocity requirement, in

combination with the added filter error due to the Gibbs phenomenon.



- 49 —

It must then be concluded that, as expected, the original Volume II method
is very ineffective in correcting signals which have a nonzero final offset in the
displacement, since these cannot be identified or reproduced. It has also been
shown that the error levels in the processed acceleration, velocity, and displacement
are greatly increased in recorded signals which yield final displacement offsets. This
could be particularly troublesome as it is often impossible to predict whether an
actual accelerogram should exhibit a final displacement offset or not. Also the
records from which an offset is expected are often those that are produced by very
large levels of shaking, and hence of greatest scientific interest, and yet they turn

out to be those in which the processing method generates large amount of error.

2.4.3.2 Effects of Digitizing Noise

To simulate the digitization process on an accelerogram, white
noise is added onto synthetic signal Q1C, as described in Sec. 2.2.4. Q1CNL models
the digitization noise level of a large event with peak acceleration of approximately
50% g, with a signal-to-noise ratio equal to 500. QICNS models the digitization
noise level of a small event with peak accelerations of about 5% g, with a signal-
to-noise ratio equal to 50. Hence, QICNS is the synthetic signal Q1C which is
contaminated by 10 times more noise than Q1CNL. The results of the processing
by the original Volume II method on the noise-free synthetic signal Q1C (Fig. 2.19),
and on the noise-contaminated signals Q1CNL (Fig. 2.26) and QICNS (Fig. 2.27)
are compared to study how the increasing noise levels alter the corrected accelera-

tion, velocity and displacement.

Adding noise in the acceleration changes its mean, and hence creates a linear
drift in the velocity and a parabolic drift in the displacement. The only feature
within Volume II which corrects this aspect of noise-induced errors are the repeated
linear-trend corrections, which remove the mean in the acceleration, velocity and
displacement. This, however, also makes it impossible to recover any possible final
offset in the displacement, and can produce significant errors in the output signals,
as was discussed in the previous section. Also, because laboratory tests have shown
that the digitization process can be modelled as white noise, the error level due

to this type of noise is equally shared on the average among all the frequencies of
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the signal’s spectrum. Volume II only removes the digitization noise outside the
band-pass filter’s roll-offs, but does not alter it, let alone decrease or remove it,

within the frequency range defined by the the band-pass.

A preliminary analysis has shown that the simulated digitization noise is still
present in the processed accelerations. To examine more thoroughly how much of
the noise is removed from the acceleration, and to identify the underlying errors, the
ERA plots shown in Figs. 2.26 to 2.28 represent the errors between the noisy input
acceleration and the noisy processed acceleration.. The ERV and ERD plots in those
figures represent the errors between the exact noise-free synthetic velocities and
displacements and the noise-contaminated processed and integrated counterparts.
Comparison of the plots of the corrected accelerations show that there is very little
perceptible difference between the processed results of Q1C (ERA, Fig. 2.19) and
Q1CNL (ERA, Fig. 2.26). Since the ERA plots in these two figures are almost
identical, it can be concluded that the simulated digitization noise affected the
noise-contaminated acceleration in an identical manner before and after processing.
The same remarks and conclusion apply for the noise-contaminated simulation of
a small event such as Q1CNS (ERA, Fig. 2.27). Hence, Volume II does not alter
the nature and the level noise present in the signal, and has very poor correction

effectiveness with regard to digitization noise.

For large event simulations, the noise level is of the order of 1072 (Fig. 2.9), and
is comparable in magnitude to the processing-induced errors. The underlying error
(i.e., without the digitization noise) in the acceleration after processing is greater
by 1% when noise is added to simulate conditions for large events, than when there
is no noise at all (ERA, Figs. 2.19 and 2.26). The errors in the velocity and the
displacement are also of that same order. In the processed velocity, the digitization
noise is still present, but it produces errors which are of the same magnitude as
the trapezoidal integration rule, and are smaller than the filter-induced error. The
same comments that were made on the processing errors due to Volume Il on Q1C
still hold for Q1CNL, namely that a dominant source of error is the Ormsby filter,
even after noise is added into the signal. This could have been predicted, since the

error in the acceleration due to the filter internal performance is of the same order
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as the noise level for large event simulations. Thus, for large events, the internal
performance error due to the processing is of the same order of magnitude as the

error due to digitization noise.

The additional digitization noise would be expected to produce linear and
parabolic drifts in the integrated records, due to the change in the mean accel-
eration. These differences are not apparent in QICNL (ERV and ERD, Fig. 2.26)
since Volume II performs multiple linear-trend corrections to remove the temporal
means of the acceleration, velocity and displacement, and the errors in the temporal
means are an order of magnitude lower than the filter-induced error. Therefore, the
processing method is correction effective in removing the errors in the mean due to
the noise for untruncated large events, but the errors due to the poor internal per-
formance of the filter overshadow the possible differences in the processing results

between the clean and noise-contaminated signals.

When the noise level is increased to simulate small events, as in QICNS (Fig.
2.27), the differences in the processing errors of a clean and a noise-contaminated
signal are more apparent. This is especially true in the plot of the processed and
filtered acceleration (AN), which still exhibits high-frequency noise throughout the
signal of the order of 1071, This is a clear indication that Volume II does not remove
digitization noise properly. For small event simulations, the errors in the corrected
acceleration due to the digitization noise are one order of magnitude larger than the
errors attributed to the processing method. Nevertheless, after processing of Q1CNS
(Fig. 2.27), the errors in the velocity and displacement are comparable in magnitude
to the errors found after processing of Q1C (Fig. 2.19). The largest difference
between digitization noise simulation of large and small accelerograms is noticeable
in the output error of the processed velocity. It appears to be a combination of
the filter-induced effects, and the high-frequency digitization noise, which for small
events significantly contributes to a change in the mean acceleration, and hence
alters the way the velocity must adjust itself to comply with the zero mean velocity
criteria imposed by the processing method. Because integration greatly reduces the
contribution of the higher frequencies, the error in the displacement is still mainly

that of the low-pass Ormsby filter used in the high-pass filtering stages. The errors
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due to the change in the mean acceleration by the digitization noise are properly

corrected for in this case since neither the velocity or the displacement drift away.

One of the most noticeable features of the study of noise effects on the Volume
IT method is that, regardless of the noise level, the processing produces very similar
accelerations, velocities and displacements, as can be seen in the comparisons of
Q1C, QICNL, Q1CNS. Hence, although the original Volume II method exhibits
poor internal performance, because of its use of the Ormsby filter, and is relatively
ineffective in removing the noise within the data, it is nevertheless consistent in

producing similar signals over a wide range of noise levels.

2.4.3.3 Effects of Initial Trigger Truncation

The original Volume II processing method does not explicitly try
to obtain the true value of the signal at the time of trigger. Indeed, the initial
value comes up indirectly as a result of the removal of the linear trend in the
acceleration, velocity and displacement, after the filtering and integration steps
have been performed. It may have been presumed that the initial values obtained
by the processing method are a close representation of the actual quantities. The

synthetic accelerograms are used to show that, in fact, this is not always the case.

There was no simulation of trigger effects in any of the previously studied cases
(i.e., Q1C, QICNL, Q1CNS and Q1U), and the true initial acceleration, velocity
and displacement are equal to zero for all of them. However, after processing with
Volume II, the results show a great disparity in the evaluation of the initial con-
ditions. For @Q1C (Fig. 2.19), the initial acceleration is estimated to be equal to
0.02, which is the largest error in the signal at 0.5% of the peak; the initial velocity
is -0.02, which is also the largest error in the record at 5% of the peak, and the
same holds for the initial displacement at 0.05, which is equivalent to 25% of the
peak. Thus, the relative error in the estimate of the initial data point is increased
by about one order of magnitude for each successive integration step within Vol-
ume II. The error in the initial acceleration is very small, the error in the initial
velocity is significant enough to be noticeable and could be easily misinterpreted
as an actual truncation effect, but the error in the initial displacement is too large

to be representative of any kind of earthquake-induced motion. Indeed, physically,
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the first arrival of the high-frequency waves at the time of trigger is not expected
to generate such large displacements. On the contrary, the displacements at the
beginning of the event should be close to zero, and they should pick up with the
arrival of the longer period waves. The error in the initial acceleration estimate
increases to accomodate the additional digitizing-induced error when noise is added
to the signal to simulate either a large or a small event, as is shown in the plotted
results of Q1CNL (Fig. 2.26) and of QICNS (Fig. 2.27). However, the initial esti-
mate of the velocity and the displacement do not change much when noise is added.
For Q1U, the relative error in the initial conditions change slighty because of the
improper handling of the final displacement offset. This causes the error in the
initial velocity to be greatly increased from 5% to 20% of the peak, even though the
errors in the initial acceleration and displacement do not vary much. The variations
in the estimate of the initial values can be attributed to changes in the temporal
means of the time histories induced by the digitization noise and the removal of the

final displacement offset.

The test cases show that the errors in the estimates of the initial conditions are
usually the largest errors to be found within the processed signals. However, there
is no definite pattern between the error of the initial estimate at the time of trigger,
and the amount of missing data. Comparison of the processing-induced errors
on many different synthetic accelerograms modelled for trigger truncation shows
that the estimate of the initial acceleration is fairly reliable (0.5% error relative
to the peak), the estimate of the initial velocity is often questionable (about 5%
of the peak), but the estimate of the initial displacement is very uncertain (up to
50% of the peak). Again, the errors in the estimate of the first data point after
trigger increases by about one order of magnitude for each integration step. This
significant increase in the relative amount of error is due to the combination of the
triple filtering and correction of the signal, and the increase in the long-period error

due to integration.

It is interesting to note that the error level of the untruncated synthetic signals,
with or without added noise modelled for small and large events, are approximately

the same. The study of the correction effectiveness of Volume IT with truncated
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synthetic signals also produced very similar output results for any amount of trigger
truncation. This implies that, as for the case of the noise-contaminated signals, the
processing method handles trigger truncation in a consistent manner regardless of
the extent of the missing data, and that it is the poor internal performance of the

high-pass filter steps that largely dominate the errors.

2.4.3.4 Effects of Combined Error Sources

Noise, truncation and final displacement offsets can also be com-
bined in synthetic signals, and processed with the original Volume II method. An
extensive study showed that regardless of the amount or nature of the input error,
and regardless of the true temporal mean value of the signal, Volume II will always
make the means of the acceleration, velocity and displacement zero. This in turn
implies that, for any type of input error added to a particular synthetic record, the
output signal will always be approximately the same, and the error in the output
signal will usually be of the same order of magnitude. Thus, it is not the level of
recording and digitization noise, but rather the poor internal performance of the

processing method that governs the amount of error measured in the output records.

The highest degree of combined input error is found in synthetic signals such
as QIUNTS, which model digitization noise, start-up truncation (11 initial data
points are dropped) and nonzero final displacement offsets for small events, Though
a small earthquake is physically not expected to generate significant final offsets in
the displacement, QIUNTS can be used as the more severe test case to study the
correction effectiveness of the processing method. In that respect, @Q1C is the most
favorable case to test the correction effectiveness of the processing method, since it

contains none of the recording and digitization-induced input errors.

The output acceleration, velocity and displacement obtained for Q1 UNTS with
Volume II, as well as the respective errors are shown in Fig. 2.28. Disregarding the
digitization error, the output error in the acceleration for QIUNTS is very similar
to the results obtained for Q1U, the corresponding synthetic signal which contains
no noise or no truncation (Fig. 2.3). The maximum acceleration error relative to
the peak is of the order of 0.5% in both cases. The main difference lies in the

digitization noise which is still apparent in the processed and corrected output
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acceleration of the noisy signal AN, indicating once again that Volume II is not
correction effective in removing noise within the usable frequency band of the filter,
as expected. There is still some evidence of digitization noise within the ocutput
velocity record VN, but the greatest share of the error comes from the long periods
induced by the overshoot at the Orsmby filter cut-off and roll-off frequencies, and by
the way the noise-corrupted velocity must comply to the zero mean criteria of the
Volume II processing routine. In this case of course, the true mean velocity is not
zero, since final displacement offsets are expected, which implies that the processing
method induces even more error when making the temporal mean velocity zero. This
explains why the relative error in the output velocity has gone up from about 5%
for Q1C, to about 20% for both Q1U and QIUNTS. Hence, the error due to the
non-identified final displacement offset seems to overshadow the errors that could

have been induced by the digitization and recording processes.

Once again, however, the output records of Q1UNTS produced by the Volume
IT processing method are very similar to the output records of any of the other
related signals generated by @I, regardless of the sources or sizes of the input
errors, for the same reasons that were explained before. In agreement with the
previously studied signals, the error in the initial estimates is disparate and follows
no specific trend. It is off by a factor of 50 in the acceleration, which represents
however an error of only 0.1% of the peak value. The initial velocity is off by about
a factor of 20, at a level comparable to 5% of the peak, and similarly the initial
displacement is off by a factor of 40 which represents about a 6% error relative to
the peak.

2.4.4 Concluding Remarks

In the study of the correction effectiveness of the processing method, it
has been shown that there is very little variation in the results of the output records
between @QIUNTS (Fig. 2.28), the worst scenario case, and @QI1C (Fig. 2.19), the
most favorable case. It was shown that the original Volume II processing method
is ineffective in removing the digitization noise within the acceleration, in estimat-
ing initial values at the time of trigger, especially in the displacement, and it is

completely incapable of recovering final displacement offsets, as may occur along a
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fault or within a damaged structure. However, because the major effect of each of
these sources of errors is to alter the mean of the signal, and because the processing
method repeatedly removes the d.c. of the acceleration, velocity and displacement,
the output signals will always be approximately the same regardless of the input
errors, or the true value of the mean of the signals. In that respect, Volume II can

be said to be consistent.

It was also shown that Volume II is insensitive to digitization noise and trun-
cation because it is the internal performance of the method which dominates the
error in the output signal. The error level is about 0.5% in the acceleration, 5% to
10% in the velocity and 25% or more in the displacement. When the true record is
one which should produce a nonzero final offset, the error in the processed velocity

may increase up to 20%, and may exceed 75% in the displacement.

In the case of the Volume Il method, it was concluded that the poor internal
performance is a result of the multiple use of the low-pass Ormsby filter used in
the high-pass filtering stages, and the decimation and the mean removal from the
acceleration, velocity and displacement. Also, Volume IT did not have good correc-
tion eflectiveness since it did not remove the digitization noise, nor did it properly
estimate the true value of the signals at the time of trigger or recover existing final
displacement offsets. Some of these sources of errors have been identified in the
past, as will be discussed further in the next section; however, the testing proce-
dure proposed in this chapter presents a thorough and systematic way to quantify
the amount of error induced by a correction method, as well as the amount of noise

removed from an accelerogram-like signal.

The purpose of Sec. 2.4 is to demonstrate the testing procedure rather than
showing the specific problems of the original Volume II method. The latter was used
because its computer code was readily available. It was widely distributed and used
for accelerogram processing in the seventies. We stress that some of the sources of
errors have been detected and corrected by various researchers in the 1980’s. In the
United States, at least, this version of the Volume II routine is no longer in use, and

has been replaced by various corrected versions. It must be noted nevertheless, that
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when it was first proposed in the early seventies, the original Volume II method was

by far the best accelerogram processing method available at the time.

2.5 Discussion of Other Processing Methods

The previous analyses have shown how the versatility of the synthetic signal
proved to be a valuable tool which permitted an in-depth study of the internal per-
formance and the correction effectiveness of the original Volume II method. Though
some of the conclusions that resulted from the study have already been published
by other researchers, the novelty of this approach lies in the systematic way any
source of error can be measured and identified. The methodology that was used to
study the original Volume IT method is general enough to be applied to any other of
the existing accelerogram processing methods, be it records from analog or digital

accelerographs.

In the last several years, many attempts have been made to improve what is
defined herein as the internal performance and correction effectiveness of the orig-
inal Volume II processing method. The aliasing error induced by the decimation
step has been identified by Fletcher, et al. [1980], and this step is no longer imple-
mented in most current processing methods. Because of the development of better
digitization techniques, accelerograms are now routinely discretized at 0.01 sec,
thus increasing the Nyquist frequency up to 50 Hz, and reducing the effects of high-
frequency aliasing. To limit the errors induced by the Ormsby filter, guidelines are
now used to choose the high-pass cut-off frequency and ramp; these are selected
on the basis of the low-frequency noise limitations of the instrument, the record
length, and the faulting duration [Basili & Brady, 1978; Shakal & Ragsdale, 1984].
Nonetheless, errors due to the Ormsby filter are still expected to contaminate the
processed accelerograms. The U.S. Geological Survey has substituted the nonre-
cursive Ormsby filter by the recursive Butterworth filter to decrease the amount
of error induced at the low-frequency cut-off [Converse, et al. 1984]. However, re-
cursive filters distort the phase of the original signal, and an extra correction step
is necessary to reestablish the proper phase of the accelerogram. Similarly, Shyam

Sunder & Connor [1982] have proposed a recursive elliptical band-pass filter, which
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will also induce some phase distortion. They also suggest the use of the Schuessler-
Ibler integration rule to decrease the errors induced by the trapezoidal integration
rule. Khemici & Chiang [1984] propose a frequency-domain approach in which in-
strument correction, integration, and filtering with the Ormsby filter is performed
in a single step. However, they assume that the temporal mean of the acceleration,
velocity and displacement are zero, thus making it impossible to recover any final
displacement offsets, and creating errors at and about d.c. Sunder & Connor [1982)
suggest that the integration of the acceleration in the time domain should be per-
formed under the assumptions that the initial velocity and displacement are zero;
this may also alter the temporal mean of the velocity and displacement if baseline
correction is done by a simple offset. Converse, et al. [1984] propose to correct the
error in the temporal mean of the acceleration by fitting a straight line through the
final portion of the velocity. This assumes that the data has a relatively high signal-
to-noise ratio, and that no sources of error other than a shift in the acceleration

baseline is responsible for the drift in the integrated velocity.

Although all the changes suggested above are expected to improve somewhat
the internal performance of the original Volume II processing method, these have
not been thoroughly tested on earthquake-like signals for their effectiveness in de-
creasing the recording and processing errors, and in reproducing the exact motions
of the event. Such an investigation can be easily accomplished by using the syn-
thetic accelerograms developed in Sec. 2.2, and the testing procedure described in
Sec. 2.4, on any of the aforementioned accelerogram processing methods, as was

done in this chapter for the original Volume II method.

It would appear from such investigations that an ideal filter and integration
scheme cannot be implemented in the time domain. Regardless of the amount of
sophistication of the processing method, the internal performance of time-domain
approaches will always be limited by the internal performance of the filters. These
limitations can be reduced for methods that perform the filtering and the integra-
tion in the frequency domain. Also, a frequency-domain approach should require

less computing time, since all of the correction steps can be performed through
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multiplication by a single transfer function incorporating instrument correction, fil-
tering and integration, instead of the multiple convolution operations required by
the time-domain approach. A frequency-domain accelerogram processing method

is proposed in Sec. 3.3.

Testing of the correction effectiveness of these processing methods would also
show that, because of the uncertainties involved in the recording and digitization
processes (i.e., missing data, added noise), it is impossible to retrieve the exact
signal from the measured accelerogram. In other words, a deterministic solution
for this problem does not exist; however, a most probable solution and its level
of reliability can be found by describing the errors statistically, as will be seen in
Ch. 3. Such a probabilistic approach to accelerogram processing would prevent
engineers from being mislead in their studies about the degree of accuracy of the

“corrected” records, particularly in the displacement histories.



Input Running-Mean Decimation Ormsby Periodic Interpolation High-Pagss
Freq, Signal Filter (H;) and Low-Pass (H;) Extension (r = 10) QOutput
Ampl. Tw = 0.4 sec Aliasing (0.05~-0.1 Hz) Low-Pass Output (step 10)
0.05 0.10 0.099934 0.19888 0.20127 0.20127 0.20127 —0.10127
0.10 0.10 0.099737 0.29530 —0.00354 —0.00354 —0.00353 0.10353
4.90 -— — - — —-0.00354 —1.5210°® 1.52 10°8
4.95 —_ —_ - —_ 0.20127 2.09 10~° ~2.09 10~°
5.05 10.0 0.098945 0 — 0.20127 2.01 1078 9.99998
5.10 10.0 0.195563 0 — ~0.00354 —1.41 10" 10.00000
9.90 — - —_ — —0.00354 —4.11 1077 4.11 10-¢
9.95 — — — — 0.20127 5.73 107© —-5.73 10~
10.05 — —_ —_ —_ 0.20127 5.63 10~¢ —5.63 10~¢
10.01 — — — — —0.00354 -3.97 1077 3.97 1077
14.90 —_ —_— — — —0.00354 —2.15 1077 2.15 107
14.95 — — — — 0.20127 3.0110°% —-3.01 107°
Table 2-1. Numerical analysis of the errors

in a simple signal due to the high-pass filtering process in Volume Il
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ACCELERATION
B(t) = > zx(t)
k=1

E,(t) = apte™ "%t cos(wit + Py)

VELOCITY
B(t) =Y ax(t)
k=1
k
:i:k(t) = /0 ﬁk(t)dt

|

DISPLACEMENT
z(t) = Y zx(t)
k-—-tl
za(t) = [ a4 (t)dt
0

Y

FOURIER AMPLITUDE SPECTRUM
n
Xw) =Y _Xi(w)
k=1

X (w) = /0 oo:"ck (t)e *widt

T

CORRECTIVE TERM (0 MEAN VEL.)
y(t) = £(t) + pte™** sinwot

i) = 4 (3(2))
o) = [ (e)d

Yie(w) = /‘;my‘k(t)e""‘”dt

Boundary Conditions

£,(0) = Zx(o0) =0

zx(0) =0

:r:k(oo) 75 0
X(0)=0
§(0) = g(ec) =0
9(0) = g(o0) =0
y(0) = y(o0) = 0

Figure 2.2. Process for generating analytic earthquake signals.
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Figure 2-21. Synthetic signal SIN1C processed with Volume II
(Fourier transform of the error).
Case 8: NSKIPA = 10, NSKIPV =10, NSKIPD = 10
fJe =015 Hz, f, =025 Hz, 50 filter weights.
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Figure 2-25. Synthetic signal Q1U processed with Volume II .
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Chapter 3

PROCESSING OF ACCELEROGRAMS
USING RELIABILITY BOUNDS

3.1 Motivation and Methodology

In view of the results obtained from the analyses of accelerogram filtering
and integration methods performed on synthetic records, it is the purpose of this
chapter to propose a novel, and possibly more appropriate, approach to processing

of seismic data.

As has been hinted by some of the new accelerogram processing methods, the
advent of faster computers now makes it possible to perform all the processing
and corrections in the frequency domain, without having to resort to convolution
with finite sums and decimation in the time domain which are two of the largest
sources of error in the Volume II method. In the frequency domain, the instrument
correction, integration and possible high-pass filtering steps, which involve lengthy
and separate convolution operations when a time domain procedure is adopted, can
be replaced by a single multiplication representing the combined transfer function of
each step. This also has the advantage of giving a much better internal performance,
although there still are errors involved in computing the Fourier transforms of the
accelerograms, as will be explained in more detail within this chapter. Moreover,
it is common practice in most accelerogram processing methods to compute and
plot the Fourier transform of the record. In standard processing methods this is
done in the section called Volume IV. Thus, since the Fourier transform of the
signal is to be computed anyway, there is not much more work involved in using a
frequency domain approach. Actually, it may even prove to be more time efficient
although it is necessary to obtain the inverse transform. Hence, in view of the
preceding comments, it appears that a frequency domain procedure for integrating

and correcting earthquake accelerograms is the better approach.
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It has been shown that high-pass filters are a major source of error within
the processed output records, because they alter certain frequency components by
changing the amplitude (i.e., the Gibbs phenomenon in nonrecursive filters) or by
changing the phase (i.e., recursive filters). So why are high-pass filters implemented?
Mostly to remove the linear drift in the velocity and the parabolic drift in the dis-
placement due to a false estimate of the mean acceleration, and to remove the
noise-contaminated long-period components of the acceleration which are substan-
tially increased after double integration. The analysis of the internal performance
of the original Volume II method has proved that the errors induced by the fil-
ters were often greater than those due to digitization noise and trigger truncation
of the original accelerogram. Moreover, these latter errors are still present in the
“corrected” output records, indicating that the filters cannot properly perform the
tasks they were intended to do. High-pass filters only partially remove the noise,
and delete low-frequency information which could be of scientific interest. It has
also been seen in Ch. 2 that the choice of the high-pass filter cut-off and roll-off
frequencies made significant changes in the processed signals, and that to date there
are no satisfactory physically-based criteria for the selection of these filter param-
eters. Since high-pass filters are a major source of internal processing error, and do
not contribute much to the overall correction effectiveness of the method, the new
processing procedure described within this chapter does not recommend the use of
any high-pass filter. However, they can be easily incorporated and implemented
within the program’s structure if filtering is wanted. Also, filters can be used that
do not change the phase or delete complete bands of the spectrum, and do not
require an arbitrary choice of the filter parameters. These are the optimal filters,
described in Ch. 4. If it is decided to use a filter to process the data, the procedure
should be performed only once, as opposed to the multiple filtering which occurs
within the Volume II routine for example. In effect, viewed from the perspective of
the frequency domain, and after the integration process is completed, the deriva-
tion of the velocity and the displacement have involved the square and the cube
respectively of the transfer function. As was seen in Ch. 2, multiple filtering of
records increases the internal performance error in the processed signal, without

significantly decreasing the error found in the input accelerogram.
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Most processing methods make the temporal mean of the accelerogram zero.
This is based on the fact that the mean of the total acceleration produced by an
earthquake is indeed zero, since the velocity must start and end at zero. The miss-
ing data and digitizing noise alter the true temporal mean however, and there is
no reason for this contaminated accelerogram to actually have zero mean. Thus,
the drifts in the velocity and displacement in most processing methods are in part
created by the method itself when it forces the accelerogram to have zero tempo-
ral mean. On the other hand, it is not possible to identify the exact mean of the
recorded signal because of the unknown missing data and the uncertain amount of
noise, Some methods also force zero mean both in the velocity and the displace-
ment, but this does not help to solve the problem since it may spuriously alter the
lower frequencies, which in turn may increase the need to implement a high-pass
filter. Systematically forcing the temporal mean in the velocity and displacement
to be zero also makes it impossible to retrieve possible final displacement offsets.
Although there may be some physical justification in forcing a zero temporal mean
acceleration, as well as a zero mean velocity in certain cases, there is none regarding
a zero mean displacement. Some exceptions in the velocity are for earthquakes that
produce small levels of shaking, or for far-field records, since they are not expected
to display final displacement offsets. In these cases, removing the temporal mean
from the velocity is justifiable if data truncation effects are not substantial. The
processing method proposed hereafter only forces the acceleration mean to be zero,
without altering that of the integrated velocity or displacement, except in certain
cases involving small seismic events and far-field records, and which are specified

by the user of the method.

In fact, because the original errors in the accelerogram (i.e., digitization noise
and start-up truncation) are uncertain, there is no deterministic solution to this
problem, contrary to what most processing methods seem to imply. However, it
is feasible to determine from laboratory experiments the range of possible values
these uncertain parameters can take, and assign a probability distribution to each
of them. Therefore, it appears to be more suitable to produce the most proba-

ble acceleration, velocity and displacement, as well as their respective intervals of
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confidence, computed on the assumption of probability distributions for the uncer-
tain parameters. Such an approach will make it possible to obtain accelerations,
velocities and displacements which are the most likely to have occured during the
seismic event based on the measured accelerogram and the most probable trigger

truncation and digitization noise levels.

In summary, this new approach to earthquake accelerogram processing proposes
to treat explicitly the uncertainty in the mean acceleration and in the recording and
digitization noise. The signal is then integrated twice, assuming probability distri-
butions for the initial velocity and displacement. The standard deviations of the
acceleration, velocity and displacement are computed separately as a function of the
digitization noise and the trigger level uncertainties, using the probability distribu-
tions assumed for the mean acceleration, initial velocity and initial displacement.
Finally, the procedure produces plots which represent the most probable value of the
processed signal, along with the corresponding standard deviations. In this chapter,
filters are not implemented to process the data. However, alternatives to traditional
high-pass filtering methods are discussed in detail in Ch. 4. In this chapter, it is also
assumed that the accelerogram that is being processed is the one obtained directly
from the transducer without instrument correction. This assumption is reasonable
since most transducers are calibrated for accelerations. For analog records digitized
at 0.02 sec and obtained from instruments which have a 25 Hz natural frequency
(i.e., SMA’s), or for analog and digital records digitized at 0.01 sec and obtained
from instruments which have a 50 Hz natural frequency (i.e., FBA’s), the errors at
the higher frequencies due to noninstrument correction are small and can be ne-
glected. Instrument correction can always be done as an initial step of the procedure

if necessary.

The acceleration mean-correction and integration, as well as the computation
of the standard deviation levels for the acceleration, velocity and displacement will
first be derived in the time domain (Sec. 3.2). This processing method is then tested
using the synthetic signal approach presented in Ch. 2. The equivalent formulation
of the processing method is then derived in the frequency domain (Sec. 3.3) and

is also tested for its correction effectiveness and internal performance. All of the
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following theoretical derivations apply equally well to analog and digital records.
Differences only arise in the value of certain parameters, as will be pointed out in

the next section.

3.2 Time Domain Formulation and Applications

3.2.1 Assumptions and Definitions

If Z,, is the quantized sampled instrument signal at time ¢,, = nAt (i.e.,
measured signal), §, is the true instrument signal at time ¢,, (i.e., true acceleration
at the site altered by the transfer function of the instrument), and é,, are the errors

introduced in measuring and digitizing the signal §,,, then:
In:gn‘{‘én, n=1,...,N, (31)

The €, arise from the quantization due to finite precision storage, from electrical
noise for digital accelerographs or from uncertainty in the exact center of the optical
trace for analog accelerographs, and from the unknown offset in the baseline. Some
researchers have assumed in the past that the offset error is a linear drift. However,
for analog accelerograph a straight trace is usually recorded along with the signal,
and for digital accelerographs the drift is very nearly constant over the duration of

the recording. Thus, the offset can be assumed to be constant in both cases. Define:

N
1
5n=in—ﬁ2£k, n=1,...,N, (3.2)

where Z,, is the baseline-corrected measured signal at time t,, and,

. 1 &
b, = —",,,_NZ n=1,...,N. (3.3)
Then, Eq. 3.2 can be rewritten using Eqs. 3.1 and 3.3:
Jn=in+éo+M, =n=1,..,N, (3.4)

where,

1 N N
ZEZ k—ek—ﬁgﬁ (3'5)

k=1
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Thus, in Eq. 3.4, M is the unknown constant temporal mean of the signal §,,
n=1,...,N, %, is the zero-mean corrected data, and 6, is an uncertain error with

a zero temporal mean.

The goal is to estimate the unknown g, from the known Z,. The estimated
Uy can then be instrument-corrected by deconvolution to get an estimate of the
actual acceleration at the location of the instrument, if instrument correction was
felt necessary. Since M and the &, are uncertain, they are described by probability
laws which allow the uncertainty in the g, to be analyzed. For this purpose, €,
and M are modelled as independent Gaussian random variables with most probable
value zero and variance %az and d? respectively. Also, &, and &, for n # m,
are modelled as independent random variables. It follows from Eq. 3.3 that the 8,’s
are Gaussian variables with most probable value zero and variance a?, independent
of M. Also, it will always be assumed that N is large, so the 6,’s can be treated
as independent since for n # m, E[Sngm] = —-ﬁaj—l is almost zero. Hence, from
Eq. 3.4, given the data 2,, n = 1,..., N, the true accelerations are described by a

Gaussian distribution such that:

E(f.) =%, 0*(fn)=0d*+d*> ,n=1,...,N. (3.6)

A rationale for the choice of probability laws starts as follows. According to
Eq. 3.5, M represents the temporal mean of the true signal §,,, for the recorded
points n = 1,..., N. The temporal mean of the entire and true acceleration time
history, from the beginning of the event up to its very end, is identically zero.
Thus, —M represents the temporal mean of the missing and unrecorded signal,
The error due to missing data can itself be separated into two categories: that
missing at the beginning due to instrument trigger being induced by the shaking
(i.e., analog instruments), and also possibly that missing at the end of the record due
to premature instrument shut-off or lack of complete digitization. The truncated
data at the beginning affects both the estimate of the true mean acceleration and
the initial conditions for integration, whereas that at the end only changes the

mean of the acceleration. To avoid complications due to cross-correlated terms in
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the standard deviations of the integrated signal, the missing data at the beginning

and at the end must be seperated in the expression of the temporal mean.

Trigger truncation mainly applies to analog instruments, since digital recorders
have a pre-event memory. Simulations on the truncated synthetic records suggest
that whatever the earthquake size, the initial velocity and displacement are small.
Thus, it will be assumed for integration purposes that the instrument triggered
within the time span 2At prior to the first recorded point and that there is at the
most one point, s, missing at the beginning of the record (Fig. 3.1). If there is
more than one point missing due to instrument trigger, it should not be of great
consequence for the estimate of the initial velocity and displacement, and the error
that it causes in the total mean acceleration can be absorbed within the temporal
mean error due to missing data at the end. Hence, the temporal mean of the
recorded portion of the event, M, can be defined as a function of the missing initial

point, yg, and the sum T of the P missing end points defined by:

N+P
T= > g, (3.7)
p=N+1
such that: .
1 . % T
M=— = (242, 3.8
N kz:lyk ~ N) (3.8)
In terms of these new variables, the true and uncertain acceleration can be written
as:
. . = 1 .
yn=3n+6n_ﬁ(y0+T), n=1,.-.,N- (3.9)

These equations imply that the uncertain acceleration §, is statistically de-
scribed by three random variables: 6, for the digitization noise, gjo for the trigger
truncation, and T for the shut-off truncation. As will be justified in Sec. 3.2.2,
all three of these random variables can be assumed to be independent stationary
processes described by a zero-mean Gaussian distribution, with respective variance
a?, b2, c?, or equivalently:

E(,) =0  o%?()=de®* ,n=1,.,N
E(jo) =0  0(3o) = 8 (3.10)
E(T)=0 o?(T) = c*.
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Others have shown that the above Gaussian model is appropriate for digitization
noise in analog accelerograms [Trifunac et al., 1973]. Figs. 3.8 and 3.10 show that
M is described by a Gaussian distribution such that:

b? ¢?

+—==d". (3.11)

E(M)=0 oQ(M)=ﬁ D

Hence, the only parameters necessary to define the Gaussian distribution of the

true acceleration §,, are a2, b2 and ¢?, as described in Fig. 3.1, and as given by:
5 5 b2 02
E(fn) =2,  0*(n) =0+ 55+ 77 - (3.12)

Integration of the discrete acceleration is performed with the trapezoidal rule.

The uncertain velocity #,, is given by the following equation:

n—1

. . N

ynzyoAt—i—AtE yk+§ynAt, n=1,...,N. (3.13)
k=1

It is found to have a Gaussian distribution with most probable value,
n—1
. . At
E(jn) = At ) & + S En s (3.14)
k=1
and variance,

aren_ aa| (2N —20+1)\% , 38\ o (2m—1\?
o’ (i) = At [(——-——2N b+ n )¢ t\Sn ¢l . (3.15)

These results are obtained by factoring out each term in Eq. 3.13 as a function

of the independent variables g, 6, and T, which have the distributions given in
Eq. 3.10.

Similarly, double integration of the acceleration with the trapezoidal rule yields
the following equation for the uncertain displacement y,,:

n—1
. L. A
Y = GonAt® + At? E (n — k)J] + —Tn n=1,...,N, (3.16)

4
k=1
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The probability distribution of the displacement is also Gaussian, with most prob-

able value,

2 n—1 . At2 .
E(yn) = At E(n — k)z;c -+ —-4-"*“2"‘ ) (3.17)
k=1

and variance,

2n2 —2n +1\2 n® n? a1
2(y,) =Att - b2 nm n on 1Y o
7" (va) (n 4N ) \g 276t E)°

(-2l 262
4N

The variances of the acceleration, velocity and displacement given in Eqs. 3.12,

(3.18)

3.15, and 3.18, could be simplified under the assumption that N and n are large.
Therefore,

0% (i,) =~ a® (3.19)
() ~ At? p(1—1)2b2+na2+ (3)2c2 (3.20)
" ] N N )

2(g) = At |02 (1- ) 02 4 oz 4 22
o%(un) = At* | (1 2N) b + —a +4N2"] (3.21)

Hence, the error in the acceleration is very small, and is a constant approx-
imately equal to the standard deviation of the digitizing noise a, which is small
(Eq. 3.19). This implies that the most probable value of the acceleration as given
by removing the mean from the recorded portion of the seismic event is a fairly good
estimate. The standard deviation of the velocity (Eq. 3.20) increases as y/n for the
digitization noise and as §; for the end truncation, but decreases as 1 — £ for the
missing initial point. In this latter contribution, it can be shown that 42 contributes
both as a constant for the uncertainty in the initial velocity go, and as (3%)? (also a
coefficient for ¢?) for the uncertainty in the temporal mean M. The cross-product
—2% in the first term of Eq. 3.20 describes the correlation between the missing
initial data and the uncertain temporal mean. Therefore, near the beginning of the

record, it is the trigger truncation that dominates the error in the velocity; however,
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this error is small since it is of the order of bAt. But as n approaches N, the error
is mostly induced by the digitization noise and the mean of the missing end points.
The relative importance of these last two terms depends on how the product Na?
compares to ¢2, However, it can be concluded that in the limit for very large N, the
uncertainty in the velocity is mainly due to the noise and increases as the square

root of time.

The standard deviation of the displacement (Eq. 3.21) increases as n for the
trigger effect, which is also the dominant source of error near the beginning of
the record, although small. However, as n approaches N the uncertainty becomes
dominated by both the digitization noise, as Vn3 , and the unknown temporal mean,
as ”T’ Again the relative contribution of these terms depends on how a? and N
compare to b2 and ¢2. But in the limit for very large N, the uncertainty due to
the noise will be quite large since it increases approximately as V/n3. Hence, for
the acceleration, velocity and displacement, the error in the signal is dominated
by the noise, and the assumption on the missing initial point. Also, the standard
deviations are independent of the integrated time histories and only depend on the
time, and the noise and truncation levels as defined by a, b, and ¢. Thus, for a set
of records obtained under similar conditions, the standard deviations of the time

histories need only be computed once.

It is also possible to assign probability laws to the missing initial velocity and
displacement. These laws will depend on the assumptions made on the missing
initial acceleration, and can be generally assumed to be Gaussian, with certain
means and variances: E(yo), 02(¥0), E(¥0), 02(yo)- It was assumed earlier in this
section that the instrument triggered within the time 2At prior to the the first
recorded point; thus, the missing initial velocity and displacement are given by the

trapezoidal rule:
. . At

Yo =fo > (3.22)

and,

. At?
Yo = Yo7 - (3.23)
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Thus, according to Eq. 3.10, they are described by a Gaussian distribution such
that:

, 20 At?
E(go) =0 0%(go) = —~b (3.24)
for the initial velocity, and
Att
E('yo) =0 0'2(y0) = E—bz (3.25)

for the initial displacement. The variances obtained for ¢g, 95, and yg show that
with each integration, the error in assuming zero initial conditions becomes smaller
by %. This confirms the remarks that were made in Ch. 2 regarding the low
probability of having large initial displacements such as those produced by the

Volume II processing method.

From tests performed on analog and digital instruments located side by side,
it would appear that triggering of the analog instruments for strong shaking often
occurs within the time span At prior to the first recorded point [Iwan et al., 1984],
and for such cases the “missing” initial acceleration, velocity and displacement are
exactly zero. This is a less conservative condition than the one adopted in the
previous analysis, for which it was assumed that the instrument triggered within
the time span 2At prior to the first recorded point. For small events it could
be possible for more than one point to be unrecorded initially. In such cases the
error in the acceleration temporal mean due to the missing initial points can be
incorporated into the error in the temporal mean due to the missing end points

without significantly affecting the reliability bounds of the time histories.

An approach similar to the one used to compute Egs. 3.12 to 3.18 could be used
to obtain the most probable time histories and standard deviations for instrument-
corrected accelerograms. In this case, the measured, discretized and baseline cor-
rected 3, (Eq. 3.9) must be convolved with the impulse response function of the
instrument. The probabililistic description of the acceleration, velocity and displace-
ment corresponding to Eqgs. 3.11 to 3.18 must be recomputed accordingly. These
derivations can become intricate and messy. In the expressions for the standard
deviations, they are only expected to alter the uncertainties arising from errors at

the higher frequencies of the recorded accelerogram, which affect the acceleration
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time history to a small extent, but have little influence on the velocity and displace-
ment. Hence, the effect of instrument correction on the standard deviations can be
neglected, and Egs. 3.12, 3.15 and 3.18 can be used as a close approximation for the
uncertainties in the instrument-corrected acceleration, velocity and displacement as

well.

The most probable values and the uncertainties for the integrated velocity and
displacement in Eqs. 3.13 and 3.18 were computed under the zero initial velocity
assumption. As will be seen in the Sec. 3.2.3, to avoid unrealistic drifts in the dis-
placement time histories of small or far-field events due to noise and truncation, the
velocity could be assumed to have zero temporal mean. For such cases, the tem-
poral mean velocity term, —;7- z;N:l y:, should be removed from Eq. 3.13, and the
integrations and uncertainties computed accordingly. It is expected that the result-
ing displacement standard deviation initially behaves as in Eq. 3.18, but approaches
zero near the end of the event mainly as a function of the P missing and uncertain
end points. Unfortunately, because little is known about the missing end data, as
will be explained in Sec. 3.2.2, a reasonable estimate of the standard deviations
computed under the zero temporal mean velocity condition cannot be obtained.

Hence, Eqgs. 3.15 and 3.18 will be used although they may be too conservative.

Eqgs. 3.9 to 3.25 describe the probabilistic behavior of the acceleration, velocity
and displacement in its most general form, as a function of only three variables:
a, b, and ¢, representing the standard deviations of the sources of error. In the
following section numerical values for a, b and ¢ are suggested which are appropriate
for some analog accelerographs, and their effect on the standard deviations of the

acceleration, velocity and displacement are discussed.

3.2.2 Description of the Uncertainties

The variances of the digitization noise, a?, and of the initial missing
point due to trigger b, can be easily quantified. Laboratory tests on several analog
accelerograms have shown that the digitization noise can indeed be modelled as
Gaussian white noise with a most probable value of zero, and standard deviation
a =0.001 g {Ch. 2). The value of b can be obtained by considering the trigger

mechanism of analog accelerographs. Since the instrument starts recording as soon
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as an acceleration greater than approximately 0.01 g is detected, according to the
assumptions the event must have occured within only one At prior to the first point,
or equivalently somewhere between §y and §j;. Hence, the missing initial point of
the record, o, should be less than approximately 0.01 g. Assuming that b is equal
to one-third of the nominal trigger level, or 0.0033 g, for a Gaussian distribution,
implies that there is a 99.8% probability that the missing data point is below 0.01
g. This is consistent with the expected behavior of the trigger mechanism. If these
two values are adopted for the standard deviations of both the digitizing noise and

the trigger truncation error, then the following ratio is established:

b= 13—0a . (3.26)

On the other hand, assigning a value for the standard deviation, ¢, to the un-
known end mean, T, is a much more subjective problem. It should be theoretically
possible to perform many experiments in which earthquake-like signals are recorded
with standard analog accelerographs which shut off automatically, and then mea-
sure the error induced by the missing end portion of the motion. Based on the
results of these experiments, a probability distribution could then be defined for
T. Unfortunately, no such experiments have been performed to date, and it will be

necessary to rely on judgement to evaluate c.

The standard deviation ¢ depends on the standard deviations of each of the
P missing end points i, for p = N +1,...,N + P, which have a nonstationary
behavior as the signal decays down to rest. Nevertheless, it may be possible to
assign bounds to the combined uncertainty ¢ arising from the missing end points.
In the most favorable case, it can be assumed that the data missing at the end is so
small that its trace on the film would have been a straight line, and thus it would
have a c