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ABSTRACT

The liquefaction phenomenon in soil has been studied in great detail during

the past 20 years. The need to understand this phenomenon has been emphasized

by the extent of the damages resulting from soil liquefaction during earthquakes.

Although an overall explanation exists for this phenomenon through the concept of

effective stress, the basic mechanism of loss of strength of the soil skeleton has not

been thoroughly examined and remains unclear.

The present study proposes a numerical model for simulations of the behavior

of saturated granular media. The model was developed with two main objectives:

1. To represent the mechanical response of an assemblage of discrete particles hav-

ing the shape of discs.

2. To model and represent the interaction of interstitial pore fluid present with the

idealized granular media.

The representation of the solid skeleton is based on Cundall and Strack's distinct

element model, in which discrete particles are modelled as discs in two dimensions,

each obeying Newton's laws. Interparticle contacts consisting of springs and frictional

element dashpots are included. Assuming a Newtonian incompressible fluid with

constant viscosity and density, and quasi-steady flow, the fluid phase is described by

Stokes' equations. The solution to Stokes' equations is obtained through the boundary
. '

integral element formulation.""'''Several validation test cases are presented along with

four simple shear tests on dry and saturated granular assemblages. For these last four

tests, the numerical results indicate that the model is able to represent qualitatively

the behavior of real soil, while at the same time clarifying the processes occurring at

the microscale that influence soil response.
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Chapter 1

INTRODUCTION

1.1 Motivations

The extent of damage resulting from the so-called soil liquefaction phenomenon during

earthquakes (Niigata, Japan, 1964; Alaska, USA, 1964; San Fernando, USA, 1971;

and probably during the recent San Francisco earthquake on 10/17/89) emphasizes

the need to understand the physical phenomenon that starts this process, whereby the

soil skeleton completely loses its strength. During the '60's and early '70's, research

interest was mainly focused on phenomenological experiments where it was shown that

excess pore pressures were generated during cyclic shearing of a loaded saturated sand.

In the extreme case where the soil skeleton loses all its shear strength, the portion

of the applied load, which was originally supported by the soil skeleton, is shifted to

the liquid phase so that the soil assumes the properties of a dense liquid. Settlement

results when the pore pressure dissipates by diffusion to drainage surfaces. In these

experimental studies, empirical data were accumulated on the pore pressure generated

in a particular soil under a particular applied stress, as a function of the shear stress

level and number of shear stress cycles [43,57,61,70,77]. The basic mechanism of loss

of strength has not been thoroughly examined and remains unclear.

With the advance of computers, predictions of liquefaction have been conducted

mainly by numerical simulations [75,99]. These numerical simulations were performed

by considering the soil as a continuum with a coupling relationship between the soil



2

skeleton and the interstitial pore fluid. The appropriate material properties were

obtained empirically. Although these numerical models proved to be quite useful

in the predictions of the behavior of soils, they do not help to explain the basic

phenomenon that initiates the liquefaction process.

In the quest for understanding soil behavior, some current research interest is

focused on the behavior of soil at the microscale [23,89]. From that work, the indi­

vidual particle behavior can be simply described. In particular, the distinct element

method (DEM) introduced by Cundall and Strack [23] has shown that even in the

simplest case, where the individual particles are modelled as discs in two dimensions

and spheres in three dimensions, each obeying Newton's laws and having contacts

consisting of springs and frictional element dashpots, the global behavior obtained

reasonably simulates the actual behavior of granular media. The shortcoming of this

model comes from the large amount of computation time required to perform each

simulation. Furthermore and very importantly, the original DEM cannot take into

account the fluid phase, which has such a significant effect on soil behavior.

A liquid phase is essential in the modelling of the saturated granular behavior.

The modelling of the behavior of particles in a fluid medium is of practical importance

in chemistry or biomechanics. However, in those fields contact interaction between

particles is not significant and usually a dilute system of particles in a fluid medium

is considered. In the case of soil, the interaction between the soil grains is the most

important factor controlling the behavior of the saturated soil medium. Therefore,

a model of a microscopic granular medium needs to be able to represent both the

solid-solid and solid-liquid interactions.

To model the liquid phase at the microscale, Darcy's law [31], which is generally

used to describe liquid flow in a porous media, is no longer sufficient. The derivation

of Darcy's law assumes that the medium is a continuum and the relationship obtained
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holds on the average. IT the fluid is assumed to be Newtonian and incompressible with

constant viscosity and density, the description of the motion of the fluid phase is given,

in general, by the Navier-Stokes equations. However, fluid flow in granular media

occurs at low Reynolds numbers, with this condition, and by assuming furthermore

that quasi-study flow occurs, the description of the motion of the liquid phase can be

given by Stokes' equations.

With the combination of the microscopic solid model, that is the DEM, and a

liquid behavior representation, it is then possible to model the behavior of a saturated

granular medium. Because of the complexity of the combined solid-solid and solid­

fluid interactions and the lengthy calculations involved in the numerical solution of

the behavior of the liquid phase in particular, no such attempt at modelling the

saturated granular medium at the microscale has been attempted before. Owing to

the widespread availability of supercomputers, such a simulation is now feasible and

has been implemented here.

1.2 Outline of the Present Work

As mentioned above, the main purpose of this research is to develop a numerical model

that can represent both the solid-solid and solid-liquid interactions at the microscale.

To this end, a numerical simulation tool, NePTune, was developed based on the

microscopic solid-solid model pioneered by Cundall and Strack [23]. The description

of this model is presented in chapter 2.

In chapter 3, the derivation of Stokes' equations is given. The main purpose is

to introduce the underlying assumptions that lead to these equations which describe

the solid-liquid interaction.

Several numerical methods exist for solving Stokes' equations; however because

of the complexity of the shape of the liquid domain, the finite element method proved
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to be impractical because the domain needs to be discretized entirely. In this work,

the boundary element approach is chosen because of its simplicity in representing

the liquid domain where the knowledge of the liquid boundaries is sufficient for the

description of the geometry of the problem. Although the formulation of the bound­

ary element method is elegant and simple, its numerical implementation proves to

be difficult, particularly when singular functions are involved. By comparison with

the finite element method, the boundary element method is not necessarily more ad­

vantageous because the matrix obtained is full and non-symmetric. In light of the

complex shape of the liquid domain present in the particulate problem, use of the

finite elem~t method will also produce a large size of matrix; however, its numerical

implementation is more straightforward than that of the boundary element method.

The boundary integral formulation and its numerical implementation are discussed

in chapter 4 along with some validation examples.

Further test and validation cases involving solid and fluid interactions are pre­

sented in chapter 5. Of particular interest, four simple shear tests have been performed

(two for a loose array of particles and two for a dense array). Because of the limited

resource available on the Cray, only a limited number of particles has been used in

these four simulations. Nevertheless, we were able to obtain interesting and reason­

able results for these limited configurations. In particular, the model shows that it

is able to represent qualitatively the behavior of a real soil, while at the same time

indicating the processes occuring at the microscale that influence soil response.

Finally, certain· conclusions and recommendations for future work are summa­

rized in chapter 6.
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Chapter 2

NUMERICAL MODELLING OF THE SOLID PHASE

2.1 Different Concepts for Modelling Granular Media

2.1.1 The Continuum Approach

In engineering applications, the response behavior of any materials can be studied

at a macroscopic level without considering atomic or molecular structures. This

continuum concept lends itself naturally to homogeneous materials such as metals,

but the same approach has also been used by geotechnical engineers to model soil,

an aggregate of highly inhomogeneous particles. From a practical point of view, the

continuum approach has provided geotechnical engineers with a working hypothesis

in which a soil mass can be simplified and idealized. However, engineers must be fully

aware of the uncertainties involved and they must anticipate the differences between

real soil and the idealized materials used in their design. Safety factors are used

extensively to overcome uncertainties. In the overall, the continuum approach has

been used quite successfully in Soil Mechanics as can be proved by the large number

of standing man-made earthworks and few failures of structures supported by soil.

One main advantage of the continuum concept comes from the fact that we can

establish a mathematical model that describes the behavior of the materials. Several

constitutive models have been developed to idealize the mechanical properties of

different soils [36]. The establishment of constitutive models is based on experimental
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observations at a macroscopic level.

However, the identification of the relevant constitutive variables for a certain

material could become a difficult task. Also, the selection of pertinent properties often

may have to be done only by experience and intuition. Depending on the complexity

of the models, the amount of internal variables used is quite large. Due to the limited

amount of available standard tests in Soil Mechanics, the determination of some

of these internal variables is not easy and requires special experimental apparatus.

Furthermore, constitutive models must obey certain principles or axioms that govern

the physical phenomena. These axioms are classified as follows:

• Axiom of determinism:

Future response is determined by the state (or history) of the body up to the

present time. This is also called the "principle of heredity."

• Axiom of causality:

Mathematical models describing the internal constitution of matter are devel­

oped after selecting suitable constitutive variables. The axiom of causality pro­

vides a selection or identification rule to distinguish dependent constitutive vari­

ables from independent ones. (For example, deformation (effects) do not occur

without an external force (cause)).

• Axiom of objectivity:

The constitutive response functionals must be form-invariant under arbitrary

rigid motions of spatial fra,me of reference and a constant shift of the origin of

time.

• Axiom of neighborhood:

This axiom, which was presented by Eringen [41,42], is also known as the "axiom

of local action." This axiom states that the values of response functions at a point
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are affected less and less by the conditions far away from that point. In other

words, the axiom of neighborhood is used to exclude from constitutive equations

"actions at a distance."

• Axiom of fading memory:

The values of present constitutive variables are affected less and less by the values

of constitutive variables at distant past. This is the counterpart of the axiom of

neighborhood in the time domain,

• Axiom of equipresence:

This axiom, as stated by Eringen [42] is:

"At the outset all constitutive response functionals are to be considered to de­

pend on the same list of constitutive variables until the contrary is induced."

The principle of equipresence says that all the constitutive variables should be

included in every equation, unless the presence of a certain variable violates a

basic principle of mechanics or thermodynamics, or another axiom. However,

when there are too many variables in the constitutive equation, the problem of

retaining them becomes complicated.

• Axiom of admissibility:

The constitutive laws will be different for different materials. The physical laws

of nature, such as conservation of mass, linear and angular momentum, and

laws of thermodynamics, should be satisfied by any system irrespective of the

material type. These physical laws lead to the governing equations, such as

the continuity equation, equation of motion, symmetry of stress tensor, energy

balance, and the entropy inequality. In other words, the axiom of admissibility

asserts that constitutive equations must be consistent with the physical laws.

Details of these laws are given in various references [16,41,42,65,55,59,92,93}.
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Nonlinear or general constitutive models added an important step to earlier

Soil Mechanics design concepts in which the soil was assumed to be either perfectly

elastic or perfectly plastic. However, the utilization of complicated constitutive mod­

els proved to give rise to difficulties when local yield occurs in narrow shear zones,

resulting in bifurcation behavior, or when significant non-linear soil behavior exists.

As is apparent from the axioms above, the overall macroscopic description of

granular materials could rapidly become complicated, although at the microscopic

level, the behavior is simply that of an aggregate of particles that slip and roll over

each other. This suggests that ideally, granular media can be modelled as an assembly

of elastic or rigid three-dimensional spheres or two-dimensional discs obeying certain

contact laws.

2.1.2 The Dmcrete Modelling Approach

2.1.2.1 Deterministic Approaches

In this approach, a granular medium is composed of distinct particles that move

independently from one another and interact only at their contact points. Although

such a model is quite simple to visualize, the overall behavior of the particles can

become sophisticated enough to represent the behavior of granular media.

Among the previous work performed in this field, we can distinguish three

phases: the analytical, physical, and numerical phase. Analytical works have been

restricted to a face-centered cubic array of uniform size spheres. Deresiewicz [35]

proposed an analytieal model of such an array in which non-linear and hysteretic

.stress-strain behavior was predicted. Ultimate failure was also accommodated in the

formulation. Based on his. results, Scott [76, chap.7] gave an interesting observation

in which the behavior of real granular soil can be deduced from individual particle

behaviors.
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Due to the restrictions of the geometry and loading conditions of analytical mod­

els, several investigators have turned to physical experiments to study the behavior

of granular media. Dantu [30] and Wakabayashi [94] used optically sensitive material

for the discs in two-dimensional photo-elastic tests. De Josselin de Jong and Verruijt

[33] gave an account of the analyses of such tests where the force distribution was

determined. Although this approach is quite general and provides accurate contact

forces, displacements, and rotation for individual discs, the process is time-consuming

and the preparation and test conditions are elaborate. Nevertheless, Drescher and

De Josselin de Jong [37] performed a series of tests in order to confirm De Josselin de

Jong's [34] double-sliding free-rotating model formulated for continuum models.

Oda and Konishi [67J presented experimental results of direct shear tests on

assemblies of cylinders made of photoelastic material packed at random. The study

showed that the two-dimensional model presented the same microscopic characteris­

tics in regard to deformation and strength behavior as those of sand. They concluded

from their study that:

1. The direction of the normals to the contact planes tend to concentrate toward

the maximum principal stress axis. This tendency of concentration of the direc­

tion of these normals is not determined by the magnitude of the applied shear

displacement but by the intensity of mobilized stress ratio (7'/ (TN, where 7' and

(TN represent, respectively, the applied shear and normal stress).

2. The preferred direction of the contact normals gradually rotates with the rotation

of principal stress axes during shear deformation. Thus rotation of the principal

stress axis must be taken into account in any granular model.

3. Sliding in microscopic scale at contacts is not, at anyone instant, occuring in

the majority of contacts in the assembly, but rather is confined to some preferred

contacts (i.e., slipping planes).
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In their study, the determination of the direction of the normals to the contact

planes proved to be tedious work.

With the advance of computers, numerical modelling, the third phase, became

the preferred tool used to simulate assemblies of discs and spheres. Several models

have been proposed. These models can be divided into two different classes: one

(essentially static) representing dense arrays of particles, having multiple contact

points, such as soils, and the other (dynamic), simulating rapid shear flow of particles

where the number of contact points for each particle is very limited (usually zero or one

contact per grain, i.e., a dilute system of particles). Among the models ofthe first class

above, Serrano and Rodriguez-Ortiz [78] and Rodriguez-Ortiz [72J developed a model

that simulates aggregates of discs and spheres. Contact forces are determined by

incremental displacements of the particle centers. Hertzian-type contact compliances

are used for normal forces whereas the effects of tangential forces are considered

according to the theory of Mindlin and Deresiewicz [62], and Nayak [64], and shape

changes are neglected. In this model, assemblies of discs are represented by the

finite element method. A stiffness matrix is computed that takes into account the

geometrical arrangement of the particles and the current stiffness at each contact.

Incremental displacements can be computed by inverting this stiffness matrix. An

iteration procedure is necessary to deal with slip and contacts. Only one contact is

allowed to slip at any time. The stiffness matrix needs to be reformulated whenever a

contact is made or broken, and this process is time-consuming. Therefore, this model

is only able to process a relatively small number of particles.

The second model for a dense configuration of particles was developed by Cun­

dall [20] and expanded by Cundall and Strack [23]. First, it was mainly used for

the analysis of rock mechanics problems [20,21] and was named "distinct element

method" or "discrete element method" (DEM). It is capable of handling particles of
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any shape and size. It is based on an explicit local equilibrium algorithm in which

the contacts are monitored and the motions of the individual particles are computed.

As such, global equilibrium is not observed. Cundall also introduced several meth­

ods of handling data, which reduce the computation time required to locate contacts

between particles. Because global equilibrium is not observed, static problems are

treated as dynamic cases. For dynamic problems, small time steps are required by

the explicit time integration algorithm and the absence of global equilibrium. This

method, which is essentially a finite difference approach, will be the one used for the

following work and its complete description will be given later.

To simulate rapid shear flows of granular media, Campbell and Brennen [11 ,12]

developed the binary collision model. It has been used mainly to study two-dimensional

fluidized behavior of granular materials composed of circular discs. This model as­

sumes that two collisions cannot occur simultaneously so that only two-particle or

binary collisions need be considered. Between collisions, each pa:rticle follows its own

trajectory and the positions and velocities are only functions of time. 'rrajectories

change only at collisions. Therefore, the updating process is performed from collision

to collision. The incremental time steps are as long as the interval between collisions.

This presents a distinct advantage over Cundall and Strack's model where the time

step required is small in order to maintain stability. The binary collision assumption

appears to be adequate for the rapid shear flows at relatively low densities studied

by Campbell.

2.1.2.2 Probabilistic Approaches

The deterministic approach such as the DEM allows random distribution of particle

size, shape, and physical properties. From the physics of the problem, contact forces

are determined. For a random distribution of particles used in a deterministic model,

the contact forces obtained appear to be erratic and suggest a statistical description
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of these forces. This observation leads to the introduction of probabilistic ~odels.

Because the determination of contact forces is not easily feasible deterministically,

they are assumed to be random variables. Theoretical analyses are conducted to

obtain the behavior of these models.

Marsal [60] introduced a model composed of spherical particles made of homo­

geneous materials. The distribution of the number of particles and dimensions are

obtained from the grain-size curve of the soil. As the magnitude of the contact forces

between grains depend on:

• the dimensions and shapes of particles

• the mechanical properties of the grains, and

• the particle ci.rrangement in the vicinity of each contact,

the contact forces cannot be evaluated in a deterministic manner and are assumed

to be random variables. Similarly, the number of contacts of each grain is also a

random, discrete variable. From the known distribution of contact forces and num­

ber of contact points, stress distributions were determined as well as stress-strain

relationships.

Oda [66] proposed a model of granular material on the basic assumption that

sliding at contact among grains is the main mechanism of microscopic deformation

and rolling of grains has a negligible effect on the mechanical behavior of the granular

material. The mean value of the force acting on a contact is assumed to be a function

of the state of principal stresses and the direction of the normal to the principal

stress axes. The relation between the mobilized stress ratio and the "fabric index" is

determined by considering .static equilibrium of forces at contact. Several definitions

of fabric index have been proposed, however the one used by Oda is defined as the
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following ratio:
SZ U1 1
- = - 2 1f 1 (2.1)
SZ U3 tan (2" + 2<P/J)

where (Sz/Sz) is the fabric index, (Ut!U3) the mobilized principal stress ratio and

<P/J the interparticle friction angle. The probability of sliding at a contact can be

calculated by considering that the forces at the contact are random variables having

mean values and standard deviations. The rates of strain in the principal directions

are theoretically obtained in terms of the frequency and intensity of sliding and the

fabric index. Finally, based on the stress-dilatancy relations given by Rowe [74],

relations among the fabric index, the dilatancy factor (= (1 - dv/df.1)' where dv is

the volume change and df.1' the axial strain change) and the mobilized stress ratio are

obtained. Comparison made with experimental results by means of the microscope

and thin section method showed that this theoretical model agrees well with the

experimental results.

Davis and Deresiewicz [32] also studied the compressibility and force trans-

mission in granular media. Their model is composed of a two-dimensional random

packing of like spheres in elastic contact. The packing geometry is represented by a

stochastic planar graph where the nodes of the graph are taken as centers of the

spheres and the branches are made of contacts between adjacent spheres. This

stochastic graph is further replaced by a lattice, each of whose branches has a random

stiffness modulus assigned to it. For mechanical response calculations, the lattice is

treated as an elastic structure with branch stiffness in the form of the Hertz contact

law. From their analysis, they observed that a significant fraction of the contacts

among the spheres support no load whatsoever, while a few contacts sustain loads

many times larger than the average. Such behavior agrees qualitatively with the

works of Drescher and De Josselin de Jong [37], and Cundall and Strack [23].

Rodriguez-Ortiz [73] pointed out that even in the simplest case, the hypotheses
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introduced in the stochastic approach can deviate from the actual behavior of granular

materials. He cited:

• The surface friction of the particles plays an important role in the magnitude

and orientation of the stress transmission paths.

• Rotations and tangential forces between particles cannot be neglected.

• The creation and breaking of contacts also play an important role in the overall

behavior.

• Actual particles are heterogeneous and of irregular shape.

2.2 The Distinct Element Method

This model was first developed to handle two-dimensional elements of random polygo­

nal shapes, then later discs [22,23], and was subsequently extended to three-dimensional

spheres [24]. To date, the model has been used to study mechanisms of deformation in

granular media [26,27], constitutive relations for soil [4,25,98], stability of rock masses

[21], seismic stability of rock mass [2,68], the eolian saltation process (the transport

of sand by the wind) [95,96], and practical applications in Soil Mechanics [88,89].

In this study, we are mainly interested in the microscopic behavior of particles.

For example, we would like to understand the behavior at the microscale of particles

when a phenomenon like liquefaction occurs. In this respect, the continuum approach

is not covenient because only a global and averaged behavior is obtained. Discrete

experimental simulations have been ruled out due to the large amount of work required

to measure the interparticle contact forces. Most of the statistical models neglect one

or more basic features of the granular behavior and because they were developed on

too many hypothetical assumptions, their usage will limit the response of the system

studied. This then leaves us with the discrete deterministic models. As was discussed
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earlier, Serrano and Rodriguez-Ortiz's model can only be used when the number of

particles is small, therefore, this model is not useful. We are then left with Cundall

and Strack's DEM. It turns out that this model, although very simplistic, is able

to model qualitatively well the behavior of real soil. Its main advantage lies in its

efficiency in handling a large number of grains through the use of a convenient data

structure for storing and retrieving information. However, as will be seen later, this

model requires that the time step that is used is small enough to achieve numerical

stability. The assumptions and algorithm of the DEM are given in the following.

2.2.1 Assumptions

The particles used in this model are assumed to be dry two-dimensional circular discs.

The inclusion of a fluid phase will be described in a later chapter.

In the distinct element method, every particle (or element) in the assembly is

identified separately, with its own mass, moment of inertia, and contact properties.

The deformations of individ.ual particles are assumed to be small in comparison to the

deformation of the assembly as a whole. This global deformation is caused mainly by

the rigid body motions of particles. Therefore, in the distinct element model, precise

particle deformation is not considered; instead, particles are allowed to overlap one

another at contact points. The overlaps, which replace the the particle deformation,

are small in relation to the particle sizes. Figure 2.1 shows the mechanism used to

model the contact between two particles. The symbols used are defined as follows:

C - Global translational damping coefficient

C· - Global rotational damping coefficient

kN - Contact normal spring constant

ks - Contact shear spring constant

eN - Contact normal dashpot coefficient
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Cs - Contact shear dashpot coefficient

S - Contact shear force

N - Contact normal force

¢>,.. - Contact friction angle

Normal and tangential springs and dashpots exist at each contact, with a frictional

limit on the maximum tangential shear strength. While nonlinear spring and dashpot

behavior can be accommodated with this scheme, the present implementation assumes

constant spring stiffness and linearly viscous damping values. The magnitude of the

contact forces is determined by the overlap between neighboring elements. In other

words, an element can be visualized as a rigid disc with a coating of springs and

dashpots at the periphery. At the contact point between two elements, the spring

and dashpot at that location are activated. In the normal direction, for example, the

compression of the contact spring is determined by the overlap between the contacting

particles whereas the ~ashpot compression is determined by the relative velocities

between these two particles. In turn, the amount Qf overlap is directly controlled

by the stiffness of the springs. Dashpots are used to dissipate energy. Similarly, in

the tangential direction, the relative sliding of two contacting particles determines

the motion of the shear spring whereas the relative rotational velocity determines the

motion of the shear dashpot. The computed shear force is limited by the Coulomb

friction law.

Movements inside the assembly of particles are generated by the propagation,

through the medium, of disturbances originating at the boundaries. IT the time step

can be small enough so that during a single time step disturbances cannot propagate

from any disc further than its immediate neighbors, the resultant forces on a disc

can be determined simply by its interaction with discs with which it is in contact.

However, this local equilibrium could create global inequilibrium at an instantaneous
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(franslational damping)
C

(Rotational damping)
c·

Figure 2.1: Contact model used by the distinct element method
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time step. To avoid iterative procedures, an explicit time integration scheme is used.

To achieve numerical stability, an explicit scheme requires a judicious choice of time

increment. As the time increment chosen is considered small, velocities and acceler­

ationsare assumed to be constant over a time step.

2.2.2 Choice of the Distinct Element for the Solid Model

2.2.3 A Simple Example

Typically, the calculation process involved in the distinct element method alternates

between the application of Newton's second law and the force-displacement law at

the contacts. The motion of the particles is obtained by Newton's second law. As the

'Particles move, contacts are created or broken. IT contact occurs, the contact forces

are determined by the force-displacement law. Summing all the contact forces on a

particle provides the overall forces that are applied at the centroid of that particle.

These forces are in turn used to determine the particle motion through Newton's

second law.

To illustrate the calculation cycle, Cundall [23] considered the case shown on

Figure 2.2. Two discs, labelled a and (3, are maintained in the horizontal plane

between a pair of rigid walls (i.e., no gravity involved). The walls are moving to­

ward each other at a constant velocity u. In this example, simplifications have been

introduced so that only normal contact forces are involved.

At the initial time t = to, the walls and discs are tangent to each other and no

contact exists, i.e., springs at points A, B, and C are at rest (Figure 2.2{a)). At the

following time step (see Figure 2.2{b)), t1 = to + !:it, the walls have moved inward

over a distance u!:it. Because disturbances are not allowed to travel beyond a single

disc during one time step, both discs remain at their initial position. Due to this,

overlaps occur at contact points A and C. The overlap magnitude is !:in = u!:it.
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Figure 2.2: A simple example: two discs compressed between rigid walls
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In the notation used here, superscripts designate the referenced object (such as

the contact point, the disc or the walls) and subscripts indicate the time step, for

example, ti.nt indicates the relative displacement of contact point A at time step tl'

Contact point A is defined as the midpoint of segment AD and AW where AD

and Aw· represent, respectively, points of the disc and wall lying on a perpendicular

to the wall through the disc center. The relative displacement, ti.nt, at the contact

is taken as the relative displacement of point A W with respect to AD.

As explained in the assumptions above, the contact springs at points A and C

are activated at time t l (for the sake of simplicity, dashpots have been omitted here).

Figure 2.2(b) shows the compression of the contact springs. Assuming constant spring

values, the incremental contact forces at time t l at points A and C are given by:

ti.Nt - kAti.nt = kAuti.t

ti.Nf - kGti.nf = kGuti.t (2.2)

where kA and kG are the normal spring stiffnesses at contact points A and C re­

spectively and compression is taken to be positive. According to the reference frame

shown on Figure 2.2(a), the acting forces on discs 0 and f3 at time t l along the x-axis

are:

Ff - kAti.nt

Ff - _kGti.nf (2.3)

From Newton's second law, the accelerations of each disc in the x-direction are

given by the above forces, namely:

01 - Fffma

lil - Ff ImP (2.4)

where 01 and lil stand for the accelerations of disc 0 and f3 and ma and m fJ , their

respective masses.
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Assuming constant accelerations over the interval t1 and t2 = to+2~t, velocities

at time t2 can be obtained:

02 - al~t = (Ff/ma)~t

{32 - i31~t = (Ff/m{J)~t (2.5)

Hence, the relative displacement increments at points A, B, and C at time t 2 ,

are determined to be:

~nA - [u - 0:2]~t2

~nB - [0:2- ,82] ~t2

~ni - [,82 - (-u)] ~t (2.6)

Figure 2.2(c) shows the situation at time t 2•

This cycle is repeated, i.e., forces corresponding to displacements are found

according to the force-displacement law; the resultant of the contact forces is in turn

used in Newton's second law to determine new accelerations and velocities at the

following time step. In the general case of an assembly of discs, vectorial forces are

acting at each contact point. The equations used in a calculation cycle for a general

case are presented in the following section.

2.2.4 General Calculation Cycle

2.2.4.1 Notations and Definitions

Let 0 and {3 be two discs in contact as shown in Figure 2.3. The coordinates of the

disc centers, according to the reference system are Q = (oI, 02) and 13 = ({3I, (32)'

Their respective velocities will be denoted by a = (cit, ci2) and /3 = (131,132)' Their

angular velocities, 6(a) and 6({Jb are taken positive in the counterclockwise direction.

Each disc has been assigned a radius, R(a) and R({J); a mass, m(a) and. m({J); and
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a moment of inertia 1(0) and 1([3). If gravity is present, it is represented by vector

9 = (gt,g2). Points p(o) and p([3) are defined as the points of intersection of the

line connecting the disc centers with the boundaries of discs a and f3 respectively.

The unit vector from the centroid of a to f3 is represented by E = (cos " sin I). Its

perpendicular unit vector in the clockwise direction is T.

2

1

Figure 2.3: Variables used in the force-displacement law
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2.2.4.2 Contact Forces Detennination

IT contact occurs between a and ;3, D, the distance between their centers is less than

the sum of their radii, i.e.:

(2.7)

As explained in the previous example, if this condition is verified, the contact

point P is defined as the midpoint of p(cr) and P(I3)' The relative velocity of p(cr) with

respect to P(I3) can be expressed as:

P - (A,P2)

- (0: - i3) - (O(cr)R(cr) + O(I3)R(I3»)T (2.8)

The normal and tangential components of P, nand 5, are obtained by the

decomposition of P along E and T:

n - P'E

- (it - i3) .E - (O(cr)R(cr) + 8(I3)R(I3»)T . E

- (0: - i3). E

- (Ok - /3k)fk

5 - P'T

- (0: - i3). T - (8(cr)R(cr) + 8(I3)R(I3»)T' T

- (a - i3) .T - (8(cr)R(cr) +8(I3)R(I3»)

- (h - /3k)Tk - (O(cr)R(cr) + 8(I3)R(I3»)

(2.9)

(2.10)

Einstein summation convention is assumed only for subscript k. Indices between

parentheses do not follow this convention.
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By integrating the relative velocity components with respect to time, the rela­

tive displacement increments are:

~n - n~t

- [(a-,8).€]~t

~s - s~t

- [(0 - i3) .T - (O(a)R(a) +O(J3)R(J3»)] ~t

(2.11 )

(2.12)

From the force-displacement law, the normal and tangential incremental forces

can be computed as:

(2.13)

(2.14)

where kN and ks represent the normal and shear spring stiffnesses.

Finally at each time step, the incremental forces, ~N and ~S, are added into

the sum of all force increments, N and S, determined from the previous time step:

N - N+~N

S - S+~S

(2.15)

(2.16)

In the above notations, normal and shear forces are assumed to be positive in the

direction opposite to vectors € and T.

The contact model also includes a Coulomb-type friction; that is, the magnitude

Of the shear force S must obey the following rule:

(2.17)

where 4>/.' represents the smallest value of the interparticle friction angle and c the

smallest value of the cohesion of the two contacting particles because the weakest
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particle will control sliding. In the case where S exceeds Smax in the absolute value,

the value of S is set to Smax with the sign preservation of S.

Because the contact model also has provision for damping, friction damping

forces at the contact point are also considered. The magnitudes of the damping

forces are given by:

D N - cNn

- CN[(o:-,8)·E]

D s - CSS

- Cs [(0: -,8). T - (O(oc)R(oc) + O(l3)RC8»)]

where CN and Cs are, respectively, the normal and shear damping coefficients.

The shear forces generate the following moments on each particle:

M(oc) - S(oc)R(oc)

M({3) - S(oc)R({3)

(2.18)

(2.19)

(2.20)

in which S represents the sum of the shear force, S, and the damping force, Ds (if

shear damping is used, the Coulomb friction law becomes I S + Ds I =5 Smax where

Smaz is as defined in equation (2.17)).

The sums of the normal and shear forces and moment at each contact point

provide the forces and moment acting at the centroid of the particle. Resolving the

forces into the 1 and 2 directions, the forces at a particle centroid, L: F(ah are given

by L: F(a)l and L: F(a)2. Similarly, the resultant moment generated isL: M(oc) whereas

the contact damping forces, L: D(a), are L: D(oc)l and L: D(a)2. Although constant

springs have been used throughout the derivations, non-linear springs can easily be

included in this model.
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2.2.4.3 Particle Motion

In addition to local contact damping, global damping is also included .in the particle

equation of motion. Although it can be used in combination with local contact

dampmg, global damping prevents a ringing effect when no local contact damping

is used. It consists of translational and rotational dashpots attaching each particle

to the ground. Assuming that C and C· are the global damping coefficients for the

translational and rotational degrees of freedom (d. Figure 2.1), and with the presence

of gravity, 9, the equations of motion of disc a are given by Newton's second law:

m(a)Q + CO: - 2: [F(o) + D(o)] + m(a)9

1(0)6(0) + C·O(o) - 2: M(o)

(2.21 )

(2.22)

As stated earlier, a central difference scheme [18] is used to integrate equa­

tions (2.21) and (2.22). In this scheme, the velocities at time step t i are evaluated

halfway through the time step, i.e.,

(2.23)

(2.24)

The translational and rotational accelerations at time ti can now be written as:

ai - (O:i_~ + a.+~)/~t

6. - (O._~ +Oi+~)/~t

(2.25)

(2.26)

Combining equations (2.21), (2.22), (2.23), (2.24), (2.25), and (2.26), the veloc-

0'+1 ­, 'i

ities at time ti+~ can be obtained:

a._~ [1-~] + E [F(a) +D(Q)L~ + 9~t

[1 + .QaL]
2m(0)

iJ [1 coAt] +~ [M ] At
i-~ - 2'i'(:) L.. (0). 1(:)

[1 + COAt]
21(0)

(2.27)

(2.28)
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The velocities are then integrated to yield the particle displacements at the next

time step, ti+l:

Qi+l - Qi + Qi+1At
:l

OiH - 0i + 8i+1 At
:l

(2.29)

(2.30)

It should be noted that in equation (2.27), the discretization of the damping

forces can be performed as follows:

(DS)i - css

- Cs [(Q - ~) . T - (8(Clt)R(Clt) + 8({J)R({J»)] i-~

(2.31 )

(2.32)

An error of half a time step is introduced in the calculation of DN and Ds . Cundall

[23] indicated that this error is found to be negligible.

From the equations of motion, we can see that energy is dissipated through

friction, local contact damping, and global damping. If neither local contact or global

damping is used in static problems, the system would never reach equilibrium.

2.2.4.4 Choice of Time Step

Explicit time integration is only conditionally stable. To insure numerical stabil­

ity, the time step, At, should be chosen smaller than the critical time step, Atcrit

(At < Atcrit) [3, chap.g]. Because the equilibrium of each particle is only satisfied

locally, it is impossible to obtain the critical time step of the global system, which is

determined by the highest natural frequency (or eigenvalue) of the system. However,

the critical time step can be estimated based on the oscillation of a single degree of

freedom system of a mass rn attached to a spring of stiffness k. For this system, the

critical time step is (2J(rn/k)). The critical time step estimated by the solid phase
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algorithm is based on the lowest particle mass and the highest stiffness in the problem.

The actual time step used by the algorithm is chosen as a fraction of this estimated

critical time step. Cundall [22] recommended the use of 10% of the estimated critical

time step as a safe choice for the actual time step. This choice is found to be adequate

for the present work.

2.2.4.5 Contact Determination

IT contact between two particles occurs, equation (2.7) needs to be checked for every

pair of particles. It is obvious then that the number of computations required would

be of the order of NN where N is the total number of particles in the simulation. This

number could be reduced to O(N!) if we do not test twice for each pair of particles;

i.e., if the contact between two particles 0 and (3 has been tested, we would not

check again the contact between (3 and o. At any rate, the number of computations

required is so large that this algorithm is not acceptable for any practical purpose. To

eliminate the contact search between distant particles, Cundall [22] devised a scheme

in which the global area under study is divided into smaller ones called "boxes." As

illustrated in Figure 2.4, the box size is chosen in such a way that the largest disc

diameter is less than one box width or height. Based on this constraint, the scan for

contacts is reduced to a partial search in the disc vicinity only. Consider, for example,

disc 0 on Figure 2.4; because its immediate bounding square lies inside boxes Bs and

B6 , we only need to consider discs inside these two boxes to test for contact condition.

This technique of "Divide and Conquer" significantly reduces the computation time.

In some cases such as the one shown in Figure 2.5, the immediate bounding

square of a disc fails to d~termine all the particles that would be in contact with

that disc. In this particular case, disc 0 lies solely inside box Bn • Now, because its

immediate bounding square is fully contained by box Bn , disc (3 will not be included in



29

a,~, '" : Disc number

B. : Box number j
J

Figure 2.4: Division of the area into boxes

the search during the contact scan. To circumvent this weakness of the scan method,

a bigger bounding square is used. A margin length, DNTOL/2, is set outside the

immediate square to determine all the boxes in which a particle lies (d. Figure 2.6).

The value of DNTOL is chosen so that the following condition is satisfied:

[2max(R(a») +DNTOL] < 2 x (Box Dimension), Va (2.33)

The above condition ensures that a contact scan for a disc will not include more

than the discs inside 4 adjacent boxes.

2.2.4.6 Compliances of the DEM with the Axioms of Continuum Mechanics

At the grain size level, all particles follow all the axioms stated earlier in the continuum

approach, namely:

• Axiom of determinism: the motion of a particle depends only on the state at the

previous time step.
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The immediate bounding square
ofdisc a lies solely inside box Bn
so tJuzt disc ~ will never be tested
for possible contact with a.

B"

Figure 2.5: Case where the immediate bounding square fails to produce all possible
contacts

,-
,
I
I,
I
I,-- -~- ---

The new bounding square ofdisc a
now also lies inside box 4n so tJuzt
disc ~ will be included in the contact
scanfoT a.

,--------~---+__~ 'DNI'OLl2

rf,
: ::f ~ 1-, ;..; ~

J~-J-[ DNTOU2

DNI'OL/2 DNI'OL/2

Figure 2.6: Margin length sets so that the contact search will find all the contacting
discs
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• Axiom of causality: the cause and effect that determine the motion of the as­

sembly of particles are clearly identified as the propagation through the medium

of disturbances originating at the boundaries. Hence all the variables used in

this model are clearly identified.

• Axiom of objectivity: it is obvious from the description of the DEM that under

rigid body motions or a constant shift of time, the results obtained are identical.

• Axiom of neighborhood: as explained earlier, the response of a particle is only

affected by directly adjacent particles or objects (such as wall boundaries).

• Axiom of fading memory: the motions of a particle are affected by the response

of the previous time step. Therefore, the DEM follows, a special case of this

aXIOm.

• Axiom of equipresence: the basic equations of motion of the DEM include all

the physical variables and do not violate any principle of mechanics or thermo­

dynamics, or another axiom.

• Axiom of admissibility: the governing equations of the DEM satisfy all the

physical laws of nature at the grain size level. However, due to the iterative

procedure used in static problems, global imbalance of forces could occur during

iterations. For dynamic problems, force imbalance is minimized by the use of

small time steps that are also dictated by the explicit time integration scheme.

2.2.4.7 Comments about the DEM

In general, the DEM is quite flexible because it can accommodate different particle

sizes and material properties. However, the specification of material properties is not

easy for dynamic problems. For static or quasi-static problems (such as monotonic

loading), the material properties used do not affect the results because equilibrium is
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always achieved. For dynamic problems, the contact spring and dashpot constants

cannot be measured directly. For these cases, the value of the normal contact spring

constant can be obtained by condering the geometry of the contact between two

identical particles each having a radius R (see Figure 2.7). The overlap between the

particles, 6, determines the strain, € = 6/2R. The stress generated by the contact

force, F, is assumed to act over the chord length, 1; hence, the contact stress per unit

length is given by:
F

(7= -
1

(2.34)

Furthermore, if E represents Young's modulus of the particles, assuming linear rela­

tionship between the stress and strain gives:

F 6 El- =E- ::;. F = -6
1 2R 2R

Let
El

kN =­
2R

then the relationship between the force and overlap distance is obtained as:

(2.35)

(2.36)

(2.37)

The dependence of 1 on 6 (1 = 2JR2 - (R - 6)2) shows that even in this simple­

minded model, the relationship between contact forces and overlap length is nonlinear.

To simplify the problem, the value of 6 is chosen so that it will not exceed a prescribed

value (usually between 1 to 5% of the minimum radius). This maximum value of 6

is used to determine the maximum value of the contact chord. Finally, the value of

.the normal contact spring constant given by equation (2.36) is used for all range of

overlap length.

The study of Hertzian contact theory for elastic spheres by Mindlin and Dere­

siewicz [62] showed that the tangential stiffness at a contact may vary between 2/3
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Figure 2.7: Definition of parameters used to define kN

and 1 times the normal stiffness. No such information is readily available for two­

dimensional discs, therefore, such a range of values can only be assumed.

The normal contact damping is directly related to the coefficient of restitution

of the particle. Because it is mainly used as a dissipator of energy, its function is

identical to the coefficient of restitution. The value of the normal contact damping

can be selected so that it matches the value of the coefficient of restitution. To

establish the correlation between these two variables, a test can be devised in which

a disc is dropped onto a rigid, flat surface. The ratio of the initial dropping height

over the bouncing height determines the coefficient of restitution. In most studies

involving the DEM, the value of the shear damping has been arbitrarily selected so

that its ratio over the shear stiffness is the same as that of the normal damping over

the normal stiffness.

One way of determining the global translational damping, C, is obtained by

considering the hysteretic stress-strain relationships such as the one shown on Fig­

ure 2.8. These relationships are obtained in the laboratory by means of triaxial

compression tests, simple shear tests or torsional shear tests conducted under cyclic

loading conditions.



34

The damping ratio, C is defined as [49]

(2.38)

where Al = area of abcdefa, and A2 = area of Oag.

Shear Stress

a

Hysteretic
stress-strain
relationships

g

Shear Strain

d

Figure 2.8: Hysteretic stress-strain relationships

Alternatively, the translational global damping, C, is assumed to have a value

ranging from 1 to 5% of the value of the critical damping of a single degree of freedom

system having the particle mass and normal spring stiffness. Similarly, the rotational

global damping C· can be arbitrarily selected.

The values of the material parameters can thus be fine-tuned by devising special

experiments to obtain appropriate concordance with measurable physical quantities.

Due to the small size of the particles, the moment of inertia, 1(01)' should not

play an important role in the deformation of an actual system of particles. However,

its inclusion in the equation of motion is required for a complete description of the

motion of each particle.

Although in principle any type of loading could be applied to the boundary (i.e.,

specified displaceme:p.t, force, or stress boundary), a specified displacement boundary



35

is the most practical one to be used with the DEM. If force or stress is applied to a

boundary, their distribution to directly adjacent particles presents some ambiguities.

In conclusion, the richness of information provided by the DEM proves to be

also one of its weaknesses. The wealth of information about each particle at each time

step gives rise to a dilemma: either statistical information should be compiled out of

these discrete results, in which case all the microscopic behaviors become fuzzy; or

global information should be analyzed, in which case all the information could not be

easily absorbed unless only a small portion of the system is considered.

2.2.4.8 Summary of the Distinct Element Method Algorithm

The distinct element method algorithm can be summarized as follows:

read simulation parameters and initial conditions
for all time ti steps do

for each disc a do
assemble the disc contact list, Le., all objects in contact with a
for each object of the contact list do

compute outward normal vector
compute incremental velocities at contact
compute contact forces and update contact information

compute accelerations for disc a at time t i

for each disc a do
integrate for velocities at time ti+~

integrate for displacements and rotations at time ti+l
update disc information array
update list of contacts made or broken
update wall motion and wall information array

end of simulation

2.2.5 Algorithm Validation

2.2.5.1 Static 'lest: One Disc under Gravity Loading

The following test was performed mainly to show the different types of damping

used in the DEM. In this example, a disc having a radius of 1 m and a density of
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P. = 2400 kg/m3 (i.e., having a mass m = 7539.823 kg), supported by a horizontal

plate, is subjected to a vertical gravity field of intensity g = 10 m/sec2 (see Fig­

ure 2.9(a)). Friction, shear contact spring and dashpot have been omitted. The value

of the normal contact spring constant is assumed to be kN = 101 N /m.

Four cases have been studied: case 1 considers only the normal contact spring

(Figure 2.9(b»j in case 2, both the"normal contact spring and global translational

dashpot are included in the analysis (Figure 2.9(c))j for the third case, the normal

contact spring is combined with the normal contact dashpot (Figure 2.9(d))j and in

case 4, the normal contact spring and dashpot, and the global translational dashpot

are all used (Figure 2.9(e)). The different values of spring and dashpot constant used

in each case, are given in Table 2.1.

Case kN eN C Final Contact Absolute
Normal Contact Normal Contact Translational Force Force Error

Spring Dashpot Dashpot
(at t = 5see)

(N/m) (N/(m/see)) (N/(m/see)) (N) (%)
1 107 0 0 1 1

2 10' lOb 0 72703.36 3.5742
3 107 0 1.0 X 104 75398.66 0.0006
4 107 lOb 4.5 X lOb 75397.49 0.0010

Table 2.1: Values of spring and dashpot constant used for each case

Due to the simplifications made here, the only contact force involved in all these

four cases is the normal contact force between the disc and the plate. Figure 2.10

shows the normal reaction force on the plate with respect to time for each case studied.

Because no damping is considered in case 1, the reaction force is simply oscillating

around the weight of the disc (75398.23 N). The equation of motion of case 2 can be

expressed as :

1Not included due to oscillation in the response.
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(a) Physical Model

(b) Case 1: No Damping

(c) Case 2: Global Damping Only

(d) Case 3: Contact Damping Only

(e) Case 4: Contact and Global Damping

Figure 2.9: Different cases studied for the settling of a disc on a flat plate under
gravity loading
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mx + Cx + kNx = mg (2.39)

where C is the global translational damping, x, the displacement of the disc relative

to its initial position, x and x are respectively the velocity and acceleration of the

disc.
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Figure 2.10: Normal reaction force on the plate

Likewise, the equation of motion of case 3 is given by:

(2.40)
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where CN is the normal contact damping value.

The similarity of the equations of motion of cases 2 and 3 is caused by the

simplicity of the model presented. In cases where a disc is also in contact with

another disc, the velocity used in equation (2.40) would be the relative velocity of the

contact point rather than the velocity of the disc itself.

Finally, the equation of motion of case 4 is:

(2.41 )

As shown in Table 2.1, the magnitude of the damping used in case 2 is 10 times

smaller than the one used in case 3. Consequently, the response of case 3 reaches

equilibrium faster. In case 4, the combination of normal contact damping and global

translational damping is such that their sum yields the critical damping ratio of this

simple degree of freedom system. Hence, no oscillation is observed for this later case

as the normal reaction force reaches the weight of the disc (i.e., when equilibrium is

achieved). Table 2.1 also gives the value of the normal reaction force on the plate

at the end of the 5000 steps simulation (i.e., at t = 5 sec). The deviation of the

normal force from the weight of the disc is also shown on this table. In general, the

magnitude of the error tends to decrease as the amount of damping increases. When

higher damping is used, the disc reaches equilibrium faster. When no damping is

included, the disc will oscillate indefinitely; therefore, depending on the time when

the contact force is selected, its value can vaxy from 0 to twice the weight of the disc,

which is why the contact force has been omitted from Table 2.1.

The contact force between the disc and the plate of case 4 is shown on Fig­

ure 2.11. Here, the thickness of the line gives the intensity of the force whereas its

direction is given by the direction of the contact force line. It should be noted that

since the disc and plate axe frictionless, the contact force is acting along the per­

pendiculax to the plate. This graphical representation of the contact force can be
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associated with the fringes observed in pictures of photoelastic material testing.

2.2.5.2 Static 'lest: Five Discs under Gravity Loading

This test was performed to verify the accuracy of the contact forces under static

loading. Here, 5 discs, each having a radius of 1 m and a mass of 7539.823 kg, are

allowed to settle in the presence of gravity (g = 10 mjsec2 ) (see Figure 2.12(a)). The

discs are assumed to be frictionless (Le., only normal contact spring and dashpot, and

global translational dashpot are present). The parameter used for both the disc-disc

and disc-wall contact are:

kN - 101Njm

CN - 105Nj(mjsec)

C - 4.5 x 105Nj(mjsec)

Table 2.2 shows the predicted value of the normal contact force at the end of

the simulation (t = 5 sec) at each contact point, along with the theoretical contact

forces calculated from force equilibrium of each disc, and the error introduced by the

algorithm.

Contact between Predicted Force Theoretical Force Error
(N) (N) %

Disc 1 - Wall 1 188492.5 188495.6 0.002
Disc 1 - Wall 2 133648.0 128247.7 4.21
Disc 2 - Wall 1 188491.3 188495.6 0.002
Disc 2 - Wall 3 133647.8 128247.7 4.21
Disc 3 - Disc 1 175075.0 170996.9 0.52
Disc 3 - Disc 2 175079.4 170996.9 0.52
Disc 3 - Disc 4 115750.6 113997.9 1.54
Disc 3 - Disc 5 115760.0 113997.9 1.55
Disc 4 - Wall 2 87832.7 85498.4 2.73
Disc 5 - Wall 3 87828.2 85498.4 2.72

Table 2.2: Comparison of the predicted contact force values with the theoretical values
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Contact Force

Time: Ssec Force Scale:

75397.49

Figure 2.11: Graphical representation of the contact force for case 4 at the end of
simulation
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Figure 2.12: Initial and final geometry for the settling of 5 discs under gravity loading
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The maximum error found is about 4%. This error is caused mainly by the

difference in geometry used to calculate the theoretical force where the discs are

assumed rigid. As is apparent from Figure 2.12(b), due to the disc overlap allowed by

the DEM, a re-arrangement of the configuration occurred by the end of the simulation

whereas in the theoretical computation, the final configuration is identical to the

initial configuration.

Figure 2.13(a) shows the contact force at each contact point at the end of the

simulation. For all practical purposes, the distribution of the contact force is symmet­

rical with respect to the vertical passing through the center of disc 3. The velocity

vectors of each disc at the end of the simulation are presented on Figure 2.13(b).

The small magnitude of the velocity of each disc indicates that they have reached

equilibrium.

The normal reaction force on walls 1, 2, and 3 as a function of time is given in

Figure 2.14. Due to the high values of damping used, no oscillation is observed as

the reaction forces reach their equilibrium value.

When friction and shear contact springs and dashpots are used, the results

predicted by the algorithm differ from that of frictionless materials. In the following

case, the friction angle at a contact point between two discs or between a disc and

a wall is assumed to be tP = 15°. The shear contact spring is given a value of

ks = 7 X 106 N /m, whereas the shear contact dashpot and rotational dashpot constant

take respectively a value of Cs = 7 X 104 N/(m/sec) and C· = 4.5 X 105 N/(m/sec)

(i.e., these values have been chosen arbitrarily such that Cs ~ 2/3cN and C· = C).

Figure 2.15(a) shows the final position of the discs at the end of the simulation at

5 sec. Discs 4 and 5 have slightly rotated from their initial positions as shown by the

slight inclination of their radius indicators (see Figure 2.15(a)). Also, because of the

settlement of the discs, the final configuration differs slightly from the original one.
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,Figure 2.13: Contact force and velocity distribution at the end of the simulation
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The distribution of contact forces is presented in Figure 2.15(b). Due to the friction,

the contact forces are no longer normal to the walls and they do not pass through

the centers of two contacting discs. From this figure, it is clear that the distribution

of the contact forces is again symmetrical with respect to a vertical passing through

the center of disc 3.

The values of the components of the contact forces for each contact point are

given in Table 2.3. The orientation of axes x and y is given in Figure 2.15(b).

Contact between Fc F1I

(N) (N)
Disc 1 - Wall 1 167269.7 38775.2
Disc 1 - Wall 2 28609.2 -7665.5
Disc 2 - Wall 1 167269.7 -38774.5
Disc 2 - Wall 3 28610.1 7664.9
Disc 3 - Disc 1 116104.0 -31109.8
Disc 3 - Disc 2 116103.1 31109.6
Disc 3 - Disc 4 78747.3 13561.1
Disc 3 - Disc 5 78749.6 -13561.0
Disc 4 - Wall 2 50610.7 -13561.0
Disc 5 - Wall 3 50611.1 13561.0

Table 2.9: Components of the contact forces for material with friction

The sum of the horizontal and vertical reaction forces on walls 1, 2, and 3 yield

EF~ = -0.5 N and EF1I = 376991.7 N. The value of EFy closely approaches the

value of the weight of the five discs (which is 376991.2 N). Similarly, the value of

E F~ is almost zero, indicating the symmetry of the distribution of the contact forces

with respect to a vertical passing through the center of disc 3.

2.2.5.3 Dynamic lest: Impact of Two Discs

This simple experiment was devised to test the algorithm in a dynamic case. Disc 1

has an initial velocity of 6 m/ sec in the vertical direction as shown on Figure 2.16.

It collides with disc 2 of equal mass and radius and initially at rest. Assuming that
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171705.2

Figure 2.15: Final configuration and contact force distribution for material with
friction·
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there is no loss of energy during the collision, i.e., that there are neither contact nor

global rotational dashpots, and that the material is frictionless, the theoretical values

of the velocity of each disc can be calculated from the kinematics of the particles

(conservation of momentum and coefficient of restitution of 1). The predicted value

of the velocity of each disc ( (Vb, VIl/) for disc 1, and (V2:, V2l/) for disc 2) and the

theoretical results after the collision are presented in Table 2.4.

Velocity Predicted Theoretical Error
Component (mlsec) (mlsec) %

VI: 2.591 2.598 0.27
VIl/ 1.514 1.500 0.93
V2: -2.591 -2.598 0.27
V2l/ 4.486 4.500 0.31

Table iLl: Comparison of predicted and calculated velocities after collision

In general, the maximum error is less than 1 %. Therefore, the predicted results

agree well with the theoretical values. The position of the discs at impact, and at

time t = 1 sec along with the trajectory and final velocity of each disc are also shown

on Figure 2.16.

It should be noted, however, that for this particular test, the only material

parameter involved is the normal contact spring constant, which was chosen to be

kN = 107 N 1m. In the theoretical solution of the problem, the mass of each disc is

irrelevant, however, in the DEM, a mass has to be assigned for each disc. Here the

mass is assumed to be m = 1r kg for each disc. Due to the small mass used, the value

of the critical time step is roughly of the order of 10-3 sec. To be able to capture all

the features of the impact, the time interval is chosen to be 10-5 sec. The impact

occurs roughly between t = 44 msec and t = 46 msec. The magnitude of the contact

force is presented on Figure 2.17. The impulse-type force can be viewed as consisting

of two sections. The first one covers the period of compression from first contact until

ma~mum deformation of the two bodies (for the DEM, this corresponds to maximum



49

..... -- ..

Trajectory of Diac 2

Trajectory of Diac 1

Initial Pooition of Di_

POIition ofOi_ at t..l_

POIi tion of Diac 1 at Impeet

.../
.'

, , ,
\

\,
I
I,,,,,

.... -.-_ ...

.... -- ..," ....... ., ,, ,
, \ \, \

, '
I I
~ -, :
'- \'" \ "

' ........ _---~
\
\
\
\
'\
\
\
\
\ . .---.

%

Length Scale:

1m

velocity~

20m/sec

Figure 2.16: Geometry, trajectories and velocities of the collision of two discs



50

overlap between the two discs). At the end of this period, the relative velocity of the

two bodies is zero. The second interval comprises the period of restitution from

maximum deformation until cessation of contact. The symmetrical shape of the

contact force clearly indicates that the deformation is purely elastic.

This concludes the description of the solid phase used in this work. The mod­

elling of the fluid phase is given in the following chapter.
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Chapter 3

MODELLING THE FLUID PHASE

3.1 Historical Review

The following gives a short review of the historical developments of flow through

porous media. For a complete review of major historical works in this field, the

reader is referred to Happel and Brenner's book [48].

Flow through porous media has probably been considered throughout history;

however, the first scientific results were obtained only about one hundred and fifty

years ago. Flow through porous media had attracted the attention of several engineers

at the "Corps des Ponts et Chaussees" in France during the first half of the nine­

teenth century. Darcy, while director of public works at the city of Dijon, performed

a series of research on the flow of water through sand bed filters. From the results of

these studies, he developed a law for flow through porous media [31], named Darcy's

law. This law simply stated that the superficial velocity of flow is directly related to

the pressure gradient through the bed of fine particles by a constant of proportion­

ality that includes both the soil and water properties. This law is widely used for

investigating the behavior of water flow through porous media, such as underground

flow to wells, flow in soils being irrigated, and flow through earth dams. Flow of

oil in underground formations has also been found to follow Darcy's law. Dupuit,

another member of the "Corps des Ponts et Chaussees," continued Darcy's work on

flow through porous media and published his work in a book on the transportation
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and distribution of water [38].

The expression of Darcy's law is obtained by considering water flow through

soil as a continuum. In other words, this law averages all the motions of the fluid

inside t1;le pores of the soil continuum. Hence, Darcy's law represents an average of

the microscopic behavior of flow in the soil continuum. Furthermore, Darcy's law is

valid only for a range of slow velocity flows that are usually found in soil (i.e., for

flow for which Reynolds number, Re, is smaller than 1). For large Reynolds number

flow, the linear relationship given by Darcy's law is no longer valid.

In 1899, Slichter [79] studied geometrical arrangements of spheres in order to

reduce the hydraulics of a complex. soil to an idealized system. He also made the

first attempt to derive the porosity function for beds of uniform spheres, by making

the simplifying assumption that the average cross-sectional area for a flow would be

triangular. Applying the equivalent of Poiseuille's law for a flow through a tube of tri­

angular section, he obtained Darcy's permeability equation. Unfortunately, Slichter's

basic formula proved to be inadequate due to its oversimplification. Nevertheless, his

study provided the starting point for many subsequent works.

In parallel to the experimental studies of flow through granular media, theo­

retical developments on slow flow of fluids have also been accomplished. One of the

earliest was performed by Stokes on the resistance of a solid body moving relative to

a fluid. For this study, fluid viscosity was taken into account. In 1851, he published

a paper [83] in which the so-called linearized form of the general equations of motion

of a viscous incompressible fluid, i.e., a time-dependent form of the creeping motion

.equations, was used to estimate the frictional damping of the motion of a spherical

pendulum bob due to air ~esistance. The resistance to fall of a spherical body was

also presented in this paper. The relationship between the drag force and the radius

and velocity of a falling sphere that he developed, known.as Stokes' law, is still used
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in estimating the size distribution of grains in a soil. Stokes' law applies only to

situations where the particles are far enough so that the motion of each one is not

affected by the motion of its neighbors.

Lorentz [58], following the method developed by Stokes [82], determined the

motion of a sphere in the presence of a plane wall. The technique used involved

reflection of the original motion produced by the body from the surface of the wall

and back again. Smoluchowski, a Polish mathematician, employing the same tech­

nique of reflection, was able to study the effects of hydrodynamic interaction between

two spheres moving in a viscous fluid [80] and the sedimentation of an assembly of

spheres [81]. Cunningham [28] studied the sedimentation of a cloud of particles in a

closed vessel, employing a cell model. His estimate of the decrease in terminal settling

velocity due to particle interaction was based on the approximate assumption that

each particle moves, on the average, as if it were contained in a rigid spherical enve­

lope of radius equal to half the distance to its nearest neighbors. Many of the early

contributions to low Reynolds number hydrodynamics can also be found in Oseen '8

book [69].

It is also interesting to note that Einstein's doctorate thesis was concerned,

among other things, with a new method for determining the size of molecules of

chemical substances. In order to accomplish this, he developed a theory for the

resistance to shear of a suspension of small spherical particles immersed in a contin­

uous fluid, as a model for large molecules in solution. He showed theoretically that

the apparent increase in viscosity of the suspending liquid could be related to the

volumetric concentration of solid particles (or solute molecules) by a simple propor­

tionality constant [40]. Einstein's law for suspension viscosity has been used as the

basis for almost all theories of the behavior of suspensions in shearing fields of flow.

Like Stokes' law, Einstein's law applies to cases where the suspended particles are far
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enough apart on the average that their motion is not influenced by mutual interaction

of the disturbances produced by individual particles.

Recent developments in flow through porous media have been more varied and

more numerous. These developments were motivated by the needs of different scien­

tific communities. The various disciplines that have studied fluid flow through porous

media comprise:

• Chemical engineering: In this field, usually interaction of particles is neglected

so that the fundamentals of single particle motion apply, and this application

refers essentially to dilute systems of particles.

• Civil engineering: Although the infiltration of water and oil through soil has

been studied routinely by assuming the validity of Darcy's law, no work has

been performed to study the microscopic behavior of flow through an assembly

of particles. For dilute systems, such as the transport of sediments, the analyses

led to microscopic studies. Saltation, the transport of particles (generally sand)

by the wind is also of particular interest.

• Biology: Normal blood is a suspension of flexible particulate matter (red cells,

white cells, and platelets) in a continuous medium, the plasma. Therefore, micro­

scopic studies are required for a better understanding of the difference between

an idealized man-engineered blood system and a real one.

The above branches are not necessarily the only ones interested in fluid flow

through porous media. Other scientific fields, such as mining engineering, physical

sciences, and earth sciences have also contributed to the study of this topic.

Although Darcy's law has been used with great success for modelling fluid

flow through porous media, its development was made by assuming the medium as a

continuum. In other words, Darcy's law provides a macroscopic behavior of fluid flow.
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To study the details of an incompressible fluid flow through an aggregate of particles,

the equations of motion of the fluid phase can be described by the Navier-Stokes

equations.

In the classical theory of fluid mechanics, the Navier-Stokes equations proved

to be a major achievement to describe the motion of an isothermal, incompressible

fluid with constant density and viscosity. However, owing to its nonlinearity, the

solutions of these equations under given boundary conditions are difficult to obtain.

Furthermore, due to their generality, the Navier-Stokes equations have proved to be

cumbersome in describing fluid flow through porous media. By reducing the Navier­

Stokes equations to the so-called creeping motion equations, or Stokes' equations,

the equations of motion of fluid flow become linear and are easier to handle. At the

fundamental microscale, Stokes' equations provide a complete description of the entire

flow field. By performing appropriate volume averages of Stokes' equations, Darcy's

law, which was established empirically at the macroscopic level, can be obtained.

Therefore, Stokes' equations give an adequate description of the fluid flow at the

microscopic level.

In the following, first, the derivation of the Navier-Stokes equations will be

presented, however, due to the complexity in solving these equations, they will be

simplified by assuming quasi-steady flow and neglecting the inertial term. This then

leads to the Stokes' equations.

3.2 The Navier-Stokes Equations

3.2.1 Development of the Navier-Stokes Equations

Assuming isothermal flow of a homogeneous viscous fluid, the equation of continuity

is obtained from the conservation of mass of a small stationary volume element within
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a flowing fluid. In vector form, this equation is given by:

8p
- = -V'. (pu)
8t

(3.1)

where p is the local density of the fluid, u is the local mass average fluid velocity,

and 8/at refers to the time rate of change at a fixed point in the fluid. The quantity

V'. (pu), which is called the divergence of pu, expresses the net rate of mass efflux per

unit volume. In other words, the continuity equation (equation (3.1)) states that the

sum of the rate of change of mass inside a control volume and the net rate of mass

efflux through the control volume is zero.

An alternative form of the continuity equation is given by:

Dp
- = -pV'·u
Dt

(3.2)

where the operator D/ Dt, called the substantial derivative or Stokes operator, is

defined as:
D 8
-=-+u·V'
Dt 8t

(3.3)

This later form of the equation of continuity describes the rate of change of density

as measured by an observer moving along with the fluid.

If the fluid is also assumed to have constant density p (i.e., incompressible), the

continuity equation simply reduces to:

V'·u=O (3.4)

The equation of conservation of linear momentum is obtained by the application

of Newton's laws of motion to a differential volume of fluid. These laws may be

interpreted as stating that the external force acting on a stationary fluid element is

equal to the time rate at which momentum is being created within the element. There

are two external forces acting on the fluid element: (a) the surface or contact forces

exerted by the fluid stresses acting over the surface of the element and (b) the volume
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or body forces exerted on the element (such as gravity). The rate of creation of

momentum in the volume is given by the sum of the rate of accumulation or increase

of momentum in the volume and the net rate of efflux of momentum out of the volume

element through its surface. Hence, the equation of linear momentum is given by:

fJ(pu)
-- + V' . (pu0U) = V' . T + pXat (3.5)

The left-hand side of equation (3.5) expresses the rate of creation of momentum per

unit volume, which is the sum of the rate of increase of momentum per unit volume

(fJ(pu)jfJt) and the rate of momentum loss by convection though the surface, per

unit volume (V' . (pU0u)). The right-hand side of the above equation relates to the

external forces per unit volume. The quantity (V' . T) gives stresses on the surface

per unit volume, whereas (pX) are the external body forces on the element per unit

volume.

The second rank stress tensor T is defined according to the usual convention,

that is, if dS is a directed element of surface area, dS . T is the contact force exerted

by the fluid into which the vector dS is directed on the fluid on the opposite side of

the surface element. If T is assumed to be symmetric, its nine components, Uij, are

reduced to only six independent ones (i.e., Uij = Uji).

The external body force, X, is a force per unit mass. Typically it arises from

the action of gravity. For example, if g is the acceleration of the gravity vector, then

X=g.

Also, in equation (3.5), V'. (pU0U) represent a vector due to the dyadic product

of the velocity vector u (i.e., u0u represent a tensor of rank 2). Similarly, V' . T is

also a vector because T is a tensor.

By combining equations (3.4) and (3.5), and after rearrangement, equation (3.5)

becomes:
Du

p- =V'·T+pX
Dt

(3.6)
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Here, the substantial derivative of the velocity vector is defined as:

Du 8u
Dt :;:: at + u· (Vu) (3.7)

Note here that the quantity Vu, which represents the gradient of the velocity vector,

is a tensor of rank 2.

As expressed in equation (3.6), the left-hand side gives the mass-per-unit volume

times the acceleration, whereas the right-hand side represents the sum of the stresses

and body forces on the element, per unit volume. In this form, the equation of

momentum is referred to a small volume element moving with the fluid and accelerated

by forces acting upon it.

Referring to an orthonormal system of axes (Xl, X2, X3), equation (3.6) can be

written explicitly as:
8Ui 8Ui 80'ji
p- + PUk- = - + pXi (3.8)

8t 8Xk 8xj

The components of the velocity vector, u, and the body force, X, are respectively

(Ul, U2, U3) and (Xl,X2,X3). Before equation (3.6) can be used to solve problems,

suitable expressions for the stresses must be obtained in terms of the velocity field.

Assuming Newtonian fluid, i.e., the stress is proportional to the rate of shearing

strain (angular deformation rate). The stresses may be expressed in terms of velocity

gradients and fluid properties as follows:

T = -pi +2p.D. (3.9)

where p is the local thermodynamic pressure, p. is the shear viscosity or dynamic

viscosity, I the unit tensor (or identity matrix, [hjk]) and the tensor D. is defined as:

. 1 t 1
D. = -[(Vu) + (Vu) ] - -(V· u)1

2 3

Here, (Vu)t represents the transpose of Vu. The pressure is given by:

1
p = --O'ii

3

(3.10)

(3.11)
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Substituting the expression of T from equation(3.9) into equation (3.6), the

general equation of motion for an incompressible newtonian fluid is given by:

This equation, along with the continuity equation and the equation of state

p = pep, T) (where T represents the temperature), the density dependence of the

dynamic viscosity J.L = J.L(p, T) and the boundary and initial conditions, determines

completely the pressure, density, and velocity components of a flowing isothermal

fluid.

When the gra"dients of temperature and pressure are small, terms in V' J.L may

be omitted, i.e., the dynamic viscosity is assumed to be constant.

Finally, for constant density p, i.e., incompressible fluids (V'·u = 0) and constant

dynamic viscosity, equation (3.12) reduces to the so-called Navier-Stokes equations:

Du au
p- = p(- + u· V'u) = -V'p + J.LV'2 U+ pX

Dt Ot
(3.13)

which were first derived by Navier in 1827 [63] and modified by Stokes in 1845 [82].

Assuming an orthonormal coordinate system, the equations of continuity and

motion of an incompressible fluid with constant density and viscosity are given ex-

plicitly as:

(3.14)

(3.15)

and
OUi OUi 1 op 2
-+Uj-= ---+vV' 'Ui+X,at OXj p OXi

where v = J.L / p = kinematic viscosity.

The components of the symmetric stress tensor, T, are given explicitly as:

(3.16)
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Note that in equation (3.16), Ojj represents the Kronecker symbol (Ojj = 1 if i = j

and Ojj = 0 if i #- j).

When J1. =0, the Navier-Stokes equations (equation (3.13)) reduce to the well­

known Euler equation for a frictionless or ideal fluid. In the case of irrotational motion,

Le., V x u = 0, the equations of potential flow is obtained. These form the basis for

most of the classical hydrodynamic theory. Because steady potential streaming flows

exert no force on stationary solid bodies, the theory is useful mostly for predicting

fluid flow patterns at a distance from boundaries.

Due to their nonlinearity, solutions of the Navier-Stokes equations are difficult

to obtain both analytically and numerically. Further assumptions are required in

order to obtain a simpler form for the equations of motion. This leads to Stokes'

equations, which are described in the following.

3.3 The Stokes' Equations

3.3.1 Development of the Stokes' Equations

One common way of simplifying the Navier-Stokes equations is to assume that the

flow is quasi-steady, i.e., that the dependence on time, au/at, can be neglected. This

assumption is acceptable for the range of small velocity found in flow through granular

media. This -means essentially that for a dynamic problem, the instantaneous drag

force acting on an object is a function of the geometry of the problem at that particular

instant of time only. -Furthermore, the inertial term, pu . Vu, is assumed to be small

_compared to the viscous term, J1. V2U, and therefore is omitted from the Navier-Stokes

equations. These two assumptions lead to the so-called creeping motion or Stokes'

equations. Thus for a quasi-steady incompressible isothermal fluid with constant
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viscosity, the equations of motion are given by:

1 .
vV2U--Vp+X=0

p

V'U=O

(3.17)

(3.18)

By neglecting the inertial term and the time dependence term, the equations

of motion have now become linear. If, in a given flow problem, I and U represent

respectively the characteristic length and velocity, then the inertial term and viscous

term are respectively proportional to (pU2II) and (pUlP). Assuming that pu' Vu ~

JLV2 U is equivalent to saying that (pU2/I)/(pUIP) ~ 1 or (pU1lp) ~ 1. This last

ratio is the Reynolds number. Thus, the smaller the Reynolds number, the better the

approximation of the Navier-Stokes equations by equations (3.17) and (3.18). For the

type of flow through porous media that are dealt with in this study, the assumption

of small Reynolds number (Re ~ 1) is appropriate.

3.3.2 Stokes' Paradox

In the case of two-dimensional flow that is studied in this work, it is interesting to

note Stokes' paradox, which was pointed out by Stokes himself. He stated that it is

impossible to find a steady two-dimensional solution that satisfies equations (3.17)

and (3.18) and boundary conditions. Three-dimensional solutions do not have this

problem. Stokes' paradox can be illustrated with a dimensional argUment: if iner­

tia is negligible, the force, F, acting on a cylinder, placed perpendicular to a two­

dimensional streaming motion, and having a radius R must depend only upon free

stream velocity U, fluid viscosity JL, and characteristic length R:

F = f(U,JL,R)

From dimensional analysis, it can be shown that:

F
- = constant
pU

(3.19)

(3.20)



62

This second equation is quite unrealistic as verified by numerous experiments.

It means that the drag force on the cylinder would be independent of the radius R of

the cylinder. Thus when the radius of this cylinder approaches zero, the force would

not vanish, as it must in reality. It follows that if the inertial term is not negligible,

there must always be a density effect in plane creeping motion, i.e.,

F = !(p, U, j.t, R)

or

(3.21 )

This relation no longer conflicts with physical plausibility, providing that the function

vanishes when (pUR/J.t) -+ O. Mathematically, Stokes' paradox means that a plane

creeping solution will produce a logarithmic singularity at infinity unless inertia terms

are accounted for.

Fortunately, two-dimensional solutions of Stokes' equations exist in the case of

bounded regions.

3.3.3 Stream Function Formulation of Stokes' Equations

It is sometimes convenient to formulate Stokes' equations in terms of stream functions.

This transformation is given as follows.

IT the body force is present and if it can be expressed as a gradient of a field, then

the body force term can be combined with the pressure term. Thus the equation of

motion becomes homogeneous. In the following, the equation of motion is assumed to

be homogeneous, that is, the body force term is either simply neglected or combined

with the pressure term.

Assuming that u = ('U}, 'U2) defines the velocity in the (x}, X2) plane, the vor-

ticity vector is defined as:

1v= -V x u
2

(3.22)
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In two-dimensions, V is a vector perpendicular to the (xl' X2) plane. Its coor-

dinate along the axis perpendicular to this plane is given by:

(3.23)

The equations of motion are given explicitly as:

(3.24)

(3.25)

Differentiating equation (3.24) with respect to X2 and equation (3.25) with respect

to Xl and subtracting one from another, yields:

(3.26)

By defining the velocities in terms of stream functions, t/J,

Ot/J
UI - OX2

ot/J
(3.27)U2 - OXI

such that the continuity equation is automatically satisfied, and by substituting these

velocities into equation (3.23), we obtain:

(3.28)

Combining equations (3.28) and (3.26), we finally get:

(3.29)

That is, the stream function, t/J, satisfies the two-dimensional bi-harmonic equation.

Although in some instances, this form of the Stokes' equations can be conveniently

used, the boundary conditions, especially for the vorticity term, are difficult to define.

This form is used for numerical solution of the Stokes flow because it is analogous to

the solution of the well-known elastic plate equation.
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3.3.4 Relationship between Stokes' Equations and Darcy's Law

The one-dimensional empirical relationship discovered by Darcy has served as the

starting point for numerous applications. While the original conditions studied by

Darcy are found in many practical situations, it is the extensions to more general

cases that are especially deserving of theoretical analysis because they usually rep­

resent situations in which experiments are difficult to perform. The extension to

three dimensions of Darcy's law would be practical because it covers many types of

real groundwater flows or oil recovery processes. While Darcy's law is being used

with great frequency for three-dimensional flow, no experimental verification of the

obvious tensorial representation of Darcy's empiricism seems to exist. On the other

hand, there are many theoretical treatments that lead to this result (cr. Gray and

O'Neil [45], and summaries of the subject are also given by Bear [5]). However, in all

of these developments, one or several constitutive assumptions were made to obtain

the final conclusion. The only exceptions appear in the works of Brenner [9] and

Whitaker [97].

In Brenner's work, Stokes flow in a spatially periodic porous medium was an­

alyzed in order to produce Darcy's law for the case in which the volume-averaged

velocity is constant. Whitaker's approach, which is also devoid of any constitutive

model, considers the momentum balance equation (i.e., equations of motion) of the

fluid phase only, regarded as a continuum. Accordingly, he derived the equation of

motion for the fluid phase present in the void space of a porous medium by taking an

appropriate volume average of the equations of motion of this phase. By assuming

that (a) the inertial effects, and (b) the internal friction inside the fluid are negligible

in comparison to the drag produced at the fluid-solid interface, Whitaker proved that

Darcy's law can be obtained from this process of averaging the Stokes' equations.

Whitaker's work presents the following advantage over Brenner's work: (a) spatial
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periodicity and (b) homogeneity of the porous media are not required in the analysis.

From these theoretical works, it can be concluded that Darcy's law depicts

the macroscopic behavior of the flow whereas Stokes' equations give the details (i.e.,

microscale) of the fluid flow considered as a continuum.

3.4 Continuum Approach to Fluid Flow in Porous Media

Assuming that Stokes' equations hold for the fluid phase of a porous medium, it

becomes clear from these equations that if the velocity is known, the pressure, and

therefore the drag force exerted by the fluid, can be obtained. If an assembly of

particles, such as the one represented by the Distinct Element Method in the previous

chapter, is submerged in a fluid phase, then the drag force acting on each particle

can be determined because the velocity of each particle is known. This drag force can

be added to the interparticle contact forces resulting from the solid-solid interactions

to produce the global forces acting on each particle. This global force is used to

determine the new velocity of the particle, which in turn will determine the new

boundary conditions for the fluid phase and the creation or breaking of solid-solid

contacts. Thus, the simulation of a bi-phase system in which solid-solid and solid­

fluid interactions are considered can be simulated.

The assumptions applying to the fluid phase that lead to this model are listed

as follows:

1. Isothermal flow: the flow occurs at constant temperature.

2. Incompressible fluid: the density of the fluid phase is assumed constant.

3. Constant viscosity.

4. Newtonian liquid.
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5. Quasi-steady flow: the drag force acting on a particle is only a function of the

geometry of the problem at that instant of time. This assumption is valid for

the range of low Reynolds number flow studied here.

6. Omission of the inertia term: for low Reynolds number flow (Re ~ 1) found in

practical underground flow, this assumption is acceptable.

Additional assumptions are required before the complete description of the bi-phase

model can be given.

In three dimensions, the fluid phase of an aggregate of polyhedral or spherical

shaped particles is a continuum, that is, the fluid phase constitutes a single domain.

This is not always the case in two dimensions. As illustrated in Figure 3.1, the

fluid phase could be divided into several pockets of fluid trapped in between particles

and outer boundary walls. In principle, the velocity at the boundary of each pocket

can be easily obtained from the velocity of the particles and walls that form. the

boundary of that pocket. Therefore each pocket can be treated as separate bodies of

fluid to be handled individually. The fluid force acting on a particle is obtained by

summing all the contributions from different fluid pockets with which the boundary

of the particle is in contact. The problem that arises from this solution method is

the delineation of the fluid pockets. Although this delineation can be easily done

visually, an algorithm performing this task would be very complicated. This division

of the fluid domain into pockets can be completely avoided if we assume that the

fluid phase occupies only a single domain. For this, we allow the particle to shrink

slightly so that all the fluid pockets become interconnected (see Figure 3.2). The

fluid phase can now be visualized as a single domain with multiple holes (i.e., a swiss

cheese-like geometry). At the boundary of each hole, particle velocities are prescribed.

Under this assumption, the modelling of the fluid phase is far easier than the one with

different fluid pockets. This idealization is similar to a three-dimensional model where
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the fluid phase is .a continuum. However, this model requires the specification of a

minimal gap between the particles.

Due to the contact between
particles, the fluid phase is
divided into 2 pockets:
Pl and P2.

Figure 3.1: Fluid pockets inside a 2D saturated assembly of particles

By allowing the particles
to shrink slightly, the fluid
pockets are now interconnected
and form a single fluid domain.

Figure 3.2: Shrinkage of particles to produce a single domain fluid phase
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Finally,- for the sake of simplicity, all particles are assumed to be completely

submerged in the fluid phase (i.e., the study considers a saturated granular medium).

Thus the capillary effect can be ignored. Furthermore, the outside boundary of the

fluid domain can be simply determined because no particles are allowed to cross this

boundary.

In summary, the model that will be used to simulate a saturated granular

medium consists of:

1. A solid phase with contacting particles.

2. A continuum fluid phase with multiple holes at the location of each particle.

To obtain this geometry, the particle size is allowed to shrink enough so that

interconnection of fluid pockets that used to be trapped between particles and

boundary walls become interconnected. In this case, the fluid is allowed to flow

in between the gap. The quantity of fluid flow through this gap is controlled

. by the gap width. If this width is chosen small enough, the flow could become

negligible.

The algorithm used in the computer program NePTune (New Program by Tan

for useful numerical experiments) obtained by introducing a fluid phase to the DEM

algorithm is as follows:
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read simulation parameters and initial conditions
for all time ti steps do

shrink the radius of the particles until all fluid pockets become interconnnected
solve for the fluid force acting on each particle from known

velocities of particles and walls
for each disc a do

assemble the disc contact list, i.e., all objects in contact with a
for each object of the contact list do

compute outward normal vector
compute incremental velocities at contact
compute contact forces and update contact information

compute accelerations for disc a at time ti by
considering contact forces and fluid forces acting on the disc

for each disc a do
integrate for velocities at time ti+~

integrate for displacements and rotations at time ti+l
update disc information array
update list of contacts made or broken
update wall motion and wall information array

end of simulation

From this algorithm we observe that the boundary conditions used for solving

the fluid phase are out of phase from that of the solid phase by half a time step.

Performed numerical simulations have shown that the error introduced is negligible,

especially when the time step required is small.

The numerical treatment of Stokes' equations will be presented in the following

chapter. Owing to the complexity of the fluid domain, the boundary element method

is used to model the fluid phase.
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Chapter 4

NUMERICAL SOLUTIONS OF STOKES' EQUATIONS

In this chapter, the numerical implementation of Stokes' equations is given. The

boundary element method [1,8,7] is chosen to model the fluid phase based on its

flexibility in discretizing the domain. Three test cases have been included to verify

the validity of the numerical formulation.

4.1 Governing Equations of Motion

Recalling from the preceding chapter, the governing equations of motion of a New-

tonian, incompressible fluid in a cartesian coordinate system can be summarized as

follows:

• Conservation of linear momentum:

Ujk,k + pXj = 0

• Conservation of mass:

• Constitutive equation:

where
1 .

d'k = -(U'k +Uk ,)J 2 J,. ,J

(4.1 )

(4.2)

(4.3)

(4.4)
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where (jjk is the stress tensor, Uk are the velocity components, p is the fluid density, X j

are the body force components per unit mass, p is the pressure, 8jk is the Kronecker

symbol, Jl is the constant viscosity and djk is the rate of strain tensor. The tensors (jjk

and djk are both symmetric tensors. The above equations are assumed to be satisfied

in a domain n, the domain of the problem.

These governing equations must satisfy the following boundary conditions:

Uj - iij, on r 1

tj - (jjknk = tj , on r 2 (4.5)

where tj are the component of the traction vector, nk are the components of the unit

outward vector normal to r, Uj and tj are the components of the specified velocity and

traction vectors on r 1 and r 2 , respectively, and r 1 and r 2 are parts of the boundary

of the domain n. Furthermore, it is assumed that r 1 U r 2 = r, where r constitutes

the complete boundary of region n.

Equations (4.1) - (4.4) and the boundary conditions (equation (4.5)) deter­

mine completely the pressure, density, and velocity components of an incompressible

viscous flow field.

4.2 Different Approaches for Solving Stokes' Equations

The most common approach used for solving Fluid Mechanics problems is the finite

difference method [13,71]. Due to the simplicity of formulation, the use of finite differ­

ences allows concentration on the particular nature of ~he flow problem rather than

on the numerical tool used for solving it. However, the main difficulty in the use of

finite differences lies in the incorporation of the boundary conditions. In the analy­

sis, because the differential equations of equilibrium of the system are approximated

directly by the difference scheme, it is necessary in the differencing to satisfy both
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the essential and natural boundary conditions. This can be difficult to achieve at

arbitrary boundaries, because the topology of the finite difference mesh restricts the

form of differencing that can be performed. Also, the matrix formed by this method

is not always sYmmetric and requires lengthy operations for inverting it.

To overcome the difficulties introduced by the finite difference method, the fi­

nite element approach has been used increasingly in fluid flow analysis. Taylor and

Hood [86] presented two approaches for solving the Navier-Stokes equations (i.e.,

including convection and time-dependence terms). In their first formulation, the ve­

locity and pressure are the physical variables used for solving the problem. Using this

approach, the boundary conditions are easily defined because the variables used are

directly related to physical variables. In their second formulation, the Navier-Stokes

equations are transformed to include the stream function and the vorticity. However,

the solution method in this second approach is not straightforward because gener­

ally the vorticity is not known on boundary walls, and the specification of boundary

conditions on pressure, except for the simplest problems, is practically impossible.

Nevertheless, this second approach has also been adopted by Tong and Fung [90] to

solve biomechanics problems involving slow particulate viscous flow in channels and

tubes.

The numerical implementation of both the finite difference and finite element

approaches are relatively straightforward. However, due to their discretization of

the physical domain, these solution techniques are not the most convenient ones

for modeling the fluid phase in this study. For example, to obtain the solution of

a particular problem, the physical domain needs to be discretized into a mesh for

the finite difference method or several elements in the case of the finite element

method; thus, solving fluid flow through pores of an assembly of particles requires the

discretization of a domain with a complicated shape. Furthermore, these techniques
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also provide solutions at locations not directly adjacent to a particle (i.e., inside the

fluid medium itself), which are not required to obtain the solution of the problem.

In fact, what are needed are only the solutions at the periphery of a particle because

these completely determine the reaction force of the fluid on the particle. Therefore,

knowledge of the solutions at points inside the fluid phase other than those at the

periphery of a particle is not necessary. In other words, the motion of a particle is

only a function of the inter-particle contact forces (solid-solid interaction) and the

drag force generated by its motion inside a viscous, incompressible fluid (solid-fluid

interaction).

Because solutions are needed only at the boundaries of solid particles, this sug­

gests that the boundary element method (BEM) [1,8,7] might be the most convenient

one to use for solving flow of the fluid phase. The BEM reduces the dimensions of the

problem by one through re-formulating the problem in the form of boundary integral

equations. This method is well suited for solving the fluid phase problem because

the two-dimensional domain occupied by this phase is now reduced to curves along

the boundaries of particles and walls. Although the formulation of the BEM is quite

straightforward, its implementation is usually complicated because it involves non­

singular functions. Furthermore, the matrix that arises from the BEM formulation is

non-symmetric and full. To obtain the solution of the problem, this matrix needs to

be inverted at each time step and this requires lengthy computations.

Like the finite element method, Stokes' equations can be solved by two dif­

ferent approaches using the BEM. In the first formulation, Stokes' equations are

transformed by introducing the stream function. In this case, the bi-harmonic equa­

tion (equation (3.34)) is obtained and solved. Bezine and Bonneau [6] presented a

formulation based on this approach. They adopted this method because of its sim­

ilarity to the equations of plate bending problems. Like the finite element method,
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the difficulty of this approach lies in the specification of boundary conditions. A sec-

ond approach using physical variables, i.e., velocity and pressure, was presented by

several authors [10,56,91]. This formulation is probably the most useful one because

the physical variables used here have direct significance and can be easily specified.

The velocity-pressure approach will be the method used for solving the fluid phase

flow and its formulation is presented in the following.

4.3 Boundary Integral Formulation

Let Uj, p, and Uij be a set of arbitrary velocity, pressure, and stress weighting fields

(weighting functions). If uj, p, and Uij do not identically satisfy equations (4.1)

and (4.2) in n, the following weighted residual statement can be written:

(4.6)

Integrating by parts the term involving Ujk,l" equation (4.6) becomes:

- k UjkUj,kdn +1UjknkUjdI' +kPXjujdn +k uk,kpdn = 0 (4.7)

From the definition of traction (equation (4.5)), it follows that equation (4.7) can be

written as:

Because uj, p, and Uij can be chosen arbitrarily, they can be selected to be

Newtonian, incompressible fields, i.e.,

Uk,k - ·0

Ui,j - -Phij + julij

dij Ie A)- '2 Ui,j +Uj,i

A viscosity of the weighting fieldp. -

(4.9)
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From the symmetry of Ujk and djk ,

(4.10)

Using the constitutive equation (4.3) and considering the incompressibility of

the weighting field, equation (4.10) can be rewritten as:

(4.11 )

Similarly,

(4.12)

The value of fi is chosen such that:

(4.13)

Combining equations (4.11) - (4.13) yields:

(4.14)

This last equation is also known as the reciprocal theorem for incompressible viscous

flow.

Substituting equation (4.14) into equation (4.8), we obtain:

(4.15)

Integrating by parts the term involving o-jlc and retaining the other terms give:

(4.16)

The left-hand side of equation (4.16) can be further reduced by an appropriate

choice of the weighting field. This reduction is explained in the two following sections.
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4.3.1 Choice of the Fundamental Solutions or Kernels

The weighting field is chosen such that:

(4.17)

where ~(P, Q) is the Dirac delta function. This function has the following properties:

~(P,Q) - 0, if P:I Q

~(P,Q) - 00, if P = Q

fof(Q)~(P, Q)dD.(Q) = f(P)

(4.18)

The components of velocity and traction of the weighting field at any point of

the domain are given by:

Uj(Q) - Luij(P,Q)
i

tj(Q) - Ltij(P, Q) (4.19)

where uij and tij represent respectively the j component of velocity and traction

generated at point Q by a unit load at P in the i direction. In other words, the

components of the velocity and traction can be visualized as the sum of the individual

j components of the velocity and traction generated by unit point loads in two or

three directions for two- or three-dimensional space.

In the case of an incompressible fluid flow, the (.)* field, which is also known as

the fu.ndamental solu.tion or kernel, is given by the so-called Stokeslet [14,47]. In two

dimensions, it is defined as follows:

uij(P,Q) 1 {. 1 }- - In(-)6i
o +rir °47rJ.l r 3 ,,J

_ _~ {ar r or o}
7rr an ,I .3

(4.20)

(4.21)

where r = rep, Q) = IIPQII, is the distance between the source point Pand the field

point Q, and n is the unit outward normal vector. The derivatives are taken with
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reference to the coordinates of the field point, Q, i.e.,

r - Jriri

ri = Xi(Q) - Xi(P) (4.22)

or ri
r· - =-II OXi(Q) r

These fundamental solutions satisfy Stokes' equations in an infinite domain with

a unit point source in the i direction at P. With this choice of fundamental solutions,

equation (4.16) can be reduced as follows:

4.3.2 Boundary Integral Formulation for a Point Inside the Domain

Given a point P inside the domain n, substituting equation (4.17) into (4.16) yields:

Ui(P) = pfoXjU~j(P, Q)dO(Q) -fr t7j(P, Q)uj(Q)dr(Q) + Iru'[j(P, Q)tj(Q)df(Q)

(4.23)

This last equation is similar to Somigliana's identity in solid mechanics.

4.3.3 Boundary Integral Formulation for a Point On the Boundary

If PEr, equation (4.23) is still valid; however, the second and third terms of the right­

hand side ofthis equation include singular terms (i.e., Uij = ft(l/r) and tij = f2(1/r);

when P = Q,r = 0, and thus uij and tij become singular). Assuming that the

boundary is smooth at P, we can represent it by a half circle (see Figure 4.1) centered

around P and having a radius €. By taking € ~ 0, this half circle tends, in the limit,

to point P.

In this case, the second term of the right-hand side of equation (4.23) can be

written as:

(4.24)
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Figure 4.1: Singular point replaced by a half circle

Considering only the f\ integral, we obtain:

Along t f , we have:

r=€

nl = cosO, n2 = sinO

r.l = cos 0, r,2 = sin 0

therefore,
or- = r,n, = 1on '

hence,

(4.25)

(4.26)

(4.27)

(4.28)
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When i = 1 for example, using the geometry shown on Figure 4.1, Ii becomes:

Similarly,

Finally,

Itt - lim[-~ r(rtrtUt+rtr2U2)rdO]
f-O 7TT Jo .. .,

- lim [_.!.. r (cos2 OUt +cos 0 sin OU2 )dO]
f-O 7T Jo

1
- -2"Ut +OU2 (4.29)

(4.30)

(4.31 )

It is understood that the second term in the right-hand side of the above equation is

defined in the sense of Cauchy Principal Value.

Performing the same procedures for the third term of the right-hand side of

equation (4.23), we obtain:

f u~.tjdI' =lim {f u~.tjdI'+ f u~.tjdr}Jr 'J f_O Jr-r. 'J Jr. 'J

Considering only the rf integral, we obtain:

When i = 1, for example, Ii is given by:

I; - !~{f fo1r [In(~)tl +cos () sin (}t2 + cos2 (}t1] d() }

- 0

Similarly,

(4.32)

(4.33)

(4.34)

(4.35)
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The singularity found in the third term of equation (4.23) does not present the strong

singularity type encountered in the second term.

Defining,

the integral equation for a point on a smooth boundary is given by:

(4.36)

Cij(P)Uj(P) - pfouij(P, Q)Xj(Q)dn(Q) + lruij(P, Q)tj(Q)dr(Q)

-ltij(p, Q)Uj(Q)dr(Q) (4.37)

If the location of point P is not smooth, i.e., P is at a sharp corner of r, the

tensor [Cij{P)] is given by [46,53]:

1 [28 + (sin 281 - sin 2(2 )
[Cij{P)] = -

471' (cos 282 - cos 2(1 )

(cos 282 - cos 28d ]

28 - (sin 281 - sin 2(2 )

(4.38)

in which the angles 8,8b and 82 are shown positively on Figure 4.2.

2

1

Figure 4.2: Definition of angles used in tensor [Cij(P)]
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4.3.4 Numerical Implementation of the Boundary Integral

The integral equation (4.26) involves an integration over the domain 11; therefore the

domain must a1so be discretized. However, if the body force is simply that of gravity,

this integral can be handled separately. We are then left with integrals involving only

the boundary r. The following gives the numerical implementation of the boundary

integral equation and the special handling of the body force term.

4.3.4.1 Body Force Tenn

If the body force consists only of the gravity field (i.e., X = g), the linearity of Stokes'

equations requires the solution to the equation motion to correspond to the static

pressure. The force generated by the gravity field on an immersed particle is simply

the buoyancy force, i.e.,

B = -pAg (4.39)

where B is the buoyancy force, and A the area of the particle. This force can be

computed explicitly and need not be integrated numerically.

In this case, the boundary integral equation remaining to be solved is reduced

to:

C;j(P)Uj(P) = Ju'ij(P, Q)t;(Q)df(Q) - ktij(P, Q)Uj(Q)df(Q)

4.3.4.2 Vectorial Notation

(4.40)

For the sake of simplicity in the numerical implementation, a vectorial formulation

will be used instead of the indicial notation.

Let x, u, and t be respectively the position, velocity, and traction vectors,

(4.41 )
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Also, by defining the following matrices:

* _ [Uil Ui2] * _ [ til
U - ,t -

u21 u22 t 21
ti2 ] , c* = ~ [1 0].
t* 2 0 122

(4.42)

the integral equation (4.40) for a point on a smooth boundary is given by:

c(P)u(P) +kt*(P,Q)U(Q)df'(Q) =kU*(P,Q)t(Q)df(Q)

It is in this form that the integral equation will be implemented numerically.

4.3.4.3 Numerical Implementation Steps

(4.43)

In order to solve the integral equation numerically, the following approach is used:

1. The boundary f is discretized into a series of elements over which velocities and

tractions are chosen to be piecewise interpolated between the elements' nodal

points..

2. Equation (4.40) is applied in discretized form to each nodal point P of the

boundary f and the integrals are computed (usually by a numerical quadrature

scheme) over each boundary element. A system of linear equations can then be

obtained.

3. Boundary conditions are prescribed that complete the system of linear equations

obtained in step 2. This system of equations is solved by standard methods to

obtain the unknown boundary values.

4. If solution at a point inside the domain is required, equation (4.23) is used where

the integrals are evaluated numerically.

4.3.4.4 Discretization of the Boundary

The boundary r is divided into Ne segments or boundary elements as shown on

Figure 4.3. Several types of elements are used in the BEM, the most common ones
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being the constant, linear, and quadratic elements. For the constant element, the only

node of each element is located at the middle of the element. Because each element

has only one node, there can be no variation of variables along an element. In other

words, the value of each variable is constant throughout the element. For a linear

element, each element contains two nodes and variables are assumed to vary linearly

between the nodal values. The quadratic element consists of three nodal points per

element; therefore, variables along each element are obtained by using quadratic

interpolation functions. The choice of the type of element to be used depends on

the type of problem to be solved. However, it is quite obvious that the higher the

order of the element used, the more accurate the solution can be obtained because

higher order elements allow more flexible iI!terpolation of the element variables. On

the other hand, the higher the order of the element, the greater the memory storage

and the larger the computation time. The numerical implementation used to model

the fluid flow in this work will be based on the linear element. Also, the so-called

discontinuous element will be used (see Figure 4.3(c)). The choice of this type of

element will be discussed later.

The interpolation functions used in the BEM are identical to those used in the

finite element method. The value of a variable along an element, flo is expressed as

. a function of the nodal values, i.e.,

U = NUk' t = Ntk' x = NXk'

[:' 0 N2 ;JN=
NI 0

XI(PI) uI(Pd tl(PI)

X2(PI) U2(PI)
, tk =

t2(PI)
Xk = , Uk =

Xl (P2) UI(P2) tl(P2)

X2(P2) U2(P2) t2(P2)

(4.44)

(4.45)

(4.46)
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(a) Constant element

(b) Continuous linear element

(d) Continuous quadratic element (c) Discontinuous quadratic
clement

Figure 4.3: Boundary Discretization
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and Pl and P2 are the nodal points of element fk.

For the continuous linear element, the interpolation functions are functions of

the homogeneous coordinate 1] and are given by:

The interpolation functions of the discontinuous linear element are:

Figure 4.4 shows the interpolation functions for each type of linear element.

(4.47)

(4.48)

1

-1 o +1 -1 -1/2 +1/2 +1

(a) Continuous linear element (b) Discontinuous linear element .

Figure 4.4: Interpolation functions for linear elements

Substituting equation (4.44) into equation (4.43) and assuming that nodal point

P corresponds to node number i, we obtain:

(4.49)
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Let:

(4.50)

we then define:

and equation (4.49) can now be written as:

Ne Ne

L Hileule =L Giletle
Ie=l Ie=l

(4.51 )

(4.52)

Selecting each node alternately as the source point, a system of linear equations

can be formed:

[H]U = [G]T (4.53)

where [H] and [G] are obtained by assembling each of the individual Hij and Gij

submatrices. [H] and [G] each has dimension 2Nn x 2Nn where Nn is the total

number of nodal points. Vectors U and T are defined as follows:

U= , T = (4.54)

with PI to PN,. the nodal points.

If the boundary conditions are applied, the system of equations (equa~ion (4.53))

can be ordered as follows:

[A]Y = R (4.55)

where [A] contains all the coefficients of [H] and [G] related to unknown variables,

Y is the vector consisting of all the unknown variables, and R is the vector formed

by the product of the coefficients of [H] and [G] and the known variables.
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4.3.4.5 Traction Discontinuities at Corner Points

If the velocities are defined at a node located on a sharp corner (see Figure 4.5),

and the tractions are unknown both before and after the node, then this situation

gives rise to the so-called traction discontinuity problem. In this case, the two sets

of tractions before and after the node are not necessarily identical, and there is a

jump or discontinuity in the traction field. If only one node is assigned at the sharp

corner, equation (4.52) involves both of these two sets of tractions. In other words,

we can only form two equations involving four unknowns. Therefore, another set of

2 equations is needed for solving the problem. If two sets of tractions are specified

and the velocities are unknown, the system of equations is complete with only one

, node at the corner (i.e., the two required extra conditions simply consist of identical

velocities at the intersection of the two elements).

Figure 4.5: Corner node with traction discontinuities

Several methods exist for handling this problem [7, pp.165-167]. The different

possibilities are:

1. Corner with gap: in this method, two separate nodes are used at each sharp

corner. Each node is assigned only a set of two traction components (d. Fig­

ure 4.6(a)). A gap is left in between the two nodes. The length of this gap must
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(a) Comer with gap

(b) Comer with small element

(c) Discontinuous element

Figure 4.6: Treatment of corner node with traction discontinuities
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be small enough to limit the error introduced. However, a too small gap could

cause numerical instabilities because the coefficients of the two sets of generated

equations are very close to each other.

2. Corner with small element: this second method is conceptually the same as the

first one. The only difference is that the small element instead of a gap is inserted

between the nodes. The disadvantages of this method are the same as in the

previous method.

3. Discontinuous element: probably the most general approach to this type of prob­

lem is obtained by using discontinuous elements. The deficiency of the boundary

element method to handle the traction discontinuities arises from the insistence of

locating the nodal points at the end of each element, i.e., by forcing the continu­

ity of the tractions across elements. IT we allow the tractions to be discontinued,

i.e., if we move the nodal points inside the elements, this problem does not occur.

As a matter of fact, the constant element is nothing more than the most simple

type of discontinuous element. Here, variables are constant within the element

and no continuity is assured across elements. Higher order elements presenting

discontinuities are obtained by defining two or more nodal points per element.

However, because the interpolating points are no longer located at the end of

each element, the interpolating functions have to be modified slightly to reflect

this change (d. equation (4.48)). The main disadvantage of the discontinuous

elements comes from the higher number of nodal points used in a problem when

compared to the one having the same number of elements but using continuous

elements.

Due to the generality of the formulation using discontinuous elements, they will

be used in the numerical implementation of the fluid phase.
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4.3.4.6 Numerical Integration for Source Points Not on the Field Element

When the source point, P, is not located on the field element, i.e., P rt r k , conven­

tional Gauss quadrature can be used to integrate each term of the submatrices Hik

and Gik' Because the interpolation functions are expressed in term of the hetero-

geneous coordinate, TJ, it is necessary to transform the element of surface dr from

the local cartesian system to this intrinsic system of coordinates. This is performed

through the following relation:

dr = IJI dTJ

where the Jacobian of the transformation is given by:

(4.56)

IJI =, (4.57)

Hence, using a Gauss quadrature, we obtain:

Ik(Uij) - lr u~·Ndrr1l: IJ

1+1

- uijN IJI dTJ
-1

Ng

'" L IJl,w, {utjN },
'=1

Ik(tij) - lr u~·Ndrr1l: IJ

1+1

- tijN IJI dTJ
-1

Ng

'" L IJl,w, {tijN},
'=1

(4.58)

(4.59)

where Ng is the number of Gauss quadrature points and w, the weighting factor [84].

The choice of the number of quadrature points is based on the following parameter:

rmin
11=-

L
(4.60)

where rmin is the distance from the source point to the field element, and L the length

of the field element. Based on the value of e, Ng is selected according to the rule

shown on Table 4.1.



91

According to this table, the closer the source point is to the field element, the

larger the number of quadrature points is to be used.

f! Ng

200 < f! 1
20 < f! ~ 200 2

2 < f! ~ 20 4
0.1 < f! ~ 2 16

f! ~ 0.1 32

Table 4.1: Rule for selecting N g , the number of Gauss quadrature points

4.3.4.7 Numerical Integration for Source Points on the Field Element

When P E fIn a special treatment is required in order to handle the singularities

found in the integrands (i.e., the kernel functions). The integrations of the velocity

and traction kernels are performed as follows:

1. Velocity Kernel

Let:

where 1]. is the homogeneous coordinate of the singular point.

We define:

Hence,

e= - 1] -1].

1]5 +1
(4.62)

(4.63)
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Performing this change of variable, Il (Uij) becomes:

Next, we split IHUij) into two parts:

(4.65)

where,

(4.66)

(4.67)

Each term of I2(Uij) is smooth and well behaved, in particular, the term involving

In( ~) because r -+ 0 when e -+ O. Therefore, I2(Uij) can be evaluated using

standard Gauss quadrature. However, we first need to perform another change

of variable:

(4.68)

then:

(4.69)

Similarly, 1:(Uij) can be evaluated numerically using a suitable logarithmic

quadrature [84], i.e.,

(4.70)

Likewise, the integration of J1(Uij) is obtained by first performing the following

change of variable:

( = 1] -1]6

1-1]6
(4.71)
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Following the same procedure as explained above, we obtain:

where,

(4.72)

(4.73)

(4.74)

In summary, we have:

where,

(4.76)

(4.77)

(4.78)

(4.79)
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2. Traction Kernel

Let:

(4.80)

Because r,mnm -+ 0 as t -+ 0, then (r,mnm/r) is smooth and well behaved

and therefore can be integrated numerically using standard Gauss quadrature.

Performing the same transformations as those used for the velocity kernels, we

obtain:

1 ( ) ~ 1 {r mnm I ,I + "'6}lie tij = L- --WI -'--r,ir,jN J -2-
1=1 1r r I

2( ) ~ 1 {r mnm I ,I - .". }lie tij = L- --WI -'--r,ir IN J -~
1=1 1r r 2 I

4.3.5 Comparison with Plane Strain Elastostatic Problems

(4.81)

(4.82)

H we consider the two-dimensional plane strain elastostatic problem, the equations

of motion are given by:

Ujle,1e + bj = 0 (4.83)

where Ujlc are the components of the stress tensor and bj is the body force per unit

volume. The constitutive model in this case is:

2p.'v' I

Ujle = 1 _ 2vlejleUI,1 +21-' djk (4.84)
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where u/ are the components of the displacement vector, J.L' is the shear modulus, v'

is the Poisson's ratio, and
1

d'k = -(U'k + Uk .)J 2 J, IJ (4.85)

IT we solve this problem using the BEM, the fundamental solutions or kernels

are given by:

(4.86)

(4.89)

tij =

- 1 {8r [(1 _ 2v')o" +2r ·r .] + (1 - 2v')(n'r . + n·r .)} (4.87)41r(I _ v')r an 'J ,I ,] ',J J II

IT we select v' to have a value of 1/2 (i.e., incompressible), the fundamental solutions

reduce to those of the incompressible, viscous fluid.

For a point inside the domain 0, the displacements are given by:

Ui(P) = fo bjuij(P, Q)dO(Q) -lrtij(P, Q)Uj(Q)df(Q) +lruij(P, Q)t j(Q)dr(Q)

(4.88)

Substituting equation (4.88) into the constitutive equation (4.84), we finally obtain:

(jij = !rDkijtkdr - !rSkijUkdr + fo DkijbkdO

where,

Dkij - 41r(1 ~ v')r {(I - 2v') [OkirJ + Okjr,i - Oijr,k] + 2r,ir Jr,k} (4.90)

Skij - 21r(1 ~ v')r2 {2~: [(1 - 2v')oijr,k + V'(Oikr,j +Ojkr,i - 4r,ir,jr,k)]

+2v'(nir,jr,k + njr,ir,k) + (1 - 2v')(2nkr,jr,k + njOik + niOjk)

-(1 - 4V')nkOij } (4.91)

It should be noted that when v' = 1/2 (i.e., incompressible), equation (4.84) is

not defined; however, stresses inside the domain can still be computed using equa-

tion (4.89) because the expressions of Dkij and Skij are perfectly well defined for this

value of v'.
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4.3.6 Results for Internal Points

Once the values of the velocities and tractions are known on the boundary, the values

of the velocities and stresses at any interior point can be computed. The velocities

are given by equation (4.23), which in discretized form is:

u(P) =i: {l u*ar} tk - i: {l t*ar} Uk +~ {p1U*Xdn}
k=l rk k=l rk k=l Ok

(4.92)

where Me is the total number of subdivisions of the domain n. The right-hand side

terms of this equation can be integrated numerically as explained in section 4.3.4.6.

The stresses at a point inside the domain are given in the same manner as those

used for solid mechanics, Le.,

(4.93)

(4.94)

(4.95)

where,

1
- -r'r 'rk1rr ,1 ,J ,

- L.{or(h.kr.+h'kr.-4r.r.r k)1rr2 On I ,J J ,I ,I ,J ,

+(njr,jr,k + njr,ir,k) + nkhjj }

When the stresses and velocities are known, the pressure can be computed as

follows using the constitutive equations (4.3) and (4.4):

p - -O'u +2pdu

(4.96)

4.3.7 Velocities and Stresses along the Boundary

H we consider an element along the boundary according to its local coordinate system

as shown on Figure 4.7, the component of the strain tensor along the element axis is

easily evaluated as:

(4.97)
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Figure 407: Local coordinate system for discontinuous linear element

Using equation (4.44), the tractions can be computed at any point along the

element. By using the local coordinate system defined above, the stresses at a point

on the boundary element are given by:

(4.98)

(4.99)

From the equation of conservation of mass (equation (4.2)), we have

(4.100)

which yields:

Using the constitutive equation (4.3), the stresses are:

0'11 - -p +21l f 11

0'22 - -p+ 2p f 22

(4.101)

(4.102)

(4.103)

Subtracting equation (4.103) from (4.102), and combining the result with equa­

tion (4.101), we finally obtain:

(4.104)
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Finally, the presssure is given by:

p = -0'22 + JU·22

4.3.8 .Multi-boundary Domain

(4.105)

The fluid problem that needs to be solved has more than one surface as shown on

Figure 4.8, with internal and external boundary surfaces. Both types of boundary

can be differentiated by identifying the direction of the normals. This can easily

be done by adopting the rule that the numbering on the external surface is done

counterclockwise and the one on the internal surface is carried out in the clockwise

direction. From these rules, the normal is perfectly well defined and is always pointing

outward from the fluid material domain.

Figure 4.8: Multi-boundary region definition

4.3.9 Force and Moment on the Boundaries

Because the formulation of the BEM used here is employed to compute directly the

tractions on the boundaries of the problem, the force and moment acting on a bound-



(4.107)

(4.106)

(4.108)
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ary can be obtained as follows :

Fz(f) _ ~ (tz(Pl) + tz(pd)) Lj
j=1 2

__ ~ (ty(Pf) + ty(pd))Lj
FlI (f) ~

j=1 2

M(f) = ~ {(tz(Pl) + t:r:(pd)) dt + (ty(Pl) + ty(pd)) d~} Lj
j=1 2 2

where, Fz and Fy are the components of the force acting on surface f, Nr is the

number of elements constituting f, t:r: and ty are the components of the traction

vector, Pf and pd are the two nodes of the j-th element of f, Lj is the element

length, and d~ and dt are respectively the horizontal and vertical distance from the

center of the element to the moment center. In an actual problem involving particles .

of microscopic size, d~ and d£ are negligible and therefore the moment can be neglected.

This is the assumption used in the solid-fluid algorithm.

4.4 Algorithm Validation

In order to verify the validity of the boundary element formulation, three problems

have been solved and the results are compared with known solutions found in various

publications. The three cases studied are described here.

4.4.1 Flow around an Inftnite Length Fixed Cylinder, Located between Two Fixed

Planes

The geometry of the problem is given in Figure 4.9. The boundary conditions are:

• Velocities are zero along the top and bottom walls and around the cylinder.

• The velocity profiles at both inlet and outlet are given by:

u _ ~U [1- (~)2]

v = 0 (4.109)
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,

where U is the mean velocity of the flow and R the cylinder radius.

The velocity distribution of the flow is presented in Figure 4.10. The force per

unit thickness acting on the cylinder is obtained by integrating the tractions around

the cylinder. In the present case, the non-dimensional force is:

T / p.U = 24.20 (4.110)

This result compares favourably with Bezine and Bonneau's boundary element result

(24.15) [6], Harrison's semi-analytical result (24.55) [52] and Takaisi's semi-analytical

value (24.23) [85]. Owing to the symmetry of the problem, this force has a horizontal

component only; the vertical component being zero.

4.4.2 Flow around a Steady Infinite Length Cylinder between Two Moving Planes

The geometry and boundary conditions of the problem are shown in Figure 4.11. The

following boundary conditions are prescribed:

• Uniform velocity on the top and bottom wall, and on the inlet and outlet of the

flow, Le.,

u - U

v - 0

• Velocities are zero along the surface of the cylinder.

(4.111)

The computed velocity distribution is shown in Figure 4.12. Because velocities

are specified at each comer of the outer boundary, traction discontinuities occur

at these locations. The traction field on the fluid obtained by using discontinuous

elements is shown in Figure 4.13. As expected, the results obtained indicate symmetry

with respect to the horizontal passing through the center of the cylinder.
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Values of the velocity along this symmetry axis are compared with numerical

values given by Bouard [19J and the comparison is shown on Figure 4.14. There is a

good agreement between the two results. The horizontal force per unit length acting

on the cylinder is obtained by integrating the tractions around the cylinder. This

value is:

T/JLU = 97.29 (4.112)

This result compares favourably with the boundary element results of Bezine and

Bonneau (98.8) [6J and Bouard's numerical value of 99.4 [19].

4.4.3 Flow with a Rectangular Particle Floating Freely in a Channel

As shown on Figure 4.15, a denotes the height of the rectangular particle, which is

the half-width of the channel. The boundary conditions shown on Figure 4.16 are:

• Velocity is zero along the top and bottom walls.

• Axial velocity is chosen as a two-dimensional Poiseuille profile, i.e.,

u - ~U [1 _(~ )2]
V - 0 (4.113)

• The horizon tal velocity of the particle is unknown and has to be determined so

that the forces acting on it are zero, i.e., the particle is floating freely in the

channel. Because of the symmetry of the problem, the vertical component of the

particle velocity is simply zero.

This problem is solved by superposing two basic solutions:

1. The particle is moving with a unit horizontal velocity, Up, in a quiescent fluid.

2. The particle remains fixed while the fluid moves with a unit mean velocity, U.
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For each case, the axial force acting on the particle is computed by integrating

the tractions around the particle and then the solutions are combined linearly to give

a zero axial force on the particle. The ratio of the velocities is:

UrJU = 1.3017 (4.114)

This result compares closely to the one obtained by the boundary element

formulation of Bezine and Bonneau (1.3041) [6], and the finite element result of Tong

and Fung (1.31) [90]. The shear stress distribution along the top wall of the channel

is shown on Figure 4.17. Once again, the results are in good agreement with those of

Tong and Fung. Using equations (4.97) - (4.105), the distribution of the pressure on

the walls and the particle can be obtained. This distribution is shown on Figure 4.18.

In conclusion, the boundary integral method turns out to be an effective ap­

proach for numerical analysis of fluid dynamic problems. Furthermore, because only

the boundary has to be discretized, this method presents a distinct advantage over

the finite element or finite difference method where the complete domain needs to be

discretized. Therefore the use of this method to model the fluid phase becomes per­

fectly evident in the case of fluid flow past moving particles where the discretization

of the complex domain is by itself a complicated problem.
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Figure 4.9: Two-dimensional channel flow around a fixed cylinder: Boundary condi­
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Figure 4.10: Two-dimensional channel flow around a fixed cylinder: Velocity distri­
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Figure 4.11: Two-dimensional channel flow around a stationary infinite cylinder be­
tween two moving planes: Geometry and boundary conditions
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Figure 4.12: Two-dimensional channel flow around a stationary infinite cylinder be­
tween two moving planes: Velocity distribution
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Figure 4.13: Two-dimensional channel flow around a stationary infinite cylinder be­
tween two moving planes: Traction field
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Figure .4.16: Two-dimensional channel flow with one rectangular particle floating
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Figure 4.17: Two-dimensional channel flow with one rectangular particle floating
freely along the axis: Shear stress distribution along the top wall

Length Scale

a

Pressure scale
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Chapter 5

RESULTS OF NUMERICAL SIMULATIONS

In this chapter, several examples are presented. The first three cases validate the

computer program. They will also explain some of the details that were left out of

the previous chapters for the sake of clarity. In the final four cases, soil-like systems

will be used to demonstrate the capability of the algorithm.

5.1 One Disc Falling Symmetrically in a Viscous Fluid between Two

Parallel Walls

Consider the problem as shown on Figure 5.1: a disc of radius r =0.5 em and having

a density P. = 2 9 / em3 is placed exactly mid-way between two parallel walls. The

horizontal distance separating the two walls is 2b = 5 em and the length of each

wall, h equals 40 em. The disc is placed exactly at mid-height of the wall. The

space between the walls is filled with a liquid of density PI = 1 9 / em3 and viscosity

p = 50 9/ (em - 8 ). This value of the viscosity is chosen arbitrarily. The initial velocity

and acceleration of the disc are zero. It is assumed that the thickness of the system

is 1 em perpendicular to the paper. The system is then placed under the action of

gravity, 9 = -980 em/8 2• The aim of this problem is to find out the terminal velocity

of the disc as it moves inSIde the fluid. This problem is similar to that of a sphere

falling in a liquid (Le., a sedimentation process).
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5.1.1 Semi-analytical Solution

Based on the image method, Takaisi [85] obtained an·expression for the drag force on

the disc as:

D { "I' [8 - 4(t)'1 }- 2ln(~) +3.4486( ~)2 - 1.8312 U

- KU (5.1 )

where

J.l - viscosity of the liquid

U - velocity of the disc

r - radius of the disc

b - half width between the parallel walls

J{ - is the expression between braces

This solution is only an approximation of order (r/b)2 of the exact solution. This

drag proved to be very close to the BEM solution as shown in the previous chapter.

Assuming this drag force, the equation of motion of the disc is given by:

mx +Aplg - J{x =mg (5.2)

where

m - P, X A x 1 = mass of the disc

A - 1l'r2 = area of the disc

x - as defined in Figure 5.1

9 - acceleration of gravity

Equation (5.2) can be further simplified as

x = (1- !!J..)g - (~)x
p, Aps

(5.3)
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This can be solved as follows: let

(5.4)

and initial conditions:

the terminal velocity is given by:

x(t = 0) - 0

x(t = 0) - 0 (5.5)

(5.6)

For the problem studied here, 9 = -980 emfs2, r = 0.5 em, piJ = 2 gfcm3 ,

PI = 1 gfem3 , J.' = 50 gf(em - s), b = 2.5 em, and the terminal velocity is:

Voo = -0.9535emfs

5.1.2 Numerical Result

The velocity profiles of the analytical and our numerical results are shown in Fig­

ure 5.2. The value of the terminal velocity obtained from the numerical solution

IS:

Voo = -0.9306emfs

This differs from the analytical result by approximately 2%. In general, there is

a good agreement between the behaviors and the two final results. The accelerations

given by the numerical and analytical results are compared in Figure 5.3. Again,

good agreement is observed.
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Because the problem is perfectly symmetric, the velocity and acceleration in

the horizontal direction should be zero. Figures 5.2 and 5.3 also show the horizontal

velocity and acceleration. For all practical purposes, the numerical solution yields a

zero horizontal velocity and acceleration.

5.2 Sedimentation of Three Discs

Durlofsky et al.· [39] studied the sedimentation process of three identical spheres in

an infinite fluid domain. They also imposed the constraint that the spheres remain

in the same vertical plane while falling (i.e., a two-dimensional problem). However,

because NePTune was developed only for handling two-dimensional problems, we

selected to simulate the same process as that of Durlofsky et al. Here, discs are being

used instead of spheres. Furthermore, because only finite space can be modelled

numerically here, the three discs are placed in a large container. With the presence of

the boundaries of the container, boundary effect will playa certain role in the solution

obtained and differences between the two solutions are expected. The geometry of

the two-dimensional problem is given in the following.

Three identical discs of radius r = 1 em, density ps = 1 g / em3 and unit

thickness, are placed in a container filled with a liquid of density PI = 1 g/em3

and viscosity p. = 100 g/ (em - s). The choice of this high value of viscosity will be

discussed later. The lateral distance between the leftmost disc (labelled 1) and the left

wall is 116 em and its lateral distance to the second disc (labelled 2) is 5 em. Finally,

the distance from the rightmost disc (labelled 3) to the right wall is 72 em while

its distance to disc 2 is 7 em. The three discs are plaeed at an elevation of 810 em

from the bottom wall. The system is then subjected to a gravity field with the initial

velocity and acceleration of the three discs being zero. The geometry of the problem

is illustrated in Figure 5.4. The geometry is chosen intentionally asymmetric in order
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to observe the boundary effect of the walls on the particles. Because the particles do

not collide against each other or any walls, the contact springs and dashpots are of

no significance here, and the problem is one of solid-fluid interaction only.

The trajectories of the discs calculated numerically by the present program

are shown in Figure 5.5. Notice that the scale in the horizontal direction is highly

exaggerated to show clearly these trajectories. If no scale exaggeration is used, the

discs look as if they are falling straight down.

Durlofsky, et al. [39] used a mobility matrix formulation where the relationship

between the velocity and drag force on a sphere are given by:

where

U=MF (5.7)

U - vector consisting of translational and rotational velocities

F - vector consisting of force and moment

M - mobility matrix

The mobility matrix is obtained through an expansion of the integral equation of

Stokes flow. It can also be viewed as the inverse of the resistance matrix, R, if we

express the above relationship as:

F=RU (5.8)

That is, the force vector, F, is proportional to velocity vector through the resistance

matrix. Hence M = R- 1 • The lateral distances between each sphere are the same

ones as those used in our simulation. The trajectories obtained by these researchers

are shown in Figure 5.6 for the case when they used their most accurate method (i.e.,

one that takes into account lubrication forces when the particles come close to each

other). The parameters x and y are non-dimensional because they were normalized

by the uniform radius of the spheres.
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Comparing their results with those obtained by NePTune, we notice that they

both present the same oscillation-type trajectories. However, it seems that the results

obtained by the method given here show a higher frequency of oscillation. This could

simply be the effect of the right wall on the particles. It is surprising that Durlofsky

et al. did not mention the value of the viscosity that they used in their study! The

differences in the trajectories can be attributed to a difference in viscosity used in

each analysis. However, the appearances of the trajectories are quite similar.

Although Figure 5.5 shows that the trajectories of particles 2 and 3 are inter­

twined, at no instant of time do the particles touch each other. This is shown in

Figure 5.7 where the x and y position of each disc is plotted versus time (note the

scale difference between the plots of the x and y position versus time). When the x

positions of discs are identical, their y positions are different and we can then con­

clude that no collison occurs. Finally, the horizontal and vertical velocities of each

disc are shown in Figure 5.8. As the particles get closer to the bottom wall, their

vertical velocities decreased eventually to reach zero when they hit the bottom wall.

However, because of the smaller time step required when the particle approaches the

bottom wall, the simulation is aborted at approximately 43 s after it starts. The

maximum y velocity of each particle is about 20 em/s, which gives an approximate

Reynolds number of 0.4. Therefore a smaller value of p. will increase the maximum

y velocity thereby increasing the Reynolds number and hence the flow will no longer

be Stokes flow.

To capture all the details of the particles coming to a stop, smaller time steps

are required because the forces exerted by the fluid on the particles become extremely

large. The use of a large time step in this case can cause numerical instability as the

particles will move in large increments of velocity. Therefore, they generate large drag

forces even high enough to push the particle upward. This gives rise to an oscillation,
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which is then repeated indefinitely. To avoid this problem, artificial damping can be

used to attach the particle to the ground and prevent the oscillation. The damping

used in this manner does not correspond to an actual physical value.

As mentioned above, too large a time step cannot be used with this algorithm.

At present, no exact method can be used to determine the vertical time step beyond

which numerical instability occurs. One simple-minded way of determining this crit­

ical time step is to assume that at any instant of time, the velocity of the particles

could not be larger than the terminal velocity. Because the geometry of the prob­

lem is known, the terminal velocity can be approximated by the expression given in

equation (5.6), thus we impose that:

(5.9)

This then gives us a value for the critical time step. However, this technique of

determining the time step proves to be inaccurate when more than one particle is

present. Consequently, the critical time step has been determined by a trial and error

method.

5.3 An Artificial Liquefaction Simulation

5.3.1 The liquefaction Phenomenon

It has been observed [54,57,70] that a loose sand subjected to vibration decreases in

volume. The pore pressure increases if it is saturated with drainage restricted (such

as in the case of an earthquake). This phenomenon can be explained by the effective

stress concept [87], which is defined as:

(7" = (7' - u (5.10)
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where

q' - effective stress

q - total overburden pressure

u - pore water pressure.

When the soil grains lose their load-supporting role, the value of q', which represents

the portion of the total overburden pressure carried bythe solid phase, becomes zero.

Simultaneously, the pore pressure rises to that of the overburden pressure. Therefore,

the soil becomes a suspension of solid grains in fluid, or is said to have liquefied.

For liquefaction to occur, three conditions are necessary:

1. an overburden load or stress

2. a solid particulate phase that loses its strength

3. a fluid phase that will absorb the imbalanced force when the solid phase loses

its strength.

According to these specifications, we are now able to define a mechanism that

can simulate liquefaction.

5.3.2 Saturated Granular Medium Simulation

To fulfill the first requirement, all we need is a constant load that is applied to the

granular medium. As we mentioned in chapter 2, the formulation of the DEM is

more convenient when applied strain conditions are used because it is easier to define

the motion of the particles. However, when an applied stress condition is used, a

technique must be developed for the numerical system to support this load. One way

of solving this problem when the medium is dry is to allow the walls on which the

load is applied to move in the direction required to achieve contact reaction forces on
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the wall equal and opposite to the applied force. To illustrate this idea, consider the

case shown in Figure 5.9(a). Here, three particles labelled A, B, and C are arranged

in a column without touching each other. No liquid is present. If a vertical load Fy is

applied to the top boundary (wall 3), the solution consists of moving this wall down

until contacts between particle and wall and particle and particle are formed. The

downward motion of the top wall is stopped when the contact force between the top

wall and particle C reaches FlI (Figure 5.9(b)).

If we suppose that, when the motion of the top wall is stopped, liquid is added

to the void space between the particles (Figure 5.9(c)), the particle contacts at this

stage still take the vertical load, and the liquid is unstressed. Next we shear the

system (Figure 5.9(d)) while preserving its volume, and holding the applied load (Fy )

constant. In this case, the top wall has to remain at a fixed distance from the bottom

wall. Thus, if the inter-particle contact forces change as the result of this shearing,

some other mechanism is required to absorb the unbalanced force that exists at the

wall. Because now the system is composed of two phases, i.e., liquid and solid, the

unbalanced load will be distributed to the liquid phase, which translates to a change

in the pore pressure. If only the solid phase is present, because there is no other phase

that can absorb the unbalanced force, the top boundary is required to move up or

down to maintain the contact force constant. In this case, there is a volume change

in the system. The motion of the wall will be discussed later.

Based on this simple idea, we now have all the ingredients to simulate liquefac­

tion in a saturated granular medium:

1. A top boundary wall with specified constant load.

2. In the saturated case, this load is compared with the contact forces on the wall. If

an unbalanced force exists, it is simply distributed to the boundary of the liquid

phase that touches the specified load wall. For the iiquid phase boundary, this
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unbalanced force becomes its applied boundary condition after transforming the

load force into tractions. Together with the knowledge of all the other boundary

conditions, the solution of the problem of solid/liquid interaction in terms of the

liquid phase is given by the BEM, which provides the pore pressure changes at

any point in the liquid phase. It also provides the drag-force on the particle,

which in turn will be combined with the interparticle contact forces to produce

the force applied at the centroid of the particle. The motion of the particle can

then be deduced from this force.

3. The solid phase will be simulated using the DEM, which allows us to obtain

the contact forces needed at the applied load wall; these are necessary for the

computation of the unbalanced force if any. If no contact exists at the applied

load wall, the applied load will be distributed entirely to the liquid phase. This

condition defines liquefaction.

5.3.3 The Liquefaction Simulation

As explained earlier, the purpose of this simulation is simply to demonstrate the

redistribution of load from the solid phase to the liquid phase via our calculation

process. Because the example is purely artificial, we will assume that the dimension

used is of unit L, the mass of unit M, the force of unit F and time of unit T. From

these, all other variables can be deduced.

In this example, three identical frictional particles of radius r = 5L are placed

in a container of dimension 30L x 30L with the same arrangement as in Figure 5.9.

To achieve eventual instability of the system, disc B is slightly off-center to the left

from discs A and B. Next, this dry system is subjected to a vertical loading force

Fy ~ 107F. Beyond this value, because disc B is slightly off-center, the column of

particles will buckle. At this stage, a liquid of viscosity f.t = 25 M/(LT) is added to
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the void spaces between the particles and walls. The value of the physical parameters

used in this example is given as follows:

JL - fluid viscosity = 25M/ LT

P. - particle density = 2400M/ L3

m - mass of each particle = 157080M

kN - normal contact spring constant = 0.75 x 109F / L

ks - shear contact spring constant = 0.75 X 109 F / L

CN - normal contact dashpot constant = 1.5 x 101F/L

Cs - shear contact dashpot constant = 1.5 x 101F/L

f/Jdd - disc-disc friction angle = 22°

f/Jdw - disc-wall friction angle = 10°

Because no gravity is present in the problem, the knowledge of the density of the

liquid is not necessary. The contact damping ratio in both the normal and shear

direction is taken approximately 5% that of the critical damping of a single degree

of freedom of a particle of mass m and spring constant kN • The value of the fluid

viscosity is chosen arbitrarily here because our main purpose is to demonstrate the

liquefaction mechanism.

A shear rate, -y, of 7 x 10-3 radian/T is applied to the two lateral walls (walls

2 and 4). The velocity of the bottom wall (wall 1) is simply deduced from the motion

of the lateral walls because the bottom wall connections are hinged. Shearing is per­

formed until a shear strain, 'Y, reaches 0.7%. As the shearing process progresses, disc

C, due to its friction with the top wall will move in the lateral direction. Therefore,

the contact forces diminish gradually (compare the width of the contact force line on

Figures 5.1O(b) and 5.9(b)). Eventuallly, all contacts are broken (Figure 5.11).
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Here, the liquid phase is assumed to be a continuum (i.e., no enclosed pockets of

fluid). Therefore gaps (0.05L in size) are artificially generated between the particles

to permit fluid flow between regions. Figure 5.12(a) shows the discretization of the

fluid phase at I = 0.35%. Because of the unbalanced force at the top wall, the

liquid phase has to support this load. The boundary conditions on the lateral and

bottom walls are given by the velocity of these walls. On the top wall, applied

traction is specified in the vertical direction and specified velocities are prescribed in

the horizontal direction. The resulting tractions computed by the BEM are shown on

Figure 5.12(b). We notice that the tractions along all four walls are uniform. This

is simply the consequence of the incompressibility of the liquid. At the boundary of

the particles the tractions are relatively small, suggesting that the velocities of the

particles are also very small. Figure 5.12(c) shows the velocity field. We notice that

if the top wall consists of a membrane instead of a rigid wall used here, a sloshing

effect would occur.

Finally, the boundary element discretization at I = 0.7% is shown on Fig­

ure 5.13(a), the velocity distribution in Figure fig5:13(c) shows that the velocity

amplitude is much higher on the left side than on the right side. This is justified by

the motion of the particles to the left and the left wall lateral motion to the right,

which together produce a squeezing effect on the left side liquid phase. The gap that

allows fluid flow between the particles is selected in such a way that the gap width

remains constant. Consequently, the fluid phase will see different sizes of the same

particle during a simulation. This is illustrated in Figure 5.13(a) where the diameter

of particle B has changed. A and C are shrunk because of their close contact with

the top and bottom walls. Also because A and C have slightly moved laterally away

from B, the distance from B to A or C has increased. Thus by reducing the size of A

and C, the gap widths existing between B and A, and B and C are large enough and
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therefore B need not be shrunk. The traction field is presented on Figure 5.13(b).

We observe that in Figures 5.12(b) and 5.13(b) that the tractions along the

boundary of each disc are almost uniform and that they are not identical to the

magnitude of the tractions along the boundary walls. The uniformity of the tractions

along each disc indicates simply that the motion of the discs in the viscous fluid

does not generate appreciable disturbance. Therefore, the main component of forces

generated by the fluid on each disc is simply caused the increase of pore pressure at

the wall boundaries. However, because of the multiply connected domain used in this

problem, the tractions obtained along each disc are known up to a certain constant

to be determined from the boundary tractions. This does not present any ambiguity

to the algorithm because the tractions are integrated along the boundary of each disc

to obtain the force acting on the centroid of each disc and therefore the knowledge of

the boundary constant is not necessary.

The pore pressure change along the top wall (wall 3) indicated by the solid line

on Figure 5.14, increases gradually as the contact between disc C and the top wall

(wall 3) is broken (indicated by the dotted line). The pressure along the bottom wall

(wall!) (open square) indicates an instantaneous response of the liquid phase when

a pressure is applied. As the pore pressure rises to that of the applied vertical stress,

the solid phase eventually ceases to support any load. If drainage is allowed at this

moment, the top wall will simply collapse. By doing so, it will push all the particles

downward until new contacts are created between the walls and discs. Hence a more

compact configuration would be generated.

This simulation suggests that the fluid component playa double role:

1. As a transmitting m~ium for the pressure disturbance created at the boundary

by the force unbalance due to the restructuring of the solid particles (primary

effect).
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2. As a viscous medium which resists to the motion of the particles (secondary

effect).

According to this simulation, we observe that for slow monotonic loading case, the

secondary effect is almost negligible. The negligible contribution of the secondary

effect can also be caused by the large opening gap between the particles in the fluid

phase.

5.4 Simple Shear Simulations - Initial Setup

In this set of simulations, four cases have been studied:

• Dry simple shear of a loose array of particles

• Saturated simple shear of a loose array of particles

• Dry simple shear of a dense array of particles

• Saturated simple shear of a dense array of particles

The results obtained are compared with actual experimental results.

5.4.1 Initial Setup

For all four cases studied, the initial configuration is identical as shown in Figure 5.15.

Here, 20 particles having the distribution shown in Table 5.1 are generated randomly

inside a box of 1cm width and 0.8cm height:

Number of Radius Solid Area
Particles (mm) (mm2 )

3 1.5 21.21
6 1.0 18.85

11 0.5 8.64

Table 5.1: Particle distribution, size, and solid area
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The following parameters are used to characterize the properties of these par-

tides:

kN = normal contact spring = 1875 x 103gF/em

(both disc-disc and disc-wall)

ks = shear contact spring = 1875 x 103gF/em

(both disc-disc and disc-wall)

CN - normal contact damping = 34.323gF/(em/s)

'" 5% average critical damping

Cs = shear contact damping = 34.323gF/ (em/ s)

tPdd - disc-disc friction angle =22°

tPdw - disc-wall friction angle = 10°

P, - disc density = 2g/ em3

PI - liquid density = 19/em3

IJ - liquid viscosity (i.e., water) = O.01g/(em - s)

Neither gravity nor global damping is imposed in any of the examples. The

value of kN and ks are those used by Cundall and Strack's simulations [24]. The

contact damping is taken as the average value of 5% that of the critical damping of

each disc, each having a mass given on Table 5.1 and a spring constant kN or ks .

5.5 Loose Medium

5.5.1 Initial Compression

Before performing the shearing tests, the particles are subjected to an initial com­

pression. This compression is obtained by moving inward walls 2, 3, and 4 (see

Figure 5.15). The positions of the particles at the end of the compression are shown



123

in Figure 5.16(a) and the contact force diagram in Figure 5.16(b). Here, the thickness

of the line gives the intensity of the force whereas its direction is given by the direction

of the contact force line. This graphical representation of the contact forces can be

associated with the fringes observed in pictures of photoelastic material testing.

We observe that after consolidation, the largest contact loads are supported by

the biggest particles. Because of the particular configuration used here, the biggest

particles located midway between walls 1 and 3 create an arch-like structure and

thus prevent particles beneath them from playing an important supporting role. For

example, the particle labeled A on Figure 5.15 does not come into contact with any

other particles.

To obtain a loose sample, the friction angles have been set at the start of the

compression phase. Because of these friction angles, the motions of the particles

under the confining loads are more restricted than those obtained when no friction is

present.

The width of the compressed box now becomes 0.89 em while the height is

reduced to 0.69 em giving rise to a void ratio of e = 26.11%.

At the end of the compression phase, the wall motions are stopped and a period

of relaxation is allowed so that static equilibrium can be reached. This equilibrium

can be monitored by the sum of the contact forces on all four walls. At equilib­

rium, these forces become constant with sum zero in the coordinate directions. A

slight redistribution of forces is observed at the end of the relaxation period (see

Figures 5.16(b) and 5.17(b)) although the particles still remain at the same location

and orientation as that of the beginning of the relaxation period (Figures 5.16(a) and

5.17(a)).

Using this later configuration, the system will be sheared either dry or with

interstitial pore water. The applied vertical force on wall 3 is taken as the force at
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the end of the relaxation period and is fixed throughout the shearing process. This

applied vertical force takes a value of 8.1kgF, which gives a vertical applied stress on

the top wall, 0"1) = 8.1kgF/(O.89cm x 1cm) = 9.1kgF/cm2 = 892.8kN/m2 •

Before we examine the results obtained by the shearing experiments, we first

need to understand the mechanism that maintains the constant force on wall 3

throughout shearing, when no liquid is being used. We have previously explained

the mechanism that maintains the load constant when liquid is present in the inter­

stitial pores (d. section 5.3.2). In this case, the unbalanced force is distributed to

the fluid phase.

5.5.2 The Servo Wall Mechanism

Cundall [24], the originator of the DEM, suggested a simple way to maintain the

applied force: to obtain a constant force when an unbalanced force exists between

the reaction force on the wall resulting from the contact points, Fc, and the applied

force, FA, the wall needs to be moved in the direction of the unbalanced force (FA ­

Fc ). He called this type of wall a "servo wall," i.e., like a servo motor, where a

sensor constantly monitors the unbalanced force and adjusts the position of the wall

accordingly. Using a slightly modified version of Cundall's servo wall, the adjustment

of the wall is performed in the following manner:

Let err = (FA - Fc )/FA be the error introduced by the unbalanced force, then

the most simple way of adjusting the wall is given by the following relation:

where:

VI = G x err

VI - velocity by which the wall should be moved

G - gain of the wall

(5.11)
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In order to prevent the displacement of the wall from becoming too large, a

limit is further imposed on the velocity:

(5.12)

where

v - velocity to be used to displace the wall

Vmax - maximum imposed velocity

This last equation is also illustrated on Figure 5.18.

Cundall [24] mentioned that if the value of the Gain, G, is too high, the wall

might become unstable because a fast motion of the wall to correct the error will

create another error in the opposite direction and cause instability. This has also

been observed in this study. Furthermore, if the value of G is too small, the response

of the servo wall becomes sluggish and hence no constant force can be obtained. The

value of G and VmllX in a particular problem can only be obtained by a trial-and-error

process.

Also, to maintain a stable constant force, a slow wall motion is required, which

in turn implies a long computational running time. To overcome this problem, we

have tried a method in which an additional iterative loop is added to each calculational

time step. This method proved to be unsuccessful because the additional iteration

loop required a large number of cycles. Furthermore, the adjustment of G and VmllX

becomes almost impossible because the requirements for each time step are different

from one another. When fast deformation occurs, the adjustment of the servo wall

becomes more difficult to achieve. Although Cundall never mentioned this problem,

we came to this conclusion by observing the large number of cycles required in his

calculations between two instants of time.

When slow motion is used, no additional iteration loop is required; however,

the computation time also increases significantly.
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5.5.3 Dry Simple Shear of a Loose Array

5.5.3.1 Simulation Results

Starting from the configuration shown on Figure 5.17(a), a shearing mechanism is

applied as shown on Figure 5.19. As explained earlier, to achieve a constant vertical

loading force, F'/l wall 3 is allowed to move up or down. For this shear deformation,

the value of the required shear force along walls 1 and 3 is obtained from the tangential

component of the contact forces of the grains at equilibrium. Notice that there is no

joint between wall 3 and the two lateral walls. In other words, this top wall functions

just like a lid to the system.

The configuration of the particles and the corresponding contact force diagram

at a shear strain of'Y = 4.9% and 'Y = 10.5% are shown respectively on Figures 5.20

and 5.21. As shearing progresses, we observe that the number of particles supporting

loads increases. Also, at the end of the simulation, the overall direction of the contact

forces is oriented diagonally. This observation agrees with the simulations performed

by Cundall [24]. The shear forces (81 and 83 ) along walls 1 and 3 and their mean value

are shown in Figure 5.22. The change of height of the box expressed as a percentage

of the initial box height (H) is given in Figure 5.23 where a negative value indicates a

decrease in height (i.e., compression). Because the array is always compressing (i.e.,

densifying) we conclude that the original configuration used was effectively "loose."

To insure that the equilibrium is achieved at each time step, the sum of the

forces on each wall in the X and Y directions are computed as shown in Figure 5.24.

In general, this equilibrium is observed throughout the shearing process. As a conse­

quence of this equilibrium the system behaves statically. Therefore, the velocity and

accelerations are small enough so that the inertia terms become negligible. Because

no gravity field is present in the problem, this then suggests that a higher value of

the disc density can be used in the calculations without changing the behavior of the
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system. This implies that a larger time step can be used to speed up the calculation

process.

5.5.3.2 Comparison with Experimental Results

Cole [15J performed a series of simple shear tests on dry Leighton Buzzard sand.

Typical results of a loosely compacted sand are shown in Figure 5.25. Comparing the

numerical simulation shear force in Figure 5.22 and the ratio of 7'IUN (Figure 5.25) for

shear stmin less than 10%, both cases indicate that the asymptotic plateau value had

not yet been reached. Due to the limited amount of particles used in the numerical

simulation, the result is not as smooth as that of the experiment. Furthermore, the

maximum ratio, SIFy , obtained in the numerical simulation gives a value of approx­

imately 0.2, which is lower than the experimental results. This value is somewhat

higher than the tangent of friction angle of the disc-wall contact but lower than the

interparticle friction angle. In other words, the particles serve as a load transmitting

medium from the top wall to the bottom wall. The presence of the interparticle fric­

tion thus contributes to the rigidity of the system and hence increases somewhat the

global friction angle of the system. IT a larger number of particles was used, their

contribution to the rigidity of the system would be much more significant than the

one obtained by this simulation. Consequently, the ratio SIFlI would be increased.

Although the number of particles is limited, the qualitative response of this array

resembles that of a real soil remarkably well.

When the shearing is pursued further, the dense array obtained from the den­

sification of the loose initial configuration start to dilate. In this case the volume

increases, as can be seen in Figure 5.25(b).
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5.5.4 Saturated Simple Shear of a Loose Array

5.5.4.1 Simulation Results

Using the same initial configuration as that of the dry simple shear (shown on Fig­

ure 5.17(a)), a liquid is added to the interstitial pores. From there, a constant volume

shearing mechanism is applied to the system as shown on Figure 5.26. This is achieved

by maintaining the height of the box constant.

Unlike the dry simple shear, if unbalanced force exists along the top wall, this

force can be supported by the liquid phase and affects the pressure of the liquid.

Because no gravity is present here, the liquid density does not play any role in the

behavior of the system.

For comparison, the configuration and contact force diagram at a shear strain,

"y = 4.9%, are shown in Figure 5.27. The contact force diagram shown in Fig­

ure 5.27(b) indicates that the contact forces generated during this phase of the shear­

ing process are smaller than those of the dry system. The velocity and fluid force

generated on each particle are shown in Figure 5.28. We notice that there is no co­

linearity between the particle velocity and the fluid force generated. Therefore the

conventional relation between the drag force and the velocity is not valid here. The

configuration and contact force diagram at "Y = 10.5% are shown in Figure 5.29, and

the velocity and fluid force diagram are shown in Figure 5.30. The force generated

by the fluid on the particle is smaller than the contact forces. This seems to indicate

that either the gap between the particles, which allow fluid flow, is either too big

or the viscosity of water is too small. Because of this small value, the liquid plays

mainly a role of load transfer material when an unbalanced force occurs. The drag

force generated does not play an important role here.

Looking at the contact force diagram sequence, we notice that the intensity

of the contact loads has not changed much throughout the shearing. However, we
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notice a clear rotation of the direction of the load path. This can be explained as

follows: because the volume is kept constant and the value of the void ratio large, the

particles do not experience any increase of contact forces because no densification or

dilation occur. Therefore the load supported by the skeleton remains almost constant

throughout the process. This force is simply rotated as the shearing progresses. Thus,

its component in the vertical direction decreases while the horizontal component

increases during the shear. This then is translated by an increase in the shear force

required to move the system and a decrease of the supporting role of the skeleton in

the vertical direction. Because we impose a constant vertical load on the top wall, as

the vertical contact force decreases, the liquid phase has to support this unbalanced

load so that the top wall remains at a fixed vertical position. Consequently, the pore

pressure mcreases.

By comparison, the dry case where the volume is allowed to change, the contact

forces between the particles steadily increases from this densification process while at

the same time the load path is rotated from its initial configuration.

The shear forces along walls 1 and 3 and their average values are shown in

Figure 5.31. The system does not offer much resistance to shear during the first 4%

of shear strain. During this period, an initiation process is required before the loading

of the full system occurs. This is probably due to the small number of particles used

in this test. If a larger number of particles is used, this initiation process will probably

start instantaneously as the shearing is applied.

The pressure change along walls 1 and 3 are shown in Figure 5.32. The results

indicate an increase in pore pressure, which is expected. We observe a sharp increase

of pore pressure corresponding almost exactly to the period where the shear force

starts to increase. As the load supported by the skeleton starts to rotate, the system

becomes softer and hence less prone to support any load. Thus the portion of the
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load supported by the skeleton decreases sharply, and is accompanied by a sharp

increase in pore pressure. However, as the shearing progresses, the skeleton is able

to find a more stable position, thereby increasing the portion of the applied load

that it supports. Consequently, the pressure decreases. The pore pressure change

along the top and bottom wall are quite similar. This is simply the consequence of

incompressibilty of the liquid used here.

Finally, Figure 5.33 shows the total components of forces in the horizontal (X)

and vertical (Y) directions. In general, we observe that static equilibrium is obtained

almost throughout the entire shearing process. Some oscillations occur between the
"'.

shear strain value of 4 and 7%. This oscillation can be attributed partly to the

motion of particle A, which constantly bounces inside the void space it occupies.

This observation can only be seen by a rapid animation of the particle motion. The

constant oscillation causes the oscillation of the forces measured along the walls.

Although the solid-solid contact force is not very important, this bouncing effect

could create enough disturbance on the wall. The fluid phase also propagates this

effect to other walls as well.

5.5.4.2 Comparison with Experimental Results

Because of the lack of experimental data on undrained monotonic simple shear loading

of saturated granular media, we can only make a qualitative comparison between the

numerical simulation and undrained triaxial tests on sand. Seed's et ai. [77] have

performed a series of undrained triaxial tests on Sacramento sand. Typical behavior

of a loose sand is presented in Figure 5.34. In particular, we notice that the shearing

occurs with an increase in pore pressure. For this particular test, we also observe that

there is a period where the deviator stress remains almost constant before it starts

increasing again until it reaches a plateau value. This seems to corroborate with our

numerical results where a period of time is required before the shear force starts to
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be mobilized. However, in our numerical results this may simply be caused by the

limited number of particles used in the simulation. We conclude that in general, our

numerical model is able to represent the qualivative behavior of a loose saturated

sand.

S.6 Dense Medium

5.6.1 Dry Simple Shear of a Dense Array

5.6.1.1 Initial Compression

Like the previous cases, prior to performing the shearing tests the particles are sub­

jected to an initial compression. To achieve a dense configuration, during this initial

compression case, we imposed a zero friction angle between the particles, and be­

tween the particles and walls. Because no friction exists, the particle will offer little

resistance to the motion of the walls. This compression is obtained by moving inward

walls 2, 3, and 4 (see Figure 5.15) until the width of the box is reduced to 0.89 em and

its height to 0.69 em. The positions of the partiCles and the contact force diagram at

the end of this initial compression period are shown in Figure 5.35. By comparison

to the contact force diagram of the loose case, here the intensity of the contact forces

are smaller. This is expected because the particles do not have any friction angles.

To obtain the same vertical loading force as that of the loose case. We replaced

the top wall by a servo wall with a specified vertical load force of 8.1kgF (Le., the

vertical stress is identical to that of the loose case). When the servo wall has reached

the specified load force, a relaxation period is allowed for some period of time for

contact force distribution. When the servo wall has reached a stable position, the

particle positions and the contact force diagram are shown on Figure 5.36. The height

of the box is now reduced to 0.682 em, giving rise to a void ratio of e = 24.65%.
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5.6.1.2 Simulation Results

Using the configuration at the end of the compression phases, a shearing mechanism

similar to that of the dry, loose array is used to apply the shearing.

The particle positions and contact force diagram corresponding to a shear strain

of 5.0 and 10.5% are shown respectively in Figures 5.37 and 5.38. In contrast to the

loose case, the orientation of the load path is clearly shown at a shear strain of

5%. The shear forces along the top and bottom wall shown on Figure 5.39 confirm

this observation. The system resists to the shearing motion immediately after it has

been started. We also notice that the interparticle contact forces are larger than

those found in the loose case. This can be attributed to the dilation of the particles:

because the system is dense, as the shearing occurs the particles try to expand in

volume; because the volume is fixed the particles are not allowed to dilate, this then

results in a net increase of the contact forces.

The change of height of the box, expressed as a percentage of the initial box

height (H), is given in Figure 5.40 where a negative value indicates a decrease in

height (i.e., compression) and a positive value indicates an increase in height. Here,

the volume of the system initially decreases before starting to increase steadily. The

increase of volume of the system confirms its dilation and hence the system is «dense."

The glitches encountered here are probably due to the small number of particles

present. For a system with a higher number of particles, these glitches might be

.smoothed out.

The sum of forces along the four walls in the X and Y directions are shown

in Figure 5.41. Static equilibrium is obtained throughout the shearing. We also

note that the vertical force on the top wall (wall 3) remains constant throughout the

experiment.
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5.6.1.3 Comparison with Experimental Results

Cole [15] has also performed simple shear test experiments on dense Leighton Buz­

zard sand. A· typical behavior of the response of this type of material is given in

Figure 5.42. The shape of the shear stress ratio of Cole's experiment presents a re­

markable similarity with that of the average shear force obtained by the numerical

simulations. However, the maximum ratio of S/ F'II (i.e., ratio of shear force over ap­

plied vertical load) is approximately 0.19, in comparison to Cole's value of 0.8. As in

the loose case, the value of this ratio is only slightly higher than that of the friction

angle. Again this indicates that the skeleton serves mainly as a force transmission

medium from the top wall to the bottom wall. A higher ratio could probably be

obtained by using a higher number of particles. The volume change behaviors are

also very similar in both cases.

5.6.2 Saturated Simple Shear of a Dense Array

5.6.2.1 Simulation Results

Using the same initial configuration as that of the dry simple shear (shown on Fig­

ure 5.36(a)), a liquid is added to the interstitial pores. From there, a constant volume

shearing mechanism similar to the one used for the saturated loose array is applied

to the system.

Figure 5.43 shows the particle position and the contact force diagram when the

shear strain reaches a value of I = 5.0%. As in the dense, dry case, the rotation

of the load path can be seen clearly at this stage. The particle velocity and force

generated by the liquid on the particles are shown in Figure 5.44. Like the loose case,

we notice here the absence of co-linearity between the velocity vector and the fluid

force. Furthermore, the intensity of the fluid forces are relatively small in comparison

to that of the contact forces.



134

The particle position and contact force diagram at 10.5% shear strain are shown

in Figure 5.45. Comparing the contact force diagrams at a shear strain of 5% and

10% indicates that the contact forces are steadily increasing. This can be attributed

to the dilation of the particles, which is prevented by the imposed constant volume

condition. Because the skeleton is able to support a higher portion of applied load,

the fluid phase will contribute less to the support of this load, which then results

in a decrease in pore pressure. The increase of the contact force intensity is also

accompanied by a rotation of the load path.

Figure 5.46 shows the velocity vectors and the fluid force of each particle. We

. also observe here the absence of the co-linearity between the velocity vector and the

fluid force vector. Again, the fluid forces are almost negligible in comparison to the

contact forces.

The shear forces along the top and bottom walls (walls 1 and 3) and their

average values are shown in Figure 5.47. Unlike the loose case, the shear response is

immediate. The pore pressure change along the top and bottom walls is presented in

Figure 5.48. A good agreement exists between these two walls. As expected, there

is a steady decrease of pore pressure after an initial increase. Finally, the sum of the

forces in the X and Y directions is shown in Figure 5.49. Except for a few instances,

static equilibrium is observed throughout the simulation.

5.6.2.2 Comparison with Experimental Results

Due to the lack of experimental data on undrained monotonic simple shear loading

of granular media, only a qualitative comparison can be made between the numerical

simulation and undrained triaxial tests on sand. Seed et ai. [77] presented some exper­

imental results on undrained triaxial tests performed on Sacramento sands. Typical

behavior of deviatoric stress and pore pressure change is shown in Figure 5.50. For

the range of shear strain value found in the simulation, Seed's results indicate that
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the peak value of stress is not yet reached. This seems to confirm the numerical

results where the shear force is still increasing. The pore pressure change exhibits the

same behavior as the one obtained by the simulation, that is, the pore pressure rise

is immediately followed by a sharp drop.

5.6.3 Conclusions

We have demonstrated here that in general the behavior of the numerical model is

qualitatively similar to that of a real granular soil. However, because of the limited

computer resources available, we were not able to pursue further simulations with a

lager number of grains. Also, due of the lengthy computation time required for each

simulation when an interstitial pore liquid is present, we were not able to perform

any cyclic shearing.

Although limited, the proposed numerical model contains all the appropriate

features for simulating granular media liquefaction. Further conclusions and sugges­

tions for the improvement of the study of discrete saturated granular media are given

in the following chapter.
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Figure 5.1: One disc falling symmetrica.lly in a viscous fluid between two parallel
walls: Geometry
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Figure 5.3: One disc falling symmetrically in a viscous fluid between two parallel
walls: Disc Acceleration
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Figure 5.4: Sedimentation of three discs: Geometry (not to scale)
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discretization, (b) Traction field, (c) Velocity field
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Figure 5.16: Simple shear simulations (dry, loose), end of initial compression-(a)
Configuration, (b) Contact force diagram
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Figure 5.17: Simple shear simulations (dry, loose), end of relaxation period-(a) Con­
figuration, (b) Contact force diagram
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Figure 5.19: Dry simple shear mechanism, with volume change



153

(a)

Force Scale:

lOOOOgF

Figure 5.20: Simple shear simulations (dry, loose), ;=4.9%-(a) Configuration, (b)
Contact force diagram
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Figure 5.21: Simple shear simulations (dry, loose), ,=1O.5%-(a) Configuration, (b)
Contact force diagram
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Figure 5.27: Simple shear simulations (saturated, loose), ,=4.9%-(a) Configuration,
(b) Contact force diagram
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Figure 5.28: Simple shear simulations (saturated, loose), i=4.9%-(a) Particle veloc­
ity, (b) Fluid force on particles
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Figure 5.29: Simple shear simulations (saturated, loose), ,=10.5%-(a) Configuration,
(b) Contact force diagram
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Figure 5.30: Simple shear simulations (saturated, loose), ,=10:5%-(a) Particle ve­
locity, (b) Fluid force on particles
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Figure 5.35: Simple shear simulations (dry, dense), end of initial compression-(a)
Configuration, (b) Contact force diagram
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Figure 5.96: Simple she~ simulations (dry, dense), end of second compreSSIOn
phase-(a) Configuration, (b) Contact force diagram
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Figure 5.37: Simple shear simulations (dry, dense), 1'=5%-(a) Configuration, (b)
Contact force diagram



170

Force Scale:

lOOOOgF

Figure 5.98: Simple shear simulations (dry, dense), 1=10.5%-(a) Configuration, (b)
Contact force diagram
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Figure 5.40: Simple shear simulations (dry, dense), Height or volume change
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Figure 5.43: Simple shear simulations (saturated, dense), i=5%-(a) Configuration,
(b) Contact force diagram
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Figure 5.45: Simple shear simulations (saturated, dense), "Y=1O.5%-(a) Configura­
tion, (b) Contact force diagram
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Figure 5.46: Simple shear simulations (saturated, dense), ;=1O.5%-(a) Particle ve­
locity, (b) Fluid force on particles
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Chapter 6

CONCLUSIONS AND SUGGESTIONS

6.1 Conclusions

In this study we have developed a tool to simulate the behavior of a two-dimensional

saturated granular medium. The treatment of the solid phase was based on Cundall's

distinct element method. With this solid phase, we have incorporated a liquid phase

that was modelled by the boundary element method. Because water flow processes

in a porous medium occur at a low Reynolds number, the equations of motion of the

fluid phase are assumed to be Stokes' equations. Furthermore, quasi-steady flow has

also been assumed. This choice was based on the hypothesis that in the low velocity

flow that occurs, the inertia and convection terms are negligible.

The analytical formulation of the liquid phase requirements has been described

and comparisons have been made with other solutions in order to check the accuracy

and validity of the algorithm used. In general these validations showed satisfactory

agreement.

Finally, the developed computer code was used to simulate the simple shear of

soil-like systems both for dry and saturated systems. In the course of developing the

computer code, a mechanism allowing the transfer of load from the skeleton to the

liquid phase has also been developed. From the numerical simple shear test results,

it was found that:

1. The distinct element model is capable of modelling adequately the overall be-
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havior of soil-like systems. In particular, in the dry case, the results obtained

indicate that qualitatively, the overall behavior of the systems corresponds to

that of a real soil. For example, the dry shearing of a loose soil is accompanied

by a decrease in volume while the shearing of a dense system shows an increase

in volume due to the dilation of the particles. In both cases, softening of the

shear stress versus shear strain behavior was also shown.

For slow monotonic loading, the choice of the solid phase properties is not crucial

to the response of the system because static equilibrium is always achieved.

2. The combined solid-fluid interaction treatment was shown to be capable of mod­

elling adequately the overall behavior of saturated sand. We have demonstrated

that the simple shearing of a loose saturated system is accompanied with an in­

crease in pore pressure while a dense system indicated first a rise in pore pressure

followed by a decrease of the pressure. This behavior has also been observed in

actual soil.

3. The Stokes' flow regime used in this model is adequate for the representation of

the fluid phase because the velocity of the fluid is relatively small.

4. In addition to the global behavior, a microscopic behavior is also observed that

clarifies the behavior of the systems studied. The rotation of the principal

stresses during the shearing process was the main characteristic of the response

of the system. In the case of a dry system, this rotation is accompanied by con­

stant increase of the interparticle contact force because the volume is allowed to

change. When the system is loose, the densification process that occurs during

shearing pushes the particle into closer contact, thereby increasing the contact

force. In the dense, dry system, the dilation of the grain assemblage also in­

creases the interparticle contact force; however, here the shearing occurs with an



185

increase in volume.

When a liquid phase is added to the system and shearing is performed at con­

stant volume, in the loose system the forces supported by the skeleton do not

change much but rotation of the direction of the load path occurs, coinciding

with a decrease in solid support for the applied vertical load. Consequently,

this unbalanced vertical load has to be distributed to the liquid phase, thereby

increasing the pore pressure.

In the dense, saturated system, because the dilation process is not accompanied

by a change of volume, the interparticle contact forces steadily increase accom­

panied by the same rotation of stresses. The increase of the contact forces in

this case allows the skeleton to support the applied load better and leads to a

decrease in loading on the liquid phase. Hence, a decrease in pore pressure is

observed.

5. The fluid phase playa double role in a saturated granular medium: (l)as a

transmitting medium for the pressure disturbance created at the boundary by the

force unbalance due to the restructuring of the solid particles (primary effect) and

(2) as a viscous medium which resists to the motion of the particles (secondary

effect). For slow monotonic loading, only the primary effect contributes to the

global behavior of the system.

6. At present, only a limited number of loading conditions can be performed due

to the restrictions of the fluid phase model. In particular, the incompressibility

of the fluid phase does not allow uniform compression on a saturated system.
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6.2 Suggestions for Further Work

The modelling of saturated granular media is still in its infancy; further developments

and studies are required. Possible investigations are:

1. Because an artificial gap is allowed between particles for fluid flow, the influence

of this gap on the overall behavior is not yet clear and further parametric studies

of the gap width are necessary to obtain some insight on the influence of this

variable. Furthermore, the important role played by the fluid primary effect may

be caused by the large gap width used in the simulations of this study.

2. An alternative numerical solution method for Stokes' equations is necessary be­

cause of the lengthy computation time required by the boundary integral el­

ement method. Of particular interest is the "Lattice Cellular Gas Automata"

model [50,51,44,29], which models fluid flow using "fluid" particles with discrete

velocities on a regular lattice.

3. Although it was demonstrated that the model is able to represent the liquefac­

tion behavior, because of the limited resources available in this study, we were

not able to conduct several cycles of shear loading and unloading such as is

observed to produce liquefaction in real soils. Observations of the microscopic

behavior resulting from this type of study would give clues as to how liquefaction

is initiated.

4. In its actual form, the computer code developed for this study is not adequate for

modelling uniform compression of saturated systems because of the incompress­

ibility of the fluid phaSe. To overcome this restriction, further studies should take

into account fluid compressibility. IT this were done, general loading conditions

could be applied to the system.
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5. Probably the next most important step would be the study of a full three­

dimensional system. Because of the plane strain assumptions used in two di­

mensions, several factors have been neglected. In particular, no information on

stresses in the out-of-plane direction is available. When shearing occurs in two

directions (as opposed to one only in two dimensions), the difference of behav­

ior between the two- and three-dimensional cases will enable us to justify (or

otherwise) the use of the two-dimensional model for certain types of problems.

6. Free surface fluid boundary conditions are needed in order to model free surface

flow problems such as those found in earth dams and natural soil profiles.

7. An empirical or statistical model can be developed in order to predict the forces

on particles generated by the fluid phase (i.e., a drag-like force type). From the

numerical results performed here, this force is not proportional to the velocity

because of the particle-fluid interactions in a closely-packed array of particles.

Using such a model would allow us to describe the fluid phase without the use

of any lengthy numerical solution techniques.

8. Finally, the model proposed in this study can also be used for future development

of rational constitutive relations.
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