A THREE-DIMENSIONAL ANALYTICAL STUDY OF SPATIAL VARIABILITY OF SEISMIC GROUND MOTIONS

by

L-L. Hong and A.H-S. Ang
Department of Civil Engineering
University of California-Irvine
Irvine, California 92717

Technical Report NCEER-90-0025

October 30, 1990

This research was conducted at the University of California-Irvine and was partially supported by the National Science Foundation under Grant No. ECE 86-07591.

REPRODUCED BY
U.S. DEPARTMENT OF COMMERCE

NOTICE

This report was prepared by the University of California-Irvine as a result of research sponsored by the National Center for Earthquake Engineering Research (NCEER). Neither NCEER, associates of NCEER, its sponsors, the University of CaliforniaIrvine, nor any person acting on their behalf:
a. makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report or that such use may not infringe upon privately owned rights; or
b. assumes any liabilities of whatsoever kind with respect to the use of, or the damage resulting from the use of, any information, apparatus, method or process disclosed in this report.

$$
\ddot{i}, a
$$

A THREE-DIMENSIONAL ANALYTICAL STUDY OF SPATIAL VARIABILITY OF SEISMIC GROUND MOTIONS

by
L-L. Hong ${ }^{1}$ and A.H-S. Ang ${ }^{2}$

October 30, 1990

Technical Report NCEER-90-0025

NCEER Contract Number 88-3015
NSF Master Contract Number ECE 86-07591

1 Assistant Professor, Department of Civil Engineering, National Cheng-Kung University, Tainan, Taiwan
2 Professor, Department of Civil Engineering, University of California - Irvine

NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH
State University of New York at Buffalo
Red Jacket Quadrangle, Buffalo, NY 14261

PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis is on structures and lifelines that are found in zones of moderate to high seismicity throughout the United States.

NCEER's research is being carried out in an integrated and coordinated manner following a structured program. The current research program comprises four main areas:

- Existing and New Structures
- Secondary and Protective Systems
- Lifeline Systems
- Disaster Research and Planning

This technical report pertains to Program 3, Lifeline Systems, and more specifically to water delivery systems.

The safe and serviceable operation of lifeline systems such as gas, electricity, oil, water, communication and transportation networks, immediately after a severe earthquake, is of crucial importance to the welfare of the general public, and to the mitigation of seismic hazards upon society at large. The long-term goals of the lifeline study are to evaluate the seismic performance of lifeline systems in general, and to recommend measures for mitigating the societal risk arising from their failures.

From this point of view, Center researchers are concentrating on the study of specific existing lifeline systems, such as water delivery and crude oil transmission systems. The water delivery system study consists of two parts. The first studies the seismic performance of water delivery systems on the west coast, while the second addresses itself to the seismic performance of the water delivery system in Memphis, Tennessee. For both systems, post-earthquake fire fighting capabilities will be considered as a measure of seismic performance.

The components of the water delivery system study are shown in the accompanying figure.

Program Elements:

Tasks:

Wave Propagation, Fault Crossing
Liquelaction and Large Deformation
Above- and Under-ground Structure Interaction
Spatial Variability of Ground Motion
Soil-Structure interaction, Pipe Response Analysis Statistics of Repair/Damage
Post-Earthquake Data Gathering Procedure
Leakage Tests, Centrifuge Tests for Pipes

Post-Earthquake Firefighting Capability
System Reliability
Computer Code Development and Upgrading
Verification of Analytical Results

Mathematical Modelling
Socio-Economic Impact

In this study, an approach for the analytical solution of wave propagation in three-dimensional solids has been extended to a half-space subjected to finite dislocation representing fault rupture from an earthquake. With specified rupture area and dislocation speed, analytical solutions of the ground motions at the surface, or near the surface, at specified distances from the rupture are calculated. Using the results at specific ground surface stations obtained analytically for a given set of source parameters, appropriate transfer functions can be obtained through timedomain system identification techniques to represent seismic wave transmission between the fault rupture and ground station. This should then permit a definition of spatially varying ground motions useful for lifeline studies.

Abstract

A hybrid deterministic and stochastic method is developed to estimate the spatial variation of seismic ground motions which is necessary for the analysis and design of lifeline systems. An analytical model for wave propagating through a three-dimensional half-space is first proposed to evaluate the ground responses. The incoherent slip over a fault plane is then represented by an autocorrelation function of the dislocation velocity, from which the source motion is modeled as a raridom process specified by a power spectral denisity function. To separate the path effect from the source effect, a multi-degree-of-freedom system is chosen as the "substitute system" which is characterized by the equivalent transmission effect to the deterministic wave propagation model. The frequency transfer function of the substitute system is obtained through system identification. With the resulting transfer function of the system and the given power spectral density at the source, the power spectral density of absolute and differential ground motions can be estimated.

The resuits obtained through the model are compared with the field data from an actual earthquake recorded at a dense strong motion array. The analytical results should be applicable for the seismic response analysis and design of pipeline systems.

1

1

1

1

1

1

1

1

ACKNOWLEDGMENTS

This report is based on the studies conducted by Dr. L-L. Hong as part of his dissertation for the Ph.D. at the University of Ilinois at Urbana-Champaign. The worls was supported by the National Center for Earthquake Engineering Research under contract NCEER 88-3015, and constitutes part of the US-Taiwan cooperative research on lifeline reliability and design.

The authors are indebted to Professors C. S. Yeh, C. F. Loh, P. L. Chen, and M. K. Kuo, and Mr. T. K. Wang of Taiwan for their contributions to the cooperative study.

TABLE OF CONTENTS

SECTION TITLE PAGE
1 INTRODUCTION 1-1
1.1 Introductory Remarks 1-1
1.2 Objectives and Scope 1-2
1.3 Organization 1-3
1.4 Summary of Notations 1-4
2 ANALYTICAL GROUND MOTIONS IN TRANSFORM DOMAIN 2-1
2.1 Review of Earthquake Source Models 2-1
2.2 The Haskell Model 2-6
2.2.1 Horizontal Fault 2-6
2.2.2 Oblique Fault 2-14
3 ANALYTICAL GROUND MOTIONS IN TIME DOMAIN 3-1
3.1 Introduction 3-1
3.2 Inverse Laplace Transform 3-2
3.2.1 Cagniard Path Contribution 3-2
3.2.2 Branch Cut Contribution 3-4
3.2.3 Pole Contribution 3-4
3.3 Analytical Formulation 3-7
3.4 Case Studies 3-12
4 ANALYSIS OF SEISMIC GROUND MOTIONS 4-1
4.1 Deterministic Analysis 4-1
4.1.1 The Event 5 4-1
4.1.2 Model Parameters 4-2
4.2 Stochastic Analysis 4-13
4.2.1 Randomness of Earthquake Source 4-14
4.2.2 The Substitute System 4-18
4.2.3 Stochastic Characteristics of Ground Motion 4-30
5 APPLICATIONS TO PIPELINES 5-1
5.1 Introduction 5-1
5.2 Differential Axial Motion Across Joint 5-2
5.2.1 Deterministic Analysis 5-2
5.2.2 Stochastic Analysis 5-5
5.3 Differential Transverse Motion Across Joint 5-6
5.3.1 Deterministic Analysis 5-6
5.3.2 Stochastic Analysis 5-11
5.4 Comparison of Results 5-12
6 SUMMARY AND CONCLUSIONS 6-1
6.1 Summary 6-1
6.2 Conclusions 6-2
6.3 Suggestions for Further Study 6-4

TABLE OF CONTENTS (Cont'd)
SECTION TITLE PAGE
7 REFERENCES 7-1
APPENDIX A LAPLACE TRANSFORM ELEMENTS FOR OBLIQUE FAULT A-1
APPENDIX B ANALYTICAL SOLUTION OF HASKELL MODEL B-1
APPENDIX C POWER SPECTRAL DENSITY OF BASE VELOCITY C-1
APPENDIX D LISTING OF COMPUTER PROGRAM D-1

LIST OF ILLUSTRATIONS

FIGURE TITLE PAGE
2.1 Shear Dislocation in a Rectangular Fault 2-7
2.2 Schematic Diagrams of Superposition of Four Quadrantal Dislocations 2-10
2.3 Coordinate Systems of Half-Space and Fault 2-15
2.4 Incident and Reflected Waves at a Receiver 2-20
3.1 Poles and Cagniard Paths in Complex σ-Plane 3-3
3.2 Poles and Cagniard Paths in Complex a-Plane 3-6
3.3 Poles and Cagniard Paths in Complex β-Plane 3-8
3.4 Vertical Fault and Ground Station 3-13
3.5 Displacements in Case I 3-15
3.6 Displacements in Case II 3-16
3.7 Accelerations for Different Rise Times 3-18
4.1 Seven Stations in the SMART-1 Array 4-3
4.2 Accelerograms Along Epicentral Direction 4-4
4.3 Accelerograms Normal to Epicentral Direction 4-5
4.4 The Rupture Velocity 4-7
4.5 Focal Mechanisms of Event 5 $.4-10$
4.6 Analytic Velocities at Station C00 with $\mathrm{T}_{\mathrm{r}}=0 \mathrm{sec}$ 4-11
4.7 Accelerations for Different Rise Times at Station C00 4-12
4.8 Schematic Diagrams of Dislocation and Its Autocorrelation Function 4-15
4.9 Velocities from Analytic Model and Substitute System at Station C00 $\left(0.05<\xi_{j}<1\right)$ 4-25
4.10 Velocities from Analytic Model and Substitute System at Station C00 ($0.1<\xi_{j}<1$) 4-26
4.11
Velocitics from Analytic Model and Substitute System at Station C00 ($0.2<\xi_{j}<1$) 4-27
4.12 Velocities from Analytic Model and Substitute System at Station O06 ($0.1<\xi_{j}<1$) 4-28
4.13 Velocities from Analytic Model and Substitute System at Station O12 ($0.1<\xi_{j}<1$) 4-29
4.14 Power Spectral Densities of Acceleration at Station O06 4-33
4.15 Power Spectral Densities of Acceleration at Station M06 4-33
4.16 Power Spectral Densities of Acceleration at Station I06 4-34
4.17 Power Spectral Densities of Acceleration at Station C00 4-34
4.18 Power Spectral Densities of Acceleration at Station I12 4-35
4.19 Power Spectral Densities of Acceleration at Station M12 4-35
4.20 Power Spectral Densities of Acceleration at Station O12 4-36
4.21 Power Spectral Densities of Differential Ground Acceleration 4-40
4.22 Power Spectral Densities of Differential Ground Velocity 4-42
4.23 Power Spectral Densities of Differential Ground Displacement 4-44

LIST OF ILLUSTRATIONS (Cont'd)

FIGURE TITLE PAGE
5.1 Discrete Model for Differential Axial Motion Across Joint 5-3
5.2 Discrete Model for Differential Transverse Motion Across Joint 5-4
5.3 Differential Axial Displacement Response Spectra ($\xi_{0}=5 \%$) 5-16
5.4 Differential Axial Displacement Response Spectra ($\xi_{0}=10 \%$) 5-18
5.5 Differential Transverse Displacement Response $\operatorname{Spectra}\left(\xi_{1,2,3}=5 \%\right)$ 5-20
5.6 Differential Transverse Displacement Response Spectra $\left(\xi_{1,2,3}=10 \%\right)$ 5-22

SECTION I

INIRODU゙CHON

1.1 Introductory Remarks

The spacial variation of seismic ground mocions is necessary for the proper design and analysis of lifeline systems. Lifeline systems, such as oil and gas pipelines, water distribution systems, as well as communication and transportation nesworks, offer varying needs for a moden ciry. Once their periomance are intermpted during an earthquake, the infuence to the safety and health of the public could be very significant.

One obvious difference of a lifeline from buildings is that its lengt is much greater than its other dimensions. Therefore, the seismic excitations along the exis of a lifeline should nor be considered to be coherent motions. Since the incoherent excitations generate the difierential motion between any two points along the pipeline axis, it is of paricular concem to investigate the damage at the joints caused by the relative ground motions.

To sudy the out-of-phase seismic ground motions, the ooservations from a dense array of strong motion seismographs are needed. The SMART-1 (Strong Motion ARray in Taiwan) provides this opporanity. The array consisted of 37 triaxial acselerometers configured in three concentric circles of radii 0.2 km (Inner), 1 km (Middle), and 2 km (Outer). There are twelve equally spaced stations numbered 1 through 12 on each ring and one central station named C00. This specially installed array presents much information of the spatially varying seismic ground motions.

The spatial variation of the seismic ground motions recorded by the SMART-1 array has been extensively analyzed, for example, by Loh, er al. (1983). Harada (1984) and Loh (1985). The evaluation is entirely based on the field data. In particular, the focal mechanism of an earthquake from which the recordings are generated is not considered, and thus the results are applicable only for a specific earthquake.

For the purpose of presenting a model to study the general spatial variation of ground motions from an earhquake an analyical model to simulate the foca! mechanism is required. Such a model should account for the rupture process at the source and the wave propagation through the semi-infinite soil medium.

Similar attempts have been made by Zerva, et al. (1985) as well as Suzuki and Kiremidjian (1988) when both the stochastic rupore process and the wave propagation were combined together either to investigate the spatial variation of ground motions or to estimate the seismic hazard. Zerva, et al. (1985) used an anti-plane shear plus a plane-strain model to simulate the three-dimensional problem. Suzuki and Kiremidjian (1988) adopted the nomal mode method to evaluate seismic ground motions; because no radiation condition at infinity was considered when the normal modes were calculated, an empirical atmenuation factor was needed in this approach.

1.2 Objectives and Scope

The objective of this study is to develop a three-dimensional analytical mode! to determine the characteristics of seismic excitations perinent to lifelines. The
seismic ground motions are expressed in stochastic terms, such as power and cross spectral density functions of the differential motion. To achieve this goal, the faulting at the source is described stochastically and the transmission through the soil is substituted by an N-degree-of-freedom system whose output is equivalent to the wave motions obtained through a theoretical 3-D wave propagation solution in a half space subjected to a specified rupture process at the focus.

The spatially varying ground motions are then used as the seismic input to a pipeline to investigate the maximum differential displacements across the joints represented in terms of the differential response spectra.

The validity of the analytical results are examined using empirical results from field recordings, specifically the SMART-1 array.

1.3 Organization

In Section 2, several models for simulating ground motions incuced by earthquakes are reviewed. The Haskell kinematic dislocation model is then described and the analytical ground motions in the transform domain is obained for a general fault with an arbitrary dip angle.

Section 3 presents the analytical ground motions in the time domain. Inversion of the Laplace transform presented in Section 2 is performed with the Cagniard-de Hoop technique. To validate the resulting solutions, the displacements obtained with the model for a vertical fault are compared with those obtained by other methods.

An explicit form is proposed in Section 4 for invoducing the randomness at the source. The wave transmission effect is simulated by a substitute system, with
parameters obnained through system identification. On this basis, aumerical solutions are obtained to simulate an earthquake (Event 5) recorded by the SMARI-1 array. The results, in terms of the power spectral deasity of the absolute and differential mocions, for this earthquake are evaluated and compared with those obtained from the corresponding field data.

Discrere models of pipelines subjected to axial and lateral ground motions are introduced in Section 5. Pertinent maximum responses of the pipeline predicted with the analytical ground motion model are compared with coresponding results obeained for the ground motions recorded in Event 5.

Finally, Section 6 presents the summary and major conclusions of the curtent sady.

1. \ddagger Summary of Notations

A.., $B \pm . \quad$ Cagniard paths in the complex a - and β-planes, respecrively
B, \dot{B} base displacement and velociry of substitute system, respectively
b_{p}, b_{s} P. and S-wave slowness, respectively
C. circular paths in the complex plane
c_{p}, c_{b} dampings of joint and soil, respectively
$D, \dot{D} \quad$ dislocation and its velocity, respectively
$D_{0} \quad$ final dislocation.
D.. receiver functions

E error function
F_{p}, F_{s} Laplace tansformed elements for an oblique fault
$F_{0,1,2,3}$ ground excitations to discrete pipeline systems
f source time function
$g_{g}, g_{s} \quad$ phase functions of P - and S-wave, respectively
$g^{\prime}{ }_{\rho, \text {, }}$ phase functions for local system (fault)
H Heaviside step furction
F, H: frequency transfer functions
h, h. impulse response functions
$J_{\beta}, J_{s} \quad$ Jacobian determinants related to P - and S -wave, respectively$k_{L}^{-1} \quad$ correlation length
$k_{T}^{1} \quad$ correlation time
$k_{p}, k_{g} \quad$ stiffnesses of joint and soil, respectively
L fault length
l separation distance of pipe segments
M_{L} local magnitude
m lumped mass of pipe segment
R Rayleigh function
$R_{0} \quad$ distance from a station to the cormer of a fault
$R^{*} \quad$ reflection coefficients
r ampliude of position vector in $x y$ plane
$S_{P}, S_{V}, S_{H} \quad$ source functions of P ., SV - and SH -wave, respecively
$S^{\prime} P, V, H$ source functions of P., SV. and SH-wave, respectively
S.. power or cross spectral density functions
s Laplace tansform parameter
sgn sigma function
T. rise time in linear ramp-cime source function
$T_{0} \quad$ duration of spreading rupture
t_{i}, t_{f} initial and final times of a record, respectively
$t_{1 k}$ arrival time of conical head wave
$t_{1 p}, t_{1,}$ arrival time of spherical P - and S-wave, respectively
$t_{2 h}, t_{3 h}$ artival time of plane head wave
$t_{2 p}, t_{2 s}$ arrival time of conical P. and S-wave, respectively
$t_{3 p}, t_{3 s}$ arrival time of cylindrical P - and S-wave, respectively
u_{x}, u_{y}, u_{z} displacement components
$\bar{u}_{x}, \bar{u}_{y}, \bar{u}_{z}$ Laplace transforms of displacement components
v rupture velocity
$y_{p}, v_{s} \quad P$ - and S-wave velocities, respectively
W fault width
x, y, z coordinates of global system (half-space)
$x^{\prime}, y^{\prime}, z^{\prime} \quad$ coordinates of local system (fault)
$x_{G_{1,2}}, y_{G_{1,2}}$ axial and transverse ground motions at supports, respectively
$x_{1,2}, y_{1,2}$ axial and transverse displacements of pipe segments, respectively
z_{0} depth of shallowest edge of a fault
$z_{1,2}, 3$ generalized displacements in discrete pipeline system
$\Delta d, \Delta v, \Delta a \quad$ differential ground displacement, velocity, and acceleration, respectively
$\Delta x, \Delta y \quad$ differential axial and transverse displacements between pipe segments, respectively
δ dip angle
$\lambda \quad$ ratio of k_{p} to k_{g} (also c_{p} to c_{g})
$\mu_{\Delta u_{m}}, \sigma_{\Delta u_{m}} \quad$ mean value and standard deviation of maximum differential displacement between pipe segments, respectively
$\omega_{0,1,2,3}$ natural frequencies in discrete pipeline system
$\omega ., \omega: \quad$ natural frequencies in multi-degree-of-freedom system
$\phi, \chi, \psi \quad$ 1. Lame potential functions
ψ 2. spatiotemporal autocorrelation function of dislocation velocity
$\phi_{1,2}$ elements in modal shape vectors
$\phi ., \phi: \quad$ participation factors in multi-degree-of-freedom system
$\Sigma_{=} \quad$ Cagniard paths in the complex σ-plane
σ_{1}, σ_{2} poles in the complex σ-plane
θ 1. argument of position vector in $x y$ plane
2. rotation of pipe segment
$\xi, \eta, \zeta_{g}, \zeta_{s}$ global Fourier transform parameters
$\xi^{\prime}, \eta^{\prime}, \zeta_{p}^{\prime}, \zeta_{s}^{\prime} \quad$ local Fourier transform parameters
$\xi_{0,1,2,3}$ damping ratios in discrete pipeline system
$\xi ., \xi: \quad$ damping ratios in multi-degree-of-freedom system
[C] damping matrix
$[D],\left[D^{\prime}\right]$ global and local receiver function matrices, respectively
$\left[D^{-}\right]$modified receiver function matrix
$[K]$ stiffness matrix

[M] mass matrix

[T] coordinate transformation matrix
$\{F\}$ ground excitations to pipelines
$\left\{\Phi_{1}, 2,3\right\} \quad$ modal shapes
$f^{F} \quad$ Fourier transform of a function f
$f^{F F}$ double Fourier transform of a function f
\bar{f} one-sided Laplace transform of a function f

SECTION 2

ANALYIICAL GROUND MOTIONS IV TRANSFORM DOMANY

2.1 Review of Earthquake Soure Models

Seismologists generally agree that earchquakes (particularly shallow earhquakes) are produced by a sudden rupure in the earth's crusi caused by the release of acsumulated stain initiated at a point on a geologic fault. The ruprure spreads over the fault surface and shearing motions develop behind the rupure frone. The rupare will evenually stop either because of a suong barmier or simply due to the Luck of sufficient serain energy, and the ensuing shearing mocions throughout the source region ceases. Another rupture might start again at some other point on the fault suriaca. To theoretically represent such an earthquake source mechanism, dislocation fault models, in which an earthquake is initiated by a discontinuous displacement on a fault plane, have been introduced. Such dislocation models may be divided into kinematic and dynamic models.

For fully dymamic dislocation models, the slip within a crack has to be estimated as a function of the stress drop (the pre-exising tectonic shear stess rninus the dynamic frictional stress) and the velocity of the crack boundary is govened by a fracare criterion (stress-intensity factor, energy release rate, or maximin: stess). In other words, the stress drop is considered as the driving force of an earthquake rupture and the motion of the rupure front is then detemined by certain physical relations berween stress concentraion and material strengch.

Because of the lack of information regarding stress drop and material strength, the slip has frequently been specified empirically. In kinematic dislocation models, the final slip is often assumed to be constant over a fault and the evolution of the rupture front is modeled as a unilateral or bilateral motion of a dislocation with a constant velocity.

There have been many investigations on determining the seismic source parameters from the analysis of observed records and the prediction of ground motions excited by a simplified source mechanism through an idealized medium. The analyses of seismic ground motions using various source models and the methods of solution can be classified as follows:
(1) Dislocation model
(a) Type: strike-slip or dip-slip,
(b) Length of fault: infinite, semi-infinite or finite,
(c) Shape of rupture front: rectilinear or curvilinear,
(d) Slip function: kinematic or dynamic.
(2) Medium
(a) Dimensionality: 2-D anti-plane shear, 2-D plane strain or 3-D,
(b) Region: full-space or half-space,
(c) Property: uniform or layered.
(3) Method of solution
(a) Green's function,
(b) Equivalent body force,
(c) Generalized ray theory,
(d) Cagniard-de Hoop,
(e) Self-similar potential,
(f) Discrete wave number,
(g) Mixed boundary integral equation,
(h) Finite difference.

An extensive literature review can be found in Luco (1986).
Strictly speaking, the motions at the ground surface generated by an earhquake of fault rupture origin involve wave propagations in a threedimensional half-space. The three-dimensional problem has been approximated by two-dimensional solutions; namely an anti-plane shear plus a plane-strain solution (e.g., Seyyedian-Choobi and Robinson, 1975). The anti-plane shear model in a half-plane corresponds to a strike-slip rupture, whereas the plane-strain model leads to a dip-slip motion. In both models, the responses are independent of the coordinate in the out-of-plane eisection. In other words, such an approximation implies the assumption that the rupture surface is infinitely long.

Comparisons of two- and three-dimensional solutions in infinite media have been presented by Boore and Zoback (1974) and Geller (1974). Boore and Zoback (1974) compared the three-dimensional solution of Haskell (1969) for a vertical strike-slip fault with a solution for a two-dimensional gliding dislocation model of finite length and concluded that, for near-field stations, the wave forms may be insensitive to the rupture length, but the amplitudes of the motions are not. Geller (1974) conducted similar comparisons and found that both solutions are almost identical until the arrival of the P -wave from the edge of a three-dimensional rupture of finite length.

In earlier studies, the effects of the free surface were approximated by doubling the amplitudes resulting from the response of a full-space. Anderson (1.976) found that this approximation is valid only for the case when the angle of
incidence at the station is less than a specified value. In addition to the above restriction for amplification of waves, the other major deviations arise from the appearance of the Rayleigh and head waves in a half-space.

As for the method of solution, the synthesis of Green's functions is the most common approach to evaluate the ground motions caused by a fault dislocation, because the formulation of the response is straightiorward as long as the Green's functions are available. However, formidable numerical effors are required in evaluating the Green's functions and the resulting convolution integrals. In general, the response obtained by this approach involves a spatial integral of the point source solution over the whole fault plane either directly in the time domain (Kawasaki, 1975; Anderson, 1976; Hartzell, et al., 1978) or in the frequency domain followed by the necessary Fourier inverse transform (Levy and Mal, 1976). Luco and Anderson (1983) adopted the equivalent body force representation to calculate the ground responses in the transform domain, in which the dislocation over a fault plane was converted to a set of equivalent body forces using the representation theorem introduced by Burridge and Knopoff (1964); the responses were then obtained by solving the inhomogeneous wave equations subject to the homogeneous boundary conditions at the free surface. A detailed review of the generalized ray theory can be found in Pao and Gajewski (1977). Basically, the Laplace transform response is expressed as the sum of several terms in this analysis. Each term represents the contribution from a particular ray and contains only the product of a source function, a receiver function, and a phase term. Chen (1981) used the generalized ray theory to analyze the ground responses induced by a non-propagating dislocation fault. Furthermore, each ray can be evaluated directly and exactly by applying the Cagniard-de Hoop technique (de Hoop, 1960)
to obtain the ground essponses in the time domain. Madariaga (1978) proposed the same technique to invert the transform and found an exact solution of Haskell's model in an unbounded medium. The application of the generalized ray theory is as straightforward as that of the Green's functions; moreover, the application of the Cagniard-de Hoop technique reduces the computational efforts significantly.

There were also approaches to analyze the wave field induced by an extended fault embedded in a layered half-space. One of these is to represent the response in the frequency domain as a double integral over the two horizontal components of the wave number. Bouchon (1979) intoduced the discretization over the two wave numbers in an elastic wave field.

For dynamic dislocation models, Das (1980) presented a method of Tixed boundary integral equation to determine the displacements and suesses in the crack plane for a three-dimensional dynamic shear crack of arbirary shape propagating in an infinite medium. A finite difference technique developed by Virieux and Madariaga (1982) was adopted for dynamic shear cracks and a maximum stress criterion was used to detemine the rupture propagation. Achenbach and Harris (1987) applied dynamic fracture mechanics to analyze the strong ground motion excited by subsurface sliding cracks.

A three-dimensional kinematic dislocation model in an elastic half-space will be presented in this study to simulate an earhquake and the resulting ground motions. Similar models were proposed by Chen (1981) as well as Luco and Anderson (1983). Chen (1981) considered the rupture velocity to be infinite, whereas, in Luco and Anderson (1983), the rupure front is initiated at infinity so that the results are applicable only for near-field ground motions. To be more
realistic for determining the spanal variability of ground motions, the source mechanism of an eariqquake is modeled by a shear fault of the Haskell type (Haskell, 1964) with finite length and finite rupture velocity.

2.2 The Easkell Model

The Haskell model is the earthquake source model most widely used for simulating seismic observations (Haskell, 1964, 1969; Aki, 1967, 1968; Kawasaki, 1975; Anderson, 1970́; Geller, 1976; Israel and Kovach, 1977; Madariaga, 1978; Bouchon, 1979; Tanimoto, 1982; Yeh, et a!., 1988). This model assumes a rectangular fault of length. L and width W as shown in Fig. 2.1. A dislocation line over the width W appears at one edge of the fault plane and propagates at a constant rupture velocity v until it suddenly stops at the other edge. The slip may be longitudinal (along the direction of rupture propagarion) for the case of a strike-slip fault or transverse (normal to the direction of rupture propagation) for the case of a dip-slip fault. The disfocation amplitudes are assumed to be idencical across the width in both cases. At the end of the rupture process, a constant dislocation remains on the source area. The Faskell model is also adopted in the present study. First, the analytical ground motions in the Laplace tansform domain excited by a horizontal Haskell fault are obtained. Then the results are extended to the case of a general fault with an arbitary dip angle. The resulting ground motions in the time domain are discussed in Section 3.

2.2.1 Horizontal Fault

Assume a horizontal fault at a depth of $z=z_{0}$. For the case of a strike-slip fault, the boundary conditions on the fault plane are

Figure 2.1 Shear Dislocation in a Rectangular Fault

$$
\begin{align*}
u_{x}(x, y, z, t)= & \frac{D_{0}}{2} \operatorname{sgn}\left(z-z_{0}\right) f(t)[H(y)-H(y-W)] \\
& \cdot\left[H(x)-\left\{H\left(T_{0}-t\right) H(x-v t)+H\left(t-T_{0}\right) H(x-L)\right\}\right] \tag{2.1}\\
u_{y}(x, y, z, t)= & 0 \tag{2.2}\\
\tau_{z z}(x, y, z, t)= & 0 \tag{2.3}
\end{align*}
$$

whereas for a dip-slip fault,

$$
\begin{align*}
u_{x}(x, y, z, t)= & 0 \tag{2.4}\\
u_{y}(x, y, z, t)= & \frac{D_{0}}{2} \operatorname{sgn}\left(z-z_{0}\right) f(t)[H(y)-H(y-W)] \\
& \cdot\left[H(x)-\left\{H\left(T_{0}-t\right) H(x-v t)+H\left(t-T_{0}\right) H(x-L)\right\}\right] \tag{2.5}\\
\tau_{z z}(x, y, z, t)= & 0 \tag{2.6}
\end{align*}
$$

In the foregoing equations,
$D_{0}=$ the magnitude of the dislocation,
$\operatorname{sgn}=$ the sigma function,
$f=$ the source time function,
$H=$ the Heaviside step function,
$T_{0}=L / v=$ the duration of the spreading rupture.
In the following sections, the ground motions excited by a strike-slip fault are described in detail. Results for a dip-slip fault are listed, where necessary, for reference.

After expanding Eq. (2.1), i.e.,

$$
\begin{align*}
& H(x)-\left\{H\left(T_{0}-t\right) H(x-v t)+H\left(t-T_{0}\right) H(x-L)\right\} \\
& =\{H(x)-H(x-v t)\}-H\left(t-T_{0}\right)\{H(x-L)-H(x-v t)\}, \tag{2.7}
\end{align*}
$$

the total field response $\left(f^{\top}\right)$ may be writen as the superposition of the field response (f°) for four identical quadrantal dislocations shifted in space and time, as shown in Fig. 2.2, i.e.,

$$
\begin{align*}
f^{T}(x, y, z, t)= & f^{2}(x, y, z, t)-f^{2}(x, y-W, z, t)-H\left(t-T_{0}\right) f^{2}\left(x-L, y, z, t-T_{0}\right) \\
& +H\left(t-T_{0}\right) f^{2}\left(x-L, y-W, z, t-T_{0}\right), \tag{2.8}
\end{align*}
$$

where f^{2} is the response subject to boundary conditions (2.2), (2.3), and

$$
\begin{align*}
u_{x}(x, y, z, t) & =\frac{D_{0}}{2} \operatorname{sgn}\left(z-z_{0}\right) f(t) \mathrm{H}(y)[H(x)-\mathrm{H}(x-v t)] \\
& =\frac{D_{0}}{2} \operatorname{sgn}\left(z-z_{0}\right) f(t) \mathrm{H}(x) \mathrm{H}(y) \mathrm{H}\left(t-\frac{x}{y}\right) . \tag{2.9}
\end{align*}
$$

By applying the Helmholtz decomposition, the wave equations are

$$
\begin{align*}
& \nu_{p}^{2} \nabla^{2} \phi=\ddot{\phi}, \tag{2.10}\\
& v_{s}^{2} \nabla^{2} \chi=\ddot{\chi}, \tag{2.11}\\
& v_{s}^{2} \nabla^{2} \psi=\ddot{\psi}, \tag{2.12}
\end{align*}
$$

where ϕ, χ and ψ are the potential functions corresponding to P -, SF- and $S V$-wave, respectively; v_{p} and v_{s} are the P - and S-wave velocities, respectively.

In order to solve the wave equation, e.g., Eq. (2.10), the one-sided Laplace tansform over : and the double Fourier transform over x and y are employed. The corresponding transform pairs are

$$
\begin{align*}
& \bar{\phi}(x, y, z, s)=\int_{0}^{\infty} \phi(x, y, z, t) e^{-s t} d t \tag{2.13}\\
& \phi(x, y, z, t)=\frac{1}{2 \pi i} \int_{B_{r}} \bar{\phi}(x, y, z, s) e^{s t} d s ; \tag{2.14}
\end{align*}
$$

and

$$
\begin{align*}
& \overline{\phi^{F} F}(\xi, \eta, z, s)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{\phi}(x, y, z, s) e^{-s(i \xi x+i \pi y)} d x d y \tag{2.15}\\
& \bar{\phi}(x, y, z, s)=\frac{s^{2}}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \overline{\phi^{F}}(\xi, \eta, z, s) e^{f(i \xi x+i \pi y)} d \xi d \eta \tag{2.16}
\end{align*}
$$

where:
$s=$ the Laplace transform parameter,
$B_{r}=$ the infinite Bromwich line,
$\xi, \eta=$ the Fourier transform parameters.
By solving the transformed wave equations with the quiescent initial conditions, the radiation conditions at infinity and the boundary conditions on the fault plane, the transformed potential functions are

$$
\begin{equation*}
\bar{\phi}(x, y, z, s)=\frac{D_{0} \overline{(}(s)}{8 \pi^{2} b \frac{2}{s} s} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_{P}(\xi, \eta, s) e^{-s\left(\zeta_{p}\left|z-z_{0}\right|-i \xi_{z}-i \pi y\right)} d \xi d \eta \tag{2.17}
\end{equation*}
$$

$$
\begin{align*}
& \bar{\chi}(x, y, z, s)=\frac{D_{0} \bar{f}(s)}{8 \pi^{2} b_{s}^{2} s} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_{H}(\xi, \eta, s) e^{-s\left(\zeta_{s}\left|z-z_{0}\right|-i \xi x-i \pi y\right)} d \xi d \eta \tag{2.18}\\
& \bar{\psi}(x, y, z, s)=\frac{D_{0} \bar{f} \bar{f}(s)}{8 \pi^{2} b_{s}^{2} s^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_{V}(\xi, \eta, s) e^{-s\left(\xi_{s}\left|z-z_{0}\right|-i \xi-i \pi y\right)} d \xi d \eta \tag{2.19}
\end{align*}
$$

where:

$$
\begin{aligned}
& \bar{f}(s)=\text { the Laplace transform of the source time function } f(t), \\
& \zeta_{j}^{2}=b_{j}^{2}+\xi^{2}+\eta^{2}, \quad j=p, s, \\
& b_{j}=1 / v_{j}, \quad j=p, s .
\end{aligned}
$$

The three source functions S_{P}, S_{V} and S_{H}, which are related to the transformed Lame potential functions in a full-space as shown in the preceding equations, are completely determined by the specified source mechanism, i.e., the boundary conditions on the fault plane, and can be expressed as

$$
\left\{\begin{array}{c}
S_{P}(\xi, \eta, s) \tag{2.20}\\
S_{V}(\xi, \eta, s) \\
S_{H}(\xi, \eta, s)
\end{array}\right\}=\frac{1}{i \eta(i \xi+b)}\left\{\begin{array}{c}
2 i \xi \\
\frac{-i \xi\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)}{\epsilon \zeta_{s}\left(\xi^{2}+\eta^{2}\right)} \\
\frac{-i b_{3}^{2} \eta}{\xi^{2}+\eta^{2}}
\end{array}\right\}
$$

for a strike-slip fault, and

$$
\left\{\begin{array}{c}
S_{P}(\xi, \eta, s) \tag{2.21}\\
S_{V}(\xi, \eta, s) \\
S_{H}(\xi, \eta, s)
\end{array}\right\}=\frac{1}{i \eta(i \xi+b)}\left\{\begin{array}{c}
2 i \eta \\
\frac{-i \eta\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)}{\epsilon \zeta_{s}\left(\xi^{2}+\eta^{2}\right)} \\
\frac{i \Sigma_{r}^{2} \xi}{\xi^{2}+\eta^{2}}
\end{array}\right\},
$$

for a dip-slip fault, in which $b=1 / v$ and $\varepsilon=-\operatorname{sgn}\left(z-z_{0}\right)$.
The displacement components are the spatial derivatives of the potential functions, i.e.,

$$
\begin{align*}
& u_{x}=\frac{\partial \phi}{\partial x}+\frac{\partial x}{\partial y}+\frac{\partial^{2} \psi}{\partial x \partial z} \tag{2.22}\\
& u_{y}=\frac{\partial \phi}{\partial y}-\frac{\partial x}{\partial x}+\frac{\partial^{2} \psi}{\partial y \partial z} \tag{2.23}\\
& u_{z}=\frac{\partial \phi}{\partial z}-\frac{\partial^{2} \psi}{\partial x^{2}}-\frac{\partial^{2} \psi}{\partial y^{2}} \tag{2.24}
\end{align*}
$$

With Eqs. (2.17) through (2.19) and (2.22) through (2.24), the transformed displacement is

$$
\begin{align*}
\bar{u}_{i}(x, y, z, s)=\frac{D_{0} \bar{f}(s)}{8 \pi^{2} b_{3}^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} & {\left[S_{P} D_{u_{i} p} e^{-s g_{p}}\right.} \\
& \left.+\left(S_{V} D_{u_{i} V}+S_{H} D_{u_{i} H}\right) e^{-f \delta s}\right] d \xi d \eta \tag{2.25}
\end{align*}
$$

where:

$$
\begin{aligned}
& \text { subscript } i=x, y \text { or } z \\
& D_{u ;} J=\text { the receiver function, } J=P, V, H,
\end{aligned}
$$

$$
g_{i} \quad=\zeta_{j}\left|z-z_{0}\right|-i \xi x-i \pi y, \quad j=p, s .
$$

The receiver functions relate the Lame potentials to the desired responses at the field point in the full-space. The physical interpretation of Eq. (2.25) is that the transformed displacement at a receiver contains the three types of waves generated at the source multiplied by the corresponding receiver functions, which account for the wave propagation effects in the Fourier tansform domain. The matrix form of Eq. (2.25) is

$$
\left\{\begin{array}{l}
\bar{u}_{x}(x, y, z, s) \tag{2.26}\\
\bar{u}_{y}(x, y, z, s) \\
\bar{u}_{z}(x, y, z, s)
\end{array}\right\}=\frac{D_{0} \bar{f}(s)}{8 \pi^{2} b_{s}^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}[D]\left\{\begin{array}{l}
S_{P}(\xi, \eta, s) e^{-s g_{p}} \\
S_{v}(\xi, \eta, s) e^{-s g_{s}} \\
S_{H}(\xi, \eta, s) e^{-s g_{s}}
\end{array}\right\} d \xi d \eta
$$

in which the source functions are given in Eq. (2.20) or (2.21), and the receiver function matrix is

$$
[D]=\left[\begin{array}{ccc}
i \xi & i \xi \epsilon \zeta_{s} & i \eta \tag{2.27}\\
i \eta & i \eta \epsilon \zeta_{s} & -i \xi \\
\varepsilon \zeta_{\rho} & \xi^{2}+\eta^{2} & 0
\end{array}\right]
$$

2.2.2 Oblique Fault

In the above section, the source functions are obtained for a horizontal fault plane and the receiver functions are valid for waves propagating through an infinite medium. For waves propagating in a half-space, the free surface effect of the ground should be considered. If the ground surface is taken as horizontal, the source functions for an oblique fault is also needed.

Fig. 2.3 shows the coordinate system of the half-space, i.e., $(x, y, z$), and the

Figure 2.3 Coordinate Systems of Half-Space and Fault
fault, i.e., $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. The fault strikes in the x^{\prime}-direction, and the dip angle δ is measured from the horizontal plane. The slips in the x^{\prime} - and y^{\prime}-directions represent the strike-slip and dip-slip motions, respectively.

The local coordinate system $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ can be transformed to ti:2 global coordinate system (x, y, z) through the following relation,

$$
\left\{\begin{array}{c}
x \tag{2.28}\\
y \\
z-z_{0}
\end{array}\right\}=[T]\left\{\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right\}
$$

in which the coordinate transformation matrix $[T]$ is defined as

$$
[T]=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{2.29}\\
0 & \cos \delta & -\sin \delta \\
0 & \sin \delta & \cos \delta
\end{array}\right]
$$

The transforms for the displacements, in the global coordinates, are shown in Eq. (2.26). In the present case, however, the source functions are unknown.

The transforms for the ground motions, in terms of the local coordinates, are similar to Eq. (2.26), and may be expressed as follows,

$$
\left\{\begin{array}{l}
\bar{u}_{x^{\prime}}\left(x^{\prime}, y^{\prime}, z^{\prime}, s\right) \tag{2.30}\\
\bar{u}_{y} \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}, s\right) \\
\bar{u}_{z^{\prime}}\left(x^{\prime}, y^{\prime}, z^{\prime}, s\right)
\end{array}\right\}=\frac{D_{0} \bar{f}(s)}{8 \sigma^{2} \dot{b}_{s}^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[D^{\prime}\right]\left\{\begin{array}{l}
S_{p\left(\xi^{\prime}, \eta^{\prime}, s\right)} e^{-s g^{\prime} p} \\
S_{v\left(\xi^{\prime}, \eta^{\prime}, s\right)} e^{-s \xi^{\prime} s} \\
S_{H\left(\xi^{\prime}, \eta^{\prime}, s\right)}^{\prime-s s^{\prime} s}
\end{array}\right\} d \xi^{\prime} d \eta^{\prime}
$$

in which $g_{i}^{\prime}=\zeta_{j}^{\prime}\left|z^{\prime}\right|-i \xi^{\prime} x^{\prime}-i \eta^{\prime} y^{\prime}, j=p$, s. The source and receiver functions are given in Eqs. (2.20) (or (2.21)) and (2.27), respectively, but with tie glooal
coordinates (x, y, z) replaced by the local coordinates ($x^{\prime}, y^{\prime}, z^{\prime}$), the global transform parameters $\left(\xi, \eta, \zeta\right.$) replaced by the local transform parameters ($\xi^{\prime}, \eta^{\prime}$, ζ^{\prime}), and $\epsilon^{\prime}=-\operatorname{sgn}\left(z^{\prime}\right)$.

With the equivalent phase functions, i.e., $g_{j}{ }_{j}=g_{j}, j=p$, s, the transform parameters are related also by

$$
\left\{\begin{array}{c}
i \xi \tag{2.31}\\
i \eta \\
\epsilon \zeta_{j}
\end{array}\right\}=[I]\left\{\begin{array}{c}
i \xi^{\prime} \\
i \eta^{\prime} \\
\epsilon \zeta_{j}^{\prime}
\end{array}\right\}
$$

The coordinate transfomation matrix $[T]$ also gives

$$
\left\{\begin{array}{l}
\bar{u}_{z} \tag{2.32}\\
\bar{u}_{y} \\
\bar{u}_{y}
\end{array}\right\}=[T]\left\{\begin{array}{l}
\bar{u}_{x^{\prime}} \\
\bar{u}_{y^{\prime}} \\
\bar{u}_{y}
\end{array}\right\} .
$$

Substituting Eqs. (2.26) and (2.30) into Eq. (2.32), the source functions corresponding to a general fault with an arbitrary dip angle δ are determined by

$$
[D]\left\{\begin{array}{l}
S_{P} e^{-s g_{\rho}} \tag{2.33}\\
S_{V} e^{-s g_{s}} \\
S_{H} e^{-s s_{s}}
\end{array}\right\}=[I]\left[D^{\prime}\right]\left\{\begin{array}{l}
S_{P}^{\prime} e^{-s g^{\prime} \rho} J_{P} \\
S_{V}^{\prime} e^{-s g^{\prime} s J_{s}} \\
S_{H}^{\prime} e^{-s g^{\prime} s_{s}}
\end{array}\right\}
$$

in which J_{j} is the Jacobian

$$
I_{j}\left(\xi^{\prime}, \eta^{\prime} ; \xi, \eta\right)=\left|\begin{array}{cc}
\frac{\partial \xi^{\prime}}{\partial \xi} & \frac{\partial \xi^{\prime}}{\partial \eta} \tag{2.34}\\
\frac{\partial \eta^{\prime}}{\partial \xi} & \frac{\partial \eta^{\prime}}{\partial \eta}
\end{array}\right|=\frac{\epsilon^{\prime} \zeta_{j}^{\prime}}{\epsilon \zeta_{i}} .
$$

After lengthy manipulation of Eq. (2.33), the source functions for an oblique Haskell fault can be given as follows:

$$
\left\{\begin{array}{c}
S_{P} \tag{2.35}\\
S_{V} \\
S_{H}
\end{array}\right\}=\frac{1}{i \eta^{\prime}\left(i \xi^{\prime}+b\right)}\left[\left\{\begin{array}{c}
\frac{2 \xi \eta}{\epsilon \zeta_{p}} \\
\frac{-2 \xi \eta}{\xi^{2}+\eta^{2}} \\
\frac{b_{s}^{2}\left(\xi^{2}-\eta^{2}\right)}{\epsilon \zeta_{s}\left(\xi^{2}+\eta^{2}\right)}
\end{array}\right\} \sin \delta+\left\{\begin{array}{c}
2 i \xi \\
\frac{-i \xi\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)}{\epsilon \zeta_{s}\left(\xi^{2}+\eta^{2}\right)} \\
\frac{-i b_{s}^{2} \eta}{\xi^{2}+\eta^{2}}
\end{array}\right\} \cos \delta\right],
$$

for a strike-slip fault; and

$$
\left\{\begin{array}{c}
S_{P} \tag{2.36}\\
S_{V} \\
S_{H}
\end{array}\right\}=\frac{1}{i \eta^{\prime}\left(i \xi^{\prime}+b\right)}\left[\left\{\begin{array}{c}
\frac{\zeta_{\rho}^{2}+\eta^{2}}{\epsilon \zeta_{p}} \\
-\frac{\xi^{2}+2 \pi^{2}}{\xi^{2}+\eta^{2}} \\
\frac{b_{s}^{2} \xi \eta}{\epsilon \zeta_{s}\left(\xi^{2}+\eta^{2}\right)}
\end{array}\right\} \sin 2 \delta+\left\{\begin{array}{c}
2 i \eta \\
-i \eta\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right) \\
\epsilon \zeta_{s}\left(\xi^{2}+\eta^{2}\right) \\
\frac{b_{s}^{2} \xi}{\xi^{2}+\eta^{2}}
\end{array}\right\} \cos 2 \delta\right],
$$

for a dip-slip fault.
To determine the ground motions excited by a wave propagating through a half-space, the boundary conditions at the free surface, i.e., $\tau_{x x}=\tau_{z y}=\tau_{z z}=0$ at $z=0$, should be considered in determining the receiver functions. The resulting receiver function matrix is modified as

$$
\left[D^{\bullet}\right]=\left[\begin{array}{ccr}
i \xi+i \xi R^{P P}-i \xi \zeta_{s} R^{P V} & i \xi \zeta_{s}-i \xi \zeta_{s} R^{V V}+i \xi R^{V P} & 2 i \eta \tag{2.37}\\
i \eta+i \eta R^{P P}-i \eta \zeta_{s} R^{P V} & i \eta \zeta_{s}-i \eta \zeta_{s} R^{V V}+i \eta R^{V P} & -2 i \xi \\
\zeta_{\rho}-\zeta_{\rho} R^{P P}+\left(\xi^{2}+\eta^{2}\right) R^{P V} & \left(\xi^{2}+\eta^{2}\right)+\left(\xi^{2}+\eta^{2}\right) R^{V V}-\zeta_{\rho} R^{V P} & 0
\end{array}\right],
$$

in which $R^{P P}, R^{P V}, R^{V P}$, and $R^{V V}$ are the reflection coefficients, which represent
the ratios of the amplitudes of the reflected waves to those of the respective incident waves.

In Eq. (2.37), each element in the receiver function matrix contains contributions from both the incident and reflected waves. For example, as shown in Fig. 2.4, when a P-wave is generated at the source, the incident P-wave, the reflected P-wave and the reflected SV-wave are all detected at the receiver, and assembled in the first element in Eq. (2.37). For the reflected waves, the degree of contribution to the displacement component at the receiver is determined by the reflection coefficients and the original receiver functions, i.e., Eq. (2.27), which are associated with the type of wave arriving at the receiver. By substituting the reflection coefficients in terms of the tansform parameters, the modified receiver function matrix is then expressed as

$$
\left[D^{\cdot}\right]=\frac{1}{R}\left[\begin{array}{ccc}
-4 i b_{s}^{2} \xi \zeta_{p} \zeta_{s} & -2 i b_{s}^{2} \xi \zeta_{s}\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right) & 2 i \eta R \tag{2.38}\\
-4 i b_{s}^{2} \eta \zeta_{p} \zeta_{s} & -2 i b_{s}^{2} \eta \zeta_{s}\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right) & -2 i \xi R \\
-2 b_{s}^{2} \zeta_{p}\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right) & -4 b_{s}^{2} \zeta_{p} \zeta_{s}\left(\xi^{2}+\eta^{2}\right) & 0
\end{array}\right],
$$

where the Rayleigh function is

$$
\begin{equation*}
R=4 \zeta_{p} \zeta_{s}\left(\xi^{2}+\eta^{2}\right)-\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)^{2} \tag{2.39}
\end{equation*}
$$

Finally, the transforms for the ground motions excited by an oblique dislocation fault are

$$
\left\{\begin{array}{l}
\bar{u}_{x}(x, y, 0, s) \tag{2.40}\\
\bar{u}_{y}(x, y, 0, s) \\
\bar{u}_{x}(x, y, 0, s)
\end{array}\right\}=\frac{D_{0} \bar{f}(s)}{8 \pi^{2} b_{s}^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[D^{\cdot}\right]\left\{\begin{array}{l}
S_{P}(\xi, \eta, s) e^{-s b p} \\
S_{V}(\xi, \eta, s) e^{-s g s} \\
S_{H}(\xi, \eta, s) e^{-s g s}
\end{array}\right\} d \xi d \eta
$$

Figure 2.4 Incident and Reflected Waves at a Receiver

Substituting Eqs. (2.35), (2.36) and (2.38) into Eq. (2.40), the transforms for the displacements become

$$
\begin{equation*}
\{\bar{u}(x, y, 0, s)\}=\frac{D_{0} \bar{f}(s)}{8 \pi^{2}} \sum_{j=p, s} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{F_{j}\right\} \frac{e^{-s\left(\xi_{j=0-i \xi-i m}\right)}}{(i \xi+b)\left(i \eta \cos \delta+\zeta_{j} \sin \delta\right) R} d \xi d \pi, \tag{2.41}
\end{equation*}
$$

where the vectors $\left\{F_{j}\right\}, j=p, s$, are summarized in Appendix A.

Inversion of the Laplace transform, Eq. (2.41), is necessary to obtain the ground motions in the time domain.

SECTION 3

AVALYMCAL GROUND MOTIONS IN TMME DOMAIN

3.1 Introduction

In the previous Section, Eq. (2.41) gives the Laplace tansform for the analycical ground motions. To obrain the responses in the ime domain, a special inverse transform method is needed. An effective method for this purpose is the Cagniard technique (Cagniard, 1962). The main idea of the Cagniard rechnique is to assign the phase function in Eq. (2.41) to the time variable t and then invert the Laplace tansform by direct inspection. A tansformation was introduced by de Hoop (1960) to simplify the Cagniard technique when two tansform parameters, e.g., ξ and η in. Eq. (2.41), are involved. In fact, the assignment of g_{p} or g_{s} to t represents a hyperbola, which is called the Cagniard path, in a complex plane after the de Hoop transfomation has been employed, and constitutes a contour including the original integral path in Eq. (2.41). In addition to the Cagniard path, the contrioutions from the poles within the contour and from the branch cut should be included in evaluating the integral of Eq. (2.41) by the residue theorem. The exact inversion contains a sum of single integrals and algebraic terms. Each tern contributing to the ground motion is identified as a specific wave.

Consider a general term in Eq. (2.41),

$$
\begin{equation*}
O(x, y, 0,5)=\frac{D_{0}}{8 . t^{2}} \sum_{j=F, 5} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{F_{j} e^{-s\left(\zeta_{j=0}-i \xi_{j}-i \pi j\right)}}{(i \xi+b)\left(i \eta \cos \delta+\zeta_{j} \sin \delta\right) R} d \xi d \eta \tag{3.1}
\end{equation*}
$$

where F_{j} is one element in Appendix A and the Rayleigh function R is given in Eq. (2.39). After applying the de Hoop transformation,

$$
\left\{\begin{array}{l}
\xi=i \sigma \cos \theta-q \sin \theta \tag{3.2}\\
\eta=i \sigma \sin \theta+q \cos \theta
\end{array}\right.
$$

in which os $\theta=x / r, \sin \theta=y / r$, and $r^{2}=x^{2}+y^{2}$, Eq. (3.1) becomes

$$
\begin{equation*}
\bar{U}(x, y, 0, s)=\frac{D_{0}}{8 \pi^{2}} \sum_{j=\rho, s} \int_{-\infty}^{\infty}\left[\int_{-i \infty}^{i \infty} \frac{(-i) F_{j} e^{-s\left(\zeta_{j}-a+\sigma r\right)}}{(i \xi+b)\left(i \eta \cos \delta+\xi_{j} \sin \delta\right) R} d \sigma\right] d q . \tag{3.3}
\end{equation*}
$$

The mapping of $\zeta_{j} z_{0}+\sigma$ to t represents the Cagniard paths $\Sigma_{\neq p}$ or $\Sigma_{ \pm s}$ in the complex σ-plane, as shown in Fig. 3.1. Also shown in Fig. 3.1 are the branch cuts, the branch points, and the poles. By the residue theorem, the integration of Eq. (3.3), which is taken along the imaginary axis of the complex σ-plane, is replaced by the integration along the Cagniard path plus the contributions from any poles within the conrour. No contributions from the circular paths $C_{\neq p}$ or $C_{ \pm s}$ are included as their radii tend to infinity. Two possible poles, σ_{1} and σ_{2} in Fig. 3.1, are located inside the contour. They are the roots of $i \xi+1 / v=0$ and in $\cos \delta+\zeta_{j} \sin \delta=0$, respectively.

3.2 Inverse Laplace Transform

3.2.1 Cagniard Path Contribution

Let $U_{1}(x, y, 0, s)$ be the contribution from the Cagniard paths, i.e.,

Figure 3.1 Poles and Cagniard Paths in Complex σ-Plane

$$
\begin{equation*}
\Xi_{1}(x, y, 0, s)=\frac{D_{0}}{8 \pi^{2}} \sum_{j=p, s} \int_{-\infty}^{\infty}\left[\int_{\Sigma_{ \pm j}} \frac{(-i) F_{j} \frac{d \sigma_{j}}{d t}}{(i \xi+b)\left(i \pi \cos \delta+\zeta_{j} \sin \delta\right) R} e^{-s t} d t\right] d q . \tag{3.4}
\end{equation*}
$$

After interchanging the order of integration, the inverse Laplace transform of O_{1} could be determined by directly inspecting the integrand. $U_{1}(x, y, 0, t)$ is a proper single integral with respect to q, and its exact formulation is listed in Eq. (B.1).

3.2.2 Branch Cut Contribution

If the vertex of the hyperbola, $\Sigma_{ \pm}$, is located on the right side of the branch point associated with the P -wave, the Cagniard path $\Sigma_{ \pm s}$ must be indented around the branch cut, i.e., $\Sigma_{ \pm k}$, as shown in Fig. 3.1. Tris case oceurs when $r / R_{0}>b_{p} / b_{s}$, and constitutes the other type of wave, namely head wave or SP -wave. Let $\bar{U}_{\mathrm{I} h}(x, y, 0, s)$ denote the contribution from this indented path, i.e.,

$$
\begin{equation*}
\bar{U}_{1 h}(x, y, 0, s)=\frac{D_{0}}{8 \pi^{2}} \sum_{j=p, s} \int_{-\infty}^{\infty}\left[\int_{\Sigma_{ \pm h}} \frac{(-i) F_{s} \frac{d \sigma_{k}}{d t}}{(i \xi+b)\left(i \eta \cos \delta+\zeta_{s} \sin \delta\right) R} e^{-s t} d t\right] d q . \tag{3.5}
\end{equation*}
$$

The interchange of the order of the integration is also needed to take the inverse transform. The exact form of $U_{1 h}(x, y, 0, t)$ is described in Eq. (B.2).

3.2.3 Pole Contribution

Let $\bar{U}_{2}^{\prime}(x, y, 0, s)$ and $\bar{U}_{3}^{\prime}(x, y, 0, s)$ be the contributions from the poies σ_{1} and σ_{2}, respectively. For the pole σ_{1} being inside the contour shown in Fig. 3.1, it is required that $x>0$ and $q^{2}>q_{\sigma_{j}}^{2}$ in which

$$
q_{\sigma_{j} j}=\frac{z_{0}}{r \sqrt{y^{2}+z_{0}^{2}}} \sqrt{\frac{R_{0}^{2}}{v^{2}}-x^{2} b_{j}^{2}}, \quad R_{0}^{2}=x^{2}+y^{2}+z_{0}^{2}
$$

Then, the contribution from the pole σ_{1} is

$$
\begin{align*}
\bar{U}_{2}^{\prime}(x, y, 0, s)=\frac{D_{0}}{8 \pi^{2}} H(x) \sum_{i=p, s} & {\left[\int_{-\infty}^{-q_{0, j}}(-2 \pi i) \frac{(-i) F_{j} e^{-s\left(\zeta_{j} i_{0}+a_{1} r\right)}}{\left(\frac{-x}{r}\right)\left(i \eta \cos \delta+\zeta_{j} \sin \delta\right) R} d q\right.} \\
& \left.+\int_{q_{0, j}}^{\infty}(-2 \pi i) \frac{(-i) F_{j} e^{-s\left(\zeta_{j} \sigma_{0}+\sigma_{1} r\right)}}{\left(\frac{-x}{r}\right)\left(i \eta \cos \delta+\zeta_{j} \sin \delta\right) R} d q\right] . \tag{3.6}
\end{align*}
$$

Let $q=i a$ and apply the Cagniard method again to obtain $U_{2}^{\prime}(x, y, 0, t)$. Fig. 3.2 shows the Cagniard path $A_{=j}$ corresponding to the mapping of $\zeta_{j} z_{0}+\sigma_{1} r=t$, the associated poles, the branch points, and the branch cuts in the complex a-plane for $y>0$ and $v<c_{f}$. For $y<0$, the contours are located in the left-half of a-plane. In the case of the subsonic rupture, i.e., $v<c_{s}$, no contributions from the poles and the branch cuts are involved when the integration paths of Eq. (3.6) is replaced by the Cagniard paths $A=j$ because no poles are located inside the contour and no branch cuts intersect the Cagniard paths, as shown in Fig. 3.2. For the transonic and supersonic ruptures, the contributions from the branch cuts should be considered. The complete representation of $U_{2}(x, y, 0, t)$, i.e., the contributions from the Cagniard paths $A_{ \pm p}$ and $A_{ \pm s}$, and $U_{2 h}(x, y, 0, t)$, i.e., the contributions from the branch cuts, are listed in Eqs. (B.3) and (B.4), respectively.

The necessary condition for the pole σ_{2} lying within the contour shown in Fig. 3.1 is that $y>0$ and $y^{\prime}>0$. Therefore, the contribution from the pole σ_{2} is

Figure 3.2 Poles and Cagniard Paths in Complex a-Plane

$$
\begin{equation*}
\bar{U}_{3}^{\prime}(x, y, 0, s)=\frac{D_{0}}{8 \pi^{2}} H(y) H\left(y^{\prime}\right) \sum_{j=p . s} \int_{-\infty}^{\infty}(-2 \pi i) \frac{(-1) F_{j} e^{-s\left(\xi_{j-0}+\sigma_{2} r\right)}}{(i \xi+b)\left(-G_{j}\right) R} d q, \tag{3.7}
\end{equation*}
$$

where

$$
G_{j}=\frac{\sigma_{2} \sin \delta+\zeta_{j} \sin \theta \cos \delta}{\zeta_{j}}
$$

Let $q=-i \beta$ and apply the Cagniard method once more. Fig. 3.3 shows the Cagniard paths $B_{=j}$ associated with the mapping of $\zeta_{j} z_{0}+\sigma_{2} r=t$ in the complex β-plane for $x>0$. The Cagniard path $B_{ \pm s}$, the indented path $B_{ \pm h}$, and the corresponding branch cuts are shown in Fig. 3.3(b) only for the case of $b_{p} / b_{s}>\sin \delta / \sqrt{1-\cos ^{2} \theta \cos ^{2} \delta}$. The various contributions from the indented path $E_{ \pm h}$ for other cases will be included in the final formulation. Let $U_{3}(x, y, 0, t)$ and $U_{3 n}(x, y, 0, t)$ denote the ground motions from the Cagniard path $B_{ \pm s}$ and the indented path $B_{i n}$, respectively. These formulations are listed in Eqs. (B.5) and (B.6), respectively.

3.3 Analytical Formulation

From the preceding sections, the ground displacement in a specific direction, i.e., the inverse Laplace transform of Eq. (3.1), can be evaluated as

$$
\begin{equation*}
U(x, y, 0, t)=U_{1}+U_{1 k}+U_{2}+U_{2 k}+U_{3}+U_{3 h} \tag{3.8}
\end{equation*}
$$

Each term in Eq. (3.8) is expressed explicitly in Appendix B.

Similar results have also been obtained by Yeh, et al. (1988) and Wang (1988). Comparing Eq. (2.41) with Eq. (3.1), the tansform for the ground

(a) $B_{ \pm p}$

Figure 3.3 Poles and Cagniard Paths in Complex β-Plane

(b) $B_{ \pm s}$ and $B_{ \pm h}$

Figure 3.3 Poles and Cagniard Paths in Complex β-Plane
displacement in the i-direction is given by

$$
\begin{equation*}
\bar{u}_{i}(x, y, 0, s)=\bar{f}(s) O(x, y, 0, s) \tag{3.9}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
u_{i}(x, y, 0, t)=\int_{0}^{:} f(t-\tau) U(x, y, 0, \tau) d \tau \tag{3.10}
\end{equation*}
$$

in which $f(t-\tau)$ is the source time function and $U(x, y, 0, \tau)$ is given by Eq. (3.8). Two special cases of the source time function can be identified, for which the ground motions may be obtained directly from Eq. (3.8) without the convolution integral of Eq. (3.10).
(1) Step-time source function:

$$
\begin{equation*}
f(t)=H(t) \tag{3.11}
\end{equation*}
$$

The Laplace transform of such a source time function is

$$
\begin{equation*}
\bar{f}(s)=\frac{1}{s}, \tag{3.12}
\end{equation*}
$$

Then, from Eq. (3.9),

$$
\begin{equation*}
\dot{u}_{i}(x, y, 0, t)=U(x, y, 0, t) \tag{3.13}
\end{equation*}
$$

where $\dot{u}_{i}(x, y, 0, t)$ is the ground velocity in the i-direction.
(2) Linear ramp-time source function:

$$
f(t)=\left\{\begin{array}{cl}
0, & t \leq 0 \tag{3.14}\\
t / T_{r}, & 0<t<T_{r} \\
1, & T_{r} \leq t
\end{array}\right.
$$

in which T_{r} is the rise time. In this case,

$$
\begin{equation*}
\bar{f}(s)=\frac{1-e^{-s T_{r}}}{T_{r} s^{2}}, \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{i}(x, y, 0, t)=\frac{U(x, y, 0, t)-H\left(t-T_{r}\right) U\left(x, y, 0, t-T_{r}\right)}{T_{r}}, \tag{3.16}
\end{equation*}
$$

where $\ddot{u}_{i}(x, y, 0, t)$ is the ground acceleration in the i-direction.
Eq. (3.10) gives the ground motion only for one quadrantal dislocation, as shown in Fig. 2.2. The total ground motion generated by an oblique rectangular fault is given by

$$
\begin{align*}
u_{i}^{T}(x, y, 0, t)= & u_{i}\left(x, y, 0, t ; z_{0}\right)-u_{i}\left(x, y-W \cos \delta, 0, t ; z_{0}+W \sin \delta\right) \\
& -H\left(t-T_{0}\right) u_{i}\left(x-L, y, 0, t-T_{0} ; z_{0}\right) \\
& +H\left(t-T_{0}\right) u_{i}\left(x-L, y-W \cos \delta, 0, t-T_{0} ; z_{0}+W \sin \delta\right), \tag{3.17}
\end{align*}
$$

where $u_{i}^{T}(x, y, 0, t)$ is the total ground displacement in the i-direction and $u_{i}\left(x, y, 0, t ; z_{0}\right)$ is given by Eq. (3.10).

The rupture is assumed to propagate unilaterally along the fault plane, as indicated in Eq. (3.17). However, the principle of superposition may be applied for the case of a bilaterally propagating rupture. Furthermore, the generalized ray theory can be extended systematically to analyze the ground responses excited by a
dislocation fault in a layered medium. The validity of the analytical ground motions is examined in the following case studies.

3.4 Case Studies

In order to investigate the difference between the ground motions obrained by the half- and full-space models, Anderson (1976) examined the ground displacements induced by a shallow vertical fault with either a strike-slip or dip-slip rupare using the method of Green's function. With this method, a four-fold integra! must be evaluated approximately by a numerical method. One integral is associated with the formulation of the Green's functions which are applicable to a point source as developed by Johnson (1974) with the Cagniard-de Hoop method. The other triple integration comes from the Knopoff-de Hoop representation theorem (Burridge and Knopoff, 1964) for evaluating the response through the convolution of the dislocation and the Green's functions with respect to one temporal variable and two spatial variables.

In Anderson's quadrature, several schemes were applied to reduce the random and systematic errors, that may be introduced from the multiple numerical integration. In contrast, only single integrals are needed in the current sudy, as shown in Eqs. (B.1) and (B.2). Therefore, the numerical evaluation in this study should greatly reduce the numerical work and increase the accuracy of the results relative to those of Anderson (1976). Moreover, $U_{2 h}=U_{3}=U_{3 h}=0$ in Eq. (3.8) for the case of a vertical rupture with subsonic rupture motion.

To appraise the correctress of the analytic formulation developed in the present study, two cases from Anderson (1976) are used for comparison. The schematic diagram of the station and the fault is shown in Fig. 3.4. In each case,

(a) Side View

Fault

Figure 3.4 Vertical Fault and Ground Station
two sets of ground displacements are evaluated for strike-slip and dip-slip motions, respectively. Linear ramp-time source function and unilateral rupture are assumed in both cases. The common values of the parameters are as follows:

P-wave velocity	$v_{p}=6 \mathrm{~km} / \mathrm{sec}$,
S-wave velocity	$v_{s}=3.4 \mathrm{~km} / \mathrm{sec}$,
Fault length	$L=5 \mathrm{~km}$,
Rupture velocity	$v=3 \mathrm{~km} / \mathrm{sec}$,
Final dislocation	$D_{0}=1 \mathrm{~cm}$,
Rise time	$T_{r}=1 \mathrm{sec}$,
Station	$(x, y)=(7.5 \mathrm{~km}, 1.5 \mathrm{~km})$.

Two different cases are examined with the following parameters:
Case I:
Fault width $W=3.3 \mathrm{~km}$,
Focal depth $\quad d=3.8 \mathrm{~km}$,
Case II:
Fault width $W=1.2 \mathrm{~km}$,
Focal depth $d=1.1 \mathrm{~km}$.
An epicentral distance of 7.65 km is the same in both cases, whereas Case II represents a shallow earthquake, in which the surface wave is dominant.

The comparisons are shown in Figs. 3.5 and 3.6, which demonstrate good agreement between the two studies for different response components, types of rupture, and fault locations. As mentioned in Section 2.1, the response of a full-space was doubled to approximately account for the free surface effect. This

- Anderson's Solution (doubled full-space) Anderson's Solution (half-space)

Figure 3.5 Displacements in Case I

Figure 3.6 Displacements in Case II
approximation is not valid especially for a shallow dip-slip fault, as shown in Figs. 3.5 and 3.6 .

The effect of rise time - The rise time, T_{r}, to reach the final slip at each point in a fault plane during an earchquake is probably the parameter most difficuit to estimate. To investigate its effect, consider a vertical square fauit with strike-slip motion. For simplicity, the fault length L and width W are assumed to be equal to the focal depth d. A station is located at a distance of $5 d$ from the epicenter, and the epicentral direction is 30° from the fault orientation. Three different values of the rise time, i.e., $T_{r}=L / y, 0.5 L / v$ and $0.25 L / v$, were examined. The P-wave velocity y_{p} is $\sqrt{3} y_{s}$ corresponding to Poisson's ratio of 0.25 , and a rupture velocity of $y=0.9 y_{s}$ is assumed. The results are shown in Fig. 3.7, where the non-dimensional ground accelerations, $a d^{2} / D_{0} v_{s}^{2}$, along and nomal to the strike direction versus the non-dimensional time, v_{s} / d, are ploted, in which a is the ground acceleration and D_{0} is the final slip. From Fig. 3.7, it can be seen that as the rise time decreases, the duration also decreases whereas the peak acceleration increases. For the limit case of $T_{r}=0$, i.e., the case of step-ime source function, large values of the ground acceleration occur when the dominant waves, usually the S-waves, arrive.

Figure 3.7 Accelerations for Different Rise Times

SECTION 4

ANALYSIS OF SEISMIC GROUND MOTIONS

4.1 Deterministic Analysis

4.1.1 The Event 5

On January 29, 1981 a large earthquake occurred off the norheastern coast o: Taiwan. This event, cataloged as Event 5, was felt throughout Taiwan and triggered all 27 swong motion recorders in the SiMART-1 array located 30.2 km NNW of the epicenter. The peak acceleration of 0.24 g is the largest acceleration recorded by the array during its first four years of operation. This event was selected for comparison because its focal mechanism has been well described (e.g., Abrahamson, 1985). It is probably the event, among other events in the SMART-I array, in which most information at the focus has been estimated. In fact, it is also the event whose recordings have most frequently been analyzed by other investigators.

The seismic source of Event 5, at a depth of 25.2 km , had a reverse mechanism with unilateral rupture propagating almost from east to west. The local magnitude was estimated by the Instimte of Earth Sciences to be $M_{L}=6.3$, whereas Abraharnson (1985) corrected it to $M_{b}=6.7$ by using the Taiwan atrenuation curve, instead of Richter's amenuation curve for Southem california.

Arnong the 27 stations, the recordings of 7 stations, whose alignment (N17.5 W) is closest to the epicentra! direction (N26.2\% W) to the centel station

C00, will be used for analysis. Fig. 4.1 shows these seven stations in the array. The accelerograms at these stations along and nomal to the epicentral direction are plotted in Figs. 4.2 and 4.3, respectively, and are aligned according to increasing epicentral distance and absolute time for these seven stations. By investigating the recordings in Figs. 4.2 and 4.3, no obvious attenuating phenomenon across these stations is observed and the oscillating patterns of these recordings are quite different, from which it is indicared that the local soil effect (i.e., soil amplification) plays an important role on the measured ground accelerations.

4.1.2 Model Parameters

The parameters for this event were estimated primarily based on the study of Abrahamson (985), supplemented by other empirical relations as necessary.

Velocity structure - The S-wave velocity is approximately $3.5 \mathrm{~km} / \mathrm{sec}$ in the source region (Abrahamson, 1985). No estimate of the P-wave velocity at the source is available. However, with the assumption of equal Lame constants, it is suggested that

$$
v_{p}=\sqrt{3} v_{s}=6.1 \mathrm{~km} / \mathrm{sec} .
$$

This value is slightly less than that determined by Roecker, et al. (1987) based on a set of 1600 events dispersed throughout the island of Taiwan.

Fault plane orientation - Eased on the first motion data of the mainshock and 18 aftershocks to form the group focal plane solutions, Abrahamson (1985) concluded that the modal plane with mean strike of $N 71.2^{\circ} \mathrm{W}$ and mean dip of

Figure 4.1 Seven Stations in the SMART-1 Array

Figure 4.2 Accelerograms along Epicentral Direction

$$
4-4
$$

Figure 4.3 Accelerograms Normal to Epicentral Direction
60.7° SE may be chosen as the fault plane of the mainshock. This estimate of the fault plane orientation is consistent with the distribution of the mainshock and aftershock hypocenters.

Rupture velocity - By using the frequency-wavenumber analysis to measure the phasing of wave fronts of coherent S waves across the SMARI-1 array, Abrahamson (1985) obtained the time-dependent rupture velocity, which is shown in Fig. 4.4. The inferred rupture speed shown in Fig. 4.4 covers the range of subsonic and transonic rupture velocities. Abrahamson suggested that two effects are responsible for the apparent super-shear rupture velocity; namely, the assumptions of a constant ruprure direction and the laterally homogeneous velocity structure. Since the same assumptions are chosen in the 3-D wave propagation model of the curtent study, the rupture velocity in Fig. 4.4 will also be adapted. Moreover, the model assumes incrementally constant rupture velocities over short time increments, as shown in Fig. 4.4. The total rupare length obtained by integrating the rupture velocity is 17.15 km , and the duration of rupture is 5.75 sec , giving an average rupture velocity of $2.98 \mathrm{~km} / \mathrm{sec}$. This average rupture velocity is slightly less than the mean rupture velocity of $3.05 \mathrm{~km} / \mathrm{sec}$ obtained by Abrahamson (1985).

Slip direction and amplitude - The rake of 64.3 ${ }^{\circ}$ PP was used in Abrahamson (1985) according to the focal distribution of the mainshock and aftershocks. No estimate of the fault offset of Event 5 is available. Some empirical formulas are listed as follows.

Figure 4.4 The Rupture Veiocity

Iida (1965), world-wide data:

$$
\log D_{0}=0.55 M_{L}-1.71
$$

Bonilla (1970), USA data:

$$
\log D_{0}=0.57 M_{L}-1.91
$$

Matsuda (1975), Japan data:

$$
\log D_{0}=0.6 M_{L}-2.0
$$

King and Knopoff (1968), world-wide data:

$$
\log L D_{0}^{2}=2.24 M_{L}-4.99
$$

where D_{0} and L are in unit of cm . With $M_{L}=6.7$ and $L=17.15 \mathrm{~km}$, the above formulas give $D_{0}=94 \mathrm{~cm}, 81 \mathrm{~cm}, 105 \mathrm{~cm}$, and 78 cm , respectively. An average value of 90 cm is taken as the slip amplitude.

Fault plane dimensions - The fault length is determined to be 17.15 km by integrating the time-dependent rupture velocity shown in Fig. 4.4. This rupture length is less than the 25 km rupture length indicated by the aftershock distribution. It is recognized, however, that aftershocks tend to overestimate the mainshock fault area (Aki, 1968). Similarly, a value of 6.0 km is taken for the fault width; the aftershock distribution would indicate a width of 7.9 km . One empirical formula in Mohammadi and Ang (1980) is

$$
M_{L}=0.932 \log D_{0} \sqrt{W}+6.456
$$

which would give $W=4.1 \mathrm{~km}$ corresponding to $M_{L}=6.7$ and $D_{0}=0.9 \mathrm{~m}$.

According to the above estimation, the focal mechanisms and the associated parameters for Event 5 are shown in Fig. 4.5. Fig. 4.6 shows typical analytic velocity time histories (at station COO) along and normal to the epicentral directions obtained through the 3-D wave model for the above parameters and the assumption of a step-time source function. The arrival of the P - and S -waves from the comers and the edges of the fault results in several abrupt changes of the analytic velocities in Fig. 4.6, which imply relatively high accelerations.

No empirical formulations were available to evaluate the rise time. Hence, three values of the rise time, i.e., $T_{r}=0.15 \mathrm{sec}, 0.10 \mathrm{sec}$, and 0.05 sec , were examined, and the resulting analytic ground accelerations are shown in Fig. 4.7. As shown in Fig. 4.7 and discussed in Section 3, the shorter rise times will induce higher peak accelerations. Since the peak accelerations obtained at station C00 in borh directions are about $100 \mathrm{~cm} / \mathrm{sec}^{2}$, a very short rise time would be required in the analytic model. Moreover, the integration of the velocity time histories in Fig. 4.6 gives the peak displacement of about 1.5 cm , which is consistent with the peak ground displacement obtained by integrating the field accelerogram twice at the same station. Therefore, the assumption of a step-time source function is reasonable in the analyuic 3-D model for this event.

The velocity time histories shown in Fig. 4.6 do not contain as many oscillations as the field recordings. This may be attributed to the assumption of a coherent rupture at the source and of the homogeneous half-space medium. In studies concerned primarily with the spatial displacements, however, the effect of the hign-frequency content is not very significant such that the simple source

Figure 4.5 Focal Mechanisms of Event 5

Figure 4.6 Analytic Velocities at Station C00 with $T_{r}=0 \mathrm{sec}$

Figure 4.7 Accelerations for Different Rise Times at Station C00
models may be used to reproduce the displacement time histories. As a matter of fact, the response of pipelines derives primarily from the region of low frequencies. Therefore, the results should be acceptable for the analysis of pipeline systems. A stochastic approach is considered in the following section to partially account for the incoherence in the rupture process.

4.2 Stochastic Analysis

The spatial and temporal variation of a fault dislocation is too complex to be represented by any simple mathematical function such as Eq. (2.1). In general, strong ground motions are characterized by a high-frequency content which is stongly related to the details of faulting. These details arise from the nonuniform distribution of various physical properties on the fault plane, including the rupture velocity, the slip magnitude, the direction of rupture, etc. Therefore, strong ground motions are too complicated to be simulated by a purely deterministic model because they are affected by numerous small-scale heterogeneities of the fault plane. To avoid this difficulty, several atempts have been made to introduce hybrid deterministic and stochastic models, in which the gross feanures of the rupture propagation are defined deterministically but the details of the ruprure are represented by a stochastic process (Boore and Joyner, 1978; Andrews, 1980, 1981; Boatwright, 1982; Papageorgiou and Aki, 1983a, 1983b).

For the purpose of modeling long-period seismic waves, the kinematic dislocation model is a good approximation to explain the radiation of seismic waves. A major shortcoming with the kinematic models is that a constant slip is inadmissible from a purely continuum mechanical point of view, as well as from many practical investigations. Nonuniform fault slip over a fault plane has been
found for several earthquakes by various seismologists, and also from the analysis of teleseismic body wave data for many earthquakes (Aki, 1982). Based on the above considerations, an effective way to describe the rupture process is through a stochastic approach.

4.2.1 Randomness of Earthquake Source

To account for an incoherent slip, Haskell (1966) postulated the rupture mechanism as a random process with a specified spatio-temporal autocorrelation for the dislocation acceleration, whereas Aki (1967) introduced the spatiotemporal autocorrelation of the dislocation velocity at the source. In both models, the random dislocation spreads at a constant rupture velocity.

In Haskell's statistical model, the Fourier transform source factor of the far-field response decreases with ω^{-3} for large ω, whereas it is inversely proportional to ω^{-2} in Aki's model. Hence, these have been referred to as the " ω-cube model" and " ω-square mode!", respectively. Under the assumption of similarity, it has been shown that the ω-square model compares better with observations than the ω-cube model. Therefore, the ω-square model will be adopted in this sady to represent the randomness at the source. The physical interpretation of this model is discussed in the following.

Since an earinquake is essentially a tansient phenomenon, the spatiotemporal autocorrelation function introduced at the source should be different from those for a stationary time series. Fig. 4.8 will schematically illustrate what form may be expected for the autocorrelation function of the dislocation process at an earthquake source. Let the dislocation start at $x=0$ and propagate along the x

(c) Autocorrelation Function of Dislocation Velocity

Figure 4.8 Schematic Diagrams of Dislocation and Its Autocorrelation Function
axis at a constant rupture velocity v; then the dislocation at a given point x will be zero for $t<x / v$ and increase up to a final value D_{0} for $t>T_{r}+x / v$, in which T_{r} is the rise time. The actual dislocation at the transition time, i.e., $x / v<t<T_{r}+x / v$, is unknown. In Fig. 4.8, the dashed lines are for the case of an idealized linear ramp-time source function. Fig. 4.8 (a) and (b) show the corresponding dislocation and its velocity functions, respectively. The autocorrelation function of dislocation velocity is also shown in Fig. 4.8(c). Based on Fig. 4.8(c), the suitable form for the temporal autocorrelation function of dislocation velocity will be a negative exponential function.

Assume first that the temporal autocorrelation function of dislocation velocity at the point x decreases exponentially with the time $\operatorname{lag} \tau$, i.e.,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \dot{D}(x, t) \dot{D}(x, t+\tau) d t=\psi_{1} e^{-k T i t t} \tag{4.1}
\end{equation*}
$$

where:
$\dot{D}(x, t)=$ the dislocation velocity at a point x and time t,
$\tau=$ the temporal separation,
$\psi_{1}=a$ constant,
$k_{T}^{-1}=$ the correlation time.
Furthermore, since the spatial autocorrelation function between the dislocation velocity at (x, t) and that at $(x+\epsilon, t+\epsilon / v)$ will indicate the degree of persistency of offsetting and this persistency decreases with the separation distance ϵ between the two points, a similar exponential form may be adopted also for the spatial autocorrelation function, i.e.,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \dot{D}(x, t) \dot{D}(x+\epsilon, t+\epsilon / v) d x=\psi_{2} e^{-k} L|\epsilon| \tag{4.2}
\end{equation*}
$$

where:
$\epsilon=$ the spatial separation,
$\psi_{2}=a$ constant,
$k_{L}^{-1}=$ the correlation length,
$y=$ the ruprure velocity.
Then, the temporal and spatial autocorrelation functions can be expressed in a single form as

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dot{D}(x, t) \dot{D}(x+\epsilon, t+\tau) d x d t=\psi_{0} e^{-k_{L}|\epsilon|} e^{-k-\tau|\tau-\epsilon / v|} \tag{4.3}
\end{equation*}
$$

Ir. Eq. (4.3), the constant ψ_{0} is related to the final slip D_{0}, as shown in Eq. (C.12); k_{r} is the comer frequency; and $\nu k_{L}=k_{T}$ is assumed for simplicity (Aki, 1967). For example, the comer frequency for Event 5 of the SMART-1 array was estimated by Abrahamson (1985) to be 0.7 Hz .

The introduction of randomness at the source, as indicated in Eq. (4.3), should partially account for the nonuniformness of the fault slip over a fault plane. Eq. (4.3) can be interpreted as follows: a rupture breaks eveniy across the fault width but coherently only for short distances along the fault, compared to the total fault length, and only over a short time relative to the total fracture time. In other words, $\left(\nu k_{L}\right)^{-1}$ is related to the time required for propagation of fracture along the length of the fault, whereas k_{T}^{-1} is associated with the time required for formation of fracture across the fault width.

Although the randomness of an earthquake source has been developed as described above, the path effect representing the wave propagation berween the source and the ground stations is still needed for a stochastic analysis. This path effect has been approximately separated from the source effect for the far-field responses in a full-space, in which the fault is treated as a point source (e.g., Aki, 1967). Such a simple isolation is not permitted if the fault dimension in the half-space is accounted. The alternative way is to search a substitute system with equivalent transmission effect.

4.2.2 The Substitute System

The deterministic 3-D wave propagation model yields the ground response time histories at various stations excited by a fault rupture in a half-space. In order to facilitate the evaluation of the randomness of the source on the ground motions, a "substitute system" is introduced to represent the path effect. To ensure an almost identical transmission effect, the substinte system should be subjected to the "same" excitation and reproduce the "equivalent" response for each station and in each direction. The "same" excitation can be achieved simply by transforming the rupture into a support motion suitable for the substiate system, whereas the "equivalent" response is obtained by minimizing the error function defined as the differences between the responses of the analytic model and the substitute system. It is difficult to find such a substitute system that satisfies the above requirements for all stations and directions. Hence, one substitute system is required for each station and each direction in order to neglect the spatial and directional parameters in the substitute system. Furthermore,
identical form of the substinte system is used for all stations but with different parameters.

An ordinary single-degree-of-freedom system may be adequate to simulate the medium transition effect from the fault to the free surface because the behavior of the negative exponential term and the sinusoidal term in the response of such a system is consistent with observed displacement time histories from an earthquake. Hence, a linear multi-degree-of-freedom system is adopted as the substitute system. The appropriate parameters for the different stations are evaluated through system identification.

In the analytic model, the source mechanism is a series of dislocations propagating along the fault length, whereas the excitation to the multi-degree-offreedom should be a point motion. Therefore, the equivalent point base excitation of the substitute system may be assumed to be the average dislocation over the length of the fault, or

$$
\begin{equation*}
B(t)=\frac{1}{L} \int_{0}^{L} D(x, t) d x \tag{4.4}
\end{equation*}
$$

Because Eq. (4.3) defines the autocorrelation function for a transient randorn process, the power spectral density of the faulting motion can not be obtained directly from the Fourier transform of the autocorrelation function specified in Eq. (4.3), such as the case for a stationary random process. However, with the autocorrelation function defined in Eq. (4.3) and the equivalent point base motion defined in Eq. (4.4), the power spectral density of the base velocity of the substitute system can be estimated as

$$
\begin{equation*}
S_{B \dot{B}}(\omega)=\frac{2 \pi}{T_{0}} \frac{D_{0}^{2}}{\left(1+\frac{\omega^{2}}{k_{T}^{2}}\right)\left(1+\frac{\omega^{2}}{k_{L}^{2} \nu^{2}}\right)}, \tag{4.5}
\end{equation*}
$$

in which D_{0} is the final dislocation and $T_{0}=L / v$ is the duration of fauling. The derivation of Eq. (4.5) is described in Appendix C. Eq. (4.5) represents the stochastic excitation of the substitute system, and is useful when the spatial variation of ground motions is evaluated.

In the multi-degree-of-freedom system, the impulse response function for each mode is

$$
\begin{equation*}
h_{j}(t)=\frac{\phi_{j}}{\omega_{j} \sqrt{1-\xi_{j}^{2}}} e^{-\xi_{j} j_{j} t} \sin \left(\omega_{j} \sqrt{1-\xi_{j}^{2}} t\right), \tag{4.6}
\end{equation*}
$$

where:
$\phi_{j}=$ the participation factors, $j=1,2, \ldots, N$,
$\omega_{j}=$ the natural frequencies, $j=1,2, \ldots, N$,
$\xi_{j}=$ the damping coefficients, $j=1,2, \ldots, N$,
$N=$ the number of modes.
With the base motion specified in Eq. (4.4) and the impulse response function shown in Eq. (4.6), the displacement response of the substitute system can be obtained by using the Duhamel integral and the modal superposition, i.e.,

$$
\begin{align*}
d(t) & =\sum_{j=1}^{N} \phi_{j} \int_{0}^{t} h_{j}(t-\tau)\left[2 \xi_{j} \omega_{j} \dot{B}(\tau)+\omega_{j}^{2} B(\tau)\right] d \tau \\
& =\left.\frac{D_{0}}{T_{0}} \sum_{j=1}^{N} \phi_{i}\left[\tau-h_{j}(\tau)\right]\right|_{\tau=t^{\prime}} ^{\tau=t} \tag{4.7}
\end{align*}
$$

in which $t^{\prime}=\max \left(0, t-T_{0}\right)$.

System Identification - An error function E, for determining the pararneters of the substioute system, is defined as the sum of squares of the differences between the responses of the substitute system and the 3-D analytical solutions over the whole record. Since the velocity time history is the direct solution obtained in the 3-D wave propagation model, it will be adopted to define the necessary error function. Therefore, the form of the error function will be

$$
\begin{equation*}
E\left(\phi_{j} ; \omega_{j} ; \xi_{j}\right)=\int_{i_{i}}^{t_{i}}\left[\dot{u}(t)-\dot{d}\left(t-t_{i}\right)\right]^{2} d t \tag{4.8}
\end{equation*}
$$

where:
$\phi_{j}, \omega_{j}, \xi_{j}=$ the parameters of the substinute system, $j=1,2, \ldots, N$,
$t_{i}=$ the initial time of the record,
$t_{f} \quad=$ the final time of the record,
iu $\quad=$ the ground velocity obtained in the wave propagation model,
$\dot{d} \quad=$ the velocity response of the substitute system.
Observe that the time variable in the response of the substitute system is shifted by t_{i}, the first arrival time of the propagating waves. This is because there is a time
lag for the response associated with the wave propagating from the source to the station. No response will occur in the substitute system for $t \leq t_{i}$; the quiescent initial conditions must be specified at $t=t_{i}$, instead of at $t=0$.
$\dot{d}(t)$ in Eq. (4.8) is the time derivative of Eq. (4.7), i.e.,

$$
\begin{align*}
& \dot{d}(t)=\frac{D_{0}}{T_{0}} \sum_{j=1}^{N} \frac{\phi_{j}}{\sqrt{1-\xi_{j}^{2}}}\left\{e ^ { - \xi _ { j } \omega _ { j } \tau } \left[\xi_{j} \sin \left(\omega_{j} \sqrt{1-\xi_{j}} \tau\right)\right.\right. \\
&\left.\left.-\sqrt{1-\xi_{j}^{2}} \cos \left(\omega_{j} \sqrt{1-\xi_{j}^{2}} \tau\right)\right]\right\}\left.\right|_{\tau=i^{\prime}} ^{==t}, \tag{4.9}
\end{align*}
$$

in which $t^{\prime}=\max \left(0, t-T_{0}\right)$.

The parameters of the substitute system are estimated by minimizing the error function of Eq. (4.8). The system identification used here is an extension of the modal minimization method for multi-degree-of-freedom linear models in Beck (1978). It includes one-dimensional minimization, single-mode minimization, modal sweeps, and addition of new modes.

Each time when a new mode is needed, initial estimates are made for its parameters. The modal sweep then starts from the first mode. During the single-mode minimization, the parameters of the first mode are sequentially optimized, whereas the parameters of the other modes are held constant. Since $\dot{d}(t)$ is a linear function of ϕ_{j}, the optimized participation factor in each mode can be obtained, as long as the othe: parameters are given, by equating the derivative of the error function with respect to the participation factor to zero, i.e.,

$$
\begin{equation*}
\phi_{j}=\frac{\int_{t_{i}}^{t_{i}}\left[\dot{u}(t)-\sum_{\substack{k=1 \\ k=j}}^{N} \phi_{k} f_{k}(t)\right] f_{j}(t) d t}{\int_{i_{i}}^{t_{j}} f_{j}^{2}(t) d t}, \tag{4.10}
\end{equation*}
$$

where $f_{k}(t)$ is the unit impulse response (velocity) function for the k th mode of the substitute sysiem, or

$$
\begin{equation*}
\dot{d}(t)=\sum_{k=1}^{N} \phi_{k} f_{k}(t) . \tag{4.11}
\end{equation*}
$$

Therefore, a series of 1-D minimizations are taken by minimizing E alternately only with respect to ω_{j} and ξ_{j} in the single-mode minimization. This process is continued until a consecutive pair of 1-D minimizations resuits in a fractional decrease in E of less than a specified value. Then, the single-mode minimization is continued for the next mode, and so on. After convergence for the last mode is achieved, the sweep over all modes may start again if total convergence, which is compared to the last modal sweep, has not been achieved; otherwise, a new mode is added. The addition of a new mode will be stopped if its contribution is less than a specified tolerance.

The advantage of the procedure described above is to keep the number of mode in the substitute system to a minimum. The criterion for convergence in terms of the relative change in E is chosen instead of the change in the estimates of the parameters because the latter can cause difficulties with the higher modes (Beck, 1978).

Since the error function E is a highly non-linear function of ω_{j} and ξ_{j}, the final optimized parameters will strongly depend on the initial guesses, especially for the case of ω_{j}, which was found in the sensitivity study with respect to the initial estimates of the parameters. To find the best initial value of ω_{i}, that will give the error function an absolute minimum, a sweep over an adequate range of modal frequencies was performed each time a new mode is added.

There are two constaints to the modal natural frequencies and modal dampings. In the analytic velocity time histories, the results were obtained at every 0.05 sec , so the maximum natural frequency for each mode was set at 10 Hz corresponding to the resolution of the responses in the deterministic model. This range of frequency also covers the frequencies of engineering interest. Furthermore, the damping coefficient for an underdamped system is between 0 and 1 . The response of such a system will decay slowly as the damping ratio decreases. Since only finite record is used in the system identification, the lower limit of the damping ratio should be specified to produce the quiescent response when the time variable approach infinity. To investigate the effect of this lower limir, three different values, i.e., $0.05,0.1$, and 0.2 , were examined, and the results are shown in Figs. 4.9, 4.10, and 4.11, respectively. By comparing these figures, the lower limit of 0.1 was selected to ensure good results.

In addition to Fig. 4.10, Figs. 4.12 and 4.13 show the responses of the substitute system at the other two stations $O 06$ and $O 12$, respectively. The number of modes used in the analysis ranged from 44 to 60 corresponding to a tolerance of 0.0001 . These figures show that the results of the substimute system closely resemble those of the corresponding analytical solutions at the selected stations.

Figure 4.9 Velocities from Analytic Model and Substituta System at Station $\mathrm{C} 00\left(0.05<5_{i}<1\right)$

Figure 4.10 Velocities from Analytic Model and Substinute System at Station $\operatorname{COO}\left(0.1<\xi_{j}<1\right)$

Figure 4.11 Velocities from Analytic Model and Substitute System at Station $\operatorname{COO}\left(0.2<\xi_{i}<1\right)$

Figure 4.12 Velocities from Analytic Model and Substiate System at Station $006\left(0.1<\xi_{i}<1\right)$

Figure 4.13 Velocities from Analytic Model and Substitute System at Station $012\left(0.1<\hat{\xi}_{1}<1\right)$

4.2.3 Stochastic Characteristics of Ground Motions

Absolute ground motions - The power spectral density of ground motion at a given station and the cross spectral density of ground motions between two stations or directions may be evaluated as foilows.

Let $d^{P}(t)$ and $d^{Q}(t)$ denote the displacement time histories at any two stations P and Q or in any two directions P and Q for a given station. The base motion to the substioute system is the dislocation at the earthquake source, for which the power spectral density of the base velocity is given by Eq. (4.5). $d^{P}(t)$ is expressed with the Duhamel integra! as

$$
\begin{align*}
d^{P}(t) & =\sum_{m=1}^{M} \phi_{m}^{p} \int_{0}^{t} h_{m}^{P}\left(\tau_{1}\right)\left[2 \xi_{m}^{P} \omega_{m}^{p} \dot{B}\left(t-\tau_{1}\right)+\left(\omega_{m}^{P}\right)^{2} B\left(t-\tau_{1}\right)\right] d \tau_{1} \\
& =\sum_{m=1}^{M} \phi_{m}^{P} \int_{-\infty}^{\infty} h_{m}^{P}\left(\tau_{1}\right)\left[2 \xi_{m}^{P} \omega_{m}^{P} \dot{B}\left(t-\tau_{1}\right)+\left(\omega_{m}^{P}\right)^{2} B\left(t-\tau_{1}\right)\right] d \tau_{1} \tag{4.12}
\end{align*}
$$

where:
$\phi_{m}^{P}, \omega_{m}^{P}, \xi_{m}^{P}=$ the parameters for the m th mode at station P,
$h_{m}^{P} \quad=$ the impulse response function for the m th mode at station P,
$\dot{B}, B \quad=$ the base velocity and displacement of the substitute system, respectively,
$M \quad=$ the number of modes at station P.

Eq. (4.12) implies that $h_{m}^{P}\left(\tau_{1}\right)=\dot{B}\left(\tau_{1}\right)=B\left(\tau_{1}\right)=0$, for $\tau_{1}<0$. Similarly, for station Q,

$$
\begin{equation*}
d^{Q}(t+\tau)=\sum_{n=1}^{N} \phi_{n}^{Q} \int_{-\infty}^{\infty} h_{n}^{Q}\left(\tau_{2}\right)\left[2 \xi_{n}^{Q} \omega_{n}^{Q} \dot{B}\left(t+\tau-\tau_{2}\right)+\left(\omega_{n}^{Q}\right)^{2} B\left(t+\tau-\tau_{2}\right)\right] d \tau_{2} \tag{4.13}
\end{equation*}
$$

in which N is the number of modes at station Q.

The cross-correlation function between stations P and Q is defined as

$$
\begin{equation*}
R_{d^{P} d^{Q}}(\tau)=E\left[d^{P}(t) d^{Q}(t+\tau)\right] \tag{4.14}
\end{equation*}
$$

and the associated cross spectral density is given by

$$
\begin{equation*}
S_{d} P_{d} Q(\omega)=\int_{-\infty}^{\infty} R_{d} P_{d} Q(\tau) e^{-i \omega t} d \tau \tag{4.15}
\end{equation*}
$$

Eqs. (4.12) through (4.15) are combined together to give the cross spectral density between stations P and Q in terms of the stochastic excitation at the base and the modal parameters of the two substitute systems, i.e.,

$$
\begin{align*}
& S_{d} P_{d} Q \\
& Q \sum_{m=1}^{M} \sum_{n=1}^{N} \frac{\phi_{m}^{P} \phi_{n}^{Q}}{\omega^{2}}\left[4 \xi_{m}^{P} \xi_{n}^{Q} \omega_{m}^{P} \omega_{n}^{Q} \omega^{2}+2 i \omega_{m}^{P} \omega_{n}^{Q}\left(\xi_{n}^{Q} \omega_{m}^{P}-\xi_{m}^{P} \omega_{n}^{Q}\right) \omega\right. \tag{4.16}\\
&\left.+\left(\omega_{m}^{P} \omega_{n}^{Q}\right)^{2}\right] H_{m}^{P^{0}}(\omega) H_{n}^{Q}(\omega) S_{\dot{B} \dot{B}}(\omega)
\end{align*}
$$

where " denotes the complex conjugate, H_{m}^{P} and H_{n}^{Q} are the frequency transfer functions of the mth mode at station P and of the nth mode at station Q, respectively.

For a stationary process the cross spectral densities for velocity and acceleration are

$$
\begin{equation*}
S_{v} P_{v} Q(\omega)=\omega^{2} S_{d} P_{d} Q(\omega), \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{a} P_{a} Q(\omega)=\omega^{4} S_{a} P_{d} Q(\omega), \tag{4.18}
\end{equation*}
$$

respectively, where v^{P} and a^{P} denote the ground velocity and acceleration at station P, respectively.

Based on Eqs. (4.16) and (4.18), the power spectral densities of the accelerations along and normal to the epicentral direction for the seven stations from 006 to $O 12$ were calculated. The theoretical results along with the corresponding empirical results are shown in Figs. 4.14 through 4.20.

In general, the results of the model overestimate the spectral amplitudes at the lower frequencies, but underestimate the amplitudes at the higher frequencies. The same phenomena were observed in Zerva, et al. (1985). These may be attributed to the inhomogeneity of the fault and the medium. The former is obvious when the overall comparison across the seven stations, especially along the epicentral direction, is viewed, whereas the latter can be realized by investigating the empirical results at different stations.

As mentioned earlier, the high-frequency content of the seismic ground motion is related to the details of faulting, and these details arise from the nonuniform distribution of various physical properties on the fault plane. Even though the spatio-temporal incoherency of the slip on the fault was simulated in the stochastic approach, it is not sufficient to fully represent the inhomogeneous faulting process because the other parameters and assumptions, including the final

Figure 4.14 Power Spectral Densities of Acceleration at Station 006

Figure 4.15 Power Spectral Densities of Acceleration at Station M06

Figure 4.16 Power Spectral Densities of Acceleration at Station 106

Figure 4.17 Power Spectral Densities of Acceleration at Station C00

Figure 4.18 Power Spectral Densities of Acceleration at Station 112

Figure 4.19 Power Spectral Densities of Acceleration at Station M12

Figure 4.20 Power Spectral Densities of Acceleration at Station 012
siip, rupture direction, staring and stopping of rupture, etc., remain constant or are greaty simplified for mathemarical tractability.

There might be not much need to develop more complicated restel in simulating the rupture process for the analysis of pipeline response, pard: :-ause it require so many parameters that they can nor be estumeted re. -cally; furthermore and more imporandy, because the high-irequency region :-.. litue influence on the differential responses of pipelines. These are shown in the following section and in Section 5.

Several layers acmally exist Eraeath the SMART-1 array (Wen and Yeh, 1984), e.g., soil, alluvium, pleisio: he fomation. The thickness of each layer ranges from a few merers to severa! hundred meters, whereas the P-wave velocity varies from $0.43 \mathrm{~km} / \mathrm{sec}$ to more than $2 \mathrm{~km} / \mathrm{sec}$. The influence of these dipping layers can be seen by investigating the amplioudes of the empirical spectral at any two close stations. The peak values and the dominant frequencies of the empirical specta vary and disperse so randomly, as shown in Figs. 4.14 through 4.20, that no general rule regarding the trend for increasing epicentral disances can be formulated. Dravinski (1984) indicated that the existence of layers resuits in the amplifications at some band of frequenc: or the reductions at other frecuencies to the amplitudes of the waves propagating through the layers. The degree of amplifications or reducrions as well as the affecred frequencies depend on the type of wave, the number of layers, and the properties of each layer. The lower bound for the dampings in each mode of the subsciure system is 0.1 , which is too small to represent the effect of radiation damping in the soil, so the scattered nanure of the soil may be the another reason for the overestimation of the spectra at the lower frequencies. Since the soil amplification afiecrs the lower frequenc:es and
has varying effects for different stations, it should be more important than the effect of the highly irregular rupture process for the analysis of pipelines.

Differential ground motions - Two factors make the design and analysis of plpeunes aifterent from those of buldings. One is the spatial and temporal incoherent ground motions applied as the excitation to a long pipeline. Secondly, the major concern for designing a pipeline is the relative response between adjacent points. Therefore, the differential ground motion is more important than the absolute ground motion in the design and analysis of lifeline structures. Let $\Delta d(t)=d^{P}(t)-d^{Q}(t)$ be the differential ground motion between stations P and Q in a given direction. Its power spectral density is

$$
\begin{equation*}
S_{\Delta d \Delta d}(\omega)=S_{d} P_{d} P(\omega)+S_{d} Q_{d} Q(\omega)-2 \operatorname{Re}\left[S_{d} P_{d} Q(\omega)\right] \tag{4.19}
\end{equation*}
$$

In Eq. (4.19), the power and cross spectral densities of the absolute ground motions can be obtained directly from Eq. (4.16).

The power spectral densities for differential velocities and accelerations may then be evaluated as follows.

$$
\begin{equation*}
S_{\Delta v \Delta v}(\omega)=\omega^{2} S_{\Delta d \Delta d}(\omega) \tag{4.20}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\Delta a \Delta a}(\omega)=\omega^{4} S_{\Delta d \Delta d}(\omega) \tag{4.21}
\end{equation*}
$$

respectively, where Δy and Δa denote the differential ground velocity and acceleration between stations P and Q, respectively.

Figs. 4.21, 4.22 and 4.23 show the power spectral densities of the differential accelerations, velocities and displacements normal to the epicentral direction, respectively, for all the ten separation distances among the seven stations.

For the spectra of differential accelerations, the theoretical results underestimate the spectra at the lower and higher frequencies, but are almost identical at the middle range, except for distances of 0.2 km and 0.4 km . In general, the relative amplitudes of the theoretical spectra increase with the separation distance, whereas it is not the case for the empirical spectra, especially for distances of 0.4 km and 2 km . For an actual earthquake, the inhomogeneity and anisotropy of the soil medium result in a higher loss of coherence than for an idealized model, in which an elastic, homogeneous and isotropic half-space is assumed. The differences between the theoretical and empirical results may be atributed to : 3 factor.

In the analysis of pipelines, the differential displacement response is of major concem, and it depends on the differential ground velocity and displacement. Figs. 4.22 and 4.23 show the spectra of differential ground velocities and displacements, respectively. The theoretical results show better agreement than those for differential ground accelerations. In Figs. 4.22 and 4.23 , most contributions to the spectra come from the region of low frequency; that is one of the reasons why the high-frequency content is not very important for the analysis of pipelines.

Figure 4.21 Power Spectral Densities of Differential Ground Acceleration

Figure 4.21 (continued)

Figure 4.22 Power Spectral Densities of Differential Ground Velocity

Figure 4.22 (continued)

Figure 4.23 Power Spectral Densities of Differential Ground Displacemene

Figure 4.23 (continued)

$$
4-45
$$

Figure 4.23 (continued)

SECTION 5

APPLICATION TO PIPELINES

5.1. Introduction

A characteristic that distinguishes a pipeline from other structures is that it extends (essentially parallel to the ground surface) over a distance which is long compared to its other dimensions. For this reason, it is inappropriate to assume that the seismic excitations at all points of ground contact are identical. When the ground motions are incoherent, the relative displacements of the points along the pipeline produce stresses, whereas coherent excitations at continuous points may result in primarily rigid body motions, with no significant strains. Therefore, the main response of engineering interest is the relative displacement of adjacent points on the pipeline, especially the differential displacements across the joints.

Nelson and Weidlinger (1977) introduced the concept of "Interference Response Spectra" in an attempt to take the incoherent seismic ground motions into account. They assumed that the interference between any two ground stations depends only on a prase shift across the separation distance, i.e., the seismic wave travels with a certain constant velocity and the wave form remains unchanged. This is the simplest way to consider the traveling wave effect if only the earthquake recording at a single station is available. Although the assumption of input to pipelines is not consistent with the actual propagation of seismic waves, the discrete model of Nelson and Weidlinger (1977) representing two pipe segments connected by a joint will be used in the present study because it contains the major
elements of a pipeline and the surrounding soil, and is a basic model for analyoing the pipeline nework. The incoherent ground motions developed in Section 4, however, will be applied as the ground excitations to this discrete model.

5.2 Differential Axial Motion across Joint

Fig. 5.1 shows the discrete model of pipe sections connected by a joint (Nelson and Weidlinger, 1977). The two pipe segments are assumed to behave as rigid bodies, and interconnected by a spring of stiffness k, and a dashpot of damping c_{p}. Soil-structure interaction is represented by springs and dashpots of stiffness k_{g} and damping c_{g}, respectively. The constants m and l are the lumped mass and the separation of the two centroids of the segments, respectively. The axia! displacements of the pipes are denoted by $x_{1}(t)$ and $x_{2}(t)$, whereas $x_{G}(t)$ and $x_{G_{2}}(t)$ are the ground excitations at the two supports. Since the axial response is of primary interest, no rotation is considered here.

5.2.1 Deterministic Analysis

The equations of motion for the discrete system in Fig. 5.1 are

$$
\begin{align*}
& m \ddot{x}_{1}+c_{p}\left(\dot{x}_{1}-\dot{x}_{2}\right)+k_{p}\left(x_{1}-x_{2}\right)+c_{g}\left(\dot{x}_{1}-\dot{x}_{G_{1}}\right)+k_{g}\left(x_{1}-x_{G_{1}}\right)=0, \tag{5.1}\\
& m \ddot{x}_{2}-c_{p}\left(\dot{x}_{1}-\dot{x}_{2}\right)-k_{p}\left(x_{1}-x_{2}\right)+c_{g}\left(\dot{x}_{2}-\dot{x}_{G_{2}}\right)+k_{g}\left(x_{2}-x_{G_{2}}\right)=0 . \tag{5.2}
\end{align*}
$$

Addition of the two equations, Eqs. (5.1) and (5.2), gives the equation of motion for the rigid body mode, whereas the difference of the two equations would yield the equation for differential motion, i.e.,

Figure 5.1 Discrete Model for Differential Axial Motion across Joint

Figure 5.2 Discrete Model for Differential Transverse Motion across Joint

$$
\begin{equation*}
\Delta \ddot{x}+2 \xi_{0} \omega_{0} \Delta \dot{r}+\omega_{0}^{2} \Delta x=\frac{1}{1+2 \lambda} F_{0}(t), \tag{5.3}
\end{equation*}
$$

where:

$$
\begin{aligned}
\Delta x & =x_{1}(t)-x_{2}(t), \\
2 \xi_{0} \omega_{0} & =\left(c_{g}+2 c_{p}\right) / m, \\
\omega_{0}^{2} & =\left(x_{g}+2 x_{p}\right) / m, \\
\lambda & =k_{p} / k_{b}=c_{p} / c_{b}, \\
F_{0}(t) & =2 \xi_{0} \omega_{0} \Delta x_{G}(t)+\omega_{0}^{2} \Delta x_{G}(t), \\
\Delta x_{G} & =x_{G_{1}}(t)-x_{G_{2}}(t) .
\end{aligned}
$$

In Eq. (5.3), Δx may be evaluated by the Duhamel integral, i.e.,

$$
\begin{equation*}
\Delta x(t)=\int_{0}^{t} h_{0}(t-\tau) \frac{1}{1+2 \lambda} F_{0}(\tau) d \tau \tag{5.4}
\end{equation*}
$$

where the impulse response function is

$$
\begin{equation*}
h_{0}(t)=\frac{1}{\omega_{0} \sqrt{1-\xi_{0}^{2}}} e^{-\xi_{0} \omega_{0} t} \sin \omega_{0} \sqrt{1-\xi_{0}^{2}} t . \tag{5.5}
\end{equation*}
$$

5.2.2 Stochastic Analysis

Using Eq. (5.3), the power spectral density of the differential axial displacement Δx is

$$
\begin{equation*}
S_{\Delta x \Delta x}(\omega)=\frac{1}{(1+2 \lambda)^{2}}\left|H_{0}(\omega)\right|^{2} S_{F_{0} F_{0}}(\omega), \tag{5.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \left|H_{0}(\omega)\right|^{2}=\frac{1}{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+4 \xi_{0}^{2} \omega_{0}^{2} \omega^{2}},
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\omega^{4}}\left(4 \xi_{0}^{2} \omega_{0}^{2} \omega^{2}+\omega_{0}^{4}\right) S_{\triangle \ddot{i} \sigma \Delta \ddot{G}}(\omega) .
\end{aligned}
$$

Therefore, Eq. (5.6) becomes

$$
\begin{equation*}
S_{\Delta x \Delta x}(\omega)=\frac{1}{(1+2 i)^{2} \omega^{4}}\left(4 \xi_{0}^{2} \omega_{0}^{2} \omega^{2}+\omega_{0}^{4}\right)\left|F_{0}(\omega)\right|^{2} S_{\Delta \dot{x} \sigma \Delta \dot{G} G}(\omega), \tag{5.7}
\end{equation*}
$$

in which $S_{\Delta \ddot{i} \Delta \Delta \ddot{i}}(\omega)$ is the power spectral density of the differential ground acceleration obtained in Section 4.

5.3 Differential Transverse Motion across Joint

Zerva, et al. (1985) added the rotational motions to Nelson and Weidlingers' discrete model when the pipes are subjected to lateral excitations. There are two rotational motions, one for each pipe segment, in Zerva, et al. (1985). Since the equations of motion governing the two rotations are equal, the rotations of the two pipe segments must be identical, as shown in Fig. 5.2.

5.3.1 Deterministic Analysis

In this case, the equations of motion for the discrete system in Fig. 5.2 are

$$
\begin{align*}
& m \ddot{y}_{1}+c_{p}\left(\dot{y}_{1}-\dot{y}_{2}+l \dot{\theta}\right)+k_{p}\left(y_{1}-y_{2}+l \theta\right)+c_{3}\left(\dot{y}_{1}-\dot{y}_{G_{1}}\right)+k_{b}\left(y_{1}-y_{c_{1}}\right)=0, \tag{5.8}\\
& m \ddot{y}_{2}-c_{p}\left(\dot{y}_{1}-\dot{y}_{2}+l \dot{\theta}\right)-x_{p}\left(y_{1}-y_{2}+l \theta\right)+c_{3}\left(\dot{y}_{2}-\dot{y}_{c_{2}}\right)+k_{g}\left(y_{2}-y_{c_{2}}\right)=0, \tag{5.9}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{12} m l^{2} \ddot{\theta}+c_{p} \frac{l}{2}\left(\dot{y}_{1}-\dot{y}_{2}+l \dot{\theta}\right)+k_{p} \frac{l}{2}\left(y_{1}-y_{2}+l \theta\right)=0 \tag{5.10}
\end{equation*}
$$

where:
$y_{1}, y_{2}=$ the transverse displacements of the pipe segments,
$\theta \quad=$ the rotation of the pipe segments,
$m \quad=$ the mass of the pipe segments,
$l \quad=$ the distance between the centers of the two pipe segments,
$k_{\rho}, c_{p}=$ the stiffness and damping between the pipe segments, respectively,
$k_{g}, c_{g}=$ the stiffness and damping of the soil, respectively,
$y_{G_{1}}, y_{G_{2}}=$ the transverse ground displacements at the two supports.

The differential transverse displacement $\begin{gathered}\text {-iteen the two pipe segments is }\end{gathered}$

$$
\begin{equation*}
\Delta y(t)=y_{1}(t)-y_{2}(t)+l \theta(t) . \tag{5.11}
\end{equation*}
$$

Hence, Eqs. (5.8) through (5.10) can be represented in marix form by

$$
\begin{equation*}
[M]\{\dot{Y}\}+[C]\{\dot{Y}\}+[K]\{Y\}=\{F(t)\} \tag{5.12}
\end{equation*}
$$

where:

$$
[M]=\left[\begin{array}{ccc}
m & 0 & 0 \\
0 & m & 0 \\
-m / 6 & m / 6 & m / 6
\end{array}\right]
$$

$$
\begin{aligned}
& {[c]=\left[\begin{array}{ccc}
c_{s} & 0 & c_{p} \\
0 & c_{s} & -c_{p} \\
0 & 0 & c_{p}
\end{array}\right] \text {, }} \\
& {[x]=\left[\begin{array}{ccc}
k_{s} & 0 & k_{p} \\
0 & k_{s} & -k_{p} \\
0 & 0 & k_{p}
\end{array}\right] \text {, }} \\
& \{y\}=\left\{\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
\Delta y(t)
\end{array}\right\} \text {. } \\
& \{F(t)\}=\left\{\begin{array}{c}
c_{c} \dot{v} \sigma_{(}(t)+k_{y} v_{\sigma_{2}}(t) \\
c_{y} \dot{y} c_{2}(t)+k_{y} y_{c}(t) \\
0
\end{array}\right\} .
\end{aligned}
$$

The natural frequencies of the system are

$$
\begin{equation*}
\omega_{1,2}^{2}=\frac{\left(8 k_{p}+k_{g}\right) \mp \sqrt{64 k_{p}^{2}-8 k_{p} k_{g}+k_{g}^{2}}}{2 m}, \tag{5.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{3}^{2}=\frac{k_{g}}{m} . \tag{5.14}
\end{equation*}
$$

The corresponding modal shapes are
,
and

$$
\left\{\Phi_{3}\right\}=\left\{\begin{array}{l}
1 \tag{5.16}\\
1 \\
0
\end{array}\right\}
$$

in which

$$
\begin{equation*}
\phi_{1,2}=\frac{\omega_{1.2}^{2} m-k_{g}}{k_{p}}=\frac{\left(8 k_{p}-k_{g}\right) \mp \sqrt{64 k_{p}^{2}-8 k_{p} k_{g}+k_{g}^{2}}}{2 k_{p}} \tag{5.17}
\end{equation*}
$$

Observe that the third mode is the rigid body motion. For simplicity, it is assumed again that

$$
\frac{k_{p}}{k_{g}}=\frac{c_{p}}{c_{g}}=\lambda
$$

Then, the nanural frequencies of the first two modes are

$$
\begin{equation*}
\omega_{1,2}^{2}=\left[(8 \lambda+1) \mp \sqrt{64 \lambda^{2}-8 \lambda+1}\right] \frac{\omega_{3}^{2}}{2} \tag{5.18}
\end{equation*}
$$

and the associated mode shapes become

$$
\begin{equation*}
\phi_{1,2}=\frac{1}{2 \lambda}\left[(8 \lambda-1) \mp \sqrt{64 \lambda^{2}-8 \lambda+1}\right] . \tag{5.19}
\end{equation*}
$$

If modal superposition is applicable, i.e., stiffness proportional damping is assumed, then Eq. (5.12) yields the uncoupled equations,

$$
\begin{equation*}
\ddot{z}_{n}+2 \xi_{n} \omega_{n} \dot{z}_{n}+\omega_{n}^{2} z_{n}=\frac{F_{n}(t)}{M_{n}}, \quad n=1,2,3 \tag{5.20}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \left\{\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
\Delta y(t)
\end{array}\right\}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & 1 \\
\phi_{1} & \phi_{2} & 0
\end{array}\right]\left\{\begin{array}{l}
z_{1}(t) \\
z_{2}(t) \\
z_{3}(t)
\end{array}\right\}, \\
& \xi_{n} \quad=\text { the modal damping, } \\
& M_{1.2}=m\left(2-\frac{1}{3} \phi_{1,2}+\frac{1}{6} \phi_{1,2}^{2}\right), \\
& M_{3} \quad=2 m, \\
& F_{1.2}=c_{3}\left(\dot{y}_{G_{1}}-\dot{y}_{G_{2}}\right)+k_{8}\left(y_{G_{1}}-y_{G_{2}}\right), \\
& F_{3} \quad=c_{8}\left(\dot{y}_{G_{1}}+\dot{y}_{G_{2}}\right)+k_{g}\left(y_{G_{1}}+y_{G_{2}}\right), \\
& c_{g} \quad=2 \xi_{3} \omega_{3} m, \\
& k_{g} \quad=\omega_{3}^{2} m .
\end{aligned}
$$

The generalized displacement for each mode, $z_{n}(t)$, may be evaluated through the Duhamel integral, i.e.,

$$
\begin{equation*}
z_{n}(t)=\frac{1}{M_{n}} \int_{0}^{t} h_{n}(t-\tau) F_{n}(\tau) d \tau, \quad n=1,2,3 \tag{5.21}
\end{equation*}
$$

in which

$$
\begin{equation*}
h_{n}(t)=\frac{1}{\omega_{n} \sqrt{1-\xi_{n}^{2}}} e^{-\xi_{n} \omega_{n} t} \sin \omega_{n} \sqrt{1-\xi_{n}^{2}} t, \quad \pi=1,2,3 \tag{5.22}
\end{equation*}
$$

Moreover, the differential transverse displacement between the two pipe segments is expressed in terms of the generalized displacements as

$$
\begin{equation*}
\Delta y(t)=\phi_{1} z_{1}(t)+\phi_{2} z_{2}(t) \tag{5.23}
\end{equation*}
$$

5.3.2 Stochastic Analysis

Using Eq. (5.23), the power spectral density of the differential transverse displacement Δy can be obtained as

$$
\begin{equation*}
S_{\Delta y \Delta y}(\omega)=\phi_{1}^{2} S_{z_{1} z_{1}}(\omega)+\phi_{1} \phi_{2}\left[S_{z_{1} z_{2}}(\omega)+S_{z_{2} z_{1}}(\omega)\right]+\phi_{2}^{2} S_{z_{2} z_{2}}(\omega) \tag{5.24}
\end{equation*}
$$

In Eq. (5.24), the power and cross spectral densities of the generalized displacements are obtained from Eq. (5.21), i.e.,

$$
\begin{equation*}
S_{z_{m} z_{n}}(\omega)=\frac{1}{M_{m} M_{n}} H_{m}(\omega) H_{n}(\omega) . S_{F_{m} F_{n}}(\omega), \quad m, n=1,2 \tag{5.25}
\end{equation*}
$$

in which * denotes the complex conjugate, and H is the frequency transfer function given by

$$
\begin{equation*}
H_{n}(\omega)=\frac{1}{\omega_{n}^{2}-\omega^{2}+2 i \xi_{n} \omega_{n} \omega}, \quad n=1,2 \tag{5.26}
\end{equation*}
$$

The corresponding cross spectral density of the generalized force is

$$
\begin{align*}
S_{F_{m} F_{n}}(\omega) & =c_{z}^{2} S_{\Delta \dot{y}_{G} \Delta y_{G}}(\omega)+c_{\delta} k_{g}\left[S_{\Delta \dot{y}_{G} \Delta y_{G}}(\omega)+S_{\Delta y_{G} \Delta \dot{y}_{G}}(\omega)\right]+k_{马}^{2} S_{\Delta y_{G} \Delta y_{G}}(\omega) \\
& =\left(\frac{c_{g}^{2}}{\omega^{2}}+\frac{k_{g}^{2}}{\omega^{4}}\right) S_{\Delta \dot{y} G \Delta \dot{y}_{G}}(\omega), \quad m, n=1,2 \tag{5.27}
\end{align*}
$$

Finally, substituting Eqs. (5.25) and (5.27) into Eq. (5.24), the power spectral density of the differential transverse displacement for the pipes excited by the incoherent ground motions is

$$
\begin{align*}
S_{\Delta y \Delta y}(\omega)= & {\left[\frac{\phi_{1}^{2}}{M_{1}^{2}}\left|H_{1}(\omega)\right|^{2}+2 \frac{\phi_{1} \phi_{2}}{M_{1} M_{2}} \operatorname{Re}\left\{H_{1}(\omega) H_{2}(\omega)\right\}+\frac{\phi_{2}^{2}}{M_{2}^{2}}\left|H_{2}(\omega)\right|^{2}\right] } \\
& \cdot\left(\frac{C_{g}^{2}}{\omega^{2}}+\frac{k_{g}^{2}}{\omega^{4}}\right) S_{\Delta \ddot{y} G \Delta \ddot{g}}(\omega) . \tag{5.28}
\end{align*}
$$

5.4 Comparison of Results

In order to compare the results derived from the present model with the field recordings from the SMART-1 amay, the orientation and location of the pipeline studied in this section will be assumed to coincide with the epicentral direction of Event 5 (i.e., N26.2 ${ }^{\circ}$) and close to station C00, respectively. Therefore, the ground excitations applied to the pipeline in the axial direction are the seismic ground motions along the epicentral direction, whereas the input in the transverse direction are the ground motions normal to the epicentral direction.

Loh, et al. (1983) used the interference response spectra to esturnate the differential axial motion between two pipe segments for the earthquake of Event 5. Zerva, et al. (1985) then compared the results of a 2-D model with those from the interference response spectra. Since the method of interference response spectra oversimplified the propagation of waves between the two supports of the pipeline and the field data from a dense array are now available, the comparison in the study will be performed primarily berween the results of the current 3-D model and the responses excited by the recordings of the SMART-1 array. The corresponding interference response spectra are also shown.

First of all, two parameters in the discrete model of a pipeline should be evaluated to represent an actual pipeline. λ stands for the ratio of c_{p}, the damping of the connection between the pipe segments, to c_{8}, the damping of the soil. The former is much less than the latter, so a value of $1 / 5$ will be assumed for λ. Furthermore, since the damping of pipelines may be higher than that in buildings, two values of damping ratio, namely 5% and 10% of critical, will be adopted here, i.e.,

$$
\xi_{0}=\xi_{1}=\xi_{2}=\xi_{3}=5 \% \text { or } 10 \%,
$$

where ξ_{0} is the damping ratio in Eq. (5.3) for the analysis of the differential axial displacement in pipelines, and $\xi_{n}, n=1,2,3$, are the model damping in Eq. (5.20) for the analysis of the differential transverse motion. These two selected values (5% and 10%) could conceivably be the lower and upper bound damping values for a practical pipeline.

The differential displacements of the pipes subjected to the earthquake of

Event 5 were obtained through the deteministic analyses in the previous sections by using the array recordings as input. For the interference method, the recordings at the station with the shortest epicentral distance were used; the ground motion at the other station was determined by assuming the above excitation traveling with a constant velocity which was obtained by the separation distance and the difference in the arrival times of the two stations. On the other hand, the power specral densities of differential displacements are evaluated through the stochastic analyses using the power spectral densities of the differential ground motions obtained for the substitute system. Because of its imporance in the analysis and design of pipelines, the maximum differential displacement across a joint is emphasized. For the stochastic analysis, the mean maximum differential displacement and the associated standard deviation over the duration of an earthquake are evaluated using an asymptotic expression (Davenport, 1964), as follows:

$$
\begin{align*}
\mu_{\Delta u_{m}} & =\left[\sqrt{2 \ln (\nu T)}+\frac{0.5772}{\sqrt{2 \ln (\nu I)}}\right] \sigma_{\Delta u} \tag{5.29}\\
\sigma_{\Delta u_{m}} & =\frac{\pi}{\sqrt{6}} \frac{1}{\sqrt{2 \ln (v D)}} \sigma_{\Delta u}, \tag{5.30}
\end{align*}
$$

where:

$$
\Delta u_{m}=\max _{0 \leq i \leq T}|\Delta u(t)|,
$$

$\Delta u=$ the differential displacement, i.e., Δx for axial motion, Δy for transverse motion,
$T=$ the duration of the record,
$v=\frac{1}{\pi} \frac{\sigma_{\Delta i}}{\sigma_{\Delta u}}$,

$$
\begin{aligned}
& \sigma_{\Delta u}^{2}=\int_{-\infty}^{\infty} S_{\Delta u \Delta u}(\omega) d \omega \\
& \sigma_{\Delta \dot{u}}^{2}=\int_{-\infty}^{\infty} \omega^{2} S_{\Delta u \Delta u}(\omega) d \omega .
\end{aligned}
$$

The results shown in Figs. 5.3 through 5.6 include the maximum differential displacements from the ceterministic analysis, the mean maximum differential displacements and the mean plus one standard deviation obtained by the stochastic analysis. Each figure, which was called the "interference response specturn" in Nelson and Weidlinger (1977) or "differential response specturn" in Zerva, at al. (1985), shows the maximun differential response ploted as a function of the natural frequency of a system. The natural frequency in Figs. 5.3 an.. 5.4 for the axial discrete model of pipelines is that in the equation of the differential axial motion, i.e., ω_{0} in Eq. (5.3), whereas the namaral frequency in Figs. 5.5 and 5.6 for the transverse motion stands for the natural frequency of the rigid body mode, i.e., ω_{3} in Eq. (5.20). Seven separation distances, namely $l=20 \mathrm{~m}, 50 \mathrm{~m}, 200 \mathrm{~m}$, $0.4 \mathrm{~km}, 0.8 \mathrm{~km}, 1 \mathrm{~km}$, and 1.2 km , as well as two representative dampings, i.e., 5% and 10%, are considered in these figures. Observe that there are no field recordings separation distances of $l=20 \mathrm{~m}$ and 50 m .

In general, the mean maximum differential displacements of pipelines predicted with the proposed model are on the safe side for all frequencies. The existence of local layers in the SMARI-1 array site produced the seismic ground motions so incoherently, even for shor distances, that the spatial variation of ground motions can not be simulated well by a homogeneous theoretical model

- Model: Mean Value
----- Model: Mean Value +
1 Standard Deviation
- Empirical Result
- Interference Mechod

Figure 5.3 Differential Axial Displacement Response Sọectra ($\xi_{0}=5 \%$)

Figure 5.3 (continued)

Figure 5.4 Differential Axial Displacement Response Spectra ($\xi_{0}=10 \%$)

Figure 5.4 (comtinued)

—— Model: Mean Value
----- Model: Mean Value + 1 Standard Deviation

- Empirical Result
- Interference Metiod

Figure 5.5 Differential Transverse Displacement Response Spectra ($\xi_{1,2}=5 \%$)

Figure 5.5 (continued)

-__ Model: Mean Value
----- Model: Mean Value +
1 Standard Deviation

- Empirical Result
- Interference Method

Figure 5.6 Differential Transverse Displacement Response Spectra ($\xi_{1,2,3}=10 \%$)

Figure 5.6 (continued)
(i.e., without layers). However, as shown in Figs. 5.3 through 5.6, the relative displacement response spectra obtained with the proposed model give results that are even on the safe side over the entire range of frequencies. Observe also that, on the other hand, the method of interference response spectrun consistently underestimates the maximum differential displacement of the pipelines particularly for natural frequencies less than 2 Hz .

SECTION 6

SUMMARY AND CONCLUSIONS

6.1 Summary

A shearing fault rupture of the Haskell type was presented for modeling the earthquake source mechanism. In such a model, the rupture motion is described as a line dislocation sweeping over the entire fault plane at a constant rupture velocity, and the slip may be a strike-slip or dip-slip motion. A two-step method of solution is used to determine the ground responses in a three-dimensional homogeneous half-space. The ground motion in the Laplace transform domain was obtained by solving the transformed wave equations subject to the boundary conditions specified in the above fault plane. The generalized ray theorem was used for this purpose and might be extended systematically to solve the wave propagation problem in a layered medium. The analytic solution in the time domain was formulated through the Cagniard-de Hoop technique in which the inverse Laplace transform was taken by direct investigation. The correctness of the formulation was validated by comparing the results with those obtained by the method of Green's function.

In order to take the incoherent slip into account, the rupture motion was treated as a randorn process by introducing a spatio-temporal autocorrelation function of dislocation velocity, from which the power spectral density of the averaged dislocation velocity over the fault length was estimated. A multi-degree-of-freedom substitute system is introduced to represent the path effect, separately
from the source effect. The parameters of the substitute system were determined though system identification using the results of the 3-D analytical solutions. With the power spectral density available at the source and the transfer function obtained from the substitute system, the power spectral density of differential ground motions can be obtained.

An acual eartiquake, Event 5 recorded at the SMART-1 array, was selected for validating the results of the model. The parameters in the model, such as the fault orientation, the fault dimension, the final dislocation, and the characteristics of the mediurn, etc., were carefully investigated. Some of the parameters were evaluated based on the earthquake magnitude. Emphasis was directed to the stochastic properties of the differential ground motions, which are signifisant for the response analysis and design of lifeline systems.

The theoretical results are applicable to analyze lifeline systems. Two discrete models of pipelines were examined. The maximum differential displacements across the joint connecting two pipe segments subjected to either axial or lateral ground excitations were presented in terms of the differential response spectra.

6.2 Conclusions

In this study, a hybrid deterministic and stochastic model, which depends on the parameters at the earthquake source and the characteristics of the soil, was developed to investigate the spatial variation of ground motions necessary for the analysis of pipelines. Based on the results of the study, including the validation with the SMART-1 data, the following conclusions may be drawn:

1. In the deteministic approach, the method of solution for calculating the ground responses is effective and efficient when compared with other methods, such as the Green's function solution. For layered media, the generalized ray theory offers a systematical procedure to obtain the ground responses in the transform domain. In addition to the source functions and receiver functions for a homogeneous medium, only the reflection or refraction coefficients are needed. The Cagniardde Hoop method has been shown to be an efficient way to take the inverse transform for obtaining solutions in the time domain for each ray.
2. The high-frequency content of the seismic waves is not important for the analysis of pipelines, because the differential ground velocity and displacement are the base excitations to a pipeline in which the differential displacement response is of major concen. The frequency transfer function of a pipeline system will tend to filter out the high-frequency excitations.
3. The effect of soil amplification is different at various stations so that the differential ground motions at some pair of stations with a short separation distance are more incoherent than those with distant separation. Any discrepancy between the analyric and empirical results for a single earthquake can be attributed to the assumptions made in the study, such as the fixed rupture direction, the continuous offsetting, the homogeneity and isotropy of the medium.
4. The proposed differential response spectrum predicts the mean maximum differential displacement between the pipe segments as a function of the
system frequency, and is generally on the safe side as compared with empirical results.
5. The interference response spectum consistently underestimates the maximurn differential displacement between the pipe segments, particularly when the natural frequency of the pipe system is less than 2 Hz .

6.3 Suggestions for Further Study

On the basis of this study, suggestions for further work would include the following:

1. The multi-degree-of-freedom system may be a good theoretical mose! for structures, but it is probably not suitable for soils. A modified subsitite system, e.g., including the epicentral distance or containing two subsystems (one for rock, one for soil), may be more effective to simulate the transmission effect.
2. A 3-D analytic model for layered media can be readily extended from the current model; however, this would involve much more calculations because mittiple rays will be necessary. Simplification is necessary for developins : suitable model to account for the inhomogeneity of the soil.
3. Basically, are ground motions are determined by solving the wave equations subject to the boundary conditions specified at the source. A standard procedure is to take the Fourier transform over the time variable and the two horizontal space variables, and then obtain the responses in the transform domain through algebraic manipulation. In the Fourier
transform solution (i.e., a function of the frequency and the two wavenumbers), the source factor, the effects of wave propagation, reflection and refraction, along with the characteristics of the response at the receiver (i.e., displacement or stress) are all collected together through multiplication. Therefore, another possible approach is to represent the spatial variation of ground motions in a random field of frequency and wave numbers when the randomness is introduced at the source and/or to the medium.
4. Since the layer beneath the SMART-1 array is oblique (dipping toward north with an angle of about 6 degrees), a semi-analytic method may be applicable to study the local soil effect. In June 1983, an extension station E02 was installed at the outcrop which is located 4.8 km south of station C00. Most events triggered the SMART-1 array with epicenters located south of station E02. Therefore, the ground motions at station E02 can be obtained analytically in a 3-D model with waves propagating through the homogeneous medium for these events, and the soil amplification can be characterized by the transfer function with the recordings at station E02 as the input and the recordings at other stations as the output, if, in each station, the transfer functions are similar for different events. Obviously, it is an approximate approach because the waves transmitred through the interface are all forced to pass through station E02. However, this may be a practical method for examining soil amplification.

SECTION 7

REFERENCES

1. Abrahamson, N. A., "Estimation of Seismic Wave Coherency and Rupture Velocity Using the SMARI 1 Strong-Motion Array Recording," Earthquake Engineering Research Center Report, No. UCB/EERC-85/02, University of California, Berkeley, California, March 1985.
2. Achenbach, J. D. and Harris, J. G., "Asymptotic Modeling of Strong Ground Motion Excited by Subsurface Sliding Events," Chapter 1 in Seismic Strong Motion Synthetics, Ed. by Bolt, B. A., Computational Techniques Series, Academic Press Inc., Orlando, 1987.
3. Aki, K., "Scaling Law of Seismic Spectum," Jourta! of Geophysical Research, Vol. 72, No. 4, pp. 1217-1231, February 1967.
4. Aki, K., "Seismic Displacements near a Fault," Journal of Geophysical Research, Vol. 73, No. 16, pp. 5359-5376, August 1968.
5. Aki, K., "Strong Motion Prediction Using Mathematical Modeling Techniques," Bulletin of the Seismological Sociery of America, Vol. 72, No. 6, pp. S29-S41, December 1982.
6. Anderson, J. G., "Motions Near a Shallow Rupturing Fault: Evaluation of Effects Due to the Free Surface," Geophysical Journal of the Royal Asronomical Society, Vol. 46, No. pp. 575-593, September 1976.
7. Andrews, D. J., "A Stochastic Fault Mode! 1. Static Case," Journal of Geophysical Research, Vol. 85, No. B7, pp. 3867-3877, July 1980.
8. Andrews, D. J., "A Stochastic Fault Model 2. Time-Dependent Case," Journal of Geophysical Research, Vol. 86, No. B11, pp. 10821-10834, Novermber 1981.
9. Beck, J. L., "Determining Models of Stuctures from Earthquake Records," Earthquake Engineering Research Laboratory Report, No. EERL 78-01, California Institute of Technology, Pasadena, California, June 1978.
10. Bendat, J. S. and Piersol A. G., Random Data: Analysis and Measwrement Procedures, John Wiley \& Sons Inc., New York, 1971.
11. Boatwright, J., "A Dynarnic Model for Far-Field Acceleration," Bulletin of the Seismological Society of America, Vol. 72, No. 4, pp. 1049-1068, August 1982.
12. Bonilla, M. G., "Surface Fauiting and Related Effects," in Earthquake Engineering, Ed. by Wiegel R. L., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1970.
13. Boore, D. M. and Joyner, W. B., "The Influence of Rupture Incoherence on Seismic Directivity," Bulletin of the Seismological Sociery of America, Vol. 68, No. 2, pp. 283-300, April 1978.
14. Boore, D. M. and Zoback, M. D., "Near-Field Motions from Kinematic Models of Propagating Faults," Bulletin of the Seismological Society of Anerica, Vol. 64, No. 2, pp. 321-342, April 1974.
15. Bouchon, M., "Discrete Wave Number Representation of Elastic Wave Fields in Three-Space Dimensions," Journal of Geophysical Researcin, Vol. 84, No. B7, pp. 3609-3614, July 1979.
16. Burridge, R. and Knopoff, L., "Body Force Equivalents for Seismic Dislocations," Bulletin of the Seismological Sociery of America, Vol. 54, No. 6, pp. 1875-1888, December 1964.
17. Cagniard, L., Reflection and Refraction of Progressive Seismic Wayes, translated by Flinn, E. A., and Dix, C. H., McGraw-Hill, New York, 1962.
18. Chen. P. L., "Ground Response Due to Fault Motion," Ph.D. Dissertation, National Taiwan University, Taipei, Taiwan, R. O. C., July 1981 (In Chinese).
19. Das, S., "A Numerical Method for Determination of Source Time Functions for General Three-Dimensional Rupture Propagation," Gerphysical Journal of the Royal Astronomical Sociery, Vol. 62, No. 3, pp. 591-604, September 1980.
20. Davenport, A. G., "Note on the Distribution of the Largest Value of a Random Function with Application to Gust Loading," Proceedings, Institution of Civil Engineers, Vol. 28, Paper No. 6739, pp. 187-196, June 1964.
21. de Hoop, A. T., "A Modification of Cagniard's Method for Solving Seismic Pulse Problems," Applied Scientific Research, Section B, Voi. 8, No. 4, pp. 349-356, 1960.
22. Dravinski, M., "Evaluation of Strong Ground Motion Using Boundary Integral Equation Approach," in Earthquake Source Modeling, Ground Motion and Structural Response, Ed. by Datta, S. K., ASME, PVP.Vol. 80, AMD-Vol 60, pp. 61-80, 1984.
23. Geller, R. J., "Representation Theorems for an Infinite Shear Fault," Geophysical Journal of the Royal Astronomical Sociery, Vol. 39, No. 1, pp. 123-131, October 1974.
24. Geller, R. J., "Scaling Relations for Earthquake Source Parameters and Magnitudes," Bulletin of the Seismological Society of America, Vol. 66, No. 5 , pp. 1501-1523, October 1976.
25. Harada, T., "Probabilistic Modeling of Spatial Variation of Strong Earthquake Ground Displacements," Proceedings of the Eighth World Conference on Earthquake Engineering, San Francisco, Vol. II, pp. 605-612, July 1984.
26. Hartzell, S. H.; Frazier, G. A.; and Brune, J. N., "Earthquake Modeling in a Homogeneous Half-Space," Bullerin of the Seismological Sociery of America, Vol. 68, No. 2, pp. 301-316, April 1978.
27. Haskell, N. A., "Total Energy and Energy Spectral Density of Elastic Wave Radiation from Propagating Fauits," Bulletin of the Seismological Sociery of America, Vol. 54, No. 6, pp. 1811-1841, December 1964.
28. Haskell, N. A., "Total Energy and Energy Spectral Density of Elastic Wave Radiation from Propagating Faults. Part II. A Statistical Source Model," Bulletin of the Seismological Sociery of America, Vol. 56, No. 1, pp. 125-140, February 1966.
29. Haskell, N. A., "Elastic Displacements in the Near-Field of a Propagating Fault," Bulletin of the Seismological Society of America, Vol. 59, No. 2, pp. 865-908, April 1969.
30. Iida, K., "Earchquake Magnitude, Earthquake Fauit, and Source Dimensions," Journal of Earth Sciences, Nagoya University, Vol. 13, No. 2, pp. 115-132, December 1965.
31. Israel, M. and Kovach, R. L., "Near-Field Motions from a Propagating Strike-Slip Fault in an Elastic Half-Space," Bulletin of the Seismological Sociery of America, Vol. 67, No. 4, pp. 977-994, August 1977.
32. Johnson, L. R., "Green's Function for Lamb's Problem," Geophysical Joumal of the Ro, al Astronomical Sociery, Vol. 37, No. 1, pp. 99-131, April 1974.
33. Kawasaki, I., "On the Dynamical Process of the Parkfield Earthquake of June 28, 1966," Journal of Physics of Earth, Vol. 23, No. 2, pp. 127-144, June 1975.
34. King, C. Y. and Knopoff, L., "Stress Drop in Earthquakes," Bulletin of the Seismological Sociery of America, Vol. 58, No. 1, pp. 249-257, February 1968.
35. Levy, N. A. and Mal, A. K., "Calculation of Ground Motion in a ThreeDimensional Model of the 1966 Parkfield Earthquake," Bullerin of the Seismological Sociery of America, Vol. 66, No. 2, pp. 405-423, April 1976.
36. Loh, C. H.; Ang, A. H-S.; and Wen, Y. K., "Spatial Correlation Study of Strong Motion Array Data with Application to Lifeline Earthquake Engineering," Civil Engineering Studies, Structural Research Series, No. 503, University of Ilinois at Urbana-Champaign, Urbana, Hlinois, March 1983.
37. Loh, C. H., "Analysis of the Spatial Variation of Seismic Waves and Ground Movements from SMART-1 Array Data," Earthquake Engineering \& Structura! Dynamics, Vol. 13, No. 5, pp. 561-581, October 1985.
38. Luco, J. E. and Anderson, J. G., "Steady-State Response of an Elastic Half-Space to a Moving Dislocation of Finite Width," Bulletin of the Seismological Sociery of America, Vol. 73, No. 1, pp. 1-22, February 1983.
39. Luco, J. E., "Dislocation Models of Near-Source Earthquake Ground Motion: A Review," Deparment of Applied Mechanics and Engineering Sciences, University of Cailfornia, San Diego, La Jolla, California, July 1986.
40. Madariaga, R., "The Dynamic Field of Haskell's Rectangular Dislocation Fault Model," Bulletin of the Seismological Society of America, Vol. 68, No. 4, pp. 869-887, August 1978.
41. Matsuda, T., "Magniude and Recurtence Interval of Earthquakes from a Fault," J. Seismol. Soc. Japan, Vol. 28, pp. 269-283, 1975.
42. Mohammadi, J. and Ang, A. H-S., "A Method for the Analysis of Seismic Reliability of Lifeline Systems," Civil Engineering Studies, Structural Research Series, No. 474, University of Ulinois at Urbana-Champaign, Urbana, Ilinois, February 1980.
43. Nelson, I. and Weidlinger, P., "Development of Interference Response Spectra for Lislines Seismic tnalysis," Weidinger Associate, New York, Report No. N:FRA-770313, prepared for National Science Foundarion, July 1977.
44. Pao, Y. H. and Sajewski, R. R., "The Generalized Ray Theory and Transient Response of Layered Elastic Solids," Physical Acoustics, Vol. 13, pp. 183-265, 1977.
45. Papageorgiou, A. S. and Aki, K., "A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion. I. Description of the Model," Bulletin of the Seismological Sociery of America, Vol. 73, No. 3, pp. 693-722, June 1983a.
46. Papageorgiou, A. S. and Aki, K., "A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion. Part II. Applications of the Model," Bulletin of the Seismological Sociery of America, Vol. 73, No. 4, pp. 953-978, August 1983b.
47. Roecker, S. W.; Yeh, Y. H.; and Tsai, Y. B., "Three-Dimensional P and S Wave Velocity Structures beneath Taiwan: Deep Structure beneath an Arc-Continent Collision," Journal of Geophysical Research, Vol. 92, No. B10, pp. 10547-10570, September 1987.
48. Seyyedian-Choobi, M. and Robinson, A. R., "Motion on the Surface of a Layered Elastic Half-Space Produced by a Buried Dislocation Pulse," Civil Engineering Studies, Structural Research Series, No. 421, University of Ilinois at Urbana-Champaign, Urbana, Dlinois, November 1975.
49. Suzuki, S. and Kiremidjian, A. S., "A Stochastic Ground Motion Forecast Model with Geophysical Considerations," John A. Blume Earthquake Engineering Center Report, No. 88, Stanford University, Stanford, Califormia, September 1988.
50. Tanimoto, T., "Cagniard de-Hoop Method for a Haskell Type Vertical Fault," Geophysical Journa! of the Roya! Astronomical Sociery, Vol. 70, No. 3, pp. 639-646, September 1982.
51. Virieux, J. and Madariaga, R., "Dynamic Faulting Studied by a Finite Difference Method," Bulletin of the Seismological Sociery of America, Vol. 72, No. 2, pp. 345-369, April 1982.
52. Wang, T. K., "A Sudy of Dipping Rectangular Fault in an Elastic FalfSpace," M.S. Dissertation, National Taiwan University, Taipei, Taiwan, R. O. C., July 1988 (In Chinese).
53. Wen, K. L. and Yeh, Y. T., "Seismic Velocity Structure beneath the SMART 1 Artay," Bulletin of the Institute of Earth Sciences, Academia Sinica, R. O. C., Vol. 4, pp. 51-72, December 1984.
54. Yeh, C. S.; Chen P. L.; Kuo, M. K.; and Wang T. K., "Ground Motions Generated by a Finite Fault," IUTAM Symposium on Elastic Wave Propagation, Galway, Ireland, March 1988.
55. Zerva, A.; Ang, A. H-S.; and Wen, Y. K., "A Study of Seismic Ground Motion for Lifeline Response Analysis," Civil Engineering Studies, Structural Research Series, No. 521, University of Illinois at Urbana-Champaign, Urbana, Illinois, October 1985.

APPENDIX A

LAPLACE TRANSFORM ELEMENTS FOR OBLIQUE FAULT

(1) Strike-slip Fault:

$$
\left\{F_{\rho}\right\}=\left\{\begin{array}{c}
-8 i \xi^{2} \eta \zeta_{s} \\
-8 i \xi \eta^{2} \zeta_{s} \\
-4 \xi \eta\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)
\end{array}\right\} \sin \delta+\left\{\begin{array}{c}
8 \xi^{2} \zeta_{p} \zeta_{s} \\
8 \xi \eta \zeta_{p} \zeta_{s} \\
-4 i \xi \zeta_{p}\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)
\end{array}\right\} \cos \delta,(\mathrm{A} .1)
$$

and

$$
\left\{F_{s}\right\}=\left\{\begin{array}{c}
2 i \eta\left[\frac{\left(\zeta_{s}^{2}-\xi^{2}+\eta^{2}\right)\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)}{\zeta_{s}}+4 \zeta_{p}\left(\xi^{2}-\eta^{2}\right)\right] \\
2 i \xi\left[\frac{\left(\zeta_{s}^{2}+\xi^{2}-\eta^{2}\right)\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)}{\zeta_{s}}-4 \zeta_{\rho}\left(\xi^{2}-\eta^{2}\right)\right] \\
8 \xi \eta \zeta_{\rho} \zeta_{s}
\end{array}\right\} \sin \delta
$$

$$
+\left\{\begin{array}{c}
8 \eta^{2} \zeta_{p} \zeta_{s}-2\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)^{2} \tag{A.2}\\
-8 \xi \eta \zeta_{p} \zeta_{s} \\
4 i \xi \zeta_{p}\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)
\end{array}\right\} \cos \delta
$$

(2) Dip-slip Fault:
and

$$
\begin{align*}
\left\{F_{s}\right\}= & \left\{\begin{array}{c}
2 i \xi\left[\frac{\left(\zeta_{s}^{2}-\eta^{2}\right)\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)}{\zeta_{s}}+4 \eta^{2} \zeta_{p}\right] \\
2 i \eta\left[\frac{\left(2 \zeta_{s}^{2}+\xi^{2}\right)\left(\zeta_{\zeta}^{2}+\xi^{2}+\eta^{2}\right)}{\zeta_{s}}-4 \xi^{2} \zeta_{f}\right] \\
4 \zeta_{\rho} \zeta_{s}\left(\xi^{2}+2 \pi^{2}\right)
\end{array}\right\} \sin 2 \delta \\
& +\left\{\begin{array}{c}
-8 \xi \eta \zeta_{\rho} \zeta_{s} \\
8 \xi^{2} \zeta_{\rho} \zeta_{s}-2\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)^{2} \\
4 i \pi \zeta_{\rho}\left(\zeta_{s}^{2}+\xi^{2}+\eta^{2}\right)
\end{array}\right\} \cos 2 \delta . \tag{A.4}
\end{align*}
$$

APPENDLX B

ANALYIICAL SOLUIION OF HASKELL MODEL

(1) $U_{1}(x, y, 0, t)=\frac{D_{0}}{4 \pi^{2}} \sum_{j=q, 5} \mathrm{H}\left(t-t_{1 j}\right) \int_{-q_{j}}^{q_{j}} \operatorname{Re}\left\{\frac{(-i) F_{j} \frac{d \sigma_{j}}{d t}}{(i \xi+b)\left(i \eta \cos \delta+\zeta_{j} \sin \delta\right) R}\right\} d q, \quad$ (B.1)
where:

$$
\begin{aligned}
& t_{1 j}=R_{0} b_{j}, \quad R_{0}=\sqrt{x^{2}+y^{2}+t_{0}^{2}}, \\
& q_{j}=\sqrt{t^{2}-t_{1 j}^{2}} / R_{0}, \\
& \left\{\begin{array}{l}
\xi=\dot{i} \sigma_{j} \cos \theta-q \sin \theta, \\
\eta=i \sigma_{j} \sin \theta+q \cos \theta,
\end{array}\right. \\
& \zeta_{j}=\sqrt{b_{j}^{2}+\xi^{2}+\eta^{2}}, \\
& \frac{d \sigma_{j}}{d t}=\frac{r}{R_{0}^{2}}+i \frac{z_{0} t}{R_{0}^{2} \sqrt{t^{2}-t_{q j}^{2}}}, \\
& \sigma_{0}^{2} \\
& \sigma_{0} \frac{z_{0} \sqrt{t^{2}-t_{q j}^{2}}}{R_{0}^{2}}, \\
& t_{q j}=R_{0} \sqrt{b_{j}^{2}+q^{2}} .
\end{aligned}
$$

(2) $U_{1 h}(x, y, 0, t)=\frac{D_{0}}{4 \pi^{2}} H\left(\frac{r}{R_{0}}-\frac{b_{g}}{b_{s}}\right)\left[H\left(t-t_{1 h}\right) H\left(t_{1 s}-t\right) \int_{-q_{h}}^{q_{h}} \operatorname{Re}\left\{\frac{H_{A}}{H_{B}}\right\} d q\right.$

$$
\begin{equation*}
\left.+\mathrm{H}\left(t-t_{1 s}\right) \mathrm{H}\left(t_{h m}-t\right)\left(\int_{-q_{h}}^{-q_{s}} \operatorname{Re}\left\{\frac{H_{A}}{H_{B}}\right\} d q+\int_{q_{s}}^{q_{h}} \operatorname{Re}\left\{\frac{H_{A}}{H_{B}}\right\} d q\right)\right] \tag{B.2}
\end{equation*}
$$

where:

$$
\begin{aligned}
& t_{1 h}=z_{0} \sqrt{b_{s}^{2}-b_{p}^{2}}+r b_{p}, \\
& t_{h m}=\frac{R_{0}^{2}}{z_{0}} \sqrt{b_{s}^{2}-b_{p}^{2}}, \\
& q_{h}=\sqrt{\left(\frac{t-z_{0} \sqrt{b_{s}^{2}-b_{p}^{2}}}{r}\right)^{2}-b_{p}^{2},} \\
& \left\{\frac{H_{A}}{H_{B}}\right\}=\left\{\frac{(-i) F_{s} \frac{d \sigma_{h}}{d t}}{(i \xi+b)\left(i \eta \cos \delta+\zeta_{s} \sin \delta\right) R}\right\}, \\
& \left\{\begin{array}{l}
\xi=i \sigma_{h} \cos \theta-q \sin \theta, \\
\eta=i \sigma_{h} \sin \theta+q \cos \theta, \\
\frac{\sigma_{h}}{}=\frac{\pi}{R_{0}^{2}}-\frac{z_{0} \sqrt{t_{q s}^{2}-t^{2}}}{R_{0}^{2}}, \\
\frac{d \sigma_{h}}{d t}=\frac{r}{R_{0}^{2}}+\frac{z_{0} t}{R_{0}^{2} \sqrt{t_{q s}^{2}-t^{2}}} .
\end{array}\right.
\end{aligned}
$$

(3) $U_{2}(x, y, 0, t)=\frac{D_{0}}{2 \pi} \frac{1}{\cos \theta} \mathrm{H}(x) \sum_{j=p, s}\left[H\left(\frac{x}{R_{0}}-\frac{b}{b_{j}}\right) \mathrm{H}\left(t-t_{2 j}\right)\right.$

$$
\begin{equation*}
\left.+H\left(\frac{b}{b_{j}}-\frac{x}{R_{0}}\right) H\left(t-t_{2}^{*}\right)\right] \operatorname{Re}\left\{\frac{(-i) F_{j} \frac{d a_{j}}{d t}}{\left(i \eta \cos \delta+\zeta_{j} \sin \delta\right) R}\right\} \tag{B.3}
\end{equation*}
$$

where:

$$
\begin{aligned}
& t_{2 j}=x \dot{b}+\sqrt{y^{2}+z_{0}^{2}} \sqrt{b_{j}^{2}-b^{2}}, \\
& \dot{t_{2}}=\frac{R_{0}^{2}}{x} b, \\
& \left\{\begin{array}{l}
\xi=i b, \\
\eta=i \frac{\left(a_{j}+b \sin \theta\right)}{\cos \theta}, \\
\frac{a_{j}}{}=-b \sin \theta+\frac{\cos \theta}{y^{2}+z_{0}^{2}}\left[y t^{\prime}+i z_{0} \sqrt{t^{\prime 2}+\left(y^{2}+z_{0}^{2}\right)\left(b^{2}-b_{j}^{2}\right)}\right] \\
\frac{d a_{j}}{d t}=\frac{\cos \theta}{y^{2}+z_{0}^{2}}\left[y+i \frac{z_{0} t^{\prime}}{\sqrt{t^{\prime 2}+\left(y^{2}+z_{0}^{2}\right)\left(b^{2}-b_{j}^{2}\right)}}\right] \\
t^{\prime}=t-x \dot{b} .
\end{array}\right.
\end{aligned}
$$

(4) $U_{2 h}(x, y, 0, t)=\frac{D_{0}}{2 \pi} \frac{1}{\cos \theta} \mathrm{H}(x) \mathrm{H}\left(\frac{x}{R_{0}}-\frac{b}{b_{s}}\right)\left\{\mathrm{H}\left(\frac{x}{r}-\frac{b}{b_{p}}\right) \mathrm{H}\left(H_{c}\right) \mathrm{H}\left(t-t_{2 n}\right)\right.$
$\left.+\left[H\left(\frac{b}{b_{p}}-1\right)+\mathrm{H}\left(1-\frac{b}{b_{p}}\right) \mathrm{H}\left(\frac{b}{b_{p}}-\cos \theta\right) \mathrm{H}\left(H_{C}\right)\right] \mathrm{H}\left(t-t_{2 n}^{*}\right)\right\}$

$$
\begin{equation*}
\cdot \mathrm{H}\left(t_{2 s}-t\right) \operatorname{Re}\left\{\frac{(-i) F_{s} \frac{d a_{k}}{d t}}{\left(i \eta \cos \delta+\zeta_{s} \sin \delta\right) R}\right\}, \tag{B.4}
\end{equation*}
$$

where:

$$
\begin{aligned}
& H_{C}=\frac{|y|}{\sqrt{y^{2}+z_{0}^{2}}}-\frac{\sqrt{b_{p}^{2}-b^{2}}}{\sqrt{b_{s}^{2}-b^{2}}}, \\
& t_{2 h}=x b+z_{0} \sqrt{b_{s}^{2}-b_{p}^{2}}+|y| \sqrt{b_{p}^{2}-b^{2}}, \\
& t_{2 h}^{*}=\frac{1}{\cos \theta}\left(r b+z_{0} \sqrt{b_{j}^{2} \cos ^{2} \theta-b^{2}}\right), \\
& \left\{\begin{array}{l}
\boldsymbol{\xi}=i b, \\
\eta=i \frac{\left(a_{h}+b \sin \theta\right)}{\cos \theta},
\end{array}\right. \\
& \beta_{h}= \begin{cases}-b \sin \theta+\frac{\cos \theta}{y^{2}+z_{0}^{2}}\left[y t^{\prime}-z_{0} \sqrt{\left(y^{2}+z_{0}^{2}\right)\left(b_{s}^{2}-b^{2}\right)-t^{\prime 2}}\right], & \text { for } y>0, \\
-b \sin \theta+\frac{\cos \theta}{y^{2}+z_{0}^{2}}\left[y t^{\prime}+z_{0} \sqrt{\left(y^{2}+z_{0}^{2}\right)\left(b_{s}^{2}-b^{2}\right)-t^{\prime 2}}\right], & \text { for } y<0,\end{cases} \\
& \frac{d \beta_{h}}{d t}=\left\{\begin{array}{l}
\frac{\cos \theta}{y^{2}+z_{0}^{2}}\left[y+\frac{z_{0}^{\prime}}{\sqrt{\left(y^{2}+z_{0}^{2}\right)\left(b_{s}^{2}-b^{2}\right)-t^{\prime 2}}}\right], \text { for } y>0, \\
\frac{\cos \theta}{y^{2}+z_{0}^{2}}\left[y-\frac{z_{0} t^{\prime}}{\sqrt{\left(y^{2}+z_{0}^{2}\right)\left(b_{s}^{2}-b^{2}\right)-t^{\prime 2}}}\right], \text { for } y<0 .
\end{array}\right.
\end{aligned}
$$

(5) $U_{3}(x, y, 0, t)=\frac{D_{0}}{2 \pi} H(y) H\left(y^{\prime}\right) \sum_{j=p, s} H\left(t-t_{3 j}\right) \operatorname{Re}\left\{\frac{(-1) F_{j} \frac{d \beta_{j}}{d t}}{(i \xi+b) G_{j} R}\right\}$,
where:

$$
\begin{aligned}
& t_{3 j}=\sqrt{x^{2}+z^{\prime 2}} b_{j}, \\
& \left\{\begin{array}{l}
\xi=i \sigma_{2} \cos \theta+i \beta_{j} \sin \theta, \\
\eta=i \sigma_{2} \sin \theta-i \beta_{j} \cos \theta,
\end{array}\right. \\
& \sigma_{2}=\frac{\beta_{j} \sin \theta \cos \theta \cos ^{2} \delta+\sin \delta \sqrt{b_{j}^{2}\left(1-\cos ^{2} \theta \cos ^{2} \delta\right)-\beta_{j}^{2}}}{1-\cos ^{2} \theta \cos ^{2} \delta}, \\
& \frac{d \beta_{j}}{d t}=\frac{1}{x^{2}+z^{\prime 2}}\left[y^{\prime} \cos \theta \cos \delta+i \frac{\left(r \sin \delta+z_{0} \sin \theta \cos \delta\right) t}{\sqrt{t^{2}-t_{3 j}^{2}}}\right] \\
& \beta_{j}=\frac{1}{x^{2}+z^{\prime 2}}\left[y^{\prime} t \cos \theta \cos \delta+i\left(r \sin \delta+z_{0} \sin \theta \cos \delta\right) \sqrt{t^{2}-t_{3 j}^{2}}\right] \\
& \left\{\begin{array}{l}
y^{\prime}=y \cos \delta-z_{0} \sin \delta, \\
z^{\prime}=-y \sin \delta-z_{0} \cos \delta,
\end{array}\right. \\
& G_{j}=\frac{\sigma_{2} \sin \delta+\zeta_{j} \sin \theta \cos \delta}{\zeta_{j}}
\end{aligned}
$$

(6) $U_{3 n}(x, y, 0, t)=\frac{D_{0}}{2 \pi} H(y) H\left(y^{\prime}\right)\left[H\left(\frac{b_{p}}{b_{s}}-\frac{\sin \delta}{\sqrt{1-\cos ^{2} \theta \cos ^{2} \delta}}\right) H\left(H_{D}\right) H\left(t-t_{3 n}\right)\right.$

$$
\begin{equation*}
\left.+\mathrm{H}\left(\frac{\sin \delta}{\sqrt{1-\cos ^{2} \theta \cos ^{2} \delta}}-\frac{b_{p}}{b_{s}}\right) \mathrm{H}\left(t-t_{3 k}\right)\right] \mathrm{H}\left(t_{3 s}-t\right) \operatorname{Re}\left\{\frac{(-i) F_{s} \frac{d \beta_{k}}{d t}}{(i \xi+b) G_{s} R}\right\}, \tag{B.6}
\end{equation*}
$$

where:

$$
\begin{aligned}
& H_{D}=\left(\frac{b_{b} y^{\prime} \cos \theta \cos ^{2} \delta}{\sqrt{x^{2}+z^{\prime 2}}}+\cos \theta \sin \delta \sqrt{b_{s}^{2}-b_{p}^{2}}\right)^{2}-\sin ^{2} \theta\left(b_{p}^{2}-b_{s}^{2} \sin ^{2} \delta\right), \\
& t_{3 h}=\frac{1}{\cos \delta}\left[|x| \sqrt{b_{j}^{2}-b_{s}^{2} \sin ^{2} \delta}-z^{\prime} \sqrt{b_{s}^{2}-b_{p}^{2}}\right], \\
& t_{3 h}=\frac{b_{s}}{\sqrt{1-\cos ^{2} \theta \cos ^{2} \delta}}\left(r \sin \delta+z_{0} \sin \theta \cos \delta\right), \\
& \left\{\begin{array}{l}
\xi=i \sigma_{2} \cos \theta+i \beta_{h} \sin \theta, \\
\eta=i \sigma_{2} \sin \theta-i \beta_{h} \cos \theta,
\end{array}\right. \\
& \sigma_{2}=\frac{\beta_{h} \sin \theta \cos \theta \cos ^{2} \delta+\sin \delta \sqrt{b_{s}^{2}\left(1-\cos ^{2} \theta \cos ^{2} \delta\right)-\beta_{h}^{2}},}{1-\cos s^{2} \theta \cos ^{2} \delta}, \\
& \beta_{h}=\left\{\begin{array}{l}
\frac{1}{x^{2}+z^{\prime 2}}\left[y^{\prime} t \cos \theta \cos \delta-\left(r \sin \delta+z_{0} \sin \theta \cos \delta\right) \sqrt{t_{35}^{2}-t^{2}}\right], \text { for } x>0, \\
\frac{1}{x^{2}+z^{\prime 2}}\left[y^{\prime} t \cos \theta \cos \delta+\left(r \sin \delta+z_{0} \sin \theta \cos \delta\right) \sqrt{r_{35}^{2}-t^{2}}\right], \text { for } x<0, \\
\frac{d \beta_{h}}{d t}=\left\{\begin{array}{l}
\frac{1}{x^{2}+z^{\prime 2}}\left[y^{\prime} \cos \theta \cos \delta+\frac{\left(r \sin \delta+z_{0} \sin \theta \cos \delta\right) t}{\sqrt{t_{35}^{2}-t^{2}}}\right], \text { for } x>0, \\
\frac{1}{x^{2}+z^{\prime 2}}\left[y^{\prime} \cos \theta \cos \delta-\frac{\left(r \sin \delta+z_{0} \sin \theta \cos \delta\right) t}{\sqrt{t_{35}^{2}-t^{2}}}\right], \text { for } x<0 .
\end{array}\right.
\end{array},\right.
\end{aligned}
$$

APPENDIX C

POWER SPECTRAL DENSITY OF BASE VELOCITY

The spatio-temporal autocorrelation funcrion for the dislocation velocity in the fault plane is defined as

$$
\begin{equation*}
\psi(\epsilon, \tau)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dot{D}(x, t) \dot{D}(x+\epsilon, t+\tau) d x d t \tag{C.1}
\end{equation*}
$$

where:
$\dot{D}(x, t)=$ the dislocation velocity at a point x and ime t,
$\epsilon \quad=$ the spatial separation,
$\tau \quad=$ the temporal separation.

The double Fourier transform over the spatial and temporal coordinates is performed for $\dot{D}(x, t)$ and $\psi(\epsilon, \tau)$, i.e., the transform pair of $\dot{\Gamma}(x, t)$ is

$$
\begin{align*}
\dot{D} F(k, \omega) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dot{D}(x, t) e^{-i(\omega t-k x)} d x d t \tag{C.2}\\
\dot{D}(x, t) & =\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dot{D}^{F}(k, \omega) e^{i(\omega t-k x)} d k d \omega . \tag{C.3}
\end{align*}
$$

anc that of $\psi(\epsilon, \tau)$ is

$$
\begin{align*}
\psi^{F}(k, \omega) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi(\epsilon, \tau) e^{-i(\omega \tau-k \varepsilon)} d \epsilon d \tau \tag{C.4}\\
\psi(\epsilon, \tau) & =\frac{1}{4 \tau^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi^{F F}(k, \omega) e^{i(\omega \tau-k \varepsilon)} d k d \omega \tag{C.5}
\end{align*}
$$

where k and ω are the wave number and the frequency, respectively.

Substituting Eq. (C.3) into Eq. (C.1), i.e.,

$$
\begin{aligned}
\psi(\epsilon, \tau) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dot{D}(x, t)\left[\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dot{D}^{F F}(k, \omega) e^{i \omega(t+\tau)-i k(x+\epsilon)} d k d \omega\right] d x d t \\
& =\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dot{D}(x, t) e^{i(\omega t-k x)} d x d t\right] \dot{D}^{F F}(k, \omega) e^{i(\omega \tau-k \varepsilon)} d k d \omega
\end{aligned}
$$

and then using Eq. (C.2), i.e.,

$$
\psi(\epsilon, \tau)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dot{D}^{F F}(-k,-\omega) \dot{D}^{F F}(k, \omega) e^{i(\omega \tau-k \varepsilon)} d k d \omega
$$

the spatio-temporal autocorrelation function of the disiocation velocity is expressed by the double Fourier transform of the dislocation velocity as

$$
\begin{equation*}
\psi(\epsilon, \tau)=\frac{1}{4 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\dot{D}^{F F}(k, \omega)\right|^{2} e^{i(\omega \tau-k \varepsilon)} d k d \omega \tag{C.6}
\end{equation*}
$$

Comparing Eq. (C.5) with Eq. (C.6), a useful relation is obrained.

$$
\begin{equation*}
\psi^{F F}(k, \omega)=\left|\dot{D}^{F F}(k, \omega)\right|^{2} . \tag{C.7}
\end{equation*}
$$

The Fourier transform of the base velocity of the substitute system is

$$
\begin{equation*}
B^{F}(\omega)=\int_{-\infty}^{\infty} \dot{B}(t) e^{-i \omega t} d t=\int_{-\infty}^{\infty} \frac{1}{L}\left[\int_{0}^{L} \dot{D}(x, t) d x\right] e^{-i \omega t} d t=\frac{1}{L} \dot{D}^{F F}(0, \omega) . \tag{C.8}
\end{equation*}
$$

Comparing Eq. (C.7) with Eq. (C.8), the equivalent point base velocity is, in frequency domain, related to the spatio-temporal autocorrelation function of the dis:ecation velocity by

$$
\begin{equation*}
\left|\dot{B}^{F}(\omega)\right|^{2}=\frac{1}{L^{2}} \psi^{F F}(0, \omega) . \tag{0.9}
\end{equation*}
$$

Following Aki (1967), the spatio-temporal autocorrelation function of the dislocation velocity was defined in Eq. (4.3), and the corresponding double Fourier transform is

$$
\begin{equation*}
\psi^{F F}(k, \omega)=\frac{4 \psi_{0} k+k_{L}}{\left(k_{T}^{2}+\omega^{2}\right)\left[k_{\dot{L}}+\left(k-\frac{\omega}{v}\right)^{2}\right]} . \tag{C.10}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \psi_{0}=\text { a constant, } \\
& k_{T}^{-1}=\text { the correlation time, } \\
& k_{L}^{-1}=\text { the correlation length. }
\end{aligned}
$$

Therefore, from Eq. (C.9),

$$
\begin{equation*}
\left|\dot{B}^{\bar{r}}(\omega)\right|^{2}=\frac{1}{L^{2}} \frac{4 \psi_{0} k_{1} k_{L}}{\left(k_{T}^{2}+\omega^{2}\right)\left(k_{L}^{2}+\frac{\omega^{2}}{v^{2}}\right)} . \tag{C.11}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\left|\dot{B}^{F}(0)\right|^{2}=\frac{4 \psi_{0}}{L^{2} k_{T} k_{L}}=D_{0}^{2} \tag{C.12}
\end{equation*}
$$

in which D_{0} is the final dislocation, so the square of the Fourier amplitude of the base velocity is in terms of the final dislocation, the correlation time, and the correlation length as

$$
\begin{equation*}
\left|\dot{B}^{\bar{C}}(\omega)\right|^{2}=\frac{D_{0}^{2}}{\left(1+\frac{\omega^{2}}{k_{T}^{2}}\right)\left(1+\frac{\omega^{2}}{k_{L}^{2} \nu^{2}}\right)} \tag{C.13}
\end{equation*}
$$

For a transient random process $X(6)$ with nonzero values only in the range of $0 \leq t \leq T$, Bendat and Piersol (1971) suggested that

$$
\begin{equation*}
S_{X X}(\omega)=\frac{2 \pi}{T}\left|X^{F}(\omega)\right|^{2} \tag{C.14}
\end{equation*}
$$

Therefore, the power spectral density of the base velocity of the substitute system is estimated by

$$
\begin{equation*}
S_{B B}(\omega)=\frac{2 \pi}{T_{0}}\left|\dot{B}^{F}(\omega)\right|^{2}=\frac{2 \pi}{T_{0}} \frac{D_{0}^{2}}{\left(1+\frac{\omega^{2}}{k_{T}^{2}}\right)\left(1+\frac{\omega^{2}}{k_{L}^{2} \nu^{2}}\right)}, \tag{C.15}
\end{equation*}
$$

in which $T_{0}=L / v$ is the duration of rupture.

APPENDIX D

LISTING OF COMPUTER PROGRAM

```
    PROGRAM MAIN
c
O THIS FROGRAM EVALUATES SEISMIC GROUND MOTIONS
C EXCITED BY A HASKELL FAULT
C EMBEDDED IN A THREE-DIMENSIONAL HALF-SPACE
C
    PARAMETER ( N = 4096)
    IMPLICIT COMPLEX (C)
    CHARACTER DIR(3)*1, TITLE(8)*10
    DIMENSION DX(4), DY(4), DZ(4), TR(4), SGN(4), TIM(N), RSP(N)
C
    COMMON T
    COMMON /LUNT/ LIN, LOU
    COMMON /IDEX/ IWAVE, IDISP, ISLIP
    COMMON /SLOW/ BP, BS, BR, BP2, BS2, BSP, B2
    COMMON /RAYL/ BRL, RPB
    COMMON /GEMF/ YP, ZP, FS, FC, FS2, FC2
    COMMON /GEMG/ X, Y, Z, QS, QC, RO, R, R2
    COMMON /TIME/ T1P, T1S, T1H, THM, T2, T3P, T3S, T3H
    COMMON /FACT/ SGR, SGI, AFR, AFI, AFP, AFS, BTR, BTI,
+ S2R, S2I, S2P, S2S
    COMMON /SUMS/ NJ, PT(1000), WT
    COMMON /SUMO/ NHO, PHO(1000), WHO(1000)
    COMMON /SUM1/ NH1, PH1(1000), WH1(1000)
C
    DATA DIR / 'X', 'Y', 'Z' /
    DATA SGN / 1., -1., -1., 1. /
    DATA CI / (0., 1.) /
C
C --- LOGICAL UNITS AND DATA FILES
C
    LIN = 1
    LOU = 2
    OPEN ( LJN, FILE='INPUT',)
    OPEN ( LOU, FILE='OUTPUT' )
C
C --- DATA INPUT IN 6 LINES
C
C 1 [8A10]
    READ ( LIN, 1001) ( TITLEiI), I = 1, 8 )
C
C 2 [5F10.0]
    READ (LIN, 1002) NC, YC, ZC, XL, NW
C
```

```
C XC
C YC = COORDINATES OF SHALLONEST CORNER OF FAULT
C ZC
C XL = LENGTH OF FAULT
C YW = WIDTH OF FAULT
C
C 3 [I10, 3F10.0]
    READ ( LIN, 1003 ) ISLIP, VR, D, PHI
C
C ISLIP = 1 FOR STRIKE-SLIP FAULT
C = 2 FOR DIP-SLIP FAULT
C VR = RUPTURE VELOCITY
C D = DISLOCATION AMPLITUDE
C PHI = DIPPING ANGLE IN DEGREE
C
C 4 [2F10.0]
    READ ( LIN, 1002 ) VP, VS
C
C lP = P-WAVE VELOVITY
C VS = S-WAVE VELOCITY
C
C 5 [3F10.0]
    READ ( LIN, 1002 ) XS, YS, ZS
C
C XS
C YS = COORDINATES OF STATION
C ZS
C
C 6 [I10, 2F10.0, I10]
    READ ( LIN, 1004) IDISP, TO, DT, NT
C
C 1 X-
C IDISP = 2 FOR RESPONSES IN Y-DIRECTION
C TO = INITIAL TIME OF RESPONSE
C DT = TIME INCREMENT
C NT = TOTAL NUMBER OF RESPONSES
C
    CLOSE ( LIN )
C
C --- GAUSSIAN POINTS AND WEIGHTS
    NJ = 100
    NHO = 100
    NH1 = 100
    CALL GAUSCHB (NJ, ET, FT )
    CALL GAUSJCB (NHO, O., O., PHO, WHO )
    CALL GAUSJCB ( NH1, 0., -0.\overline{, PH1, WH1 )}
C
    PI = 4. * ATAN(1.)
    DI = D / (4.* PI * PI )
    D3 = D / (2.* PI )
```

C
$\mathrm{BP}=1 . / \mathrm{VP}$
$B S=1 . / V S$
$\mathrm{BR}=1 . / \mathrm{VR}$
$\mathrm{BP} 2=\mathrm{BP}$ * BP
BS2 $=\mathrm{BS}$ * BS
$\mathrm{BSP}=\mathrm{SQRT}(\mathrm{BS} 2-\mathrm{BF} 2)$
CALL RAYLEIGH (BP2, BS2, BRL, RPB)
C
$\mathrm{PHI}=\mathrm{PHI} * \mathrm{PI} / 180$.
$\mathrm{FS}=\mathrm{SIN}(\mathrm{PHI})$
$\mathrm{FC}=\operatorname{COS}(\mathrm{PHI})$
FS2 $=2$. * FS * FC
FC2 $=1$. - 2. * FS * FS
C
$\mathrm{X0}=\mathrm{XS}-\mathrm{XC}$
YO $=\mathrm{YS}-\mathrm{YC}$
$Z 0=Z S-Z C$
C
$D X(1)=0$.
$D X(2)=0$.
$\operatorname{DX}(3)=X L$
$D X(4)=X L$
$D Y(1)=0$.
$D Y(2)=Y W * F C$
DY(3) $=0$.
$D Y(4)=Y W * F C$
$D Z(1)=0$.
$D Z(2)=Y W * F S$
$D Z(3)=0$.
$D Z(4)=Y W * F S$
$\operatorname{TR}(1)=0$.
$T R(2)=0$.
$T R(3)=X L / V R$
$\mathrm{TR}(4)=\mathrm{XL} / \mathrm{VR}$
C
DO $100 \quad \mathrm{I}=1, \mathrm{NT}$
$\operatorname{TIM}(I)=T 0+(I-1) * D T$
$\operatorname{RSP}(I)=0$.
100 CONTINUE
C
DO $300 \quad J=1,4$
$X=X 0-D N(J)$
$\mathrm{Y}=\mathrm{YO}-\mathrm{DY}(\mathrm{J})$
$Z=A B S(Z 0-D Z(J))$
CALL GEMTIM
$\mathrm{D} 2=\mathrm{D} 3 / \mathrm{QC}$
C
DO $200 \quad \mathrm{I}=1$, NT
$\mathrm{T}=\operatorname{TIM}(\mathrm{I})-\mathrm{TR}(\mathrm{J})$
IF (T . LE. O.) GO TO 200
C

```
            U1T = D1 * ( U1 (T) + U1H (T) )
            U2T = D2 * ( U2 (T) + U2H (T) )
            U3T = D3 * ( U3 (T) + U3H (T) )
            U = U1T + U2T + U3T
                    RSP(I) = RSF(I) + SGN(J) * U
                    CONTINUE
    200
    300 CONTINUE
C
        WRITE ( LOU, 1001) ( TITLE(I), I = 1, 8 )
        WRITE ( LOU, 2001) DIR (IDISP)
        WRITE (LOU, 2002 ) ( TIM(I), RSP(I), I = 1, NT )
        CLOSE ( LOU )
C
        1001 FORMAT ( 8A10)
        1002 FORMAT ( 5F10.0)
        1003 FORMAT ( I10, 3F10.0 )
        1004 FORMAT (I10, 2F10.0, I10)
C
        2001 FORMAT ( // , TOTAL RESPONSE',
            + // 6X, 'TIME', 6X, A1, '-DIR RESPONSE' / )
    2002 FORMAT ( F10.2, 5X, E15.5)
C
    STOP
    END
C
C
C
C
C
    SUBROUTINE GAUSCHB ( N, FT, WT )
C
C POINTS AND WEIGHT IN GAUSS-CHEBYSHEV QUADRATURE
C
C
C
    DIMENSION PT(N)
C
    PI = 4. * ATAN (1.)
C
    WT}=\textrm{PI}/\textrm{N
C
    FT = WT / 2.
    DO 100 I = 1, N
        PT(I)=\operatorname{Cos ( ( 2 * I - 1) * FT )}
    100 CONTINUE
C
    RETURN
    END
C
```

REAL LNGAMA
DIMENSION $\mathrm{X}(1000), \mathrm{A}(1000), \mathrm{B}(1000), \mathrm{C}(1000)$
$\mathrm{FN}=\mathrm{NN}$
$\operatorname{csX}=0$.
$\operatorname{CSA}=0$.
$E P S=1 . E-13$
BETA $=\operatorname{EXP}(\operatorname{LNGAMA}(A L F+1)+.\operatorname{LNGAMA}(B T A+1)$.
$+\quad$ - LNGAMA (ALF+BTA+2.))
$\mathrm{CC}=2 . * *(\mathrm{ALF}+\mathrm{BT} A+1)$.$* BETA$
TSK $=\mathrm{FN} *(\mathrm{BTA}-\mathrm{ALF}) /(\mathrm{ALF}+\mathrm{BTA}+2 \cdot * \mathrm{FN})$
TSA $=\mathrm{CC}$
$\mathrm{B}(2)=(\mathrm{ALF}+\mathrm{BTA}) *(\mathrm{BTA}-\mathrm{ALF}) /((\mathrm{ALF}+\mathrm{BTA}+4) *.(\mathrm{ALF}+\mathrm{BTA}+2)$.
$C(2)=4 . *(A L F+1) *.(B T A+1$.
$+\quad /((A L F+B T A+3) *.(A L F+B T A+2) * * 2$.
$\mathrm{CC}=\mathrm{CC} * \mathrm{C}(2)$
DO $100 \mathrm{~J}=3$, NN
$B(J)=(A L F+B T A) *(B T A-A L F)$
$+\quad /((\mathrm{ALF}+\mathrm{BTA}+2 . * J) *(\mathrm{ALF}+\mathrm{BTA}+2 . * J-2)$.
$C(J)=4 . *(J-1) *.(A L F+J-1) *.(E T A+J-1$.

* (ALF + BTA $+J-1.) /($ (ALF + BTA $+2 . * J-1$.

1

* (ALF+BTA $2 . * J-2) * * 2 *.(A L F+B T A+2, * J-3)$.
$\mathrm{CC}=\mathrm{CC} * \mathrm{C}(\mathrm{J})$
100 CONTINUE
C
DO $200 \quad I=1$, NN IF (I .EQ. 1) THEN $A N=A L F / F N$ $\mathrm{BN}=\mathrm{BTA} / \mathrm{FN}$
$\mathrm{R} 1=(1 .+\mathrm{ALF}) *(2.78 /(4 .+\mathrm{FN} * \mathrm{FN})+0.768 * A N / \mathrm{FN})$
$\mathrm{R} 2=1 .+1.48 * \mathrm{AN}+0.96 * \mathrm{BN}+0.452 * \mathrm{AN}$ *AN
$+0.83 * \mathrm{AN} * \mathrm{BN}$
$\mathrm{XT}=1 .-\mathrm{R} 1 / \mathrm{R} 2$
ELSE IF (I .EQ. 2) THEN
$\mathrm{R} 1=(4.1+\mathrm{ALF}) /((1 .+\mathrm{ALF}) *(1 .+0.156 * \mathrm{ALF}))$
$R 2=1 .+0.05 *(\mathrm{FN}-8) *.(1 .+0.12 * A L F) / \mathrm{FN}$
$\mathrm{R} 3=1 .+0.012$ * BTA * (1.+0.25*AES(ALF)) / FN
RATIO = R1 * R2 * R3
$\mathrm{XT}=\mathrm{XT}-\mathrm{RATIO} *(1 .-\mathrm{XT})$ ELSE IF (I EQ. 3) THEN

```
            R1 = (1.67 + 0.28*ALF) / (1. + 0.37*ALF)
            R2 = 1. + 0.22 * (FN-8.) / FN
            R3 = 1. + 8. * BTA / ( (6.28+BTA)*FN*FN)
            RATIO = R1 * R2 * R3
            XT = XT - RATIO * ( X (1) - XT)
        ELSE IF (I .LE. NN-2) THEN
            XT = 3.* X(I-1) - 3.* X(I-2) + X(I-3)
        ELSE IF (I .EQ. NN-1 ) THEN
            R1 = ( 1. + 0.235*BTA ) / (0.766 + 0.119*BTA )
            R2 = 1. / (1.+0.639*(FN-4.)/(1.+0.7]*(FN-4.)))
            R3=1. ( (1. + 20. * ALF / ( (7.5+ALF)*FN*FN ) )
            RATIO = R1 * R2 * R3
            XT = XT + RATTO * (XT - X (I-2) )
        ELSE
            R1 = (1. + 0.37*BTA )/ (1.67 + 0. 28*BTA)
            R2 = 1. / (1. + 0.22*(FN-8.)/FN)
            R3 = 1./ ( 1. + 8. * ALF / ( (6.28+ALF)*FN*FN ) )
            RATIO = R1 * R2 * R3
            XT = XT + RATIO * (XT - X(I-2))
                END IF
            CALL ROOT (NN, ALF, BTA, B, C, EPS, XT, DPN, PN1)
            X(I) = XT
                A(I) = CC / (DPN * PN1 )
                CSX = CSX + XT
                CSA = CSA + A(I)
    200 CONTINUE
C
IF ( ABS (CSX-TSX) .GE. 1.E-9 .OR. ABS(CSA-TSA) .GE. 1.E-9 ) THEN WRITE (*,999) TSX, CSX, TSA, CSA
999 FORMAT(' TSX, CSX \(=, 2 \mathrm{E} 20.10 /\), TSA, CSA \(=,, 2 \mathrm{E} 20.10\) )
ENDTF
C
RETURN
END
C
C
C
C
C
C
C
REAL FUNCTION LNGAMA (X)
\(\mathrm{PI}=4 . * \mathrm{ATAN}(1\).
IF ( \(\mathrm{X} . \mathrm{LT} .0 .5)\) THEN \(P=P I / \operatorname{SIN}(\bar{\lambda} * P I)\) IF ( \(P\).LE. 0.) THEN
WRITE (*,99) X
99
FORMAT (' GAMMA(', E12.5,') IS NOT POSITIVE.') STOP 1
END IF
\(Y=1 .-X\)
```

```
    ELSE
        Y = X
    END IF
C
    IF ( Y .LE. 6. ) THEN
        IK = 7-Y
        FK}=1.
        DO 100 I = 0, IK-1
        FK = FK * ( Y + I )
        CONTINUE
        Z = Y + IK
    ELSE
        Z = Y
    END IF
    ZZ = Z * Z
    LNGAMA = 0.5 * LOG(2.*PI) + (Z-0.5) * LOG(Z) - Z
    1+((()(-4146./ZZ + 1820.)/ZZ - 1287.)/ZZ + 1716.)
    2 /2Z - 6006.)/2Z + 180180.) / (2*2162160.)
C
    IF ( Y . LE. 6. ) THEN
        LNGAMA = LNGAMA - LOG(FK)
    END IF
C
    IF ( X .LT. 0.5) THEN
        LNGAMA = LOG(P) - LNGAMA
    END IF
C
    RETURN
    END
C
C
C
C
    SUBROUTINE ROOT ( NN, ALF, BTA, B, C, EPS, X, DPN, PN1 )
C
    DIMENSION B(NN), C(NN)
C
    DO 100 ITER = 1, 10
        D = P / DPN
        X = X - D
        IF ( ABS(D) .LE. EPS ) RETURN
    100 CONTINUE
C
    RETURN
    END
C
C
C
C
```

```
    SUBROUTINE RECUR ( NN, ALF, BTA, B, C, X, P, DP, PO ;
RETURN
END
            RPRIME (B)=4.* B**3*(SQRT ( (B*B-BS2)/(B*B-BF2))
    + + SQRT ( (B*B-BP2)/(B*B-BS2)))
    + -8.*B*(2.*B*B - BS2 - SQRT ( (E*B-BP2)*(B*B-BS2)) )
C
    100 BRL = B - R (B) / RPRIME (B)
    ERR = ABS ( ( BRL - B ) / B )
    IF ( ERR .GT. EPS ) THEN
            B = BRL
            GO TO 100
        ELSE
            RPE = RPRIME (BRL) / BRL
            RETURN
    END IF
C
    EPS = 1.0E-13
    XNU =0.5 * ( BS2 - 2. * BP2 ) / ( BS2 - BP2 )
    INITIAL TRY VALUE
    B = SQRT (BS2) * ( 1. + XNU ) / ( 0.87 + 1.12 * XNU )
```

```
END
```

SUBROUTINE GEMTIM

C

```
    COMMON /SLOW/ BP, BS, BR, BP2, BS2, BSP
    COMMON /GEMF/ YP, ZP, FS, FC
    COMMON /GEMG/ X, Y, Z, QS, QC, RO, R, R2
    COMMON /TIME/ TIP, TIS, T1H, THM, T2, T3F, TSS, T3H
    COMMON /FACT/ SGR, SGI, AFR, AFI, AFP, AES, BTF, BTI,
    + S2R, S2I, S2P, S2S
```

C GEOMETRICAL FROPERTIES
$Y P=Y * F C-2 * F S$
$Z P=-Y * F S-Z * F C$
$\mathrm{RO}=\mathrm{SQRT}(\mathrm{X} * \mathrm{X}+\mathrm{Y} * \mathrm{Y})$
$\mathrm{R} 2=\mathrm{X} * \mathrm{X}+\mathrm{Y} * \mathrm{Y}+\mathrm{Z} * \mathrm{Z}$
$R=S Q R T$ (R2)
$\mathrm{QS}=\mathrm{Y} / \mathrm{RO}$
$Q C=X / R 0$
C CONSTANTS USED IN THiS SUBROUTINE
$\mathrm{QEC}=1 .-\mathrm{QC} * \mathrm{QC} * \mathrm{FC} * \mathrm{FC}$
$Y Z=Y * Y+Z * Z$
$\mathrm{XZP}=\mathrm{X} * \mathrm{X}+\mathrm{ZP} * \mathrm{ZP}$
$\mathrm{EFS}=\mathrm{BF} 2-\mathrm{BS} 2$ * FS * FS
FOZ $=\mathrm{FO} 0 * \mathrm{FS}+Z * \mathrm{ZS} * \mathrm{FC}$
CONDITIONS TO ENSUFE HEAD WAVE CONTRIBUTIONS
$\mathrm{H} 1=\mathrm{RD} / \mathrm{R}-\mathrm{BP} / \mathrm{BS}$
H3A $=\mathrm{BP} / \mathrm{BS}-\mathrm{FS} / \mathrm{SQRT}$ (QFC)
$\mathrm{H} 3 \mathrm{~B}=(\mathrm{BS} * \mathrm{YP} * \mathrm{QC} * \mathrm{FC} * \mathrm{FC} / \mathrm{SQRT}(\mathrm{XZF})+\mathrm{QC} * \mathrm{FS} * \mathrm{BSP}) * * 2-$ QS*QS*BFS
$\mathrm{TP}=\mathrm{F}$ WAVE ARRIVAL TIME
TS $=S$ WAVE ARRIVAL TIME
TH = HEAD WAVE ARRIVAL TIME
THM = CONICAL HEAD WAVE COMPLETION TIME
$\mathrm{T} P \mathrm{P}=\mathrm{R} * \mathrm{BP}$
T1S = R * BS
IF (H1 .GT. O.) THEN
$T H H=Z * B S P+R O * B P$
ELSE
$\mathrm{T} 1 \mathrm{H}=1.0 \mathrm{E} 10$

```
    END IF
    THM = R2 * BSP / Z
C
C
    T3P = SQRT (XZP) * BP
    T3S = SQRT (XZP) * BS
    IF ( H3A .GT. 0.) THEN
    IF ( H3B .GT. 0.) THEN
        T3H = (ABS (X) * SQRT (BFS) - ZP * BSP) / FC
    ELSE
        T3H = 1.0E10
    END IF
    ELSE
    T3H = ES * ROZ / SQRT (QFC)
    END IF
C
C LSEFUL FACTORS IN OTHER SUBROUTINES
C
    SGR = R0 / R2
    SGI = Z / R2
    AFR = Y * QC / YZ
    AFI = Z * QC / YZ
    AFP = YZ * ( BR * BR - BP2 )
    AFS = YZ * ( BR * BR - BS2 )
    BTR = YP * QC * FC / XZP
    BTI = ROZ / XZP
    S2R = QS * QC * FC * FC / QFC
    S2I = FS / QFC
    S2P = BP2 * QFC
    S2S = BS2 * QFC
C
    RETURN
    END
FUNCTION U1 (T)
C
IMPLICIT COMPLEX (C)
COMMON /IDEX/ IWAVE
COMMON /SLOW/ BP, BS, ER, BP2, BS2, BSP, B2
COMMON /GEMG/ X, Y, Z, QS, QC, RO, R
COMMON /TIME/ T1P, T1S
C
\(\mathrm{U} 1=0\).
IF ( T .LE. T1P) RETURN
C
C SPHERICAL P WAVE CONTRIBUTION
```

 IWAVE = 1
 B2 = BP2
 QJ = SQRT (T * T - T1P * T1P) / R
 U1 = SUMPS (QJ)
 IF (T .LE. T1S) RETURN
 C
C SPHERICAL S WAVE CONTRIBUTION
C
IWAVE = 2
B2 = BS2
QJ = SQRT (T * T - T1S * T1S) / R
U1 = U1 + SUMPS (QJ)
RETURN
C
END
C
C
C
C
C
IMPLICIT COMPLEX (C)
COMMON /TDEX/ IWAVE
COMMON /SLOW/ BP, BS, BR, BP2, BS2, BSP
COMMON /GEMG/ X, Y, Z, QS, QC, RO, R
COMMON /TIME/ T1P, T1S, T1H, THM
C
U1H = 0.
IF ((T .LE. T1H) .OR. (T .GE. THM)) RETURN
IF (T .LE. TIS) THEN
U1H = SUMH0 (QH)
ELSE
QJ = SQRT (T * T - T1S * T1S) / R
U1H = SUMH1 (QJ, QH)
END IF
RETURN
C
END
C
C
C
C
C
FUNCTION U2 (T)

```

C
IMPLICIT COMPLEX (C)
COMMON /IDEX/ IWAVE
COMMON /SLOW/ BP, BS, BR, BP2, ES2
COMMON /GEMF/ YP, ZP, FS, FC
COMMON /GEMG/ X, Y, Z, QS, QC
COMMON /TIME/ TDUM(4), T2
COMMON /FACT/ EDUM(2), AFR, AFI, AFP, AFS
C

C

IWAVE \(=1\)
\(\mathrm{TP}=\mathrm{T}-\mathrm{X} * \mathrm{BR}\)
\(\mathrm{TEM}=\operatorname{SQRT}\) (TP * TP + AFP)
\(\mathrm{CAF}=\mathrm{AFR} * \mathrm{TP}+\mathrm{CI} * \mathrm{AFI} * \mathrm{TEM}\)
\(\mathrm{CAFT}=\mathrm{AFR}+\mathrm{CI} * \mathrm{AFI} * \mathrm{TP} / \mathrm{TEM}\)
\(C X \quad=C I * B R\)
\(\mathrm{CY}=\mathrm{CI} * \mathrm{CAF} / \mathrm{QC}\)
\(\mathrm{CXY}=\mathrm{CX} * \mathrm{CX}+\mathrm{CY} * \mathrm{CY}\)
\(\mathrm{CZP}=\mathrm{SQRT}(\mathrm{BP} 2+\mathrm{CXY})\)
\(\mathrm{CZS}=\mathrm{SQRT}(\mathrm{BS} 2+\mathrm{CXY})\)
CALL SOURCV ( CX, CY, CXY, CZP, CZS, CR, CF )
\(\mathrm{CG}=(\mathrm{CI} * \mathrm{CY} * \mathrm{FC}+\mathrm{CZP} * \mathrm{FS}) * \mathrm{CR}\)
\(\mathrm{U} 2=\operatorname{REAL}(-\mathrm{CI} * \mathrm{CF} * \mathrm{CAFT} / \mathrm{CG})\)
C
C
CONICAL S WAVE CONTRIBUTION
IWAVE \(=2\)
TEM \(=\operatorname{SQRT}(\mathrm{TP} * \mathrm{TP}+\mathrm{AFS})\)
\(\mathrm{CAF}=\mathrm{AFR} * \mathrm{TP}+\mathrm{CI}\) * \(\mathrm{AFI} * \mathrm{TEM}\)
CAFT \(=\mathrm{AFR}+\mathrm{CI} * \mathrm{AFI} * \mathrm{TP} / \mathrm{TEM}\)
\(\mathrm{CX}=\mathrm{CI}\) * BR
\(\mathrm{CY}=\mathrm{CI} * \mathrm{CAF} / \mathrm{QC}\)
\(\mathrm{CXY}=\mathrm{CX} * \mathrm{CX}+\mathrm{CY} * \mathrm{CY}\)
\(\mathrm{CZP}=\mathrm{SQRT}(\mathrm{BP} 2+\mathrm{CXY})\)
CZS \(=\) SQRT ( BS2 + CXY )
CALL SOURCV ( CX, CY, CXY, CZP, CZS, CR, CF )
\(\mathrm{CF}=\mathrm{CF} / \mathrm{CZS}\)
\(\mathrm{CG}=(\mathrm{CI} * \mathrm{CY} * \mathrm{FC}+\mathrm{CZS} * \mathrm{FS}) * \mathrm{CR}\)
\(\mathrm{U} 2=\mathrm{U} 2+\operatorname{REAL}(-C I * C F * C A F T / C G)\)
RETURN
C
END
C
C
C
C
FUNCTION ..... U2H (T)
    IMPLICIT COMPLEX (C)
    COMMON /IDEX/ IWAVE
    COMMON /SLOW/ BP, BS, BR, BP2, BS2
    COMMON /GEMF/ YP, ZP, FS, FC
    COMMON /GEMG/ X, Y, Z, QS, QC
    COMMON /TIME/ TDUM(5), T2S, T2H
    COMMON /FACT/ FDUM(2), AFR, AFI, AFP, AFS
C
C
    Data CI / (0., 1.) /
    \(\mathrm{U} 2 \mathrm{H}=0\).
    IF ( ( T.LE. T2H) .OR. (T.GE. T2S ) ) RETURN
C
C PLANE hEAD WAVE CONTRIbUTion
C
    IWAVE \(=2\)
    \(T P=T-X * B R\)
    TEM = SQRT ( AFS - TP * TP )
C
    IF ( Y .GE. 0.) THEN
        \(\mathrm{AFH}=\mathrm{AFR} * \mathrm{TP}\) - AFI * TEM
        \(\mathrm{AFHT}=\mathrm{AFR}+\mathrm{AFI} * \mathrm{TP} / \mathrm{TEM}\)
        SGNP \(=-1\).
    ELSE
        \(\mathrm{AFH}=\mathrm{AFR} * \mathrm{TP}+\mathrm{AFI} * \mathrm{TEM}\)
        \(\mathrm{AFHT}=\mathrm{AFR}-\mathrm{AFI} * \mathrm{TP} / \mathrm{TEM}\)
        \(\operatorname{SGNP}=1\).
    END IF
C
    \(\mathrm{CX}=\mathrm{CI} * \mathrm{BR}\)
    \(\mathrm{CY}=\mathrm{CI} * \mathrm{AFH} / \mathrm{QC}\)
    \(\mathrm{CXY}=\mathrm{CX} * \mathrm{CX}+\mathrm{CY} * \mathrm{CY}\)
    CZP \(=\) SGNP * CI * SQRT (ABS ( REAL (BP2 + CXY ) ) )
    \(\mathrm{CZS}=\mathrm{SQRT}(\mathrm{ABS}(\mathrm{REAL}(\mathrm{BS} 2+\mathrm{CXY})\) ) )
    CALL SOURCV (CX, CY, CXY, CZP, CZS, CR, CF )
    \(\mathrm{CF}=\mathrm{CF} / \mathrm{CZS}\)
    \(\mathrm{CG}=(\mathrm{CI} * \mathrm{CY} * \mathrm{FC}+\mathrm{CZS} * \mathrm{FS}) * \mathrm{CR}\)
    \(\mathrm{U} 2 \mathrm{H}=\mathrm{REAL}(-\mathrm{CI} * \mathrm{CF} * \mathrm{AFHT} / \mathrm{CG})\)
    RETURN
C
    END
C
```

COMMON /IDEX/ IWAVE
COMMON /SLOW/ BP, BS, BR, BP2, BS2
COMMON /GEMF/ YP, ZP, FS, FC
COMMON /GEMG/ X, Y, Z, QS, QC
COMMON /TIME/ TDUM(5), T3P, T3S
COMMON /FACT/ FDUM(6), BTR, BTI, S2R, S2I, S2P, S2S

```
\(\mathrm{U} 3=0\).
    IF ( (Y.LE. O.) .OR. (YP.LE. 0.) .OR. (T.LE. T3P ) )
+ RETURN

IWAVE \(=2\)
TEM \(=\) SQRT ( T * T - T3S * T3S )
CBT \(=\mathrm{BTR} * \mathrm{~T}+\mathrm{CI} * \mathrm{BTI} * \mathrm{TEM}\)
\(\mathrm{CBTT}=\mathrm{BTR}+\mathrm{CI} * \mathrm{BTI} * \mathrm{~T} / \mathrm{TEM}\)
CSG = S2R * CBT + S2I * SQRT (S2S - CBT * CBT )
\(\mathrm{CX}=\mathrm{CI} * \mathrm{CSG} * \mathrm{QC}+\mathrm{CI} * \mathrm{CBT} * \mathrm{QS}\)
\(\mathrm{CY}=\mathrm{CI} * \mathrm{CSG} * \mathrm{QS}-\mathrm{CI} * \mathrm{CBT} * \mathrm{QC}\)
\(\mathrm{CXY}=\mathrm{CX} * \mathrm{CX}+\mathrm{CY} * \mathrm{CY}\)
\(\mathrm{CZP}=\mathrm{SQRT}(\mathrm{BP} 2+\mathrm{CXY})\)
CZS \(=\) SQRT ( BS2 + CXY )
CALL SOURCV ( CX, CY, CXY, CZP, CZS, CR, CF )
\(\mathrm{CF}=\mathrm{CF} / \mathrm{CZS}\)
\(\mathrm{CG}=(\mathrm{CI} * \mathrm{CX}+\mathrm{BR}) *(\mathrm{CSG} * \mathrm{FS} / \mathrm{CZS}+\mathrm{QS} * \mathrm{FC}) * \mathrm{CR}\)
\(\mathrm{U} 3=\mathrm{U} 3+\mathrm{REAL}(-\mathrm{CI} * \mathrm{CF} * \mathrm{CBTT} / \mathrm{CG})\)
RETURN
C
END
C
CYLINDRICAL P WAVE CONTRIBUTION
```

IWAVE = 1
TEM = SQRT (T * T - T3P * T3P)
CBT = BTR * T + CI * BTI * TEM
CBTT = BTR + CI * BTI * T / TEM
CSG = S2R * CBT + S2I * SQRT (S2P - CBT * CBT)
CX = CI * CSG * QC + CI * CBT * QS
CY = CI * CSG * QS - CI * CBT * QC
CXY = CX * CX + CY * CY
CZP = SQRT (BF2 + CXY)
CZS = SQRT (BS2 + CXY)
CALL SOURCV (CX, CY, CXY, CZP, CZS, CR, CF)
CG = (CI * CX + BR) * (CSG * FS / CZP + QS * FC) * CR
U3 = REAL (-CI * CF * CBTT / CG)

```
IF ( T . LE. T3S ) RETURN
CYLINDRICAL S WAVE CONTRIBUTION

\section*{FUNCTION U3H (T)}

C
IMPLICIT COMPLEX (C)
COMMON /IDEX/ IWAVE
COMMON /SLOW/ BP, BS, BR, BP2, BS2
COMMON /GEMF/ YP, ZP, FS, FC
COMMON /GEMG/ \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{QS}, \mathrm{QC}\)
COMMON /TTME/ TDUM(6), T3S, T3H
COMMON /FACT/FDUM(6), BTR, BTI, S2R, S2I, S2P, S2S

IWAVE \(=2\)
TEM \(=\) SQRT (T3S *T3S - T * T )
DATA CI / (0., 1.) /
\(\mathrm{U} 3 \mathrm{H}=0\).
IF ( (Y.LE. 0.) .OR. (YP.LE. O. ) ) RETURN
IF ( ( T . LE. T3H ) .OR. ( T .GE. T3S ) ) RETURN
PLANE HEAD WAVE CONTRIBUTION

IF ( \(X . G E .0\).\() THEN\)
\(\mathrm{BTH}=\mathrm{BTR} * \mathrm{~T}-\mathrm{BTI} * \mathrm{TEM}\)
\(\mathrm{BTHT}=\mathrm{BTR}+\mathrm{BTI} * \mathrm{~T} / \mathrm{TEM}\) SGNP \(=-1\).
ELSE
BTH \(=\mathrm{BTR} * \mathrm{~T}+\mathrm{BTI} * \mathrm{TEM}\)
\(\mathrm{BTHT}=\mathrm{BTR}-\mathrm{BTI} * \mathrm{~T} / \mathrm{TEM}\)
\(\mathrm{SGNP}=1\)
BTH \(=\mathrm{BTR} * \mathrm{~T}+\mathrm{BTI} * \mathrm{TEM}\)
BTHT \(=\mathrm{BTR}-\mathrm{BTI} * \mathrm{~T} / \mathrm{TEM}\)
SGNP \(=1\).
END IF
C
\(\mathrm{CSG}=\mathrm{S} 2 \mathrm{R} * \mathrm{BTH}+\mathrm{S} 2 \mathrm{I} * \mathrm{SQRT}(\mathrm{S} 2 \mathrm{~S}-\mathrm{BTH} * \mathrm{BTH})\)
\(\mathrm{CX}=\mathrm{CI} * \mathrm{CSG} * \mathrm{QC}+\mathrm{CI} * \mathrm{BTH} * \mathrm{QS}\)
\(C Y=C I * C S G * Q S-C I * B T H * Q C\)
\(\mathrm{CXY}=\mathrm{CX} * \mathrm{CX}+\mathrm{CY} * \mathrm{CY}\)
\(\mathrm{CZP}=\mathrm{SGNP}\) * CI * SQRT (ABS ( REAL (BP2 + CXY) ) )
\(\mathrm{CZS}=\operatorname{SQRT}(\mathrm{ABS}(\operatorname{REAL}(\mathrm{BS} 2+\mathrm{CXY})))\)
CALJ SOURCV ( CX, CY, CXY, CZP, CZS, CR, CF )
\(\mathrm{CF}=\mathrm{CF} / \mathrm{CZS}\)
\(C G=(C I * C X+B R) *(\mathrm{CSG} * \mathrm{FS} / \mathrm{CZS}+\mathrm{QS} * \mathrm{FC}) * \mathrm{CR}\) \(\mathrm{U} 3 \mathrm{H}=\mathrm{REAL}(-\mathrm{CI} * \mathrm{CF} *\) BTHT / CG )
RETURN
END
C
C
C
C
C
```

 FUNCTION SUMPS (QJ)
 C
C
C
100 CONTTNUE
SUMPS = WT * SUM
RETURN
END
C
C
C
C
C
C
IMPLICIT COMPLEX (C)
COMMON T
COMMON /IDEX/ IWAVE
COMMON /SLOW/ BP, BS, BR, BP2, BS2, BSP, B2
COMMON /GEMF/ YP, ZP, FS, FC
COMMON /GEMG/ X, Y, Z, QS, QC, RO, R, R2
COMMON /FACT/ SGR, SGI
C
C
C
TEM = SQRT (T * T - TQ2)
CSG = SGR * T + CI * SGI * TEM
CX = CI * CSG * QC - Q * QS
CY = CI * CSG * QS + Q * QC
CXY = CX * CX + CY * CY
CZP = SQRT (BP2 + CXY)
CZS = SQRT (ES2 + CXY)
CALL SOURCV (CX, CY, CXY, CZP, CZS, CR, CF)
C
IF (IWAVE .EQ. 1) THEN
CG=(CI*CX + BR)*(CI*CY*FC + CZP * FS)* CR
FCTN = REAL (CF * CZP / CG)
ELSE
CG = (CI * CX + BR) * (CI * CY * FC + CZS * FS) * CR
FCTN = REAL (CF / CG)
END IF
C
RETLRN
END
C
C

```
```

C
FUNCTION SUMHO (QH)
C
C
SUM $=0$.
DO $100 \quad \mathrm{I}=1, \mathrm{NH}$
SUM = SUM + WH(I) * FCTNH (PH(I) * QH)
100 CONTINLE
SUMHO = QH * SLM
C
RETURN
END
C
C
C
C
C
C
C
C
SUM = 0.
DO 100 I = 1, NH
Q = QC + PH(I) * QL
QQJ =SQRT (Q - QJ)
SUM =SCM + WH(I) * (FCTNH (Q) + FCTNH (-Q)) * QQJ
100 CONTTNUE
SUMH1 = SQRT (QL) * SUM
C
RETURN
END
C
C
C.-----------------m--
C
C
FUNCTION FCTNH (Q)
C
IMPLICIT COMPLEX (C)
COMMON T
COMMON /SLOW/ BP, BS, BR, BP2, BS2
COMMON /GEMF/ YP, ZP, FS, FC
COMMON/GEMG/ X, Y, Z, QS, QC, RO, R, R2
COMMON /FACT/ SGR, SGI
C
DATA CI / (0., 1.)/

C

```
    TQ2 = R2 * ( BS2 + Q * Q )
```

 TEM \(=\operatorname{SQRT}(\mathrm{TQ} 2-\mathrm{T} * \mathrm{~T})\)
 SGH \(=\) SGR * T - SGI * TEM
 SGHT \(=\) SGR + SGI * T / TEM
 \(C X=C I * S G H * Q C-Q * Q S\)
 \(C Y=C I * S G H * Q S+Q * Q C\)
 \(\mathrm{CXY}=\mathrm{CX} * \mathrm{CX}+\mathrm{CY} * \mathrm{CY}\)
 CZP \(=-C I\) * SQRT (ABS (REAL (BP2 + CXY)))
 \(\mathrm{CZS}=\mathrm{SQRT}(\dot{\mathrm{ABS}}(\mathrm{REAL}(\mathrm{ES} 2+\mathrm{CXY})))\)
 CALL SOURCV (CX, CY, CXY, CZP, CZS, CR, CF)
 \(\mathrm{CF}=\mathrm{CF} / \mathrm{CZS}\)
 \(\mathrm{CG}=(\mathrm{CI} * \mathrm{CX}+\mathrm{BR}) *(\mathrm{CI} * \mathrm{CY} * \mathrm{FC}+\mathrm{CZS} * \mathrm{FS}) * \mathrm{CR}\)
 FCTNH \(=\) REAL (- CI * CF * SGHT / CG)
 C
RETLRN
END
C
C
C
C
C
SUBROUTINE SOURCV (CX, CY, CXY, CZP, CZS, CR, CF)
C
IMPLICIT COMPLEN (C)
COMMON /IDEX/ IWAVE, IDISP, ISLIP
COMMON /GEMF/ DUM(2), FS, FC, FS2, FC2
C
Data CI ($0 ., 1.) /$
C
$C S=C Z S$ * CZS + CXY
$C R=4 . * C Z P * C Z S * C X Y-C S ~ * C S$
C
GO TO (100, 200) ISLIP
C
100 CONTINUE
C
C STRIME-SLIP
C
C p-liave
IF (IWAVE .EQ. 1) THEN
IF (IDISP .EQ. 1) THEN
$\mathrm{CF}=-8$. * CI * CX * CX * CY * CZS * CS
$+8 . * \mathrm{CX} * \mathrm{CX} * \mathrm{CZP} * \mathrm{CZS}$ * FC
ELSE IF (IDISP.EQ. 2) THEN
$\mathrm{CF}=-8 . * \mathrm{CI} * \mathrm{CX} * \mathrm{CY} * \mathrm{CY} * \mathrm{CZS} * \mathrm{FS}$
+ 8. * CX * CY * CZP * CZS * FC
ELSE IF (IDISP.EQ. 3) THEN
$\mathrm{CF}=-4 . * \mathrm{CX} * \mathrm{CY} * \mathrm{CS} * \mathrm{FS}$
$+\quad-4 . * C I * C X * C Z P * C S * F C$
END IF

```
C
S-KAVE
    ELSE
                IE {IDISP .EQ. 1 } THEN
                        CF=2.* CI * CY * ( CZS * CZS - CX * CX + CY * CY) * CS
+ + + 4.* *CZP * (CX * CX - CY * CY ) * CZS ) * FS
+ + (8. * CY * CY * CZP * CZS - 2.* CS * CS ) * CZS * FC
        ELSE IF (IDISP.EQ. 2) THEN
            CF}=2.*CI *CX * ( CZS * CZS + CX * CX - CY * CY ) * CS
                - 4.* CZP * (CX * CX - CY * CY) * CZS ) *FS
                                    - 8. * CX * CX * CZP * CZS * CZS * FC
        ELSE IF (IDISP.EQ. 3) THEN
                CF}=8. * CX * CY * CZP*CZS * CZS * FS
                        +4. * CT * CX * CZP * CS * CZS * FC
                END IF
            END IF
C
    RETURN
C
    200 CONTINUE
C
C DIP-SLIP
C
C P-WAVE
        IF (IWAVE.EQ. 1) THEN
                IF (IDISP .EQ. 1 ) THEN
                    CF}=-4.*CI*CX * CZS*(CZP*CZP + CY*CY) * FS2
                                    + 8. * CX * CY * CZP * CZS * FC2
                ELSE IF (IDISP.EQ. 2) THEN
                    CF = -4.* CI * CY * CZS * ( CZP * CZP + CY * CY ) * FS2
            + + 8.* CY * CY * CZP * CZS * FC2
                ELSE IF (IDISP .EQ. 3) THEN
                        CF = -2. * ( CZP* CZP + CY * CI ) * CS * ES2
            + - 4.* CI * CI * CZP * CS * FC2
                END IF
C S-WAVE
            ELSE
                IF ( IDISP.EQ. 1 ) THEN
                CF = 2.* CI * CX * ( CZS * CZS - CY * CY) * CS
            + + + 4.**CY**CY* CZP * CZSS % * FS2
                ELSE IF ( IDISP.EQ. 2 ) THEN
                CF=2. * CI * CY * ( (2. * CZS*CZS + CX * CX ) * CS
                            - 4. * CX * CX * CZP * CZS ) * FS2
            + + (8.* CX * CX * CZP * CZS - 2.* CS * CS ) * CZS * FC2
                ELSE IF (TDISP.EQ. 3) THEN
                    CF}=4.*CZP*CZS* (CXY + CY * CY ) * CZS * FS2
                                    + 4. * CI * CY * CZF * CS * CZS * FC2
                END IF
            END IF
C
    RETLRN
C
```


NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH LIST OF TECHNICAL REPORTS

The National Center for Earthquake Engineering Research (NCEER) publishes technical reports on a variety of subjects related to earthquake engineering written by authors funded through NCEER. These reports are available from bath NCEER's Publications Department and the National Technical Information Service (NTIS). Requests for reports should be directed to the Publications Department, National Center for Earthquake Engineering Research, State University of New York at Buffalo, Red Jacket Quadrangle, Buffalo, New York 14261. Reports can also be requested through NTIS, 5285 Port Royal Road, Springfield, Virginia 22161. NTIS accession numbers are shown in parenthesis, if available.

NCEER-87-0001 "First-Year Program in Research, Education and Technology Transfer," 3/5/87, (PB88-134275/AS).
NCEER-87-0002

NCEER-87-0003 "Experimentation Using the Earthquake Simulation Facilities at University at Buffalo," by A.M. Reinhorn and R.L. Ketter, to be published.

NCEER-87-0004 "The System Characteristics and Performance of a Shaking Table," by J.S. Hwang, K.C. Chang and G.C. Lee, 6/1/87, (PB88-134259/AS). This report is available only through NTIS (see address given above).

NCEER-87-0005 "A Finite Element Formulation for Nonlinear Viscoplastic Material Using a Q Model," by O. Gyebi and G. Dasgupta, 11/2/87, (PB88-213764/AS).

NCEER-87-0006 "Symbolic Manipulation Program (SMP) - Algebraic Codes for Two and Three Dimensional Finite Element Formulations," by X. Lee and G. Dasgupta, 11/9/87, (PB88-219522/AS).

NCEER-87-0007 "Instantaneous Optimal Control Laws for Tall Buildings Under Seismic Excitations," by J.N. Yang, A. Akbarpour and P. Ghaemmaghami, 6/10/87, (PB88-134333/AS).

NCEER-87-0008
"IDARC: Inelastic Damage Analysis of Reinforced Concrete Frame - Shear-Wall Structures," by Y.J. Park, A.M. Reinhom and S.K. Kunnath, 7/20/87, (PB88-134325/AS).
"Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo," by M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704/AS). This report is available only through NTIS (see address given above).
"Vertical and Torsional Vibration of Foundations in Inhomogeneous Media," by A.S. Veletsos and K.W. Dotson, 6/1/87, (PB88-134291/AS).
"Seismic Probabilistic Risk Assessment and Scismic Margins Studies for Nuclear Power Plants," by Howard H.M. Hwang, 6/15/87, (PB88-134267/AS).

NCEER-87-0012 "Parametric Studies of Frequency Response of Secondary Systems Under Ground-Acceleration Excitations," by Y. Yong and Y.K. Lin, 6/10/87, (PB88-134309/AS).

NCEER-87-0013 "Frequency Response of Secondary Systems Under Seismic Excitation," by J.A. HoLung, J. Cai and Y.K. Lin, 7/31/87, (PB88-134317/AS).

NCEER-87-0014 "Modelling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series Methods," by G.W. Ellis and A.S. Cakmak, 8/25/87, (PB88-134283/AS).

NCEER-87-0015 "Detection and Assessment of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 8/25/87, (PB88-163712/AS).

NCEER-87-0016
"Pipcline Experiment at Parkfield, California," by J. Isenberg and E. Richardson, 9/15/87, (PB88163720/AS). This report is available only through NTIS (sce address given above).

NCEER-88-0004

NCEER-88-0005

NCEER-88-0006

NCEER-88-0007
"Second-Year Program in Research, Education and Technology Transfer," 3/8/88, (PB88-219480/AS).

NCEER-88-0001 "Workshop on Seismic Computer Analysis and Design of Buildings With Interactive Graphics," by W. McGuire, J.F. Abel and C.H. Conley, 1/18/88, (PB88-187760/AS).

NCEER-88-0002 "Optimal Control of Nonlinear Flexible Structures," by J.N. Yang, F.X. Long and D. Wong, 1/22/88, (PB88-213772/AS).

NCEER-88-0003 "Substructuring Techniques in the Time Domain for Primary-Secondary Structural Systems," by G.D. Manolis and G. Juhn, 2/10/88, (PB88-213780/AS).
"Digital Simulation of Seismic Ground Motion," by M. Shinozuka, G. Deodatis and T. Harada, 8/31/87, (PB88-155197/AS). This report is available only through NTIS (see address given above).
"Practical Considerations for Structural Control: System Uncertainty, System Time Delay and Truncation of Small Control Forces," J.N. Yang and A. Akbarpour, 8/10/87, (PB88-163738/AS).
"Modal Analysis of Nonclassically Damped Structural Systems Using Canonical Transformation," by J.N. Yang, S. Sarkani and F.X. Long, 9/27/87, (PB88-187851/AS).
"A Nonstationary Solution in Random Vibration Theory," by J.R. Red-Horse and P.D. Spanos, 11/3/87, (PB88-163746/AS).
"Horizontal Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by A.S. Veletsos and K.W. Dotson, 10/15/87, (PB88-150859/AS).
"Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M. Shinozuka, 10/9/87, (PB88-150867/AS). This report is available only through NTIS (see address given above).
"Active Structural Control in Civil Engineering," by T.T. Soong, 11/11/87, (PB88-187778/AS).
Vertical and Torsional Impedances for Radially Inhomogeneous Viscoelastic Soil Layers," by K.W. Dotson and A.S. Veletsos, 12/87, (PB88-187786/AS).
"Proceedings from the Symposium on Seismic Hazards, Ground Motions, Soil-Liquefaction and Engincering Practice in Eastern North America," October 20-22, 1987, edited by K.H. Jacob, 12/87, (PB88-188115/AS).
"Report on the Whittier-Narrows, California, Earthquake of October 1, 1987," by J. Pantelic and A. Reinhorn, 11/87, (PB88-187752/AS). This report is available only through NTIS (see address given above).
"Design of a Modular Program for Transient Nonlinear Analysis of Large 3-D Building Structures," by S. Srivastav and J.F. Abel, 12/30/87, (PB88-187950/AS).
"Iterative Seismic Analysis of Primary-Secondary Systems," by A. Singhal, L.D. Lutes and P.D. Spanos, 2/23/88, (PB88-213798/AS).
"Stochastic Finite Element Expansion for Random Media," by P.D. Spanos and R. Ghanem, 3/14/88, (PB88-213806/AS).
"Combining Structural Optimization and Structural Control," by F.Y. Cheng and C.P. Pantelides, 1/10/88, (PB88-213814/AS).
"Seismic Performance Assessment of Code-Designed Structures," by H.H-M. Hwang, J.W. Jaw and H-J. Shau, 3/20/88, (PB88-219423/AS).
"Reliability Analysis of Code-Designed Structures Under Natural Hazards," by H.H-M. Hwang, H. Ushiba and M. Shinozuka, 2/29/88, (PB88-229471/AS).
"Seismic Fragility Analysis of Shear Wall Structures," by J-W Jaw and H.H-M. Hwang, 4/30/88, (PB89-102867/AS).
"Base Isolation of a Multi-Story Building Under a Harmonic Ground Motion - A Comparison of Performances of Various Systems," by F-G Fan, G. Ahmadi and I.G. Tadjbakhsh, 5/18/88, (PB89-122238/AS).
"Seismic Floor Response Spectra for a Combined System by Green's Functions," by F.M. Lavelle, L.A. Bergman and P.D. Spanos, 5/1/88, (PB89-102875/AS).
"A New Solution Technique for Randomly Excited Hysteretic Structures," by G.Q. Cai and Y.K. Lin, 5/16/88, (PB89-102883/AS).
"A Study of Radiation Damping and Soil-Structure Interaction Effects in the Centrifuge," by K. Weissman, supervised by J.H. Prevost, 5/24/88, (PB89-144703/AS).
"Parameter Identification and Implementation of a Kinematic Plasticity Model for Frictional Soils," by J.H. Prevost and D.V. Griffiths, to be published.
"Two- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam," by D.V. Griffiths and J.H. Prevost, 6/17/88, (PB89-144711/AS).
"Damage Assessment of Reinforced Concrete Structures in Eastern United States," by A.M. Reinhorn, M.J. Seidel, S.K. Kunnath and Y.J. Park, 6/15/88, (PB89-122220/AS).
"Dynamic Compliance of Vertically Loaded Strip Foundations in Multilayered Viscoelastic Soils," by S. Ahmad and A.S.M. Israil, 6/17/88, (PB89-102891/AS).
"An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers," by R.C. Lin, Z. Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212/AS).
"Experimental Investigation of Primary - Secondary System Interaction," by G.D. Manolis, G. Juhn and A.M. Reinhorn, 5/27/88, (PB89-122204/AS).
"A Response Spectrum Approach For Analysis of Nonclassically Damped Structures," by J.N. Yang, S. Sarkani and F.X. Long, 4/22/88, (PB89-102909/AS).
"Seismic Interaction of Structures and Soils: Stochastic Approach," by A.S. Veletsos and A.M. Prasad, 7/21/88, (PB89-122196/AS).
"Identification of the Serviceability Limit State and Detection of Seismic Structural Damage," by E. DiPasquale and A.S. Cakmak, 6/15/88, (PB89-122188/AS).
"Multi-Hazard Risk Analysis: Case of a Simple Offshore Structure," by B.K. Bhartia and E.H. Vanmarcke, 7/21/88, (PB89-145213/AS).
"Automated Seismic Design of Reinforced Concrete Buildings," by Y.S. Chung, C. Meyer and M. Shinozuka, 7/5/88, (PB89-122170/AS).
"Experimental Study of Active Control of MDOF Structures Under Seismic Excitations," by L.L. Chung, R.C. Lin, T.T. Soong and A.M. Reinhorn, 7/10/88, (PB89-122600/AS).
"Earthquake Simulation Tests of a Low-Rise Metal Structure," by J.S. Hwang, K.C. Chang, G.C. Lee and R.L. Ketter, 8/1/88, (PB89-102917/AS).
"Systems Study of Urban Response and Reconstruction Due to Catastrophic Earthquakes," by F. Kozin and H.K. Zhou, 9/22/88, (PB90-162348/AS).

NCEER-88-0028

NCEER-88-0029

NCEER-88-0030

NCEER-88-0031

NCEER-88-0032

NCEER-88-0033

NCEER-88-0034

NCEER-88-0035

NCEER-88-0036

NCEER-88-0037

NCEER-88-0038

NCEER-88-0039

NCEER-88-0040

NCEER-88-0041

NCEER-88-0042

NCEER-88-0043

NCEER-88-0044

NCEER-88-0045

NCEER-88-0046
"Seismic Fragility Analysis of Plane Frame Structures," by H.H-M. Hwang and Y.K. Low, 7/31/88, (PB89-131445/AS).
"Response Analysis of Stochastic Structures," by A. Kardara, C. Bucher and M. Shinozuka, 9/22/88, (PB89-174429/AS).
"Nonnormal Accelerations Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes, 9/19/88, (PB89-131437/AS).
"Design Approaches for Soil-Structure Interaction," by A.S. Veletsos, A.M. Prasad and Y. Tang, 12/30/88, (PB89-174437/AS).
"A Re-evaluation of Design Spectra for Seismic Damage Control," by C.J. Turkstra and A.G. Tallin, 117/88, (PB89-145221/AS).
"The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Inelastic Tersile Loading," by V.E. Sagan, P. Gergely and R.N. White, 12/8/88, (PB89-163737/AS).
"Seismic Response of Pile Foundations," by S.M. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/88, (PB89-145239/AS).
"Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2)," by A.M. Reinhorn, S.K. Kunnath and N. Panahshahi, 9/7/88, (PB89-207153/AS).
"Solution of the Dam-Reservoir Interaction Problem Using a Combination of FEM, BEM with Particular Integrals, Modal Analysis, and Substructuring," by C-S. Tsai, G.C. Lee and R.L. Ketter, 12/31/88, (PB89-207146/AS).
"Optimal Placement of Actuators for Structural Control," by F.Y. Cheng and C.P. Pantelides, 8/15/88, (PB89-162846/AS).
"Teflon Bearings in Ascismic Base Isolation: Experimental Studies and Mathematical Modeling," by A. Mokha, M.C. Constantinou and A.M. Reinhorn, 12/5/88, (PB89-218457/AS).
"Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P. Weidlinger and M. Ettouney, 10/15/88, (PB90-145681/AS).
"Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger and M. Ettouney, 10/15/88, to be published.
"Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads," by W. Kim, A. El-Attar and R.N. White, 11/22/88, (PB89-189625/AS).
"Modeling Strong Ground Motion from Multiple Event Earthquakes," by G.W. Ellis and A.S. Cakmak, 10/15/88, (PB89-174445/AS).
"Nonstationary Models of Seismic Ground Acceleration," by M. Grigoriu, S.E. Ruiz and E. Rosenblueth, 7/15/88, (PB89-189617/AS).
"SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer and M. Shinozuka, 11/9/88, (PB89-174452/AS).
"First Expert Panel Meeting on Disaster Research and Planning," edited by J. Pantelic and J. Stoyle, 9/15/88, (PB89-174460/AS).
"Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB89-208383/AS).

NCEER-88-0047

NCEER-89-0001

NCEER-89-0002

NCEER-89-0003

NCEER-89-0004

NCEER-89-0005

NCEER-89-0006

NCEER-89-0007

NCEER-89-0008

NCEER-89-0009

NCEER-89-R010

NCEER-89-0011

NCEER-89-0012

NCEER-89-0013

NCEER-89-0014

NCEER-89-0015

NCEER-89-0016

NCEER-89-P017 "Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our Schools," Edited by K.E.K. Ross, 6/23/89.

NCEER-89-0017 "Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our Schools," Edited by K.E.K. Ross, 12/31/89, (PB90-207895).

NCEER-89-0018

NCEER-89-0019

NCEER-89-0020

NCEER-89-0021

NCEER-89-0022 "Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Elhmadi and M.J. O'Rourke, 8/24/89, (PB90-162322/AS).

NCEER-89-0023 "Workshop on Serviceability Analysis of Water Delivery Systems," edited by M. Grigoriu, 3/6/89, (PB90-127424/AS).

NCEER-89-0024 "Shaking Table Study of a $1 / 5$ Scale Steel Frame Composed of Tapered Members," by K.C. Chang, J.S. Hwang and G.C. Lee, 9/18/89, (PB90-160169/AS).
"DYNA1D: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical Documentation," by Jean H. Prevost, 9/14/89, (PB90-161944/AS).
"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection," by A.M. Reinhorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-173246/AS).

NCEER-89-0027 "Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element Methods," by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699/AS).

NCEER-89-0028 "Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures," by H.H.M. Hwang, J-W. Jaw and A.L. Ch'ng, 8/31/89, (PB90-164633/AS).
"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes," by H.H.M. Hwang, C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330/AS).
"Seismic Behavior and Response Sensitivity of Secondary Structural Systems," by Y.Q. Chen and T.T. Soong, 10/23/89, (PB90-1.64658/AS).
"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M. Grigoriu and T.T. Soong, 11/10/89, (PB90-161951/AS).
"Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. O'Rourke and M. Hamada, 12/1/89, (PB90-209388/AS).
"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures," by J.M. Bracci, A.M. Reinhom, J.B. Mander and S.K. Kunnath, 9/27/89.
"On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak, 8/15/89, (PB90-173865).
"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts," by A.J. Walker and H.E. Stewart, 7/26/89, (PB90-183518/AS).
"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese and L. Baumgrass, 1/17/89, (PB90-208455/AS).

NCEER-89-0037

NCEER-89-0038

NCEER-89-0039

NCEER-89-0040

NCEER-89-0041

NCEER-90-0001

NCEER-90-0002

NCEER-90-0003
NCEER-90-0004

NCEER-90-0005

NCEER-90-0006

NCEER-90-0007

NCEER-90-0000

NCEER-90-0009

NCEER-90-0010

NCEER-90-0011

NCEER-90-0012

NCEER-90-0013

NCEER-90-0014

NCEER-90-0015
"A Determinstic Assessment of Effects of Ground Motion Incoherence," by A.S. Veletsos and Y. Tang, 7/15/89, (PB90-164294/AS).
"Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V. Whitman, 12/1/89, (PB90-173923/AS).
"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority," by C.J. Costantino, C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887/AS).
"Centrifugal Modeling of Dynamic Soil-Structure Interaction," by K. Weissman, Supervised by J.H. Prevost, 5/10/89, (PB90-207879/AS).
"Linearized Identification of Buildings With Cores for Seismic VuInerability Assessment," by I-K. Ho and A.E. Aktan, 11/1/89.
"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco," by T.D. O'Rourke, H.E. Stewart, F.T. Blackburn and T.S. Dickerman, 1/90, (PB90-208596/AS).
"Nonnormal Secondary Response Due to Yielding in a Primary Structure," by D.C.K. Chen and L.D. Lutes, 2/28/90.
"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90.
"Catalog of Strong Motion Stations in Eastern North America," by R.W. Busby, 4/3/90.
"NCEER Strong-Motion Data Base: A User Manuel for the GeoBase Release (Version 1.0 for the Sun3)," by P. Friberg and K. Jacob, 3/31/90.
"Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake," by H.H.M. Hwang and C-H.S. Chen, 4/16/90.
"Site-Specific Response Spectra for Memphis Sheahan Pumping Station," by H.H.M. Hwang and C.S. Lee, 5/15/90.
"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems," by T. Ariman, R. Dobry, M. Grigoriu, F. Kozin, M. O’Rourke, 'T. O’Rourke and M. Shinozuka, 5/25/90.
"A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and A.S. Cakmak, 1/30/90.
"Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M. Shinozuka, 6/8/9.
"Program LINEARID for Identification of Linear Structural Dynamic Systems," by C-B. Yun and M. Shinozuka, 6/25/90.
"Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams," by A.N. Yiagos, Supervised by J.H. Prevost, 6/20/90.
"Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90.
"Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details," by S.P. Pessiki, C.H. Conley, P. Gergely and R.N. White, $8 / 22 / 90$.
"Two Hybrid Control Systems for Building Structures Under Strong Earthquakes," by J.N. Yang and A. Danielians, 6/29/90.
"Instantaneous Optimal Control with Acceleration and Velocity Feedback," by J.N. Yang and Z. Li, 6/29/90.

NCEER-90-0017 "Reconnaissance Report on the Northem Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90.

NCEER-90-0018

NCEER-90-0019

NCEER-90-0020

NCEER-90-0021

NCEER-90-0022

NCEER-90-0023

NCEER-90-0024

NCEER-90-0025
"Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S. Lee and H. Hwang, 8/10/90.
"Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation System," by M.C. Constantinou, A.S. Mokha and A.M. Reinhorn, 10/4/90.
"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with a Spherical Surface," by A.S. Mokha, M.C. Constantinou and A.M. Reinhorn, 10/11/90.
"Dynamic Interaction Factors for Floating Pile Groups," by G. Gazetas, K. Fan, A. Kaynia and E. Kausel, 9/10/90.
"Evaluation of Scismic Damage Indices for Reinforced Concrete Structures," by S. Rodríguez-Gómez and A.S. Cakmak, 9/30/90.
"Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, G. Gazetas and M.R. Oh, 10/11/90.
"A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and Terminals," by P.A. Friberg and C.A.T. Susch, 11/15/90.
"A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions," by L-L. Hong and A.H.-S. Ang, 10/30/90.

