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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

L

Existing and New Structures
Secondary and Protective Systems
Lifeline Systems

Disaster Research and Planning

*
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*

This technical report pertains to Program 3, Lifeline Systems, and more specifically to water
delivery systems.

The safe and serviceable operation of lifeline systems such as gas, electricity, oil, water, com-
munication and transportation networks, immediately after a severe earthquake, is of crucial
importance to the welfare of the general public, and to the mitigation of seismic hazards upon
society at large. The long-term goals of the lifeline study are to evaluate the seismic performance
of lifeline systems in general, and to recommend measures for mitigating the societal risk arising
from their failures.

From this point of view, Center researchers are concentrating on the study of specific existing
lifeline systems, such as water delivery and crude oil transmission systems. The water delivery
system study consists of two parts. The first studies the seismic performance of water delivery
systems on the west coast, while the second addresses itself to the seismic performance of the
water delivery system in Memphis, Tennessee. For both systems, post-earthquake fire fighting
capabilities will be considered as a measure of seismic performance.

The components of the water delivery system study are shown in the accompanying figure.
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Program Elements: Tasks:

Wave Propagation, Fault Crossing
Ligusefaction and Large Deformation

Selsmic Hazard Above- and Under-ground Structure Interaction
Spatial Variabifity of Ground Motion

Analysis of

Y Soil-Structure interaction, Pipe Respanse Analysis
Analysis of System Statistics of RepaiDamage

Response and Vulnerability Pest-Earthquake Data Gathering Procedure

Leakage Tests, Centrifuge Tests for Pipes

Yy

Pest-Earthquake Firefighting Capability

Serviceability Bystern Reliability
Analysis Computer Code Development and Upgrading
Verification of Analytical Results
A
|
Risk Assessment Mathamatical Modeling
and Societal Impact Sodio-Economic Impact

In this study, an approach for the analytical solution of wave propagation in three-dimensional
solids has been extended to a half-space subjected to finite dislocation representing fault rupture
from an earthquake. With specified rupture area and dislocation speed, analytical solutions of
the ground motions at the surface, or near the surface, at specified distances from the rupture
are calculated. Using the resulis at specific ground surface stations obtained analytically for a
given set of source parameters, appropriate transfer functions can be obtained through time-
domain system identification techniques to represent seismic wave transmission between the fault

rupture and ground station. This should then permit a definition of spatially varying ground
motions useful for lifeline studies.
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ABSTRACT

A hybrid deterministic and stochastic method is developed to estimarte the
spatial variation of s2ismic ground motions which is necessary for the analysis and
design of lifeline systems. An analytical modal for wave propagating through a
three-dimensional half-spacs is first proposed to evaluate the ground responses.
The incoherent slip over a fault plane is then represented by an autocorrelation
funiction of the dislocartion velocisy, from which the source motion is modeled as a
random process specified by a power spectral density function. To separate the
path effect from the source effect, a rmulti-degrae-of-fresdom system is chosen as
the “substitute system” which is characterized by the equivalent transmission
effect to the deterministic wave propagation model. The frequency transfer
furiction of the substitute system is obtained through system identification. With
the resulting transfer function of the system and the given power spectral density at
the source, the powear spectral density of absolute and differential ground motions

can be estimated.

The results obtained through the mode! are compared with the field data
from an actual earthquake recorded at a dense strong motion array. The analytical
results should be applicable for the seismic response analysis and design of

pipeline systems.
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SECTION 1

INTRODUCTION

1.1 Izotroductory Remarks

The spadai vanaton of seismic ground modons is necsssary for the proper
design and analysis of lifeline sysems. Lifaline systems, such as oil and gas
pipelines, warer dismbution systems, as well as communicadon and transporadon
networks, offar varying ne=ds for 2 modem cicy. Qunee their performance arz
interruptad during an earthquaks, the infivence o the safety and health of the

public could be very significant.

One cobvigus differencs of a lifeline from buildings is that its length is much
greater than its other dimensions. Thersfors, the seismic excitatons along te axis
of a lifeline should not be considerad w be coherent modons. Sincs the incoherent
excitatons generate the differentizl mouon betwean any two points along the
pipeline axis, it is of particular concarnt w0 investigate the damage at the joints

caused by the relative ground modens.

To study the out-af-gphase seismic ground motions, the abservations from a
dense array of stong motion seismographs are nesded. The SMART-1 (Scang
Motien ARray in Taiwan) provides this opportunity. The array consisted of 37
twiaxial accalerometers configured in thrzs concanwic circles of radii 0.2 km
(Iner), 1 km (Middle), and 2 km (Quter). There are twelve equally spacsd
stations numberad 1 through 12 on each ring and one csamal stadon named CO0.
This specially installed array presents much informacon of the spadally varying

seismic ground metions.
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The spadal variation of the seismic ground modons recorded by the
SMART-1 array has been extensively analyzed, for example, by Laoh, er al. (1983),
Harada (1$84) and Loh (1985). The evaluadaen is endrely based on the fleld daca.
In partcular, the focal mechanism of an carthquake from which the recordings are

generated 1s not considered, and thus the results are applicable only for a specific
earthquake.

For the purpose of presenting a madet to study the general spatial variation
of ground moticns from an earthiquake an analydcal modal w0 simulata the focal
mechanism is required. Such 2 model should account for the rupture process at

the source and the wave propagation through the semi-infinite soil medium.

Similar atempts have besn made by Zerva, er al. (1985) as well as Suzuki
and Kiremidjian (1988) when both the stochastic rupcure process and the wave
propagation were combined together either to investigate the spadal variation of
ground motions or to esumate the seismic hazard. Zerva, er al. (1983) used an
ant-plane shear plus a plane-swain madel to simulate the three-dimensional
problem.  Suzuki and Kiremidjian (1988) adopted the normal mode method to
evaluate seismic ground maotions; because no radiation condidon at infinity was

considered when the ncrmal modes were calculated, an empincal atenuation

factor was needed in this approach.

1.2 Objectives and Scope

The objective of this study is to develop a thres-dimensional analydcal model

to determine the characteristics of seismic excitations pertdnent to lifelines. The
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seismic ground motons are expressed in stochasdc terms, such as power and cross
specwal density functions of the differental motion. To achieve this goal, the
faulting at the source is described stochastically and the wansmission through the
soil is substwuted by an N-degree-of-freedom system whose outpur is equivalent to
the wave moticns obwined through a theoretical 3-D wave propagaton scludon in

a half space subjectad to a specified rupturs procsss at the focus.

The spadally varying ground motions are then used as the seismic input t0 a
pipeline to invesugate the maximum differentdal displacements across the joinrts

represented in terms of the differendal response spectra.

The validity of the analytical resuits are examined using empirical results

from field recordings, specifically the SMART-1 array.

1.3 QOrganization

In Section 2, several models for simulatdng ground motons induced by
earthquakes are reviewed. The Haskell kinematic dislocation model is then

described and the analydcal ground motions in the mansform domain is obmained

for a general fault with an arbitrary dip angle.

Section 3 presents the analytical ground motions in the tme domain.
Inversion of the Laplace transform presented in Section 2 is performed with the
Cagniard-de Hoop technique. To validate the resulting solumons, the displace-

ments obtained with the model for a vertical fault are compared with those
obtained by other methods.
An explicit form is proposed i Section 4 for inroducing the randomness at

the source. The wave transmission effect is simulated by a substitute system, with
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parameters obuained through system idemdficadon. On  this basis , oumerical
solutions are cbtained to simulate an earthquake (Event 5) recorded by the
SMART-1 array. The results, in terms of the power spectral density of the
absolute and differendal modons, for this earthquake are evaluated and compared

with those obtained from the corresponding field dama.

Discrer= models of pipelines subjected to axial and lateral ground motons
are inmoduczd in Section 5. Pertinent maximum responses of the pipeline
pradictad with the analytcal ground motien model are comparad with corresponc-
ing resules obrained for the ground motions recorded in Event 3.

Finally, Section 6 presents the summary and major conclusions of the

curraac study.

1.4 Summary of Notations

Ax., B.. Cagniard paths in the complex a- and B-planes, respecdvely
B, B base displacement and velocity of substtute system, respectively
,, b,  P- and S-wave slowness, respectvely
C.. circular paths in the complex plane
¢,, ¢  dampings of joint and soil, respectively
D, D dislocation and its velocity, respectively
Dy final dislocadan

D.. recsiver funcoons

E error funcdon

F, F, lLaplace wansformed elements for am ablique fault

Fo.i.z.3  ground exciusions to discrate pipeline syseams

1-4



e &3

4
8o

H, H

source time function

phase functions of P- and S-wave, respectively
phase funcdons far local system (faulc)
Heaviside step funcdon

frequency transfer funcdons

impulse response functons

Jacobian determinants refated to P- and S-wave, respecdvely

correlation length

correlation time

stiffnesses of joint and soil, respectively

fault length

separation distance of pipe segments

local magnitude

lumped mass of pipe segment

Rayleigh function

distance from a stadon to the corner of a fault
reflection coefficients

amplimide of posidon vector in xy plane

source functons of P-, SV- and SH-wave, respectvely
source functions of P-, SV- and SH-wave, respectively
power or crass spectral density functons

Laplace mansform parameter

sigma function

rise tme in linear ramp-time sowce functon
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t, t

Lix

tlp’ L5
L2p, T3n
thy f2s
P3pr I3s
Ug, Uy, Ug

l'—[.h ﬁ-}'l E

by

<

Vo Vs

W

X, ¥ 2z

x, ¥,z
XG1.20 Y6y 3
X1,2, Y12
Za

21,23

Ad, Av, Aa

duration of spreading rupture

initial and final times of a record, respectively

arrival tme of conical head wave

arrival tme of spherical P- and S-wave, respectdvely

arrival time of plane head wave

arrival ume of corucal P- and S-wave, respectively

arrival time of cylindrical P- and S-wave, respectively
displacement components

Laplace wansforms of displacament components

rupture velocity

P- and S-wave velocities, respectively

fault width

coordinates of global system (half-space}

coardinates of local system (fault)

axial and transverse ground motions at Supports, respectivaly
axial and wansverse displacements of pipe segments, respectively
depth of shallowest edge of a fault

generalized displacements in discrete pipeline system

differential ground displacement, velocity, and acceleration,

respectively

differential axial and transverse displacements between pipe
segments, respectively

dip angle
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A ratio of k, to k; (also ¢, to ¢;)
HAur, OAu,  mean value and standard deviation of maximum differendal
displacement between pipe segments, respectively
®q,1,2,3  natural frequencies in discrete pipeline system
w., @.  pawural frequencies in muiti-degree-of-freedom syster
b %Y 1. Lame potential functions
¥ 2. spatio-temporal autocorrelation function of dislocation velocity
P1. 2 elements in modal shape vectors
¢.. 9.  participation factors in multi-degree-of-freedom system
Z .. Cagniard paths in the complex ¢-plane
gy, 0=  poles in the complex ¢-plane
g 1. argument of position vector in xy plane
2. rotation of pipe segment
5, n, & G global Fourier transform parameters
£, 7', &, & local Fourler wransform parameters
§0,1,2,3  damping ratos in discrete pipeline system

§.. §.  damping ratios in multi-degree-of-freedom system

[C] damping marrix
[D], [D'] global and local recaiver function marrices, respectively
[D'] modified receiver function mamix

[K] stiffness mawix
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4]
(7]

{(Dl.l 3}

fF
fFF

)

mass matrix
coordinate gransformaton matrix
ground excitations to pipelines

modal shapes

Fourter transform of a function f
double Fourier ransform of a function f

one-sided Laplace transform of a function f

1-8



SECTION 2

ANALYTICAL GROUND MOTIONS IN TRANSFORNM DOMAILVY
2.1 Review of Earthquake Source Models

Seismologists generally agres that earthquakes (pardcularly shallow earth-
quakes) are produced by a sudden rupmurs in the =arth’s crust caused by the
release of accumularad swain inidated at a point an 2 geologic fault. The rupturs
spreads over the fault suizze and shearing motons develop behind the rupture
front. The rupears will evenwually stop either because of a swong barrier ar simply
due tc the lick of sufficient swain energy, and the ensuing shearing modans
throughout the source ragion c2ases. Another rupturs might start agzain at some
other point on the fault surface. To theoredcally represent such an earthquaka
source mechanism, dislocadon fault models, in which an earthquaka is inidated by

a discondnuous displacement on a fault plane, have besn inwoduced. Such

dislocaton models may be divided into kinematic and dynamic models.

For fully dynamic dislccation models, the slip wichin a crack has w0 be
estimated as a funcdon of the swess drop (the pre-existng tectonic shear swass
rinus the dynamic frictional stess) and the velocity of the crack boundary is
governed by a fracture criterion (Swess-intensity factor, energy release rate, or
maximwm sTess). In other words, the sress drop is considered as the driving
force of an earthquake rupturs and the modon of the rupture frome is then

determined by certain physical relations berwesn swrass concentradon and material

strengdh.



Because of the lack of information regarding swress drop and material
strength, the slip has frequently been specified empirically. In kinematic disloca-
tion models, the final slip is often assurned to be constant over a fault and the
evolution of the rupture front is modeled as a unilateral or bilateral motion of a

dislocation with a constant velocity.

There have been many investigations on determining the seismic source
parameters from the analysis of observed records and the prediction of ground
mortions excited by a simplified source mechanism through an idealized medium.
The analyses of seismic ground motions using various source models and the

methods of solution can be classified as follows:

(1) Dislocation model
(a) Type: strike-slip or dip-slip,
(b) Length of fault: infinite, semi-infinite or finite,
(c) Shape of rupture front: rectlinear or curvilinear,
(d) Slip function: kinematic or dynamic.
(2) Medium
(a2) Dimensionality: 2-D anti-plane shear, 2-D plane strain or 3-D,
(b) Region: full-space or haif-space,
(c) Property: uniform or layered.
(3) Method of solution
(a) Green's function,
(b) Egquivalent body force,
(¢) Generalized ray theory,
(d) Cagniard-de Hoop,

(e) Seif-similar potential,
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(f) Discrete wave number,
(g) Mixed boundary integral equadon,
(h) Finite difference.

An extensive literature review can be found in Luco (1986).

Saictly speaking, the motions at the ground surface generated by an
earthquake of fault rupture origin involve wave propagadons in g three-
Cimensional half-space. The three-dimensional problem has been approximated by
two-dimensional solutions; namely an and-plane shear plus a plane-strain solution
(e.g., Seyyedian-Choobi and Robinson, 1975). The anti-plane shear model in a
half-plane corresponds to a stike-slip rupture, whereas the pilane-strain mode!
leads to a dip-siip motion. In both medels, the responses are independent of the
coordinate in the out-of-plane circction. In other words, such an approximation

implies the assumpdon that the rupture surface is infinitely long.

Comparisons of two- and three-dimensional soludons in infinite media have
besn presented by Boore and Zoback (1974) and Geller (1974). Boore and Zoback
(1974) compared the three-dimensional solution of Haskell {1969) for a vertcal
sike-siip fault with a solution for a two-dimensional gliding dislocation mode! of
finite length and concluded that, for near-field stations, the wave forms may be
insensitive to the rupture length, but the amplitudes of the motions are not. Geller
(1974) conducted similar comparisons and found that both solutions are almost

identical undl the arrival of the P-wave from the edge of a three-dimensional

rupture of finite length.

In earlier studies, the effects of the fres surface were approximated by
doubling the amplitudes resulting from the response of a full-space. Anderson

(1976) found that this approximation is valid only for the case when the angle of
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incidence at the station is less than a specified value. In addition to the above
restriction for amplification of waves, the other major deviations arise from the

appearance of the Rayleigh and head waves in a half-space.

As for the method of solution, the synthesis of Green's functions is the most
common approach to evaluate the ground motions caused by a faulr dislocarion,
because the formulation of the response is swaightforward as long as the Green’s
functions are available.. However, formidable numerical efforts are required in
evaluating the Green's functions and the resulting convolution inmtegrals. In
general, the response obtained by this approach involves a spatial integral of the
point source solution over the whole fault plane either directly in the time domain
(Kawasaki, 1975; Anderson, 1976; Harzell, ez al., 1978) or in the frequency
domain followed by the necessary Fourier inverse wansform (Levy and Mal, 1976).
Luco and Anderson (1983) adopted the equivalent body force representation to
calculate the ground responses in the transform domain, in which the disiocation
over a fault plane was converted to a set of equivalent body forces using the
representation theorem inmoduced by Burridge and Knopoff (1964); the responses
were then obtained by solving the inhomogeneocus wave equations subject to the
homogeneous boundary conditions at the free surface. A detailed review of the
generalized ray theory can be found in Pao and Gajewski (1977). Basically, the
Laplace transform response is expressed as the sum of several termns in this
analysis. Each term represents the contribution from a particular ray and contains
only the product of a source function, a receiver function, and a phase term. Chen
(1981) used the generalized ray theory to analyze the ground responses induced by
a non-propagating dislocation fault. Furthermore, each ray can be evaluated

directly and exactly by applying the Cagniard-de Hoop technique (de Hoop, 1560)



to obmain the ground r:<ponses in the time domain. Madariaga (1978) proposed
the same technique to invert the transform and found an exact solution of
Haskell’s model in an unbounded medium. The application of the generalized ray
theory is as staighdorward as that of the Green's funcdons; moreover, the
application of the Cagniard-de Hoop technique reduces the computaticnal efforts

significantly.

There were also approaches to analyze the wave field inducsd by an extended
fault embedded in a layered half-space. One of these is to represent tha response
in the frequency domain as a double integral over the two horizontal components
of the wave number. Bouchon (1979) inooduced the discretization over the two

wave nurnbers in an elastic wave field.

Far dynamic disiocation models, Das (1980) presented a method of =ixed
boundary integral equation to determine the displacements and stresses < the
crack plane for a three-dimensional dynmamic shear crack of arbimrary shape
propagating in an infinite medium. A finite difference technique developed by
Virteux and Madariaga (1982) was adopted for dynamic shear cracks and a
maximum stress criterion was used to determine the rupture propagation.
Achenbach and Harris (1987) applied dynamic fracture mechanics to analyze the

strong ground motion excited by subsurface sliding cracks.

A thres-dimensional kinematic dislocation model in an elastic half-space will
be presented in this study t simulate an earthquake and the resulting ground
motions. Similar models were proposed by Chen (1981) as well as Luco and
Anderson (1983). Chen (1981) considered the rupture velecity to be infinite,
whereas, in Luco and Anderson (1983), the rupture front is initiated at infinity so

that the results are applicable only for near-field ground motions. To be more
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realistic for determining the spadal variability of ground motons, the sourcs
mechanism of an earthquake is meodeled by a shear fauit of the Haskell type

(Haskell, 1964) with finite length and finite rupture velocity.

2.2 The Haskell Model

The Haskell model is the earthquake sowce model most widely used for
simulating seismic observadons (Haskell, 1964, 1969; Aki, 1967, 1968; Kawasaki,
1973; Anderson, 1976; Geller, 1976; [srael and Kovach, 1977; Madanaga, 1978;
Rouchon, 1979; Tanimoto, 1982; Yeh, et al, 1988). This model assumes a
rectangular fault of length L and width W as shown in Fig. 2.1. A dislocation line
over the width W appears at one edge of the fault plane and propagates at a
conswant rupture velocity v untl it suddenly stops at the other edge. The siip may
be longitudinal (along the direction of rupwre propagation) for the case of a
strike-slip fault or transverse (normal to the direction of rupture propagadon) for
the case of a dip-slip fault. The dislocation amplitudes are assumed to be idendcal
across the width in both cases. At the end of the rupture process, 2 constant
dislocation remains on the sourcs area. The Haskell model is also adopted in the
present study. Firse, the analytcal ground modons in the Laplace ransform
domain excited by a horizontal Haskell fault are obtained. Then the resuits are
extended to the case of a general fault with an arbizary dip angle. The resultng

ground motions in the tme domain are discussed in Section 3.

2.2.1 Horizontal Fault

Assume a horizontal fault at a depth of z =2z, For the case of a saike-slip

faulr, the boundary conditions on the fault plane are
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t=10 t< Liv t=Lk

Figure 2.1 Shear Dislocation in a Rectangular Fault
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(5.3.2,0) = 2 sgale =) ) (HO) - HO - )]

- [HG) - E(To- 9 Hx - vi) + H(t - To) Hix - D}, @.1)
u,(x,y,2,8) =0, (2.2)
Tzz(xv yrzv :) = O; (2'3)

whereas for a dip-slip fault,

u(x,y,z,t) = 0, (2.4)
(53,28 = 2% sgnlz-20) A9 [H) - HG- W]

o HE)-H(To-t) Hx-vr) +H(t - To) H(x - L)}], (2.5)
T.:(x,y,2,t) = 0 (2.6)

In the foregoing equations,
Dq = the magnitude of the dislocation,
sgn = the sigma function,
f = the source time functon,
H = the Heaviside step function,

Ty = L /v = the duration of the spreading rupture.

In the following sections, the ground motions excited by a strike-slip fault are

described in detail. Results for a dip-slip fault are listed, where necessary, for

reference.

After expanding Eq. (2.1), ie.,
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HE) - H{To -1 Hix-vt) + H(t - Tg) Hix - L)}
= (H(x) -H(x -w)}-H( - To) Hx - L) -Hx - w)}, (2.7)
the total field response (f7) may be written as the superposition of the field

response (f9) for four identical quadrantal dislocations shifted in space and time,

as shown in Fig. 2.2, i.e.,

fley, 2,0 = f%xy, 0,0 - f %, y-W,z,0) ~H(t - Tp) f&x =L, y, 2,6 = To)

+HE-To) fx~Ly-W,z,t-To), (2.8)

where f2 is the response subject to boundary conditions (2.2), (2.3), and

(]

u(x, ¥, 2,1) -fsm@—@ﬂoﬁonHm—H@—MI
DQ X
- sea(z - 2) A9 Hx) HE) He-2). (2.9)

By applying the Helmholtz decomposition, the wave equations are

2V = . (2.10)
vV = 4, (2.11)
2V = (2.12)

where ¢, ¥ and ¥ are the potental functions corresponding to P-, SH- and

SVV-wave, respectvely; v, and v, are the P- and S-wave velocites, respectively.

In order to solve the wave equation, e.g., Eq. (2.10), the one-sided Laplace

wransform over ¢ and the double Fourier transform over x and y are employed. The

corrasponding transform pairs are
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o

p(x.y.2,5) = f ¢(x.y,2,1) e dt, (2.13)
¢
ey = == | 3 e ds;
¢x,y,z.) = 1:; ¢(x,y,z,s) My (2.14)
and
(&2, = f J’(E(x,y, z,5) e7* UM gxdy, (2.15)
— s
Pz, y,2,5) = o= J’ f F(§ 7,2,5) gS(iGzriny) dEd; (2.16)
where:
s = the Laplace transform parameter,

B, = the infinite Bromwich line,

§, 11 = the Fourler transform parameters.

By solving the transformed wave equations with the quiescent initial condi-
tions, the radiation condidons at infinity and the boundary conditions on the fault

plane, the transformed potential functions are

o(x,y.2,5) = D‘ﬂs) f fSp(E 7,5) e Cpl=zl=e=m) 4qp (2.17)
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]

D A -3 »
X_(X, ¥, S) %;‘2)5' f j SH(E! 7, S) e"(t.r!:--’cl-:;-r-'w) d&dq,

- -3

i

Pix,y.2,9)

-0 =@

where:

fi5) = the Laplace wansform cof the source ume function 9,
& =b+Eer j=ps,

by =1/, Jj=p. s

2. f fsv@ 7.9) e drsl=Sim) gt

(2.18)

(2.19)

The three scurce functons Sp, Sy and Sy, which are related to the transformed

Lame potential functions in a full-space as shown in the preceding equations, are

completely determined by the specified source mechanism, ie.,

conditicns on the fault plane, and can be expressed as

(St | | |
Sp(£.7,9) 2i5
o - 5G4 £+ )
IREGER in(i€ +b) | @ | ,
- ibiy
Su(&.7.5) =,
- J S

for a strike-slip fault, and

the boundary

(2.20)



f ) r \

Sp(6.m.3) 2in
o1 -G+ &+ )
{ SWgns) } = E | eEe | | (2.21)
ib2€
Se€m.3) =
\ ] \ Fer )

for a dip-slip fault, in which & = 1/v and € = - 5gn(z - zy).

The displacement components are the spatial derivatves of the potential

functions, i.e.,

2
u = 92,2, 0¥ (2.22)
ox ay axdz’
2
u < 2.2 5V (2.23)
dy dx dydz
2
B (2.24
dz dx~ dy

With Eqs. (2.17) through (2.19) and (2.22) through (2.24), the transformed

=
J SP uPe &
-

+ (SvDuy + SuDug) €™ | dédy,  (2.25)

displacement is

(x,y.2,5) =

b

\—_‘a

8

[ 4

-

whers:
subscript i = x, y Or 2,
D, =the receiver function, J=P, V, A,
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g =Glz-z|-iEx-imy, j=p, s

The receiver functions relate the Lame potentials to the desired responses at the
field point in the fuil-space. The physical interpretation of Eq. (2.25) is thar the
transformed displacement at a receiver contains the three types of waves generated
at the source multiplied by the corresponding receiver functions, which account for

the wave propagation effects in the Fourier wansform domain. The mamix form of

Eq. (2.25) is
Z:x,y,2,9) = e Sp(§,7m,5) €77
_ Dyfs) . -
T,(x,y,2,5) | = 32252 [D] SWE, 7, 5) %} dEdn, (2.26)
T:(x, ¥, 2,5) e Su(5.7m,5) €%

in which the source functions are given in Eq. (2.20) or (2.21), and the receiver

function matix is

& el in
[D] = | i mete -} (2.27)
€, &+ 0

2.2.2 Oblique Fault

In the above section, the source functions are obtained for a horizontal fault
plane and the recsiver functions are valid for waves propagating through an
infinite medium. For waves propagating in a half-space, the free surface effect of

the ground should be considered. If the ground surface is taken as horizontal, the

source functions for an oblique fault is also needed.

Fig. 2.3 shows the coordinate system of the half-space, Le., (x, ¥, 2), and the
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Figure 2.3 Coordinate Systems of Half-Space and Fault

2-15



faulr, i.e., (&', ¥, 2'). The fault szikes in the x’-direcdon, and the dip angle § is
measured from the horizontal plane. The slips in the x'- and y'-diractions

represent the suike-slip and dip-slip motions, respectively.

The local coordinate system (X', ¥, Z) can be transformed to th: global

coordinate system (x, y, z) through the following relaton,

X X
y =[]0y}, (2.28)
z2-125 7

in which the coordinate wansformation mamix [T] is defined as

1 0 0
[T] = ¢ cosd -sind _ (2.29)
0 sind cosé

The transforms for the displacements, in the global coordinates, are shown in

Egq. (2.26). In the present case, however, the source funcuons are unknown.

The mansforms for the ground modons, in terms of the local coordinates, are

sirnilar to Eq. (2.26), and may be expressed as follows,

= SaE 0, 5) e
J [0]{ swgom.9) e ) dgrdy,  (230)
- S'H(E', 17!’:) e-:;r:

z(x', ¥, 2, 3) )

Dof(s

L‘Iy‘(x’,y’,zl,s) = 8::1'02
<

's___‘ﬂ

E.Z'(I,:yliz’js) -

in which §;=8{z'|-&x" -in'y’, J=p. 5. The sowrcs and recsiver funcdons are

given in Egs. (2.20) (or (2.21)) and (2.27), respectively, but with the global



coordinates (x, y, z) replaced by the local coordinates (x', y’, z), the global

transform parameters (£, 7, §) replaced by the local transform parameters (7, 7,

£, and € = -sgn(z’).

With the equivalent phase funcdons, ie., =8, /=p, 5, the wansform

parameters are related also by

i§ 13
in = [T} m
€ e';

The coordinate gansformation mawix [T] also gives

Kl
|
", !

"

[

R
Rel J‘:l

(2.32)

Substiruting Egs. (2.26) and (2.30) into Eq. (2.32Z), the source functicns corre-

sponding to a general fault with an arbiary dip angle § are determined by

Sp et Spes ],
[D]{ sver= } = [1][2]{ Svesy,
Sge & Sy e,

in which J; is the Jacobian

¥ ¥k
’ o an €t
LE .6 = o .
)
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Afrer lengthy manipuladon of Eq. (2.33), the source functons for an oblique

Haskell fault can be given as follows:

f

\

Sp

Sy

Sy

3

R
[ = WE D)

J

L

(%7 )
€5,
~%n
Eor
b3E - 17)

} sind + {

\ ECJ(‘EZ + r]l) J

for a swike-slip fault; and

(

for a dip-slip fault.

[ Giv? )
e,
£ + 27
TEer |
bitn

CACEY 9)

(
Al

- @+ E e )

55+ )
- ibly

sin2d + ¢

e

2in

-t +E+17)

\

6§ + 1)
bié

}

g

cos8], (2.39)

L

cos 2(5], (2.36)

To determine the ground motions excited by a wave propagatng through a

half-space, the boundary conditions at the free surface, fe., Tex =T =7-=0 at

z = 0, should be considered in determining the receiver functdons. The resulting

receiver function mawix is modified as

[r]

i& + iERTP - iELRPY
in + inRP? - il RPY
G -LRP+ (E+ PR (B +) + B+ PRV -LRT 0

ﬂsgr‘iECJQVV*’&aQVP
i, - it R™ + gR"®

2in

-2iE], (2.37)

in which R??, RFY, RY?, and R"Y are the reflection coefficients, which represent
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the ratios of the amplitudes of the reflected waves to those of the respective

incident waves.

In Eq. (2.37), each element in the receiver function matrix contains contribu-
tions from both the incident and reflected waves. For example, as shown in
Fig. 2.4, when a P-wave is generated at the source, the incident P-wave, the
reflected P-wave and the reflected SV-wave are all detected at the receiver, and
assembled in the first element in Eq. (2.37). For the reflected waves, the degres
of contribution to the displacement component at the receiver is determined by the
reflection coefficients and the original receiver functions, ie., Eq. (2.27), which
are associated with the type of wave amriving at the receiver. By substituting the
reflection coefficients in terms of the transform parameters, the modified receiver

function matrix is then expressed as

- 4ib7Ee,5, - 2L (G + &+ ) 2inR
[0] = 5| -ewigh  -aehn@essr) 2R (239)
- stqu@;z + ":&Z + 772) - 4bf§p§:(§2 + 772) 0
where the Rayleigh function is
R = 45L& + ) -G+ + ) (2.39)

Finally, the tansforms for the ground motons excited by an oblique

disiocation fault are

Ex(xv ¥ Or S) = m SP(E, 7, S) PRt
B9 ?f};) f f (D] sugn9es } dsdy. (240
I.(x,y05) -=-s Su(&, n,5) 78
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Figure 2.4 Incident and Reflectad Waves at a Receiver

2-20



Substituting Egs. (2.35), (2.36) and (2.38) intwo Eq. (2.40), the twransforms for the

displacements become

D oA(s) e, A g~ CFomik-imy)
{mx,.0,9} - 8 szf j{FJ}(f§+b)(incosd+§jsind)Rdé.dq’ (2.41)

where the vectors {Fj}, j =p, 5, are summarized in Appendix A.

Inversion of the Laplace transform, Eq. (2.41), is necessary to obtain the

ground motions in the time domain.
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SECTION 3
ANALYTICAL GROUND MOTIONS IN TIME DOMAIN

3.1 Introduction

In the previous Secton, Eg. (2.41) gives the Laplace tansform for the
analydcal ground motons. To obtain the responses in the dme domain, a special
inverse wansform method is nesded. An cffective method for this purpose is the
Cagniard technique (Cagniard, 1962). The main idea of the Cagniard technique is
1o assign the phase functorn in Eq. (2.41) 10 the dme variable r and then invers the
Laplace gansform by direct inspection. A twansformauon was inwoduced by de
Hoop (1960) 10 simplify the Cagniard technique when two transform parzmeters,
e.z., £ and 7 in- Eq. (2.41), are invoived. In fact, the assignment of g, or g to ¢
represents 2 hyperbola, which is called the Cagnierd path, in a complex plane
after the de Hoop tansformation has been employed, and constitutes a contour
including the original imegral path in Eq. {2.41). In additon 1o the Cagniard path,
the contribudons from the poles within the contour and from the branch cur should
be included in evaluatng the integral of Eq. (2.41) by the residuc theorem. The
exact inversion contzins a sum of single integrals and algebrzic terms. Each term

contibuting to the ground modon is identfied as a specific wave.

Consider a general term in Eq. (2.41),

Dy [ F; g7 Gpomidemim)
_ Do dn, 3.1
Ulx,y.0,3) .rz f J (i£+b)(incosd + §;sinG)R e o
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where F; is one element in Appendix A and the Rayleigh functon R is given in

Eq. (2.39). After applying the de Hoop transformation,

{e
)

in which -0s8=2x/r, sinf=y/r, and r* =x>+y, Eq. (3.1) becomes

g cosf - g siné,

o sind + g cosé,

_ (-DFe” Ejzaran)
. _ 3.3
U, y,0,5) < = f [ J (i5 + &) (incos § = §sind)R J “ )

-3 -

The mapping of {;zo + o7 to ¢ represents the Cagniard paths 2., or Z«; in the
complex o-plane, as shown in Fig. 3.1. Also shown in Fig. 3.1 are the branch
cuts, the branch points, and the poles. By the residue thecrem, the integraton of
Eq. (3.3), which is taken along the imaginary axis of the complex ¢-plane, is
replaced by the integration along the Cagniard path plus the contributions from
any poles within the contour. No contributions from the circular paths Cx, or C,
are included as their radii tend to infinity. Two possible poles, ¢; and o, in

Fig. 3.1, are locarted inside the contour. They are the roots of £+1/v=0 and

incosd + ;sind = 0, respectively.

3.2 Inverse Laplace Transform
3.2.1 Cagniard Path Contribution

Let U(x,y,0,5) be the contribution from the Cagniard paths, i.e.,
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: -5
_ _2?_ - j—E; -1t
Uiz.,0,9) = 8::2].5: f [ (5 +0)(imcosd + §sin S)R ¢ dr] dg. (34)

I=i

After interchanging the order of integraton, the inverse Laplace transform of U,

could be determined by directly inspecting the integrand. Uy(x,y,0,0) is a proper

single integral with respect t0 ¢, and its exact formuladon is listed in Eq. (B.1).
3.2.2 Branch Cut Contribution

If the vertex of the hyperbola, Z =, is located on the right side of the branch
point associated with the P-wave, the Cagniard path Z ., must be indeated around
the branch cut, i.e., Zx, as shown in Fig. 3.1. Thnis case cccurs when
r{Ro>b,/b,, and constitutes the other type of wave, namely head wave or

SP-wave. Let Up,lx,y,0,5) denote the contribution from this indented path, i.e.,

dO’;;

7 ("f) F:—"
_ Do dt
Ura(x, 3.0,5) = = > J[ (D) neosd+ Lomd)R e dz]dq. (3.9)

j=p.5
== Zin

The interchange of the order of the integration is also needed to take the inverse
transform. The exact form of Uia(x,y,0,¢) is described in Eq. (B.2).
3.2.3 Pole Contribution

Let U, (x,7.0,5) and U (x,y,0,5) be the contributions from the poles ¢; and
g5, tespectively. For the pole g being inside the contour shown in Fig. 3.1, it is

required that x > 0 and ¢° > g3 in which



29 Rg

;= e—— 29 . ’bz 2 - 5 R
Fou ,.y2+z% v 07 R; x2+y*+z5
Then, the contribution from the pole oy is
= Dayj
77! - F ~s(§za+ayr)
U, (x,9,0,5) = H( x) Z [ J (- 2m) ( NFe iz
[=ps —) (incosd + & sin )R

f (= 20 (-0) F; g3 (Gpa ) a'g] s
(—)(trzcosé g sind)R . )

Let g =ia and apply the Cagniard method again to obuin Us (x,y,0,f). Fig. 3.2
shows the Cagniard path Az; corresponding to the mapping of {izg+ 0y =¢, the
associated poles, the branch points, and the branch cuts in the complex a-plane
for y > Q0 and v < ¢;. For y < 0, the contours are located in the left-half of a-plane.
In the case of the subsonic rupture, i.e., v < ¢, no contributions from the poles and
the branch custs are involved when the integranon paths of Eq. (3.6) is replaced by
the Cagniard paths A+; because no poles are located inside the contour and no

branch cuts intersect the Cagniard paths, as shown in Fig. 3.2. For the tansonic

and supersonic ruptures, the contributions from the branch cuts should be
considered. The complete representation of U;(x,y,0,1), ie., the contributions
from the Cagniard paths d., and As,, and Uas(x,y,0,¢), i.e., the conwibutions

from the branch cuts, are listed in Egs. (B.3) and (B.4), respectively.

The necessary condiden for the pole oy lying within the contowr shown In

Fig. 3.1 is that y > 0 and ¥ > 0. Therefore, the conwibution from the pole o3 is
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-0 F g5 (&Ferorr)
(E+0) (-G) R

Us (x,5,0,5) = %HO)H@') f (= 23} dgq, (3.7)
j=p.5

where

aysind + §jsinfcos &

&

G =

let g=-1If and apply the Cagniard method once more. Fig. 3.3 shows the
Cagniard paths Bx; associated with the mapping of {izg+ 027 =t in the complex
f-plane for x > 0. The Cagniard path B.,, the indented path B.;, and the

corresponding branch cuts are shown in Fig. 3.3(b) only for the case of

by/b;>sind/ /1 -cos?fcos?S. The various conmibutions from the indented path
B+ for other cases will be included in the final formulation. Let Us{x,y,0,¢) and
Usa(x,y,0,t) denote the ground motions from the Cagniard path B., and the
indented path B.,, respectively. These formulatons are listed in Egs. (B.5) and

(B.6), respectively.

3.3 Analytical Formulatian

From the preceding sections, the ground displacement in a specific direction,

i.e., the inverse Laplace transform of Eq. (3.1), can be evaluated as

U(I, Y. 0, f) = UI + U];, + Uz + Uy, + U3 + Uy,. (3.8)

Each term in Eq. (3.8) is expressed explicitly in Appendix B.

Similar results have also been cbtained by Yeh, et al. (1988) and Wang

(1983). Comparing Eq. (2.41) with Eq. (3.1), the tansform for the ground
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displacement in the /-direction is given by

T(x,v,0,8) = fls) Ulx,y,0,5).

Therefore,

t
u;(x,y,0,1) = J’ At-1) Ulx,y,0,7) dr,
0

(3.9

(3.10)

in which flt-7) is the source time function and U{x,y,0,1) is given by Eq. (3.8).

Two special cases of the source time function can be identified, for which the

ground motions may be aobtained directly from Eq. (3.8) without the convolution

integral of Eq. (3.10).

(1) Step-time source funcdon:
fe) = HE).

The Laplace transform of such a scurce time function is

= 1
fs) = =
Then, from Eg. (3.9),
u(x,y,0,8) = Ulx,y0,10),

where u;(x,y,0,1) is the ground velocity in the i-directon.

(2) Linear ramp-time source function:
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(3.13)



0, t<0;
)= t/T, 0<t<Ty, (3.14)
i, T, st

in which 7, is the rise dme. In this case,

l_e ~sT»

fis) = T (3.15)
and
.. Ulx,v,0,0) - Ht-T. v, 0,t=-T,
iz, y,0,6) = L8200 - B-T) Uy, 0= 7)) (3.16)

T

where 4;(x,y,0,t) is the ground acceleration in the i-direction.

Eq. (3.10) gives the ground motion only for one quadrantal dislocarion, as
shown in Fig. 2.2. The total ground motion generated by an oblique rectangular

fault is given by
ul(x,7,0,8) = w(x,5,0,62) - wx,y-Wcosd, 0,1; 25+ Wsin )

- H(&' - To) H,‘(I -L,}', 0,t-Ty; ZO)
+ H(t-To) ui(x-L,y-Wcosd, 0, t - Ty; 2 + Wsin 8), (3.17)

where uf(x,y,0,¢) is the total ground displacement in the i-direction and
uix, y,0,t;20) is given by Eq. (3.10).

The rupture is assumed to propagats unilaterally along the fault plane, as
indicated in Eq. (3.17). However, the principle of superpasition may be applied
for the case of a bilaterally propagating rupture. Furthermore, the generalized ray

theory can be extended systematically 10 analyze the ground responses excited by a



dislocation fault in a layered medium. The validity of the analytical ground

motions is examined in the following case studies.

3.4 Case Studies

In order to investigate the difference between the ground modons obuined by
the half- and full-space models, Andsrson (1976) examined the ground displace-
ments induced by a shallow vertical fault with either a strike-slip or dip-slip rupture
using the methed of Green's function. With this method, a four-fold integral must
be evaluated approximately by a numerical method. One integral is associated
with the formulation of the Green’s functions which are applicable to a point
source as developed by Johnson (1974) with the Cagniard-de Hoop method. The
other triple integration comes from the Kncpoff-de Hoop representation thecrem
(Burridge and Knopoff, 1964) for evaluating the response through the convoluden
of the dislocation and the Green’s functions with respect 1o one temporal variable

and two spatal variables.

In Anderson’s quadrature, several schemes were applied to reduce the
random and systematic errors, that may be introduced from the multiple numerical
integration. In contrast, only single integrals are needed in the current smdy, as
shown in Egs. (B.1) and (B.2Z). Therefore, the numerical evaluation in this study
should greatly reduce the numerical work and increase the accuracy of the resuits
relative to those of Anderson (1976). Moreover, Uy, = U5 = Us, = 0 in Eq. (3.8) for

the case of a vertical rupture with subsonic rupture motion.

To appraise the correctmess of the analytic formulation developed in the
present study, two cases from Anderson (1976) are used for comparison. The

schematic diagram of the station and the fault is shown in Fig. 3.4. In each case,
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two sets of ground displacements are evaluated for strike-slip and dip-slip motions,
respectively. Linear ramp-time source function and unilateral rupture are assumed

in both cases. The common values of the paramerers are as follows:

P-wave velocity v, = 6 km/sec,
S-wave velacity v, = 5.4 kmmi/sec,
Fault length L=35km,
Ruprure velocity v = 3 km/sec,
Final dislocation Dy =1 cm,
Rise time T, =1 sec,

Station (x, y) = (7.5 km, 1.5 km).
Two different cases are examined with the following parameters:

Case L
Fault width W= 3.3 km,
Focal depth d = 3.8 km,

Case II:
Fault width W=1.2km,
Focal depth  d =1.1 km.

An epicentral distance of 7.65 km is the same in both cases, whereas Case II

represents a shallow earthquake, in which the surface wave is dominant.

The comparisons are shown in Figs. 3.5 and 3.6, which demonstrate good
agreement between the two studies for different response components, types of
rupture, and fauit locadons. As mentioned in Section 2.1, the response of a

full-space was doubled to approximately account for the free surface effect. This
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approximation is not valid especially for a shallow dip-slip fault, as shown in Figs.

3.5 and 3.6.

The effect of rise time — The rise time, T,, to reach the final slip at each
point in a fault plane during an earthquake is probably the parameter most difficuit
to estimate. To investigate its effect, consider a verdcal square fault with
strike-slip motion. For simplicity, the fault length L and width W are assumed to

be equal to the focal depth 4. A station is {ocated at a distance of 3d from the
epicenter, and the epicenwal direction is 30° from the fault orientadon. Three
different values of the rise :ime, i.e., T, = L/v, 0.5L/v and 0.25L/v, were examined.
The P-wave velocity ¥, is y/_3-vx corresponding to Poisson's ratio of 0.25, and a
rupture velocity of v = 0.9v; is assumed. The results are shown in Fig. 3.7, where
the non-dimensional ground accelerations, adz/Dovf, along and normal to the
strike direction versus the non-dimensional time, tv,/d, are plotted, in which a is
the ground acceleration and Dy is the final slip. From Fig. 3.7, it can be seen that
as ﬁhe rise time decreases, the duration also decreases whereas the peak accelera-
tior increases. For the limit case of T, = 0, ie., the case of step-time source
function, large values of the ground acceleration occur when the dominant waves,

usually the S-waves, arrive.
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SECTION 4

ANALYSIS OF SEISMIC GROUND MOTIONS

4.1 Deterministic Analysis

4.1.1 The Event 3

On January 29, 1981 a large earthquake occuwred off the northeaster coast
of Taiwan. Tnis event, cataloged as Event 3, was felt throughout Taiwan and
triggered all 27 swong moton recorders in the SMART-1 array located 30.2 km
NNW of the epicenter. The peak acceleraton of 0.24 g is the largest acczleration
recorded by the array during its first four years of operadon. This event was
selectad for compariscn because irs focal mechanism has besn well dascribed
(e.g., Abrahamson, 1985). It is prcbably the event, among other events in the
SMART-1 array, in which most informadon at the focus has be=n esimated. In

fact, it is also the event whose recordings have most frequently bean analyzad by

other investgators.

The seismic scurce of Event §, at a depth of 25.2 km, had a reverse
meachanism with unilateral rupture propagating almost from east 10 west. The

local magnitude was estimated by the Instinute of Earth Sciences to be M, = 6.3,

whereas Abrahamson (1985) corrected it w M, = 6.7 by using the Taiwan

atenuation curve, instead of Richter's atenuation curve for Southemn california.

Among the 27 stations, the recordings of 7 stations, whose alignment

(N17.3W) is closest to the epicenwal dirsction (N26.2°W) wa the cenoal station
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C00, will be used for analysis. Fig. 4.1 shows these seven statons in the array.
The accelerograms at these stations along and normal to the epicentral direction
are plotted in Figs. 4.2 and 4.3, respectively, and are aligned according to
increasing epicentral distance and absolute tme for these seven stations. By
investigadng the recordings in Figs. 4.2 and 4.3, no obvious attenuating phenome-
non across these stations is observed and the oscillating patterns of these
recordings are quite different, from which it is indicated that the local soil effect

(i.e., soil amplification) plays an important role on the measured ground accelera-

tions.
4.1.2 Model Parameters

The parameters for this event were estimated primarily based on the study of

Abrahamson :1983), supplemented by other empirical relations as necessary.

Velocity structure — The S-wave velocity is approximately 3.5 km/sec in the
source region (Abrahamson, 1985). No estimate of the P-wave velocity at the

source is available. However, with the assumpdon of equal Lame constants, it is

suggested that

v, ={3v, = 6.1 km/sec.

This value is slightly less than that determined by Roecker, ez al. (1987) based on a

set of 1600 events dispersed throughout the island of Taiwan.

Fault plane orientation — Based on the first motion data of the mainshack
and 18 aftershocks to form the group focal plane soludons, Abrahamson (1985)

conciuded that the modal plane with mean stwike of N71.2°W and mean dip of

4=2



Figure 4.1 Seven Stations in the SMART-1 Array
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60.7°SE may be chosen as the fault plane of the mainshock. This esdmate of the

fault plane orientation is consistent with the dismibution of the mainsheock and

aftershock hypocenters.

Rupture velocity — By using the frequency-wavenumber analysis to measure
the phasing of wave fronts of coherent S waves across the SMART-1 array,
Abrahamson (1985) obtained the time-dependent rupture velocity, which is shown
in Fig. 4.4. The inferred rupture speed shown in Fig. 4.4 covers the range of
subsonic and ransonic ruf;ture velocities. Abrahamson suggested that two effects
are responsible for the apparent super-shear rupturs velocity; namely, the assump-
tions of a conswant rupwure direction and the laterally homogeneous velocity
sucture. Since the same assumptions are chosen in the 3-D wave propagation
model of the current study, the rupture velocity in Fig. 4.4 will also be adapted.
Moreover, the model assumes incrementally constant rupture velocities gver short
tdme increment.s, as shown in Fig. 4.4. The toral ruprure length obuined by
integrating the rupture velocity is 17.15 km, and the duration of rupture is
5.73 sec, giving an average rupture velocity of 2.98 kimm/sec. This average rupture

velocity is slightly less than the mean rupture velocity of 3.05 km/sec obtained by

Abrahamson (1985).

Slip direction and amplitude — The rake of 64.3°UP was used in Abrahams-
on (1985) according to the focal distribution of the mainshock and aftershocks. No

estimate of the fauit offset of Event 5 is available. Some empirical formuias are

listad as follows.

4=6
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Iida (1963), world-wide data:

log Dg = 0.55 M, ~1.71,
Bonilla (1970), USA data:

log Do = 0.57 M, -1.91,
Martsuda (1973), Japan data:

log Do = 0.6 M, -2.0,

King and Knopoff (1968), world-wide dara:
log LD} = 2.24 M. -4.99,

where Dgand L are munit of cm. With M, = 6.7 and L = 17.15 km, the above
formulas give Dg = 94 ¢cm, 81 em, 105 cm, and 78 cm, respectively. An average

value of 90 cm is taken as the slip amplitude.

Fault plane dimensions — The fault length is determined t0 be 17.15 km by
integrating the time-dependent rupture velocity shown in Fig. 4.4. This rupture
length is less than the 25 km rupture length indicated by the aftershock distribu-
tdon. It is recognized, however, that aftershocks tend to overestimate the
mainshock fault area (Aki, 1968). Similarly, a value of 6.0 km is taken for the
fault width; the aftershock distribution would indicate a width of 7.9 km. One

empirical formula in Mohammadi and Ang (1980) is

M, = 0.932 log Dy/W+6.456
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which would give W = 4.1 km corresponding to M, = 6.7 and Dg = 0.9 m.

According to the above esdmation, the focal mechanisms and the associared
parameters for Event 5 are shown in Fig. 4.5. Fig. 4.6 shows typical analytic
velocity time histories (at station C00) along and normal to the epicentral
directions obtained through the 3-D wave model for the above parametars and the
assumprtion of a step-time source function. The arrival of the P- and S-waves from
the comers and the edges of the fault results in several abrupt changes of the

znalytic velocites in Fig. 4.6, which imply relatively high acceleradons.

No empirical formulations were available to evaluate the rise time. Hence,
three values of the rise time, {e., 7, = 0.13 sec, 0.10 sec, and 0.05 sec, were
examined, and the resulting analytic ground accelerations are shown in Fig. 4.7.
As shown in Fig. 4.7 and discussed in Section 3, the shorter rise times will induce
higher peak accelerations. Since the peak accelerations obuained at station C00 in
both directions are about 100 cm/sec”, a very short rise time would be required in
the analytic modei. Moreover, the integration of the velocity time histories in
Fig. 4.6 gives the peak displacement of about 1.5 ¢m, which is consistent with the
peak ground displacement obtained by integradng the field accelerogram twice at
the same station. Therefore, the assumption of a step-time source function is

reasonable in the analydc 3-D model for this event.

The velocity time histories shown in Fig. 4.6 do not conmin as many
oscillations as the field recordings. This may be attributed to the assumption of a
coherent rupture at the source and of the homogeneous half-space medium. In
studies concemed primarily with the spatial displacements, however, the effect of

the high-frequency content is not very significant such that the simple source
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medels may be used 10 reproduce the displacement time histories. As a matter of
fact, the response of pipelines derives primarily from the region of low frequen-
cies. Therefore, the results should be acceptable for the analysis of pipeline
systems. A stochastic approach is considered in the following section 10 partially

account for the incoherence in the rupture process.

4.2 Stochkastic Analysis

The spatial and temporal variation of a fault dislocartion is oo complex to be
represented by any simple mathematical function such as Eq. (2.1). In general,
strong ground motions are characterized by a high-frequency content which is
sogongly related to the details of faulting. These derails arise from the nonuniform
dismribution of various physical properties on the fault plane, including the rupture
velocity, the slip magnitude, the direction of rupture, erc. Therefore, swong ground
motions are too complicated to be simulated by a purely deterministic model
because they are affected by numerous small-scale heterogeneities of the fault
plane. To avoid this difficulty, several amempts have been made to introduce
hybrid deterministic and stochastic models, in which the gross feamures of the
rupture propagation are defined deterministically but the details of the rupwure are
represented by a stochastc process (Boore and Joyner, 1978; Andrews, 1980,

1981; Boatwright, 1982; Papageorgiou and Aki, 1983a, 1983b).

For the purpose of modeling long-period seismic waves, the kinematic
dislocation model is a good approximation to explain the radiation of seismic
waves. A major shortcoming with the kinematic mcdels is that a constant slip is
inadmissible from a purely continuum mechanical point of view, as well as from

many practical investigations. Nonuniform fault slip over a fault plane has besn



found for several earthquakes by various seismologists, and also from the analysis
of teleseismic body wave data for many earthquakes {(Aki, 1982). Based on the

above considerations, an effective way t0 describe the rupture process is through a

stochastic approach.
4.2.1 Randomness of Earthquake Source

To account for an incoherent slip, Haskell (1966) postulated the rupture
mechanism as a random process with a specified spatio-temporal autocorrelation
for the dislocation acceleration, whereas Aki (1967) introduced the spatio-temporal
autocorrelation of the dislocation velocity at the source. In both models, the

random dislocation spreads at a constant rupture velocity.

In Haskell’s statistical model, the Fourier transform source factor of the
far-field response decreases with @™ for large w, whereas it is inversely propor-
tional to @™ in Aki’s model. Hence, these have been referred to as the “w-cube
model” and “w-square model”, respectively. Under the assumption of similarity,
it has been shown that the w-square model compares better with observations than
the w-cube model. Therefore, the w-square model will be adcpted in this study to
represent the randomness at the source. The physical interpretation of this model

is discussed in the following.

Since an earthquake is essentially a transient phenomenon, the spatio-
temporal autocorrelation function introduced at the source should be different
from those for a stationary time series. Fig. 4.8 will schematcally illustrate what
form may be expected for the autocorrelation function of the dislocarion process at

an earthquake source. Let the dislocation startat x = 0 and propagate along the x
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axis at a constant rupture velocity v; then the dislocation at a given point x will be
zera for ¢ < x/v and increase up to a final value Dy for t > T, + x/v, in which 7, is
the rise time. The actal dislocatcn at the transidon time, {.e., xv <t < T, + x/v, is
unknown. In Fig. 4.8, the dashed lines are for the case of an idealized linear
ramp-time source function. Fig. 4.8(a) and (b) show the corresponding dislocation
and its velocity functions, respectvely. The autocorreiation function of dislocation
velocity is also shown in Fig. 4.8(c). Based onm Fig. 4.8(c), the suitable form for

e temporal autccorrelation funcrion of dislocation velocicy will be a negative

exponential function.

Assume first that the temporal autocorreladon function of distocaden velocity

at the point x decreases exponentially with the ume lag 7, ie.,

J D(x, 0} D(x, t+1) dt = wy e™*7i™, (4.1)

-

where:

D(x,t) = the dislocation velocity at a poimt x and time r,

T = the temporal separation,
Y = a constant,
k' = the correlation time.

Furthermore, since the spadal autocorrelation function between the dislocadon
velocity at (x, t) and that at (x +€, t +€/v) will indicare the degree of persistency of
offsetting and this persistency decreases with the separation distance € between the

two points, a similar exponential form may be adopted also for the spatal

autocorrelation function, i.e.,
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f D(x,t) D(x + €, t+€/v) dx = , e7*zle} (4.2)

where:
€ = the spatial separation,
W2 = a constant,
k7! = the correlation length,
v = the rupture velceity.
Then, the temporal and spatial autocorrelation funcrions can be expressed in a

single form as

J f D(x,t) Dlx+ € t+7) dx dt = 1 e LISl g rTiT-ev, (4.3)

- =D

Ir: Eq. (4.3}, the constant ¥ is related to the final slip Dg, as shown in Eq. (C.12);

kr is the comer frequency; and vk, = kr is assumed for simplicity (Aki, 1967). For
example, the corner frequency for Event 5 of the SMART-1 array was estimated by

Abrahamson (1985) to be 0.7 Hz.

The introduction of randomness at the source, as indicated in Eq. (4.3),
stiould partially account for the nonuniformmness of the fault slip over a fault plane.
Eq. (4.3) can be interpreted as follows: a rupture breaks evenly across the fault
width but coherently only for short distances along the fault, compared to the total
fault length, and only over a short time relative to the total fracture time. Inm other
words, (vk;)™! is related to the time required for propagation of fracture along the
length of the faulr, whereas k7' is associated with the time required for formadan

of fracture across the fault width.



Although the randomness of an earthquake source has been developed as
described above, the path effect representing the wave propagaton berween the
source and the ground stadons is sall needed for a stochastic analysis. This path
effect has besn approximately separated from the source effect for the far-field
responses in a fuil-space, in which the fault is treated as a point source (e.g., Aki,
1967). Such a simple isclation is not permitted if the fault dimension in the
half-space is accounted. The alternative way is to search a substitute system with

equivalent wransmission effect.
4.2.2 The Substitute System

The deterministic 3-D wave propagation model yields the ground response
time histories at various statons excited by a fault ruprure in a half-space. In
order to facilitate the evaluation of the randomness of the source on the ground
motions, a “substitute system” is ingoducsd to represent the path effect. To
ensure an almost identicai transmission effect, the substitute system should be
subjected to the “same” excitation and reproduce the “equivalemt” response for
each station and in each direction. The “same” excitation can be achieved simply
by transforming the rupmure into a support motion suitable for the subsurute
system, whereas the “equivalent” response is obtained by minimizing the error
function defined as the differences between the responses of the analytc model
and the substitute system. It is difficult to find such a substitute system that
satisfles the above requirements for all stations and directions. Hence, one
substitute system is required for each station and each direction in order t¢ neglect

the spatial and directional parameters in the substitute system. Furthermore,



identical form of the substirute system is used for all stadons but with different

paramerers.

An ordinary single-degres-of-freedom system may be adequate to simulate
the medium transidon effect from the fault to the free surface because the
behavior of the negative exponental term and the sinusoidal term in the response
of such a system is consistent with observed displacement time histories from an
earthquake. Hence, a linear multi-degree-of-freedom system is adopred as the

substitute system. The appropriate parameters for the different statons are

evaluated through system identification.

In the analytic model, the source mechanism is a series of dislocations
propagating along the fault length, whereas the excitadon to the mult-degree-of-
freedom should be a point motion. Therefore, the equivalent point base excitation
of the substitute system may be assumec to be the average dislocation over the

length of the fault, or

L
B() = -;: f DGz, o) dx . (4.4

Q

Because Eq. (4.3) defines the autocorrelation function for a transient random
process, the power spectral density of the faulting motion can not be obtained
directly from the Fourier transform of the autocorrelation function specified in Eq.
(4.3), such as the case for a stationary random process. However, with the
aurocorrelation functon defined in Eq. (4.3) and the equivalent point base motion

defined in Eq. (4.4), the power specrral density of the base velocity of the

substitute system can be estimatad as
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(4.5)

in which Dy is the final dislocaden and Ty = L/ v is the duration of fauitng. The
derivation of Eq. (4.5) is described in Appendix C. Eq. (4.5) represents the
stochastic excitation of the subsutute system, and is useful when the spatial

variation of ground motcns is evaluated.

In the mulu-degree-of-freedom systemn, the impulse response function for

each mode is
Rit) = ?; - &P sin(a; ‘/1—«;-}:), (4.6)
@ J1-§

where:

@; = the pardcipadon factors, j = 1, 2, ..., N,

w; = the natural frequencies, =1, 2, ..., N,

& = the damping coefficients, j = 1, 2, .., N,

N = the number of modes.

With the base modon specified in Eq. (4.4) and the impulse response

function shown in Eq. (4.6), the displacemsant response of the substitute system

canl be obtained by using the Duhamel integral and the modal superposition, l.e.,

4-20



ot

N
do = Y 9 f hi(t-7) [ 26,0,8(2) + 02B(3) | dr

i=1

Dq N =
-2 Y ele-ne] |, (4.7
4] =1 =t

in which ¢ = max (0, t-Tp).

Svstem Identification — An error function E, for determining the parame-
ters of the substrute system, is defined as the sum of squares of the differences
berween the responses of the substitute system and the 3-D analytical solutions
over the whole record. Since the velocity time history is the direct solution
obtained in the 3-D wave propagation model, it will be adopted to define the

necassary error functon. Therefore, the form of the error function will be

¥
E(g; w; &) = f La() -d(t-1) P ar, (4.8)

wherea:

¢;, w;, §; = the parameters of the substinnte system, j =1, 2, ..., N,

¢ = the initial time of the record,

i = the final tme of the record,

u = the ground velocity obtained in the wave propagation model,
d = the velocity response of the substitute systerm.

Cbserve that the time variable in the response of the substdtute system is shifted by

t; the first arrival time of the propagating waves. This is because there is a tdme
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lag for the response associated with the wave propagating from the source to the
station. No response will oceur in the substitute systemn for ¢ < #; the quiescent

initial conditions must be specified at t=¢;, instead of at ¢t = 0.

d(z) in Eq. (4.8) is the time derivative of Eq. (4.7), i.e.,

N
d(f) = -&- Z ——?ij‘“—- {e"gfmﬁ [5}5iﬂ(0)j¢1 —§j1.')

To j 20 J1-8

=

~ J1-&cos(w; [1-& r)]} l;ﬂ, , (4.%)

in which ¢ = max (0, t-Tq).

The parameters of the substitute system are estimated by minimizing the
error function of Eq. (4.8). The system identificadon used here is an extension of
the modal minimization method for multi-degree-of-freedom linear models in Beck
(1978). It includes one-dimensional minimizaton, single-mode minimizaton,

modal sweeps, and addition of new modes.

Each time when a new mode is needed, initial estimates are made for its
parameters. The modal sweep then starts from the first mode. During the
single-mode minimizadon, the parameters of the first mode are sequentally
optimized, whereas the parameters of the other modes are held constant. Since
d(¢) is a linear functdon of ¢;, the optimized participation factor in e¢ach mode can
be obtained, as long as the other parameters are given, by equating the derivative

of the error function with respect to the participation factor to zero, Le.,
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N
f [ﬂ(t)- > mﬂ(r)]ﬁ(t) de

x=]
43 Zaj

g = : (4.10)

f
J Ay dt

where fi(¢) is the unit impulse response (velocity) function for the kth mode of the

substitute sysiem, or
] N
dt) = Z P f(t). (4.11)
k=1

Therefore, a series of 1-D minimizations are taken by minimizing E alternartely
only with respect t0 @; and & in the single-mode minimizadon. This process is
continued until ‘a consecutive pair of 1-D mummizatons results in a fractional
decrease in E of less than a specified value. Then, the single-mode minimizaton is
continued for the next mode, and so on. After convergence for the last mode is
achieved, the sweep over all modes may start again if total convergence, which is
compared to the last maodal sweep, has not been achieved; otherwise, a new mode
is added. The addidon of a new mode will be stopped if its contribudon is less

than a specified tolerance.

The advantage of the procedure described above is to keep the number of
mode in the substitute system to a minimum. The criterion for convergence in
terms of the relative change in E is chosen instead of the change in the estimates

of the parameters because the latter can cause difficulties with the higher modes

(Beck, 1978).
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Since the error funcdon E is a highly non-linear function of w; and §j, the
final cptimized parameters will strongly depend on the inidal guesses, especially
for the case of w;, which was found in the sensitivity study with respect to the
initial estimates of the parameters. To find the best initial value of w;, that will
give the error function an absolute minimum, a sweep aver an adequate range of

modal frequencies was performed each time a new mode is added.

There are two conswaits to the medal natural frequencies and modal
dampings. In the analytic velocity time histories, the results were obtained at every
0.03 sec, so the maximum natural frequency for each mode was set at 10 Hz
corresponding to the resolution of the responses in the deterministic model. This
range of frequency also covers the frequencies of engineering interest. Further-
more, the damping coefficient for an underdamped systemn is between (0 and 1.
The response of such a system will decay slowly as the damping ratio decreases.
Since only finite record is used in the system identification, the lower limit of the
damping ratio should be specified to produce the quiescent response when the time
variable approach infinity. To investigate the effect of this lower limir, thres
different values, i.e., 0.05, 0.1, and 0.2, were examined, and the results are shown
in Figs. 4.9, 4.10, and 4.11, respectively. By comparing these figures, the lower

fimit of 0.1 was selected to ensure good results.

In addition to Fig. 4.10, Figs. 4.12 and 4.13 show the responses of the
substitute system at the other two stations 006 and O12, respectvely. The number
of modes used in the analysis ranged from 44 to 60 corresponding (o a tolerance of
0.0001. These figures show that the results of the substimute system closely

reserable those of the corresponding analytical solutions at the selected stations.
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4.2.3 Stochastic Characteristics of Ground Motioas

Absolute ground motions — The power spectral density of ground modon at
a given station and the cross spectral density of ground modons between two

stations or directions may be evaluated as follows.

Let dP(t) and d9(r) denote the displacement time histories at any two stadons
P and Q or in any two directions P and @ for a given stadon. The base motion to

the substitute system is the dislocadon at the earthquake source, for which the
power spectral density of the base velocity is given by Eq. (4.5). d°(¢) is expressed

with the Duhamel integral as

o t
df(r) = z ¢ | Ah (fx)[ Z mme(f- Ty) + (wh)?Blt - 71)] dzy

m= ]
0

M @
= Z P j #2(e) [ 2850580 - 7)) + (0B)B(e-7) ] dry, (4.12)

where:

¢‘;, wh, EL = the parameters for the mth mode at staton P,

ki = the impulse respense function for the mth mode at station P,

B B = the base velocity and displacement of the substitute system,
respectively,

M = the number of modes at stadon P.

Eq. (4.12) implies that h2(z;) = B(ty) = B(r;) =0, for r; < 0. Similarly, for station

o
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N
dt+1) = Z ¢2 f h,?(rz)[ 282028(t+ T~ 13) + (w,?)zB(t+r—r2)] dr,, (4.13)

n=1
-@

in which N is the number of modes at station Q.

The cross-correladon function between stadons P and Q is defined as
R0 = E[d°() a@(+1)], (4.14)

and the associated cross spectral density is given by

§ 2 0lw) = j R 7,a(7) e T dr. (4.13)

-:@

Egs. (4.12) through (4.15) are combined together to give the cross spectral
density berwes=n stadons P and Q in terms of the stochastic excitation at the base

and the modal parameters of the two substitute systems, le.,

M P
Sop@) =5 5 9 ‘*" [ 45250070807 + 2wPwl(E80f - 0

m=1 mp=1

+ (R | HE (0) HE(w) Sss(w), (4.16)

where ® denotes the complex conjugate, HZ and H ,',2 are the frequency transfer
furictions of the mth mecde at station P and of the nth mode at stadon (Q,

respectively.

For a stationary procass the cross spectral densities for velocity and accelera-

don are
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[}

S,polw) = 0§ po(w), (4.17)

and

u

S r0lw) = oS polw), (4.18)

respectively, where v* and a” denote the ground velocity and acceleraton at

station P, respectively.

Based on Egs. (4.16) and (4.18), the power specwal densities of the
accelerations along and normal to the epicentmal direction for the seven stations
from Q08 to O12 were calculated. The theoretical results along with the

corresponding empirical results are shown in Figs. 4.14 through 4.20.

In general, the results of the model overestimate the spectral amplirudes at
the lower frequencies, but underestimate the amplitudes at the higher frequencies.
The same phenomena were observed in Zerva, er al. (1985). These may be
atributed to the inhomogeneity of the fault and the medium. The former is
obvious when the overall comparison across the seven stations, especially along the
epicentral direction, is viewed, whereas the latter can be realized by investgating

the empirical results at different stations.

As mentioned earlier, the high-frequency content of the seismic ground
motion is related to the details of faulting, and these details arise from the
nonuniform distribution of various physical properties on the fault plane. Even
though the spatio-temporal incoherency of the slip on the fault was simulated in
the stochastic approach, it is not sufficient to fully represent the inhomogeneous

faulring process because the other parameters and assumptions, including the final
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sdp, rupture directon, starung and stopping of rupture, etc., remain constant or

are greaty simplified for mathemadeal wactability.

There might be not much need to develop more complicated m::del in
sirnulating the rupture process for the analysis of pipeline response, pard: -»:ause
it require so many parameters that they can not be estmated = --cally;
furthermore and more importandy, because the high-frequency region - .. lide
influence on the differendal respanses of pipelines. These ars shown in the

following section and in Section §.

Several layers actually exist broneath the SMART-1 array (Wen and Yeh,
1984), e.g., soil, alluvium, pleisto. :ne formation. The thickness of each layer
ranges from a few merers to several hundred merers, whersas the P-wave velocity
varies from 0.43 km/sec 1o more than 2 kmm/sec. The influence of these dipping
layers can be sesn by investigating the amplitudes of the empirical specaal at any
two close stadons. The pezak values and the dominant frequencies of the empirical
specra vary and disperse so randomly, as shown in Figs. 4.14 through 4.20, thac
no general rule regarding the wend for increasing epicenmal distancss can be
formulated. Dravinski (1984) indicated that the existencs of layers results in the
ammplificadons at some band of frequency or the reductons at other frecuencies
the amplitudes of the waves propagadng through the layers. The degres of
amplificadons or reducdens as weil as the affected frequencies depend an the type
of wave, the number of layers, and the properties of each layer. The lower bound
for the dampings in each mode of the subsdmre system is 0.1, which is wo small
to represent the effect of radiation damping in the seil, so the scattered nature of
the soil may be the another reason for the qversstimation of the specTa at the

lower fragquencies. Sincs the soil amplification aifects the lower frequencies and

4-37



has varying effects for different stations, it should be more important than the

effect of the highly irreguiar rupture process for the analysis of pipelines.

Differential ground motions — Two factors make the design and analysis of
pipetiincs airfersnt from those of butldings. One s the spadal and temporal

incoherent ground motions applied as the excitation 10 a long pipeline. Secondly,
the major concern for designing a pipeline is the relatdve response betwean
adjacent points. Therefore, the differential ground motion is more important than
the absolute ground motion in the design and analysis of lifeline souctures. Let

Ad(t) = d?(¢) - d9(7) be the differential ground motion between stations P and 0 in

a given direction. Its power Spectrél density is
Samna(w) = S,p.p(0) + 5 0,0(@) -2Re[ §,2,0(0)]. (4.19)

In Eq. (4.19), the power and cross spectral densities of the absolute ground

motions can be obtained directly from Eq. (4.16).

The power specmal densities for differential velocities and acceleratons may

then be evaluated as follows.

Savan(@) = @ Spsas(w), (4.20)

and

w* SAdM(W), (4.2 1)

S Aala (6’))

respectively, where Av and Aa denote the differental ground velocity and

acceleration between stations P and Q, respectively.
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Figs. 4.21, 4.22 and 4.23 show the power spectral densities of the differential
accelerations, velocites and displacements normal to the epicentral directon,

respectively, for all the ten separation distances among the seven stations.

For the spectra of differential accelerations, the theoretical results underesti-
mate the spectra at the lower and higher fraquencies, but are almost idcnu:cal at
the middle range, except for distances of 0.2 km and 0.4 km. In general, the
relative amplitudes of the theoretical spectra increase with the separation distance,
whereas it is not the case for the empirical spectra, especially for distancss of 0.4
km and 2 km. For an actual earthquake, the inhomogeneity and anisotropy of the
soil medium result in a higher loss of coherence than for an idealized model, in
which an elastic, homogeneous and isowopic half-space is assumed. The differ-

ences betwes=n the theoretcal and empirical results may be atmributed to : 5 factor.

In the analysis of pipelines, the differential displacement response is of
major concern, and it depends on the differental ground velocity and displaca-
ment. Figs. 4.22 and 4.23 show the spectra of differental ground velocities and
displacements, respectively. The theoretical results show better agresment than
those for differential ground accelerations. In Figs. 4.22 and 4.23, most conwibu-
tions to the spectra come from the region of low frequency; that is one of the

reasons why the high-frequency content is not very important for the analysis of

pipelines.
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SECTION 35

APPLICATION TO PIPELINES

5.1 Introduction

A characterisdc that distinguishes a pipeline from other structures is that it
extends (essentally paraliel to the ground surface) over a distance which is long
compared to its other dimensions. For this reason, it is inappropriate to assume
thar the seismic excitations at all points of ground contact are jdentdcal. When the
ground mouons are incoherent, the relative dispiacements of the points along the
pipeline produce stresses, whereas coherent excitations at continuous points may
result in primarily rigid body motions, with no significant strains. Therefore, the
main response of engineering interest is the relative displacement of adjacent

points on the pipeline, especially the differential displacements across the joints.

Nelson and Weidlinger (1977) inwoduced the concept of “Interference
Responise Spectra” in an attempt to take the incoherent seismic ground motions
into account. They assumed thar the interference between any two ground stations
depends only on a pnase shift across the separation distance, Le., the seismic wave
travels with a certain constant velocity and the wave form remains unchanged.
This is the simplest way to consider the traveling wave effect if only the earthquake
recording at a single station is available. Although the assumption of input to
pipelines is not consistent with the actual propagation of seismic waves, the
discrete model of Nelson and Weidlinger {1977) representing two pipe segments

connected by a joint will be used in the present study because it contains the major
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elements of a pipeline and the surrounding soil, and is a basic model for analyzing
the pipeline nerwork. The incoherent ground motions developed in Section 4,

however, will be applied as the ground excitadons to this discrete maodel.

5.2 Differential Axial Motion across Joint

Fig. 5.1 shows the discrete model of pipe sections comnected by a joint

(Nelson and Weidlinger, 1977). The two pipe segments are assumed to behave as
rigid bodies, and interconnected by a spring of suffness k, and a dashpot of
damping ¢,. Soil-structure interaction is represented by springs and dashpots of
stiffness k, and damping ¢, respectively. The constants m and [ are the lumped
mass and the separation of the two centroids of the segments, respectvely. The
axial displacements of the pipes are denoted by x:(t) and x;(t), whersas x,(r) and
Xg,(t) are the ground excitations at the two supports. Since the axial response is of

primary interest, no rotaton is considered here.
5.2.1 Deterministic Analysis
The equations of motion for the discrete system in Fig. 5.1 are

0, (5.1)

13

m.i"l + Cp(i'l -X.'z) +kp(x1 -'Xz) +Cx(4i1 -X.Gl) +kg(x1 —xGl)

Q. (5.2)

I

m.i:'z - Cp(i1 — Xz) - kp(n - Iz) + CJ(XZ —igJ + k;(}(z —XGJ

Addition of the two equadons, Egs. (5.1) and (5.2), gives the equaton of moton

for the rigid body mode, whereas the difference of the two equations would yield

the equation for differendal motion, i.e.,



— 00 —= ()

Figure 5.1 Discrete Model for Differential Axial Motion across Joint
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Figure 5.2 Discrete Model for Differential Transverse Motion across Joint
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1

A% +28weAx + wiAx = T Fo(d), (5.3)
where:
Ax = (1) - x(o),
28awo = (cg+2¢,)/m,
wf = (ke 2k)/m,
A = Kofky = Ch/cy,

Fo(t) = 2&wetxg(t) + wiAxg(r),

Axg = xg,{t) - xg,(2).
In Eq. (5.3), Ax may be evaluated by the Duhamel integral, i.e.,

4

Ax(f) = fho(f‘f) 14—122. Fo(7) dr, (5.4)

Y

where the impulse response function is

Bo(t) = — ey €800 sinag /T B3, (5.9)

woyl-&5

5.2.2 Stochastic Analysis

Using Eq. (5.3), the power spectral density of the differential axial displace-

ment Ax is

Sacade) = gy o) S, (5.6)



where:

1
H z = el »
Il = o s e
SFoFo(m) = 45%&?5 dec;:lla(w) + wé SA-!(}A.!Q(CU)

1 2 7 =2
P (d4&5wdw’ + wg) Saxqaxs(@).

Therefore, Eq. (5.6) becomes

Sacasl@) = rrgrme (Hhedet - o) @) Ssagle), (1)

in which Sar-az(w) is the power specrral density of the differendal ground

acceleration obtained in Section 4.

5.3 Differential Transverse Motion across Joint

Zerva, er al. (1983) added the rotational motions to Nelson and Weidlingers’
discrete model when the pipes are subjected to lateral excitations. There are two
rotational motions, one for each pipe segment, in Zerva, er al. (19835). Since the
equations of motion governing the two rotations are equal, the rotations of the two

pipe segments must be idendcal, as shown in Fig. 5.2.

5.3.1 Deterministic Analysis

In this case, the equations of madaon for the discrete system in Fig. 5.2 are

0, (5.8)

]

myy + Cp@t -y + 19) + kp(.‘fl -y +16) + CgU’l - Y6,) *k;(yl ~Y6,)

0, (5.9)

my".’. *Cp(j}X ‘}}2+[9) -k;[yl =Y+ lg) +C3(y: "yG:) +kg(yz —sz)



1 o I, . : I
EmF@-f-cpE(y;-y2+19)+k7§-(y1—y2+19) = Q, (510)

where:

Y1, Y2 = the mansverse displacements of the pipe segments,

8 = the rotation of the pipe segments,
m = the mass of the pipe segments,
[ = the distance between the centers of the two pipe segments,

ks, cp, = the stiffness and damping between the pipe segments, respectively,
k,, ¢, = the stiffness and damping of the soil, respectvely,

Ye,» Yo, = the wransverse ground displacements at the two supports.
The differential wransverse displacement Seoween the two pipe segments is
Ay(e) = n() -y () + 16(). (5.11)

Hence, Eqs. (5.8) through (5.10) can be representad in mamrix form by

[e]{#}+ [cHz}+ [k1{2} = {F0}, (5.12)

whera:
0 0 |
M =] 0 = o [,
-mi§ m/i§& mib
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[ ¢ 0 Cp ]
[C] = 0 ¢ =G |.
I 0 a Cp
[k 0 & |
kK] =] o & -k |,
00 k|

( ¥

(- »o},
L Ax(D)
e, (&) + Ky, (0)
{Fo)} =4 cyelt) + k500

0

The natural frequencies of the systam are

o, 2

8k, +k) F 64K - Bhoky + k2

and

The corresponding modal shapes are

2m
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(5.14)



{(Dl. 2} = -l 1, (5.15)
P, 2
and
1
{os}={ 1 ¢ (5.16)
0
in whuch

5, - Iomak (8kp—kx)$ﬁ4k§-8kfkg+k§
nET kP ) ZkP .

(5.17)

Observe that the third mode is the rigid body motion. For simplicity, it is

assurmed again that

ks o1

Then, the narural frequencies of the first two modes are

2
0l 3 = [(82+1) F /6422 - 81+ 1] 5"2_’ (5.18)

and the associated mode shapes become



#.2 = 27 [@1-1) 7 /6AF a1+ 1) (519

If modal superposition is applicable, i.e., siffness proportional damping is

assumed, then Eq. (5.12) yields the uncoupled equations,

, . R
In+ 28,Wpln + W32, = T n=1, 2, 3 (5.20)
where:
1) ! 1 1 zi (1)
yt) 7 = -1 -1 1 z{n) 7,
Ay(r) 1 ¢ 0 z5(t)
& = the modal damping,
1 1,
My 3 = m2-=¢y 2 +=¢71 2),
3 6
M; = 2m,

Fi.z = C;G'G,_ -¥6.) +k;(}’c:1 -YGJ.

F3 = C;@G-l '*'5’0;) "'kg(YGx "'}’67):
Cg = 2&;04m,
ke = oim.

The generalized displacement for each mode, z7,(t), may be evaluated through the

Duhame! integral, i.e.,



t

jh,,(t-r) F,(7) dr, n=1,23; (5.21)

a

1
M,

Zn(z) =

in which
1 .
() = esnnt sinw, y1-£%t, n=1,2, 3. 522
wn ; 1 - 511: (

Moareover, the differential transverse displacement between the two pipe segments

is expressed in terms of the generalized displacements as
Ay(t) = ¢1zi(t) + Paza(2). (5.23)

5.3.2 Stochastic Analysis
Using Eqg. (5.23), the power spectral density of the differendal transverse

displacement Ay can be obtained as

Sayay(®@) = ¢15:,(@) + 162855 () + 520, (@)] + 43S, (0). (5-24)

In Eq. (5.24), the power and cross spectral densities of the genaralized displace-

ments are obtained from Eq. (5.21), ie.,

1

i, H () H{®) Sppr, (@), mn=1 2 (5.25)

SImZn(w) =

in which * denotes the complex conjugate, and H is the frequency wansfer function

given by
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1
0% - 0* + 2iEwn0

Hy(w) = n=1, 2. (5.26)

The corresponding cross spectral density of the generalized force is

SFnrn (@) ‘:?SA)’GA;‘G (@) + ckg[Sasare(@) + Saygasc (@] + kisAmﬁro(“’)'

g g
(Zsl-ﬁ'-w—i) SAYGAYG(CU)’ m,n=1, 2. (5.27)

Finally, substituting Eqs. (5.25) and (5.27) into Eq. (5.24), the power spectal
density of the differential transverse displacement for the pipes excited by the

incoherent ground motions is

Saray(e) = [%wm)iz+z-§—}%Re{Hl(w>Hz(w)}+f—i-mz<m>12}

. (—2- + —7) Saygasg(@)- (5.28)

5.4 Comparison of Results

In order to compare the results derived from the present model with the field
recordings from the SMART-1 array, the corientadon and location of the pipeline
studied in this section will be assumed to coincide with the epicentral directon of
Event 5 (i.e., N26.2°W) and close to swation C00, respectvely. Therefore, the
ground excitations applied to the pipeline in the axial direction are the seismic
ground motions along the epicentral direction, whereas the input in the transverse

direction are the ground motions normal to the epicentral direction.
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Loh, et al. (1983) used the interference response spectra to esumate the
differential axial motion betwesn twe pipe segments for the earthquake of Event 5.
Zerva, er al. (1985) then compared the results of a2 2-D mode! with those from the
interference response spectra. Since the method of interference response spectra
oversimplified the propagation of waves betwesn the two supports of the pipeline
and the field data from a dense array are now available, the comparison in the
study will be performed primarily berwesn the results of the current 3-D model and
the responses excited by the recordings of the SMART-1 array. The corresponding

interference response spectra are also shown.

First of all, two parameters in the discrete model of a pipeline should be
evaluated to represent an actual pipeline. 4 stands for the ratio of ¢,, the damping
of the connection between the pipe segments, to ¢,, the damping of the soil. The
former is much less than the latter, so a value of 1/5 will be assumed for 4.

Furthermore, since the damping of pipelines may be higher than that in buildings,

two values of damping rado, namely 5% and 10% of critical, will be adopted here,

ie.,

§o = & = § = §5 = 5% or 10%,

where £ is the damping ratio in Eq. (5.3) for the analysis of the differendal axial
displacement in pipelines, and §s,n=1,2, 3, are the model damping in Eq. (5.20)
for the analysis of the differential transverse motion. These two selected values

(5% and 10%) could conceivably be the lower and upper bound damping values for

a practical pipeline.

The differsntial displacements of the pipes subjected to the earthquake of



Event 5 were obtained through the determinisuc analyses in the previous sections
by using the array recordings as input. For the interference method, the recordings
at the station with the shortest epicenmal distance were used; the ground motion at
the other station was determined by assuming the above excitation traveling with a
constant velocity which was obtained by the separaton distance and the difference
in the arrival times of the two statons. On the other hand, the power speczal
densities of differential displacements are evaluated through the stochastc analy-
ses using the power spectral densities of the differental ground motions obtained
for the substitute system. Because of its importance in the analysis and design of
pipelines, the maximum differential displacement across a joint is emnphasized.
For the stochastic analysis, the mean maximum differential displacement and the
associated standard deviation over the duration of an earthquake are evaluated

using an asymptotic expression (Davenport, 1964), as follows:

n

#AUm

0.5772 _
[JZ In(v7} + m] Taus (5.29)

(5.30)

k11 1
g = GAus
dum = 7o ,;2 In(T) 8

where:
Al = max Ault ,
T T os:sT l ()]

Au = the differential displacement, ie.,, Ax for axial motion, 4y for
transverse motion,

T = the duration of the record,

y oL 9u
T GaAu
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<

0'4_2;; j Sw(a)) dw,

- a3

it

A J @* Sazal(w) do.

-

The results shown in Figs. 5.3 through 5.6 include the maximum differentdal
displacements from the deterministic analysis, the mean maximum differential
displacements and the mean plus one standard deviation obuained by the stochastic
analysis. Each figure, which was called the “interference response spectum” in
Nelson and Weidlinger (1977) or “differential response spectrum”™ in Zerva, et al.
(1985), shows the maximum differential response plowed as a function of the
natural frequency of a system. The natural frequency in Figs. 5.3 and 3.4 for the
axial discrete model of pipelines is that in the equadon of the differendal axial
moton, {.e., wq in Eq. (5.3), whereas the natural frequency in Figs. 5.5 and 5.6 for
the mransverse motion stands for the natural frequency of the rigid body mode, i.e.,
w3 in Eq. (5.20). Seven separation distances, namely [ = 20 m, 50 m, 200 m,
0.4 kmm, 0.8 km, 1 km, and 1.2 km, as well as two representative dampings, i.e.,
5% and 10%, are considerad in these figures. Observe that there are no field

recordings - separation distances of [ = 20 m and 50 m.

In general, the mean maximum differential dispiacements of pipelines
predicted with the proposed model are on the safe side for all frequencies. The
existence of local layers in the SMART-1 array site produced the seismic ground
motions so incoherently, even for shart distances, that the spadal variation of

ground motions can not be simulated well by a homogeneous theoretical model
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(i.e., without layers). However, as shown in Figs. 5.3 through 5.5, the relative
displacement response spectra obtained with the proposed model give results thac
are even on the safe side over the entire range of frequencies. Observe also that,
on the other hand, the method of interference response spectrurn consistently
underestimates the maximum differentdal displacement of the pipelines partcularly

for natural frequencies less than 2 Hz.
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SECTION ¢

SUMMARY AND CONCLUSIONS

6.1 Summary

A shearing fault rupture of the Haskell type was presentsd for modeling the
earthquake source mechanism. In such a model, the rupture motion is described
as a line dislocation sweeping over the entire fault plane at a constant rupture
velocity, and the slip may be a strike-slip or dip-slip motion. A two-step method of
sclution is used to determine the ground responses in a three-dimensional
homogeneous half-space. The ground motion in the Laplace transform domain
was obtained by soiving the transformed wave equations subject to the boundary
conditions specified in the above fault plane. The generalized ray thegrem was
used for this purpose and might be extended systematically to solve the wave
propagation problem in a layered medium. The analytic soluton in the tme
domain was formulated through the Cagniard-de Hoop technique in which the
inverse Laplacs transform was taken by direct investigaton. The comrecmess of
the formulation was validated by comparing the results with those obtained by the

method of Green’s function.

In order to take the incoherent slip into account, the rupture moton was
trzated as a random process by introducing a spatio-temporal autocorrelation
function of dislocation velocity, from which the power spectral density of the
averaged dislocation velocity over the fault length was estimated. A mult-degres-

of-freedom substitute system is inmoduced to represent the path effect, separately



from the source effect. The parameters of the substitute system were determined
though system identfication using the results of the 3-D analydcal solutons. With
the power spectral density available at the source and the transfer function
obtained from the subsdtute system, the power spectral density of differential

ground motions can be obtained.

An acrual earthquake, Event 3 recorded at the SMART-1 array, was selectad
for validating the results of the model. The parameters in the model, such as the
fault orientation, the fault diﬁlension, the final disfocaticn, and the characteristcs
of the medium, etc., were carsfully investigated. Some of the parameters were
evaluated based on the earthquake magnitude. Emphasis was directed ro the
stochastic propertes of the differential ground motions, which are significant for

the response analysis and design of lifeline systems.

The theoretical results are applicable to analyze lifeline systems. Two
discrete models of pipelines were examined. The maximum differential displace-
ments across the joint connecting two pipe segments subjected to either axial or

lateral ground excitations were presented in terms of the differential response

spectra.

§.2 Conclusions

In this study, a hybrid deterministic and stochastic medel, which depends on
the parameters at the earthquake source and the characteristics of the soil, was
developed to investigate the spatial variation of ground motions necessary for the
analysis of pipelines. Based on the results of the study, including the validation

with the SMART-1 data, the following conclusions may be drawn:



1.

rJ

In the determinisdc approach, the method of soiution for calculating the
ground responses is effective and efficient when compared with other
methads, such as the Green’s function solution. For layered media, the
generalized ray theory offers a systematcal procedure to cbuain the
ground responses in the transform domain. In addition to the source
functions and receiver funcuons for a homogeneous medium, only the
reflection or refraction coefficients are nesded. The Cagniard-de Hoop
method has besn shown to be an efficient way to take the inverse

transform for obtaining scluticns in the time domain for each ray.

. The high-frequency content of the seismic waves is not important for the

analysis of pipelines, because the differendal ground velocity and displace-
ment are the base excitations to a pipeline in which the differendal
displacement respomse is of major concem. The frequency transfer
function of a pipeline system will tend to filter out the high-frequency

excitations.

. The effect of soil amplification is different at various stadons so that the

differantial ground motions at some pair of stations with a short separadon
distance are more incoherent than those with distant scparétion. Any
discrcpancy between the analyuc and empirical results for a single
earthquake can be atributed to the assumptions made in the swudy, such

as the fixed rupture direction, the continuous offseming, the homogeneity

and isotropy of the medium.

The proposed differsndal response spectrum predicts the mean maximurm

differential displacement between the pipe segments as a funcdon of the
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system frequency, and is generally on the safe side as compared with

empirical results.

5. The interference response specoum consistently underestimates the maxi-
murmn differental displacement between the pipe segments, pardcularly

when the natural frequency of the pipe system is less than 2 Hz.

6.3 Suggestions for Further Study

On the basis of this study, suggestions for further work would inciude the

following:

1. The multi-degree-of-freedom system may be a good theoretical mocz! for
structures, but it is probably not suitable for soils. A modified subsii:ute
system, e.g., including the epicentral distance or contmining two subsys-
tems (one for rock, one for soil), may be more effective to simulate the

transmission effect.

2. A 3-D analytic mode! for layered media can be readily extanded from the
current model; however, this would involve much more calculations
because multiple rays will be necessary. Simplificadon is necessary for

developing . suitable model o account for the inhomogeneity of the soil.

3. Basically, w2 ground motions are determined by solving the wave equa-
tions subject to the boundary conditions specified at the source. A
standard procedure is to take the Fourier transform over the time variable
and the two horizontal space variables, and then obtain the responses in

the transform domain through algebraic manipuladon. In the Fourier



transform solution (i.e., a function of the frequency and the two wave-
nurnbers), the source factor, the effects of wave propagation, reflecdon
and refracton, along with the characteristics of the responss at the
receiver (i.e., displacement or swess) are all collected together through
multiplication. Therefore, another possible approach is to represent the
spatial vanatgoen of ground motons in a random field of frequency and

wave numbers when the randomness is introducead at the source and/or to

the medium.

. Since the layer beneath the SMART-1 array is oblique (dipping toward
north with an angle of about 6 degrees), a semi-analytic method may be
applicable to study the local soil effect. In June 1983, an extension station
E02 was installed at the outerop whuch is located 4.8 km south of station
C00. Most events triggered the SMART-1 array with epicenters located
south of station EQZ. Therefore, the ground motions at station E02 can be
obtained analytically in a 3-D model with waves propagarting through the
homogeneous medium f{or these events, and the soil amplificadon can be
characterized by the transfer function with the recordings at station EQ2 as
the input and the recordings at other stations as the output, if, in each
station, the transfer functions are similar for different events. Obviously,
it is an approximate approach because the waves transmitted through the
interface are all forced to pass through station E0Z. However, this may be

a practical methed for examining soil amplification.
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APPENDIX A

LAPILACE TRANSFORM ELEMENTS FOR OBLIQUE FAULT

(1) Stike-slip Fault:
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APPENDIX B

ANALYTICAL SOLUTION OF HASKELL MODEL
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APPENDIX C

POWER SPECTRAL DENSITY OF BASE VELOCITY

The spado-temporal autocorteladon funcdon for the dislocadon velocity in

the fault plane is defined as

wle, 1) = JfD(x,r)D(xa—e,rw)dxdr, (C.1

- @ - @

where:

D(x, t) = the dislocation velocity at a point x and time ¢,
€ = the spatial separation,

T = the temporal separation.

The double Fourier transform over the spatial and temporal coordinates is

performed for D(x,f) and (e, 1), i.e., the transform pair of Nix,?) is

Dk, @) = j j D(x, f) e@=%2) gx gt, (C.2)
D) = — f f DFF(k, @) @) dk doy. (C.3)
47

anc that of ¥(e,7) is



vk, w) = f fw(e. 1) ¢ W46 de dr, (C.4)

- 3 - O3

(e, 1) = 4—}1-2- f j Wk, 0) €@ %) dk do, (C.5)

- - @D

where k and o are the wave number and the frequency, respectvely.
Substituting Eq. (C.3) into Eq. (C.1), i.e.,

wle, 7) = [ f D(z, 1) [Z};}"' j J, DFF(k, @) £@trn-ik=r6} gf a’w] dx dt

- 412 f f [ f f D(x, 1) @ dxdr] DFF(k, ) €749 dk dw,

and then using Eq. (C.2), i.e.,

w(e,7) = T:? f f DFF(~k, - w) DFE(k, w) @49 dk do,

-3 =~ @

the spatic-temparal autocorrefation function of the dislocation velocity is expressed

by the double Fourier transform of the dislocation velocity as

L

pp |DFF(k, w)[? &40 gk du. (C.6)
T

k_...___.a
k-...-._ﬁa

w(e, 1) =

8

8
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Comparing Eq. (C.5) with Eg. (C.6), a useful relation is obrained,
¥k o) = DTk o) (o)

The Fourier transform of the base velocity of the substitute system is

@ L] L

Bf(w) = f B(t) e dt = J %— [J D(x, 1) dx ] g dt =

- - Q

DFF(0, ).  (C.8)

o

Comparing Eq. (C.7) with Eq. (C.8), the equivalent point base velocity is, in
frequency domain, related to the spato-temporal autocorrelation funcdon of the

diz:ccaton velocity by

B (@) = le-w(o, o). .C.9)

Following Aki (1967), the spatic-temporal autocorrelatdon function of the

dislocation velocity was defined in Eq. (4.3), and the corresponding double Fourier

transform is
Yilka) - —— P (C.10)
&+ ) + (k-=)7)
where:
‘IPQ = a consiant,
k7' = the cortelation time,

k;! = the correlation length.

Therefore, from Eq. (C.9),

c-3



o 1 4 k
IBr(w)IZ - L_Z Yok rky —. (C.11)
Notice that
BZO)* = LZZZL = D}, (C.12)

in which Dg is the final dislocation, so the squarce of the Fourier amplirude of the

base velocity is in terms of the final dislocation, the correlation time, and the

correlation length as

B = —2 (€.13)

w- w=
1+

For a transient random process X{¢) with nonzero values only in the range of

0 <t < T, Bendat and Piersol (1971) suggested that
2T e 2
Sxx(@) = = [XT@) (C.14)

Therefore, the power spectral density of the base velocity of the substitute system

is estimated by

pE D3

To (D2 CDZ ’

-z

Spplew) = — ‘BF w)]* = (C.15)

in which T3 = L/v is the duration of rupture.
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APPENDIX D
LISTING OF COMPUTER PROGRAM

PROGRAM MAIN

THIS PROGRAM EVALUATES SEISMIC GROUND MOTIONS
EXCITED BY A HASKELL FAULT
EMBEDDED IN A THREE-DIMENSIONAL HALF-SPACE

PARAMETER ( N = 1086 )
IMPLICIT COMPLEX (C)
CHARACTER DIR(3)*¥1, TITLE(8)%10

DIMENSION DX(4), DY{(4), DZ{4), TR{1), SGN{1}, TIMIXN),

COMMON T
COMMON JLUNT/ LIN, LOU )

COMMON /IDEX/ IWAVE, IDISP, ISLIP

COMMON /SLOW/ BP, BS, BR, BP2, BS2, BSP, B2
COMMOX /RAYL/ BRL, RPB

COMMON /GEMF/ YP, ZP, FS, FC, FS2, FC2

COMMON /GEMG/ X, Y, Z, QS, QC, RO, R, R2

COMMON  /TIME/ T1P, T1S, T1H, THM, T2, T3P, T3S,

COMMON /FACT/ SGR, SGI, AFR, AFI, AFP, AFS, BTR,

S2R, S2I, S2P, §2S
COMMON /SUMS/ NJ, PT{1000}, WT
COMMON  /SUMO/ NHO, PHG(1000), WHO(1G00)
CoMMON  /SUMT/ NH1, PH1{(106C0}), WH1{10G0}

DATA DIR [/ 'X’, 'y, 'z’ /
DATA SGN / 1., -1., =-1., 1. /
DATA CI /0., 1. 3y /
LOGICAL UNTITS AND DATA FILES

LIN = 1

LOU = 2

OPEN ( LIN, FILE=’INPUT’ )

OPEN ( LOU, FILE=’CUTPUT’ )
DATA INPUT IN B LINES

[8A10]

READ {( LIN, 1001 ) ( TITLE{I}, I =1, 8 ;
[5F10.01

REaAl ( LIN, 1002 ) &C, YC, Z2C, XL, YW

T3H
BTI,

Repraduced {rom
best available copy.
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Q)

xC

YC = COORDINATES OF SHALLOWEST CORNER OF FAULT
VA

XL = LENGTH OF FAULT

YW = WIDTH OF FAULT

{110, 3F10.0]
READ ( LIN, 1003 ) 1ISLIP, VR, D, PHT

ISLIP = 1 FOR STRIKE~SLIP FAULT
= 2 FOR DIP-SLIP FAULT

VR = RUPTURE VELOCITY

D = DISLOCATION AMPLITUDE

PHI = DIPPING ANGLE IN DEGREE

[2F10.0]

READ ( LIN, 1002 ) VP, VS

VP = P-WAVE VELOVITY

Vs = S-WAVE VELOCITY
{3F10.0}

READ ( LIN, 1002 ) XS, YS, Z8
XS

¥s = COORDINATES OF STATION
ZS

[T10, 2ZF106.0, I10]
READ ( LIN, 1004 } IDISP, TO, DT, NT

i X~

IDISP = 2 FOR RESPONSES IN Y-DIRECTION
3 Z-

TO = INITIAL TIME OF RESPONSE

DT = TIME INCREMENT

NT = TOTAL NUMBER OF RESPONSES

CLOSE ( LIN )

GAUSSIAN POINTE AND WEIGHTS

NJ = 100
NHO = 100
NH1 = 100

CALL GAUSCHE ( NJ, PT, WT )
CALL GAUSJCB { WHO, 0., 0., PHO, WHO )

CALL GAUSJCB { NH1, 0., -0.3, PH1l, WH1 }
PI = 4. ¥ ATAN{1.)

Dt =p /7 (4., ¥ PI x PI )

D3 =0/ { 2. ¥ PI
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BP =1, / VP
BS = 1. / \8
BR = 1. / VR
BP2 = BP % BP
B52 = B5 % BS
BSP = SQRT { BSZ - BP2 )

CALL RAYLEIGH ( BP2, BSZ2, BRL, EPB )

PHI = PHT % PT / 180.

FS = SIN {PHI)

FC = CO8 (PHI)

FSZ2 = 2. ¥ FS x FC

FC2 = 1. - 2. ¥ F§8 % FS§

X0 = X§ - XC

Y0 = Y8 - YC

Z0 = 7§ - ZC

DX{1) = 0.

DX{2) = 0.

DX{3) = ZEL

DX{4) = XL

DY{1l} = O,

DY(2Z) = YW ¥ FC

DY{3) = 0.

DY{4) = YW ¥ FC

DZ(1) = 0,

DZ{Z2) = YW * F§

DZ(3) = 0.

DZ{4) = YW % FS

TR{1}; = 0.

TR(2) = 0.

TR(3) = XL / VR

TR{(4) = XL / VR

DO 160 I = 1, NT
TIM{I} = TO + ( I - 1 } % DT
RSP{(I} = O.

100 CONTINLUE

DO 300 J =1, 4
X = X0 - DN(J)
Y = YO -~ DY{J
Z = ABS { Z0 « DZ{J) }
CALL GEXNTIM
D2 = D3 / QC

DO 200 I = 1, NT
T = TIM{I) - TR(J)
IF ( T .LE. 0. ) GO TO 200



U1lT = DI ¥ { Ul (T) + UlH (T) )
v2T = D2 % { U2 (T) + U2H (T} )
U3T = D3 ¥ (U3 (T) + U3H (T) )
U = UlT + UZT + U3T
RSP(I) = RSP(IL) + SGN{J) * U
200 CONTINUE
C
300 CONTINUE
C
WRITE ( LOU, 1601 } ( TITLE{(I}), I = 1, 8 )
WRITE ( LOU, 2001 ) DIR (IDISP)
WRITE { LOU, 2002 ) ( TIM{I), RSP{I}), I = 1, NT )
CLOSE ( LOU )
c
1001 FORMAT BA10 )
1002 FORMAT 5F10.0 )

1003 FORMAT
1004 FORMAT

110, 3F10.0 )
110, 2F10.0, I10 )

e

C
2001 FORMAT ( // ' TOTAL RESPONSE’,
+ // B8X, 'TIME’, 6X, Al, ’'-DIR RESPONSE' / }
2002 FORMAT ( F10.2, 353X, E15.5 )
C
STOP
EN
C
C
o e e e e e e
C
C
SUBROUTINE GAUSCHB { N, PT, WT )
C
C POINTS AND WEIGHT IN GAUSS-CHEBYSHEV QUADRATURE
[V
C Int from (-1) to (1) [ f(X) / ( 1 - X*¥X } %% 0.5 ] 4%
C
C = WT % Sum from (1=1) to {iz=N) [ f{ PT(1i} } 1}
C
DIMENSION PT{N)
C
PI = 4. % ATAN (1.}
C
WT = PI / N
C
FT = WT / 2.
DO 1060 I =1, N
PT{I) = COS {( { 2 x I - 1 ) % FT )
100 CONTINUE
C
RETURN
EXD
C
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SUBROUTINE GAUSJCB { NN, ALF, BTA, X, A )

C
C POINTS AND WEIGHTS IN GAUSS-JACOBI QUADRATURE
C
C Int from (~-1) to (1)} [ (1-X}*%%ALF % {(14X)%¥BTA ¥ (X} ] 4X
C
C = Sum from (i=1) to (i=NN) [ Ati) x £ X(1) ) ]
C
REAL LNGAMA
DIMENSION X{1060), A{1000), B{1000}, C{1000)
C
N =z NN
CSX = 0.
csa = 0.
EPS = 1.E~13
BETA = EXP ( LNGAMA {ALF+1.) 4+ LNGAMA {(BTA+1.)
+ - LNGAMA (ALF+BTA+2.) )
. CC = 2.¥x{ALF+BTA+1.,) % BETA
TSY = FN ¥ (BTA-ALF) / (ALF+BTA+2.%FN)
TSA = CC
B{2) = {(ALF+BTA) * {BTA-ALF) / ( {(ALF+BTA+4.) ¥ (ALF+BTA+2.) )
Ci2) = 4. ¥ (ALF+1.) % (BTA+1.}
+ / ( (ALF+BTA+3.) ¥ (ALF+BTA+2.)%%2 )
cc = CC % C{(2)
Do 106 J = 3, NN
B(J) = (ALF+BTA) ¥ (BTA-ALF) ,
+ / { {ALF+BTA+2.%J) ¥ (ALF+BTA+2.%J-2.)
C(J) = 4. % {J-1.) ¥ {(ALF+J=1.) X {(BTA+J-1.}
1 ¥ {(ALF4BTA+J-1.) / { {(ALF+BTA+2.%J-1.)
pA ¥ [(ALF+BTA+2.%J-2.)%%2 x {ALF+BTA+2.%J-3.1}) )
coc = CC x C(J)
100 CONTINUE
C
DO 200 I = 1, NN
IF (I JEQ., 1 ) THEN
AN = ALF / FN
BN = BTA / FEN
R1 = (1.4ALF) ¥ { 2.78/{4.+FN¥FN) + O0,7B8*¥AN/FN )
R2 = 1. + 1.48%AN + C.96%¥BN + 0.,1532¥ANXAN
+ + 0.83%¥ANXBN
XT = 1. - R1 / R2
ELSE IF { I .EQ. 2 ) THEN
R1 = {4.1+ALF) / ( {1.+4ALF) % (1.+0,158%ALF) )}
R?2 = 1. + 0.08 ¥ (FN-8.) ¥ (1.+0.12%ALF) / FN
R2 = 1. + 0.012 # BTA * {1.+0.23%¥ABS(ALF}) / FN
ATIO = R1 ¥ R2 % R3
YT = XT - RATIO x ( 1. - XT )
ELSE IF ( T .EQ. 3 ) THEN
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Rl = ( 1.67 + 0.28%ALF ) / ( 1. + 0.37%ALF )
R2 = 1. + 0.22 ¥ (FN=8.) / FN
R3 = 1. + 8. ¥ BTA / { {(6.28+BTA)¥FN¥FN )
RATIO = RiI ¥ R2 ¥ R3
XT = XT - RATIO % ( X(1) - XT }
ELSE IF ( I .LE. NN-2 ) THEN
XT = 3. ¥ X{(I-1) - 3. % X{I-2) + X{I-3)
FLSE IF { I .EQ. NN=1 ) THEN
R1 = ( 1. + 0.236%BTA ) / { 0.766 + 0.118%BTA )
R2 = 1. / (1.+0.839%(FN=-4.)/{1.40.731%(FN-4.)))
R3 = 1. / ( 1. + 20, ¥ ALF / { (T7.5+ALF)¥FNAFN ) )
RATIO = R1 *¥ R2 % R3
XT = XT + RATIO % { XT - X(I-2} )
ELSE
Rl = (1., + 0.,37%BTA ) / { 1.87 + 0.28xBTA )
RZ2 = 1. 7/ ( 1. 4+ 0.22¥{(FN=8.)/FN )
R3 = 1. / { 1. + 8. ¥ ALF / ( (B.28+ALF)XFNXFN )} )

RATIO = R1 ¥ R2 ¥ R3
XT = XT + RATIO * { XT - X{I-2) )
END IF

CALL RCCT ( NN, ALF, BTA, B, C, EPS, XT, DPN, PN1 )

X{I) = XT

A(I}) = CC / { DPN ¥ PNl )
C8X = C8X + XT

CSA = CSA + A(T)

200 CONTINUE
IF ( ABS(CSX-TSX) .GE. 1.E-9 .OR. ABS{CSA-TSA) .GE. 1.E~9 ) THEN
WRITE {¥%,9898) TsX, CSX, TSA, CSA
998 FORMAT{'® TSX, CSX = *',2E20.10 / ' TSA, CSA = ’',2E20.10)
ENDIF
RETURN
END

REAL FUNCTION LNGAMA (X))

PI = 4., % ATAN (1.)
IF { X .LT. 0.5 ) THEN
P = PI / SIN(X*PI)
IF ( P .LE. 0, ) THEN
WRITE (¥,99) X
99 FORMAT (' GAMMA(',E12.5,') TS NOT POSITIVE.’)
STOP 1
END IF
v = 1. - X
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ELSE

Y = X
END IF
IF { Y .LE. 6. ) THEN
IK = 7T - Y
Fh = 1.~
DO 100 I =0, IK-1
FK = FK ¥ { Y + I )
100 CONTINUE
Z = Y + 1K
ELSE
Z =Y
END IF
22 = Z ¥ 2
LNGAMA = 0.5 ¥ LOG{2.%PI) + (Z-0.5}) % LOG(Z) - Z
1 + {({({({(-4146./22 + 1820.)/22 - 1287.)/2Z + 1716.)
2 JZ7 -~ 6006.)/22Z + 180180.) / (Z%2162160.)
IF { Y .LE. 6. ) THEN
LxGAMA = LNGAMA - LOG{FK)
END IF
IF ( X .LT. 0.5 } THEN
LNGAMA = LOG{P) - LNGAMA
END IF
RETURN
END

SUBROUTINE ROOT { NN, ALF, BTA, B, C, EPS, X, DPN, PN1 )
DIMENSION B{NN}, C{NN)

DO 100 ITER = 1, 10
CALL RECUR ( NN, ALF, BTA, B, C, X, P, DPN, PN1 }
D =P / DPN
¥ =X - D
ITF {( ABS{D) .LE. EPS } RETURN
100 CONTINUE

RETURN
END
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SUBROUTINE RECUR ( NN, ALF, BTA, B, C, X, P, DP, PO

}
DIMENSION B(NN}, C(NN)

PO
P1
DPO
DP1

+ {ALF-BTA) / (ALF+BTA+2.)

— O P

Houonn

Do 100
P
bP
PG
Pl
DPO
DP1
160 CONTINUE

yo) ¥ Pl - C{J) * PO
} ) % DP1 + P1 - C{J) % DPO

(1 T P I T |

RETURN
END
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SUBROUTIN RAYLEIGH ( BPZ2, BSZ2, BRL, RPB )

SLOWNESS OF RAYLEIGH WAVE

R (B} = 4, * B*¥ B x SQRT ( {( B ¥ B - BP2 ) ¥ {( B * B -BS2 } )

+ - { 2. ¥ B ¥ B - BS2 ) *x 2

RPRIME {(B) = 4. % B**3 % { SQRT ( (B¥B-BS2)/(B¥B-BPF2) )

+ + SQRT { {(B*¥B-BP2)/(B*B=-BSZ) ) )

+ -8.%B¥( 2.%B*B - BS2 -~ SQRT ( (EXB-BP2)}*{B¥B~BS2) ) }
EPS = 1.0E-13

XNU = 0.5 x ( BS2 - 2., % BP2 ) / ( BS2 - BP2 )

INITIAL TRY VALUE
B = SQRT (BS2) * { 1. + XNU ) / {( 0.87 + 1.12 x XNU )

100 BRL = B - R (B) / RPRIME (B}
ERR = ABS. { { BRL - B ) / B )
IF ( ERR .GT. EPS ) THEN
B = BRL
GO TO 160
ELSE
RPE = RPRIME {BRL) / BRL
RETURN
END IF
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SUBROUTINE GEMTIM
CoMMON /SLOW/ BP, BS, BR, BPZ, BSZ,
COMMON  /GEME/ YP, ZP, FS5, FC
COMMON /GEMG/ X, Y, Z, QS5, QC, RO,
COMMON  /TIME/ T1P, TiS, T1H, THH,
coMMON  /FACT/ 3GE, 5GI, AFR, AFIL,
+ SZ2R, 821, SZP, SZS
GECMETRICAL FROPERTIES
YP = Y ¥ FC - Z ¥ F5

ZP = =Y ¥ FS5 - Z2 % FC
RGO = SQRT { ¥ ¥ X + Y ¥ Y
RZ =¥ x X +Y Y + Z % 2
R = SQRT (RZ)
QRS = YV / RO
QC = X / RO
CONSTANTS USED IN THIS SUBROUTIKE
QFC = 1, - QT ¥ QC x¥ FCT % FC

Z =z Y ¥ Y + Z x 2
NEIP = X % ¥ o+ ZP ¥ 7P
EFS = DFZ - BSZ ¥ FS ¥ FS
ROZ = RG ¥ FS + 2 % QS5 ¥ FC

[
O
D
=

\DITIONS TO ENSURE

R0 / R - BP / BS
EP / BS
{ BS¥YP¥QCY¥FCATC

et
oy

S ]
3

n 1mnon

/ SQRT
ARRIVAL TIHMES

TP

T8

TH

THM

P WAVE ARRIVAL TIME
S WAVE ARRIVAL TIME
HEAD WAVE ARRIVAL TIME

Wi u

TP = R ¥ BEP

T1S = R % BS

IF { A1 .GT. 0. j THEN
TiH = 2 ¥ BESP + RO * BEP

ELSE

TiH = 1.0E10

- FS / SQRT (QFC)

(XZP)

HEAD WAVE CONTRIBUTIONS

+ QCXFS¥BSP ) ¥%

CONICAL HEAD WAVE COMPLETION TIME

BSP

R, R2
T2, T3P, T35, T3H
AFP, AFS, BTE, BTI,

2

- QRSXQSXBYS
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END IF
THM = R2 % BSP / Z

T2 = R2 ¥ BR / X
T3P = SQRT (XZP) % BP
T35 = SQRT (XZP) % BS
IF ( H3A .GT. 0. )  THEN
IF ( H3B .GT. 0., )  THEN
T3H = { ABS (X) % SQRT {BFS) - ZP ¥ BSP ) / FC
ELSE
T3H = 1.0F10
END IF
ELSE
T3H = BS ¥ ROZ / SQRT (QFC)
END 1IF

USEFUL FACTORS IN OTHER SUBROUTINES

SGR = RO / RZ

SGI = Z / RZ

ATR = Y % QC / Y2

AFL = 2 ¥ QC / Y4

AFP = YZ % ( BR ¥ BR - BP2 )
AFS = YZ ¥ { BR ¥ BR - BSZ )
BTR = YP ¥ QC ¥ FC / XZP

BTI = RGZ / XZP

S2R = @S * QC % FC % FC / QFC
$2T = F3§ / QFC

S2P = BP2 ¥ QrFC

S28 =z BSZ ¥ QFC

RETURN

END
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FUNCTION Ul (T}

IMPLICIT COMPLEX (C)

COMMON /IDEX/ IWAVE

CoMMON /SLOW/ BP, BS, BE, BPZ, BSZ, BSP, B2
COMMON /GEMG/ X, Y, Z, QS, QC, RO, R

COMMON /TIME/ T1P, TIS

Ul = 0,
IF {( T .LE. T1P ) RETURN

SPHERICAL P WAVE CONTRIBUTION
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IWAVE = 1

B2 = BP2

QJ = SQRT { T * T - TiP ¥ T1P ) / R
il = SUMPS {(QJ)}

IF ( T .LE. T1S ) RETURN

SPHERICAL S WAVE CONTRIBUTION

IWAVE = 2

B2 = BS2

QJ = SQRT { T ¥ T - T1IS * TS } / R
Ul = Ul + SUMPS (QJ)

RETURN

END
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FUNCTION UIH (T)

IMFLICIT COMPLEX (C)

COMMON /IDEX/ IWAVE

COMMON  /SLOW/ BP, BS, BR, BP2, BS2, BSP
COMMON /GEMG/ X, Y, Z, QS, QC, RO, R
COMMON /TIME/ TiP, T1S, T1H, THM

UlH = 0.
IF ¢ (T .LE. TIH ) .OR. {( T .GE. THM } } RETURKN

CONTCAL HEAD WAVE CONTRIBUTION

IWAVE = 2
QQ = { T~- 2 % BSP } / RO
&QH = SQRT ( Q8 % Q@ ~ BP2 )}

IF { T .LE. Ti8 ) THEN
J1H = SUMHO (QH)

ELSE
QJ = SQRT ( T x*x T - T1S ¥ T1S ) / R
U1H = SUMH1 ( QJ, QH )

END IF

RETURN

END

e e e v ey e i T I e o MR A A o A TR e R PN ER e e Fm A R e S L om - s T A gan e a8 A e e o b s e 4w i . e e Ay G



aQan

Qa0

IMPLICIT COMPLEX (C)

COMMON /IDEX/ IWAVE

COMMON /SLOW/ BP, BS, BR, BPZ, BSZ

COMMON /GEMF/ YP, ZP, FS, FC

COMMON /GEMG/ X, Y, Z, QS, QC

COMMON /TIME/ TDUM(41), T2

COMMON /FACT/ FDUM{2), AFR, AFI, AFP, AFS

DATA cr / {06., 1. 1) /

U2 = 0.
(

IF | X .LE. 0, ) .OR. {( T .LE. T2 } ) RETURN

CONICAL P WAVE CONTRIBUTION

IWAVE = 1

TP = T - X ¥ BR

TEM = SERT ( TP ¥ TP + AFP )
CAF = AFR % TP + CI ¥ AFI ¥ TEM
CAFT = AFR + CI * AFI x TP / TEM
CX = CI ¥ BR

Cy = CI ¥ CAF / QC

CXY = CX % CX + CY % C¥

CZp = SQRT ( BPZ2 + CXY )

CZs = SQRT { BSZ + CXY )

CALL  SOURCV { CX, CY, CXY, CZP, CZS, CR, CF }
CG = ( CI ¥ CY ¥ FC + CZP ¥ FS ) % CR
U2 = REAL ( -CT * CF % CAFT / CG )

CONICAL S WAVE CONTRIBUTION

IWAVE = 2

TEM = SQRT ( TP ¥ TP + AFS )
CAF = AFR x TP + CI ¥ AFI ¥ TEM
CAFT = AFR + CI % AFI ¥ TP / TEM
CX = CI % BR

Cy = CI ¥ CAF / QC

CXY = CX ¥ CX + CY x CY

CZp = SQRT ( BPZ2 + CXY )

czs = SQRT {( BSZ + CXY )

CALL SOURCV ( CX, CY, CXY, CZp, CZs, CR, CF )

CF = CF / CES

CG = {CI * CY x FC + CZS * F3 } ¥ CR
ue = U2 + REAL ( -CI x CF¥ % CAFT / CG )}
RETURN

END

o —— b e A v b o R e i e i A B b bR S e P A b R e AR S e e ke Mk i MR e S e m b AR e L W e e e o e Am e e e e



GROR®

FUNCTION U2H (T)
IMPLICIT COMPLEX (C)
COMMON /IDEX/ IWAVE
COMMON /SLOW/ BP, BS, BR, BP2, BS2
COMMON /GEMF/ YP, ZP, F53, FC
COMMON /GEMG/ X, Y, Z, &S, QC
COMMON /TIME/ TDLW(S), T2S, T2H
COMMON /FACT/ MIZ2), AFR, AFI, AFP, AFS
DATA cr / (0., 1. ) /
U2H = 0.
IF { { T .LE. T2H )} .OR. ( T .GE. T2S ) } RETURN
PLANE HEAD WAVE CONTRIBUTION
IWAVE = 2
TP =T - X % BR
TEM = SQRT { AFS - TP ¥ TP )
IF { Y .GE. G. ) THEN
AFH = AFR ¥ TP - AFI ¥ TEM
AFHT = AFR + AFI x TP / TEM
SGNP = -1,
ELSE
AFH = AFR % TP + AFI % TEM
AFHT = AFR - AFI % TP / TEM
SGNP = 1.
END IF
Cx = CI ¥ BR
CY = CI ¥ AFH / QC
CXY = CX ¥ CX + CY ¥ C¥Y
CZP = SGNP % CI % SQRT { ABS { REAL { BP2 + CXY ) )}
CZS = SQRT ( ABS ( REAL ( BS2 + CXY } } )
CALL SQURCV { CX, CY, CXY, CZp, CZS, CR, CF )
CF = CF / CZS
CG = { CI ¥ CY ¥ FC + CZ8 ¥ FS )} ¥ CR
UZH = REAL { -CI % CF % AFHT / CG )
RETURN
END
FUNCTION U3 (T

IMPLICIT COMPLEXN {C)
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COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

DATA

U3 = 0

IF ( (Y .LE. 0. )

/IDEX/ IWAVE
/SLOW/ BP, B
/GEMF/ YP, Z
/GEMG/ X, Y,
/TIME/ TDUM{
/FACT/ FDUM(

cr / ( 0., 1.

RETURN

LOR. {( YP .LE. 0. )

S, BR, BP2, BS2
P, FS, FC

Z, Q8, QC

5), T3P, T3S

6), BTR, BTI, S2R, S2I,

) 7/

CYLINDRICAL P WAVE CONTRIBUTION

IWAVE
TEM
CBT
CBTT
CS8G
CX
CY
CXY
CZPp
CZs
CALL
CG
U3

L LI T S L I LB Y B L ]

i u

1

SQRT {( T % T
BTR ¥ T + CT
BTR + CI ¥ B
SZR x CBT +

CI ¥ CSG x @
ClL ¥ CSG ¥ Q
CX ¥ CX + CY
SQRT { BFZ2 +
SQRT { BSZ2 +

- T3P * T3P )
¥ BTTI ¥ TEM
TL * T / TEM

S21 % SQRT ( SZP -~ CBT *

€ + CI ¥ CBT * QS
S - CI ¥ CBT ¥ QC
¥ CY

CXY )

CXY )

.OR.

s2p, S2S

{( T .LE. T3P

CBT

SOURCV { ¢X, CY, CXYy, CZP, CZS, CR, CF )
BR ) * { CSG ¥ FS / CZP + QS ¥ FC )

( CI % CX +
REAL ( -CI ¥

IF { T .LE. T3S )

CYLINDRICAL S WAVE C

IWAVE
TEM
CBT
CBTT
CSG
CX

CY
CXY
CZp
Czs8
CALL
CF

CG

U3
RETURK

END

nm o n 91 8 u

bHouoH

2

SQRT ( T x T
BTR ¥ T + CI
BTR + CI ¥ B

CF * CBTT / CG )
RETURN
ONTRIBUTION

- T3S ¥ T38 )

¥ BTI *x TEM
TI ¥ T / TEM

SZR * CBT + S2I ¥ SQRT ( S28 - CBT % CBT

CI % CSG ¥ @
CI * CSG % Q
CX % CX + CY
SQRT { BPZ +
SQRT ( BSZ +
SQURCV ( CX,
CF / CZS8

{ CI % Cx +
U3 + REAL (

C + CI ¥ CBT * Q5
S - CI ¥ CBT % QC
¥ CY

CXY )

CXY )

Cy, CXy, CzZP, CZS, CR,; CF }

BR ) * ( CSG ¥ FS / CZ5 + QS ¥ FC

-CI *x CF % CBTT / CG

)

)

)

)

)

¥ CR

%

CR
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FUNCTION USH (T)

IMPLICIT COMPLEX (Cj)

COMMON /IDEX/ IWAVE

coMMON  /SLOW/ BP, BS, BR, BPZ, BS2

COMMON /GEMF/ YP, 4P, FS, FC

COMMON /GEMG/ X, Y, Z, @S, QC

COMMON /TIME/ TDUM{6}, T3S, T3H

COMMON  /FACT/ ¥DUM(6), BTR, BTI, S2R, S2I, s2P, S2S

DATA C1 / t 0., 1. ) /

U3H = 0.

IF{ (Y ,LE. 0., ) .OR. { YP .LE. 0., 1} } RETURN
IF ¢ {( T .LE., T3H ) .OR. {( T .GE. T35 ) RETURN

PLANE HEAD WAVE CONTRIBUTION

IWAVE = 2
TEM = SQRT { T3S ¥ T38 - T % T )
IF {( X .GE. 0. ) THEN
BTH = BTR * T - BTI * TEM
BTHT = BTR + BTI % T / TEM
SGHP = -1.
ELSE
BTH = BTR * T 4+ BTI % TEM
BTHT = BTR - BTI » T / TEM
SGNP = 1.
END IF
CsaG = S2R * BTH + S2I % SQRT { 5235 - BTH % BTH )
CX = CI ¥ CSG ¥ QC + CI ¥ BTH ¥ QS
CY = CI ¥ CSG ¥ RS - CI ¥ BTH % QC
CXY = CX *» CX + CY % CY
CZp = SGNP % CI % SQRT ( ABS { REAL ( BPZ + CXY ) ) )
CZ8 = SQRT ( ABS { REAL { BSZ + CXY ) } )

CALL SOuRCV ( CX, ¢y, CXy, CZp, CZS, CR, CF )

CF = CF / CZ8

CG = { CI » CX + BR } ¥ { CS5G ¥ FS / CZS + QS x FC ) * CR
U3d = REAL ( -CI x CF #% BTHT / CG )

RETURN

END
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FUNCTION SUMPS (QJ)
COMMON /SUMS/ NJ, PT{1000), WT

suM = 0,
DO 100 I =
SUM = SUM

100 CONTINUE
SUMPS = WT * SUM

1, NJ
+ FCTN { PT{I} *x QJ )

RETURN
END
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FUNCTION FCTN (@)

IMPLICIT COMPLEX (C)

COMMON T

COMMON /IDEX/ IWAVE

COMMON /SLOW/ BP, BS, BR, BPZ, BsSZ, BSP, B2
coMMON  /GEMF/ YP, ZP, FS, FC

COMMON /GEMG/ X, Y, Z, RS, QC, RO, R, R2
COMMON /FACT/ SGR, 5GI

DATA CIT / (0., 1. ) /

TQ2 = R2 ¥ ( B2 + Q % Q )

TEM = SQRT ( T ¥ T - TQZ )

CSG = SGR *# T + CI ¥ SGI ¥ TEM
CX = CI * CSG * QC - @ x QS
CY = CI % CS8G % @5 + @ x QC
CXY = CX ¥ CY¥ + CY x CY

CZP = SQRT ( BPZ2 + CXY )

CZS = SQRT ( BSZ + CXY )

CALL SOURCV { CX, CY, CXY, CZp, CZs, CEk, CF )

IF { IWAVE .EQ. 1 } THEN

CG = ( CI * CX + BR ) ¥ { CI x CY x FC + CZP ¥ FS } * CR
FCTN = REAL { CF x CZpP / CG )

ELSE
CG = { CT ¥ CX 4+ BR )} ¥ { CI ¥ CY ¥ FC + CZS ¥ S } ¥ (R
FCTN = REAL ( CF / CG )

END 1IF

RETURN

END
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FUNCTION  SUMHO {QH)

COMMON /SUMO/ NH, PH(1000), WH(1000)

SUM = 0.

DO 100 I = 1, NH

SUM = SUM + WH{TI) ¥ FCTNH ( PH(I) * QH )

100 CONTINUE

SUMHC = QH ¥ SUM

RETURN

END

FUNCTION SUMHL ( QJ, QH )

COMMON /5UM1/ NH, PH{1000), WH{1000)

QC = { QH + @J ) / 2.
QL = ( QB - gJ ) / 2.
SﬁM = 0.

DO 100 T = 1, NH
2 = RC + PH(I) ¥ QL
QQRJ = SQRT { Q - QJ )
SUM = SUM + WH(I) ¥ {( FCTNH (Q) + FCTHH (-Q) } * QQJ
100 CONTINUE
SUMH1 = SQRT {QL) x SUM

RETURN
END
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FUNCTION FCTXH (Q)

IMPLICIT COMPLEX (C)

COMMON T

coMMON  /SLOW/ BP, BS, BR, BP2, BSZ
COMMON  /GEMF/ YP, ZP, FS, FC

COMMON /GEMG/ X, Y, 2, RS, QC, RO, R, RZ
COMMON /FACT/ SGR, SGI

DaTa cr/ 00, 1o )/
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@]

SHONON!

T™R2 = R2 ¥ { BS2 + Q@ ¥ Q )
TEM
SGH
SGHT
CX

CY
CXY
CZP
CZS
CALL
CF

CG
FCTNH

SQRT ( TQ2 - T *x T )
SGR ¥ T - SGI ¥ TEM
SGR + SGI ¥ T / TEM
CI ¥ SGH ¥ QC - @ ¥ @S
CI ¥ SGH ¥ Q5 + @ ¥ QC
CX ¥ CX + CY * CY
-CI * SQRT ( ABS |
SQRT { ABS { REAL {
SOURCV X, Cv, CXY,
CF /
( CI
REAL |

REAL
ES2 +
CZP,

BP2 +
CXY )} )
CzZs,

LT T O | I 1 O I ) |

{
CZs
¥ CX + BR ) * ( CI «x
-CI ¥ CF ¥ SGHT /

boun

CG )

RETURN
END

SUBROUTIKE SOURCV ( CX, CY, CXY,

IMPLICIT COMNPLEX
COMMON
COMMON

(C)
/IDEX/ IWAVE,
/GEMF/ DUM{Z2),

IDISP,
FS,

ISLIP
FC, FS52, FC2

DATA cI / (6., Y. )/

S =
CR =

CZ5 % CZ8 + CXY
4. % CZ2P ¥ CZ28 ¥ CXY - €S % CS

GG TO ( 106, 200 ) TISLIP

100 CONTINUE
STRIKE-SLIP

P-WAVE
IF { IWAVE .EQ. 1 ) THEN
IF ( IDISP .EQ. 1 ) THEN
CF = -8. ¥ CIT * CX ¥ CX * CY ¢«
+ + 8., ¥ CYX ¥ CX % Czp %
ELSE IF { IDISP .EQ. 2 ) THEN
CF = -8, ¥ CI ¥ CX % CYV ¥ CY «x
¥ + 8. ¥ CX x CY ¥ CZP %
ELSE IF ( IDISF .EQ. 3 ) THEN
CF = -4, ¥ CX ¥ CV % CS %
+ - 4, ¥ CT ¥ C¥ % CZP ¥ (CS x
ExD IF

CZs

CZ

CZs
CZs

FS
FC

CR,

CXY )

CF

Czp, CZi5,

FSs
e
s
FC

b
)

CYy * rC + CZ8 % F5 ) % CR



C  S-WAVE
ELSE
IF A

CF

IDISP
2.

LEQ. 1)
¥ CI x CY

+ 4,
8. ¥ CY ¥ C
IDISP .EQ. 2
¥ CI » CX x
4., %

= ¥
+ o

ELSE IF ¢
CF = 2.

ELSE IF {
CF =

IDISP
8.
4.

.EQ. 3
¥ CX ¥ CY
+ ¥ CT * CX
END IF

END 1IF
RETURN
200 CONTINUE

T
rs

DIP-SLIP
P-WAVE

IF ( IWAVE .EQ. 1)
IDISP .EQ.

-4,

THE
1)
¥ CI ¥ CX

{
IF

{
CF¥

ELSE 1IF |
CF

IDISP .EWQ.
-4, % CI % CY

2

ELSE IF ( IDISP .EQ.
CF -2. ¥ ( CzZp ¥
4.

3

+
END IF
S-WAVE
ELSE
IF {
CF

C

IDISP .EQ.
2.

1)
¥ CI » CX x

ELSE IF (
CF 2,

IDISP .EQ. 2
¥ CI x CY %

+
ELSE TF
CF

8. ¥ X % CX

IDISP .EQ. 3

¥ CZP x CIZS
+ 4.

{
{
4'

END IF
END 1F

RETURN

THEN
{ { CZs

¥ CZP ¥ { CX x CX

Y ¥ C2P x
THEN
CZ5
%
g.
) THEN
¥ CZP ¥ C
¥ CZP %

)
(|
CZp

N
THEN
¥ 025 % |
+ 8.
) THEN
X CZS % |
+ 8.
) THEN
CZP + CY
¥ CI * CY

THEN
( {

8.
) THEN
((2.%

CZS
+ 4,

) THEN

¥ ( CYXY + CY x CY )

¥ CI * CY

¥ CX x CY

1.
¥ CZP ¥ CZS

¥ CZ5 - CX ¥ CX + CY
- CY x CY )

CZs 2.

- ¥ CS % CS )
X C2S + CX % CX -~ CY
CX ¥ CX - CY * CYV )

X CX % CY

ZS ¥ CZ3 x FS
CS8 x*» CZS ¥ FC

CZp ¥ CZP
¥ CX ¥ CY

+

CY x CY )
CZP % CZS

b3
FE

CZP * CZP
* OV ¥ CY

-+
&

CY * CY )
CZP x CZS

»
»*

¥ CY ) ¥ Cs ¥ F32
¥ CZP % CS x FC2

¥ CZIS
¥ CY

- CY ¥ CY ) ¥ CS

¥ CY x CZP ¥ CZS8 )
¥ CZP x CZS x CZS

CZs ¥ CZS + CX ¥ CX ) *

¥ CX ¥ CX x CZP x CZS
- 2. ¥ CS5 x C8 )

¥ CZ8 % P32

¥ CZF *x CS ¥ CZS ¥ FC2

¥ CY )
* CZ8 )
¥ CZSs

¥ CY

)
¥ CZ8 )
¥ CZP ¥ CZ5 ¥ CZS

Fe2

CS
Fs
FC

sl

*

CS
ES
e

e

2

FC2

FS
FC

2

o
&4

¥ F52

¥

Cs
)

FCZ

X FS5Z

¥ CZS % FC2
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Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877/AS).
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Shinozuka, 6/25/90.
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