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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER's research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

• Existing and New Structures
• Secondary and Protective Systems
• Lifeline Systems
• Disaster Research and Planning

This technical report pertains to Program 2, Secondary and Protective Systems, and more specifi­
cally, to a passive protective systems. Protective Systems are devices or systems which, when
incorporated into a structure, help to improve the structure's ability to withstand seismic or other
environmental loads. These systems can be passive, such as base isolators or viscoelastic
dampers; or active, such as active tendons or active mass dampers; or combined passive-active
systems.

Passive protective systems constitute one of the important areas of research. Current research
activities, as shown schematically in the figure below, include the following:

1. Compilation and evaluation of available data.
2. Development of comprehensive analytical models.
3. Development of performance criteria and standardized testing procedures.
4. Development of simplified, code-type methods for analysis and design.

Analytical Modeling and Data Compilation

Experimental Verification and Evaluation

X /
Performance Criteria and

Testing Procedures

•Methods for Analysis

and Design
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Considered in this report is the modeling of viscous dampers for vibration and seismic isolation
of building structures. A fractional derivative" Maxwell model is proposed and validated by
experimentally observed dynamic characteristics. It is also used in the analysis of a base­
isolated model structure which has been tested on a shaking table.
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ABSTRACT

A fractional derivative Maxwell model is proposed for viscous dampers

which are used for vibration isolation of piping systems, forging hammers and

other industrial equipment, as well as for vibration and seismic isolation of

building structures. The development and calibration of the model is based on

experimentally observed dynamic characteristics. The proposed model is

validated by dynamic testing and very good agreement between predicted and

experimental results is obtained. Some analytical results for a single-degree­

of-freedom viscodamper system are presented. These results are useful to the

design of vibration isolation systems. Furthermore, an equivalent viscous

oscillator is defined whose response is essentially the same as that of the

viscodamper isolator. Finally, the model is employed in the analysis of a base­

isolated model structure which has been tested on a shake table.
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SECTION 1

INTRODUCTION

Viscous dampers are devices for dissipating energy. They are used in the

reduction of vibration in pipework systems and together with helical steel

springs in vibration isolation of massive industrial equipment like presses and

forging hammers. More recently they have been proposed for seismic isolation of

buildings (Huffmann, 1985). Two residential buildings have been very recently

constructed in Los Angeles, California on isolation systems, consisting of

helical steel springs and viscous dampers, for earthquake protection.

Viscous dampers typically consist of a moving part immersed in highly

viscous fluid. In the applications described above, the moving part is in the

form of a hollow cylinder (piston). Figure 1-1 shows the construction of an

experimental cylindrical damper which has been used in the experiments described

in this report. The damper piston can move in all directions and damping forces

develop as a result of shearing action and displacement in the fluid. Dampers

of different geometry than the one shown in Figure 1-1 have been used in

combination with elastomeric bearings in a seismic isolated building in Japan

(Higashino et al 1988, Kelly 1988). The dampers consisted of circular plates

which were positioned on top of viscous fluid within a container. Damping

forces develop by shearing of the fluid during motion of the plate.

The dynamic characteristics of a viscous damper depend primarily on the

properties of the viscous fluid and secondarily on the geometry of the device.

Two types of damper fluid are used: temperature-dependent fluids which can be

adapted to the operating temperature of a particular application, and nearly

temperature-independent fluids. The fluid used in the tests reported herein is

a form of silicon gel with nearly temperature-independent properties in the

range of -40 to 1300 C. It was supplied by a manufacturer of viscous dampers

(GERB, 1986). It is known that viscous dampers exhibit viscoelastic behavior,

that is behavior which incorporates both elastic and viscous characteristics.

Furthermore, the properties of viscous dampers are strongly frequency dependent,
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e.g. for the tested dampers the damping coefficient showed a ten-fold decrease

within the frequency range of 0 to 50 Hz. Nevertheless, mathematical models

used for these devices have been limited to that of the simple linear viscous

dashpot (GERB 1986, Higashino et al 1988).

Herein, the concept of fractional derivative (Oldham and Spanier, 1974) is

employed in the development of a force-displacement relationship for viscous

dampers. Fractional derivatives within the context of viscoelasticity have been

used as early as 1936 by Gemant, 1936 and very recently by Koh and Kelly, 1990,

who proposed a fractional Kelvin model for elastomeric bearings. Earlier

experiments with viscous dampers (Schwahn et al, 1988) have demonstrated that

the classical two- and three-parameters models of viscoelasticity were incapable

of describing the behavior of the dampers with sufficient degree of accuracy.

The authors of this report observed that the frequency dependency of the

mechanical properties of the tested dampers varied as frequency was raised to

fractional rather than integer powers. This suggests that differentials of

fractional order could be used in modeling of the dampers. Similar observations

have prompted Gemant, 1936 to first propose fractional derivative models for

viscoelastic materials. The above reasons motivated the study reported herein.
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Figure 1-1 Geometry of Tested Damper.
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SECTION 2

FRACTIONAL DERIVATIVE MAXWELL MODEL

2.1 Model of Viscous Fluid

The dynamic characteristics of the viscous damper of Figure 1-1 depend

primarily on the properties of the viscous fluid. The fluid used in the tested

damper is a form of silicon gel with mass density of 0.93 gjcm 3 , which is

slighly less than that of water. The rate-dependent and frequency-dependent

properties of the fluid were determined in tests employing the cone-and-plate

method (Bird et al, 1987).

First, the cone-and-plate method in steady shear flow was used to obtain

measurements of the dynamic viscosity of the fluid. Figure 2-1 depicts measured

values of viscosity as function of rate of strain for two samples of the fluid.

The viscosity has a value of about 1900 Pa-sec (19,000 poise) in the range of

-1 -2shear strain rate of 0 to 2 sec . Beyond the limit of 2 sec ,the viscosity

reduces.

Oscillatory shear flow experiments using the cone-and-plate method were

used to measure the storage and loss shear moduli of the fluid. In this test,

oscillatory shear flow is imposed and measurements of the induced shear stresses

are made (see Bird et al, 1987 for details). The relation between amplitude of

shear stress, ~(w), and amplitude of shear strain, 1(W) is expressed as

(2-1)

where Gl and G2 are the storage and loss shear modulus, respectively, i is the

imaginary unit and w is the frequency of oscillation. Figures 2-2 and 2-3 show

measured values of moduli G
l

and G2 as function of frequency for two values of

amplitude of shear strain, 5% and 10%. It may be observed that the amplitude of

strain has an insignificant effect on the measured values of the shear moduli.
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The authors observed that the frequency dependency of the shear moduli of

the fluid varied as frequency was raised to fractional rather than integer

powers. This suggests that fractional differentials could be used in modeling

the shear stress-strain relationship of the fluid. The simplest model of

viscoelasticity which is capable of describing fluid behavior is the Maxwell

model. It was natural to consider as candidate model the Maxwell model with the

first order derivatives replaced by fractional order derivatives.

The shear stress-strain relationship in the fractional derivative Maxwell

model is

(2-2)

in which rand 7 are the shear stress and strain, respectively and A and ~ are

generalized material constants. Dr[f(t)] is the fractional derivative of order

r of the time dependent function f. A definition of the fractional derivative

of a function satisfying the condition f(t)=O for t<O is via the following

series which was given by Grunwald (Oldham and Spanier, 1974)

lim J
N-+CX) 1

N-l
2:
j=O

f(j -r)

f(j +1) f(t-j~)I (2-3)

where f is the Gamma function. The authors prefer the above definition to the

more commonly used integral representation of Riemann-Liouville (Oldham and

Spanier, 1974) because equation 2-3 involves only evaluations of the function

itself and not of its derivatives and integrals.

The model of equation 2-2 is a special case of the more general model of

Bagley and Torvik, 1983. It may be seen that the model of equation 2-2

collapses to the conventional Maxwell model when r=q=l, in which case A and ~

become the relaxation time and dynamic viscosity, respectively.

2-4



Equation 2-2 may be written in the form of equation 2-1 by taking Fourier

transform and noting the property of the Fourier transform of a fractional

derivative,

(2-4)

in which i r is represented by its principal value

cos (2r ) + i sin (2r ) (2-5)

and F [ ] is the Fourier transform of the expression in the brackets. The

storage and loss shear moduli are given by

(2-6)

(2-7)

d (2-8)

The four parameters of the model were determined by the following

procedure. Based on the fact that the viscosity is independent of the rate of

strain in a wide range of values, parameter q was set equal to unity.

Accordingly, parameter ~ becomes the viscosity. It should be equal to about

1900 Pa-sec. Parameters A and r were determined in a least square fit of the

experimental data on the storage modulus at 5% strain and parameter ~ was found

The value of ~ is in very

by fitting the loss modulus experimental

A=0.26(sec)0.565, r=O.565, q=l and ~=1930 Pa-sec.

data. The results was

good agreement with the experimental results on the viscosity. The values of

moduli Gl and G2 predicted by equations 2-6 to 2-8 are plotted against the

experimental results in Figures 2-2 and 2-3. The agreement is seen to be very

good.
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Attempts have been made to fit the viscoelastic properties of the viscous

fluid with conventional models of viscoelasticity. It was found that

conventional models were worst than the proposed fractional derivative model and

valid only in a small range of frequencies. For example, the conventional

Maxwell model could fit well only the data on the loss modulus within a

frequency range 50 times smaller than that in the fractional derivative Maxwell

model. Figures 2-4 and 2-5 compare the experimental values of shear moduli of

the fluid at 5% strain to values predicted by the conventional Maxwell model

(q=r=l). Evidently, the conventional Maxwell model is incapable of describing

the behavior of the fluid.

2.2 Model of Viscous Damper in Vertical Motion

Dynamic tests of the viscous damper of Figure 1-1 were conducted by

imposing sinusoidal motion of specified amplitude and frequency to the piston of

the damper and measuring the force needed to maintain the motion. Figure 2-6

shows a schematic representation of the testing arrangement. A hydraulic

actuator was used to impose the motion. A load cell was placed below the damper

to measure the reaction force. Figure 2-7 shows a photograph of the testing

arrangement together with a close-up of the damper with the protective sleeve

lowered to reveal the piston. It should be noted that the reaction force is the

force needed to maintain the motion, whereas the force imposed by the actuator

differs from the reaction force by the inertia force of the moving part. This

inertia force is larger than the reaction force in the tests at large frequency

of motion. For example, in a test at 45 Hz frequency, the peak reaction force

was 463.7N (104 lbs) and the peak inertia force was about 758N (170 lbs). This

large inertia force was a result of the almost 8.5g acceleration of the moving

part which weighed about 90N (20 lbs).

The recorded force-displacement loops had an almost precise elliptical

shape (see Section 3 for graphs of the loops). These loops were used in

obtaining the frequency dependent properties of the damper. Under steady-state

conditions, the force and displacement are
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Figure 2-6
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Testing Arrangement of Damper for Vertical Motion.
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Figure 2-7 Photographs of Testing Arrangement for Vertical Motion.
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u=U sinwto

P=P sin(wt+<5)o

(2-9)

(2-10)

where Po is the recorded amplitude of the force, Uo is the recorded amplitude of

displacement, w is the frequency of motion and <5 is the phase difference. The

energy dissipated in a cycle of steady-state motion is

(2-11)

Furthermore, equation 2-10 may be written as

P K1Uo sin wt + K2Uo cos wt

where

P P
K1

---.Q cos6, K2
---.Q sin6U U

0 0

(2-12)

(2-13)

Kl and K2 are the storage and loss stiffnesses of the damper. Quantity Po/Uo =

Ko represents the elastic stiffness. It should be noted that the two parts of

equation 2-12 represent respectively the in-phase and 900 out-of-phase parts of

the force. Accordingly, using equation 2-9 and its time derivative (velocity),

P (2-14)

Quantity K
2
/w is the damping coefficient of the damper,

c
K2
w (2-15)

Returning to equation 2-13 and using equation 2-11,
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(2-16)

Equations 2-11 to 2-16 are used to extract the frequency-dependent

properties of the damper from the measured quantities Po' Do and WD. First,

equation 2-16 is used to obtain the loss stiffness. Equation 2-15 is used to

obtain the damping coefficient. Finally, equations 2-13 are used to obtain the

phase difference and storage stiffness.

Table 2-1 summarizes the experimental results for motion in the vertical

direction. The results are presented in units of 1bs and in., the units in

which measurements were made. The strong dependency of the mechanical

properties of the damper on frequency is evident. In some of the tests the

amplitude of displacement was varied while the frequency was kept constant. The

properties were practically unaffected by the value of displacement amplitude.

This indicates that for the range of parameters used in these tests, the

properties are frequency-dependent but rate-independent (i.e. independent of

velocity of motion).

A mathematical model of the device is written in a form analogous to that

of the shear stress-strain relationship of the damper fluid. This is based on

the assumption that the fluid is primarily subjected to shearing action while

the piston moves in vertical motion.

vertical motion is expressed as

The force-displacement relationship in

in which P and u are the force and displacement, respectively. The expectation

is that q equals to unity and A and r are very close to the values obtained for

the stress-strain relationship of the fluid. For q=l, constant Co attains

physical interpretation. It is the damping coefficient at zero frequency which

could be measured in an oscillatory test at very low frequency (0.01 Hz in this

study) .
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Table 2-1: Experimental Results for Vertical Motion (1 1b = 4.46 N, 1 in.= 25.4 mm)

Frequency Amplitude Force Energy Stiffness Stiffness Damping Coef. Phase
(Hz) Uo(in) Po (lbs) WD(lb-in) K1 (lb/in) K2(lb/in) C (lb-sec/in) (degrees)

0.01 0.2 0.97 0.60 0.85 4.77 75.99 79.89

0.05 0.2 4.57 2.52 10.95 20.05 63.83 61. 36

0.10 0.2 8.57 5.00 15.91 39.79 63.33 68.21

0.20 0.2 16.42 10.00 20.19 79.58 63.33 75.76

0.50 0.2 36.78 21. 84 60.11 173.79 55.32 70.92

1 0.2 62.50 35.60 131. 91 283.29 45.09 65.03

2 0.2 102.80 56.08 255.03 446.27 35.51 60.25

4 0.2 157.00 76.00 500.46 604.79 24.06 50.39

6 0.2 200.00 93.60 667.27 744.85 19.76 48.15

8 0.1 118.00 27.20 801.74 865.80 17.22 47.20

8 0.2 220.99 100.80 752.71 802.14 15.96 46.82

10 0.1 118.00 24.40 888.35 776.68 12.36 41.16

10 0.2 245.00 108.00 872.92 859.44 13.68 44.55

12 0.1 143.00 31. 60 1016.44 1005.86 13.34 44.70

15 0.1 154.30 33.60 1112.19 1069.52 11.35 43.88

15 0.2 291. 50 120.00 1101.10 954.93 10.13 40.93

18 0.055 89.30 10.20 1218.28 1073.31 9.49 41.38

18 0.1 164.30 35.20 1201.68 1120.45 9.91 42.99

18 0.2 300.00 124.40 1126.95 989.94 8.75 41. 30

20 0.055 89.30 10.00 1236.50 1052.26 8.37 40.40

25 0.055 90.00 10.30 1225.97 1083.83 6.90 41.47

25 0.1 181. 50 37.60 1364.47 1196.84 7.62 41. 25

30 0.055 108.50 11.40 1613.09 1451.49 7.70 41. 98

35 0.038 79.70 6.60 1510.72 1454.88 6.62 43.92

40 0.044 109.00 10.00 1853.00 1644.16 6.54 41. 58

40 0.018 50.00 1. 67 2241.48 1640.67 6.52 36.20

45 0.041 104.00 7.61 2087.52 1441.01 5.09 34.62

50 0.035 65.00 5.88 1055.72 1527.89 4.86 55.36
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The relationship between force amplitude, P(w), and displacement

amplitude, ~(w) is obtained by employing Fourier transform to equation 2-17

pew) (2-18)

where Kl and K2 are the storage and loss stiffnesses. The mathematical

expressions for stiffnesses Kl and K2 are identical to those for moduli G1 and

G2 (equations 2-6 to 2-8) except that ~ is replace by Co'

In the calibration of the model, parameter q was set equal to unity and

parameters A and r were determined in a least square fit of the elastic

stiffness curve (defined as the square root of the sum of squares of K1 and K2).

Constant C was then found by fitting the damping coefficient curve. Theo

parameters of the model are q=l, Co=15,OOO Ns/m, r=O.6 and A=O.3(sec)O.6.

Indeed, parameters A and r are very close to those of the stress-strain

relationship of the fluid.

Figures 2-8 to 2-12 compare predictions of the calibrated model of

equation 2-17 with experimental results on the elastic stiffness, damping

coefficient, storage and loss stiffness and phase difference (calculated as

-1tan (K2/Kl ». The agreement between the two sets of results is very good.

Comparison of experimental and analytical force-displacement loops are presented

in section 3.

2.3 Model of Viscous Dampers in Horizontal Motion

Tests with motion in the horizontal direction were conducted with the

arrangement of Figure 2-13. The damper was placed on top of very low friction

roller bearings and a load cell mounted on the damper housing was used to

measure the reaction force. Roller bearings were also used to support the

moving piston and prevent it from tilting. The friction force from the roller

bearings was estimated to be extremely low and accordingly the measured force in
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the load cell was not corrected for the effect of the friction force.

Photographs of the testing arrangement are shown in Figure 2-14. The top

photograph shows a general view of the arrangement. The middle photograph shows

the roller bearing connection for preventing tilting of the piston and the

bottom photograph shows the connection of the housing to the load cell.

The recorded force-displacement loops had again elliptical shape for

frequencies of motion up to 1 Hz. For frequencies of 2 Hz and above, the loops

had a higher harmonic function superimposed on the basic elliptical shape.

Figures 2-15 show experimental force-displacement loops for horizontal motion

and for frequencies of 1 to 15 Hz. The wavy form of the loop is seen in these

figures. This phenomenon is caused by standing waves that generate in the fluid

during motion of the piston. In modeling the behavior of the device, only the

basic elliptical shape has been accounted and the higher harmonics in the

recorded force have been neglected.

Tests were conducted with the arrangement of Figure 2-13 with frequencies

in the range of 0.05 to 20 Hz. The measured properties of the damper are given

in Table 2-11. The properties are given in units of Ibs and in., the units in

which measurements were made. Three of the tests in Table 2-11 (those

identified by an asterisk) were conducted at large amplitude of displacement

using a different testing arrangement. Four identical dampers were connected to

the shake table at Buffalo with their pistons connected to a stiff base

consisting of two heavy W14x90 steel sections. The weight of the base was

carried by a crane. The base was connected by stiff rods to a nearby reaction

wall. The rods were instrumented by load cells (see Figure 2-16). The shake

table was driven in displacement-controlled mode with specified amplitude and

frequency. The force transmitted through the four dampers was measured by the

load cells connecting the base to the reaction wall. In this way, data from

four dampers were obtained and then reduced to a single damper. The properties

obtained in these tests are consistent with those obtained with the arrangement

of Figure 2-13.
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Figure 2-14 Photographs of Testing Arrangement of Damper for Horizontal

Motion.
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Figure 2-14 Continued.
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Table 2-II: Experimental Results for Horizontal Motion (llb - 4.46N, 1 in. = 25.4 mm)

Frequency Amplitude Force Energy Stiffness Stiffness Damping CoeL Phase

(Hz) Uo(in) Po(lbs) WD(lb-in) Kl(lb/in) K2 (lb/in) C (lb-sec/in) (degrees)

0.05 0.20 2.28 1. 28 5.08 10.24 32.59 63.60

0.10 0.20 4.57 2.44 12.00 19.51 30.90 58.42

0.20 0.20 8.12 4.66 16.36 37.27 29.66 66.30

0.50 0.20 17.96 10.00 41.33 79.98 25.46 62.67

0.50 0.81 69.11 162.76 31. 21 79.95 25.45 68.63 *
1 0.20 30.28 16.60 73.56 132.76 21.13 61.01

1 0.20 28.17 14.40 81. 70 115.17 18.33 54.65

1 0.84 128.34 290.91 78.91 129.99 20.45 58.74 *
2 0.20 50.00 25.80 142.26 206.34 16.42 55.42

2 0.81 213.49 424.56 163.60 208.54 16.59 51. 85 *
4 0.20 74.99 35.40 239.65 283.12 11.26 49.75

5 0.10 43.31 9.75 300.22 336.75 10.72 48.28

6 0.20 92.96 40.80 332.64 326.31 8.66 44.45

6 0.19 90.27 40.60 314.31 339.87 9.02 47.24

8 0.20 103.52 45.60 369.12 364.69 7.26 44.65

8 0.10 54.90 12.00 394.33 381. 97 7.60 44.09

10 0.10 60.56 13.00 442.17 413.80 6.59 43.10

10 0.20 119.44 48.00 464.81 423.24 6.74 42.32

12 0.10 66.20 13.40 506.27 426.54 5.66 40.11

12 0.20 135.21 51. 20 540.06 409.48 5.43 37.17

15 0.10 81. 69 15.60 648.65 496.56 5.27 37.44

20 0.095 88.88 15.00 771. 63 529.05 4.21 34.44

20 0.19 183.10 54.40 821.16 455.39 3.62 29.01
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In modeling the behavior of the device for motion in the horizontal

direction, the model of equation 2-17 is used. The calibration of the model was

done in the same way as in the case of vertical motion, resulting in the

following parameters: q=l, Co = 6000 Ns/m, A=0.15(sec)0.7 and r=0.7. Figures 2­

17 to 2-21 compare the frequency dependent properties of the damper as measured

and as predicted by the fractional Maxwell model. The agreement is good. It

should be noted that the model is capable of modeling only the basic behavior of

the damper and not the higher harmonics observed in the loops of Figures 2-15.

To demonstrate this, the steady-state force-displacement loops as predicted by

the calibrated analytical model of equation 2-17 have been plotted next to the

experimental loops in Figures 2-15. For the calculation of the force in steady­

state motion, equation 2-12 has been used.

2-26



200

E
~
Z 160
...:::(

(f)
(f)

W 120
Z
LL
LL
f-
(f) 80

U
f-
(f)

« 40
-.J
W

,
*

*
**

*

• Shake Table
• • •• Experimental

Fractional Maxwell Model

Co = 6000 Nsf m
A = 0.15 Sf, r =0.7, q =1

322812 16 20 24

FREQUENCY Hz
84

O+-r--.---,--,--,---,----,,-_r-.------,~_r-_r____,-~-_r____,

o

Figure 2-17 Fitting of Elastic Stiffness of Tested Damper in Horizontal Motion

by Fractional Maxwell Model.

I
32

*
I

28

• Shake Table
• • •• Experimental

Fractional Maxwell Model

Co =6000 Nsf m
A = 0.15 Sf , r =0.7, q =1

12 16 20 24

FREQUENCY Hz
8

Jjl

* "

4

E8
~

(f)

Z
...:::(

6
f-
Z
W
-
U
LL
LL4
W
0
U •
C)
Z2
-
0.-
:2
«
0

0
0

Figure 2-18 Fitting of Damping Coefficient of Tested Damper in Horizontal
Motion by Fractional Maxwell Model.

2-27



'" • Shake Table
* * * * Experimental

Fractional Maxwell Model

200

C
~
Z
.Y. 160

U1
U1
W
Z 120
lL..
lL..
I-
U1

80
W
C)

«
0::::
0 40
I-
U1 •

a
a 4

(

8

Co = 6000 Nsf m
A = 0.15 Sf , r = 0.7, q = 1

I I I I
12 16 20 24

FREQUENCY Hz
I

28
I

32

Figure 2-19 Fitting of Storage Stiffness of Tested Damper in Horizontal Motion

by Fractional Maxwell Model.

100

E
~ 80 '"Z
.Y. ; **
U1 *
U1 *
W 60 '" ~
Z
lL.. ,
lL..
I- 40 Shake Table
U1 * •

• * • • Experimental
U1 Fractional Maxwell Model
U1
0 20

Co =6000 N sf m
-.-J A = 0.15 Sf , r = 0.7, q = 1

322812 16 20 24

FREQUENCY Hz
84

O-t-'-........,:---r-.--r---.---r--y--.---.---.----r--.--.....-~-~~

o

Figure 2-20 Fitting of Loss Stiffness of Tested Damper in Horizontal Motion by

Fractional Maxwell Model.

2-28



3228

Co =6000 Nsf m
A. = 0.15 Sf , r = 0.7, q = 1

• Shake Table

* * * * Experimental
Fractional Maxwell Model---

* **~--=------­*
*

12 16 20 24

FREQUENCY Hz
8

90
~

[J)

Q) 80
Q)
L
01
Q) 70

-0
'--'"

60
W

* *U •Z 50
W
D:::: 40
W
LL
LL 30
0

W 20
Ul«
I 10
D-

O
0 4

Figure 2-21 Fitting of Phase Difference of Tested Damper in Horizontal Motion
by Fractional Maxwell Model.

2-29





SECTION 3

VERIFICATION OF MODEL

A model for the force-displacement relationship of viscous dampers has

been developed and calibrated. The calibration was based on experimental data

under conditions of steady-state motion. For verification, the predictions of

the model are compared to experimental results under conditions of transient

motion. This requires the development of numerical procedures for the solution

of the constitutive relationship, i.e. the solution of equation 2-17 for the

time history of force P when the time history of displacement U is known. Two

numerical procedures are developed, one valid in the time domain and the other

valid in the frequency domain.

3.1 Solution of Constitutive Relation in The Time Domain - G1FP Algorithm

Numerical procedures in the time domain are usually preferred so that

nonlinearities can be included if necessary. For example, a time domain

analysis procedure is required when viscous dampers are used in isolation

systems which incorporate other nonlinear devices like sliding bearings, or in

structures which undergo inelastic deformations.

Several algorithms for the numerical evaluation of fractional derivatives

are presented by Oldham and Spanier, 1974. One of these algorithms, which is

called the "G1-algorithm", is generated from the Grunwald definition of

fractional derivative (equation 2-3) by omitting the N~oo operation. However, in

evaluating the fractional derivative of the force at time t, the value of the

force at that time is needed which is unknown. Accordingly, the G1-algorithm

has been modified to include an iterative procedure. Equation 2-17 is written

(for the case of q=1) as

r [~ ~~ -pet)] (3-1)

where the fractional derivative is given by
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-r
[~ ]
r( -r)

N-1
L:
j=O

r(j -r) P(t- j-Nt )
r(j+1) (3-2)

The value P(t) is assumed and equation 3-2 is used to evaluate Dr[P(t)]. The

calculated value is compared to the value calculated from equation 3-1 and

iteration is employed with continuous updating of the value of P(t) until the

difference between the two calculated values is within a prescribed tolerance.

This algorithm we term the "G1FP-algorithm." To expedite the evaluation of the

series in equation 3-2, the recursion

r(j -q)

r(j+l)

j-q-1

j

r(j-q-1)

r(j) (3-3)

is used. This avoids explicit use of gamma functions.

The relative error in evaluating the fractional derivative of a function

using the G1-algorithm has been determined by Oldham and Spanier, 1974 in

selected cases of simple functions in the form of powers of the independent

variable. The relative error, defined as the approximate value minus the exact

value and divided by the exact value is

(3-4)

This equation may be used to establish the number of terms needed in the series

of equation 3-2 for specified relative error E. For example, when r=O.7 and

E=O.OOl, N should be larger than 245.

To demonstrate the accuracy of the G1FP-a1gorithm, an analytical solution

of equation 2-17 is presented for the particular case of q=l, r=O.5 and

u=Uosinwt. Applying Laplace transform to equation 2-17 we arrive at

(3-5)1 t t 1/ 2 duI exp(A2)erfc(---A-)]L[dt]
1

L[P(t)]=L[ 1/2 1/2
11" t
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where L[ ] stands for the Laplace transform of the expression in the brackets

and erfc is the complementary error function. Recognizing that equation 3-5 is

a convolution, the force pet) is determined to be

P(t)=(2w)1/2Uo(coswtC2+sinwt 52)

Uow
t 1/2

-).- coswt f exp (L) erfc (~) cosw1'd1'
0 ).2

U w
t 1/2

_0_ sinwt f exp (L) erfc (_1'_) sinw1'dr (3-6)).
0 ).2 ).

where C2 and 52 are the Fresnel integrals (Abramowitz and 5tegun, 1970)

1
wt

f
o

cos z
zl/2

1
wt

f
o

sin z
zl/2

dz (3-7)

Figure 3-1 compares the analytical solution for the time history of force

P to the numerical solution (GlFP algorithm) for the case of a damper with

r=0.5, ),=0.3 (sec)0.5, C =15,000 Ns/m and for displacement with U =5.08mm ando 0

frequency f=w/2~ = 1 Hz and Uo=2.54mm and f=20Hz. The agreement between

analytical and numerical results is very good.

3.2 Solution of Constitutive Relation in the Frequency Domain-DFT Algorithm

Numerical schemes in the frequency domain are very convenient to use but

restricted to linear systems. Returning to equation 2-18 we recognize that the

expression K1(w)+iK2(w) represents the amplitude and phase angle of the steady­

state force in the damper for a harmonic displacement input of unit amplitude.

Accordingly, the time history of force is expressed as

1
P(t)= 2~ (3-8)
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Figure 3-1 Comparison of Analytical Time History of Force in Damper Driven at

Harmonic Motion to Numerical Results Obtained by the G1FP­

Algorithm.
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where u(w) represents the Fourier transform of the imposed motion. The

computation of the force is thus easily obtained by the Discrete Fourier

Transform (DFT) approach in combination with Fast Fourier Transform (FFT)

algorithms (Veletsos and Ventura, 1985). A particular advantage of equation 3-8

is that it applies to all models of viscoelasticity, provided that parameters Kl

and K2 are known. In contrast, the GlFP-algorithm (equations 3-1 and 3-2)

applies to the specific case of the fractional derivative Maxwell model with

q=l.

The DFT-algorithm has been employed in the calculation of the time history

of force when input is the displacement history used in the experiments for the

calibration of the model (see Table 2-1). In this respect, equation 3-8 has

been used with u(t) being the measured displacement of the piston of the damper

which was available in discretized form. Figures 3-2 compare the experimental

force-displacement loops to the analytically determined loops. The agreement is

excellent. It should be observed that the model predicts every detail of the

experimental response including the transient part at the initiation of motion.

3.3 Verification Tests

The results shown in Figures 3-2 provide a verification of the developed

fractional derivative Maxwell model for viscous dampers. However, in these

tests the motion of the piston had a simple form and contained only a single

frequency. Further tests were conducted with more complicated motion of the

piston and the experimental results have been compared to predictions of the

model. All tests were with motion in the vertical direction.

In one set of verification tests the motion was harmonic with time

dependent frequency and amplitude. The displacement was specified as either

u=U sin[w(t) t]o

3-5
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Vertical Motion to Loops Predicted by the Fractional Maxwell

Model. Solution by the DFT Algorithm.
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Figure 3-2 Continued.
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or as

where

t -t
u=2Uo ( ~ ) sin[w(t) t]

m
(3-10)

w(t) ft
21r t m

(3-11)

with Uo=2.54mm (0.1 in.), t m=9 sec and f=20 Hz. The displacement histories were

digitized and used as input to the actuator in the testing arrangement of Figure

2-6. The experiments were run for time t between 0 and 2 sees. In this time

interval, the frequency of motion (equation 3-11) changes from 0 to 4.45 Hz. In

this range of frequencies the properties of the damper change by several orders

of magnitude (see Figures 2-8 to 2-11). Figures 3-3 and 3-4 show the

experimental loops in the two tests together with the loops predicted by the

model and calculated by the G1FP and OFT algorithms, respectively. The figure

on top is for the constant amplitude motion (equation 3-9) and the figure at the

bottom is for the variable amplitude motion (equation 3-10). The agreement

between analytical and experimental results is very good.

In another test, the input motion was a four cycle beat described by

(3 -12)

with Uo =2.54mm (0.1 in.), wl= 41r rls (2 Hz) and w2=51r rls (2.5 Hz). The

experimental loop together with the predicted loop (DFT algorithm) are shown in

Figure 3-5. The agreement is very good.

3-11



DISPLACEMENT mm
-3.18 -1.59 0.00 1.59 3.18

150 0.67
EXPERIMENTAL ---- NUMERICAL G1FP

100

0.33

50 Z
U1 ..Y

.D

W 0.00
W

U 0 U
0::: 0:::
0 0
LL LL

-50

-0.33

-100

-150 -0.67
-0.125 -0.075 -0.025 0.025 0.075 0.125

DISPLACEMENT In

DISPLACEMENT mm
-3.18 -1.59 0.00 1.59 .3.18

150 0.67
-- EXPERIMENTAL ---- NUMERICAL G1 FP

100

0.33

50 Z
U1 ..Y

.D

W 0.00
W

U 0 U
0::: 0:::
0 0
LL LL

-50

-0.33

-100

-1 50+---.---.--.--,..----t--....--....--....--,---t- -0.67
-0.125 -0.075 -0.025 0.025 0.075 0.125

DISPLACEMENT In

Figure 3-3 Recorded Force-Displacement Loop of Damper for Vertical Motion of
Varying Frequency and Constant (Top) or Varying Amplitude (Bottom)

and Comparison to Loop Predicted by Fractional Maxwell Model.
Solution by G1FP-Algorithm.

3-12



DISPLACEMENT mm
-3.18 -1.59 0.00 1.59 3.18

150 --t----l-_..l.-_--L__L-_--L-_---l.__-'---_-+ O. 67
EXPERIMENTAL ---- D F T (0 - 2 SEC)

100

-100

0.33

50 Z(fJ
..Y--0

W
0.00

W
U 0

U
0::: 0:::
0 0
1.L 1.L-50

-0.33

3.18
0.67

(0 - 2 SEC)

mm
1.590.00-1.59-3.18

150

-1 50+-,----,-----,--,--!--....,--,---.---,-_j_ -0.67
-0.125 -0.075 -0.025 0.025 0.075 0.125

DISPLACEMENT In

DISPLACEMENT

-- EXPERIMENTAL ----- D F T

0.33

Z
..Y

0.00
W
U
0:::
0
1.L

-0.33

0-1----,

50

100

-100 ~-=-_

(fJ

--0

w
U
0:::
o
1.L -50

-1 50-L--r---,-----,--,--!--....,--,---.----,-_j_ -0. 67
-0.125 -0.075 -0.025 0.025 0.075 0.125

DISPLACEMENT In
Figure 3-4 Recorded Force-Displacement Loop of Damper for Vertical Motion of

Varying Frequency and Constant (Top) or Varying Amplitude (Bottom)
and Comparison to Loop Predicted by Fractional Maxwell Model.
Solution by DFT-Algorithm.

3-13



DISPLACEMENT mm
-7.62 -3.81 0.00 3.81 7.62

150 --j-_-'-__--'--_-..I...__..L-_--L__L-_-l.-_--+-o. 67

EXPERIMENTAL ----- NUMERICAL 0 F T

100

(f)

...0

w
u
cr::
o
LL

0.33

50

w
o--j-----;}'-jf--+--f----t'--l--+---#-.,fI-II,~--+O.00 U

cr:
o
LL

-50

-0.33

-100

-1 50--j----,,---.-,.--.--,---f--,--,--..,--.,.----,--+ - 0.67
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

DISPLACEMENT In

Figure 3-5 Recorded Force-Displacement Loop of Damper for Vertical 4-Cycle
Beat Displacement and Comparison to Loop Predicted by Fractional

Maxwell Model. Solution by DFT-Algorithm.

3-14



SECTION 4

VISCODAMPER OSCILLATOR

A viscodamper oscillator is defined as a single-degree-of-freedom (SDOF)

spring-mass system with viscous dampers. It represents the simplest model of a

vibration isolation system.

4.1 Frequency and Damping Ratio in Free Vibration

The equation of motion of a free vibrating viscodamper oscillator is

m ~(t)+K u(t) + P(t) o (4-1)

C du
o dt

(4-2)

where m is the mass, K is the stiffness of spring, u(t) is the displacement and

P(t) is the force from viscous dampers.

The eigenvalue problem of equations 4-1 and 4-2 is produced by applying

Laplace transform and deriving the characteristic equation in terms of the

Laplace transform parameter s

where

+ w 2
o

o (4-3)

Co
2(mK)1/2

4-1

(4-4)

(4-5)



In equations 4-4 and 4-5, w is recognized is the frequency of free vibration ofo

the oscillator when viscous dampers are not present and ed is recognized as the

damping ratio of an oscillator with constant viscous coefficient equal to Co'

Clearing the Laplace parameter from the denominator of equation 4-3,

o (4-6)

The next step is to apply a transformation to equation 4-6 which produces a

polynomial equation. In the particular case of r=0.6 (vertical vibration of

viscous dampers) the transformation is

a =

The result is

o

(4-7)

(4-8)

The solution of equation 4-8 results in 13 eigenvalues. Raising these

eigenvalues to the power of 5 we obtain the complex roots of equation 4-6. For

an underdamped system (a system that has oscillatory behavior), the complex

roots which correspond to the natural frequency of the system will appear as a

conjugate pair

(4-9)

from where the natural frequency w1 and damping ratio e1 are derived

(4-10)

(4-11)
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To identify the complex roots that correspond to the natural frequency, their

phase angle must be calculated and found to lie in the range of -180 to 180 0
.

Only one conjugate pair of roots can satisfy this condition. The remaining

roots are not associated with frequenices but rather describe the nonoscillatory

behavior of the system.

For the proof of equations 4-10 and 4-11 consider the SDOF viscous

oscillator with frequency wI and damping ratio el . Its characteristic equation

in terms of the Fourier parameter w is

with roots

o (4-12)

w ± (4-13)

Using the relation between Laplace and Fourier parameters, s -iw,

By comparing equations 4-9 and 4-14, equations 4-10 and 4-11 are derived.

(4-14)

The procedure described above has been implemented in the case of a

viscodamper oscillator with viscous dampers moving in the vertical direction.

Parameters A and r were 0.3 (sec)0.6 and 0.6 as determined in the experiments.

The frequency f l = wl/2~ and damping ratio el were calculated for a system with

f = w /2~ in the range of 0.5 to 10 Hz and ed (equation 4-5) in the range ofo 0

0.5 to 2.5. The results are plotted in Figure 4-1. The figure demonstrates

that frequency f l is always larger than f o ' This, of course, is a result of the

stiffening effect of viscous dampers.
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Figure 4-1 may be used as a design tool for vibration isolation systems.

Consider for example that a system with 60,000 Kg mass is to be supported by

springs and viscous dampers for vibration isolation. A frequency of 5 Hz and

damping ratio of about 0.25 are desired. From Figure 4-1 we determine that a

design with f o = 4 Hz and ed = 1 will satisfy these requirements. Using

equations 4-4 and 4-5, we determine K = 37899 kN/m and Co = 3016 kNs/m. With

these values known, springs and viscous dampers could be selected for the

isolation system. It should be noted that the determined values for K and Co

are valid only for values of parameters A and r equal to 0.3 (sec)0.6 and 0.6,

respectively. This means that viscous dampers of different size have identical

parameters A and r and differ only in the value of constant Co' Commercially

available viscous dampers of different sizes exhibit properties that have almost

identical variation with frequency (GERB, 1986).

hypothesis.

This confirms the above

The calculation of the frequency and damping ratio of a viscodamper

oscillator is a complex procedure. In this respect, the development of an

approximate but simple procedure is of practical significance. For this we

recall that under steady-state conditions, the force needed for maintaining

harmonic motion of the damper with displacement u and velocity u is given by

p (4-15)

where w is the frequency of motion and Kl and C are the storage stiffness and

damping coefficient of the damper. Accordingly, a new oscillator is defined

whose equation of free vibration is

mu + C (0) u + [K+Kl(O)] u ° (4-16)

where 0 is an arbitrary frequency. This oscillator we term the equivalent

viscous oscillator. More conveniently, equation 4-16 is written as
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° (4-17)

where W and ~ are the natural frequency and damping ratio of the equivalente e

viscous oscillator. These parameters are determined from the expressions for

the storage stiffness and damping coefficient of viscous dampers which were

presented in section 3,

W =W [1+e 0

l+r
2~dAO s 1/2

-w-(1-+--"A=-=2-
0

"""2-r+-2-A-O-r-C-) ]
o

(4-18)

(4-19)

where sand c stand for the sine and cosine of r~/2. When we and ~e are

evaluated at frequency O=w e , they represent approximations to the exact

frequency wl and damping ratio el of the viscodamper oscillator. For the

evaluation, an iterative procedure is required, starting from O=wo ' Figure 4-2

compares the frequency and damping ratio of the viscodamper and equivalent

viscous oscillators for the range of parameters with most interest in vibration

isolation applications (~1~0.3, fo~lO Hz). In Figure 4~2, A=0.3(sec)0.6, r=O.6

and f =W /2~. The agreement between approximate and exact values is good. Somee e

discrepancies are observed in the values of frequency when f o is less than about

3 Hz and ed is larger than 1.5. This combination results in unrealistic values

of ~l (exceeding unity).

The accuracy of the approximate procedure is further investigated for

other values of parameters A and r in Figure 4-3. Exact values of frequency f 1

and damping ratio el (solid line) are compared to approximate values f e and ~e

(dashed line) for a system with f o=5 Hz, ~d=0.5 and A in the range of 0 to

l(sec)r where r=O, 0.3, 0.6 and 1. The case r=l corresponds to the conventional

Maxwell model, whereas the case r=O corresponds to the simple linear dashpot

model with damping constant equal to C /(l+A) where now A is dimensionless.o
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Very good agreement between exact and approximate values is observed. The

largest error in the approximate frequency is about 3% of the exact value, which

corresponds to about 7% underestimation of the effective stiffness.

Concluding, procedures have been established for the determination and

identification of the frequency and damping ratio of the viscodamper oscillator.

Furthermore, a simple procedure has been presented for determining approximate

values of these quantities.

4.2 Steady-State Harmonic Response of Viscodamper Oscillator

When the viscodamper oscillator is subjected to dynamic loading, the

equation of motion is

m u (t) + K u(t) + P(t) F(t) (4-20)

where P(t) is given by equation 4-2. The frequency response function of the

viscodamper oscillator is easily derived by employing Fourier transform to

equation 4-20,

H(w)

where

v AW r
o

(4-21)

(4-22)

(4-23)

and u(w), F(w) represent the Fourier amplitude of u(t) and F(t), respectively.

It should be noted that equation 4-21 reduces to the equation for a SDOF viscous

oscillator with natural frequency Wo and damping ratio Ed when v=O.
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For a harmonic forcing function F(t) - Fo sin wt, the steady-state

displacement response is given by

u(t)

D

tane

FoK D sin(wt-e) (4-24)

(4-25)

(4-26)

In the above equations c and s stand for the cosine and sine of r~/2. In

equations 4-24 to 4-26, D represents the dynamic magnification factor and e
represents the phase angle. They are the amplitude and phase of the complex

frequency response function (equation 4-21), respectively. Equation 4-24 is, of

course, valid in the limit of large time and provided that a sinusoidal force

acting on the viscodamper oscillator produces a sinusoidal displacement after

transients have died out. Analytic proof for this behavior is presented in

Appendix A.

The maximum force exerted against the base of the oscillator by the spring

and viscous damper upon division by the amplitude of the driving force, Fo '

gives the absolute transmissibility

TR
J (1+prvc )2 + (prvs )2 + (2~dP)2 + 4~dpl+rvs 11/ 2

1(1_p2)2(1+prvc )2 + [(1-p2)prvs+2~dP]2
(4-27)

in which again sand c stand for sine and cosine of r~/2. The absolute

transmissibility has been derived by the following procedure. The force exerted

against the base is given by

pet) + K u(t)

4-10
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Applying Fourier transform to equation 4-28 and using equation 4-21 we obtain

FT (w)

F (w)

iwC
H(w) [K + 0 ]

l+.U rwr
(4-29)

The absolute transmissibility is the amplitude of the complex function on the

right side of equation 4-29.

It may be noted that equations 4-25 to 4-27 reduce to those of a SDOF

viscous oscillator with natural frequency Wo and damping ratio ed when v=O.

Plots of the dynamic magnification factor, D, phase angle, e, and

transmissibility, TR, are shown in Figures 4-4 to 4-5 for a system with

fo=wo/2~=5 Hz, v=2.374 and r=O.6. The following significant features of the

steady-state response of the viscodamper oscillator can be observed in Figures

4-4 to 4-5:

a. The peak value of the dynamic magnification factor occurs for values of ~

larger than unity, whereas in the SDOF viscous oscillator this peak occurs

at values of P less than unity. This phenomenon is caused by the

stiffening effect of the viscous damper.

b. At resonance, fi=l, the phase angle e is equal to r~/2.

c. The phase angle, e, does not increase monotonically with increasing

frequency ratio~. Rather, it exhibits a peak value, which is always less

than ~, at a value of ~ larger than unity. Beyond this value, e
decreases. Again, this result is caused by the stiffening effect of the

viscous damper.

d. The curves of transmissibility do not pass through the same point as in

the SDOF viscous oscillator. Damping ratio ed tends to reduce the

effectiveness of an isolation system for frequency ratio ~ greater than a

4-11



fO =5 Hz, v =2.374, r =0.6

o

0.5 1.0 2.0 2.5 3.0

180 ~d = 0.25
,.-.....

(J)

(l) 150
(l)

fo = 5 Hz, v = 2.374, r = 0.6I.-

01 0.5(l)

-0 120
'---'"

w
90-l

C)

Z«
60

w
(f)

«
I 30
0..-

0
0 2 3 4 5

(3=W/Wo

Figure 4-4 Dynamic Magnification Factor and Phase Angle Plot of Viscodamper

Oscillator for Steady-State Harmonic Motion.

4-12



3.02.52.0

fO = 5 Hz, v = 2.374, r::; 0.6

0.5

0.5

0::: 8
f-

~7
--.l

m 6

(f)

(f)5

2
~4
L
«
2=3
w
1-2
~
--.l

o 1...l--­
U1
m
«O+--.....---,-----.---,---....---r---..,...-~-~-..----,-----.

0.0

Figure 4-5 Absolute Transmissibility Plot of Viscodamper Oscillator for

Steady-State Harmonic Motion.



certain value which, unlike the SDOF viscous oscillator, is not fixed but

rather depends on the system's parameters.

The presented results on the harmonic steady-state response of the

viscodamper oscillator may be used in constructing design charts for vibration

isolation systems consisting of springs and viscous dampers.

4.3 Transient Response of Viscodamper Oscillator

Analytical solutions for the transient response of the viscodamper

oscillator are extremely difficult even in the simplest cases of loading. For

an example, the reader is refered to Appendix A for an analytic solution of the

response to harmonic loading. Another case for which an analytic solution is

possible is that of impulsive loading F(t)=6(t). This case has been treated by

Bagley and Torvik, 1983. Apparently, the most convenient method for deriving

transient responses is by numerical procedures.

The response of the viscodamper oscillator to general dynamic loading is

most conveniently determined by the DFT approach. Alternatively, time domain

algorithms may be used, but they are computationally intensive. One such

algorithm will be presented later in this report in conjunction with the

analysis of a nonlinear isolation system. The time domain G1DP-algorithm

presented in section 3 will be used later in this report in conjunction with the

analysis of a nonlinear isolation system.

The response of the viscodamper oscillator to general dynamic loading and

for zero initial conditions is derived by application of Fourier transform to

equation 4-20

u(t)= 2; _~ H(w) F(w) e iwt dw

4-14
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where H(w) is the complex frequency response function (equation 4-21), and F(w)

is the Fourier transform of load F(t). The application of the DFT approach is

directly analogous to that of the SDOF viscous oscillator (Veletsos and Ventura,

1985).

The transient response of the viscodamper oscillator will be compared to

the response of the equivalent SDOF viscous oscillator which was introduced

earlier. This oscillator is defined as one whose response is essentially the

same as that of the viscodamper oscillator. In the equivalent oscillator, the

frequency dependency of the parameters of the viscous damper is neglected so

that the equation of motion is

m u + C(O)u + [K+Kl(O)] u F(t) (4-31)

where Kl(O) and C(O) are the storage stiffness and damping coefficient of the

viscous damper evaluated at frequency O. This frequency could be the natural

frequency of the equivalent oscillator or it could be a frequency contained in

the load F(t).

More conveniently, equation 4-31 is rewritten as

u + 2~ w u + w 2 ue e e
Eitl

m
(4-32)

where ~e and we are given by equations 4-18 and 4-19.

The validity of the equivalent oscillator is studied in two interesting

applications of viscous dampers.

4.3.1 Impulsive Loading

Forging hammers is one application of viscous dampers in which impulsive

loading is involved. Forging hammers are massive machines with mass equal to
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about 60,000Kg. The ram of the machine has a mass of about 3,000Kg with an

impact velocity of 5.5m/s. On inpact, the hammer response velocity is

approximately 0.4 m/s. The load on the machine has a 5 to 15 msec duration and

is approximately a half sine impulse.

A commonly used support system for forging hammers consists of helical

steel springs and viscous dampers. This vibration isolation system

substantially reduces the transmission of vibration to the surroundings and

prevents settling and tilting of the hammer. Damping in the isolation system is

large so that vibrations of the hammer are eliminated within a very short time

interval. Typically, the isolation system is designed to give a vertical

frequency of free vibration of about 5Hz with an effective damping ratio of

about 0.25.

Figure 4-6 shows a time history of displacement of a hammer for a half

since impulse load of 10 msec duration. The amplitude of the load is determined

so that fF(t)dt/m=Vo=0.4 m/sec. The response was evaluated by applying DFT to

equation 4-30. The exact response of the viscodamper oscillator is compared to

that of the equivalent viscous oscillator with parameters we and ~e as given by

equations 4-18 and 4-19. 0 was selected to be the natural frequency of the

equivalent oscillator, O=we . In evaluating we and ~e' an iterative procedure is

required, starting from O=w o ' The parameters of the isolation system were

selected to be W =31.42 rad/s (f =W /2n=5 Hz), A=0.3 (sec)r, r=0.6 and ed=1.52.
000

The parameters of the equivalent oscillator were we=41.56 rad/s and ee=0.25.

The stiffening effect of viscous dampers is evident in the difference between

frequencies Wo and we' Alternatively, one could use the exact frequency, w l '

and damping ratio, ~l' rather than the approximate values. Using Figure 4-1, we

get wl =43.97 r/s and ~1=0.27. The response of the equivalent oscillator closely

follows the exact response, capturing the correct content in frequency but

underestimating the peak displacem~nt. This is explained when considering that

the peak displacement is reached in very short time, when the response exhibits

strong low frequency components. In this short time, the viscodamper oscillator
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exhibits a stiffness close to K, whereas the equivalent oscillator has a higher

stiffness equal to K+Kl(O).

The role of viscous dampers in isolation systems for forging hammers is to

provide energy dissipation so that vibrations are eliminated within a very short

time interval. Figure 4-7 shows the time needed for the displacement to reduce

to five percent of its peak value as a function of parameter ed in three

isolation systems for forging hammers. The equivalent viscous oscillator

predicts results in good agreement with the exact.

The plots of Figure 4-7 represent a useful design tool. Consider for

example that an isolation system for a 60,000 Kg forging hammer is to be

designed for the impulsive loading shown in the figure. The design criterion is

that vibration should be reduced to 5% of the peak value within 250 msec. From

Figure 4-7 we determine that two possibilities exist: wo=62.83 rls and ed=1.12

or w
o
=3l.42 rls and ed=1.42. The latter solution gives a total spring constant

K=59 218 kN/m and a total damping coefficient C =5353 kNs/m (using equations 4-4o

and 4-5).

4.3.2 Earthquake Loading

Applications of viscous dampers in which earthquake loading is involved

are in seismic isolation of equipment and structures. One such application has

been discussed in the introduction of this report.

The equation of motion of a seismically excited SDOF viscodamper

oscillator is given by equation 4-20 with F(t)=-m~g(t)'~g(t) is the ground

acceleration and u(t) represents the relative displacement. Again, the solution

is derived by application of the DFT approach. Figure 4-8 presents displacement

response spectra of viscodamper oscillators for the 1940 El Centro earthquake

(Imperial Valley, component SOOE, peak ground acceleration of 0.348g) and for

the 1985 Mexico City earthquake (SCT building, component N90W, peak ground

acceleration of 0.17g). The oscillators are defined by parameters To=2~/wo'
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A=0.3(sec)r, r=0.6 and equivalent damping ratio ee' eguation 4-19, in which 0 is

taken equal to we' The equivalent viscous oscillator, defined by parameters we

and ee' equations 4-18 and 4-19, gives results in very good agreement with the

exact. It should be noted that each of the curves of Figure 4-8 are presented

for a constant ee' This means that parameter e d varies as To varies, i.e.

different size viscous dampers are needed to give constant ee at different

values of To' Furthermore, for fixed ee and To the actual period of the system

is less than T because of the stiffening effect of the viscous dampers.
o

Figures 4-9 and 4-10 present spectra of velocity and total acceleration

for the same systems and excitations (these are spectra of actual velocity and

acceleration, not of pseudovelocity and pseudoacceleration). To compute the

time histories of relative velocity and relative acceleration, the complex

frequency response functions of these quantities are used

u(t) 1 -5' (iw) H (w) F (w) e iwt dw271"

'~(t) 1 -5' 2 H (w) F (w) iwt
dw271" (-w ) e

(4-33)

(4-34)

where H(w) is the complex frequency response function for the relative

displacement (equation 4-21). The total acceleration is computed as u(t) +

Ug(t). Figures 4-9 and 4-10 demonstrate very good agreement between the

predictions of the equivalent viscous oscillator and the exact results.

Concluding the section, procedures have been presented for the exact

analysis of the viscodamper oscillator. Approximate procedures, which are based

on the concept of equivalent viscous oscillator, have been presented and shown

to give results in good agreement with the exact.
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SECTION 5

APPLICATION OF VISCOUS DAMPERS IN SLIDING ISOLATION SYSTEMS

Sliding isolation systems have been used for the seismic protection of

structures. They are more stable and have lower bearing displacements than

elastomeric isolation systems, at the expense however of higher structural

accelerations. One such sliding system has been recently tested on a shake

table using a six-story, quarter scale, 230KN (51.4 Kips) model structure

(Constantinou et aI, 1990a and 1990b). The isolation system consisted of Teflon

sliding bearings and restoring force devices in the form of helical steel

springs.

In the tested system, the helical springs had a spring constant of 470

N/mm (2.68 K/in.) and the coefficient of friction in the sliding bearings was

dependent on the velocity of sliding. It varied between a minimum value and a

maximum value which was mobilized at large velocity of sliding. The friction

coefficient, ~, followed with good accuracy the relation

f max - Df . exp(-aIVI) (5-1)

where f max is the maximum value, (fmax - Df) is the minimum value, V is the

velocity of sliding and a is a constant. The parameters in equation 5-1 were

f = 0.16 to 0.17, Df = 0.04 to 0.06 and a = 21.65 sec/m (0.55 sec/in.). Theymax

were determined experimentally.

The isolation system was specifically designed to have weak restoring

force and strong frictional force, so that it has low sensitivity to the

frequency content of the earthquake motion (Constantinou et al, 1990a and

1990b). This property has been confirmed in the experiments. While the

strong frictional force/weak restoring force combination may be desirable in

this respect, it may also result in large permanent displacements. The

permanent displacement has the following upper limit
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(fmax - Df) W
Up < K (5-2)

where W is the weight carried by the bearings and K is the stiffness of the

restoring force devices. For the tested system this upper limit is 39 mm (1.53

in.), which is about half the bearing displacement capacity. However, during

the shake table tests the maximum permanent bearing displacement was only 4 mm

(0.16 in.). This value is remarkably low and by far smaller than the limit of

equation 5-2. This limit was derived assuming that no inertia forces act on the

structure, and apparently the inertial forces "help" the isolation system to re­

center itself.

In analyses of the response of the model structure prior to testing, it

was observed that by including viscous damping into the isolation system

(modeled by linear dashpots), the displacements and accelerations of the model

were reduced. Accordingly, it was decided to add viscous dampers to the

isolation system. By adding four of the tested dampers (Figure 1-1), it was

estimated that the damping ratio in the fundamental mode would be about 0.1.

This, of course, was based on the assumption that viscous dampers could be

modeled as linear dashpots. In the shake table testing it was observed that

indeed the viscous dampers were effective in reducing the peak to peak

displacement of the isolation system. However, it was clear in the experimental

results that the dampers were not simple linear dashpots. This prompted the

authors to conduct component tests on the dampers which led to the developed

fractional derivative model.

5.1 Test Program and Results

The model structure has been described in detail in Constantinou et al,

1990b. Four viscous dampers identical to the tested one (Figure 1-1) were added

to the isolation system. The sliding bearings did not allow any vertical

movement so that the dampers were only effective in the horizontal direction.

The model structure was subjected to four earthquake signals on the shake table.

These earthquakes were:
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1. San Fernando earthquake (Pacoima Dam) of February 9, 1971. Component

S16E, peak ground acceleration (PGA) = 1.17g. This record was scaled to a

peak table acceleration (PTA) of 0.73 g.

2. Miyagiken-Oki earthquake of June 12, 1978 (Tohoku Univ., Sendai, Japan).

Component EW, PGA = 0.16g. The record was scaled to PTA = O.42g.

3. Tokachi-Oki earthquake, Japan (Hachinohe) of May 16, 1968. Component NS,

PGA-23g. The acceleration of this record was not scaled (PTA = 0.22g).

4. Mexico City earthquake of September 19, 1985 (SCT Building station).

Component N90W, PGA = 0.17g. The record was scaled to PTA = 0.21 g.

All records were time scaled by a factor of 2 to satisfy similitude

requirements of the quarter scale model.

Figures 5-1 to 5-4 present experimental results in the four cases of input

on the base (bearing) displacement time history, structure shear over weight

ratio time history, 6th floor displacement with respect to base time history and

base shear over weight ratio versus bearing displacement loop. The structure

shear is the shear force at the first story, whereas the base shear is the shear

force at the bearing level. The weight is 230 kN (51.4 Kips). The results are

presented in units of inches as they were measured. For comparison, Figures 5-5

to 5-8 present experimental results for the same input and model structure but

without the four viscous dampers. It is apparent that the addition of viscous

dampers resulted in large permanent displacements.

Table 5-1 compares experimental results in the two sets of tests. The

peak to peak displacement is the distance between the positive peak and negative

peak position of the bearing. The viscous dampers were effective in reducing

this peak to peak displacement in all cases. Particularly in the Mexico City

earthquake, this reduction is substantial (about 35%). The good performance in

this case is due to the low frequency response of the system in which the

dampers exhibit high damping coefficient and low storage stiffness. Otherwise,

the response of the two systems is about the same, except for the permanent
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displacement. Other then the case of Mexico City motion, the permanent

displacement in the system with viscous dampers is much larger than that in the

system without viscous dampers. The dampers appear to counteract the combined

effect of inertia and restoring (spring) forces which tend to re-center the

isolation system.

The experiments demonstrated that viscous dampers are not useful in

sliding isolation systems because of the possibility of occurrence of large

permanent displacements.

5.2 Analytical Prediction of Response

The shake table tests provided a good opportunity to verify the developed

fractional derivative model and to test the validity of the G1FP-algorithm for

analysis in the time domain.

For the analysis of the tested model structure, a lumped mass model with

degrees of freedom being the floor and base displacements was used. The

equations of motion are

" .
[M] lV} + [C] lV} + [K] lV}

..
- [M] ll} (Vb + Vg ) (5-3)

o (5-4)

Equation (5-3) is the equation of motion of the six story superstructure with

[M], [C] and [K] being the mass, damping and stiffness matrices, respectively.

Equation (5-4) is that of dynamic equilibrium of the entire structure in the

horizontal direction. lV) is the vector of floor displacements with respect to

the base, Vb is the base displacement with respect to the table and Vg is the

table displacement. A dot denotes differentiation with respect to time. mi and

ffib (i = 1 to 6) are the floor and base masses. Matrices [K] and [C] were

constructed analytically using analytically determined modal shapes and

frequencies and experimentally determined damping factors (see Constantinou et

al, 1990a for details).
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Ff and Fr are the frictional and restoring forces, respectively, at the

isolation interface. The frictional force is given by:

(5-5)

where sgn stands for the signum function and ~(Ub) is the coefficient of sliding

friction of the Teflon bearings, which depends on the velocity of sliding, Ub ,

in accordance to equation 5-1. 5 is the accidental average inclination of the

sliding interfaces which was determined to be between 0.15 and 0.35 degrees.

Variable Z in equation 5-5 is used to account for the conditions of

separation and reattachment (Constantinou et ai, 1990c) and is governed by the

following differential equation:

o (5-6)

in which Y = 0.127 mm (0.005 in.) and ~ + ~ 1.

The restoring force is given by:

(5-7)

in which K1 is the initial low value of the spring stiffness, valid for

displacements less than the limit D1 and K2 is the stiffness beyond the limit

D1 . Equation (5-7) describes the force in an elastic bilinear spring. For the

tested system, K1 = 270 N/mm (1.54 Kip/in.), K2 = 470 N/mm (2.68 Kip/in.) and

D1 = 12.7 mm (0.5 in.). Furthermore, P(t) in equation 5-4 is the force from

four viscous dampers which is described by
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(5-8)

with r = 0.7, A = 0.15 (sec)0.7 and Co = 24 Ns/mrn (136.71 lb-s/in.)

In solving equations 5-3 to 5-8, force pet) was brought to the right side

of equation 5-4 and treated as load. The equations were reduced to a system of

first order differential equations and integrated using Gears method for stiff

differential equations (Gear, 1971). In each time step, which was extremely

small, the force pet) was assumed constant and equal to the value calculated at

the previous integration step. At the end of each step, equation 5-8 was solved

by employing the G1FP-algorithm (section 3.1) and the value of pet) was

calculated.

Figure 5-9 compares the recorded and analytically determined time

histories of the base (bearing) displacement of the system without (top figure)

and with four viscous dampers (bottom figure) for the Mexico City motion (PTA =

0.2lg). The agreement between the experimental and analytical results is good.

Figure 5-10 compares the experimental and analytical time histories of the

base displacement for the Japanese Miyagiken-Oki motion (PTA = 0.42g). Again,

the agreement between experimental and analytical results is good. It is very

interesting to note that the analytical solution correctly predicts the

significant permanent displacement in the case of the system with viscous

dampers. This permanent displacement could not be accurately predicted by the

simple equivalent viscous damper model (see section 4). Figure 5-11 compares

the experimental response to that predicted by the equivalent viscous damper

model. The details of the displacement history are predicted well but the

permanent displacement is underestimated.
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SECTION 6

CONCLUSIONS

The fractional derivative Maxwell model has been found to fit the

viscoelastic properties of a type of viscous damper consisting of a piston

moving in a highly viscous gel. This damper is used in vibration isolation

systems for pipeworks and industrial machines and in seismic isolation systems

for structures.

Experiments were conducted for the calibration and verification of the

developed model. The model could predict the experimental results with very

good accuracy and over a wide range of frequencies.

A SDOF viscodamper oscillator, consisting of a mass, a linear spring and a

fractional derivative Maxwell element is used in the representation of an

isolation system. The problem of determination of the frequency and damping

ratio of the viscodamper oscillator is formulated. The steady-state response of

the oscillator is shown to always exist and is derived analytically.

Furthermore, the evaluation of the response of the oscillator to general dynamic

loading is presented within the context of Fourier analysis.

An equivalent SDOF viscous oscillator is defined whose response is

essentially the same as that of the viscodamper isolator. The equivalent

oscillator has the combined stiffness of the spring and storage stiffness of the

fractional Maxwell element and the damping coefficient of the fractional Maxwell

elements. The storage stiffness and damping coefficient are evaluated at the

fundamental frequency of the oscillator. The equivalent oscillator is found to

predict well the dynamic response of the SDOF viscodamper oscillator when

subjected to general dynamic loading.

Numerical procedures for the analysis of the viscodamper oscillator are

presented. Most convenient is the analysis in the frequency domain by the DFT

approach in combination wi th FFT algorithms. For this, the complex frequency

response function of the oscillator has been derived. For the analysis in the

time domain, an algorithm termed "GlFP" is presented.
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Finally, shake table tests of a large isolated model structure equipped

with a sliding isolation system and enhanced by viscous dampers were conducted.

While the test demonstrated the good ability of the dampers to reduce peak

displacements, it was also found that they had an undesirable effect on the

permanent displacement of the isolation system. The developed numerical

analysis procedures in the time domain were employed in the analysis of the

tested model and found to predict accurately the recorded response.
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APPENDIX A

EXISTENCE OF STEADY-STATE RESPONSE

We consider the viscodamper oscillator with homogeneous initial conditions

and subjected to harmonic loading. The equation of motion is

"mU(t) + KU(t) + pet) F sinwto (A.l)

pet) + >.Dr[P(t)] (A.2)

We apply the method of Laplace transform to find

+ w 2] U(s)
o (A.3)

where U(s) is the Laplace transform of U(t) and W
o

and €d are given by equations

4-4 and 4-5. In equation A.3 we recognize on the left side the expression in the

characteristic equation 4-6. Let the smallest common denominator of fraction r

and unity be n(e.g. for r = 0.6, n = 5). Equation A.3 may be written as

F w 1 + >.S r J Aj
U(s) -2.- L; (A.4)=

s2+w2 linm j=l A.s -
J

where Ajare the eigenvalues of the polynominal equation corresponding to equation

4.6 (for r = 0.6, equation 4.8) . Furthermore, J is an integer equal to (2 + r)n

and Aj are constants). The eigenvalues are derived by the procedure described in

Section 4. It should be noted that equation A.4 is identical in form to that

studied by Bagley and Torvik, 1983.

The inverse transform is

U(t)

-y+ico

1 fest U(s) ds
27l"i

-y-ico

A-I

(A.5)



Figure A-1 shows the closed contour for the integration. All singularities

of function U(s) are to the left of segment 1 of the contour. The radii of

contours 2 and 6 are increased indefinitely and segments 3 and 5 are extended

indefinitely in the negative real direction. The contribution to the closed loop

integral from segments 2 and 6 is zero. Furthermore, in direct similarity to the

problem studied by Bagley and Torvik, 1983, the contribution from segment 4

(branch point of function sl/n) goes to zero as the radius of the contour goes to

zero. For the evaluation of integral A.5 (integral along contour 1) it remains

to evaluate the contributions from poles s = Aj, j = 1 to J, poles s = +iw and

the branch cut of functions sl/n (negative real axis, segments 3 and 5).

-y+i oo

U(t) 2;i J
3,5

(A.6)

where Rj are the contributions from the residues of poles s = Aj
n and R+w are the

contributions from the poles s = +iw. All poles are of first order. By

application of the residue theorem we obtain

J
L; R

J
.

j=l

J
L;

j=l

n-1A.F wnA. (1
J 0 J

.u. nr
+ J )

2
w

exp(Ajt)
(A . 7 )

FOw[l+A(iw)r]
e iwt J Aj

R 2iwm
L;

(iw)l/nw j=l Aj-

Fow[l+A(-iw)r] iwt J A
j

R -2iwm e L;
( . ) l/n-w j=l Aj-~w -

(A.8)

(A.9)

The integral along segments 3 and 5 (branch cut) was evaluated by Bagley

and Torvik, 1983
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-i~where U is given by equation A.4 with s replaced by ze . 1m stands for the

imaginary part.

We observe that the response consists of part R + R which is a sinusoidw -w

of frequency wand two other parts described by equations A.7 and A.10. Steady-

state response exists only when these two parts vanish in the limit of large

times. The part described by equation A.7 is a sum of exponentially decaying

sinusoids provided that Aj appear in complex conjugate pairs. In general, this

is the case except in certain cases in which Aj is a real and negative quantity.

For example when r = 0.6, n = 5 and J = 13, eigenvalues A
j

are derived from the

solution of equation 4-8 and thirteen values of s = A~ (n = 5) are obtained.
J

They appear as six conjugate pairs and one negative real quantity. Note that

eigneva1ues A
j

are found in the slln or a (equation 4-7) plane and then

transformed to the s plane. The real negative eigenvalue maps on the Riemann

surfaces associated with the branch cut in the integration contour (Figure A-I).

The residue of this pole does not contribute to the response of the system.

Accordingly, the part given by equation A.7 is exponentially decaying with time.

The part given by equation A.10 is easily recognized as one decaying faster
CD

than the integral Jexp(-zt) dz as t tends to infinity. This integral is equal

o

to _t- 1 for fixed t, so that the integral of equation A.10 is asymptotic to

t-(l+a) where a > O. Accordingly, this part also decays with time. Therefore,

in the limit of large times only the parts given by equations A.8 and A.9

survive. These parts describe the steady-state response of the system. This

response is sinusoidal of frequency w.
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