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ABSTRACT

Double angle connections are widely used in transferring beam shear reactions to the

support. Such connections are expected to undergo severe cyclic rotations during medium to

large earthquakes. This report presents the findings of an experimental research program

conducted at the University of California at Berkeley to study the inelastic cyclic behavior of

double angle steel connections.

Six full-scale assemblages of beam-to-column connections were subjected to severe cyclic

loadings simulating the effects of strong earthqu:akes. The connections consisted of two equal

leg angles welded to the web of the beam and bolted to the column. Steel used in the specimens

was A36. The bolts were 3/4 inch A325 or A307 rib bolts. The major parameters studied were

moment-rotation hysteresis behavior and variations in the bolt force. Some bolts were

instrumented with strain gages, and connection was instrumented to measure moment and

rotations as well as bolt forces. The specimens were subjected to the increasing levels of cyclic

rotation, with each level of rotation repeated.

The experimental results are reported and general conclusions are drawn on the basis of

experimental behavior. The results include moment-rotation cyclic hysteresis loops and cyclic

bolt force variations, as well as qualitative observations. The failure modes observed were bolt

tension failure, thread stripping off, and cyclic fatigue fracture of angle legs. Results of bolt pull

tests and material tension coupon tests are also reported.

The main conclusion was that the connections with A325 bolts tightened to 70% of proof

load behaved wf:ll. Whereas, in some cases, connection with ribbed bolts were brittle and failed

in early cycles through bolt thread stripping.
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1 . INTRODUCTION

1.1 General

Double angle framed beam connections are frequently used in steel structures.

The main role of a double angle connection is to transfer shear from beams to the

supporting elements. In many low-rise buildings, with less than four stories, these

connections are used in framing systems connecting main girders to the columns.

Even though these connections basically carry shear during earthquakes, it is

expected that they will undergo large rotations. Thus, the behavior of the

connections will have significant effect on the overall behavior and dynamic response

of the structure. Therefore, for design and analysis in a severely seismic

environment, it is necessary to have an in-depth understanding of the actual behavior of

such connections. This report presents the results of six tests that were conducted to

investigate cyclic behavior of double angle connections under simulated earthquake

conditions.

Figure 1.1 shows four common types of double angle connections. The

four categories are based on the type of connectors that are used to attach angles to

the beam web and to the support. In this study only one type of connection shown in

Figure 1.1(d), was investigated. For this type of connection, angles are welded to the

beam web in the shop and bolts are placed and tightened in the field. The information

available on the behavior of the four connections indicates that the connections become

rotationally stiffer as one moves from type (a) to (d); type (d) is the stiffest connection.

This is due to the fact that in the type (d) connection, rotational ductility is provided

only by bending of the outstanding legs over a relatively short span between the bolt

edges and the fillet of the back-to-back legs.
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1.2 Literature Review

The behavior of double angle connections under monotonic loading has been

investigated by several researchers. However, a survey of the literature did not

produce any research done on the cyclic behavior of these connections. A brief review

of research on the monotonic behavior of the double angle connections is given here in

order to shed some light on the basic characteristics of behavior that not only occurs

under monotonic loading but can also be observed during cyclic loading.

Birkemoe and Gilmore (2) conducted two tests of full size beams connected to

the support by 4x3-1/2x3/8 inch angles. The loading in these tests was applied

monotonically. Their main objective was to study effects of coping of the beam

flange on the strength of the connection. One of the specimens had coping on the

flange and the other identical specimen was without cope. They also conducted

four component tests of the connection area to study failure modes as related to the

bearing strength of the bolts. They cautioned. against placing bolts too close to the

end of the beams, and also indicated that a potential for tear-out failure exists for

beams with top flange coping.

Sommer (10) conducted four tests of double angle connections of the type

studied in this project. The study was part of a larger research project to investigate

behavior of header plates and to compare the behavior of header plates with that of

double angles. Kennedy (5) later reported on some of the results and concluded,

among other things, that in deep connections the possibility of bolt fracture should

be investigated. Sommer also proposed the use of polynomials in developing a

standard moment-rotation curve for flexible connections.
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Later, Frye and Morris (4) used Sommer's fonnulation and established

standard polynomials defining moment-rotation relationships for a variety of

flexible connections. They used test results from Munse et al. (9) and Sommer (10) on

double angle connections to develop power values for their empirical curves. Frye

and Morris then used a connection moment rotation model to perfonn nonlinear

analysis Of frames. Ang and Morris (1) further advanced the technique of

nonlinear analysis of flexibly joined frames by using a Ramberg-Osgood model to

represent connection behavior and to analyze three dimensional frames.

The experimental work that provides some useful infonnation on the

behavior of connections similar to those studied in this project, is the work of Kennedy

(5).

Recently, a comprehensive summary of experimental and analytical work done

in the area of flexible steel connections was published by the American Society of

Civil Engineers (3). The document contains several papers on the state of the art of

flexible connection behavior and design.

1.3 Background

The dynamic response of an existing building to earthquake excitations was

under investigation by the DRS Corporation of San Francisco. The building was a

three story industrial building with steel framing. Columns and beams consisted of

rolled ASTM-A7 grade steel wide flange shapes. Most connections used in the

structure were double angle framed beam web connections similar to that of Figure

Ll(d).

To perform a realistic dynamic response analysis, it was necessary to model

the inelastic cyclic behavior of connections as realistically as possible. A survey of
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the available literature indicated that infonnation on the cyclic response of this type of

connection is non-existent, and therefore, a program was developed to investigate

cyclic behavior of double angle connections under severe earthquake effects. This

research program consisted of conducting a sufficient number of cyclic tests of a

beam-to-column assemblage and recording the hysteretic response of the connections.

The focus was on welded-bolted connections of the type shown in Figure 1.1(d).

1.4 Objective

The main objective of the experimental program was to collect empirical data on

the hysteretic behavior of double angle beam-to-column connections of the type

shown in Figure 1.1 (d).
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2. EXPERIMENTAL PROGRAM

2.1 General
A total of six specimens was tested. The tests consisted of subjecting double

angle beam-to-column connections to cyclic inelastic load reversals. The following

sections describes the parameters studied, the test specimens, loading history and test

procedures. Test results are given in Chapter 3.

2.2 Parameters of Study
The major objective of this research was to study the moment-rotation cyclic

behavior of the connections. The main parameters influencing the cyclic behavior

were recognized to be angle plastic deformations, rotational stiffness of the angles

throughout the elastic and inelastic range, and bolt behavior. During the experiments,

the moment-rotation hysteretic behavior of the connections was recorded. Also, bolt

forces were recorded in specimens that had A325 high strength bolts.

2.3 Test Specimens
A typical test specimen is shown in Figure 2.1. The specimens consisted of a

beam connected to a short column with double angle connections. Properties of the

test specimens are given in Table 1.1. The geometry and configuration of the six

connections that were tested are shown in Figures 2.2 through 2.7.

The angles used in specimen three were 3x3x5/16, and in all other five

specimens, the angles were 3x3x3/8. The material used in all specimens was

ASTM-A36 steel. The mechanical properties of the angles were established from

standard ASTM coupon tests, the results of which are given in Chapter 4. The angles

used in the test specimens were saw cut in the laboratory.
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Two types of bolts were used in the connections of the test specimens. In

specimens one, two and three,the bolts were old ribbed bolts removed from the

connections of the existing structure. The bolts used in specimens four, five and six

were all new A325 high-strength bolts. The nominal diameter of bolts in all specimens

was 3/4 inch. The tensile strength of the ribbed bolts was established from pull tests,

the results of which are given in Chapter 4. The bolt spacing for all specimens was 3

inches center-to-center. The edge distance of the bolts for all specimens was 1.5

inches. The spacing and edge distance satisfy the requirements of current AISC

Specification (11).

Welds connecting double angles to the beam web were made using £6013

electrodes resulting in a nominal weld strength equal to 60 ksi. It was found that the

£6013 electrodes closely simulate the welds in the existing structure. The weld size

in all specimens was 1/4 inch.

The columns in all specimens were WlOx77. This column was selected to ensure

that the column would remain almost elastic during the experiments and would not add

significant rotation to the overall rotation of the connection. The observations during

the tests confirmed that indeed the columns did not experience any noticeable

inelasticity.

The beams used in the experimental program were selected by the sponsor in

consultation with the investigators to simulate realistic conditions of the existing

structure. Since connections are very flexible compared to the beams, it was expected

that, during the tests, the beams would remain essentially elastic. This was confirmed

during the experimental program.
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Test specimens were fabricated by a local steel fabricator using drawings supplied

by the sponsor. The quality of workmanship was good and acceptable. The cutting of

angles and welding was done by technicians in the structural engineering laboratory of

the University of California at Berkeley.

2.4 Test Set-Up
The test set-up is shown in Figure 2.8. The set-up consisted of three major

components: (1) actuator; (2) reaction block supporting the actuator; and (3) reaction

block supporting the test specimens, see Figure 2.9. The actuator used in the test

program was a 125-kip-capacity MTS actuator with load cell and end joints. The

actuator was supported by a stub column welded to heavy steel plates prestressed to

the laboratory flOOI, The reaction block for the test specimens was a heavy steel box

also prestressed to the laboratory floor. The column for the test specimen was

connected to the reaction block by means of six 1.0 inch diameter high-strength bolts.

Lateral support is provided at the end of the beam, where load was applied, to prevent

instability of the specimen. In actual structures such lateral support is provided by floor

systems.

2.5 Loading History
All the cyclic rotation histories used for the specimens were similar. A typical

history is shown in Figure 2.10. The specimens were subjected to symmetric and

increasing cycles of rotation reversals. The rotation history was designed to simulate

the effects of severe earthquakes and to cause severe inelastic activity in the connection

area.

2.6 Instrumentation

The instrumentation used in this test series is shown schematically in Figure 2.11,

and mainly consisted of Linear Variable Displacement Transducers (LVDT's) and wire
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. - .transducers to measure displacements at various points on the specimens. Using the

information collected by the LVDT' s, the rotation of the connection was calculated in

five different ways to ensure accuracy. The rotation values that were used to plot the

results presented in this report are those calculated by adding the displacements

measured by wire transducers on the top and bottom flanges of the beam divided by the

distance between top and bottom transducers. The moment applied to the connection

was calculated by multiplying force measured in the actuator by the arm. The force

arm was 58.5 inches.

To measure bolt forces, special bolt gages were placed inside the holes drilled in

the bolt shanks. The forces were then calculated by measuring the strain in the

unthreaded part of the shank and assuming a modulus of elasticity of 29,000 ksi for the

steel. During all tests, the instruments performed well and no difficulties occurred.

The data acquisition system for the experiments consisted of an IBM PC based

system with capability of real time recording and processing. A videotape camera was

used to record some of the highlights of the experiments. Slides and photographs were

taken to record qualitative aspects of the research.

2.7 Test Procedures
The following steps were taken in conducting each test:

1. The specimen was prepared for testing. Angle legs were welded to the beam

web.

2. The specimen was assembled by connecting the beam to the column using the

type of bolt specified for the specimen. All bolts were snug tight at this

stage.
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3. The specimen was placed in the test set-up and bolts were tightened to the

pretensioning values that had been specified a priori. For ribbed bolts, a

torque wrench was used and a maximum torque of 250 ft-lb was applied to

the nuts. To prevent round headed bolts from rotating, a small tack weld was

used to weld bolt heads to angles. The value of the torque, to be applied to

the rib bolts, was established on the basis of field data measuring the the

torque that was necessary to untighten the old rib bolts. For new

ASTM-A325 bolts, the turn of nut method was used to achieve the bolt

pretensioning value prescribed by the American Institute of Steel

Construction Manual (11). The specified pretensioning force for 3/4 inch

diameter A325 bolts is 28 kips. For the A325 bolts that had strain gages in

their shanks, the bolt f~rces were checked continuously during tightening

to ensure reaching actual pretensioning load;t these bolts had 28 kips

nominal pretensioning force at the start of tests as specified by AISC Manual

(11).

4. After the bolts were tightened the instrumentation was added and the specimen

was whitewashed. The whitewashing was done to enable lthe investigators

to detect yielding on the surface of the specimens.

5. The proper operation of the instruments and the data acquisition system was

checked by applying a very small rotation.

6. The actual test began by applying a cyclic load and generating a rotation

history of the type shown in Figure 2.10. The exact rotation history applied

to each specimen is given in Chapter 3.

7. During the test, data were collected at discrete points and significant events

were noted, recorded, and photographed.
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3 . EXPERIMENTAL RESULTS

3.1 General

This chapter presents the quantitative and qualitative data that were collected

during the experimental studies. The observations that were made during the test are

presented fIrst, then the relevant plots of the hysteresis behavior of each specimen

follow.

3.2 Test Number One

The specimen for this test consisted of 3 x 3 x 3/8 inch double angles with two

rows of four bolts. A sketch of test specimen one is given in Figure 2.2. The bolts in

one row were rib bolts and on the other row were instrumented A325 bolts tightened to

a maximum torque of 250 ft-Ib. Since this was the fIrst specimen to be tested in the

series, A325 strain gaged bolts were used to obtain some insight about the forces that

might be generated in the bolts. The objective of these tests was to study the behavior

of ribbed A307 bolts; however, because of the very short unthreaded shank: length of

the ribbed bolts, it was not possible to place strain gages in them. A detail of the test

specimen is given in Figure 2.2.

The rotation history of the test is given in Figure 3.1. During the test, the angles

in specimen one remained almost elastic with evidence of only a very limited amount

of inelasticity appearing on the whitewash. Figure 3.2 shows the specimen after

completion of the test The minor black spots above the top hole and below the bottom

hole are indicators of yielding.

After the second cycle, some inelasticity was observed along the bolt line of the
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angles indicating yielding in these areas as shown in Figure 3.3. Furthermore, bolts

showed significant elongation resulting in separation of the angles from the

supporting column along the bolt lines.

After six cycles, when the specimen was subjected to 0.020 radian rotation for the

first time, the bolts elongated enough to release all the pretensioning force in the bolts

located farthest from the center of connection. An examination of these bolts, at that

time, indicated that they were completely loose and the nuts could be rotated manually.

Failure of this specimen occurred when the extreme bolts stripped off the threads at the

end of tenth cycle when the rotation was 0.03 radian. At this point the strength and

stiffness of the connection decreased significantly.

Hysteresis loops (cyclic moment-rotation curves) for this specimen are given in

Figure 3.4. Particular hysteresis loops for different cycles are given in Figures A.I

through A.5 of the Appendix. As can be seen in the figures, the hysteresis loops

showed signs of "pinching" after the second cycle, which is evidence of the

development of a pennanent gap between the angles and the supporting columns.

3.3 Test Number Two

The specimen for the second test consisted of 3 x 3 x 3/8 inch double angles with

two rows of six A307 rib bolts. A sketch of specimen two is given in Figure 2.3.

The rotation history of this specimen is given in Figure 3.5. The behavior of this

specimen was similar to that of specimen one. The inelasticity in the angles was very

limited and again, some bolts underwent permanent elongation. After the second cycle,

some yielding could be observed at bolt spacings.

Failure of this specimen occurred during the fifth cycle when one of the bolts
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located farthest from the center of the connection stripped off the threads. Since this

happened only in one direction, cyclic loading in the other direction continued for two

more cycles.

Moment-rotation hysteresis loops for this specimen are given in Figure 3.6.

Particular loops for each cycle are given in Figures A.6, A.7 and A.8 of the Appendix.

3.4 Test Number Three

The specimen for the third test consisted of 3 x 3 x 5/16 inch angles with two

rows of three ribbed bolts. A sketch of specimen three is given in Figure 2.4.

The rotation history of the specimen is given in Figure 3.7. The behavior of this

specimen was quite ductile and desirable. Two plastic hinges formed in angles. One

plastic hinge formed along the edge of the bolt line as shown in Figure 3.8, and a

second plastic hinge formed adjacent to the end of the fillet at the inert corner of the

angles (Figure 3.9). In this specimen, some bolts showed some minor elongation as

shown in Figure 3.10, but they were able to maintain some of their pretensioning force.

Unlike specimens one and two, in specimen three the bolts did not fail. The cyclic

loading of this specimen continued until connection rotation reached a value of more

than 0.06 radian which was the limit attainable by the test set-up.

Moment rotation hysteresis loops for this specimen are given in Figure 3.11, in

which the pinching effect is evident. More detailed loops are given in Figures A.9

through A.16 in the Appendix.

3.5 Test Number Four

The specimen for this test was similar to that in test number one with only one

difference; namely the type of bolts that were used. In specimen number four, all bolts

were A325 bolts tightened to 70% of their proof load, as specified by the AISC
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Manual (11). The angles used in this specimen were 3x3x3/8 inch and the bolts were

two rows of four ribbed bolts. A sketch of specimen four is given in Figure 2.5.

The cyclic rotation history of this specimen is given in Figure 3.12. The behavior

of this specimen was satisfactory and ductile. Most of the yielding occurred in the

angles. The bolts were initially tightened to 28 kips pretensioning load which is 70%

of their proof load as specified by AISC Manual(II). After 12 cycles the angles

developed fracture through the fillet area, as shown in Figure 3.13.

Moment-rotation hysteresis loops for this specimen are given in Figure 3.14.

More detailed loops are given in Figures A.17 through A.22 in the Appendix.

In this specimen, all four bolts on one angle were instrumented with strain gages

to measure the bolt forces. The strain measured in the bolt shank was multiplied by

29,000 to obtain the stress, from '."hich the bolt force was calculated. Figures 3.15

through 3.18 show the time histories of the bolt forces for all four bolts.

3.6 Test Number Five

The specimen for this test was similar to the specimen for test number two except

for the type of bolts that were used. The bolts in this specimen were all diameter A325

bolts tightened to 70% of proof load. The angles in this specimen were 3x3x3/8. A

sketch of specimen five is given in Figure 2.6.

The cyclic rotation history of this specimen is shown in Figure 3.19. Unlike

specimen two, the specimen in test number five behaved in a very ductile manner.

Two plastic hinges fonned in the angles, and the bolts did not show significant

inelasticity. Failure of this specimen occurred because of fracture of the angle leg

adjacent to the fillet as shown in Figure 3.20. The cracking started during the tenth

cycle when the specimen had completed its 0.025 :r:adian rotation cycle.
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Moment-rotation hysteresis loops for this specimen are given in Figure 3.21.

More details of the hysteresis loops for different cycles are given in Figures A.23

through A.27 in the Appendix.

In this specimen, all six bolts on one angle were instrumented with strain gages to

measure bolt forces. The strain measured in the bolt shank was multiplied by 29,000 to

obtain the stress, from which the bolt force was calculated. Figures 3.22 through 3.27

show the time histories of the bolt forces for all six bolts.

3.7 Test Number Six

The specimen for this test consisted of 3 x 3 x 3/8 double angles and two rows

of five A325 bolts. Details of specimen six are given in Figure 2.7.

The cyclic rotation history of this specimen is shown in Figure 3.28. Generally,

the behavior of this specimen was very similar to the behavior of specimens 4 and 5.

The angles experienced considerable inelasticity, and the bolts retained about one

third of their pretensioning load.

Moment-rotation hysteresis loops for this specimen are given in Figure 3.29.

More detailed loops are given in Figures A.28 through A.32 in the Appendix.

In this specimen, all five bolts on one angle were instrumented with strain gages

to measure bolt forces. The strain measured in the bolt shank was multiplied by 29,000

to obtain stress, from which bolt force was calculated. Figures 3.30 through 3.34 show

the time histories of the bolt forces for all five bolts.
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4. MATERIAL TESTS

4.1 General

Two types of material tests were conducted during the course of this project: (1)

tests of the tension capacity of ribbed bolts; and (2), tests to establish the mechanical

properties of the steel used in the angles. The results of these tests are presented next.

4.2 Bolt Tests

As discussed in the previous chapters, in specimens one, two and three of the

connection tests, rib bolts were used to connect the angles to the supporting columns.

These rib bolts were actually removed from an existing building to be used in the

experiments. Adequate information on the mechanical properties of such ribbed bolts

was not available. The ribbed bolts were used heavily after the mid 1940's in

connections of steel buildings, replacing inefficient rivets; later, the use of high strength

friction and bearing bolts evolved. To obtain reliable quantitative information, a series

of bolt tests were conducted; the results of five of which are reported here.

The rib bolts supplied by the sponsor were of two types. Both types had

hemispherical bolt heads and ribbed shanks. Both bolts had 17 vertical ribs over the

unthreaded part of their shank.

In type one, nuts and threads were similar to those of A325 bolts (5/8 inch long

nut and 10 threads per inch). This type appeared to resemble closely resemble A307

bolts but with ribs on the unthreaded shank area. The average under-thread diameter of

these bolts was 0.55 inch; and the outside diameter of the the threaded area was 0.7

inch. Hence the average depth of the thread was equal to 0.075 inch. The average

length of the unthreaded shank was 5/8 inch.



- 16-

In type two, the nuts were 7/8 inch long - 1/4 inch longer than the 3/4 inch A325

nut. These bolts had only 8 threads per inch and the depth of the thread was only 0.04

inch which is about half the A325 thread depth. The under-thread diameter of these

bolts averaged about 0.62 inch and the outer diameter of the threaded part was 0.70

inch. The average length of the unthreaded shank for this type of bolt was 5/8 inch.

As mentioned above, the bolts were relatively short. In order to conduct a tension

test of a bolt that also measured the strength of the nut and the stripping failure, a

special set-up was devised; this is shown in Figure 4.1. The nuts were welded to the

head of a one inch diameter A325 bolt. Then the bolt to be tested was placed in the

set-up and tension load applied to the top and bottom end of the grips. The loading

continued until failure occurred. The failure mode was very consistent for the two bolt

types mentioned above. For bolts with shallow threads, failure occurred by nuts

stripping off the threads on the bolts. Whereas, for type one bolts with deeper threads,

failure occurred by yielding and tensile fracture of the under-thread cross section of the

bolt.

Results of bolt tests are given in Figures 4.2 through 4.6.

4.3 Coupon Tests

A series of four coupon tests was conducted to establish the mechanical properties

of the steel in the angles. The tests were conducted following standard ASTM

procedures as specified in Reference (12). The gage length for the coupons was 8

inches for ultimate strain measurements and 4 inches for stress-strain curves.

Properties of the coupons are given in Table 4.1. Information on the ultimate

condition of the coupons is given in Table 4.2.
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The stress-strain curves are given in Figures 4.2 through 4.5. In addition, during

coupon tests, the modulus of elasticity of the material was measured and recorded.

Figures 4.6 through 4.10 provide information on the modulus of elasticity of steel.
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5. CONCLUSIONS

5.1 General

The main objective of this research project was to investigate, experimentally, the

behavior of double angle connections subjected to cyclic rotations. The specific results

have been presented in the previous chapters, particularly Chapter 3; and from these the

following conclusions were drawn.

5.2 Conclusions

On the basis of the test results the following conclusions can be made:

1. Ribbed bolts with shallow threads do not perform satisfactorily when the

connection is subjected to cyclic rotations larger than 0.025 radian. The

threads can strip off in connections with two-by-four, two-by-five and

two-by-six bolts with 3x3x3/8 angles..

2. The cyclic behavior of the connections with two rows of three ribbed bolts and

3x3x5/16 angles was quite satisfactory.

3. Connections with A325 bolts tightened to 70% of proof load as specified by

the AISC Manual (11) perform well and show ductile behavior.

4. The high strength A325 bolts maintained about one-third of their

pretensioning load as their shakedown force and did not become totally

loose.
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5. The neutral axis for connections with three bolts alternates between the top and

bottom of the angles. For connections with two-by-four, two-by-five and

two-by-six bolts, the neutral axis alternates between the top and bottom bolts.
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Table 1.1 Properties of Test Specimens

Angle Weld Diaof
Angles Length Size No. of Bolts Bolt Beam Column

Test (in.xin.x.in.) (in.) (in.) Bolts (in.) Type Section Section

1 3x3x3/8 12 1/4 2x4 3/4 Rib/A325 W16x40 WlOx77

2 3x3x3/8 18 1/4 2x6 3/4 Rib S24x80 WlOx77

3 3x3x5/16 9 1/4 2x3 3/4 Rib S12x31.8 WlOx77

4 3x3x3/8 12 1/4 2x4 3/4 A325 W16x40 WI0x77

5 3x3x3/8 18 1/4 2x6 3/4 A325 S24x80 WI0x77

6 3x3x3/8 15 1/4 2x5 3/4 A325 S24x80 WlOx77

~: All welds were done with E6013 electrodes

Table 4.1 Properties of Coupons Used in Tension Tests

Average Thickness Width Area
Coupon (in.) (in.) (in.2)

1 0.383 1.507 0.578

2 0.398 1.506 0.599

3 0.331 1.508 0.499

4 0.327 1.507 0.493

Table 4.2 Infonnation on Ultimate Stage of Coupons

Initial Final
Length Length Percent Rupture Stress

Coupon (in.) (in.) Elongation (ksi)

1 8.03 9.87 22.914 36.000

2 8.02 10.01 24.813 35.000

3 8.02 10.17 26.808 28.500

4 8.02 10.15 26.559 27.000
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Figure 1.1 Four Common Types of Double Angle Connections

Figure 2.1 Typical Test Specimen
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Figure 2.8 A Sketch of Test Set-Up

Figure 2.9 Actual Test Set-up
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Figure 3.2 Specimen One at the End of Test
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Figure 3.3 Yielding of Specimen One
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Figure 3.9 Plastic Hinges in Specimen Three

Figure 3.10 Elongation of Bolts in Specimen Three
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Figure 3.13 Fracture of Angles, Specimen Four
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Figure 3.20 Fracture of Angles, Specimen Five
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Figure 3.28 Cyclic Rotation History of Specimen Six
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APPENDIX

A.I General

This appendix contains more detailed plots of moment-rotation hysteresis loops. In

most cases, each plot contains two curves that correspond to the same level of maximum

rotation.
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Figure A.21 Moment-Rotation Hysteresis Loops for Specimen Four
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