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ABSTRACT

The conventional derivation of an energy equation for the seismic response of structures is

reviewed and compared with an alternative definition which is physically more meaningful. The

following engineering parameters computed using these two definitions are compared: (1) the

profiles of energy time histories for short and long period structures, which are shown to be

significantly different; (2) input energy spectra based on a constant ductility ratio for which

significant difference exists for both the short and long period ranges, although for periods in the

range of practical interest in building design the difference is small for most of the recorded

ground motions. It was also found that the maximum input energy is closely correlated to the

strong motion duration.

The reliability of using input energy spectra derived for a single-degree-of-freedom system

to predict the input energy to multi-story buildings is illustrated by correlating the analytical

prediction with the experimental results of a six-story steel frame. Finally, the uniqueness of the

energy dissipation capacity of a structural member is evaluated. Test results for three types of

structural members - steel beams, reinforced concrete shear walls, and composite beams - are

examined, with the conclusion that the energy dissipation capacity is not unique but is highly

dependent on the loading and the defonnation paths.
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I. INTRODUCTION

1.1. Statement of the Problem

Traditionally, displacement ductility has been used as a criterion to establish inelastic

design response spectra (IDRS) for earthquake-resistant design of buildings. 16, 21 The minimum

required strength (or capacity for lateral force) of a building is then based on the selected IDRS.

As an alternative to this traditional design approach, an energy-based method was proposed by

Housner.l° Although Anderson and Bertero3 estimated the energy input in steel structures

designed considering inelastic behavior in 1969, it is only recently that this approach has gained

extensive attention.2, 5, 8, 12-15, 18,22 This design method is based on the premise that the energy

demand during an earthquake (or an ensemble of earthquakes) can be predicted and that the

energy supply of a structural element (or a structural system) can be established. A satisfactory

design implies that the energy supply should be larger than the energy demand.

1.2. Objectives

The first objective of this report is to analyze the physical meaning of two energy equations

that are derived and used in the literature. The second objective is to use these two definitions to

construct inelastic input energy spectra for a single-degree-of-freedom (SDOF) system, and then

to compare the spectra, as well as to evaluate the reliability of using SDOF energy spectra to

predict the input energy to multi-story buildings. The third objective is to assess the reliability of

predicting the energy dissipation capacity of a given structural member or structural system, and

to investigate how different loading and deformation paths can affect the energy dissipation capa­

cities of structural members.
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1.3. Scope

Evaluation of the energy equations is limited to an elastic-perfectly plastic SDOF system.

Five earthquake ground motions (see Table 1.1 and Fig. 1.1) including some recently recorded

destructive earthquakes are used in this study. The reliability of using SDOF input energy spectra

for determining the input energy to a multi-story building is assessed by studying the correlation

of SDOF results with those obtained from shaking table experiments conducted on a six-story

steel frame. The energy supplies, in particular energy dissipation capacities, of three types of

structural members - steel, reinforced concrete and composite members - subjected to cyclic

loading, are discussed.
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ll. PREDICTION OF INPUT ENERGY DEMANDS

2.1. Derivation of Energy Equations for a SDOF System

Given a viscous damped SDOF system subjected to a horizontal earthquake ground motion

(Fig. 2.1a), the equation of motion can be written as

where m = mass

mVt + cv + Is = 0 (2.1)

c = viscous damping coefficient

Is = restoring force

Vt = v + vg = absolute (or total) displacement of the mass

v = relative displacement of the mass with respect to the ground

vg = earthquake ground displacement.

Note that Is may be expressed as kv for a linear elastic system (k = stiffness.) By letting

vt = ii + vg , Eq. 2.1 may be rewritten as

mv + cv + Is = -mvg (2.2)

Therefore the structural system in Fig. 2.1a can be conveniently treated as the equivalent system

in Fig. 2.1b with a fixed base and subjected to an effective horizontal dynamic force of magnitude

-mvg • Although both systems give the same relative displacement, this "convenience" does

cause some confusion in the definition of input energy and kinetic energy. Depending upon

whether Eq. 2.1 or 2.2 is used to derive the energy equation, different definitions of input and

kinetic energies may result.
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2.1.1. Method 1 - Derivation of "Absolute" Energy Equation

Integrate Eq. 2.1 with respect to v from the time that the ground motion excitation starts:

(2.3)

Replacing v by (vt-Vg) in the first term in Eq. 2.3, then

Substituting Eq. 2.4 into Eq. 2.3 yields

( . )2
m V

t J·d J J ..2 + cv v + fsdv = mVtdvg.

The first term of the above equation is the •• absolute" kinetic energy Ek

(2.4)

(2.5)

(2.6)

(2.7)

because absolute velocity (vt ) is used to calculate the kinetic energy. The second term in Eq. 2.5

is the damping energy (E ~), which is always non-negative because

E ~ = Jcvdv = Jc/dt .

The third term in Eq. 2.5 is the absorbed energy (Ea ), which is composed of recoverable elastic

strain energy (Es ) and irrecoverable hysteretic energy (Eh ) :

(2.8)

The right-hand side term in Eq. 2.5 is, by definition, the input energy (Ei):

(2.9)

In this study Ei is defined as the "absolute" input energy. This definition is physically meaning-

ful in that the term mVt represents the inertia force applied to the structure. This force, which

from Eq. 2.1 is equal to restoring force plus damping force, is the same as the total force applied

to the structure foundation. Therefore Ei represents the work done by the total base shear at the

foundation on the foundation displacement. The absolute energy equation (Eq. 2.5) then can be
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written as follows:

(2.10)

2.1.2. Method 2 - Derivation of "Relative" Energy Equation

Integrate Eq. 2.2 with respect to v:

Jmvdv + Jcvdv + Jfsdv = -J mvgdv . (2.11)

Notice that the second tenn (=E~) and the third tenn (=Ea ) on the left side of the equation remain

unchanged. The first tenn in Eq. 2.11 can be rewritten as

f ·· J dv J .(.)mvdv = m-dv = mdv v
dt

= m(v)2
2

which is the "relative" kinetic energy (E,,) calculated from relative velocity:

E" _ m(v)2
- 2 .

The right-hand side tenn of Eq. 2.11 is conventionally defined as the "input energy" (Ei):

I J .. dE i = - mVg v .

(2.12)

(2.13)

In this study Ei is defined as the "relative" input energy. This definition of input energy physi­

cally represents the work done by the static equivalent lateral force (-mvg) on the equivalent

fixed-base system; that is, it neglects the effect of the rigid body translation of the structure. The

relative energy equation is then expressed as

(2.14)

2.2. Comparison of Energy Time Histories

Input energy as defined by either Eq. 2.9 or 2.13 is a function of time. Figure 2.2 shows the

energy time histOlies for a short period (T = 0.2 sec) and a long period (T = 10.0 sec) elastic­

perfectly plastic SDOF structure subjected to the 1971 Pacoima Dam earthquake ground motion.

Damping energy (E~), strain energy (Es ), and hysteretic energy (Eh) terms are uniquely

defined, irrespective of what method is used, but the input energy and kinetic energy are different,
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depending upon which method is used. High fluctuations in the Ei time history are apparent for

the short period structure, and the same phenomenon for Ei is apparent for the long period struc­

ture. Note also the significant difference in the magnitudes of Ei and Ei for the long period struc­

ture. When the period of the structure is significantly larger than the predominant excitation

period of the ground motion, the structure's center-of-mass essentially remains stationary. There­

fore the absolute input energy for the relatively long period structure should be low, as is

reflected in the Ei time history.

To construct input energy spectra, the time at which the input energy is evaluated should be

specified. Most previous researchers evaluated the input energy at either (i) the end of the earth­

quake ground motion, or at (ii) the end of the earthquake ground motion plus a time equal to one

half of the period of free vibration of the structure,22 or at (iii) the end of the earthquake ground

motion plus a time at which the velocity of the structure changes sign.12 If the relative energy

equation is used, the time at which the input energy is evaluated by the methods just described, is

suitable for short period structures (see Fig. 2.2); for long period structures these methods may

significantly underestimate the maximum input energy that may occur early in the ground motion

(see Fig. 2.2b.) For this reason the maximum input energy measured during the ground motion is

used to construct the input energy spectra in this study. It should be noted that if Ei and Ei are

evaluated at the end of the ground motion, which corresponds to the time at which vg = 0, the

rigid body kinetic energy is zero and hence the values of E i and Ei are identical.

To solve the problem of the nonzero initial condition of each ground motion, the method of

prefixing a two second acceleration pulse, proposed by Pecknold and Riddle,17 was adopted in

these analyses.

2.3. Estimation of the Difference between Input Energies from Different Definitions

The definition of input energy given by Eq. 2.9 has been used by Berg and Thomaides,5

Goel and Berg,8 Mahin and Lin, 14 Dang and Bertero,20 among others. Equation 2.13 has been

used by most other researchers. The difference between the input energies of Methods 1 and 2 is

derived below.



-7 -

m (')2 m (. )2 E' m (V' )2 . . E'= 2 VI - 2 V + i = 2 g + mvvg + i

that is,

g-E~ = m(v)2 +
I I 2 g mvvg (2.15a)

It can be proved easily that the difference between the kinetic energies due to the different

definitions is:

, m (. )2 ..
Ek-Ek = 2 Vg + mvvg (2. 15b)

Because the last term in the above equation contains the term V, the error cannot be estimated

easily. However, the values of E i and Ei for very long and very short period structures can be

calculated as follows.

For a structure with very long period (T ~ 00), the input energy tends to converge to a

constant value, depending upon which definition of input energy is used. For a structure with

infinitely long period,

V = -vg

VI = V + vg = 0

Therefore,

Method 1: J(0) dVg = 0 (2. 16a)

Method 2: (2. 16b)

i.e., the difference between the input energies Ei and Ei for a structure with T= 00 is equal to

m(vg )2/2. If the input energy Ei is evaluated at the end of duration, its value will be very small

because vg tends to be vanishingly small. If Ei is evaluated as the maximum throughout the

duration, then Ei /m will then converge to v:<max) /2 for long period structures.

For a structure with very short period (T ~ 0), the input energy will also converge to a

constant value, depending upon the definition used. For a structure with zero period, i.e., a rigid



- 8-

structure,

Therefore,

or v = 0 .

Method 1:

Method 2:

(2. 17a)

(2.l7b)

i.e., the difference between the input energy spectra for a structure with zero period is equal to

.2
mvg(max) /2.

On the basis of the above derivation, it appears that from the energy point of view the peak

ground velocity plays an important role as a damage index. It would be misleading, however, to

use E j as a damage index for very long period structures because the value of E j is very small.

Such structures are so flexible that nonstructural component damage in real buildings may be

excessive. The use of Ei in this case may give a more reasonable index for damage. Similarly,

the use of E j for a very short period structure serves as a better damage index than the use of Ei.

Relative input energy may give misleading information for a rigid structure because Eq. 2.17b

implies that no energy is input to a rigid structure.

2.4. Comparison ofInput Energy Spectra

The input energy spectra for five earthquake records (see Table 1.1) are generated for a con­

stant displacement ductility of five. The input energy is converted to an equivalent velocity by

the following relationship:

V ~
2K

j= _I

m
(2.18)

The input energy equivalent velocity spectra are shown in Fig. 2.3; the solid line represents the

input energy calculated by Method 1 and the dashed line by Method 2. Note again that the input

energy (Ej or ED plotted is the maximum input energy; this energy may occur before the ground

motion ends.
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Figure 2.3 shows that Vi and vi are very close in the intennediate period ranges: to be more

specific, the input energies calculated by Methods 1 or 2 are very close in the vicinity of the

predominant excitation periods of the earthquake ground motions. The difference between Vi and

vi increases for longer and shorter period structures. The level of maximum ground velocity

vg(max) is also shown in Fig. 2.3 for each earthquake record. The trend that Vi converges to

vg(max) as the period of the structure tends to zero and that Vi converges to vg(max) as the period of

the structure tends to infinity (as stated in Eqs. 2.l6b and 2.l7a) is clearly shown in Fig. 2.3. The

tendency for vi in the short period range and for Vi in the long period range to decrease to zero

can also be observed (see Eqs. 2.l6a and 2.l7b.)

2.5. Influence of Displacement Ductility Ratios on Input Energy Spectra

It has been concluded that Ei (or vi in the fonn of equivalent velocity) spectral values

evaluated at the end of the duration of the ground motion are relatively insensitive to the dis­

placement ductility level.22 The variation of input energy equivalent velocity spectra for displace­

ment ductility ratios of2, 5, and 8 are shown in Fig. 2.4. It can be observed that the input energy

(EJ spectra are generally insensitive to the level of ductility ratio. The only exceptions to this

observation are the spectra of the 1985 Mexico City Earthquake. For this highly harmonic, long

duration earthquake record the input energy is significantly affected by the ductility level (espe­

cially from J.L = 2 to J.L = 5) in the period range to the left side of the predominant excitation

period.

The peak of the spectrum, which corresponds to the predominant period of the ground

motion, tends to shift slightly towards a smaller period value as the displacement ductility ratio is

increased. Therefore, as the value of the displacement ductility ratio increases, the values of Vi in

the period range immediately to the left of the peak increase and the values in the period range to

the right of the peak decrease.
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2.6. Verification of Housner's Assumption

For a linear elastic system the maximum input energy that is stored in a SDOF system is

(2.19)

where Sd is the linear elastic spectral displacement and Spv is the linear elastic pseudo-velocity,

both being a function of period and damping ratio. It should be noted that ED is the maximum

elastic energy that is stored in the structure; the damping energy is not included. HousnerlO

assumed that ED (or Spv in the form of equivalent velocity) can be used as the energy demand for

an inelastic system in his proposed limit design method. If Spv spectra with 5% damping are

compared with the Vi spectra with 5% damping and a ductility ratio of 5, it is seen from Fig. 2.5

that Spv may significantly underestimate Vi.

2.7. Approximate Inelastic Input Energy Spectra

Inelastic behavior has the effect of (i) increasing the effective natural period, and (ii)

increasing the effective damping ratio of a structure. On the basis of a study of a class of hys­

teretic structures subjected to a total of 12 earthquake ground motions, Iwanll found that an ine­

lastic response spectrum can be approximated by an elastic spectrum corresponding to an

equivalent viscous damping (~e) and an equivalent natural period (Te):

~e = ~ + 0.0587 (ll_l )0.371

T
_e = 1 + 0.121 (ll_l )0.939
T

(2.20a)

(2.20b)

where ~ is the nominal viscous damping ratio, T is the natural period in the elastic range, and Il is

the ductility ratio.

For a given ductility ratio, the elastic input energy equivalent velocity spectra, constructed

by using an equivalent damping ratio of ~e (Eq. 2.20a) and then performing a period shift using

Eq. 2.20b, are compared with the inelastic spectra shown in Fig. 2.4. Figure 2.6 shows such a

comparison for Il = 5. It can be observed that although inelastic input energy equivalent velocity

spectra appear to be predicted very well by elastic spectra constructed using Iwan's procedure,

there are some significant differences. For example, for a period of about 2 seconds Iwan's
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elastic Vi spectral value for the Mexico City earthquake is twice the inelastic Vi spectral value;

and therefore the elastic E i value will be 4 times the value of the inelastic Ei. It is believed that

this can be attributed to the higWy hannonic nature of the Mexico City ground motion and that

this type of motion was not taken into account in Iwan's derivation ofEq. 2.20.

In his study of the relationship of ~e and Te for both harmonic and typical earthquake exci­

tations, Hadjian9 has shown that the equivalent damping ratios due to hannonic excitation are

about five times those due to earthquake excitation, and the period changes due to harmonic exci­

tation are about twice those due to earthquake excitation. It is believed that Eq. 2.20 significantly

underestimates the values of Se and Te for the 1985 Mexico City earthquake. An increase in the

value of Se wi11lower the magnitude of Iwan's elastic input energy spectra, making them more

comparable to the actual inelastic input energy spectra. Deriving appropriate values of Se and Te

for the 1985 Mexico City earthquake is outside the scope of this study.

2.8. Input Energy Equivalent Velocity Amplification Factor and Strong Motion Duration

Relationship

It is well-known that elastic spectral values like elastic pseudo-acceleration cannot reflect

the effect of strong motion duration. This shortcoming carries through to any inelastic design

spectra derived from them. Since input energy reflects the effect of the duration directly through

integration, it is worthwhile to investigate the relationship between the maximum equivalent

velocity of input energy and the strong motion duration. Two quantities - amplification factor

and the strong motion duration used in this study - are described first.

The amplification factor (\I') of an input energy equivalent velocity spectrum for a given

ductility ratio (/-l) and a viscous damping ratio (S) is defined by the following:

(2.21)
Vg(max)

where vrax (/-l,S) is the maximum value of Vi evaluated throughout the whole period range. In

general Viax(/-l,s) occurs in the immediate vicinity of the predominant period of the earthquake

ground motion.
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One commonly used definition of strong motion duration is that due to Trifunac and

Brady:19

tD = to.95 - to.05 (2.22)

where to.05 and to.95 define the times at which 5 percent and 95 percent, respectively, of the value

of the Arias intensity (fA) is achieved. Arias intensity is defined as follows:4

(2.23)

where td is the total duration of the earthquake record. The calculated values of tD for each earth­

quake record are listed in Table 1.1. A plot of '¥ (~=5,~=5%)versus tD for the five earthquake

motions is shown in Fig. 2.7. It is observed that '¥ and tD are linearly dependent; by letting the

intercept of the line of best fit, shown in Fig. 2.7, be 1.0, the following equation is obtained by the

method ofleast-squares:

'¥ (J.l=5, ~ =5%) = 1.0 + 0.12tD (2.24)

Therefore, if the strong motion duration at a given site is known, it is possible to predict the max­

imum energy input to a structure with a specified ductility ratio (5 for the case used in developing

Eq. 2.24.) The period of the structure at which this maximum input energy occurs is close to the

predominant excitation period of the expected earthquakes at the site under consideration.

For example, if it is expected from previous earthquake records at a certain site that the

maximum ground velocity is 30 in/sec and that the strong motion duration tD is 20 sec, the max­

imum input energy per unit mass for a structure having a damping ratio of 5 percent and a ductil­

ity ratio of 5 can be estimated by the following procedure:

'¥ = 1.0 + O.12tD = 1.0 + 0.12(20) = 3.4

vrax = '¥ Vg(max) = 3.4(30) = 102 in/sec

m
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2.9. Input Energy to Multi-Story Buildings

The •• absolute" energy equation for an N-story building has been derived as follows:20

1.T. J. T JfTd J~ ··)d-Vt m Vt + V C dv + s v = (LJmiVti vg
2 i=l

(2.25)

where m, c, and v are the diagonal mass matrix, viscous damping matrix, and relative displace­

ment vector, respectively; mi is the lumped mass associated with the i-th floor, Vti is the total

acceleration at the i-th floor. The kinetic energy and input energy are calculated as follows:

N

E i = J(LmiVti) dVg
i=l

(2.26a)

(2.26b)

where Ek is the summation of the kinetic energy at each floor level, calculated using an absolute

velocity (Vti) at the i-th floor, and Ei is the summation of the work due to an inertia force (millti) at

each floor for ground displacement.

Akiyama2 has shown that the relative input energy Ei based on a SDOF system can provide

a very good estimate of the input energy for multi-story buildings. Although no parametric study

is attempted here to verify the same conclusion for the absolute input energy Ei , shaking table test

results for a six-story concentrically braced steel structure will be used to support this conclusion.

Figure 2.8 shows the 0.3-scale test model during the shaking table test; the 1978 Miyagi­

Ken-Oki (MO) earthquake was used as the input ground motion. The test structure is classified

by the UBC1 as a dual system with two exterior ductile moment-resisting frames and one interior

concentrically K-braced frame in the excitation direction. The magnitude of the earthquake

record was scaled to different levels to represent different limit states of the structure responses.

Details of the test results are reported in Reference 20. During the collapse level test (MO-65

Test, which had a measured peak base horizontal acceleration of 0.65g), the model experienced

severe brace buckling in the bottom five stories, and the braces in the fifth story even ruptured.

Figure 2.9 shows the envelope of base shear versus critical inter-story drift index obtained from

different limit state tests. As a result of brace buckling and rupture, the envelope exhibits

strength deterioration. Figure 2.10 shows the energy time histories of the MO-65 Test. Note that



- 14-

the "viscous damped energy" curve was calculated indirectly by the following expression:

(2.27)

In order to compare the experimental input energy of this frame with an elastic-perfectly

plastic SDOF system, an estimate of the displacement ductility ratio for this frame from the test

envelope in Fig. 2.9 is needed. If this nonlinear envelope is approximated by two linear seg­

ments, with the yield level calculated from simple plastic analysis,20 the corresponding ductility

ratio is 2.6. The calculated input energy spectrum of a SDOF system with a ductility ratio of 2.6

and a viscous damping ratio of 2%, which was the measured first mode equivalent viscous damp­

ing ratio, is shown in Fig. 2.11. The quantities presented in Fig. 2.11 have been scaled to the pro­

totype level by similitude laws. The correlation between the experimentally measured Vi for the

multi-story structure and the calculated Vi for a SDOF system is excellent. It is concluded from

this case study that the input energy spectra for a SDOF system can be used to predict the input

energy demand for this type of multi-story building structure reliably.
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III. ESTIMATION OF STRUCTURAL MEMBER ENERGY SUPPLY

3.1. Introductory Remarks

In the energy-based seismic design methods proposed by previous researchers, 2,10 it is

commonly assumed that the energy dissipation capacity (or supply) of each member can be

predicted reliably; this capacity is assumed to be identical under cyclic loading to that provided

under monotonic loading. Some test results are considered with the purpose of examining this

assumption. Test results of a series of steel beams under the same type of deformation pattern but

with varying amplitudes are examined first in order to study the effect of amplitude on the energy

dissipation capacity of a structural member. To study the effect of deformation path on the

energy dissipation capacity, test results for two identical shear walls and two identical composite

beams are examined.

3.2. Steel Beam Testing

A series of cantilever steel beams have been tested under strain reversal for different ampli­

tudes.6 The number of cycles required for the beam to fail versus strain amplitude is shown in

Fig. 3.1. By ignoring strain hardening and Bauschinger effects a typical moment-curvature curve

under cyclic loading can be idealized as shown in Fig. 3.2: these two factors tend to compensate

each other from the standpoint of energy dissipation. The dissipated energy per unit length, ed, is

the area enclosed by the hysteresis loop:

(3.1)

where M p is the plastic moment, <1>p is the plastic curvature, and <1> is the controlling (constant)

curvature, which from Fig. 3.1 is the sum of <1>p and the yielding curvature <1>y- Plastic curvature

<1>p is approximated by <1> in Eq. 3.1; this is a reasonable assumption when the controlling curvature

is much larger than the yielding curvature. By letting

-
<1> =

£.

dl2
(3.2)
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where e is the controlling strain at beam flange, and d is the beam depth, the total energy dissi­

pated in n cycles (n = number of cycles required to rupture the beam), is

- 2 8Mp -
ed = 4 Mp n e (d) = -d-(n e) . (3.3)

- -
Figure 3.1 also shows the ne versus e curve. By assuming constant plastic hinge length Lp for all

the specimens tested, the total energy dissipation capacity edLp will be significantly smaller for

beams subjected to larger amplitude cyclic deformations.

By extrapolating the energy dissipation capacity from the ne curve for n =1, which

corresponds to the case of monotonic loading, it is concluded that the energy dissipation capacity

is much lower than that provided under cyclic loading, especially when the ductility ratio is low.

If energy were to be used as a criterion for design, the energy dissipation capacity of structural

elements derived from monotonic loading tests would be too conservative.

3.3. Shear Wall Testing

Figure 3.3 shows the hysteretic behavior of two identical reinforced concrete shear wall

structures tested under monotonic and cyclic loading.? Although Wall 3 has a larger ductility

ratio, the total energy dissipation capacity of Wall 3 is only 60% of that of Wall 1. This demon­

strates that the energy dissipation capacity of a structural element is highly dependent on the

loading path, the deformation path or both.

3.4. Composite Beam Testing

Figure 3.4 shows the load-deformation curves of two 0.3-scale composite beams tested

under different deformation paths.20 The first beam (CG1) experienced large displacement ductil­

ity in the first half cycle, followed by reversed loading in the opposite direction that caused severe

flange local buckling. The energy dissipated is 27 kip-in. The second beam (CG3) was subjected

to two complete cycles of loading reversals with displacement ductility smaller than that imposed

on CG1. Another five complete cycles with displacement ductility similar to that imposed on

CG1 were then applied. The energy dissipated in this beam is 128 kip-in, 4.7 times larger than

that dissipated by CG1.
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Strictly speaking, the comparison made above for these two composite beams is question­

able. There is no reason why CG1 cannot dissipate more energy although it suffers flange local

buckling when loaded into the reverse direction. Although the test of CG1 was terminated when

strength deterioration was observed, it is believed that if a similar deformation path to that of

CG3 but with higher displacement amplitudes were applied to CG1, the energy dissipation capa­

city would be smaller.

3.5. Concluding Remarks

These experimental results demonstrate that energy dissipation capacity is not constant and

depends on loading path or deformation path or both. From analysis of available test results it

appears that for properly designed and detailed structures, the energy dissipation capacity under

monotonic loading is a lower limit on the energy dissipation capacity under cyclic loading or ine­

lastic deformation or both. However the use of this lower limit could be too conservative for

earthquake-resistant design, particularly if the ductility ratio is limited to low values with respect

to the ductility ratio reached under monotonic loading. Thus, efforts should be devoted to deter­

mining experimentally the energy dissipation capacity of main structural elements as a function

of the maximum deformation ductility that can be tolerated, and the relationship between energy

dissipation capacity and loading and deformation paths.
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IV. CONCLUSIONS

From the results obtained in the studies that have been summarized in this report, the fol­

lowing observations can be made.

(1) The use of an "absolute" energy equation rather than a "relative" energy equation has the

advantage that the physical energy input is reflected.

(2) The profiles of the energy time histories calculated by the absolute energy equation differ

significantly from those calculated by the conventional relative energy equation (see Fig.

2.2.)

(3) The absolute and the relative input energies for a constant displacement ductility are very

close in the period range of practical interest, namely 0.3 to 5.0 sec (from Fig. 2.3.) The

difference between these two input energies increases as the structure period differs more

and more from the previous range. As the period decreases, the absolute input energy

approaches mv:(ntaX) /2, where vg(ntaX) is the maximum ground velocity, and the relative

input energy approaches zero. The situation is reversed for long period structures.

(4) For certain types of earthquake ground motion, the absolute input energy spectra are sensi­

tive to the variation of ductility ratio.

(5) Except for the highly harmonic earthquakes (1985 Mexico City earthquake for example),

the absolute input energy spectra for a constant ductility ratio can be predicted reliably by

the elastic input energy spectra using Iwan's procedure which takes into consideration the

effect of increasing damping ratio and natural period.

(6) The maximum energy input to a structure whose fundamental period is close to the predom­

inant excitation period of an expected earthquake can be predicted reliably with the

expected maximum ground velocity and the amplification factor 'I' (one such expression for

ductility ratio 5 and damping ratio 5 percent is presented in Eq. 2.24.) The amplification

factor 'I' is approximately linearly related to the strong motion duration tD defined in Eq.

2.22.
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(7) For medium rise steel dual systems it is possible to estimate with sufficient accuracy the

input energy to a multi-story building from the SDOF absolute input energy spectra using

the fundamental period of the multi-story structure.

(8) The energy dissipation capacity of a structural member is not unique and depends on the

loading or deformation paths or both. The energy dissipation capacity of a member under

monotonic loading can only provide a lower bound estimate and may significantly underes­

timate its energy dissipation capacity, especially when the ductility ratio is limited to values

that are low compared with the ductility ratio reached under monotonic loading.

(9) There is an urgent need to determine the energy dissipation capacity of the main types of

structural elements and structural systems as a function of the maximum deformation duc­

tility that can be tolerated and of the dynamic characteristics of the actual ground motions.



- 20-

REFERENCES

1. Uniform Building Code, International Conference of Building Officials, Whittier, Califor­

nia,1985.

2. Akiyama, H., Earthquake Resistant Limit-State Design for Buildings, University of Tokyo

Press, 1985.

3. Anderson, J. C. and Bertero, V. V., "Seismic Behavior of Multistory Frames by Different

Philosophies," Report No. UCB/EERC-69/11, Earthquake Engineering Research Center,

University of California, Berkeley, California, October, 1969.

4. Arias, A., "A Measure of Earthquake Intensity," in Seismic Design for Nuclear Power

Plants, ed. R.J. Hansen, pp. 438-469, Massachusetts Institute of Technology Press, Cam­

bridge, Mass., 1970.

5. Berg, G. V. and Thomaides, S. S., "Energy Consumption by Structures in Strong-Motion

Earthquakes," Proceedings of the Second World Conference on Earthquake Engineering,

pp.681-696,Tokyo,Japan, 1960.

6. Bertero, V. V. and Popov, E. P., "Effect of Large Alternating Strains on Steel Beams,"

Proceedings, vol. 91, no. ST1, pp. 1-12, ASCE, February, 1965.

7. Bertero, V. V., Popov, E. P., Wang, T. Y., and Vailenas, J. M., "Seismic Design Implica­

tions of Hysteretic Behavior of Reinforced Concrete Structural Wails," Proceedings of the

Sixth World Conference on Earthquake Engineering, pp. 10-19, New Delhi, India, January,

1977.

8. Goel, S. C. and Berg, G. V., "Inelastic Earthquake Response of Tail Steel Frames," Jour­

nal of the Structural Division, vol. 94, no. ST8, pp. 1907-1834, ASCE, August, 1968.

9. Hadjian, A. H., "A Re-evaluation of Equivalent Linear Models for Simple Yielding Sys­

tems," Earthquake Engineering and Structural Dynamics, vol. 10, pp. 759-767, 1982.

10. Housner, G. W., "Limit Design of Structures to Resist Earthquake," Proceedings of the

First World Conference on Earthquake Engineering, pp. 5-1 to 5-13, Berkeley, California,



- 21 -

1956.

11. Iwan, W. D., "Estimating Inelastic Response Spectra from Elastic Spectra," Earthquake

Engineering and Structural Dynamics, vol. 8, pp. 375-388, 1980.

12. Jennings, P. c., "Earthquake Response of a Yielding Structure," Journal of the Engineer­

ing Mechanics Division, vol. 90, no. EM4, pp. 41-68, ASCE, August, 1965.

13. Kato, B. and Akiyama, H., "Seismic Design of Steel Buildings," Journal of the Structural

Division, vol. 108, no. ST8, pp. 1709-1721, ASCE, August, 1982.

14. Mahin, S. A. and Lin, J., "Construction of Inelastic Response Spectrum for Single Degree

of Freedom System," Report No. UCB/EERC-83/17, Earthquake Engineering Research

Center, University of Califomia, Berkeley, March, 1983.

15. McKevitt, W. E., Anderson, D. L., Nathan, N. D., and Cherry, S., "Towards a Simple

Energy Method for Seismic Design of Structures," Proceedings of the Second U. S.

National Conference on Earthquake Engineering, pp. 383-392, EERI, 1979.

16. Newmark, N. M. and Hall, W. J., "Procedures and Criteria for Earthquake Resistant

Design," Building Science Series No. 46, pp. 209-236, Building Practices for Disaster Miti­

gation, National Bureau of Standards, February, 1973.

17. Pecknold, D. A. and Riddle, R, "Effect of Initial Base Motion on Response Spectra,"

Journal of the Engineering Mechanics Division, vol. 104, no. EM2, pp. 485-491, ASCE,

April, 1978.

18. Tembulkar, J. M. and Nau, J. M., "Inelastic Modeling and Seismic Energy Dissipation,"

Journal of the Structural Engineering, vol. 113, no. 6, pp. 1373-1377, ASCE, June, 1987.

19. Trifunac, M. D. and Brady, A. G., "A Study on the Duration of Strong Earthquake Ground

Motion, " Bulletin of the Seismological Society of America, vol. 65 , no. 3, pp. 581-626,

June, 1975.

20. Uang, C.-M and Bertero, V. V., "Earthquake Simulation Tests and Associated Studies of a

0.3-Scale Model of a 6-Story Concentrically Braced Steel Structure," Report No.

UCB/EERC-86/10, Earthquake Engineering Research Center, University of California,

Berkeley, California, December 1986.



- 22-

21. Veletsos, A. S., Newmark, N. M., and Chelapati, C. V., "Deformation Spectra for Elastic

and Elastop1astic Systems Subjected to Ground Shock and Earthquake Motions, " Proceed­

ings oj the Third World Conference on Earthquake Engineering, pp. II-663 to II-678, Wel­

lington, New Zealand, 1965.

22. Zahrah, T. F. and Hall, W. J., "Seismic Energy Absorption in Simple Structures," Struc­

tural Research Series No. 501, University of illinois, Urbana, illinois, July, 1982.



c

c

d

E~
I

E'k

m

m

T

v

v

- 23-

APPENDIX - NOTATION

viscous damping coefficient

viscous damping matrix

beam depth

hysteretic dissipated energy of a steel beam

absorbed energy, (= Es+Eh)

maximum elastic energy stored in a SDOF system

hysteretic dissipated energy

absolute input energy

relative input energy

absolute kinetic energy

relative kinetic energy

recoverable elastic strain energy

damping energy

restoring force

restoring force vector

Arias intensity

lumped floor mass

mass matrix of an N-story building structure

plastic moment

linear elastic pseudo-velocity

linear elastic spectral displacement

total duration of an earthquake record

strong motion duration of an earthquake record

equivalent period

small-amplitude (or elastic) period

relative structural displacement

relative structural displacement vector
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relative structural velocity

relative structural acceleration

absolute structural displacement

absolute structural velocity

absolute structural acceleration

earthquake ground displacement

earthquake ground velocity

maximum earthquake ground velocity

earthquake ground acceleration

absolute input energy equivalent velocity, (= .y(2Ei )lm)

relative input energy equivalent velocity, (= .j(2Ej)lm)

nominal viscous damping ratio

equivalent viscous damping

curvature

plastic curvature

yield curvature

controlling flange strain

amplification factor of Vi above vg (max)
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Fig.2.8 Overall View ofO.3-Scale Model with Reference Frame20
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