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ABSTRACT

This report presents the results obtained in studies that have been conducted to: (i) assess

the reliability of the parameters that have been used to identify the damage potential of an earth~

quake at a given site; (ii) evaluate the reliability of ductility based earthquake-resistant design as

the only engineering parameter to reflect the design criteria, the acceptable level or degree of

damage and to reduce the yielding strength required on the basis of linear elastic response of

structures to critical ground shakings; (iii) examine the role and importance of the main response

quantities which include drift index, input energy, hysteretic energy, cumulative displacement

ductility ratio, and number of yielding reversals in the fonnu1ation of design criteria; (iv) estimate

the required overstrength for buildings that are designed to satisfy the ATC minimum required

seismic forces and discuss their significance in relation to the response modification factor R; and

(v) examine the actual seismic demands of structures that have been designed in accordance with

the ATC recommended design provisions. Eight earthquake ground motions, including three

recentJ.y recorded motions that caused significant building damage, were considered.

The major conclusions drawn from these studies are as follows:

(1) Parameters used to specify the damage potential of an earthquake should take into con­

sideration the effects of amplitude, frequency characteristics, and strong motion duration.

The destructiveness factor PD proposed by Araya et al. considers all these parameters; this

factor appears to be the best in reflecting the severe building damage observed after the Sep­

tember 19, 1985 Mexico City earthquake.

(2) The damage potential of an earthquake may be underestimated by just considering indepen­

dently the recorded components of the ground motion.

(3) The overstrength required, for constant displacement ductility, above the minimum strength

specified by ATC for all of the ground motions considered in this study is not constant. The

required overstrength varies with fundamental period; for several of the ground motions

with small fundamental periods, a very large overstrength is required in order to survive the

earthquake ground motion.
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(4) For a constant displacement ductility ratio, the drift index calculated by assuming uniform

inter-story drift over the height of a building tends to be critical for buildings with small

fundamental periods. If a soft first story were to occur, the drift index becomes more criti­

cal as the building's fundamental period increases.

(5) Inelastic seismic resistance response spectra derived from linear elastic design response

spectra for a constant displacement ductility ratio cannot reflect the high energy demand on

buildings subjected to earthquakes with a long duration of strong motion. Using linear elas­

tic pseudo-velocity response spectra may significantly underestimate the true input energy

to the structures.

(6) The lack of reliable damage criteria imposes severe limitations on developing rational ine­

lastic design response spectra. There is an urgent need to establish such criteria for all types

of structural members with different materials and, then, for all types of structural systems.
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I. INTRODUCTION

1.1. Statement of Problems

In earthquake-resistant design of building structures, the primary concern is to avoid col­

lapse or structural and nonstructural damage that may jeopardize human lives during rare but

severe ground shaking.3 Although this design philosophy is well established and is generany

accepted, its quantification in the fonn of design specifications is not an easy task. In particular,

the difficulty in estimating (i) earthquake input, (ii) demand (strength, stiffness, and energy dissi­

pation) on the structure, and (iii) supplied resistance to the structure, complicates the earthquake­

resistant design of building structures.14

Earthquake ground motions that may occur at a given site are highly unpredictable. Recent

recorded earthquakes, especially the September 19, 1985 Mexico City earthquake, demonstrate

clearly that the data base of previously recorded earthquakes is not nearly adequate; an earth-

quake with frequency content, duration, and amplitude characteristics far beyond those previ­

ously recorded may strike our urban areas.

Since different earthquake ground motions cause different degrees of damage to engineered

structures, it is logical for scientists and engineers to qU~intify their severity and damage potential.

Although the Richter scale can be used to measure the size or the amount of total energy released

during an earthquake, the Richter magnitude cannot be used to estimate damage away from the

epicenter.l7,25 The Modified Mercalli Intensity (MMI) is a subjective (as opposed to instrumen­

tal) index used to describe damage at a specific site. However, since the degree of earthquake

damage in a building depends on design methods, construction materials, construction methods

and so on, indiscriminate use of the MMI may be misleading.

The design of strong motion accelerographs in the United States in 1932 and their subse­

quent improvement has facilitated the collection of a large number of strong motion records.26

On the basis of these instrumental records, researchers have proposed different parameters to

express, usually through a simple index, the damage potential of the recorded ground motion to
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structures located in the vicinity of the recording site. These parameters range from a simple

instrumental peak value to a value resulting from a very complicated mathematical derivation.

Questions that then arise include: how reliable are these parameters and how well do they corre­

late with the damage observed after an earthquake?

A structure may fail in different ways, depending upon the interaction between the dynamic

characteristics of the external excitation and those of the structure itself. Therefore it is necessary

to know: (i) what the dynamic characteristics that define the damage potential of a given ground

motion are; (ii) what constitutes acceptable damage, that is, what are the damage criteria; and (iii)

what are the desired dynamic characteristics of a building that will permit it to resist satisfactorily

the demands imposed by seismic effect in combination with other loadings. The damage poten­

tial of the possible ground motions and damage criteria for both the structural members and the

entire structural system are needed to establish reliable earthquake-resistant design criteria.

At present, displacement ductility ratio is probably the most widely used parameter to limit

damage and also to express damage in terms of earthquake-resistant design criteria. The pro­

cedure for constructing inelastic design response spectra for a given ductility ratio is well esta­

blished 32 and has been adopted by most current earthquake-resistant building codes. However,

there are other response quantities, such as cumulative ductility, number of yielding reversals,

incremental collapse, low-cycle fatigue, energy dissipation capacity and so on, which may also

play an important role in structural failure during the earthquake.5, 15,22,28,29,31 Unfortunately,

very few studies have been performed to ascertain which are the most reliable parameters for for­

mulating earthquake-resistant design criteria.

Current building codesl -3 implicitly consider the overstrength of buildings in constructing

inelastic design response spectra. Structural overstrength is inherent in the design process and its

role in a building's surviving severe ground shaking has been demonstrated in recent experimen­

tal studies.13, 39,42 Although the designer does not quantify this overstrength and its contribution

is not explicitly considered in formulating the seismic design forces, it is of the utmost impor­

tance to quantify the level of overstrength required for buildings designed to just satisfy the

minimum strength requirements of current seismic regulations. This required overstrength

should be compared with the actual overstrength of buildings that have been designed and
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constructed in accordance with these building regulations.

1.2. Objectives and Scope

The objectives of the studies reported here are to: (i) assess the reliability of various param­

eters that have been used to identify the damage potential of an earthquake at a given site; (ii)

evaluate the reliability of ductility based earthquake-resistant design (that is, of using the dis­

placement ductility ratio as the engineering parameter to reflect the level or degree of damage and

to develop design response spectra from linear elastic spectra); (iii) examine the role and impor­

tance of the other response quantities that include drift index, input energy, hysteretic energy,

cumulative displacement ductility ratio, and number of yielding reversals in the formulation of

design criteria; (iv) estimate the required overstrength for buildings that are designed to satisfy

the ATC minimum required seismic forces and to discuss its significance in relation to the

response modification factor R; and (v) examine the actual seismic demands of structures that

have been designed in accordance with the ATC recommended design provisions.

Eight earthquakes were selected for this study. These earthquakes cover a wide range of

characteristics with different amplitudes, durations, frequency content, epicentral distances, soil

types, and so on. TIrree recently recorded destructive earthquakes - the March 3, 1985 Chilean

earthquake, the September 19, 1985 MeXican earthquake, and the October 10, 1986 San Salvador

earthquake - were included to cover the wide variability of the data base of earthquake records.
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II. EARTHQUAKE GROUND MOTION CHARACTERISTICS

AND DAMAGE POTENTIAL

2.1. Introductory Remarks

The parameters used to characterize the severity or damage potential of earthquake ground

motion can be classified into the following six groups: 36

(1) Peak instrumental values;

(2) Integration of records in the time domain;

(3) Frequency content by Fourier transforms or frequency characteristics by the zero-crossing

method;37

(4) Parametric integration of the equation of motion of a single-degree-of-freedom (SDOF) 'sys­

tern and subsequent analysis of the results;

(5) Parametric integration of the equation of motion of a SDOF system and subsequent integra­

tion in the frequency domain of intermediate results (e.g., linear elastic pseudo-velocity

response spectra.)

(6) Parameters that combine the results derived from some of the above groups.

Some important parameters proposed by previous researchers in each group are discussed in the

following section. The reliability of using these parameters is then evaluated.

Eight earthquake ground motions (Table 2.1) are used for this study; the selected records

cover a broad range of the following main characteristics: Richter magnitude ML , focal depth,

epicentral distance, and geological condition at the site. Figures 2.1 through 2.8 show the

acceleration time histories, Fourier amplitude spectra, and linear elastic response spectra for the

eight earthquakes. Except for the San Salvador and Miyagi-Ken-Oki earthquakes, the records

were obtained at free field stations and not at the foundation of a building. The importance of this

observation will be discussed later.
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2.2. Parameters Used to Characterize Earthquake Ground Motion Intensity

2.2.1. Group 1-This group includes the following parameters:

(1) Peak ground acceleration (PGA);

(2) Peak ground velocity;

(3) Peak ground displacement.

The PGA of each record is listed in Table 2.2. Because it is easy to use and because the inertia

forces depend directly on acceleration, peak ground acceleration is the parameter most widely

used to describe the intensity and damage potential of an earthquake at a given site. The fact that

peak ground acceleration is a poor parameter for this purpose has already been pointed out by

many researchers, because the peak instrumental value might be associated with a short impulse

of very high frequency. Peak ground acceleration may also be distorted by local irregular surface

topography and other factors such as interaction with the response of large nearby structures. A

well-known example is the Pacoima Dam record of the 1971 San Fernando earthquake (Fig. 2.5);

its peak acceleration of 1.17g is possibly the largest peak acceleration ever recorded in the world.

However, following deconvolution analysis,34 the derived Pacoima Dam record (Fig. 2.6) had a

peak acceleration of only OAg.

Structure damage observed after an earthquake has not been consistent with the associated

peak ground acceleration recorded nearby. Although the peak ground acceleration of one of the

horizontal components of the 1985 Mexico earthquake was only O.17g, the extent of the building

damage within that city was much more severe than that observed after the 1986 San Salvador

earthquake with a peak ground acceleration exceeding O.6g.

2.2.2. Group 2 - This group includes mean-square acceleration, root-mean-square acceleration,

and Arias intensity.

Arias8 defines an intensity coefficient as follows:

(2.1)

where td and vg are the total duration and ground acceleration of an earthquake, respectively. The
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coefficient IA represents the sum of the total energies per unit mass stored in the oscillators of a

population of undamped linear oscillators uniformly distributed as to their frequencies, at the end

of the earthquake ground motion. 8 The calculated values of I A are listed in Table 2.2, varying

from 603 in/sec for CH to 97 in/sec for MX. The use of this parameter in conjunction with peak

ground acceleration suggests that MX should have a much lower intensity than CR. Note that

CH has a significantly higher value of IA; this can be attributed to its long duration, high accelera­

tion, and broad frequency content. Although MX has a long duration of strong motion shaking

with respect to CH, it has very low PGA (0.17g versus 0.67g.)

Housner 24 proposed an "earthquake power" PA as a measure of damage potential:

t 0.95

1 Jii:(t) dt
t0.95-t 0.05 t 0.05

(2.2)

where to.05 and to.95 define the times at which 5 percent and 95 percent, respectively, of the value

of the integration in Eq. 2.1 is achieved. PA is basically the mean-square acceleration in the

bracketed duration of to.05 and to.95. Because the integral in Eq. 2.2 is directly related to lA, PA is

a measure of the average rate of energy input to the structure. The square root of PAis defined as

the root-mean-square acceleration in the bracketed duration:

(2.3)

The calculated PA and RMSA are shown in Table 2.2. The higher values of PA and RMSA suggest

that short duration, impulsive earthquakes (5S, PD, DPD) should have a large damage potential.

2.2.3. Group 3 - The frequency content of an earthquake record can be identified by its Fourier

transform:

F(ro)

td

= fvg e-iOYt dT. =
o

td

fvg ( COSffiT, - i sinffiT, ) dT.
o

(2.4)

The Fourier amplitude spectrum (FAS) is then expressed as:

(2.5)
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Figures 2.1 to 2.8 show such spectra for the eight earthquake records. MX and MO can be

broadly classified as earthquakes with narrow-band frequency content, while the impulsive type

of ground motions (SS, PD) exhibit broader band frequency content.

The Fourier amplitude spectrum is also a measure of the total energy of an undamped linear

elastic SDOF system evaluated at the end (td) of an earthquake record; to be specific, the Fourier

amplitude is the maximum relative velocity (v) of an undamped SDOF system at the end of dura­

tion: 26

(2.6)

The zero-crossing method was used by Saragoni37 to characterize the frequency content of

an earthquake record. He calculated the "intensity of zero crossings" (vo) by dividing the total

number of zero-crossings of an acceleration record by the total duration. The calculated Vo

values of the 8 records are listed in Table 2.3. Araya et al. 6 have shown that both the magnitude

of the PGA and the value of Vo have significant influence on the ductility requirements of a sim­

ple elastic-perfectly plastic oscillator. However, examining only Vo for a particular earthquake

record can be misleading - for example, MX has the lowest value of Vo yet MX produced

severe damage.

2.2.4. Group 4 - This group includes linear elastic response spectra of various kinds, effective

peak acceleration and velocity.

The linear elastic response spectra (LERS) of each earthquake are shown in Figs. 2.1 to 2.8;

Pseudo-acceleration (Spa) is associated with the maximum elastic force that can be developed in

an elastic SDOF system; Figure 2.9a shows the pseudo-acceleration response spectra for the eight

earthquake ground records considered in this study. For a 5 percent damping ratio, the maximum

pseudo-acceleration of CH (= 2Ag) is more than twice that of MX (= 1.0g.) Since Spa relates

directly to the force that can be developed in a linear elastic SDOF system and since under

quasi-static loading the larger the force the larger the damage, CH, SS, and PD should have high

damage potential for structures with periods less than 0.5 second and MX should be very
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destructive for long period structures (T:::: 2 sec.) However, under dynamic loading the potential

for developing high forces in a linear elastic system is not a reliable index for measuring the dam­

age potential for elastic-perfectly plastic systems.

The ATC 1,2 smoothed linear elastic design response spectra (LEDRS), CsR, are expressed

as:

l.2AvS
2/3 ~ 2.5Aa

T
(soil type 1) (2.7)

~ 2.0Aa (soil type 3 when Aa ~ 0.30)

where Av and Aa are the effective peak velocity-related acceleration and effective peak accelera­

tion, respectively, S is the soil type coefficient, and R is the response modification factor. For a

typical office building located in an area of the highest seismicity, the ATC LEDRS for soil types

1 and 3 are shown in Fig. 2.9a. Although the ATC LEDRS are comparable to the LERS for EC

and conservative for TF, they are non-conservative for: (i) short period structures (T < 1 sec) sub-

jected to CH or SS; and (ii) long period structures (T > 1.7 sec) subjected to MX.

The maximum input energy, ED, that is absorbed by an elastic SDOF system can be

estimated from the linear elastic pseudo-velocity (Spv) as follows:22

1 2
ED = -m(Spv)

2
(2.8)

Therefore Spv (= .y2ED lm) is an index that can be used to express the damage potential of a

ground motion from the energy perspective. Unlike Spa' Fig. 2.9b shows that MX has the largest

Spv; the ratio of the maximum input energy between MX and CH for an elastic SDOF system is:

Et§X (T :::: 2.0 sec) :::: [ 120] 2 :::: 6 .

E£H (T :::: 0.5 sec) 50
(2.9)

The ATC linear elastic pseudo-velocity design spectra shown in Fig. 2.9b were calculated

from the corresponding pseudo-acceleration design response spectra. If ground motions like

those recorded during the 1985 Chile and Mexico and the 1986 San Salvador earthquakes could

occur in the United States, then from the energy standpoint, the ATC spectra are non­

unconservative for long period structures subjected to MX-type earthquake and for short period
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structures subjected to CH or SS-type earthquake. For the intermediate period ran~e of 1 second

to 2 seconds, the input energy is maximized by the PD record. The ATC pseudo-velocity design

spectra are similar to the EC spectra for periods less than 1 second and are conservative for longer

periods. There is little energy associated with TF over the whole period range.

Realizing the shortcoming of using peak instrumental values, ATCl, 2 introduced the con­

cept of effective peak acceleration. Although effective peak acceleration is a philosophically

sound parameter for seismic hazard analysis, at present there is no standardized definition of this

parameter. ATC defines the effective peak acceleration (EPA) and the effective peak velocity

(EPV) as follows:

EPA =

EPV =

-
Spa

2.5

Spv

2.5

(2.10)

(2.11)

- -
where Spa is the mean pseudo-acceleration value in the period range of 0.1 to 0.5 second and Spv

is the pseudo-velocity value at a period of 1.0 second for the 5 percent damped LERS. The ATC

definition was used to calculate the EPA and the EPV of the eight earthquake ground motions.

The calculated values in Table 2.2 show that MX has the lowest EPA (= 0.08g) and that CH, SS,

and PD have EPA values in excess of the EPA (= OAg) adopted by ATC as being appropriate for

a region of high seismic risk. A problem arises in applying the ATC procedure to determine EPV

for MX; the ATC definition will significantly underestimate EPV which is computed at a period

of 1 second because the response to MX is concentrated at and around 2 seconds. A response

spectrum shape similar to that of MX was not considered by ATC.

An instrumental intensity Is given by the expression

(2.12)

was proposed by Sandi, 36 where 10 is a constant. In the absence of more comprehensive analyses

than those available to date, Sandi postulated a value equal to 8 for 10 if the units of EPA are

m/sec2 and of EPV are m/sec. Values of Is calculated from the ATC values for EPA and EPV

are listed in Table 2.2. The value of Is for MX record is the lowest for the reason cited above.
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On the basis of the results presented above and the extensive damage that resulted from

MX, it is clear that more refined and reliable definitions of EPA and EPV than those used at

present have to be developed.

2.2.5. Group 5 - This group includes the elastic response spectrum intensity (Sf) proposed by

Housner: 21

2.5

Sf(~) = f Spv(~,T) ar
0.1

(2.13)

For 5 percent damping, the calculated Sf values in Table 2.2 show that the intensity of MX (= 111

in) is much higher than that of CH (= 78 in) or SS (= 87 in.) Using Housner's index, EC and TF

are much less destructive than the other earthquakes. A comparison of the values of Spa for CH

and SS with that of MX shows that Sf (or Spv) and Spa give completely different and contradict­

ing indications of the ground motion intensity or damage potential.

To relate Sf with Spa, Eq. 2.13 can be rewritten as:

2.5 2.5

Sf(~) = f Spv(~,T) ar = 2~ fSpa(~,T) T ar
Ql Ql

(2.14)

which is the first moment area of Spa (for 0.1 $ T $ 2.5 sec) about the Spa axis. Therefore Eq.

2.14 implies that Sf is larger for ground motions with a significant amount of low frequency (or

long period) content, and it explains why MX has a larger Sf value than CH although its max-

imum Spa is much lower than that of CH.

It should be noted that although the Arias intensity coefficient fA (Eq. 2.1) accounts for

earthquake duration, the fA for MX is much lower than for CH. This is contradictory to what the

Sf value suggests and the reason for the lower value of fA for the MX record may be explained by

the following equality:36

(2.15)

where IFlig (m) I is the Fourier amplitude of vg(t). A comparison of the Fourier amplitude spectra

in Figs. 2.1 and 2.3 explains why the fA value for MX is low.
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2.2.6. Group 6 - A destructiveness potential factor PD that considers both the Arias intensity IA

and the intensity of zero crossings Vo was proposed by Araya and Saragoni:7

Araya et at. pointed out that in order to compare the destructiveness of different types of earth-

quake records, it is necessary to consider simultaneously the effect of their maximum ground

acceleration, strong motion duration, and frequency content. The first two factors are considered

in lA, and the last one by the intensity of zero crossings (or characteristic frequency) vo. The cal-

culated values ofPD for the eight earthquake records in Table 2.3 indicate that MX has extremely

high destructiveness potential, consistent with the severe damage observed after that earthquake.

The high value of PD for MX is attributed to the low value ofvo (Table 2.3.) CH has a PD value

of about one-fifth that for MX, although the value of IA for CH is six times greater than that for

MX. The PD value for MO, which caused significant structural damage, also suggests that it is

more destructive than SS and PD. The values of PD for EC and TF suggest that they have very

low damage potential.

In order to judge whether a proposed parameter is reasonable, it is always necessary to

correlate the values of the parameter with the observed damage in the vicinity of the recording

sites for different earthquakes. Araya et at.7 have shown that the proposed parameter PD corre­

lates very well with MMI values; however, it should be kept in mind that MMI values will

depend on building technology, particularly on construction aspects (quality control of material,

workmanship, etc.) For example, in addition to the collapse of many high-rise buildings during

the 1986 San Salvador earthquake, many poorly constructed adobe-type houses also collapsed.

The extensive damage to adobe-type construction may have contributed to a higher value of MMI

(see Table 2.1.)

Park et at.33 proposed the following "characteristics intensity" as a measure of the damage

potential:

(2.17)

The values of lefor each earthquake record in the bracketed strong motion duration (between

to.05 and to.95) are shown in Table 2.2. This index implies that a damaging earthquake motion
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should have large input power (RMSA ="I/PA), preferably together with long duration. The low

value of Ie for MX is not consistent with the severe damage caused by this earthquake. The

influence of frequency content is not considered in this index.

2.3. Earthquake Ground Motion Duration

It is well-known that the major disadvantage of using linear elastic response spectra is that

the duration of ground motion is not considered. The ATC design spectra are constructed for a

recorded ground motion duration of about 20 to 30 seconds. 1, 2 The recorded CH and MX ground

motions are much longer than 30 seconds (Figs. 2.1 and 2.3.) One commonly used definition of

strong motion duration is that due to Trifunac and Brady:38

tD = to.95 - to.05 (2.18)

where to.95 and to.05 were defined in Section 2.2.2. For the CH and MX records, tD is 35.8

seconds and 38.8 seconds, respectively (see Table 2.2), longer than the duration adopted by ATC;

SS has a much shorter duration (4.3 sec.) Only EC and TF have tD values comparable with that

assumed by ATe. The ATC LEDRS are compatible with the characteristics of EC with regard to

strong motion duration and linear elastic response spectra.

Because the mean-squared acceleration time history E[v;l tends to be a chi-squared distri­

bution function:37

(2.19)

where parameters a, ~, and y characterize the time evolution of acceleration amplitudes of each

type of record, Araya et aZ. 7 defined the duration of strong motion (Ms ) by the following for-

mula:

*t2

= 2-fY
a

= y+~
a

for y> 1

for y$, 1
(2.20)

In other words, the strong motion duration is defined as the time interval between the inflection

points (at time t~ and t;) of the Chi-squared function (see Fig. 2.10.) The parameters a and yare
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calculated by solving the following equations:

td

Jt V~(t) dt
Y + I = _0 _

a td

JV~('t) dt
o

(2.2la)

(2.21b)

The value of tr is equal to 0 for "15; 1. The calculated I1ts for the eight earthquakes are listed in

Table 2.3. The ratio of tD to I1ts is shown in Table 2.3. Except for EC, the ratios for all the

records fall in the range 1.3 to 2.4. Different definitions of strong motion duration lead to very

different values.

On the basis of a study of the influence of peak ground motion and intensity of zero cross­

ings on the displacement ductility demand, Araya et al. 7 found that strong motion duration I1ts

plays a secondary role. This is true if displacement ductility is used as the only criterion to judge

the structural damage. It will be demonstrated in the next chapter that duration plays a very

important role when other factors such as energy demand or cumulative displacement ductility

are used as the damage criterion. Several other definitions of strong motion duration have been

proposed; 16,30,41 but an evaluation of all these definitions is outside the scope of this study.

2.4. Orthogonal Effect of Horizontal Earthquake Ground Motions

The above discussion considers only one significant (or major) component of the recorded

horizontal ground motion. With two orthogonal recorded horizontal ground motions vgx(t) and

vgy(t), the resultant acceleration in any direction, whose direction cosine is (A.,Il), is given by:36

(2.22)

Therefore, the Arias intensity is

(2.23)
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where

The principal direction calculated by maximizing IA is

(2.24)

which yields

(2.25)

The principal direction may be obtained by solving this eigenvalue problem. Table 2.4 summar-

izes the peak ground acceleration and the Arias intensity coefficients in the principal directions

for the first four earthquakes in Table 2.1. The corresponding pseudo-acceleration and pseudo­

velocity response spectra are shown in Figs. 2.lla and 2.llb. Taking SS as an example, Table

2.4 shows that the peak acceleration is decreased after combination, but Figs. 2.11a and 2.11b

show a significant increase of spectral quantities at a period of 0.7 second. This observation

shows again that peak ground acceleration is a poor index by which to express the damage poten­

tial of a ground motion.

2.5. Conduding Remarks

The normalized intensity parameters for the eight earthquake records are shown in Fig.

2.12. For each set of parameters, the nonnalization was made by dividing the parameter values

by the maximum value in that set. Since Araya's destructiveness parameter PD agreed well with

the observed MMI,7 the earthquake records in Fig. 2.12 are ordered according to their PD values.

Little correlation exists among these parameters. PGA and RMSA are fairly close, noting

that RMSA is a measure of the average rate of input energy to an elastic system. Although IA is

also a measure of the energy input to an elastic system, it tends to overestimate the intensity of an

earthquake with long duration, high acceleration and broad band frequency content (CH for

example.) The spectral intensity Sf is also a measure of the damage potential from an energy

standpoint because Spy reflects the energy demand of an elastic SDOF system. One obvious
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disadvantage of the parameter Sf (or Spv) is that the duration is not considered and duration is

very important for a structural system experiencing inelastic activity and yielding reversals.

After comparing the structure damage and the recorded ground motions for the 1966

Parkfield earthquake and the 1940 E1 Centro earthquake, Hausner 23 concluded that neither Spv

nor Sf was a reliable parameter for measuring the damage potential. It appears that considering

recorded earthquake ground motion alone or examining the parameters derived from an elastic

system subjected to an earthquake ground motion is insufficient to assess the damage potential of

a ground motion.

In this study that considers some of the recently recorded severe earthquakes (e.g., MX, CH,

and SS), it appears that Araya's destructiveness parameter PD agrees with the observed damage

much better than the other parameters. Of all the parameters evaluated, only Araya's destructive

potential factor considers intensity, duration, and frequency content simultaneously. It is

believed that this type of approach will give a more meaningful measurement of the damage

potential of a given earthquake ground motion. Since damage involves nonlinear response (ine­

lastic deformation), the only way to estimate damage and the actual behavior of a structure under

severe earthquake excitation is to consider its inelastic behavior. Guided by this basic concept

and the fact that the damage potential of any given earthquake ground shaking at the foundation

of a structure depends upon the intensity, frequency content, duration, and the dynamic charac­

teristics of the structure, the authors believe that one of the most reliable parameters for defining

damage potential is earthquake energy input.
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III. IDENTIFICATION OF RELIABLE PARAMETERS TO MEASURE

THE DAMAGE POTENTIAL OF EARTHQUAKE GROUND MOTION

3.1. Introductory Remarks

Because of economic consideration, current design practices (codes) implicitly assume that

buildings will undergo some inelastic deformation during severe earthquake shaking in order to

dissipate the earthquake input energy. It was pointed out in the previous chapter that the ground

motion record alone or elastic response quantities derived from it cannot characterize damage

potential of an earthquake. Instead, response parameters based on the inelastic behavior of a

structure have to be considered with the characteristics of the ground motion.

In current seismic regulations, displacement ductility ratio is generally used to reduce the

design forces that would develop if the structure responds in the linear elastic range to a level

that implicitly assumes some degree of inelastic behavior. The reliability of using just the dis­

placement ductility ratio has been questioned, especially for structures subjected to near-field

impulsive types of earthquake ground motions.28 Other parameters have been proposed by previ­

ous researchers. In this chapter the reliability of using different parameters in constructing inelas­

tic design response spectra (IDRS) is studied in the light of recently recorded earthquake ground

motions. For simplicity only the SDOF system having linear elastic-perfectly plastic behavior is

considered, and the earthquake records studied in the previous chapter are used. Most of these

records were obtained at free field stations; the records that existed at the base of real buildings

may differ from the free field motions, especially for buildings located at soft soil site.

3.2. Constant Displacement Ductility Ratio Response Spectra

Response spectra have been generated using the displacement ductility ratio Cl.t).32,35 Lim­

iting the maximum displacement can mitigate the adverse effects of geometric nonlinearities and

non-structural component damage. The following basic equation of motion is the starting point

for constructing the constant ductility ratio response spectra,
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mv(t) + ev(t) + !set) == - mvg(t)

where m == mass

e == viscous damping coefficient

!s == restoring force

Vt == V + vg == absolute (or total) displacement of the mass

v == relative displacement of the mass with respect to the ground

vg == earthquake ground displacement.

(3.1)

Equation 3.1 can be rewritten and normalized for a system with elastic-perfectly plastic (EPP)

hysteretic behavior by defining:

Cy

Ry
(Ry yielding resistance)== ==

mg

T'\
Ry Cy

== ==
mvg(max) vg(max)/g

v
11 ==

vy

The normalized equation can be expressed as follows:

where co == natural angular frequency

~ == viscous damping ratio

(3.2)

By specifying a yield force level (Ry or 11) for a given earthquake ground motion to a viscous

damped nonlinear SDOF system, the constant strength response spectrum can be generated with

the computer program NONSPEC;29 Fig. 3.1 shows such spectra. These spectra can be plotted

three-dimensionally with period T as the x coordinate, T'\ as the y coordinate, and 11 as the z coor-

dinate; Fig. 3.2(a) shows these three-dimensional profiles. Taking the CH record as an example,
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the displacement ductility ratio spectrum for 11 =0.4 in Fig. 3.1 corresponds to the curve on the

vertical plane with y =0.4 in Fig. 3.2(a). Similarly, other response quantities, such as cyclic duc­

tility, cumulative ductility, number of yielding reversals, input energy, etc., can be plotted in this

fashion (see Fig. 3.2b for the plot of input energy.)

The profiles in Fig. 3.2(a) show that much higher displacement ductility will be demanded

for structures with small 11 values (or lower yielding resistances) in the short period range. This

trend does not hold for the profiles of the total input energy in Fig. 3.2(b). In general, the profiles

of the total input energy reflect the predominant exciting periods of the ground motion. The vari­

ation of the total input energy is very pronounced for MX; it reflects the fact that the input energy

is much higher for structures with high yielding resistance and with natural periods close to the

predominant exciting period of 2 seconds. In this region, the variation of the total input energy is

more sensitive to the variation of structural natural period than to the variation of yielding resis­

tance. Figure 3.2(b) also shows that EC has a very small input energy to structures.

For a given displacement ductility ratio, the method for constructing constant ductility

response spectra from constant strength response spectra follows. For a given displacement duc­

tility ratio Il, the constant displacement ductility ratio seismic resistance spectra can be con­

structed by drawing a contour line with Il = Il on the three-dimensional profiles shown in Fig.

3.2 (a) and projecting these contour lines onto the T -11 plane. The curve generated by converting

the 11 ordinate into the Cy (= 11Vg(max)/g) ordinate defines the minimum seismic coefficient Cy

needed to limit the ductility ratio to Il for each earthquake record. Figure 3.3 shows the spectra

corresponding to a displacement ductility ratio of 5. The implications of these spectra are dis­

cussed in Section 3.3.

3.3. Seismic Resistance Spectra (Yield Resistance or Cy Spectra)

3.3.1. Influence of Damping Ratios

Seismic response spectra have been constructed for three different values of damping ratio

(0, 2, and 5 percent); Fig. 3.3 shows that the damping ratio has only a minor effect on the

required yield strength. In the following discussion, emphasis is placed on a 5 percent damping



-19 -

ratio, which is the value adopted by ATC for the construction of its elastic and inelastic design

spectra. Note that the effect of damping ratio on Cy is negligible for impulsive types of earth­

quakes - SS, PD for example. Damping has its greatest effect on MX and this is attributed to

its long duration, periodic (hannonic) nature.

3.3.2. Comparison of Seismic Resistance Cy and ATC Design Coefficient Cs

The ATC seismic inelastic design response spectra (IDRS) are expressed as follows:

1.2AvS 2.5Aa
C = <--

s RT2/3 - R

2.0Aa<-­
- R

(soil type 1)

(soil type 3 whenAa ~ 0.30)

(3.3)

where Av and Aa are the effective peak velocity-related acceleration and effective peak accelera­

tion, respectively, S is the soil type coefficient, and R is the response modification factor.

Although ATC does not mention explicitly the ductility ratio adopted for each structural system,

it does use a "displacement amplification factor" Cd to calculate the maximum lateral displace-

ment from the displacement at the level of significant yielding. Therefore, Cd can be roughly

treated as the level of displacement ductility ratio adopted by ATe. Taking a dual system with

braced frame as an example, Table 3-B of the ATC seismic provisions gives values of 6 and 5 to

R and Cd, respectively. Therefore Cs in Eq. 3.3 with R = 6 can be compared with the calculated

seismic resistance (Cy ) spectra with displacement ductility ratio of 5 for a dual system; Figure

3.4a shows such a comparison for soil type 1. A much higher demand than that specified by ATC

is required for short period structures (T <1.0 second) subjected to CR, SS, PD, and DPD. The

ATC IDRS is satisfactory for EC and TF. The ATC Cs spectrum corresponding to soil type 3

(soft soil) is plotted in Fig. 3.4b and compared with the Cy spectrum of MX to be consistent with

the geology of Mexico City. MX has a comparable strength requirement to that of the ATC

IDRS.
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3.3.3. Evaluation of Overstrength Factor

Parameter R in Eq. 3.3 is an empirical seismic response modification factor intended to

account for damping, ductility, and overstrength in a structure designed in accordance with the

minimum requirements of ATC. 1,2 Since damping (5 percent) and ductility are considered in the

construction of seismic resistance (Cy ) spectra, the ratio between the required Cy and the Cs of

ATC represents the required overstrengthfactor, n:

(3.4)

Figure 3.4 shows the required overstrength factors for eight earthquake records. A structure with

a period less than 1 second, whose design satisfies the seismic provisions of ATC, will not behave

satisfactorily under CH, SS, PD, and DPD, unless it has been supplied with the overstrength fac­

tor shown in this figure. Note from Fig. 3.4b that a structure designed according to ATC is

expected to survive MX from the strength point of view, even if it has very limited overstrength.

The nonconservatism of the ATC IDRS in the short period range due to its constant response

reduction factor over the whole period range has already been pointed out. 10,28

Similar plots for special moment-resisting steel frames (R= 8, Cd= 5.5) are shown in Fig.

3.5. It is clear from this figure that in order to really take advantage of the larger ductility ratio

(reflected in larger Cd and R values) of this structural system, a structure designed by ATC

seismic provisions in general needs to be provided with higher overstrength.

Overstrength, inherent in the design process, results from higher material strength, strain

hardening, strain rate effect, member over-size, code minimum requirements regarding propor-

tioning and detailing, internal force redistribution (redundancy), effect of nonstructural elements,

and so on. Since in practice overstrength is not quantified and is not explicitly accounted for in

the current design process, the survival of an ATC-designed structure (especially in the short

period range) cannot be guaranteed during severe earthquake shaking. Therefore, there is a need

to calibrate the inherent (or supplied) overstrength of buildings designed and constructed in

accordance with the ATC seismic provisions.
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3.3.4. Influence of Ductility Level on Seismic Resistance Cy

The influence of displacement ductility ratio on Cy is shown in Fig. 3.6. In general the

reduction of Cy by changing the displacement ductility ratio from 2 to 3 is significant; particu­

larly for structures with natural periods close to the predominant periods of the ground motions.

Taking MX as an example, the yield resistance is reduced from the elastic level by a factor of 4

for a structure with a natural period of 2 seconds if a ductility ratio of 2 is provided. However,

the variation of Cy for a change in ductility from 4 to 6 is smaller than that from 2 to 3. This

implies that for displacement ductility lower than a certain threshold, Cy is very sensitive to duc­

tility ratio.

3.3.5. Evaluation of Drift Index

The major advantage of providing a larger ductility ratio to a structural system is to reduce

the required yield resistance further. However, permitting a larger ductility ratio makes the story

drift limitations more difficult to satisfy. Since the yielding displacement (vy) for a SDOF system

can be calculated as:

Ry
v = - =y k = (3.5)

where k is the elastic stiffness, the drift (or maximum displacement vmax)·can be expressed as fol­

lows:

V max = ~ Vy = (3.6)

A relationship between T and H has to be established in order to calculate the drift index e
(= vmax/H, where H is the story height.) The following empirical expression is based upon the

measured response of 17 steel frames and 14 reinforced concrete frames during the 1971 San Fer­

nando earthquake:1,2

T = aH3/ 4

where H = building height (in feet);

a = 0.049 (steel frame);

(3.7)
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= 0.035 (reinforced concrete frame).

The values of a adopted in the ATC seismic provisions (0.035 for steel frames and 0.025 for rein­

forced concrete frames, see Fig. 3.7) are smaller than these more realistic values in order to pro­

vide a conservative (smaller) estimate of the fundamental period of vibration, and hence a larger

base shear coefficient Cs ' From Eq. 3.7, height H may be expressed as a function of T as follows:

The drift index (8) is therefore calculated by dividing Eq. 3.6 by Eq. 3.8:

(3.8)

8=
Vmax

H
= (3.9)

Note that use of the conservative a values suggested by ATC will underestimate the drift index.

It should be noted that Eq. 3.9 was derived based on Eq. 3.7, which is the empirical equa-

tion for multi-story buildings. The drift index e calculated by vmax/H is valid for SDOF sys­

tems. To apply Eq. 3.9 to multi-story buildings, a uniform distribution of inter-story drift has to

be assumed (see Fig. 3.8a.) The drift index calculated in this manner provides a lower bound

estimate of drift index:

Vmax

H
= (3.10)

Figure 3.9a shows the variation of 8/ with T for steel frames with displacement ductility ratios

equal to 2 and 5. According to ATe, 8 should be limited to 0.01 for essential buildings (seismic

hazard exposure group III) and to 0.015 for typical office buildings (seismic hazard exposure

group I.) These two limits are also shown in the same figure. The following observations can be

drawn from Fig. 3.9a:

(1) Since Cy decreases with increasing Il, particularly from Il =2 to Il =3 (see Fig. 3.6), drift

index does not increase proportionally with the displacement ductility ratio. However,

since" Eq. 3.9 indicates that drift index is directly proportional to the product of Il and Cy ,

and Cy is practically independent of the ductility ratio for Il > 5 when the period is larger

than 1.0 second (see Fig. 3.6), it can be expected that the drift index is almost proportional
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to ~ for large displacement ductility ratio. For example, the drift index for l.t = 10 will be

about twice that for ~ =5 for period greater than 1.0 second.

(2) In most cases, for structures with small periods the drift index for a large ductility ratio is

much higher than the drift index for a small ductility ratio.

(3) A smaller displacement ductility ratio does not necessarily imply a smaller drift index; that

is, it is possible that the drift index for ~ =2 is larger than the drift index for ~ =5.

(4) The drift index tends to be constant in the longer period range (T> 1.5 sec) for a given dis-

placement ductility ratio, consistent with the "constant displacement" region of the spec­

tra.32

(5) The ATC drift limits will be exceeded for the CH, SS, and PD records with peak ground

accelerations in excess of 0.5g, even if limited ductility ratio (2 to 3) is supplied.

Observed building failures during past earthquakes show that a soft story formation (partial

collapse mechanism) is a common failure mode. In this case, Eq. 3.10 will significantly underes­

timate the maximum inter-story drift index. Experimental testing of buildings also demonstrates

this phenomenon. Shaking table testing of a O.3-scale six-story concentrically braced steel struc­

ture under severe earthquake excitation shows that vmax/H (roof drift index) was 0.9 percent

while the maximum inter-story drift in the severely buckled fifth story was 1.9 percent.39 The

testing of a O.3-scale six-story eccentrically braced steel structure shows that vmax/H was 0.7

percent while the the maximum inter-story drift in the first story, where the shear link experi­

enced large inelastic deformation, was 1.3 percent.42

To estimate an upper bound for the drift index in a multi-story building, the formation of a

soft bottom story is assumed (see Fig. 3.8b.) The upper bound to the drift index is calculated as:

Vmaxeu = -- =
Ml

(3.11)

Assuming a first story height (M!) of 12 ft, the calculated eu are shown in Fig. 3.9b. Comparing

the results in Figs. 3.9a and 3.9b, the following observations can be made:

(1) A much higher drift index would occur if a soft story were to form in the bottom story.
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(2) By assuming a uniform drift index along the height of a building, a larger drift index gen­

erally occurs in the short period range. On the other hand, a larger drift index would be

demanded in the long period range if a soft story were to form.

Note the high demands on 8[ and 8 u for PD and that MX has a high demand on 8 u but only a

minor demand on 8[.

Alternatively, using the ATC drift index limit 8 max , Eq. 3.9 may be used to calculate the

upper bound of Cy beyond which the drift index limit is violated for a given displacement ductil­

ity ratio:

(3.12)

For steel frames, Fig. 3.10 shows Cy and c~rift (with 8 =0.015) curves with displacement ductili­

ties equal to 2 and 5, respectively. The drift index limit will be violated at period ranges for

which Cy exceeds c~rift. This figure shows that drift limit usually will not control for long period

structures (T> 1.5 sec.) The implication of this comparison of Cy and c~rift is that a constant,

moderately large ductility ratio cannot be assigned throughout the period range. Taking the CH

record as an example, Fig. 3.10 shows that drift limit will control in the period range from 0.1 to

0.7 second for a displacement ductility ratio of 5; the allowable displacement ductility ratio has to

be reduced in this period range in order to satisfy the drift limitation. The ATC IDRS correspond­

ing to R =6, Cd =5 and soil type 1 (with the exception of soil type 3 for MX) is also added to

each plot in Fig. 3.10. Since the Cs of ATC is less than c~rift for I..l =5, drift will not control,

assuming that the inter-story drift is uniform along the height of a multi-story structure.

3.4. Input Energy Spectra

With the seismic resistance spectra (for a given displacement ductility ratio), the input

energy spectra can be generated by the following integration:

(3.13)

where vt is the absolute acceleration of the SDOF system. For a unit mass, Fig. 3.11 shows the

input energy spectra for displacement ductility ratios of 2, 4, and 6. The following observations

can be drawn from this figure:
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(1) The input energy for CR, BC, and TF is relatively insensitive to the level of displacement

ductility ratio. On the other hand, the input energy for MO, PD, DPD and particularly for

MX is sensitive to variations in displacement ductility ratio. It appears that the input

energy for a long duration, hannonic type of earthquake will be more sensitive to variation

in displacement ductility ratio between 2 and 4. For these earthquake ground motions

(especially MX), Fig. 3.11 clearly shows that for a structure with a period at or close to the

predominant period of the ground motion, the input energy decreases as Cy decreases

whereas for a structure with period smaller than the predominant period of the earthquake

ground motion, the input energy for decreasing Cy can be significantly larger than that for

the elastic system.

(2) Frequently used earthquake records, such as TF and BC, have very small energy demand.

(3) MX, which appears to be non-destructive from the standpoint of demanded strength or

seismic resistance (Fig. 3.4), has the largest energy demand for long -period structures

(T> 1.5 sec.) On the other hand, SS, which appears to be a very destructive earthquake for

short period structures (T <1.0 sec) from the standpoint of demanded strength, has a very

small energy demand. Considering only the strength demand in seismic design may be

misleading because the effects of duration, which are included in the calculation of the

input energy, should be reflected in the design process.

(4) As noted in Section 2.2.4, linear elastic pseudo-velocity is an index that Rousner 22 used to

express the damage potential of an earthquake:

(3.14)

Usually it is assumed that ED is maximized by elastic response and therefore ED can be

used as the maximum input energy for an inelastic system. To verify this argument, the

normalized input energy (EI/m) spectra of Fig. 3.11 are re-plotted in Fig. 3.12 with the fo1-

lowing ordinate:

V = ~2"i![I --.
m

(3.15)

VI is defined as the equivalent velocity of the normalized input energy. For 5 percent
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damping, a comparison of VI and Spy is shown in Fig. 3.12. From this figure, it is observed

that Spy may be a reasonable estimate of ...j2EI /m only for structures in the long period

range (T> 1.0 second) and subjected to impulsive types of earthquakes with just one major

impulse (SS, PD, and DPD.) structures in the long period range (T> 1.0 second). In gen­

eral, Spy can be used to obtain a lower bound to the input energy spectra and may

significantly underestimate the true input energy for a structure with a period that is smaller

than the predominant exciting period of the earthquake ground motion.

3.5. Hysteretic Energy Spectra

Input energy in a structural system is balanced (absorbed and dissipated) as follows:40

(3.16)

(3.17)

where EH, EK' Es and E~ are the hysteretic energy, kinetic energy, elastic strain energy, and

viscous damping energy. EH is the portion of the input energy that relates directly to the damage

to a structure and therefore it is more meaningful to generate hysteretic energy spectra for a con­

stant displacement ductility ratio. The hysteretic energy can be expressed by the equivalent hys­

teretic velocity:

VH = ~2~H

and is compared with the elastic pseudo-velocity (Spv) in Fig. 3.13. A comparison of Figs. 3.12

and 3.13 shows that VH is significantly lower than VI for long duration earthquakes (CH, MX.)

Hysteretic energy spectra are in general in close agreement with SPy, except for the long duration

strong motion earthquakes (CH and MX) and for structures having T < 1.5 seconds for CH,

T < 2.0 seconds for MX. Similar conclusions to those made for the input energy spectra can also

be drawn: MX has the largest hysteretic energy demand although its strength demand (reflected in

the demanded Cy ) is insignificant. TF and EC have the smallest hysteretic energy demand.
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3.6. Cumulative Ductility Spectra

Cumulative ductility ratio (Ila) is defined as the summation of the absolute values of all ine­

lastic defonnations nonnalized by yielding displacements. For an elastic-perfectly plastic model,

the cumulative ductility ratio is directly related to the nonnalized hysteretic energy ductility

(IlH):29

f.LH = (3.18)

and Fig. 3.14 shows such spectra. Note that MX requires a structure to possess a very large

cumulative ductility ratio, which is consistent with its high demand in hysteretic energy. How­

ever, the same argument does not apply for TF and EC for which relatively high cumulative duc­

tility is associated with very low hysteretic energy demand for a constant displacement ductility

ratio. This is attributed to the fact that, for a given period, TF and EC have very low Cy values

(Figs. 3.3 and 3.5.) Cumulative ductility spectrum alone can be a misleading index to measure

the severity of an earthquake ground motion since a large f.La may be associated with very low Cy

values, and hence a very low EH value. Therefore if cumulative ductility spectra are used to com­

pare the severity of different ground motions, these spectra should be compared for the same

yield level Cy •

3.7. Number of Yielding Reversals Spectra

The number of yielding reversals (NYR) is defined as the number of times a structural sys­

tem yields in one direction and subsequently yields in the opposite direction in the following

cycle. For a given displacement ductility ratio, Fig. 3.15 shows that in general the number of

yielding reversals is closely related and roughly proportional to the strong motion duration; long

duration records (CH, MX) have a large number of yielding reversals while short duration

impulse-type records (SS, PD, and DPD) have a very low number of yielding reversals. These

NYR spectra indicate that low-cycle fatigue can be a problem for structures subjected to long

duration earthquakes if they are designed for only the Cy resulting from the use of the assumed

ductility ratio f.L.
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3.8. Effect of Damping on Constant Ductility Ratio Spectra

The damping ratio of a structure depends upon the structural material, connection types,

stress levels, etc. Damping ratios for bare steel structures are generally considerably less than 2

percent whereas damping ratios in reinforced concrete structures can reach 5 percent when the

structure is severely cracked. The presence of nonstructural components, particularly partitions,

infills, and cladding elements can add a significant amount of damping to the structural system.

ATC 1,2 adopts a viscous damping ratio of 5 percent. Figure 3.16 shows the influence of

damping ratio on the hysteretic energy spectra. The effect of a variation in viscous damping on

EH appears to be greatest for long duration earthquake motions (CH, MX) with the maximum

variations occurring at periods in the vicinity of the predominant periods of the earthquake

motions. Similar conclusions were also reported by other researchers.43 From these results

together with those of Fig. 3.3, it may be concluded that damping ratio has a minor effect on

response spectra with a constant ductility ratio. Considering the insensitivity of constant ductil­

ity ratio response spectra to damping ratio, it appears that a 5 percent damping ratio is reasonable

for real building structures with a moderate amount of light nonstructural elements.

3.9. Comments on Constant Displacement Ductility Response Spectra

Traditionally, displacement ductility ratio is used as: (i) the main parameter to measure the

degree of damage (permanent deformation) substained by a structure during its response to an

earthquake ground motion; and (ii) the most reliable index to represent damage in the derivation

of seismic inelastic design response spectra. Various response spectra based on a constant lateral

displacement ductility ratio have been constructed and analyzed in this chapter. The important

conclusions drawn from these studies are as follows:

(1) Structures with short period (say T < 1.0 sec) designed for the yielding strengths required

by ATC must possess significant overstrength to survive earthquakes similar to the records

considered in this study, particularly CH, MX, SS, and PD. There is a need to calibrate the

inherently supplied overstrength of structures designed by codes.

(2) Although a significant reduction of the required linear elastic strength can be achieved

through the use of a small displacement ductility ratio (2 to 3), this reduction does not



- 29-

increase proportionally with increasing displacement ductility ratio (Fig. 3.6.)

(3) Estimates of upper and lower bounds for the drift index for multi-story buildings have been

derived for a constant displacement ductility ratio. The lower bound for the drift index

(corresponding to a uniform drift index distribution) may control the design of structures in

the short period range. The upper bound for the drift index (corresponding to the formation

of a soft bottom story) becomes increasingly critical with increasing period.

(4) An upper bound has been derived for Cy on the basis of constant displacement ductility and

code drift limits. Drift limit usually does not control the design for long period structures

(T> 1.5 sec) if soft story mechanisms can be avoided. For short period structures subjected

to earthquakes with severe acceleration pulses (Le., pulses with large peak ground accelera­

tion, say in excess of OAg, and long duration) the ductility ratio that can be used should be

limited. In this case, the use of a large ductility ratio to reduce seismic design forces leads

to excessive drift indices. The use of a constant displacement ductility ratio to construct

design spectra cannot be justified from the viewpoint of drift control.

(5) One significant disadvantage of seismic resistance (Cy) spectra is that the effect of strong

motion duration is not considered. The energy demands associated with a long duration

earthquake record may be very large and a design based only on Cy may not be conserva­

tive. A study of this conventional way of constructing an inelastic design response spec­

trum suggests that other controlling factors must be considered.

(6) While the linear elastic pseudo-velocity spectra Spv can be used to obtain a lower bound to

the equivalent input energy VI spectra, they may significantly underestimate the true energy

input.

(7) Although the equivalent hysteretic energy VH spectra are in general in close agreement with

the Spv spectra, the Spv spectra may significantly underestimate the VH spectra in the case of

long duration strong ground shaking such as CH and MX.

(8) While a variation in the value of damping ratio affects the response of linear elastic struc­

tures considerably, this variation has only minor effects on the required yielding strength Cy

as well as on the hysteretic energy of yielding structures.
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3.10. Possible Parameters to Construct Inelastic Spectra

In the previous sections all the inelastic response spectra were calculated on the basis of a

constant displacement ductility ratio. The use of displacement ductility as a damage criterion is

reasonable from two perspectives: (i) it not only allows the structural damage to be controlled,

but it also allows damage to deformation-sensitive nonstructural components to be controlled;

and (ii) it allows the undesirable effects of geometric nonlinearities to be controlled. However,

using seismic resistance spectra (Cy spectra) based on a constant ductility ratio for design pur­

poses may be inadequate because other failure modes may control. Damage criteria should

ideally reflect the following important parameters:

(1) The energy dissipation capacity of both the structural members and the entire structural sys­

tems;

(2) Cyclic ductility demand due to repeated bursts of large energy input in an earthquake

record.

Use of these parameters to establish damage criteria requires identification of the acceptable lev­

els of hysteretic energy dissipation capacity and cyclic ductility of structural elements, structural

systems, and of entire soil-foundation-superstructure and non-structural component system.

The high hysteretic energy demanded by MX (Fig. 3.13), based on a constant ductility

ratio, is a good example to demonstrate the need for establishing damage criteria that include

energy dissipation demand.

Previous researchers 5,22 have proposed that the energy dissipation capacity of a structure

under cyclic excitation be estimated directly from its response under monotonic loading. The

energy dissipation capacity of a structure under monotonic loading is usually well defined. 12, 20

Other researchers have found that energy dissipation capacity is not constant and varies with the

amplitudes of the inelastic deformation and loading or deformation paths as shown by the follow­

ing results obtained by Bertero et al.;9 Fig. 3.17 shows results of steel beams tested under yield­

ing reversals. By ignoring strain hardening and Bauschinger effects, the moment-curvature curve

under cyclic loading can be idealized as shown in Fig. 3.18; these two factors tend to compensate

each other from the standpoint of energy dissipation. The dissipated energy per unit length, ed, is

the area enclosed by the hysteresis loop:
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(3.19)

where Mp is the plastic moment, <\>p is the plastic curvature, and <\> is the controlling (constant)

curvature, which, from Fig. 3.18, is the sum of <\>p and the yielding curvature <\>y. Plastic curvature
-

<\>p is approximated by <\> in Eq. 3.19; this is a reasonable assumption when the controlling curva-

ture, <\>' is much larger than the yielding curvature, <\>y- By letting

- E
<\> = d/2

where E is the controlling strain at beam flange, and d is the beam depth, the total energy dissi­

pated per Unit length in n cycles (n is the number of cycles required to rupture the beam) is

(3.20)

- -
Figure 3.17 also shows the nE versus E curve. From this curve it is obvious that the larger the

amplitudes of the cyclic deformations to which the beam is subjected, the smaller the total energy

dissipation capacity edLp will be, where Lp is the average plastic hinge length.

Similar conclusions can be drawn from the behavior of reinforced concrete structures. Fig-

ure 3.19 shows the hysteretic behavior of two identical shear wall structures tested under mono­

tonic and cyclic 10ading.11 Although Wall 3 has a larger ductility ratio, the total energy dissipa­

tion capacity of Wall 3 is only 60 percent of that of Wall 1. These experimental results demon-

strate that energy dissipation capacity is not constant but is dependent on loading or deformation

paths or both. From analysis of available results it appears that for properly designed and

detailed structures the energy dissipation capacity under monotonic loading is a lower limit of the

energy dissipation capacity under cyclic loading. Nevertheless, the use of this lower limit could

be too conservative for earthquake-resistant design, particularly if the ductility ratio is limited to

low values with respect to the ductility ratio reached under monotonic loading.

From a study of the cyclic behavior of shear links, Kasai27 also concluded that the energy

dissipation capacity of a link is not constant. Instead, he found that cyclic ductility is the control­

ling damage criterion for shear links.

Since the hysteretic dissipation capacity of a structural member (or a structural system) is

not constant, an energy-based design that assumes a constant energy supply cannot be justified.
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Realizing the limitation of using constant displacement ductility or constant hysteretic energy

dissipation as a damage criterion, Park et ai.33 proposed a damage index (De) that combined

these two factors:

where

V max
(3.21)

V max = maximum deformation under an earthquake;

Vu = ultimate deformation capacity under monotonic loading;

Vy = yield deformation;

Ry = yield strength;

fdEH = cumulative hysteretic energy;

13 = non-negative parameter.

Appropriate parameters for this proposed damage index were evaluated on the basis of a

statistical study of available monotonic and cyclic test data of reinforced concrete beams and

columns. To calculate the overall damage index (DT ) at structure level, Park used the following

formula:

DT = (3.22)

where D~ is the damage index of the i-th member, and the hysteretic energy E~ of the i-th

member is used as the weighting factor. Nine reinforced concrete buildings that were moderately

or severely damaged during the 1971 San Fernando earthquake and the 1978 Miyagi-Ken-Oki

earthquake were analyzed and the results were then calibrated with the corresponding damage.

Park concluded that an overall damage index DT of less than 0.4 represents repairable damage

and a DT value larger than 1.0 represents total collapse. Since the maximum displacement and

dissipating energy are closely related, the rationale of the linear combination of the displacement

term and energy term in Eq. 3.21 has been questioned. 19
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A similar approach was also proposed by Chen, 18 who used a parameter defined as:

(3.23)

and the displacement ductility ratio J.L to establish a damage criterion. After calibrating the

analytical prediction of eight reinforced concrete building frames damaged during the 1976

Tangshang earthquake, the following damage criterion was proposed (see Fig. 3.20):

3.11. Concluding Remarks

( J.L - 0.676 )( N - 0.676) = 1.403 . (3.24)

(1) It appears that the best index for selecting critical earthquake ground shaking for a structure

designed for a code specified Cy is to construct the input energy and the hysteretic energy

spectra corresponding to all of the types of earthquake ground motions that can occur (or

have been recorded) at the site in question.

(2) Conventional ductility response spectra based on constant displacement ductility have been

constructed. The implication of these spectra, especially those of recent destructive earth­

quakes, is that the use of inelastic design spectra based on constant displacement ductility

ratio as a damage criterion is nonconservative because these spectra cannot reflect high

energy dissipation demand for long duration earthquakes. An energy design method based

just on the computed input energy or the hysteretic energy cannot be justified because the

energy dissipation capacity of a structure (or a member) is dependent on loading or defor­

mation path or both.

(3) The energy dissipation capacity under monotonic loading is a lower limit to the energy dis­

sipation capacity under generalized cyclic loading.

(4) Damage criteria based on the simultaneous consideration of ductility ratio and hysteretic

energy (or its alternatives such as N in Eq. 3.23) is a promising approach for rational

earthquake-resistant design of building structures. It is believed that calibration of these

results to the observed damage to buildings during earthquakes, especially some of the

recently recorded destructive earthquakes, is a sound way to establish realistic damage cri­

teria. The effects of nonstructural components and workmanship should be taken into
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account when interpreting the results of these studies.

(5) A high degree of scatter in the calculated D values was reported.33 More reliable damage

criteria for both the reinforced concrete and steel members need to be established.
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IV. EVALUATION OF DAMAGE POTENTIAL FOR STRUCTURES

DESIGNED ACCORDING TO ATC DESIGN SPECTRA

4.1. Introductory Remarks

An evaluation of the damage potential for some recently recorded earthquake ground

motions in terms of different response quantities was presented in the previous chapter. In this

chapter, the damage potential to structures that just satisfy the minimum strength requirements of

ATC are evaluated. For simplicity only the elastic-perfectly plastic SDOF system is considered.

4.2. ATC Inelastic Design Response Spectra

The ATC IDRS are expressed as follows (see Eq. 3.3):

1.2AvS 2.5Aa .
Cs = 2/3 $ -- (SOlI type 1)

RT R

2.0Aa
:::; -R- (soil type 3 when Aa ~ 0.30)

(4.1)

In the following discussion, only a dual system with R = 6, Cd =5 is considered.1, 2 This type of

system has been shown to exhibit moderate ductility. The earthquake ground motions studied in

the previous two chapters are used in this chapter. Except for MX, to which the soil type is

assigned as type 3, soil type 1 is assumed for all other earthquake ground motions. Five percent

viscous damping is assumed in these analyses. Furthermore, DPD was not considered in the fol­

lowing study since: (i) DPD is derived from PD by deconvolution; (ii) the response spectra of

DPD and PD are similar; and (iii) DP has a greater damage potential than DPD.

4.3. Displacement Ductility Demand

Displacement ductility ratios, calculated by assuming that Cy is equal to Cs ' are shown in

Fig. 4.1. As discussed in Section 3.3.2, the value of Cd (= 5) can be roughly treated as the level

. of displacement ductility ratio accepted by ATC; this level is shown in Fig. 4.1. The following
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observations can be made:

(1) In general the displacement ductility ratio demand is much higher than the Cd value in the

shorter period range (T < 0.5 sec.) In this period range, the ductility demand is closely

related to the peak ground acceleration; high ductility demand is associated with high value

of peak ground acceleration. Note that MX (PGA = 0.17g) does not demand high displace­

ment ductility in the vicinity of the 2 second period mark.

(2) If a structure, designed to just satisfy the minimum strength requirement (Cs ) of ATC, is to

respond within the acceptable range of ductility ratio Cd, significant overstrength is

required. A larger degree of overstrength is required in the shorter period range and this is

consistent with the results shown in Fig. 3.4. If overstrength is nonexistent, the excessive

deflection that is reflected in the large ductility ratio will cause non-structural component

damage and induce significant P-Ll effects.

4.4. Drift Index Demand

Figure 4.2 shows the lower bound drift index demand calculated by Eq. 3.10. The limiting

drift index of 1.5 percent specified by ATC is exceeded for structures with short periods (T < 0.5

sec) subjected to earthquakes with large peak ground accelerations (CH, 55, and PD.)

Equation 3.11 is used to estimate the upper bound to the maximum inter-story drift for

multi-story buildings; the formation of a soft bottom story is assumed in this equation. The

results are shown in Fig. 4.3 for an assumed typical value of 12 ft for MI. While large values of

8 1 are demanded for structures with a uniform drift distribution over the height in the shorter

period range, large values of 8 u would be demanded in the longer period range if a soft bottom

story were to form. As is the case with 8 1, a large 8 u demand is associated with earthquakes

with large peak ground accelerations (CH, 55 and PD). The only exception is the periodic-type

MX for which 8 1 is generally low but for which high values of 8 u are demanded in the long

period range.
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4.5. Input Energy Demand

Total input energy spectra for structures designed according to ATC seismic provisions are

shown in Fig. 4.4. All but MX tend to maximize the input energy in the vicinity of 0.5 second.

The shapes and magnitudes of these energy demands are similar to those constructed in Fig. 3.11

for constant displacement ductility ratios of 4 and 6.

The input energy demands are converted into equivalent velocity VI by Eq. 3.15 for com­

parison with the ATC design spectra. Two figures are presented separately in Fig. 4.5 because

the MX response calculation is based on soil type 3 whereas the calculation of the responses to

the other earthquakes is based on soil type 1. Although SS demands a high ductility ratio (see

Fig. 4.1), its peak input energy demand is smaller than that of MO. Harmonic ground accelera­

tion can input a large amount of energy into a structure especially when the ground acceleration

has a long duration of strong motion shaking (MX). Since part of the input energy is dissipated

in the form of viscous damped energy, it is more meaningful to examine the nysteretic energy

demand.

4.6. Hysteretic Energy Demand

The equivalent velocities of the hysteretic energy demand are shown in Fig. 4.6. By assum­

ing that an ATC-designed structure can only supply the following hysteretic energy

E = m (S )2 = m ( 2rc C R)2
H 2 Pv 2Ts (4.2)

it follows that the structure (i) will not survive MX if its period lies between 1.0 and 2.5 seconds;

and (ii) will not survive CH, PD, SS and MO if its period is less than 1.0 second. Proper struc­

tural detailing is important, especially at critical regions of the members and at their joints, in

order to dissipate energy through member inelastic deformation.

4.7. Cumulative Displacement Ductility Demand

Figure 4.7 shows the cumulative displacement ductility demand as a function of period for

all the earthquake records investigated in this chapter. The cumulative displacement ductility

ratio demand, /la' is larger than 100 for CR, PD, and SS in the period range between 0.1 and 0.5
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second.

4.8. Yielding Reversal Demand

Figure 4.8 shows the number of yielding reversals (NYR) for structures designed for the

ATC's specified yielding resistance. MX demands an NYR of the order of 50 in the vicinity of

the predominant period (T:::: 2.0 seconds) of the ground motion while PD demands the same order

of NYR for very short period structures (T ~ 0.2 second.) For structures subjected to CR, the

NYR is significant for natural periods less than 1.0 second. Considering the high cumulative dis­

placement ductility demand of CR in this region (Fig. 4.7), low-cycle fatigue may play an impor­

tant role in building damage, especially for buildings with natural periods less than 0.5 second. A

high NYR demand is generally associated with: (i) long durations of strong motion shaking; and

(ii) instances where the fundamental period of a structure is close to the predominant period of

the ground motion.

4.9. Concluding Remarks

The following conclusions are based on a study of the performance of a dual system which

was assumed to just satisfy the minimum strength requirements of ATC and was subjected to

severe earthquake shaking using the records listed in Table 2.1.

(1) A structure designed according to the ATC seismic provisions will demand a very high dis­

placement ductility ratio if its fundamental period is less than 0.5 second. For such a struc­

ture to perform satisfactorily during severe earthquake shaking, it must have an overstrength

of the order shown in Fig. 3.4.

(2) A lower drift index bound (81) that assumes a uniform inter-story drift index distribution

over the height of a multi-story building and an upper drift index bound (8u ) that assumes

the formation of a soft bottom story were presented in Figs. 4.2 and 4.3. Excessive 8 1 is

demanded for structures with short periods and excessive 8 u demand is the tendency with

larger periods. These results emphasize the importance of avoiding soft stories in a build­

ing.
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(3) A large amount of input energy is generally associated with: (i) earthquake ground motions

with large ground accelerations; or (ii) harmonic-type time histories of long duration; or

(iii) both.

(4) NYR demand is high for: (i) a structure with a fundamental period close to the predominant

period of the ground motion; or (ii) long strong motion duration; or (iii) both.

(5) In order to assess reliably the damage potential to a building that has been designed in

accordance with current seismic regulations, the demands of displacement ductility ratio,

cumulative ductility ratio, NYRs, and inter-story drift index must be estimated.

Overstrength is generally inherent in a building designed to meet the requirements of current

seismic provisions and the greater the building's overstrength, the smaller the response. That is,

the response demand (drift index, ductility and so on) will be reduced with increasing strength.
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v. CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

This report has presented the results of studies that have been conducted to: (i) assess the

reliability of parameters that have been used to identify the damage potential of an earthquake at

a given site; (ii) evaluate the reliability of ductility based earthquake-resistant design, that is, of

using the displacement ductility ratio as the engineering parameter to : (a) reflect the level or

degree of damage; and (b) develop design response spectra from linear elastic spectra, for the crit­

ical ground motions; (iii) examine the role of other response quantities which include drift index,

input energy, hysteretic energy, cumulative displacement ductility ratio and number of yielding

reversals in the formulation of design criteria; (iv) estimate the required overstrength for build­

ings that are designed to satisfy ATC minimum required seismic forces and to discuss their

significance in relation to the response modification factor R; and (v) examine the actual seismic

demands of structures that have been designed in accordance with the ATC design provisions. A

summary of the main conclusions of these studies are as follows:

(1) The different parameters proposed by previous researchers to specify the damage potential

(or intensity) of a given earthquake ground motion do not correlate well. The inadequacy of

most of these parameters in judging intensity arises from the fact that they do not consider

all of the important dynamic characteristics of a ground motion such as: amplitude, fre­

quency content, strong motion duration, and the sequence of the severe acceleration pulses

(if any) and so on. Correlation between the intensity parameters and observed building

damage is essential to verify their adequacy. Of the parameters reviewed in this report, the

destructiveness potential factor PD proposed by Araya et al. correlates best with observed

damage. This factor accounts for the magnitude, duration, and frequency characteristics of

the earthquake ground motion.

(2) A large percentage of the strong motion records have been obtained in the free field. The

response of, or damage to, a building depends on the characteristics of the earthquake
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shaking at it's foundation - foundation excitation can be quite different from the free field

excitation.

(3) Only one component of the recorded earthquake ground motion is commonly used by earth­

quake engineering researchers. The damage potential may be much higher if the accelera­

tion time histories in the ground motion's principal directions are analyzed in lieu of the

recorded components. This effect should be included in correlation studies with damaged

buildings.

(4) For a given level of displacement ductility ratio, the input energy or hysteretic energy spec­

tra are insensitive to variations in damping ratio. While the linear elastic pseudo-velocity

response spectra (Spy) provide a lower bound to the input energy equivalent velocity spec­

tra, they may significantly underestimate the actual input energy. Although hysteretic

energy equivalent velocity spectra are generally in close agreement with the Spy spectra,

they may underestimate the actual hysteretic energy demand for structures subjected to long

duration ground shaking (MX, CH.)

(5) A large overstrength is necessary for short period structures that are designed for the

minimum strength requirements of ATC.

(6) An upper bound was derived for the required seismic resistance (Cy ) for: (a) constant dis­

placement ductility ratio; and (b) code-based drift limits. It was observed that if soft story

formation is avoided for short period structures, the acceptable ductility ratio is limited by

the maximum acceptable inter-story drift rather than by the yielding strength requirement.

(7) By extrapolating the drift index results for a SDOF to a multi-story building, lower and

upper bounds to the inter-story drift index can be developed. When a uniform inter-story

drift index distribution is assumed over the height of a building, the lower bound drift index

(8/ - Eq. 3.10) tends to be critical for short periods. If a soft first story is assumed, the

upper bound drift index (8u - Eq. 3.11) is critical for larger periods. The upper bound

results emphasize the importance of avoiding soft-story response in the lower levels of a

building.

(8) The energy dissipation (hysteretic) capacity of a structure subjected to earthquake ground

motion cannot be estimated directly from its response to monotonic loading. Monotonic



- 42-

test results will give a lower bound to the energy dissipation capacity of an element (build­

ing) under generalized loading.

(9) Damage criteria for earthquake-resistant design cannot be based on limiting the displace­

ment ductility ratio alone.

(10) Damage criteria based on the simultaneous consideration of ductility ratio, hysteretic

energy (including cumulative ductility ratio and NYR) are promising for defining rational

earthquake-resistant design procedures.

S.2. Recommendations

(1) Strong motion instrument arrays should be installed in and around different kinds of struc­

tures to establish the three dimensional relationships between free field motion, foundation

level earthquake motion, and building response.

(2) Using displacement ductility ratio as the only parameter to construct rational inelastic

design response spectra cannot be justified. Rational design spectra can be constructed only

after reliable damage criteria have been established. Damage criteria of structural members,

entire structure, and of whole soil-foundation-superstructure and non-structural component

system for different materials have to be established. These damage criteria should reflect

the effect of deformation path, ductility ratio, number of yielding reversals, energy dissipa­

tion capacity and so on.

(3) All of the previous studies on developing inelastic design response spectra ignore the con­

tribution of overstrength. As a result of very limited information on building overstrength,

empirical response reduction factors have been used to generate inelastic design response

spectra.1-4 In this report, the required overstrength factors for structures designed for ATe

minimum strength requirements, subjected to different earthquake ground motions, have

been derived. There is an urgent need to calibrate the actual overstrength of different struc­

tural systems. Rational response reduction (or modification) factors can be established only

after: (a) actual overstrength factors; and (b) ductility reduction factors; have been explicitly

quantified..
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(4) There is an urgent need for integrated analytical and experimental studies of the stiffuess,

strength, stability, and energy dissipation capacity of real buildings which have been

designed in accordance with current seismic regulations, when they are subjected to realis­

tic earthquake ground motions.
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No. Earthquake Record
Focal

ML Geology
Epicentral

Abbr. Compo
Depth(km)

MMI
Distance (lan)

Chile Sandstone and
4.51

March 3, 1985
LIolleo CH NlOE 6.7 7.8 VIII

volcanic rock

2
Imperial Valley

El Centro EC NOOE 16.0 6.3 VII-VIII
30m stiff clay

9.3
May 18, 1940 volcanic rock

3
Mexico City

SCT 4.2-5.0 8.1
VIII-IX Soft lacustrine

350MX EOOW
September 19, 1985 clay

4
San Salvador

5.4 VIII-IX
Fluviatile

CIG SS EOOW 8.0 9.0
October 10, 1986 pumice

5
San Femando Pacoima 13.0 to

6.6 IX-X
Highly jointed

9.1PD S16E
February 9,1971 Dam surface diorite gneiss

6
San Femando Derived 13.0 to

6.6 IX-X
Highly jointed

9.1DPD S16E
February 9,1971 Pacoima Dam surface diorite gneiss

7
Kern County

Taft TF N21E 16.0 7.7 VII Alluvium 43
July 21, 1952

8
Miyagi-Ken-Oki Tohuku

704 VII-VIII Alluvium 100
June 12, 1978 Sendai City

MO NOOE 30.0

Table 2.1 Earthquake Data

PGA IA PA RMSA ATC Is SI(~=5%) tv Ie
Earthquake

(g) (g'sec) (lo-z.gz) (lO-I'g) EPA(g) EPV(in!s) (g'secz) (sec) (g1.5·secO.5)

CH 0.67 1.56 2.49 1.58 0.57 16 8.6 0.20 35.8 0.38

EC 0.35 0.19 0.44 0.65 0.28 12 7.9 0.14 24.4 0.08

MX 0.17 0.25 0.37 0.60 0.08 6 6.5 0.29 38.8 0.09

SS 0.69 0.25 3.38 1.84 0.54 17 8.6 0.23 4.3 0.16

PD 1.17 0.85 7.30 2.69 0.80 24 9.1 0.36 6.7 0.36

DPD 0040 0.26 2.46 1.58 0.27 24 8.3 0.31 6.1 0.16

TF 0.16 0.06 0.10 0.31 0.14 5 6.7 0.06 30.5 0.03

MO 0.26 0.21 0.88 0.93 0.17 16 7.7 0.18 13.7 0.105

Table 2.2 Comparison of Earthquake Ground Motion Parameters
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Vo Po &,
to

Earthquake
(l/sec) (in/se2) (sec) &,

CH 8.21 8.94 22.37 1.6

EC 6.67 1.62 3.65 6.6

MX 1.42 48.35 30.26 1.3

SS 5.21 3.61 2.04 2.2

PD 9.15 3.93 4.37 1.5

DPD 12.61 0.64 4.33 1.4

TF 6.20 0.57 12.53 2.4

MO 4.00 5.06 7.90 1.7

Table 2.3 Comparison ofSaragoni's Parameters

PGA IAEarthquake Component
(g) (in/sec)

NlOE 0.67 603

Chile (CH) S80E 0.40 274

N06E 0.67 605

NODE 0.35 72

El Centro (Be) N90E 0.21 51

S23E 0.35 76

N90E 0.17 96
Mexico (MX) NODE 0.10 52

N62E 0.19 114

N90E 0.69 98
San Salvador (SS) NODE 0.42 66

N57E 0.67 120

Table 2.4 Comparison of Earthquake Ground Motion Parameters

in Orthogonal and Principal Directions



- 50-
Ace. (g)
0.70

0.35

0.0

-0.35

-0.70
0 10

?s~cOnd)
30 40Time

0.03

0.02

~
Fourier Amplitude Spectrum

0.01

0.0
0 1 2 3 4 5 6 7 8 9 10

Frequency (Hz)

505 100.5 1

5

1

0.1

10

50

100

Pseudo-Velocity (in/sec)

500

Per iod (Second)

Fig. 2.1 1985 Chile Earthquake Ground Motion (Llolleo, NlOE)



- 51 -
Acc. (g)
O. 36r--.--------------------------~

0.18

o. 0 WffiW!lP14h1Ll.Jfo7~\.tA1tHMyttYJ~M~~~~"'AhWd~~'lAA~WW~w_..;.N

-0.18
- 0 • 36 '- '--- ---' --'- ---J

0.0 7.5 1~.0 22.5 30.0
Time (second)

Fourier Amplitude Spectrum
0.012r----------------------------,

0.009

0.006

0.003 ~~
o. 0 1L-:._~_ __!..~__~__~_.:_____!......__!....::...:.:..!..:........:.:_Y._...:_...:.::.....:....:.._..:.._....:J:!....:.....l.I~~..!..:!_~

o 1 2 3 4 5 6 7 8 9 10
frequency (Hz)

501050.5 1

5

1

0.1

10

Pseudo-Velocity (in/sec)

500

50

100

Period (Second)

Fig.2.2 1940 Imperial Valley Earthquake Ground Motion (El Centro, NODE)



- 52-

Fourier Amplitude Spectrum

Ace. (g)
0.18

0.09

0.0

-0.09

-0.18
0 10

0.04

0.03

0.02

J~""0.01

0.0
.1M.

0 1 2 3

20 30
Time (second)

456
Frequency (Hz)

40

7 8

50

9

60

10

505 100.5 1

5

1

0.1

10

50

100

Pseudo-Velocity (in/sec)

500

Period (Second)

Fig. 2.3 1985 Mexico City Earthquake Ground Motion (Ser, EOOW)



- 53-

9876345
Time (Second)

21

Ace. (g)

0.70r------------------------------,

0.35

o. 0 i"'fb'>..A:;i'rfu-~II_t_+__tJ~~~_Af_~~<>c__p."':_f.:.-..-~~~~.,....L....::::::::.~_r_"""='"-L>.,....=-.-J.

-0.35
- 0 . 70 L.-__~--..L---- ___l

o

0.06r----;::--------------------------,

1098·7

Fourier Amplitude Spectrum

456
Frequency (Hz)

321

o . 0~ ~~ ___.:!._____>...L___=---l

o

0.04

0.02

501050.5 1

5

1

0.1

10

Pseudo-Velocity (in/sec)

500

50

100

Per iod (Second)

Fig.2.4 1986 San Salvador Earthquake Ground Motion (OG, EOOW)



- 54-

10

15

987

10

Fourier Amplitude Spectrum

Time (second)

456
Frequency (Hz)

5

3

Ace. (g)
1.2

0.6

0.0

-0.6

-1.2
0

0.0500

0.0375

0.0250

0.0125 1

0.0
0 1 2

501050.5 1

1

0.1

5

50

10

100

Pseudo-Velocity (in/sec)

500

Per iod (Second)

Fig. 2.5 1971 San Fernando Earthquake Ground Motion (pacoima Dam, S16E)



- 55 -

Fourier Amplitude Spectrum

15

10987

10
Time (second)

456
frequency (Hz)

5

3

Acc. (g)
0.4

0.2

0.0

-0.2

-0.4
0

0.0500

0.0375

0.0250

0.0125

0.0
0 1 2

501050.5 1

1

0.1

5

10

50

100

Pseudo-Velocity (in/sec)

500

Period (Second)

Fig. 2.6 1971 San Fernando Earthquake Ground Motion (Derived Pacoima Dam, S16E)



- 56-

10 .15
Time (second)

20 25 30

Fourier Amplitude Spectrum

505 100.5 1

5

1

0.1

10

50

100

Pseudo-Velocity (in/sec)

500

Per iod (Second)

Fig. 2.7 1952 Kern County Eanhquake Ground Motion (Taft, N21E)



- 57-

Acc. (g)
0.30 I

O. 15 r
o. 0 f+VI.N'>"rf"tl-J.,-f-----H-'-+:;--crJ"l---ftT---I-'--\-i---t-fr+-i---f-'+\---+--\-:'-I---t"--'tHf-li-'HTf--'-\-+-+-+¥-H-""-t++I+fJrr-"""m'I

-0.15

- 0 . 301'-----------------'---------'----------'
o 5 ).0 15 20

Time (second)

10987

Fourier Amplitude Spectrum

4 5
Frequency

31 2

~ :~:~ Ir----.-~-­
~:~~~~ ~VW~

o. 0 ld..:::.-_....::........:-..:.....!-~-'-----:::::L.__~~~~~=..<=~o=C:~"_"_~ ~

o

505 100.5 1

5

1

0.1

10

Pseudo-Velocity (in/sec)

500

50

100

Per iod (Second)

Fig. 2.8 1978 Miyagi-Ken-Oki Earthquake Ground Motion (Tohuku, NODE)



V
I

0
0

(5
%

D
a
m

p
in

g
)

S
a
n

S
a
lv

a
d

o
r

, ",I ,
I

I
I :~
P
a
c
o
i
m
a

,' I
I

,
',

I
,

I
I

,
,

I
I

I
I
,

4
"

1&
I

\
II

I
\

II
"

I
\

II
\

I'
I

I

:'
1

1
\I

,V
:\

\
'

\
I

,

"I
'

It
"

'V
II

\
I
,f

...
\

I
,

I " ~ ,\ ", I I I

',
-

D
e
ri

v
e
d

P
a
c
o

im
a

r
'\

.

I
lI

N
-V

I'
."

I
I

VII
\,

':
'\

//
-
-
.1

"
"

A
T

e
L

E
D

R
S

I
M

e
x

ic
o

"
I

.
I

/,
\

\
,

/,
-

"
.
',

f
JL

I
\
.
,

I
\
'

/
,
'

'
.

,
-
-
-
-
.'

\
'

"
..

t·
........

,...
....

.
,,'

...
'\

I
I
,
.
'

...
'
.
'
,

/
'

,,
~
'

.~
~\

,/
,
.

.
~

....
,

.....
.....

~\_
_.

JL~
~'J

"t.
\_~

\_.
_'/

__
~/

'~
Ml
ya
gl
",
~"

/
"
'-

_
.
'

fr.
-I,

,
t

/
'

....
....

\
"

/
/

•
'.

~
,
"
"
.
.
.
.
"

-
-
-
-
-

.....
1/
!
'
~
"
:
\

\
.
"
,

..
,
.
.
.
.
.

'
',

',
'

"
.

:,
."

I~
'"

;.
.-

....
~

....,
.,

':
..

..
':'

--
_

.......
.......

/
.......

.......
I'
:'
~:
''
''

.
'."

..,,
::

.:
.:

"~
""

"'
....~

',
:

~
..

:
~
"
_
_

;t...
.....

.....
.....

.
,I

::'V
:,!

I
:i;

\'.1
\'

"'
--

~'
~'

~<
""

'_
__

_
'.

.,
....

.
-.

-
-
'-

'-
J
/

...
...
-:

."
,

'-
,

Jt"
'\

,,'
,c

""
E

1
C

e
n

tr't
>"

"'.
-,

-'
~i

.'/
-'-,-

,-,C;:
,,-

-_
,-

,
S3

'"

L:<
.\'

:::
\::

';:
:>~

'~~
_~;

~_~
_';

~:~
='~

:;~
;'~

_~;
:~~-
~~

;=
==

-:
~-

~

0.
8

2
.0

S
pa

(g
)

3
.0

0
.5

1
.0

2
.5

1
.5

0
.0

0
.0

0
.5

1
.0

1
.5

2
.0

P
e
r
io

d
(s

e
c
o

n
d

)
2

.5
3

.0

F
ig

.2
.9

a
C

om
pa

ri
so

n
o

fP
se

ud
o-

A
cc

el
er

at
io

n
R

es
po

ns
e

S
pe

ct
ra

an
d

A
T

C
L

E
D

R
S



S
p

y
(i

n
/s

e
c)

1
6

0

1
4

0
(5

%
D

a
m

p
in

g
)

M
e
x

ic
o

U
I

\0

3
.0

S3

2
.5

--
--

-

...~
·.2

:-~
~·.

,-'
O-5

-·
..::::

o.
'
~

..
~"

....
...

;_
i·

--
-

A
T

e
L

E
D

R
S

2
.0

1
.5

P
e
ri

o
d

(s
e
c
o

n
d

)

D
e
ri

v
e
d

P
a
c
o

im
a

P
a
c
o

im
a

1
.0

0
.5

S
a
n

S
a
lv

a
d

o
r

t/
j~
>-
-

t
i
l
/
'

/
...

..
"

...
..

-
-

-
-

.
-'
;/

/M
iy

a
g

i
.....

.,.
:.

-
.....-

--
__

C
h

ll
e

1
\

,
'
/
.
,

'
..

..
..

.-
-
_

.......
:/<

,/"\.
..

.-'-
'--

_.-
---

-_._
.--_

':.>
"':'

':::
:::;

.::-
.--

,
~
/
~
\

...-
-.

>
..

f,-
-

S
l

I
.
J
/
~
.
~

.:'.':-.-
:..>~

•
•
•
•
•
•
•
•
•
•

'
.

_.
_.

_.
_.

_.
I.

~'
:=

'·
:-

='
·~

~.
7-

=-
.-

':
=.

:'
~.

:'
:;

.____
.

:'~
,I

jJ
><

~;
I'

"
"~
--
--
,,
,,
.-
.-
'

.\
./

~(
'
_l

..
.:

::
::

,i
_·

~-
::

--
--

--
'...

._
"

'..
__

//
/.

·f.
..,

;-
-'
/

>
".

/f./
(:/;

.j·.
..

·/
/~
v.

'-
'-

.
_
~

'-
--
--
-~
~E
-l

..·
C~
~~
ro

I
·
:
}
:
j
:
:
~
~
~
·
/
·
_
~
,
/
~
_

..·-
'-...

....
..-

--.
-

~
,

T
a
f
t
/
.

-'
-'

--
--

''
'-

'-
·'

--
'-

-'
-_

.'
-'

''
''
''
''
''
'-

'-
''
''
''
'-

'-
'-

'-
'-

-1

0
_

0
.0

"
"

L
,V6
0

8
0

4
0

1
0

0

1
2

0

F
ig

.2
.9

b
C

om
pa

ri
so

n
o

fP
se

ud
o-

V
el

oc
it

y
R

es
po

ns
e

S
pe

ct
ra

an
d

A
T

C
L

E
D

R
S



--
2

E
[V

g
]

0
\ o

o
In

fl
ec

ti
on

po
in

t

=
13

e-a
t (

I

st
ro

ng
m

ot
io

n
du

ra
ti

on
!!l

.t s

* t1
t2

T
im

e
(s

ec
)

F
ig

.
2.

10
E

ar
th

qu
ak

e
M

ea
n-

sq
ua

re
A

cc
el

er
at

io
n

as
R

ep
re

se
nt

ed
by

C
hi

-s
qu

ar
ed

F
un

ct
io

n
7



Sp
a

(g
)

2
.5

(5
%

D
a
m

p
in

g
)

C
h

il
e

(N
0

6
E

)

, ",
I

0
\ -

~
...
~
-
-

-_
_

_
_

I

, I
I
~

I
f I I I

~
,

I
,

I
\

I
\

"
\
~

S
a
n

S
a
lv

a
d

o
r

(N
5

7
E

)
,

\
I

\
,

I
\

I
I

\
I

,
\

'J
,

\
I

I
\

I
,

\
,

\
I

\
,

\

I
\

I
\

I
\

/'
\"

J
'I

\
.'

'.
,

I
J

\
I

'.
r
1
r
-
-
-
-
-
~

\
,I

'\
I

\J
\

\
I

"'

I
'

,-
,

\
,

"
C

e
n

t
r
o

(S
2

3
E

)
/

\
~

M
e
x

ic
o

(N
6

2
E

)
I

i\
''-I

.
\

;
.......

....
,
L
-
-
-
T
~
~
-
-
-
-
i
"
"
-
-
-
~
'
-
-
-
-
-

/
....

J'
fl

tJ
J

\
l"

,
\

/'
......

_.
_-

-._
._

.....
:
\

;
'I

\
l\

r\
:'

.......
..

.......
./

......
....

I
I
'

\
'

V
1

I
..

..
..

..
.

..
I

..
..

!i
i

.
\'

--
""

:"
'/\

---
__

/
A

T
C

L
E

D
R

S
-'-

,
A

.I!
r

.......
..

..
....

...
_

,,
,I

..
..

.

,,!'I
-
-
.
.
.
.
~
"
'
-
-
'
,

---
-;;

"'<
--.

-
t

-\-,
II

I
.._

...
.

""
,"

..
"

~I
l

...
:;

:-
..

-
...

.
,
,
'

-
-
-
-
-

S
.

'_'_._
_,.,

---.
-/-.

----
.--"

.---
---~

:.=:
~:::

<~:=
:.:.

:~~~
-=.:

=:~o
=:~~

::'
~-~

~cc
;;:

;:;
~;~

;;;
~·~

:~'
?I

0.
8

0
.5

2
.0

1
.5

1
.0

0
.0

0
.0

0
.5

1
.0

1
.5

P
e
ri

o
d

(s
e
c
o

n
d

)
2

.0
2

.5
3

.0

Fi
g.

2.
11

a
P

se
ud

o-
A

cc
el

er
at

io
n

R
es

po
ns

e
S

pe
ct

ra
an

d
A

T
e

L
E

D
R

S
(p

ri
nc

ip
al

D
ir

ec
tio

n)



Sp
v

(i
n

/s
e

c)

1
6

0

0'
1 tv

3
.0

S
l

.....
.....

.....
..

2
.5

2
.0

(N
57

E
)

1
.5

P
e
ri

o
d

(s
e
c
o

n
d

)
1

.0
0

.5

(N
06

E
)

S
an

S
a
lv

a
d

o
r

(5
%

D
am

p
in

g
)

C
h

il
e

f
\
~

M
ex

ic
o

(N
62

E
)

;
\

.
\

,
,

,
\

I
'

.
\

,
\

i
"

.
\

I
,

.
\

I
'

.
\
,

J
.~

\\
j

",..
'"

"\
I

,
.

'.

/
~

.
\

!
\

I
\

i
"

i
\

.
\

I
•

.
\

I
,

/
A

TC
L

E
D

R
S

\
I

,

i
i

\
Ji"

I
\

/
"
r

i
S

\
I

\
I

3
'.

I
,

;
_

_
-
-
-
-
-
~

,/
'\

,
--

--
I!

~-
--

--
--

--
--

--
--

--
--

--
--

--
--

'.
"

'...
..--

---
-

,/
'

_/.z
l~?X

~~~:
;:'"

-'::
~~:'

~:~"
/~://

.~:~:
~:~-:

~-:~.:
::;:

:~=:
-=-=

I=--
----

-----
----

,'/
;:

x:
':

'/'
~._

.~.
~/-

.,.
,._

/-.
_.-

,
E

1
C

e
n

t
r

0
(
S

2
3

E
)

,~
i;
'~
~

_._
.,...

..,..
...

a
v
?
-
-
-
-
·
~
·
~
·

0
.0

2
0

80 60 40

1
0

0

1
4

0

1
2

0

F
ig

.2
.1

1b
P

se
ud

o-
V

el
oc

it
y

R
es

po
ns

e
Sp

ec
tr

a
an

d
A

T
e

L
E

D
R

S
(p

ri
nc

ip
al

D
ir

ec
tio

n)



N
or

m
al

iz
ed

In
te

ns
it

y

(D
am

ag
e

P
ot

en
ti

al
)

1
.2

0
'\

W

S
f

A
,J'

~~
!

\
,

,,~\
'

,
,'#

",
\

, •
•

"
I"

"
,

•
\

"
f

,
..~,\

/
'

!
\

/'
i

\'.
~,

,
,

'
,

'/::
'

\
\~\

/
.

.
"

/
'

\
'.'

\
,

!
.

','
"
,

,
,

'
,

",'
"I,

"
I

,
i

\
'I"

\'
"

\
,

.
i
,

,
,I,

,\
\

,
I

\
i

';
,I

':'
"

...\
'

"
i
.

/
I:'

\
'.,

\
/
,

i
';

,
,:

'
\

...
,

"
"
'
,

.
/

",
\

'"
(\

i
\

I:
'

\
...,

/'
\

\i
\

i
,i

,
..

\
'"

"
!

i
,

,:1
\

..
'\

/
/'

\
''
.

i
/

I:
'

\
...

,
,
'

,
i

\
.

'
:
'

,
'.

',
I
'

,
\

.
'y

"
\

/
:
:
'
.

\
...

'\
,

'
/
'
,
.

.
'/"

\
,

I"
1

\
\

"
,
\

/
.

,
, !

';'
'"'

;-\
-'-

-l.
'!

'
i
\

\
"
"
,\

'R
M

S
A

"
"

;. '
..,

.-..
...

,
",

.
\

\
"
,

/
,

;
"

\
'
\

I
-.

..
..

'
:
,

.'
\

\
"
,

\
,

,

i
,II

..
..

,
\

I;
,

;'
\

"
":

,
\
;
,
'

"
\

!
:
,

...
\\

,:
'

i
\.

\
'v

/
G

A
,

,
"

'
"

'
:
'
,

,
'
"

,
p

"
i

!I
\
"

I:
"

'.
\

1\
'

"
,

'"
i

/
I

'.
,
\
'
:
'
,

'.
,
,
,
,

/
''
''
',

,.
"

'
,

I
'.

,
\i

::
,

\
'
I
'
.

""
"

"
"
.

"
,

'
'/

\\
i"

,
"
,

'''7
..

';',
I

\
;I

/
,'

,
\
':

,
i
I
"

'I,
P

A
,
"
.

..
i

U
I

'
\

"
,
i'
!

\
"
,

..
"
',

1
,

!I
..

\
r
"

J
\

\
I

\
',

,
,

I
'

,
,

...
:

,
,

.
,

A
,
"
"

.
'
I
,

''
'.

1
,,

\
"

'
.

,
.
\

,I
f

I
\
,

I
,

'
•

\
I

_
._

"
,

\
,

/, "
,

'"
,

"
"
'
"

.I
,

,
.
"

\.
,.

_
_

'
p

"
'
.
"

II
,

"
'V

__
"
"
"

__
,"

',
"
,

,
"

,'
I

,
,

".
,

'/
..

'.
",

",
'

,
"
P

o
"

J
I

J
I

I

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M
X

CH
M

O
PD

5
5

E
C

D
PD

T
F

Fi
g.

2.
12

S
um

m
ar

y
o

fN
or

m
al

iz
ed

E
ar

th
qu

ak
e

G
ro

un
d

M
ot

io
n

P
ar

am
et

er
s



11
C

h
il

e
11

M
e
x

ic
o

11
P

a
c
o

im
a

11
T

a
f
t

0
.5

0
.0

1
.0

2
.0

3
.0

P
e
r
io

d
(
s
e
c
)

1
1

'
I

~
<
L
"

'f
....

....
..

I
I

5
I{

\!
"(

i.
<

;
I

I
I

I
I

5
0

I
I

I
I

i
I

1
0

I
II

I-
I-

I
I-

I-
I

o
•5

'
-,

I
>I

.:
>

.....
"

>
.

I
I

1
.0

2
.0

3
.0

0
.0

1
.0

2
.0

3
.0

P
e
r
io

d
(
s
e
c
)

P
e
r
io

d
(
s
e
c
)

5
I,

VI
I

I
I

I
I

I

5
0
i
i
i

I
I

i
I

1
0

1
\\

1
I

I
I

I
1

5
f

'II
/'

''k
:7

<
i

\
I

I
\

J
k

I

1
I~
~
W

"
F

I
.

I
I

I

5
0

I
I

(
I

I
I

i
I

1
0

I
\

I
\...

..I
V

'::
1,

I
I

1

0
.5

I
I

I
1

I
I

I

0
.0

1
.0

2
.0

3
.0

P
e
r
io

d
(
s
e
c
)

5 1

5
0

1
0

11
E

l
C

e
n

t
r
o

11
S

a
n

S
a
lv

a
d

o
r

11
D

e
r
iv

e
d

P
a
c
o

im
a

Jl
M

iy
a
g

i
0

\
~

15
I

'I
d

,"
·d

\,.
-.

.j
I

I-
I

1
0

r.-
-ft

-\I
.."

,
I

I
I

I
I

5
0

i"
I

I
I

I
I

i

o
•5

1
1

I
I

I\
\\

\'
-+

=
=

=
:l

0
.0

1
.0

2
.0

3
.0

P
e
r
io

d
(
s
e
c
)

15
1
V

't
'J

'..
...1

I
I

1

1
0

H
-\

I
'J

I
1

I
I

5
0

I
\

I
I

I
i

I

o
.5

'
,

I
!

I
=

':
t>

::
::

,J

0
.0

1
.0

2
.0

3
.0

P
e
r
io

d
(
s
e
c
)

51
.\

I
\

I
I

I
I

I

1
I'

=1
'
«
~
c
"
~

"*
,,

I
I

1
0

H
--

-'
-J

I
I

I
I

I

5
0

I
.

I
I

I
I

I
I

O
.

5
'

!
1

"C
'>

b
::

:.
..

..
.L

.
....

....
I"

>
1

0
.0

1
.0

2
.0

3
.0

P
e
r
io

d
(
s
e
c
)

5
1

'....
'\\

1-
/\

I-
I-

I
I-

I

1
1
.
1
.
~
"
o
;
:
J

5
0

I
I

I
i
i
i

i

1
0

1
\\

1
I

I-
I

I-
I

0
.5

'
I

I
"

'-
=

t:
'>

b.
.::

:=
=-

=:
.J

>,
"'

0
.0

1
.0

2
.0

3
.0

P
e
r
io

d
(
s
e
c
)

F
ig

.
3.

1
D

is
pl

ac
em

en
t

D
uc

ti
li

ty
S

pe
ct

ra
,5

%
D

am
pi

ng

(11
fr

om
0

.4
to

1.
4

in
0.

2
in

cr
em

en
t)



z
=lo

g
J..l.

xs
~

C
h

il
e

E
l

C
e
n

tr
o

M
ex

ic
o

S
a
n

S
a
lv

a
d

o
r

.
.

Y=
T1

(a
)

D
is

pl
ac

em
en

tD
uc

ti
li

ty
R

at
io

(T
fr

o
m

0.
1

to
3.

0
se

c,
11

fr
om

0.
4

to
1.

4)

z
=

E
J

xs
~ Y=

T1

C
h

il
e

E
l

C
e
n

tr
o

M
ex

ic
o

S
a
n

S
a
lv

a
d

o
r

0
\

V
I

(b
)

T
ot

al
In

pu
tE

ne
rg

y
(T

fr
o

m
0.

1
to

3.
0

se
c,

11
fr

om
0.

4
to

1.
4)

F
ig

.
3.

2
C

on
st

an
tS

tr
en

gt
h

D
is

pl
ac

em
en

tD
uc

ti
li

ty
R

at
io

an
d

In
pu

tE
ne

rg
y

S
pe

ct
ra

,
5%

D
am

pi
ng



- 66-

0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Period (second)

Cy El Centro ~

1.2

~

2%

5%

10%

Mexico

Cy San Salvador ~

1.0

0.8

0.6

0.4

0.2

0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Period (second)

Cy

o. 20~---------------,

\,
0.15 .<;,>.....

, -- ............ ,
'-

0.10

0.05

1.2

1.0

0.8

0.6

0.4

0.2

2%

5%

10%

Chile

0.8

0.6

0.4

0.2

0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Period (second)

1.0

1.2

0.8

0.6

0.4

0.2

0.0
3.0

2%

5%

10%
0.6

0.8

0.4

0.2

0.0
0.0 0.5 1.0 1.5 2.0 2.5

Period (second)

Cy Miyagi ~

1.20.30 2%
0.25 5% 1.0

0.20 10% 0.8

0.15 0.6

0.10 0.4

0.05
....

0.2- ........ -."""
-----

0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Period (second)

Cy Taft ~

1.2
2%

0.15 5% 1.0

10% 0.8

0.10 0.6

0.4
0.05

0.2

0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Period (second)

1.2

1.0

0.8

0.6

0.4

0.2

0.2

1.2

1.2

1.0

0.8

0.6

0.4

0.8

0.6

1.0

~

0.4

0.2

0.0
3.0

2%

5%

10%

2%
5%

10%

2%
5%

10%

Pacoima

0.4

0.2

0.3

0.1

0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Period (second)

Cy Derived Pacoima ~

Cy
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.5 1.0 1.5 2.0 2.5

Period (second)

0.2

0.4

0.3

0.1

Fig. 3.3 Influence of Damping on Seismic Resistance Coefficient for Ductility 5



Cy
C

y

1
.0

-
-
-

C
h

il
e

1
.0

-
-
-
-

P
a
c
o

im
a

.._
-
-
-
-
.
.
;
-
-
-
~
'
=
:
.
-
:
:
-
=
;
.
~
.

A
T

C
(R

=
6

,
C

d
=

5
)

~

--
--

.-
--

--
D

e
r

i
v

e
d

P
a
c

0
i

m
a

-
-
-
-

P
a
c
o

im
a

-
-
-
-
-

T
a
f
t

--
--

0
M

iy
a
g

i

....:
-::;

::-
=-_

-.:=
-=-

-o
r.:

:-:
:'

:...-
_--

=

A
T

C
(R

=
6

,
C

d
=

5
)

1
.0

1
.5

2
.0

2
.5

3
.0

P
e
ri

o
d

(s
e
c
)

0
.5

Q
(r

eq
'd

)

6

0
.2

0
.8

0
.0

0
.0

0
.4

0
.6

--
-..

....
..

C
h

il
e

E
l

C
e
n

tr
o

M
e
x

ic
o

S
a
n

S
a
lv

a
d

o
r

...:
-,

--
::-

--
--

-

1
.0

1
.5

2
.0

2
.5

3
.0

P
e
ri

o
d

(s
e
c
)

0
.5

Q
(r

eq
'd

)

6

0
.0

0
.0

0
.8

0
.4

0
.2

0
.6

..-.
.__

....-.
...

-
-
-
-
-

T
a
f
t

--
--

0
M

iy
a
g

i

--
--

--
--

--
D

e
r
iv

e
d

P
a
c
o

im
a

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P
e
ri

o
d

(s
e
c
)

_
~
,
_
,

.....
.....

....
,r

--
-\

\ \

234 o 0
.0

5 1

S
a
n

S
a
lv

a
d

o
r

E
l

C
e
n

tr
o

M
e
x

ic
o

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P
e
ri

o
d

(s
e
c
)

4 3 2 o 0
.0

5 1

F
ig

.
3.

4a
R

eq
ui

re
d

R
es

is
ta

nc
e

C
oe

ff
ic

ie
nt

an
d

R
eq

ui
re

d
O

ve
rs

tr
en

gt
h

F
ac

to
r

w
it

h
D

uc
ti

li
ty

R
at

io
5

,5
%

D
am

pi
ng

(A
T

C
S

oi
lT

yp
e

1)



D
u

c
ti

li
ty

5
C y

D
u

c
ti

li
ty

5
.5

1
.0

I
i

0
.8

0
.6

A
T

C
(R

=
6

,
C

d
=

5
)

~
>

\
c

>
_

---
-_

.::
;;;

-....

0
.4

0
.2

A
T

C
(
R
~
8
,

C
d
=

5
.5

)
\

0
.0

I
,

i
I

0
.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P
e
ri

o
d

(s
e
c
)

P
e
ri

o
d

(s
e
c
)

I 0
\

Q
(r

eq
'd

)
Q

(r
eq

'd
)

0
0

:1
6

I
D

u
c
ti

li
ty

5
5

D
u

c
ti

li
ty

5
.5

4
4

3
3

2
2

1
1

0
0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P
e
ri

o
d

(s
e
c
)

P
e
ri

o
d

(s
e
c
)

F
ig

.
3.

4b
R

eq
ui

re
d

R
es

is
ta

nc
e

C
oe

ff
ic

ie
nt

an
d

R
eq

ui
re

d
O

ve
rs

tr
en

gt
h

F
ac

to
r

.5
%

D
am

pi
ng

(1
98

5
M

ex
ic

o
C

it
y

E
ar

th
qu

ak
e,

A
T

C
S

oi
lT

yp
e

3)



C
y

1
.0

C
h

il
e

Cy

1
.0

-
-
-
-

P
a
c
o

im
a

0
.8

0
.6

0
.4

0
.2

0
.0

0
.0

E
l

C
e
n

tr
o

M
e
x

ic
o

-
-
-
-
.

S
a
n

S
a
lv

a
d

o
r

A
T

C
(R

=
8

,
C

d
=

5
.5

)

--
--

-

0
.5

1
.0

1
.5

2
.0

2
.5

P
e
ri

o
d

(s
e
c
)

3
.0

0
.8

0
.6

0
.4

.-

0
.2

0
.0

0
.0

--
--

--
--

--
D

e
r

i
v

e
d

P
a
c

0
i

m
a

-
-
-
-
-

T
a
f
t

-
-
.
-
.

M
iy

a
g

i

A
T

C
(R

=
8,

C
d

=
5

.5
)

,-
-

-
-

...
_

,_
-

-:
=

:4
":

..
.-

=
-.

=
:.

-:
-..

..---
-:=

_-
---

=-
::..

.....
..

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P
e
ri

o
d

(s
e
c
)

0"
1

'0

-
-
-
-

P
a
c
o

im
a

-
-
-
-
.

M
iy

a
g

i

-
-
-
-
-

T
a
f
t

--
--

--
--

_.
D

e
r
iv

e
d

P
a
c
o

im
a

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P
e
ri

o
d

(s
e
c
)

,_
..

,,
~,
._
,,
'I

..

.....
...."

1
/

o;:
o:~

,
-
-
~
~
'

...,
r-

--
...

..\
-,

\ ,-

2 o 0
.0

3 1Q
(r

eq
'd

)

6 5 4
M

e
x

ic
o

E
l

C
e
n

tr
o

C
h

il
e

-
-
-
-
.

S
a
n

S
a
lv

a
d

o
r

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

P
e
ri

o
d

(s
e
c
)

46 2 o 0
.0

35 1Q
(r

eq
'd

)

F
ig

.
3.

5
R

eq
ui

re
d

R
es

is
ta

nc
e

C
oe

ff
ic

ie
nt

an
d

R
eq

ui
re

d
O

ve
rs

tr
en

gt
h

F
ac

to
r

w
it

h
D

uc
ti

li
ty

R
at

io
5.

5,
5%

D
am

pi
ng

(A
T

e
S

oi
lT

yp
e

1)



-70 -

Chile Mexico

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0

u=l
u=2
u=3
u=4
u=5

2.5 3.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0

u=l
u=2
u=3
u=4
u=s
u=6

1.5 2.0 2.5 3.0

Period (sec) Period (sec)

El Centro San Salvador

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0

u=l
u=2
u=3
u=4
u=5
u=6

2.5· 3.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0

u=l
u=2
u=3
u=4
u=5
u=6

2.5 3.0

Period (sec) Period (sec)

Pacoima Taft

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0

u=l
u=2
u=3
u=4
u=5
u=6

2.5 3.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0

u=l
u=2
u=3
u=4
u=5
u=6

1.5 2.0 2.5 3.0

Per1.od (sec) Period (sec)

3.02.5

u=l
u=2
u=3
u=4
u=5
u-6

Miyagi

1.0

0.8

0.6

1.2

,

:: J.~~z~~,_
0.0

0.0 0.5 1.0 1.5 2.03.02.5

u=l
u=2
u=3
u=4
u-5
u-6

2.01.51.0

Derived Pacoima

0.5

~
I,I,

I ,
I ,

I \,

~~:;.~~~~.;,;;~~~
0.0

0.0

0.6

0.4

1.0

0.2

0.8

1.2

Period (sec) Period (sec)

Fig. 3.6 Variation of Resistance Coefficient with Ductility Ratio (5% Damping)
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increase proportionally with increasing displacement ductility ratio (Fig. 3.6.)

(3) Estimates of upper and lower bounds for the drift index for multi-story buildings have been

derived for a constant displacement ductility ratio. The lower bound for the drift index

(corresponding to a unifonn drift index distribution) may control the design of structures in

the short period range. The upper bound for the drift index (corresponding to the fonnation

of a soft bottom story) becomes increasingly critical with increasing period.

(4) An upper bound has been derived for Cy on the basis of constant displacement ductility and

code drift limits. Drift limit usually does not control the design for long period structures

(T> 1.5 sec) if soft story mechanisms can be avoided. For short period structures subjected

to earthquakes with severe acceleration pulses (Le., pulses with large peak ground accelera­

tion, say in excess of OAg, and long duration) the ductility ratio that can be used should be

limited. In this case, the use of a large ductility ratio to reduce seismic design forces leads

to excessive drift indices. The use of a constant displacement ductility ratio to construct

design spectra cannot be justified from the viewpoint of drift control.

(5) One significant disadvantage of seismic resistance (Cy ) spectra is that the effect of strong

motion duration is not considered. The energy demands associated with a long duration

earthquake record may be very large and a design based only on Cy may not be conserva­

tive. A study of this conventional way of constructing an inelastic design response spec­

trum suggests that other controlling factors must be considered.

(6) While the linear elastic pseudo-velocity spectra Spy can be used to obtain a lower bound to

the equivalent input energy VI spectra, they may significantly underestimate the true energy

input.

(7) Although the equivalent hysteretic energy VH spectra are in general in close agreement with

the Spy spectra, the Spy spectra may significantly underestimate the VH spectra in the case of

long duration strong ground shaking such as CH and MX.

(8) While a variation in the value of damping ratio affects the response of linear elastic struc­

tures considerably, this variation has only minor effects on the required yielding strength Cy

as well as on the hysteretic energy of yielding structures.
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3.10. Possible Parameters to Construct Inelastic Spectra

In the previous sections all the inelastic response spectra were calculated on the basis of a

constant displacement ductility ratio. The use of displacement ductility as a damage criterion is

reasonable from two perspectives: (i) it not only allows the structural damage to be controlled,

but it also allows damage to deformation-sensitive nonstructural components to be controlled;

and (ii) it allows the undesirable effects of geometric nonlinearities to be controlled. However,

using seismic resistance spectra (Cy spectra) based on a constant ductility ratio for design pur­

poses may be inadequate because other failure modes may control. Damage criteria should

ideally reflect the following important parameters:

(1) The energy dissipation capacity of both the structural members and the entire structural sys­

tems;

(2) Cyclic ductility demand due to repeated bursts of large energy input in an earthquake

record.

Use of these parameters to establish damage criteria requires identification of the acceptable lev­

els of hysteretic energy dissipation capacity and cyclic ductility of structural elements, structural

systems, and of entire soil-foundation-superstructure and non-structural component system.

The high hysteretic energy demanded by MX (Fig. 3.13), based on a constant ductility

ratio, is a good example to demonstrate the need for establishing damage criteria that include

energy dissipation demand.

Previous researchers 5,22 have proposed that the energy dissipation capacity of a structure

under cyclic excitation be estimated directly from its response under monotonic loading. The

energy dissipation capacity of a structure under monotonic loading is usually well defined. 12, 20

Other researchers have found that energy dissipation capacity is not constant and varies with the

amplitudes of the inelastic deformation and loading or deformation paths as shown by the follow­

ing results obtained by Bertero et al.;9 Fig. 3.17 shows results of steel beams tested under yield­

ing reversals. By ignoring strain hardening and Bauschinger effects, the moment-curvature curve

under cyclic loading can be idealized as shown in Fig. 3.18; these two factors tend to compensate

each other from the standpoint of energy dissipation. The dissipated energy per unit length, ed, is

the area enclosed by the hysteresis loop:


