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ABSTRACT 

This study endeavors to develop improved analytical methods for predicting the nonlinear 
static and dynamic response of multistory reinforced concrete frames. This report is limited to the 
study of the static response. 

A new approach in describing the nonlinear hysteretic behavior of reinforced concrete frame 
elements is proposed. This approach consists of isolating the basic mechanisms controlling the 
hysteretic behavior of girders and columns into individual subelements which are connected in 
series to form the girder or column superelement. Two particular subelement models are developed 
in this study: one describes the inelastic behavior along the girder accounting for the gradual spread 
of inelastic deformations at the girder ends, while the other models the fixed-end rotations that arise 
at the beam-column interface due to bond deterioration and slippage of reinforcing bars in the 
beam-column joint region. The properties of these elements can be derived from basic principles 
or refined finite element models. 

Because several subelements are connected in series and each of these follows a different 
hysteretic rule, internal unbalanced moments might arise between these elements at any given load 
step. The implementation of the proposed superelement model thus requires the development of a 
numerical scheme which accounts for these unbalanced moments between subelements. Such a 
scheme is developed in this study within the framework of a special purpose analysis program for 
the nonlinear static and dynamic analysis of reinforced concrete moment-resisting frames. 

To establish the validity of the proposed models correlation studies of analytical predictions 
with experimental evidence of the load-displacement response of beam-column subassemblages 
under static load reversals are conducted. The analytical predictions generally show excellent 
agreement with the experimental results. 

The predictions of the proposed model are also compared with those of the widely used 
one-component model. The two models are compared by investigating the local and global response 
of simple structural subassemblages under cyclic load reversals. One of the key parameters of the 
one-component model, namely, the post-yield stiffness of the moment-rotation envelope curve is 
varied in these studies. It is concluded that the parameters of the one-component model can be 
adjusted to match reasonably well a given response. These parameters vary, however, with the type 

. and history of loading as well as with the type of subassemblage. By contrast, the proposed model, 
while maintaining computational efficiency, is based on parameters which are directly connected 
with the physical properties ofthe structural elements and can be derived by well established rational 
methods. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Reinforced concrete (RC) structures designed according to present building codes as moment 

resisting space frames, shear-walls, coupled shear-walls or any combination thereof to withstand 

strong earthquake motions are expected to deform well into the inelastic range and dissipate the 

energy input by the base motion through stable hysteretic behavior of structural components. Since 

inelastic deformations are typically concentrated at certain critical regions within the structure 

(Fig. 1.1) [BER75-2], the accurate prediction of the mechanical behavior of the structure during 

earthquake excitations depends on the development of reliable analytical models which describe 

the hysteretic behavior of these regions. 

Fig. 1.1 

( 6E. ...-L.. ).,:4 

7Y "-../ ~5 

WI r,.. ,.." 

Critical regions in reinforced concrete frames 
subjected to cyclic excitations from [BER75-1] 

1 
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Ideally these models should be based on an accurate representation of material behavior taking 

into account the controlling states of stress or strain and identifying the main parameters which 

influence the hysteretic behavior of each critical region in order to predict the behavior up to failure 

of any structural component during the earthquake response. At the same time these models should 

be computationally efficient, so that the dynamic response of multistory structures under earthquake 

excitations can be detennined within reasonable time. 

Following present earthquake resistant design philosophy the energy input by the base motion 

should be dissipated in the largest possible number of inelastic regions within the structure. Ductile 

moment resisting space frames are designed so that yielding starts to develop at the girder ends. 

Columns of a ductile moment resisting space frame should remain elastic during the earthquake 

response, except at the base of the building, to avoid the fonnation of a partial sidesway collapse 

mechanism. Attention is thus focused on understanding and predicting the hysteretic behavior of 

critical regions in girders as well as that of beam-column or girder-wall joints (regions 1, 2, 3 and 

8 in Fig. 1.1). 

Various experimental studies of reinforced concrete structural subassemblages [DUR82-1], 

[nR77-1], actual multistory buildings and dynamic tests of model frames have demonstrated that, 

when properly designed and detailed critical regions of RC structures are subjected to severe cyclic 

excitations, the major concern is the deterioration of stiffness. 

The principal effects of stiffness deterioration are: 

(1) an increase in the flexibility and period of vibration of the undamaged structure during large 

defonnation reversals, 

(2) a decrease in energy dissipation capacity, 

(3) a significant redistribution of internal forces which could lead to excessive defonnations in 

some regions. 

Since induced seismic forces and defonnations are sensitive to structural flexibility, natural 

period of vibration and energy dissipation capacity, the stiffness deterioration modifies the overall 

response of the structure. 

1.2 Review of previous studies 

Much effort has been devoted in the last twenty years to the development of models of inelastic 

response of RC elements subjected to large cyclic defonnation reversals. Numerous models 
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incorporating infonnation from experimental investigations and on-field observations of the hys

teretic behavior of RC structural elements have been proposed. These range from the simple two

component model with bilinear hysteretic law to refined fiber or layer models based on sophisticated 

descriptions of the cyclic stress-strain behavior of concrete and reinforcing steel. Since this study 

focuses on relatively simple models whi~h can be economically used in studying the seismic 

response of multistory frame structures, only the developments leading to a macroscopic model of 

inelastic response of RC elements will be briefly reviewed in the following. 

The very first inelastic girder model was proposed by Clough et. al. in 1965 [CL065 -1]. In 

this model, known as the two-component model, a bilinear elastic-strain hardening moment

curvature relationship is assumed along the length of the girder. The beam model consists of two 

components acting in parallel: one which is linear elastic and one which is elastic-perfectly plastic 

with the plastic defonnations concentrated in plastic hinges at the ends of the element. The elastic 

modulus of the first component is equal to the strain hardening modulus p . EI of the moment

curvature relation, where EI is the pre-yield section stiffness. The elastic modulus of the elasto

plastic component is equal to q . EI where q = 1 - p. One of the shortcomings of this model is the 

difficulty of accounting for the stiffness deterioration of RC elements during cyclic load reversals. 

To overcome the problem of stiffness deterioration Giberson proposed another model in 1969 

[Gffi69-1]. This model is known as the one-component model. It consists of two nonlinear rotational 

springs which are attached at the ends of a perfectly elastic element representing the girder. All 

nonlinear defonnations of the girder element are lumped in the two rotational springs. This is a 

simplification of experimental evidence which shows that inelastic defonnations spread over a finite 

region at the ends of the girder. Giberson's model has the advantage that any kind of hysteretic law 

can be assigned to the nonlinear springs. This fact along with the simplicity of the model accounts 

for its wide use in analytical studies to date. 

To describe the hysteretic behavior of the nonlinear springs at the ends of the one-component 

model a hysteretic law is needed. The first such law was proposed by Clough [CL065-1]. A more 

refined hysteresis model was proposed by Takeda et. al. in 1972 [TAK72-1]. In this model the 

monotonic behavior is described by a trilinear skeleton curve which accounts for cracking of concrete 

and yielding of reinforcing steel. The hysteretic behavior is described through a number of rules 

for unloading and reloading and is based on data obtained from specimens tested in an earthquake 

simulator. Even though Takeda's hysteretic model was originally proposed for simulating the 

load-displacement relation of RC subassemblages, it has been widely used since in the description 

of the hysteretic moment-curvature or moment-rotation relation of RC members. 
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A different approach to the problem of modeling the seismic behavior of RC girders was 

proposed by Otani [OTA74-1]. In this case each beam or column member is divided into two linear 

elements, one linearly elastic and one inelastic, which act in parallel. One inelastic rotational spring 

is attached at each end of the member. These represent the fixed-end rotations at the beam-column 

interface due to slip of the reinforcement in the joint. In Otani's model the linear elastic element 

represents the entire elastic stiffness of the girder, the flexibility matrix of the inelastic element is 

derived as a function of the location of the point of contraflexure. This approach results in a non

symmetric flexibility matrix, unless one of the following assumptions is made: (a) the inelastic 

deformations are concentrated at the girder ends, or (b) the contraflexure point is assumed fixed at 

midspan of the member. Otani's study recognizes for the first time the importance of fixed-end 

rotations in predicting the seismic response of RC frame structures. 

In 1976 Mahin and Bertero [MAH76-1] reviewed the various definitions of ductility factors 

in earthquake resistant design. One of the most important questions in this context is the accurate 

prediction of the rotational ductility demand in structural elements. The study points out how 

ductility factors for a beam represented by a two-component model must be modified to match 

those for a beam in which inelastic deformations spread into the member. Since the two-component 

model substantially underestimates the post-yielding stiffness of a member, the seismic response 

of the structure will not be predicted accurately. This is particularly true in the case of local response 

quantities such as inelastic rotations of girders andjoints. It does not, therefore, appear reasonable 

to estimate ductility requirements of RC frame elements on the basis of the results of the two

component model. 

Anderson and Townsend [AND77-1] investigated the effect of different hysteretic models 

on the dynamic response of RC frames. Four different models were used to describe the hysteretic 

behavior of critical regions of RC members: (a) a bilinear elastic-strain hardening model, (b) a 

bilinear degrading model with equal unloading and reloading stiffness, (c) a trilinear degrading 

model with different stiffness for unloading and reloading and (d) a degrading trilinear model for 

beam-column connections. They studied the effect of reinforcing bar slippage in the joint by inserting 

a small hinge element of predefined length between the rigid joint element and the flexible girder 

element. The study shows that the reduction in stiffness of reinforced concrete elements due to 

inelastic deformations can have a significant effect on the dynamic response of frame structures. 

Among the different hysteretic models used in the study the degrading trilinear connection model 

appears to be the most accurate. It is also shown that the use of a degrading stiffness model results 

in an increase in inters tory displacements. This can have a significant effect on the load carrying 

capacity of the structure due to the P-.1 effect arising from high axial forces. 



The first model which accounts for the spread of inelastic deformations into the member was 

introduced by Soleimani et. al. [SOL 79-1]. In this model a zone of inelastic deformations gradually 

spreads from the beam-column interface into the member as a function of loading history. The rest 

of the beam remains elastic. The fixed-end rotations at the beam-column interface are modeled 

through point hinges which are inserted at the ends ofthe member. These are related to the curvature 

at the corresponding end section through an "effective length" factor which remains constant during 

the entire response history. 

The effect of axial force on the flexural stiffness of a member was first accounted for in the 

model proposed by Takayanagi and Schnobrich [T AK79-1] in their study of the seisrrllc response 

of coupled wall systems. The walls and coupling beams are represented by one-dimensional beam 

elements. The interaction of bending moment, shear and axial forces is taken into account in the 

wall elements, while the axial stiffness of the coupling beams is assumed to be infmite, since the 

horizontal displacements of both walls are almost equal. Otani's model is selected for the coupling 

beams. It is assumed that the inflection point is fixed at the midspan of the coupling beam. The 

beams are connected to the wall elements through a rigid link, which accounts for the finite 

dimensions of the wall. A spring is inserted between the beam element and the rigid link to model 

the rotations due to slip of the reinforcing bars anchored in the wall. The effect of shear in the 

coupling beams is also taken into account. A modified Takeda model is adopted for the hysteretic 

behavior of the beam elements. The model accounts for the "pinching" effect during reloading and 

the strength decay due to loss of shear resistance after crack formation and yielding of the rein

forcement in the coupling beams .. 

The seismic response of a plane frame coupled with a shear wall was studied by Emori and . 

Schnobrich in 1981 [EM081-1]. They conducted nonlinear static analyses under cyclic load 

reversals and compared the results obtained using different beam models, namely, a concentrated 

spring model, a multiple spring model and a layer model. The first model is identical to Otani's 

model. The second is a linear element composed of several springs acting in series and interconnected 

by rigid links. It is thus capable of accounting for the shift of the contraflexure point during the 

response history. In the third model, which is a modification of the concentrated spring model, a 

layered element of length Lp is inserted at the ends of the beam. Lp is selected equal to the length of 

the region where major inelastic action is expected. The layer model can account for the interaction 

of bending moments and axial forces. It can not account, however, for the effects of shear and slip. 

of reinforcement, unless a spring is inserted at the ends of the beam. Takeda's hysteresis rule has 
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been adopted in all models. The study concludes that the concentrated spring model predicts sat

isfactorilythe inelastic response ofRC girders, while a multiple springmodelis needed to accurately 

describe the inelastic behavior of shear walls. If a detailed study ofthe inelastic response of plastic 

zones in columns is desired, the authors recommend the use of a layer model. 

The applicability of point hinge models in studying the seismic response of structures was 

investigated in great detail by Anagnostopoulos [AN A81-1]. His study is limited to flexural members 

subjected to end moments and uniformly distributed gravity loads. The moment-curvature relation 

is assumed to be bilinear elastic-strain hardening. He notes that a point hinge model is incapable 

of reproducing the gradual change of stiffness of a member in the post-yielding range. The study 

then focuses attention on the problem of defining the strain hardening ratio of the moment-rotation 

relation of point hinge models. Anagnostopoulos shows that it is incorrect to set this ratio equal to 

the.strain hardening ratio of the moment-curvature relation, since this considerably underestimates 

the post-yield stiffness of flexural members. He then proposes an iterative solution for determining 

the strain-hardening ratio of the moment-rotation relation of point hinge models. 

A complete model for the analysis of seismic response of RC structures was proposed by 

Banon et. al. [BAN81-1]. The one-component model in its original form describes the nonlinear 

behavior of the girder. The hysteretic moment-rotation relation is based on a modified Takeda 

model. In order to reproduce the "pinching" effect due to shear and bond deterioration a nonlinear 

rotational spring is inserted at each member end. The hysteretic model of the nonlinear springs is 

based on a bilinear skeleton curve with strength decay under large deformations and includes the 

effect of "pinching" during reloading. The authors also proposed a set of damage indicators in an 

effort to quantify the performance of a structure during an earthquake. These indicators describe 

the state of damage of each element due to large deformation reversals and low-cycle fatigue. The 

damage indicators are used in the development of a probabilistic model of member resistance. The 

study concludes that the one-component model is sufficiently accurate in modeling the inelastic 

response of RC members subjected to severe deformation reversals. It also shows that it is possible 

to accurately predict the state of damage of RC members using parameters based on deformation 

ductility and cumulative energy dissipation due to low-cycle fatigue. 

The effect of different hysteresis models on the nonlinear dynamic response of a simple 

concrete specimen was studied by Saiidi [SAI82-l]. He analyzed four models: elastic-perfectly 

plastic, elasto-plastic with strain hardening, Clough's model and a new Q-hysteresis model. The 

first two are very simple, but quite unrealistic for reinforced concrete; the other two are more accurate 

and differ mainly in the representation of stiffness degradation during unloading and reloading. The 

performance of the different hysteretic models was evaluated by comparing the results with those 
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obtained using Takeda's model, since its agreement with a large number of experimental data is 

excellent. Poor agreement with Takeda's model is exhibited by both elasto-plastic models; Clough's 

model shows relatively good agreement and the Q-hysteresis model shows excellent agreement. 

The study concludes that stiffness degradation effects during unloading and reloading are very 

important in determining the overall response of RC structures, because they affect the amount of 

energy dissipated by the structure. 

In 1983 Meyer et. al. [MEY83-1] developed another spread plasticity model. The flexibility 

coefficients of the new model are identical to those of Soleimani's model. The authors proposed a 

slightly different way of calculating the stiffness of the plastic zone during reloading and used 

Takeda's model to describe the hysteretic behavior. The same model was used in describing the 

, inelastic behavior of beams and columns, with no account of the effect of axial forces on flexural 

rigidity. Fixed-end rotations are not taken into account in the study. The analytical results are 

compared with a series of experimental data and show excellent agreement. 

An integrated experimental and analytical study on the effect of bond deterioration on the 

seismic response of RC structures was published by Otani et. al. in 1985 [OTA85-1]. The model 

adopted for beams and columns is the one-component model. Takeda's model is used to describe 

the hysteretic behavior of the elements. A rotational spring is inserted at each member end to model 

the slip of reinforcement due to bond deterioration; the hysteretic behavior of the spring is described 

by Takeda's model modified so as to account for the "pinching" effect during reloading. No strength 

decay is introduced in the monotonic skeleton curve, since experimental data did not provide such 

evidence. 

A model for assessing structural damage in RC structural elements was proposed in a study 

by Park and Ang [PAR85-1]. Damage is expressed as a linear function of the maximum deformation 

and the hysteretic energy absorbed during cyclic load reversals. 

In their study of the nonlinear response of plane rectangular frames and coupled shear walls 

Keshavarian and Schnobrich [KES85-1] extended the spread plasticity model proposed by Solei

mani to column elements. The model accounts for the interaction between bending moment and 

axial force in determining the strength and stiffness of column elements. The study compares the 

predictions of different models: in addition to the spread plasticity model, these include the one

component, two-component and multiple spring model. In performing the nonlinear static and 

dynamic analysis of the structure the element stiffness is linearized at the beginning of each load 

step. Any nonlinearity which takes place during the load increment is not accounted for and the 

resulting unbalance forces are neglected. The study concludes that the one-component model- is 
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well suited for describing the inelastic behaviorofRC girders. It is also noted that the two-component 

model has the same versatility as the one-component model and yields similar results. The multi

layer model is found very expensive for nonlinear dynamic analysis of multistory structures. Finally, 

the study points out that the fluctuation of axial forces in coupled shear walls and in exterior columns 

offrame structures significantly affects the forces and deformations in individual walls and columns. 

In a recent study Roufaiel and Meier [ROU87 -I] proposed an extension of the spread plasticity 

model presented in [MEY83-1]. The new model includes the effect of shear and axial forces on the 

flexural hysteretic behavior based on a set of empirical rules. The hysteretic moment-curvature 

relation is described by Takeda's model. The variation of axial loads due to overturning moments 

is not accounted for. The predictions of the model were compared with available experimental data 

and show very good agreement. A set of new damage parameters was proposed which seem to 

correlate well with the residual strength and stiffness of specimens tested in the laboratory. 

1.3 Objectives and scope 

The general objective of this research is to develop improved analytical methods for predicting 

the nonlinear static and dynamic response of multistory reinforced concrete frames subjected to 

large cyclic deformation reversals. This report is limited to the study of the static response. The 

dynamic response will be presented in a following study. 

To achieve the general objective a new reinforced concrete girder element is proposed. The 

element is composed of a number of subelements which are connected in series and represent the 

different sources of hysteretic behavior of reinforced concrete girders. In particular, two subelement 

models are proposed in the study: one describes the inelastic behavior along the girder accounting 

for the gradual spread of inelastic deformations at the girder ends, while the other models the 

fixed-end rotations that arise at the beam-column interface due to bond deterioration and slippage 

of reinforcing bars in the beam-column joint region. 

An efficient numerical technique which accounts for the unbalance of internal forces in the 

different subelements during a given load increment is proposed and an algorithm for implementing 

this numerical strategy is described. 

The reinforced concrete girder model is incorporated into a computer program for nonlinear 

static and dynamic analysis of reinforced concrete frames. The predictions of the model are compared 
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with experimental results obtained from beam-column subassemblages subjected to cyclic defor

mation reversals. The accuracy of various models in describing the local and global response of 

simple structural subassemblages is investigated. The study concludes with a number of parametric 

studies which assess the sensitivity of the results to changes in key model parameters. 





CHAPTER 2 

MODELS OF REINFORCED CONCRETE FRAME ELEMENTS 

,/ 

2.1 Introduction 

When medium to high rise reinforced concrete momeht'i·esisting frames are subjected to 

severe seismic excitations, the behavior of members in the lower part of the building is controlled 

by lateral loads. In a typical lower story the combined action of high lateral and relatively small 

gravity loads gives rise to the moment distribution shown in Fig. 2.1. Since it is not economically 

feasible to design reinforced concrete (RC) structures to remain elastic during severe earthquake 

ground motions, the maximum girder moments are likely to exceed the yield moment of the 

cross-section in critical regions of the structure and lead to inelastic deformations. In lower stories 

critical regions are usually located at the ends of girders and columns and at beam-column joints. 

In upper stories inelastic deformations can also take place near the midspan of the girders. Critical 

regions can be classified according to the actions governing their behavior [BER79-1]. Since the 

seismic response of the entire structure depends on the hysteretic behavior of these regions, accurate 

models of such behavior need to be developed. 

Ideally these models should be based on an accurate representation of the material behavior 

of reinforcing steel and concrete and take into account the controlling states of stress and strain in 

order to identify the main parameters influencing the hysteretic behavior of each critical region. 

The problems arising from the transfer of stresses between reinforcing steel and surrounding 

concrete under cyclic load reversals also need to be addressed. While such models can be developed 

based on the finite element method [ASC82-1], their implementation in dynamic response analyses 

of large structural systems is prohibitively expensive. 

A different solution approach consists of developing macroscopic models of reinforced 

concrete elements. These are based on approximations of the physical behavior of RC members 

and vary in their complexity [CEB83-1], [ZER88-1]. In determining the seismic response of 

multistory buildings point hinge models have been most widely used because of their simplicity 

[UME82-1]. In these the inelastic behavior of reinforced concrete elements is represented by 

concentrated springs l~ated at the ends of the member. Since it is computationally most convenient 
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Fig. 2.1. Bending moments in lower story of moment resisting frame 
under combination of gravity and earthquake loading 

to use a single spring to model the inelastic behavior of any type of critical region, several parameters 

need to be defined to describe the monotonic behavior of the springs. These depend on the actions 

which control the inelastic behavior of the member and are established empirically. 

To describe the behavior of RC members under cyclic load reversals phenomenological 

models of hysteretic behavior are typically used. While only a few parameters are needed to describe 

the hysteretic behavior when flexure governs the response, many more parameters become necessary 

in members with complex interactions of bending moments, shear and axial forces. These parameters 

are typically established from a limited set of experimental data making the general applicability 

of such models questionable. It appears doubtful that a single hysteretic model can approximate the 

actual behavior of RC regions over the wide range of possible interactions of bending moment, 

shear and axial force in structures subjected to earthquake excitations. 

Another way of describing the inelastic behavior of RC members is proposed in the present 

study. This approach consists of identifying the basic mechanisms which control the hysteretic 

behavior of each type of critical region and, if possible, isolating these in individual subelements. 
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Each girder and column element is then made up of a number of such elements. This approach is, 

in many respects, similar to the model proposed by Otani [OTA 7 4-1] and will be presented in greater 

detail in the following. 

Since the present study is limited to the analysis of planar moment resisting frames (Fig. 2.2), 

the following basic elements are needed for determining the nonlinear response of such structures 

to cyclic deformation reversals: a girder element, a column element, a beam-column joint and a 

foundation element. The girder element should also include the effect of the slab. Shear wall or 

infill panel elements are not dealt with in this study, since attention is focused on the behavior of 

bare frames. It is assumed that floor diaphragms are infinitely rigid so that a single degree offreedom 

represents the lateral displacements of an entire story (Fig. 2.2). 
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Fig. 2.2 Proposed modeling of planar moment resisting RlC frames 

Because the beam-column joint element proposed in this study describes deformations which 

arise at the beam-column interface (e.g. shear sliding, reinforcement pull-out), it can be combined 

with the element which accounts for deformations along the girder span to form a girder super

element. In this case the moment resisting frame consists of only three types of elements: (a) a 
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girder superelement, (b) a column element and (c) a foundation element. This subdivision implies 

that the beam-column joint panel zone remains rigid. If it is desired to include the defonnations due 

. to shear cracking in beam-column joints, a panel zone element needs to be added for the purpose. 

In reinforced concrete structures subjected to large cyclic deformation reversals bond dete

rioration and shear effects give rise to slippage of reinforcing bars anchored in beam-column joints. 

This leads to an interaction between forces and moments acting at the ends of beams and columns 

which frame into a particular joint [FIL83-1]. If it is desired to explicitly account for the interaction 

between girder and column moments at beam-column joints, a special joint element needs to be 

developed. Such interaction is not explicitly accounted for in the present study. A way of implicitly 

accounting for this effect is presented in section 1.2.3. 

Information about the different elements used in the present study is given in the following 

sections. First, the girder superelement is described in detail. This is followed by descriptions of 

the column and foundation element. Finally, a brief derivation of the stiffness matrix of the entire 

frame structure is given. 

2.2 Reinforced concrete girder element 

In moment resisting frames designed according to current building codes to resist severe 

earthquake excitations inelastic deformations are expected to take place at the ends or at midspan 

of girders and at beam-column joints, while columns are designed so as to remain elastic except at 

the base of the building. 

The behavior of critical regions in girders is governed by flexure, shear and the transfer of 

stresses between reinforcing steel and concrete. When these regions are subjected to cyclic defor

mation reversals, considerable stiffness deterioration is observed. This can be attributed to several 

factors the most important of which are: 

(1) concrete cracking and splitting along reinforcing bars, 

(2) cyclic deterioration of bond between reinforcing steel and surrounding concrete, 

(3) shear sliding in regions with cracks running through the entire depth of the member, 

(4) crushing and spalling of concrete. 

(5) Bauschinger effect of reinforcing steel, 
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These factors are also responsible for the stiffness deterioration observed in interior and 

exterior beam-column joints. In this case, however, the hysteretic behavior is governed by the large 

change in bending moments from one face of the joint to the other causing acombination of high 

shear and bond stresses. Large bending moments at the girder ends induce yielding of the rein

forcement, which, combined with the diagonal cracks induced by shear, leads to slippage of rein-

forcing bars in the joint. This manifests itself as bar pull-out at the beam-column interface and 

results in concentrated rotations known as fixed-end rotations at the girder ends. Experimental 

studies show that fixed-end rotations due to bond deterioration in the joint can contribute up to 50% 

to overall deflections of beam-column subassemblages after yielding of the reinforcement 

[SOL 79-1]. Because earthquake resistant design of moment resisting frames is based on the strong 

column-weak girder design philosophy, fixed-end rotations do not typically occur at the ends of 

columns which are designed to remain elastic. 

In addition to fixed-end rotations, the shear stress transfer in the joint leads to diagonal cracks 

giving rise to panel zone deformations. In general, the mechanism of joint shear resistance is coupled 

with the problem of stress transfer between reinforcing steel and concrete [PAR84-1]. It is possible, 

however, to design and detail joints so that the nominal concrete shear stress in the joint remains 

smaller than a specified limit. This is the approach followed by current design recommendations 

[ACI85-1]. In this case diagonal cracking is kept to a minimum and the shear deformation of the 

panel zone remains small and can be neglected. By contrast, it is not possible to eliminate fixed-end 

rotations due to slippage of reinforcing bars in the joint, except by moving the plastic hinge a certain 

distance away from the beam-column interface through special detailing of the reinforcement 

[BER75-2, HAD86-1]. 

In order to model as accurately as possible the different mechanisms which contribute to the 

hysteretic behavior of critical regions in RC girders, the girder element is decomposed into several 

subelements as shown in Fig. 2.3: 

(1) an elastic beam subelement which represents the behavior of the girder before yielding of the 

reinforcement, 

(2) a plastic beam subelement with plastic hinges at the ends; the length of the plastic hinges is 

a function of the loading history; this element represents the behavior of the girder in the 

post-yielding range, 

(3) a joint subelement which accounts for the fixed-end rotations and the sliding due to sh"ear at 

the beam-column interface. 
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Fig. 2.3 Decomposition of girder into different subelements 

Fig. 2.3 shows that the beam-column joint panel zone is considered infinitely rigid. It is 

assumed in this study that shear defonnations of the joint panel zone remain small and can be 

neglected. This does not constitute, however, a limitation of the present work. If desired, panel zone 

defonnations can be included in the analysis by adding a flexible panel zone element. Such an 

element has been developed by Kanaan and Powell for the nonlinear analysis of steel structures 

[KAN73-1]. 

2.2.1 Linear elastic beam subelement 

The linear elastic beam subelement represents the behavior of the girder before yielding of 

the reinforcement. Its length is equal to the clear span L of the girder and it is assumed to have a 

constant section stiffness EI along the span. The assumption of a constant section stiffness along 

the entire span of the girder is clearly an approximation. Reinforcement layout typically varies along 

the length of the girder with different amounts of reinforcement at the top and bottom of the cross 

section. When the bending moments act such that the top of the section is subjected to tension, the 

compression zone is rectangular in shape having a width equal to the width of the web. Part of the 

slab reinforcement contributes to the tensile force thus significantly increasing the yield strength 

of the section, but not affecting much the stiffness before yielding. When the bending moments act 
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such that the bottom of the section is subjected to tension, the compression zone is either rectangular 

or often T -shaped. It is clear from the above that the effective slab width in tension and compression 

needs to be determined, if the strength and stiffness of the girder element is to be estimated accurately. 

In this study the elastic section stiffness EI is set equal to the average of the positive (tension 

at the bottom) and negative (tension at the top) section stiffness at the two girder ends. The elastic 

section stiffness is determined as the secant stiffness of the moment-curvature relation at yielding 

of the tension reinforcement. Only the effect of slab in compression has been included in determining 

the strength and stiffness of the girder based on the effective width specified in ACI 318-83 

[ACI83-1]. A better model of the effect of slab in tension and compression has been recently 

developed [PAN87-1].1t should be noted that girders spanning between interior columns typically 

have a symmetric arrangement of reinforcement with respect to the girder midspan. By contrast, 

exterior girders are likely to have different amounts of reinforcement at each end. In the latter case 

the average stiffness is determined from the positive and negative section stiffness at each end. The 

approximation of a constant average section stiffness is certainly unsatisfactory, if it is desired to 

study the response of the structure under service loads. In the present study attention is focused on 

predicting the response of the structure under large deformation reversals. Such response is not 

significantly affected by the stiffness of the structure before yielding. 

With the assumption of a constant average section stiffness along the entire length of the 

elastic beam subelement the flexibility matrix with respect to the member chord is given by the 

well known expression 

(2.1) 

2.2.2 Rigid-plastic beam subelement 

The rigid plastic beam subelement accounts for the inelastic deformations of the girder after 

yielding of the reinforcement. Two different plastic subelements are included in the current study: 

(a) The first model assumes that all inelastic deformations are concentrated in a hinge of zero 

length located at each end of the girder. The two hinges are connected by an infinitely rigid 

bar to form the concentrated plastic beam subelement. The combination of the flexibility 

matrix of this element with that of the elastic subelement results in the one-component model 

originally proposed by Giberson [GIB74-1]. 
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(b) The second model accounts for the gradual spread of inelastic deformations into the girder 

as a function of loading history. In this an inelastic zone of gradually increasing length is 

located at each end of the girder. The two inelastic zones are connected by an infmitely rigid 

bar to form the spread plastic beam subelement. The combination of the flexibility matrix of 

this element with that of the elastic subelement results in a model similar to that originally 

proposed by Soleimani et. al. [SOL79-1]. 

The effect of shear manifests itself in two ways at the girder ends: 

(1) It affects the inclination of cracks and the curvature distribution in the inelastic zone region 

at the girder ends [PAR75-1]. This effect can be taken into account by modifying the hysteretic 

law of the plastic subelement. In the case of the spread plasticity element it can also be 

accounted for by modifying the curvature distribution in the inelastic zone region. This shear 

effect in neglected in the present study. 

(2) The transfer of shear across the crack at the beam-column interface can give rise to significant 

shear sliding. Because of the unequal amounts of top and bottom reinforcement, the tensile 

force in the bottom does not suffice to yield the top steel in compression. Thus when the 

applied end moment subjects the bottom steel to tension the crack remains open across the 

entire depth of the section and shear is only resisted by dowel action of the top and bottom 

reinforcement [FIL83-1]. To include the effect of shear sliding at the girder ends a special 

subelement needs to be added to those shown in Fig. 2.3. This effect is neglected in the present 

study. 

The effect of bond deterioration along the reinforcing bars also manifests itself in two ways: 

(1) It affects the stress, strain and curvature distribution in the inelastic zone region at the girder 

ends. This effect can be accounted for by modifying the curvature distribution in the inelastic 

zone region as will be described later. 

(2) It gives rise to concentrated rotations at the beam-column interface. This phenomenon is taken 

into account in the present study by the joint subelement which is described in Section 1.2.3. 

2.2.2.1 Concentrated rigid-plastic beam subelement 

In the concentrated plastic subelement the inelastic deformations which take place at the 

girder ends after yielding of the reinforcement are represented by a rigid plastic hinge of zero length. 

The hinge, which is depicted as a nonlinear spring in Fig. 2.4(a), is only activated when the moments 

at the girder ends fIrst exceed yielding. Since all inelastic deformations are lumped at the plastic 
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hinges at the two ends of the girder and the elastic defonnations are accounted for in the linear 

elastic beam subelement, the part of the concentrated plastic subelement which connects the two 

hinges is infmitely rigid. 
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Fig. 2.4 Concentrated plasticity beam subelement 

It can be easily shown that the off-diagonal elements of the flexibility matrix are zero in this 

case. The matrix thus reduces to the simple fonn 

(2.2) 

where}; andfj are the flexibility coefficients of the rotationaJ springs at ends i andj, respectively. 

The problem of determining the flexibility of the rotational springs has occupied many researchers 

to date. Otani presented a detailed discussion of the problem [OTA74-1]. In order to avoid load 

path dependency of the flexibility coefficients it is usually assumed that the bending momt:nts are 

distributed such that the point of inflection remains fixed during the entire load history. In most 

studies to date the point of inflection is assumed to remain fixed at girder midspan. In this case each 

half of the member can be viewed as a cantilever beam (Fig. 2.5). If the effect of gravity loads is 

neglected, the moment distribution is linear (Fig. 2.5b). This corresponds to the cantilever beam 

being loaded with a concentrated load P at the tip (Fig. 2.5c). 

To determine the flexibility coefficients}; and fj of the concentrated plasticity model the plastic 

rotation at the root of the cantilever due to the actual curvature distribution is first established for 

different values of the load P. This is rather straightforward, if the moment-curvature relation (M-cp) 
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Derivation of parameters of concentrated plasticity subelement 

is known for all sections along the cantilever span. To simplify the calculation the (M-<p) relation 

is assumed to be bilinear with a single post-yield stiffness (Figs. 2.5d and 2.5e). In spite of the 

approximations made in Fig. 2.5 the procedure results in a nonlinear flexibility coefficient of the 

equivalent concentrated spring, because of the gradual spread of inelastic deformations into the 

cantilever beam. To simplify the moment-rotation relation of the equivalent end spring the actual 

behavior is replaced by a bilinear moment-rotation relation with constant post-yield stiffness as 

shown in Fig. 2.4(b). The post-yield stiffness is calculated by equating the plastic rotations for the 

case that the section at the root of the cantilever reaches the ultimate moment capacity (Fig. 2.5d). 

In this case the post-yield stiffness ksp of the equivalent rotational spring is 

(2.3) 

where Mil. is the ultimate and My the yield moment of the cantilever beam, respectively. 8p, is the 

plastic rotation of the equivalent concentrated spring. This is equal to the plastic rotation at the root 

of the cantilever beam which can be readily determined from the curvature distribution in Fig. 2.5e. 
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Eq. (2.3) results in an infinite spring stiffness ksp for the case that the end moment does not exceed 

the yield moment. This is in agreement with the definition of a concentrated rigid-plastic spring 

subelement which only accounts for the inelastic girder deformations after yielding of the rein

forcement. 

It is customary to express the rotational spring stiffness ksp in relation to the stiffness term kll of the 

elastic stiffness matrix of a prismatic beam element. Thus 

(2.5) 

The flexibility matrix of the concentrated plastic beam subelementcan now be written by considering 

Eq. (2.5) at ends i and} of the element. 

'YjL 
0 

4EI 
[f]pl= 

t L 
0 

4EI 

(2.6) 

The coefficients 'Yi and '¥j. vary as a function of the moment-rotation history of the rotational springs. 

The moment-rotation relation of the springs is completely defined by two envelope curves which 

represent the behavior of the springs under positi ve and negative monotonic loading and a hysteretic 

model which describes the behavior of the springs under cyclic load reversals (Fig. 2.4b). 

The monotonic envelope curves are represented by a bilinear relation which has infinite 

stiffness for moments not exceeding the yield moment of the end section and a single post-yield 

stiffness for moments larger than the yield moment. The yield moment M; when the bottom rein

forcement is subjected to tension is different from the yield momentM; when the top reinforcement 

is subjected to tension. The post-yield .stiffness p+ . 4ElIL for positive bending moments is also 

assumed to be different from the post-yield stiffness p-. 4ElIL for negative bending moments. 

The hysteretic behavior of the rotational springs under cyclic moment reversals is described 

by Clough's hysteretic model shown in Fig. 2.4(b) [CL065-l]. This model is characterized by the 

following hysteretic rules: 
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(a) The unloading stiffness is equal to the initial stiffness before yielding. Since the behavior of 

the spring is rigid-plastic, this means that the unloading stiffness is infinite and the spring is 

deactivated during unloading. 

(b) Reloading takes place along a line which connects the point at which unloading was completed 

with the point on the envelope curve in the opposite direction of loading with the maximum 

previous excursion into the inelastic range. 

The advantage of this model lies in its computational simplicity combined with reasonable 

accuracy in representing the hysteretic response of RIC critical regions whose behavior is controlled 

by bending. One of the limitations of this model arises from the very steep unloading slope, as was 

already pointed out by Saiidi in [SAI82-1]. Advantages and limitations ofthe model will be discussed 

in detail in Chapter 4 by comparing analytical predictions with experimental results. 

It should be mentioned here that in the original model reloading after partial unloading takes 

place along the line which connects the point at which unloading stopped with the point on the 

envelope curve in the same direction of loading with the largest previous inelastic deformation (line 

a-c in Fig. 2.6). Since this behavior is not realistic, the hysteretic model has been modified so that 

reloading after partial unloading follows an infmite slope until reaching the last reloading curve 

connecting the last point of complete unloading with the point on the envelope curve with maximum 

previous inelastic deformation (line a-b in Fig. 2.6). Upon reaching point b the moment-rotation 

relation follows the last reloading curve (line b-c in Fig. 2.6). 

M c 

--- current model 

---- Clough's model 

Fig. 2.6 Hysteretic behavior of current model vs. Clough's model 

Based on the hysteretic model of Fig. 2.4(b) the coefficients 'Yi and"(j assume the following 

values: 
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(a) y = 0 during initial loading and unloading. 

(b) Y = lip during strain hardening, where p ·4EIIL is the post-yield stiffness of the moment

rotation relation of the concentrated rotational springs. 

(c) y = lis during reloading where s ·4EIIL is the reloading stiffness of the moment-rotation .,. 
relation of the concentrated rotational springs. 

Since the linear elastic and concentrated plastic beam subelements are connected in series, 

the flexibility matrix of the combined element is obtained by simply adding the flexibility matrices 

of the two subelements (Eqs. 2.1 and 2.6). Inverting the flexibility matrix of the combined element 

results in the stiffness matrix of the one-component model, as originally proposed by Giberson 

[Gffi69-1]. 

The main advantage of the concentrated plasticity model is its simplicity and computational 

efficiency. It has; however, some serious limitations: most importantly it does not account for the 

gradual spread of inelastic defonnations into the girder. This results in an underestimation of stiffness 

in the early stages of inelastic deformation. Another limitation of the model lies in the assumption 

that the point of inflection is fixed at midspan during the entire response history. This is not realistic, 

particularly, if one considers that the yield moments at the ends of a girder bent in double curvature 

are not equal, because of unequal areas of top and bottom reinforcement. The significance of these 

factors will be discussed in detail in Chapter 4 by comparing the predictions of the model with 

experimental evidence. 

2.2.2.2 Spread rigid-plastic beam subelement 

A more refined model of the nonlinear behavior ofRe girders was first proposed by Soleimani 

et. al. in [SOL79-1]. A slightly different formulation of the original model is presented here. Since 

the deformations of the girder before. yielding of the reinforcement are accounted for in the elastic 

beam subelement, the spread rigid-plastic subelement only accounts for the inelastic girder 

defonnations which take place when the end moments exceed the yield moment. 

The spread rigid-plastic beam subelement consists of two regions of finite length where the 

plastic deformations of the girder take place. These regions are connected by an infinitely rigid bar 

(Fig. 2.7(a». The length of each plastic zone varies during the response history as a function of the 

moment distribution in the girder. The model thus accounts for the gradual spread of inelastic 

deformations into the girder and the shift of the inflection point during the response time history. 
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Fig. 2.7 Spread rigid plastic beam subelement 

In the following the salient features of the spread rigid-plastic beam subelement and the 

derivation of the flexibility coefficients are presented. Most of this information can be found in 

slightly different form in [SOL79-2]. 

In presenting the features of the spread plastic subelement and the approximations involved 

in its development it is instructive to look at the case of a cantilever beam loaded by a concentrated 

load at its tip (Fig. 2.8a). The moment distribution in the cantilever beam (Fig. 2.8b) is identical to 

the moment distribution caused by lateral loads in the girders of a moment resisting frame between 

the point of inflection and the beam-column interface, if the effect of gravity loads is neglected 

(Fig. 2.1). 

We are interested in calculating the load-displacement relation at the tip of the cantilever 

beam after yielding of the reinforcement at the end section. The moment distribution in this case is 

shown in Fig. 2.8(b). This gives rise to the curvature distribution in Fig. 2.8(c). Curvatures are rather 

irregular, because of the effects of cracking and tension stiffening between cracks. The strains in 

the top and bottom reinforcing steel are also affected by the presence of shear stresses in the beam. 

It is difficult to account for all these effects when developing simple models of the inelas tic behavior 

ofRC members. Several solutions have been proposed in the past. Some researchers have proposed 

beam shape functions with special weighting schemes which account for the concentration of 

inelastic deformations at the ends of the girder. Since the shape functions do not change with the 

response time history. these proposals represent generalizations of the point hinge models and share 

many of their limitations .. Other researchers have subdivided the beam into a number of slices along 
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the span. This approach requires tracing the behavior of each slice during the response time history 

and is rather costly for nonlinear dynamic analyses of multistory structures. Even so, many of the 

aforementioned effects of bond deterioration and shear are not taken into account. 

A possible approximation, which lies between the extremes of point hinge models, on the 

. one hand, and multi-slice models, on the other, consists of idealizing the curvature distribution as 

shown in Fig. 2.8(d). This approximation is based on the assumption of an average section stiffness 

c . EI along the plastic zone of the cantilever beam, where EI is the secant stiffness of the end section 

at yielding of the reinforcement. Subtracting the elastic curvatures which are already accounted for 
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in the elastic subelement (Fig. 2.8(e» results in the curvature distribution in Fig. 2.8(f). This cur

vature distribution lies at the heart of the following derivation of the flexibility matrix of the spread 

plastic subelement. It will be shown later, that the assumption of an average effective stiffness of 

the plastic zone is of considerable importance to the computational efficiency of the model, because 

it leads to a symmetric stiffness matrix. 

The quality of the approximation of an average section stiffness c . EI along the plastic zone 

of the subelement depends on the value of c. The detennination of the value of c is relatively simple 

in the case of a cantilever beam under monotonically increasing load. By neglecting the effect of 

tension stiffening and assuming that all plastic zone sections exhibit the same bilinear moment

curvature relation we can readily derive c (Fig. 2.8f). Under a monotonic load P which gives rise 

to the moment distribution in Fig. 2.8b all sections in. the plastic zone length are in the 
\ 

strain-hardening range and have the same stiffness. In this case c . EI is simply equal to the post-yield 

stiffness of the bilinear moment-curvature relation. It is important to note that the reinforcement 

layout will not typically vary along the plastic zone length, as long as the zone does not extend 

beyond the quarter span point. Thus the assumption that all sections in the beam plastic zone possess 

the same moment-curvature relation is quite accurate. 

The detennination of the value of c becomes more involved, if not impossible, if we consider 

the effect of load reversals. A number of complications arise in this case: 

(a) The point of inflection shifts from one load step to the next. In this case part of the plastic 

zone is in the loading stage, while another part is unloading (Fig. 2.9). 

(b) Different sections in the plastic zone exhibit a different amount of stiffness degradation during 

reloading. This case is shown in Fig. 2.10 in its simplest fonn. The cantilever beam in Fig. 2.8 

is first loaded in one direction so that part of the beam enters into the strain hardening range. 

The load at the tip is then reversed. Upon loading in the opposite direction sections along the 

inelastic zone exhibit different amounts of stiffness deterioration. While it is possible to derive 

a closed form expression for the curvature distribution in the simple case of Fig. 2.1 0 (dashed 

line), such an endeavor is fruitless after the second reloading cycle, even for a bilinear 

moment-curvature relation. 
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To accurately represent the hysteretic behavior of the plastic zone during a complex load 

history requires tracing the response of each section during the entire response time history. Since 

this is undesirable from the standpoint of computational efficiency, the following key assumptions 

are made in the spread rigid-plastic zone subelement: 

(1) The state of the entire plastic zone is controlled by the state of the section at the beam-column 

interface. In Fig. 2.9. this means that the entire plastic zone is in the loading stage. This 

assumption gives rise to a discrepancy between actual and assumed curvature distribution, 

as shown in Fig. 2.9. This error can be minimized by reducing the size of the load increment 

and thus avoiding drastic shifts in the point of inflection during a given load step. 

(2) The stiffness of the plastic zone is represented by an average effective stiffness c . EI which 

depends on the stiffness of the section at the beam-column interface. 

These two key assumptions associate the behavior of the entire plastic zone with that of the 

section at the beam-column interface. This reduces substantially the computational effort required 

for describing the hysteretic behavior of the spread plastic subelement. Instead of a number of 

sections along the plastic zone, the load history needs to be traced at the two end sections of the 

element only. In addition, the model has to keep track of the length of the plastic zone at the two 

ends of the element. The second assumption has the added advantage that it results in a symmetric 

stiffness matrix. 
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Fig. 2.10 Variation of stiffness deterioration along the plastic 
zone length during first unloading and reloading 

Since the effective stiffness c . EI of the plastic zone depends on the behavior of the section 

at the beam-column interface, a hysteretic moment-curvature relation of the end section is needed. 

This relation is based on two bilinear envelope curves (Fig. 2. 7b ). Under positive bending moments 

(tension at the bottom) the section yields at a moment equal to M; , while under negative moments 

(tension at the top) the yield moment is M; . The post-yield stiffness p+. EI for positive bending 

moments is also assumed to be different from the post-yield stiffness p-' EI under negative bending 

moments, as shown in Fig. 2.7b. To describe the behavior of the section under cyclic moment 

reversals the model originally proposed by Clough [CL065-1] is adopted in this study. The original 

model has been modified in the same way as described for the moment-rotation relation of the 

concentrated rigid-plastic subelement (Fig. 2.6b). 

Using this model to describe the hysteretic m0n.l~nt-curvature relation of the section at the 

beam-column interface the value of c is determined as follows: 
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(1) During strain-hardening of the end section we can assume according to (1) that the 

entire plastic zone is in the strain-hardening range. Thus c = p where p . EI is the 

post-yield stiffness of the moment-curvature relation. c thus assumes two different 

values p + or p - depending on the sign of the end moment. 

(2) During unloading of the end section it is assumed that the entire plastic zone is 

unloading. Since elastic unloading is accounted for by the elastic subelement, this 

implies that the plastic zone is infInitely rigid and c = 00. 

(3) The complications which arise during reloading have already been described. 

Fig. 2.10 shows that each section has a different reloading stiffness, which is a 

function of the section's previous response history. In order to limit the number of 

sections at which the response history needs to be traced the second key assumption 

of the spread plastic subelement is introduced: it is assumed that the effective stiffness 

of the plastic zone c . EI is equal to the average of the section stiffness at the two 

ends of the plastic zone. Since one end is elastic, this implies that only the response 

time history of the section-at the beam-column interface needs to be traced. In this 

case c is equal to 

where So . EI is the reloading stiffness of the section at the beam-column interface 

(Fig. 2.10). 

The effect of gravity loads has so far not been accounted for. This effect is considered in the 

present study in an approximate manner. The girder end moments and shear forces due to incremental 

lateral load analysis are added to the end moments and corresponding shear forces resulting from 

a static analysis of the structure under gravity loads. The plastic zone length at each load step is 

determined from these end moments and shear forces under the assumption that the shear force 

remains constant along the entire plastic zone length. This implies that the actual gravity load pattern 

is approximated by the thud point loading shown in Fig. 2.11. 

This approximation has the computational advantage that the calculation of the current length 

of the plastic zone Zc can be based on the bending moment and shear force at the girder end, which 

are readily available. The plastic zone length Zc is then calculated according to (Fig. 2.11 b) .. 
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Fig. 2.11 Calculation of plastic zone length in typical cases 
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c V (2.7) 

where M and V are the current values of bending moment and shear force, respectively, at the end 

of the girder. Eq. (2.7) results in very large values of the plastic zone length if the value of the end 

shear force is very small. This can happen in the upper stories of high-rise frames where the end 

shear forces due to lateral loads are small and sometimes act opposite to the shear forces due to 

gravity loads. Similarly, Eq. (2.7) does not make sense, if the value of the shear force becomes 

negative (Fig. 2.11c). To prevent unrealistically large values of the plastic zone length in these cases 

an upper limit zlPIa%is placed on the extent of the plastic zone (Fig. 2.11c): 

Zmax = 0.25 . L (2.8) 

where L is the clear span of the girder. The limit on the extent of the plastic zone is particularly 

important on account of the likely change in the reinforcement layout that takes place at the quarter 

span point. 

Since the calculation of the plastic zone length depends on the moments and forces at the 

girder ends, the spread plastic s.ubelement is unable to recognize yielding that might take place 
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along the girder span (Fig. 2.11d). Plastic zones can, therefore, only fonn at the girder ends. If 

hinges are expected to fonn along the span, then the girder has to be subdivided into several such 

elements along its length. 

It should be noted here that no increase of the current plastic zone length will occur in the 

extreme case depicted in Fig. 2.12. Consistent with the fIrst key assumption of the model that the 

behavior of the plastic zone is controlled by the behavior of the corresponding end section, spreading 

of the plastic zone can only take place while the end section is in the strain-hardening range. Since 

the end section is unloading in the case of Fig. 2.12, the further extension of the plastic zone length 

due to the considerable decrease in the magnitude of the shear force from one step to the next will 

not be detected by the model. It should be mentioned, however, that the case depicted in Fig. 2.12 

is highly unlikely, when using a reasonably small load step size . 

....... 
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.............. I 
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Fig. 2.12 Spread of the plastic zone while end section is 
unloading (not accounted for in the model) 

We are now in a position to derive the flexibility matrix of the spread plastic subelement. It 

can be written in the general form 

(2.9) 

As will be shown in the following, the assumption of an average plastic zone stiffness results 

in a symmetric flexibility matrix and thus 
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It is interesting to note here that the off-diagonal termsf12 andf21 of the flexibility matrix of 

the spread plastic subelement are not zero, as is the case in the concentrated plasticity element. This 

results in coupling between the moments which act at the ends of the element. The importance of 

this phenomenon will be discussed in detail in Chapter 4. 

To derive the coefficients of the tangent flexibility matrix of the spread plastic subelement 

use is made of the principle of virtual work (Fig. 2.13). It is assumed that the current length of the 

plastic zone at ends i and j of the element is Zj and Zj' respectively. The average stiffness of the 

plastic zone at ends i and j is Cj and Cj' respectively (Fig. 2.13a). The application of a moment 

increment t1Mj at end i (Fig. 2.13b) results in the incremental curvature distribution shown in 

Fig. 2.13(c). A virtual unit moment at end iresults in the moment distribution shown in Fig. 2.13(d). 
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Fig. 2.13 Derivation of flexibility coefficients 

of spread plasticity subelement 

By applying the principle of virtual work we have: 

work external (WE) = work internal (WI) 
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WE=/Il· Mfj 

WI = f m(x)· ~c1>(x)dx 
L 

where m(x) is the moment distribution due to the virtual unit moment at end i (Fig. 2.13d) and ~cp(x) 

is the curvature distribution due to the applied end moment increment Mfj (Fig. 2. 13c). 

where k = EI. By defining 

we obtain 

z 
-=~ 
L 

1 
-=Y 
c 

Equating the external with the internal work and canceling I1Mj on both sides of the equation results 

in 

(2.10) 

By interchanging i andj we obtainf22 

(2.11) 

Using the same procedure but replacing m(x) by the moment function which results from the 

application of a virtual unit moment at end j results in the flexibility coefficient 112. 
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(2.12) 

By interchanging i and} we can obtain hI. From Eq. (2.12) it can be seen that 

112 = I'll 

2.2.3 Joint subelement 

The joint subelement accounts for the fixed-end rotations which arise at the beam-column 

interface of RIC members due to bond deterioration and slippage of reinforcement in the joint and 

in the girder region adjacent to the joint. Detailed models of this phenomenon have been proposed 

in [Fll....83-1] and [Fll....85-1]. The model used in this study is a simple yet sufficiently accurate 

phenomenological description of the behavior of beam-column joints observed in previous 

experimental and analytical studies. The proposed model consists of a concentrated rotational spring 

located at each girder end. The two springs are connected by an infinitely rigid bar to form the joint 

subelement (Figs. 2.3 and 2.14(a». The moment-rotation relation of the rotational springs is derived 

using the detailed model presented in [Fll....83-1] which accounts for the geometry, material properties 

and reinforcement layout of the connection. A different moment -rotation relation can be prescribed 

at each connection. 

rotational rotational 
spring spring \ / M· 

1 rigid bar 

M j 

j 

L 

a. beam-column joint element 

S,Ft--_-

b. hysteretic moment-rotation relation 

Fig. 2.14 Beam-column joint subelement 
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The moment-rotation relation of the rotational springs of the joint subelement is based on a 

bilinear elastic-strain hardening envelope curve (Fig. 2. 14b). Following common design practice 

the area of the bottom reinforcing bars is typically less than the area of the top reinforcing bars; 

therefore two envelope curves need to be specified: one pertaining to the "strong side" of the end 

section -the top reinforcing bars are subjected to tension- and one pertaining to the "weak side" -the 

bottom bars are subjected to tension. These envelope curves exhibit different pre-and post-yield 

stiffness under positive and negative bending moments. Naturally the yield moment M; under 

positive bending moments is different than the yield moment M; under negative bending moments 

(Fig. 2.14b). 

The envelope curves are established with the aid of the joint model proposed in [FIL83~1] 

once the dimensions of a particular joint and the arrangement of the reinforcement are known. This 

process takes place as follows: the beam-column joint model which represents a ·particular con

nection of the frame under investigation is subjected to monotonically increasing girder end 

moments. These give rise to concentrated rotations due to reinforcing bar pull-out at the 

beam-column interface. In the case of interior joints a single loading cycle permits the determination 

of envelope curves under both positive and negative end moments. This happens, because bending 

moments caused by lateral loads act at the girder ends of an interior joint so that the bottom bars 

are pulled at one beam-column interface and pushed at the other. In the case of exterior joints two 

different load cases of monotonically increasing girder end moments are required to establish the 

envelope curves under positive and negative end moments: in one case the boltom bars of the end 

section are subjected to tension, while in the other the top bars are subjected to tension. 

The study in [FIL83-2] concluded that no unique envelope curve exists in the case of interior 

and exterior joints; instead, the envelope curve depends on the load history. Since the elastic stiffness 

and yield moment do not depend on the load history, this essentially implies that the strain hardening 

or possibly strain softening slope of the bilinear envelope curve of the rotational springs has to be 

es tablished as a function of load history. Thus, in order to establish the envelope curve for a particular 

joint, the load history of this joint must be known in advance. This effect is, however, negligible in 

properly designed joints and is not taken into account in the present study. If considerable bond 

deterioration and slippage of reinforcement is expected in the joints of the structure, the effect of 

load history on the envelope curve of the joint subelement should be taken into account. 

The flexibility matrix of the joint subelement takes the simple form 

(2.13) 

/ 
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whereh and~ are the flexibility coefficients of the concentrated rotational springs at ends i andj, 

respectively. These coefficients depend on the monotonic envelope curves of each joint and the 

model used to represent the hysteretic behavior. 

The hysteretic behavior of the rotational springs is described by a special hysteretic model 

which was first proposed in [FIL83-1]. It is derived by modifying Clough's model to account for 

observations of beam-column joint behavior made during experimental and analytical studies. The 

rules of this hysteretic model can be summarized as follows (Fig. 2. 14b): 

(1) unloading takes place along a line parallel to the initial elastic stiffness under moments acting 

in the same direction (line B-C parallel to O-A, line K-L, in turn, parallel to O-E) 

(2) reloading on the "weak side" of the joint (G-H) occurs along the line which connects the most 

recent point of zero moment (G) to the load reversal point on the envelope curve which has 

the largest previously imposed fixed-end rotation (H), 

(3) reloading on the "strong side" of the joint (Q-R-S) follows initially a line Q-R which connects 

the most recent point of zero moment (point Q) to a point on the unloading curve which 

initiates at the load reversal point with largest previous fixed-end rotation (point R). This 

point has a moment equal to the yield moment of the "weak side" of the joint (M; in 

Fig. 2.14(b»). After reaching this point reloading proceeds along the unloading curve (R-S), 

(4) incomplete reloading followed by unloading and reloading in the opposite direction takes 

place along the path J-K-L-M, 

(5) incomplete reloading followed by incomplete unloading and reloading in the same direction 

takes place along the path L-M-N-O-P. 

These hysteretic rules are derived from observations of the behavior of joints under cyclic 

load reversals made during experimental and analytical studies [FIL83-1] (Fig. 2.15): 

(a) no pinching is observed in the hysteretic moment-rotation relation when the bottom rein

forcing layer is subjected to tension ("weak side"). In this case the beam-column interface 

crack remains open through the depth of the end section during the entire moment reversal 

process. The girder end moment is thus resisted by a force couple in the top and bottom 

reinforcing steel. This observation is reflected in the second hysteretic rule, 

(b) when the top reinforcing layer is subjected to tension ("strong side"), the moment resisted by 

the section at the beam-column interface cannot exceed the moment carried by the rein

forcement with the bottom reinforcing bars yielding in compression, as long as the crack 

remains open. This moment is approximately equal to the yield moment in the opposite 
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Fig. 2.15 Moment-rotation relation at beam-column joint interface from [FIL83-1] 

direction of bending ("weak side"). Since the crack closes when the previously imposed 

pull-out of the bottom reinforcing bars is overcome, crack closure takes place approximately 

when the maximum previously imposed fixed-end rotation is exceeded. Once the crack closes, 

the resisting moment quickly reaches the envelope curve, since the concrete in contact now 

contributes a significant portion of the compressive force at the section. This observation is 

reflected in the third hysteretic rule, 

(c) it is apparent from the results in [FIL83-2] that the unloading stiffness of the joint moment

rotation relation decreases with increasing defonnation. Since, however, no general expres

sion describing the observed decrease in unloading stiffness could be deduced, the simple 

hysteretic rule that the unloading stiffness remains equal to the initial elastic stiffness is 

postulated in the present model. 

The proposed rules describe well the observed hysteretic behavior of beam-column joints 

while retaining simplicity and computational efficiency. More refined models of the hysteretic 

behavior of beam-column joints could be readily incorporated into the girder superelement by simply 

replacing the hysteretic law of the joint subelement. 

It should be noted here that the proposed joint subelement does not explicitly account for the 

interaction between the moments and forces acting at the girder ends of interior beam-column joints. 

This interaction is small as long as bond along the reinforcing bars anchored in the joint is not 

/ 
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completely destroyed [Fll..,83-3]. It only becomes pronounced after many severe deformation 

reversals which are unlikely to occur in well proportioned frames. This interaction is, however, 

implicitly accounted for in the present ~odel, since the derivation of the hysteretic rules and the 

parameters of the envelope curves are based on the refined model of [FJL83-1], which explicitly 

accounts for this interaction. At the same time the present model retains great simplicity in that the 

flexibility coefficients of each rotational spring in the frame can be derived independently. 

2.2.4 Girder superelement stiffness matrix 

The elastic, rigid plastic and joint subelements are connected in series to make up the girder 

superelement (Fig. 2.3). Other subelements describing effects which might also affect the hysteretic 

behavior of the girder, e.g. shear transfer at the beam-column interface, can be added in the same 

fashion. Since the constituent subelements are connected in series, the flexibility matrix of the girder 

superelement [F]g can be obtained by simply adding the flexibility matrices of the constituent 

subelements. Using in the following the convention that upper case letters denote quantities asso

ciated with the girder superelement while lower case letters denote quantities associated with the 

individual subelements we obtain 

(2.14) 

[fl.1 denotes the flexibility matrix of the elastic subelement given by Eq.2.1. [flpl denotes the 

flexibility matrix of either the concentrated rigid plastic (Eq. 2.6) or the spread rigid-plastic sub

element (Eqs. 2.9-2.12). Finally, [fljlll denotes the flexibility matrix of the joint subelement given 

byEq.2.13. 

It is important to note that the flexibility coefficients in [flpl and [fljllt change, because of 

nonlinearities associated with the moment-curvature or moment-rotation relation and the change 

of the plastic zone length. Thus [flpl and [fljlll in Eq. 2.14 represent the current tangent flexibility 

matrix of the rigid plastic and joint subelement, respectively. 

The flexibility matrix of the girder superelement [F]g is inverted to obtain the current stiffness 

matrix [K]g in local coordinates. This is then transformed to global coordinates using the trans

formation matrix [a] 

(2.15) 

where [K]b is the tangent stiffness matrix in global coordinates and [a] expresses the transformation 

of superelement local moments and rotations to nodal forces and'deformations in the global coor

dinate system (Fig. 2.16) 
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(2.16a) 

(2.16b) 

(2.17) 

(2.18a) 

/ 
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b, 
e,=~ 

J L (2.18b) 

bj and bj is equal to half the width of the left and right end beam-column joint, respectively. L is the 

clear span of the member (Fig. 2.16). 

By inverting the sum of the flexibility matrices of the elastic [l]el and the concentrated plastic 

subelement [f]pl given by Eqs. 2.1 and 2.6, respectively, the stiffness matrix of the one-component 

model as originally proposed by Giberson [GIB69-1] results. 

The addition of the flexibility matrices of the elastic [1].1 and the spread plastic subelement 

[f]pl given by Eqs. 2.1 and 2.10, respectively, yields the flexibility matrix of the spread plasticity 

model proposed by Soleimani et. al. [SOL79-1]. 

2.3 Reinforced concrete column element 

In this study columns are assumed to remain elastic during the entire response time history 

except at the base of the building. In buildings designed according to the strong column-weak: girder 

design philosophy of current codes of practice inelastic column deformations should remain small 

except at the base of the building. To account for the large inelastic deformations which are expected 

to occur at the base of the building a column base or foundation element is used, as described in 

the next section. 

Columns are assumed to have uniform flexural EI and axial stiffness EA. It is, therefore, 

straightforward to write down the elastic bending stiffness matrix with respect to local coordinates 

(2.19) 

where EI is the gross uncracked stiffness andh is the clear height of the column. The local moments 

and rotations are defined similar to Fig. 2.16. 

The column axial stiffness matrix with respect to local coordinates is given by 

(2.20) 
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where VI and V2 are the axial displacements -at the ends of the column. Eq. 2.19 can be readily 

transformed to global coordinates by applying a transformation matrix similar to [aJ in Eq. 2.17. 

This matrix can be derived from [aJ by replacing L by h and considering bj and bj as half the depth 

of the beam-column joint at the lower and upper end of the column, respectively. 

The transformation of Eq. 2.20 to'global coordinates is much more direct, because the rigid 

offset zones have no effect on forces and deformations. Thus the local a'xial forces are equal one 

to one to the corresponding global forces and the local axial displacements v are equal one to one 

to the corresponding global vertical frame displacements. 

The interaction of large axial forces in the lower story columns of multistory frames with 

large interstory drifts due to severe lateral loads may result in considerable second-order effects 

which should be taken into account. For simplicity and in view of the strong column-weak girder 

frame idealization, the local geometric stiffness with respect to the column chord end rotations is 

neglected. Consideration is given, however, to the global geometric stiffness related to the column 

end lateral displacements. Assuming a linear displacement function between the column ends 

(Fig. 2.17) results in the column centerline geometric stiffness matrix given in Eq. 2.21 with respect 

to global coordinates 

p , P, 

r 

H h 
A 

I '-
, 

u, u, - F, I- F , t 'p p, P, J 
Ip 

Fig. 2.17 Linear geometric stiffness matrix of column subelement 

(2.21) 
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U1 and U2 are the lateral displacements at the lower and upper column end, respectively, while P is 

the axial compressive force acting in the column. P accounts for the effect of gravity loads and 

overturning moments due to lateral loads. The axial load P is assumed to remain constant within a 

load step. 

By assuming that the floor diaphragm is infmitely rigid in its plane all lateral displacements 

can be condensed into a single lateral degree of freedom at each story. In this case the geometric 

stiffness of the individual columns may be combined into the geometric stiffness of the entire story 

(Fig. 2.17). This is given by 

(2.22) 

U1 and U2 are the lateral displacements of the floor below and above the panicular story, respectively, 

and "LP is the sum of all axial forces in the columns of a panicular story. 

2.4 Foundation element 

In order to account for the large inelastic deformations that can take place at the base of the 

first story columns of multistory frames subjected to severe eanhquake excitations a spring element 

is inserted at the base of each first story column. This spring element, termed here a foundation 

element, is also capable of modeling vertical and lateral displacements of the base of the building 

associated with rocking and sliding of the foundation (Fig. 2.2). The stiffness matrix of the foun

dation element at the base of each first story column is simply given by 

(2.23) 

where ksv, kSh' ksr is the vertical, horizontal and rotational stiffness of the spring at the base of the 

column, respectively. The vertical and horizontal stiffness are constant during the entire response 

time history. If the rotational spring stiffness were also assumed constant, then large moments would 

develop at the base of the first story columns due to p-~ effects and the possible transformation of 

the frame into a cantilever beam after the necessary number of plastic hinges form in the relatively 

weaker girders. To avoid such large moments at the base of the first story columns, the rotational 

spring has a yielding feature. This limits the base moment to a value which corresponds to the yield 

moment capacity My of the column. My is determined with due consideration of the effect of axial 



M 

My ----- L_--"""':';" 

Fig. 2.18 Hysteretic moment-rotation relation 
of spring at the base of the building 
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forces due to gravity loads. The axial force variation in the columns during the response of the frame 

to earthquake excitations is neglected. The simple bilinear elasto-plastic hysteretic rule depicted in 

Fig. 2.18 describes the behavior of the rotational spring under moment reversals. 

2.S Structural stiffness matrix 

The fIrst step in the analysis of a moment resisting reinforced concrete frame is the devel

opment of a model of the actual structure. This process is schematically illustrated in Fig. 2.19. 

Fig. 2.19 shows how the girders and columns of the actual structure are modeled by the elements 

presented in the previous sections. After determining the stiffness matrix of all elements with respect 

to global coordinates the stiffness matrix of the entire structural model can be formed using the 

direct stiffness method. This process can be formally written as 

(2.24) 

where [K] is the stiffness matrix of the entire structure, [K]b is the beam element, [K]c is the column 

element and [K]fis the foundation element matrix with respect to global coordinates. [K]G represents 

the story geometric stiffness matrix defined in Eq. 2.22. The summation in Eq. 2.24 extends over 

all elements in the structure. 

Since the different frame elements. exhibit nonlinear behavior either through nonlinearities 

in material response or through changes in the inelastic zone length, the different stiffness matrices 
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b. structural model 

Fig. 2.19 Modeling of a one-story two-bay frame 

in Eq. 2.24 really represent the tangent stiffness matrices of the various elements. The nonlinear 

response of the structure to cyclic load or deformation reversals can only be determined through 

an incremental step-by-step analysis. This process can be expressed by 

[K]~=M (2.25) 
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where M is the vector of load increments which are successively imposed on the structure and Iv 

is the vector of corresponding displacement increments. [K] is the current stiffness matrix of the 

structure. 

After solving Eq.2.25 for the unknown displacement increments Iv the response of the 

structure to the applied loads is obtained from 

r,.+1 =r" +Iv (2.26) 

where r" is the vector of structural displacements at the beginning of the current load step and r"+1 

the displacement vector at the end. The process is applied step-by-step by starting from a state of 

no loading and thus no corresponding displacements of the structure. 

Depending on the magnitude of load increments it is more or less likely that the stiffness 

matrix [K] in Eq. 2.25 will change during the given load step. Thus, Eq. 2.25 has to be solved 

iteratively. The numerical and computational aspects associated with the solution of Eq. 2.25 will 

be presented in the next chapter. 





CHAPTER 3 

NONLINEAR ANALYSIS OF STATIC RESPONSE TO CYCLIC LOADS 

3.1 Introduction 

This chapter discusses the numerical implementation of the proposed frame elements within 

the framework of a special purpose program for the nonlinear static and dynamic analysis of planar 

RIC moment-resisting frames. Attention is focused herein on determining the response of 

moment-resisting frames under static cyclic loads. The proposed procedures of nonlinear analysis 

are equally applicable to dynamic response analysis. 

To determine the response of the structure to cyclic static loads Eq. (2.25) needs to be solved. 

The solution of Eq. (2.25) yields the displacement increments & which result when the load 

increments M are imposed on the structure. This process is applied step-by-step starting from the 

unloaded state. Once a particular step is completed the displacement and load increments are added 

to the corresponding values at the end of the previous step. Since changes in the stiffness matrix of 

the structure are likely to take place wi thin a given load step, Eq. (2.25) needs to be solved iterati vel y. 

In order to find out whether the displacement increments !:lr cause changes in the stiffness 

matrix of the structure during a particular load step the corresponding rotation increments !:lE> at 

the ends of each element need -to be determined. This is done by applying Eq. (2.16a) which 

transforms the global structural degrees offreedom (dof's) to local element deformations. The usual 
-

procedure at this stage of the nonlinear analysis is"the state determination of each element of the 

structure: the internal moments corresponding to the local rotation increments !:lE> are deteImined 

and the stiffness matrix of the element is updated, if necessary. If several elements are coimected 

in series, as is the case in the present study,. the state determination process is not straightforward. 

The basic problem lies in determining the rotation increments !:l8 that result at the ends of each 

element in series by only knowing that the sum of all subelement rotations !:l8 is equal to the 

superelement rotation !:lE>. As long as no change in stiffness in anyone of the elements in series 

occurs within the load step, the local rotations of each element can be determined from the stiffness 

of the particular element by making use of the fact that the end moments of all subelements are 

equal to the end moments of the superelement. If a change of stiffness in any of the elements in 

series occurs within the load step, then the determination oflocal subelement rotations requires the 

47 
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development of a new nonlinear analysis procedure. Such a procedure is developed in this study. 

This will be presented in the following in the context of an initial stress fonnulation of the well-known 

Newton-Raphson method of nonlinear analysis. 

3.2 Brief review of nonlinear solution methods 

Several solution schemes have been proposed for solving the nonlinear problem fonnulated 

in Eq. (2.25). Some of these methods will be briefly referenced here as they relate closely with the 

nonlinear analysis procedure that will be proposed. An extensive review and evaluation of solution 

strategies for statically loaded nonlinear structures is presen.ted in [BER73-1], [HAI74-lJ and 

[SIM82-1]. 

The basic solution procedure of Eq. (2.25) is the well known Newton-Raphson method. In 

the Newton-Raphson method Eq. (2.25) is solved by a recurrence relation 

(3.1) 

and 

(3.2) 

until a suitable norm of the vector on the right hand side of Eq. (3.1) becomes smaller than the 

specified tolerance. Index n refers to the load step, while index k refers to the iteration within a 

particular load step. M!-l is the difference between (ME)", the externally applied load increments 

at step n, and (MIt-I, the internal resisting load increments. This iterative process is graphically 

depicted in Fig. 3.1. 

The basic Newton-Raphson methodis not necessarily the most economical solution scheme 

and does not always provide rapid or reliable convergence. To improve upon some of the limitations 

of the basic Newton-Raphson method several modifications have been proposed over the years. 

Some of these methods involve modifications in the fonnulation of the stiffness matrix in Eq. (3.1) 

and are then classified as Modified Newton or Quasi-Newton methods. 

In cases where large unbalances between external applied loads and internal resisting forces 

develop the iteration process might fail to converge. Among the solution schemes that have been 

proposed to deal with these cases is the event-to-event method [SIM82-1]. In this method the solution 

advances from one stiffness change or event to the next. The purpose of this strategy is to follow 

the equilibrium path as closely as possible by updating the stiffness matrix and the state of each 
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element each time a change of stiffness in one of the elements of the structure takes place. This is 

achieved by predicting the occurrence of the next change of stiffness (event) within a load step and 

then scaling the load increments by a factor such that the solution just reaches the predicted event. 

In the present study the basic Newton-Raphson method is used in solving the nonlinear 

problem formulated in Eq. (2.25). The method is recast in a different form which is more suitable 

for the solution of nonlinear structures made up of several elements connected in series. Concepts 

from the event-to-event method are used in addressing the problem of state determination in the 

case of the gradual spread of the inelastic zone that takes place in the spread plastic beam subelement. 

The proposed algorithm has proved to be efficient and reliable in solving the nonlinear response 

analysis problems addressed in this report. 

3.3 Proposed nonlinear analysis algorithm 

Once the stiffness matrix of the entire structure is formed, the problem of determining the 

static response to cyclic load reversals takes the formofEq. (2.25). Using the basic Newton-Rahpson 

method the solution ofEq. (2.25) takes the form of Eqs. (3.1) and (3.2). 

\/' 
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It is possible to rewrite the basic Newton-Raphsori solution scheme such that the displacement 

increments are always measured from the converged solution in the previous load step n. This results 

in an initial stress version ofthe Newton-Raphson method, which offers an advantage over the basic 

method in cases where several elements are connected in series. To perfonn the transformation we 

stan from Eq. (3.2). Expressing ru-; in terms of the solution estimates at iteration k and k-l we get 

(3.3) 

Substituting Eq. (3.3) into Eq. (3.1) and solving for T: + 1 we obtain 

By subtracting the term [KT ]" . T" from both sides of Eq. (3.4) we can solve for the displacement 

increments relative to the converged solution at the previous load step n. 

[KT]"· AT! = (ME)" - {(M/t- I- [KT]i:· (AT!-In 

= (ME)" -(Mli·- I (3.5) 

(Mot -I is the initial load vector to be used in iteration k and AT" is the increment of the displacement 

vector with respect to the previous converged load step Tn. The graphical representation of the initial 

stress formulation of the Newton-Raphson method is shown in Fig. 3.2. 

At the beginning of a new load step (Mot - 1 is equal to zero and the current displacement vector 

T" and the current tangent stiffness matrix of the structure [KT ] are known. Given an extemalload 

increment (ME)" the solution process starts by solving Eq~ (3.5) for the first iteration estimate of 

the displacement increments AT". 

From AT" the global deformation increments ru-m. at the ends of each element of the structure can 

be extracted. Since the column elements are assumed to remain elastic, their stiffness does not 

change during the load step. Consequently, the nonlinear solution method will be presented with 

reference to the girder superelement. 
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By transfonning the global defonnation increments !J.r m according to Eq. (2.18a), written in 

incremental fonn, the local rotation increments ~8 at the ends of the girder superelement are 

obtained 

.18 = {.181
} = [a] .!J.r = [a]. .18j 

At;) m AU 
L.l.0z L.l. j 

(3.6) 

,1u. 
J 

The corresponding moment increments at the end of the superelement are 

(3.7) 

where [K] 8 is the stiffness matrix of the girder superelement with respect to local degrees of freedom 

obtained by inverting the flexibility matrix given in Eq. (2.14). 

The moment increments at the end of the superelement 6M E lead directly to the moment increments 

/).mE at the ends of each subelement. Since all girder subelements are in series 

(3.8) 
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From the moment increments runE and the current flexibility matrix of each subelement the rotation 

increments at the ends of each subelement can be determined 

(3.9a) 

(3.9b) 

(3.9c) 

For the joint and concentrated plasticity beam subelements the process of state determination is 

rather straightforward: the local rotation increments at ends i andj, .1.9pl and .1.9jlll , are added to the 

rotations at the end of the previous load step n, (9 11 )pl and (9 11 )jlll' respectively, to obtain the current 

total rotations. 

(3.lOa) 

(3. lOb ) 

Since the flexibility and stiffness matrices of these two subelements are diagonal, the rotational 

degrees of freedom at the ends of the subelement are uncoupled. Thus, the internal resisting moments 

(m) ={mR'i} 
R pi m 

R,j pi 

and 

(m). ={mR'i} 
R Jill m. 

R,J jill 

which correspond to total rotations 

(9 .) = { 911 + I ,i} 
11+1 pi 9 

: 1I+I,j pi 

and 

(9 ). ={911

+
I 'i} 

11+ 1 Jill e . 
11+ I,J jill 
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can be independently detennined from the corresponding hysteretic moment-rotation relation and 

the load history at each end of the joint or concentrated plasticity beam subelement. The incremental 

vector of internal resisting moments (~R) can then be detennined by subtracting from the current 

resisting moments those at the end of the previous load step 

Fig. 3.3 

(MlR);l = [(mR )lI+l - (mR)II] i 
- P 

i 

M. 
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mn,i 

u. 
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State determination and initial moment calculation 
for joint and concentrated plasticity subelements 

If the difference between the increments of externally applied moments MlE and internal resisting 

moments MlR is larger than a specified tolerance at one or both ends, then the flexibility matrix of 

the corresponding subelement needs to be updated. Because of the change in stiffness, Eqs. (3.9) 

are no longer valid. Instead these relations have to be modified by introducing an initial. moment 

vector &no as follows 

(3.11a) 
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(3.Ub) 

where [f .. 1 is the updated flexibility matrix of the corresponding subelement. 

Since the flexibility matrices of the joint and concentrated plasticity beam subelements are diagonal, 

the whole process of state determination, which consists of Eqs. (3.9)-(3.11) can be represented 

graphically for one end of the particular subelement, as shown in Fig. 3.3 for end i. 

Solving Eqs. (3.11) for the initial moment vectors 8mo yields 

(3.12a) 

(3.12b) 

For the spread plastic subelement a change of stiffness during a particular load step can be attributed 

to two effects: a change of stiffness in one or both plastic zones or a change in plastic zone length 

at one or both ends. It is important to note that the flexibility matrix of the spread plastic subelement 

is not diagonal and thus the rotational degrees of freedom are coupled in this case. 

If only the effective section stiffness changes, the determination of initial moments remains prac

tically the same as presented in Eqs. (3.11) and (3.12). The only difference is that the determination 

of internal resisting moments now depends on the 0 curvatures at the end sections of the beam 

subelement instead of the end rotations. Using the concept of average plastic zone stiffness intro

duced in Chapter 2, the process of state detennination is considerably simplified, since the curvature 

increment .1<p at each end can be determined from the corresponding external moment increment 

1lmE; independently from the curvature increment at the other end. Thus 

(3.13a) 

(3.13b) 

where the indices refer to ends i andj of the spread plastic subelement. 

The curvature increments from Eqs. (3.13) are added to the curvatures at the end of the previous 

load step to obtain the current curvatures. These are then used to calculate the internal moments 
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(mR) of the spread plastic subelement from the moment-curvature relation at each corresponding 
11+1 

end (Fig. 3.4). The incremental vector of internal resisting moments (&nR) can then be determined 

by subtracting from the current resisting moments those at the end of the previous load step 

exactly as was done in the case of the concentrated plasticity subelement. 

Fig. 3.4 

~n.i ~. 
I 

M· I 
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State determination and initial moment calculation 

for spread plasticity subelement (stiffness change) 

By comparing the internal moment increments at the two ends of the element (&nR)p/ to the external 

moment increments (&nE)pl' it is determined whether a change of stiffness took place during the 

load step. If such a change is detected, the flexibility matrix of the spread plastic subelement is 

updated. Since Eq. (3.9b) no longer holds, initial moments at the ends of the element have to be 

introduced yielding a relation identical to Eq. (3.11a), which is then solved for the initial moments 

resulting in Eq. (3.12a). 
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If the external moment increments in Eqs. (3.7) and (3.8) result in a change in the plastic zone length 

at one or both ends of the beam subelement, then the process of determining the initial moments 

becomes considerably more involved. 

M. 
1 

Fig. 3.5 
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To illustrate the complexity of the problem the moment-rotation relation at one end of the spread 

plastic beam subelement is shown in Fig. 3.5. Since the plastic zone length is a continuous variable 

the moment-rotation relation is nonlinear, as shown by the broken line in Fig. 3.5. It should also be 

kept in mind that the moment -rotation relation at one end of the element also depends on the moment 

acting at the other end, because of the non-zero coupling terms in the element flexibility matrix. 

This leads to a moment-rotation relation which is not unique, thus requiring that both end moments 

be considered simultaneously. In order to reduce the computational effort the process of plastic 

zone extension is simplified by assuming that the change in length takes place in discrete increments 

Zd. The actual plastic zone length Za thus follows the step function shown dashed in Fig. 3.6. This 

results in the moment-rotation relation being multi-linear instead of continuous as shown by the 

solid line in Fig. 3.5. The discrepancy between the actual and the idealized moment-rotation relation 

in Fig. 3.5 can be reduced by decreasing the size of Zd. 

The basic problem in the state determination of the spread plastic subelement now lies in the fact 

that it is not possible to directly relate rotations with curvatures and, consequently, moments at each 
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actual plastic zone length Z a 

Fig. 3.6 Discretization of plastic zone extension 

end of the element, as is the case in the joint and concentrated plasticity elements. This is illustrated 

inFig. 3.7, where (69 j )pl denotes the increment of end rotation at end i of the element resulting from 

external moment increments 6mE• 

The internal resisting moment which corresponds to rotation increment (~9J I and is- represented 
- p 

by a question mark in Fig. 3.7 cannot be determined for the simple reason that the exact moment

rotation relation (solid line in Fig. 3.7) is not known. This relation depends on the changes in the 

plasti,c zone length which cannot be determined without due account of the coupling that exists 

between the end moments of the element. Another way of looking at the problem is to recall that 

the resisting moments of the spread plastic subelement are related to the curvatures at the end 

sections. Since there is no closed form relation between the curvatures at the end sections and the 

end rotations, the direct determination ofthe internal resisting moments from the rotation increments 

(~9)pl is not possible. 

To solve this problem resort is made to concepts fIrst introduced in the event-to-event method 

[SIM82-1]. 

At the beginning of the load step the plastic zone length Za at ends i andj is known 
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Fig. 3.7 
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z" ={ Z",j,} 
z"') 

Given the external moment increments (&nE ) pi the resulting shear increment ~ V can be detennined 

(llmE j + &nE ).) I 
~V= ' , p 

L 
(3.14) 

Thus the new theoretical plastic zone lengths Zc can be detennined from 

(mllj+&nEJ I-M,j 
z . = ---'------' ...:.p-----' 

C,I VII+~V 
(3.15a) 
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(3.15b) 

where My is the section yield moment (positive or negative), mn is the vector of end moments of 

the beam subelement at the end of the previous load step and Vn is given by 

mDoi 

N 

Za.i~ 

moment distribution at step n 

[mal moment distribution at step n+ 1 

L. 
J 

moment distribution w/o change in plastic zone length 

moment distribution at first event (change of plastic zone at i) 

Fig. 3.8 Moment distributions in spread plasticity 

element during a given load step 

(mll,i +mll)pl 
V =----.:...... 

II L (3.16) 

The theoretical plastic zone lengths Zc are compared against those at the end of the previous step Za. 

If both plastic zone lengths in vector Zc are smaller than those in vector Za' then no change in plastic 

zone length has taken place. If an increase in plastic zone length at one or both ends of the beam 

subelement is detected during the comparison of Zc with Za' then the corresponding plastic zone 

length is updated to a new value z: by adding a finite length increment Zd to the plastic zone value 

Za at the end of the previous load step (Figs. 3.6 and 3.8) 

if 

N 
Za,j = Za,j + Zd if 

"-, 
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If the plastic zones at both ends of the beam subelement extend during a load step, we need to 

establish which is going to do so ftrst. This is the concept behind the event-to-event method. To do 

so we make use of the fact that the stiffness of the spread plastic subelement does not change until 

one of the plastic zones extends. Thus the point of inflection of the moment diagram does not change 

between the beginning of the load step and the instant when one of the plastic zones ftrst extends. 

Using this fact we can establish which zone is going to spread ftrst by calculating the moment 

distribution at the stage when this event takes place (Fig. 3.8). If we assume that the plastic zone 

length at end i will spread ftrst, then the shear force corresponding to a discrete increment of the 

plastic zone by Zd is 

• My,; 
V. =-....:..:--

· L-zN 
I al' 

(3.18a) 

where L; is the distance of the point of inflection from end i (Fig. 3.8). This is calculated using the 

current end moment values (Fig. 3.8) 

m ·+~E· L.= II,' " .L 
• mil,; + ~E,i + mll,j + IlmE,j 

If, on the other hand, the plastic zone length at end} spreads out ftrst by the discrete increment Zd' 

then the corresponding shear force is 

• My,j 
V. =-~

} L. _ZN. 
J (J,) 

where Lj is the distance of the point of inflection from endj given by 

m ·+~E· L. = II,} ,} • L 
} mil,; + DmE,; + mll,j + ~E,j 

(3,18c) 

If the plastic zones at both ends of the beam subelement extend during a load step, then a comparison 

of the shear force values from Eqs. (3.18a) and (3.18c) establishes which event will take place ftrst. 

The event to take place ftrst is obviously associated. with the smaller shear force value from 

Eqs. (3.18a) and (3.18c). This value is denoted by Vz• 

Making use of the fact that the inflection point does not change until the ftrst event takes place, also 

permits the determination of the moment and corresponding rotation increments at the ends of the 

element when the event occurs (Figs. 3.7 and 3.8) 
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(3.19) 

(3.20) 

At this point the flexibility matrix of the spread plastic beam subelement is updated to account for 

the new plastic zone length. Since the flexibility matrix changes, Eq. (3.20) no longer holds. Instead, 

it has to be modified by introducing initial moments (runO)pl at the ends of the beam subelement as 

. follows (Fig. 3.7) 

~e, = [j,,] pl' {run, - &no} pi . (3.21a) 

Eq. (3.21a) can be solved for the initial moments resulting in 

(3.21b) 

The outlined event-to-event procedure culminating in Eq. (3.21b) thus allows the determination of 

the initial moments at the ends of the spread plastic subelement, if a change of plastic zone length 

at one or both ends of the beam subelement takes place during the load step. The process is presented 

for one event only~ Since the change of the plastic zone length at one end results in a change in the 

element flexibility matrix and an unbalance between external and internal end moments, a new 

iteration needs to be performed until no events are detected during an iteration. This entire process 

is presented in a summary form at the end of this chapter. 

It is important to stress the difference between Eqs. (3.12a) and (3.21 b). In the first case no change 

in plastic zone length takes place. Only the average section stiffness at one or both plastic zones of 

the element changes. In this case the internal resisting moments (flmR)pl arising from the rotation 

increments ~epi are determined by Eq. (3.9b) and are then used in calculating the initial moments. 

In the second case the internal resisting moments run, at the instant that the plastic zone at one end 

o/the beam extends are determined. These along with the corresponding end rotations are then used 

to determine the initial moments at the ends of the beam subelement. 

Once the initial moments at the ends of all subelements in series are determined the initial moments 

at the ends of the girder superelement are established from the following relation 

(3.22) 

Eq. (3.22) is derived in Appendix A. 
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The initial moments at the ends ofthe superelement are finally transfonned to the global coordinate 

system using the transfonnation matrix [a] .. 

tiRo = [a]T ·/lMo (3.23) 

Eq. (3.23) gives the vector of initial load increments at the end of the first iteration (Fig. 3;2). These 

are then subtracted from the vector of external load increments (tiRE)" according to Eq. (3.5) and 

the process is restarted by applying anew Eqs. (3.6)-(3.23) until the difference between internal 

resisting and applied moments at the ends of all subelements is smaller than a specified tolerance .. 

It should be noted that Eqs. (3.9) and (3.13) have to be modified in the second iteration to include 

the initial end moments from the previous iteration (Fig. 3.7). 

A complete description of the iterative process during a particular load step is given in the following 

algorithm summary with the help of iteration indices. 

3.4 Summary of nonlinear analysis algorithm 

For each load step 

Step (1) Fonn the tangent flexibility matrix of all subelements which are the constituents of 

the girder superelements in the structure[fJel , [fJpl , [fJj/ll 

Fonn the tangent stiffness of column [K] c and foundation elements [K], 

Step (2) For all superelements in the structure add the flexibility matrices of the subelements 

to obtain the flexibility matrix of the girder superelement in local coordinates: 

[F]g = [fJel + [fJpl + [fJj/ll 

Step (3) Invert the tangent flexibility matrix of each superelement to obtain the tangent . 

stiffness matrix: 

[K]g = [F];l 

Step (4) Transfonn the stiffness matrix of all structural elements to global coordinates, e.g. 

for girder superelements: 

[K]b = [af· [K]g' [a] 



Step (5) 

Step (6) 

Step (7) 

Step (8) 

Step (9) 

Step (10) 
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Assemble the stiffness matrix of all elements into the tangent stiffness matrix of 

the whole structure (direct stiffness method) including the linear geometric matrix 

of column elements: 

[K]r = L [K]b + [K]c + [K]G+ [K]/ 

Given the vector of applied load incremems (ME)" solve for the displacement 

increments &0" relative to the converged solution at the previous load step n: 

[Kr]'t. &0: = (ME)" - (Mot'-I 

where k is the iteration index, &0: = (r: + 1- T,,) and (Mo)" -I = 0 whenk=l 

(fIrst iteration). 

From the global deformation incremems ~ of each element calculate the local 

rotation increments .19 

Calculate the momem increments at the ends of each superelement: 

where .1M~-1 = 0 for k=l (first iteration). 

Since all subelements are in series 

Calculate the rotation increments at the ends of each subelement: 

. .10;1 = [f]~I' (run~ - run~-I )pl 

.10;111 = [f]JIII . (runE - run~ -I )jlll 

In the case of the spread plastic subelement calculate the curvature increments at 

the end sections: 

(&n &n"-I) 
" E,i- O,i pI 

.1t1>i = " El c· . I 
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Step (11) 

Step (12) 

Step (13) 

(llm - llm k
-

1
) 

~ k _ E,j O,j pi 

q,j - C~ . EI 
J 

where ~~ -\ = 0 for k = 1 (fIrst iteration). 

Update the current end rotations/end curvatures and detennine the internal resisting 

moments from the hysteretic moment-rotation! moment-curvature relations: 

(8: +1)pl = (8")pl + .18!1 --7 (m~)pl 

(8:+ 1). =(8,,). +.18~1II --7 (m~). 
Jill Jill Jill 

k k 
(q,1I + \) = (q,II) +.1q, --7 (m~)pl 

The first relation applies to the concentrated plastic and the last to the spread plastic 

subelement. The calculation of internal resisting moments takes place at each end 

of the subelement independently. 

Calculate the increment of internal resisting moments and the moment unbalance 

between internal and external moment increments, if any 

If the .euklidean nonn of ~u exceeds a pre specified tolerance then the flexibility· 

matrix of the corresponding subelement is updated. 

For the spread plastic subelement calculate the new theoretical length of the plastic 

zones 

and 

where 

(mil i + mil J.) I V = ' , P 
II L and 



Step (14) 
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Compare the theoretical plastic zone lengths against the previous values and update 

these by a finite increment Zd , if necessary 

if 

if 

where . Zd = 0.025 . L 

If a change in plastic zone length takes place at one or both ends ofthe spread plastic 

subelement, determine the end moment and the corresponding end rotation incre-

ments when the first event of a change in the plastic zone length is about to take 

place 

and 

where 

V ie = . [(V")1e (V")Ie] = . [My
•
i My,)] 

z mm. i 'j Ill1n Ie 'Ie L- -z . L· -z . , a,' J a,} 

m .+6m!. L."= 11,1 C,I .L , A_" " 
m ·+6mE"· L." = II,) ,) .L 

) A_" A_A: 
mll,i + LYTlE,i + mll,j + 6mE,j mll,i + LYTlE,i + mil,} + LYTlE,} 

Update the flexibility matrix of the spread plastic subelement to account for the 

extension of the plastic zone that takes place first. 

Invert the updated subelement flexibility matrices to obtain the corresponding 

stiffness matrices. Calculate the initial moments at the ends of each subelement 

(~O);I = (~R);I- [k]~;l. ~e~1 

(~O)/c = (b.mRi~ - [k])"";l . ~eJ"1II 
)111 .Jill 

(~)Ic = b.mlc _·[k]lc+l. ~elc 
o pi z pi z 

The last equation only applies to the spread plastic subelement. 
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Step (IS) Calculate the initial moments at the ends of all superelements 

Mta = [K]: + 1 . { [f]:t 1 . (MlO);1 + [f]~; 1 . (Mlo);J 
Step (16) Calculate the initial load vector 

M~=[af·Mta 

go back to Step 4, set k = k+ I and k-l = k and continue until no unbalanced moments 

occur in Step 12. 



CHAPTER 4 

ANALITICAL STUDIES OF NONLINEAR RESPONSE TO CYCLIC LOADS 

4.1 Introduction 

The nonlinear models and the analytical procedures presented in the previous chapters were 

implemented in a special purpose program which determines the nonlinear static response of 

reinforced concrete frames to cyclic alternating lateral loads. The program can also calculate the 

dynamic response of these structures to earthquake excitations. The present study focuses on 

analytical studies of static response, while the dynamic response studies will be presented in a 

following study. 

To establish the validity of the proposed girder and beam-column joint models as well as the 

accuracy of the analytical procedures for calculating the nonlinear response of frame structures to 

cyclic static loads, the program was used in the simulation of the behavior of beam-column sub

assemblages for which experimental data were available. Two particular beam-column specimens 

were selected. These were cruciform shaped interior beam-column subassemblages subjected to a 

large number of cyclic deformation reversals. The fIrst was designed and tested by Soleimani et. 

al. [SOL79-1] according to state-of-the-art concepts of earthquake resistant design, while the second 

was designed by Beckingsale [BECSO-l] to satisfy the requirements of the New Zealand Code of 

Practice [NZSS2-1]. Because both specimens were designed according to the strong column-weak 

girder design philosophy, inelastic deformations were concentrated at the ends of the girders and 

the beam-column joint. The columns did not reach yielding and only exhibited minor cracking. 

Another important criterion for the selection of the specimens was the fact that the joints were 

designed so as to minimize the effects of shear transfer. As a result, shear cracking was limited and 

panel zone shear deformations were negligible. Thus data from both experimental studies were 

ideally suited to establish the validity of the proposed girder and beam-column joint models. 
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4.2 Beam-column subassemblages with a single joint 

4.2.1 Beam-column subassemblage of Soleimani 

The beam-column subassemblage designed and tested by Soleimani et. al. [SOL79-1] was a 

half scale model of a crucifonn shaped portion from the third story of a twenty story, four bay 

ductile moment-resisting frame (Fig. 4.1). In the original report [SOL79-1] it is designated as 

specimen BC3 . 
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Fig. 4.1 Selection of subassemblage from lVHV79-1J 

Fig. 4.2 Reinforcement layout and details of beam-column subassemblage BC3 from lVIW79-1J. 

The frame was designed according to state-of-the-art concepts of earthquake resistant design. 

The design was based on the strong column-weak girder design philosophy and the joint was 

designed so as to minimize the effects of shear transfer. The specimen geometry and reinforcement 

layout are shown in Fig. 4.2. The subassemblage was subjected to constant gravity and cyclic lateral 

displacements of gradually increasing magnitude. The scheme of load application is shown in 

Fig. 4.3. The lateral displacement time history is shown in Fig. 4.4. 
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Fig. 4.4 

Scheme of load application for subassemblage Be3 from lVIW79-1J 

.. 

History of imposed lateral displacements of subassemblage Be3 from [VIW79-1J 

lateral load H 

Fig. 4.5 Beam-column subassemblage Be3 tested by Soleimani 
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Soleimani's beam-column subassemblage was extensively instrumented. Of particular 

interest for the purposes of the correlations presented in this study is the fact that clip gages were 

used to measure the average curvature in the critical regions of the beams and columns. Each beam 

end zone where inelastic strains were expected to occur was subdivided into two regions. Hysteretic 
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moment-rotation relations were detennined in each region by mUltiplying the measured average 

curvature by the length of the corresponding region. The region immediately adjacent to the 

beam-column joint had a length of 9", as shown in the schematic subassemblage drawing in Fig. 4.5. 

The concentrated rotations which take place at the beam-column interface due to slippage of 

the reinforcing bars anchored in the joint were measured with eight precision linear potentiometers. 

Four of these potentiometers were rigidly connected to steel pins soldered to the reinforcing bars 

adjacent to the beam-column interface. These were used to measure the slippage of reinforcing bars. 

Four additional potentiometers mounted on steel rods which were encased in the concrete next to 

the beam-column interface were used to measure the size of cracks fonning at the beam-column 

interface. These extensive measurements allowed the detennination of the concentrated rotations 

(fixed-end rotations) at the beam-column interface of the subassemblage. 

M (K-INl 

1750 

Fig. 4.6 

WEAK DIRECTION 

10 15 '20 25 

Analytical moment-curvature relation 
in girder inelastic region from [VIW79-1J 

The model used in the analytical studies consists of two girder superelements, two column 

elements and some fictitious elements to allow the computer program to simulate the test config

uration and conditions. The girder superelements are each made up of an elastic, a spread plastic 

and a joint subelement. 

The derivation of the properties of the girder and beam-column elements is based on the 

material properties measured in [SOL 79-1]. Using the stress-strain relation of reinforcing steel and 

concrete, the section geometry and the reinforcement layout in the girder end region the monotonic 
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moment-curvature relation of a typical section is established using well-known principles of rein

forced concrete analysis. The two curves depicted in Fig. 4.6 correspond to a negative bending 

moment inducing tension in the top reinforcement (strong-direction) and a positive bending moment 

leading to tension in the bottom reinforcement (weak-direction). The values which are extracted 

from the curves in Fig. 4.6 are summarized in Table 4.1. 

Table 4.1 

GIRDER MOMENT-CURVATURE RELATION 

yield moment [k-in] initial stiffness [103 k-in2 Irad] 

positive M west 880 3920 

east 880 3920 

negative M west 1570 5780 

east 1570 5780 

The derivation of the flexural strength and stiffness properties of'the girder superelement is 

based on a bilinear approximation of the moment-curvature relations in Fig. 4.6. The stiffness of 

the elastic subelement is detennined as the average of the pre-yield stiffness of the moment -curvature 

relations in the strong and weak direction, since the spread plastic subelement is based on a single 

pre-yield stiffness. The post-yield stiffness of the beam subelement, on the other hand, can have 

different values in the two directions of bending. Even though the two curves in Fig. 4.6 exhibit 

different post-yield stiffness values, the strain hardening ratio which expresses the ratio of each of 

these values and the pre-yield stiffness of the element turned out to be equal to 0.016 for both 

directions of bending. 

The properties ofthe beam-column joint element are detennined using the joint finite element 

model proposed by Filippou in [FIL83-3]. The analytically predicted monotonic moment-rotation 

relation at the beam-column joint interface of specimen Be3 is shown in Fig. 4.7 [FJL83-2]. Two 

different envelopes correspond to positive and negative bending moments at the beam-column 

interface. The bilinear approximations to each cyclic envelope curve yield the values summarized 

in Table 4.2. 
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Table 4.2 

JOINT MOMENT-ROTATION RELATION 

initial stiffness strain hardening ratio 

[103 k-in Irad] 

west 409 0.050 

east 409 0.050 

west 730 0.034 

east 730 0.034 

I 

The analytical predictions of the frame model described above and subjected to the load 

history in Fig. 4.4 are shown in Figs. 4_8-4.11. Fig. 4.8 shows the load-displacement relation 

measured at the bottom of the column in Fig. 4.5. Even though the experiment was conducted under 

displacement controlled conditions, as is commonly the case for obvious reasons, the analysis was 

performed by specifying the magnitude of the lateral load measured at the moment of load reversal 

and then subdividing this load into a number of increments. There are two reasons for resorting to 

load controlled conditions in the analytical studies: first, in lateral-Ioad-to-collapse analyses of 

multistory structures the lateral load pattern is either known or assumed. This is not the case with 

the lateral displacements. This fact makes a load controlled analysis more straightforward. Secondly, 



73 

slight discrepancies in the estimation of the post-yield stiffness of structural subassemblages result 

in considerable differences in predicted displacements under imposed load conditions. Thus a load 

controlled analysis is a much more severe test of the ability of various models to represent the 

post-yield stiffness of the structure. 
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Fig. 4.8 shows the experimental and analytical load-displacement relation of subassemblage 

BC3 for the entire loading history. To facilitate the comparison between experimental and analytical 

results individual cycles are shown in Fig. 4.9. Fig. 4.10 shows the correlation of beam rotations in 

a 9" zone adjacent to the column and Fig. 4; 11 the fixed-end rotations at the beam column interface· 

due to pull-out of reinforcing bars anchored in the joint. A careful study of the results in Figs. 4.8-4.11 

leads to the following observations: 

(1) Excellent agreement between analytical and experimental results is found, particularly, if 

account is taken of the fact that the subassemblage is subjected to load-controlled loading 

conditions. This excellent agreement is not only limited to the global load-displacement 

response, but is also seen in the local rotations of the different critical regions of the sub as

semblage. 

(2) The analytical model is capable of correctly representing the strength and stiffness of the 

subassemblage. This is of particular importance in the case of the post-yield stiffness where 

slight discrepancies can lead to large deviations between observed and predicted lateral 

displacements. 

(3) The analytical model follows the hysteretic behavior of the critical regions of the subas

semblage with satisfactory accuracy. Thus the energy dissipated in each critical region is 

predicted well. During reloading cycles with the same displacement ductility slight 

discrepancies in the moment-rotation relation of the girder inelastic regions are observed. 

These are caused by inaccuracies in the reloading stiffness of the beam model. 

(4) The analytical model of the girder inelastic region shows a stiffer unlqading slope than 

observed in the experimental results (Fig. 4.10). This results in a stiffer unloading slope of 

the entire subassemblage. This discrepancy in the unloading stiffness of Clough's hysteretic 

model has already been pointed out by Saiidi in [SAI82-1]. There is, however, as yet no 

. rational model for predicting the unloading stiffness of inelastic girder regions. 

(5) The correlation of analytical and experimental results of girder rotations shows considerable 

differences in the two directions of loading. When the girder end moments cause compression 

in the top reinforcing layer (bending in the weak direction) the cracks in the inelastic region 

do not close. This happens because of the unequal amount of top and bottom reinforcement. 

The applied moment is then resisted by a force couple in the top and bottom reinforcing steel. 

In this case the moment-rotation relation closely follows the stress-strain relation of rein

forcement and Clough's hysteretic model underestimates the reloading stiffness under small 

moments. As can be seen in Fig. 4.10, an elasto-plastic reloading rule comes closer to the 
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actual behavior. This is not the case when the applied bending moments cause compression 

in the bottom steel. In this case satisfactory agreement between analysis and experiment is 

observed. 

(6) The beam-column joint model shows excellent agree~ent with experimental results. No 

discrepancy in the reloading stiffness is observed in this case, because of the slippage of 

reinforcing bars through the joint. 

4.2.2 Parametric studies on Soleimani's subassemblage 

Because of the availability of extensive experimental measurements of the response of sub

assemblage BC3, it was selected for a detailed investigation of the effect of modeling parameters. 

Of considerable interest is the ability of the one-component model to predict the global and local 

response of the subassemblage, because of its wide-spread use in nonlinear studies to date. The 

accuracy of the one-component can be studied within the framework of the developed program by 

replacing the spread plasticity with the concentrated plasticity element. 

The ftrst question to be addressed in the case of the concentrated model is the selection of 

appropriate values for describing the monotonic moment-rotation relation. Particularly difficult is 

the selection of the post-yield stiffness of the model, as has been discussed in detail in [ANA81-1], 

[MAH76-1]. Typically, the monotonic moment-rotation relation of an equivalent cantilever beam 

having a span equal to half the span of the actual girder is used to derive the properties of the 

one-component model. This procedure is described in Section 1.2.2.1. Using this procedure in the 

case at hand results in a strain hardening ratio of 0.03. To test the sensitivity of the one-component 

model two additional values of the strain hardening ratio of the moment-rotation relation are used 

in this study. The first value was established by trial and errror so as to give the best possible 

correlation with the experimental load-displacement relation of subassemblage BC3. This value of 

the strain hardening ratio is equal to 0.039. Finally, a strain hardening ratio equal to that of the 

moment-curvature relation was used as a lower bound. Previous studies [ANA81-I], [MAH76-1] 

have pointed out that setting the ratio of the moment-curvature relation equal to that of the 

moment-rotation relation results in a considerable underestimation of post-yield stiffness. 
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(a) Spread plasticity model 

(d) 

(b) Concentrated plasticity model. Strain hardening ratio = 0.03 
(c) Concentrated plasticity model. Strain hardening ratio = 0.039 
(d) Concentrated plasticity model. Strain hardening ratio = 0.016 

The results of the parametric studies on Soleimani's subassemblage are presented in 

Figs. 4.12-4.16. Fig. 4.12 shows the lateral load-displacement relation of subassemblage BC3. 

Figs. 4.13 and 4.14 show the moment -rotation relation in the girders. It is to be noted that Figs. 4.13 

and 4.14 show the total girder rotation, by contrast to Fig. 4.10 which shows the girder rotation in 

a 9" zone adjacent to the column. Finally, Figs. 4.15 and 4.16 show the rotation at the two beam

column interfaces of subassemblage BC3. Four different cases are presented identified by corre

sponding letters in the figures: 
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Fig. 4.13 Girder moment-rotation relation of subassemblage BC3. 

(a) Spread plasticity model 

Case (a) 

(b) Concentrated plasticity model. Strain hardening ratio = 0.03 

(c) Concentrated plasticity model. Strain hardening ratio = 0.039 

(d) Concentrated plasticity model. Strain hardening ratio = 0.016 

Spread plasticity beam model using the values presented in the correlation with 

experimental results. 
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Concentrated plasticity model with a strain hardening ratio of 0.03. 

Concentrated plasticity model with a strain hardening ratio of 0.039. 
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Beam-column joint moment-rotation relation of subassemblage BC3. 
(a) Spread plasticity modt;l 
(b) Concentrated plasticity model. Strain hardening ratio = 0.03 
(c) Concentrated plasticity model. Strain hardening ratio = 0.039 
(d) Concentrated plasticity model. Strain hardening ratio = 0.016 
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The beam-column joint model described in the correlation with experimental results is used 

in all four cases. A careful study of the results in Figs. 4. 12-4. 16 leads to the following observations: 

(1) When the strain hardening ratio of the concentrated plasticity model is selected equal to 0.039 

an almost perfect correlation of the global load-displacement relation is obtained between 

spread plasticity and concentrated plasticity model. Even so, local rotation values in the girder 

critical regions do not show such an excellent match. The concentrated plasticity model' 

overestimates the maximum local girder rotations by as much as 15% (compare Figs. 4.13a 

/ 
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and c and 4.14a and c). This can be basically attributed to inherent differences in the monotonic 

and hysteretic behavior between the spread plastic and the point hinge model. This differences 

will be discussed in more detail later. 
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Beam-column joint moment-rotation relation of subassemblage BC3. 
(a) Spread plasticity model 
(b) Concentrated plasticity model. Strain hardening ratio = 0.03 
(c) Concentrated plasticity model. Strain hardening ratio = 0.039 
(d) Concentrated plasticity model. Strain hardening ratio = 0.016 

0.04 

(2) The strain hardening ratio of 0.03 which is selected on the basis of the procedure described 

in' Chapter 2 does not yield very accurate results in spite of the fact that the assumption of the 

point of inflection lying at girder midspan is correct in the case of a crucifonn shaped 

subassemhlage loaded as shown in Fig. 4.3. There is a small underestimation of the post-yield 
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stiffness of the subassemblage leading to a discrepancy in maximum lateral displacement on 

the order of 15-20% (compare Figs. 4.12a and b). This discrepancy is even more pronounced 

in the case of girder rotation values amounting to approximately 40% (compare Figs. 4.13a 

and band 4.14a and c). 

(3) The strain hardening ratio of 0.016, which is equal to the strain hardening ratio of the girder 

moment-curvature relation, leads to a considerable underestimation of post-yield stiffness. 

This results in an overestimation of maximum lateral displacement by as much as 50% and 

an overestimation of maximum girder rotation values by almost 100%. This fact has already 

been pointed out in [MAH76-1] and [ANA81-1]. 

(4) The beam-column joint behavior does not show much difference in the four cases studied. 

There is a slight increase in maximum fixed-end rotations between the concentrated plasticity 

and the spread plasticity model. This increase is almost the same forthe three strain hardening 

ratios of the concentrated plasticity model. This happens because the joint propenies are the 

same in the four cases and the moments at the beam-column interface do not vary much from 

one case to the other due to the load-controlled nature of the parametric studies. In a 

displacement-controlled arrangement the concentrated plasticity model leads to an under

estimation of fixed-end rotations due to the increase of the relative flexibility of the girder 

inelastic region with respect to the beam-column joint. 
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To shed some light on these observations it is useful to study the monotonic behavior of the 

subassemblage. The lateral load displacement relation is shown in Fig. 4.17 a and the resulting girder 

moment-rotation relation is shown in Fig. 4.17b. The post-yield stiffness of the concentrated 

plasticity model was detennined so as to match the lateral load-displacement predictions of the 

spread plasticity model as well as possible. The resulting strain hardening ratio is equal to 0.05 in 

this case. Fig. 4.17b shows well the gradual change of post-yield stiffness of the spread plasticity 

model, as the length of the plastic zone spreads gradually, and the inability of the concentrated 

plasticity model to match this behavior. 

The different post-yield stiffness values of the concentrated plasticity model which are 

obtained under different loading conditions help explain the discrepancy of the maximum girder 

rotation values observed in Figs. 4.13 and 4.14. There is first the strain hardening ratio of 0.05 for 

which the monotonic lateral load-displacement relation of the concentrated plasticity model best 

matches that of the spread plasticity model. This is followed by the ratio of 0.039 which yields the 

best fit of the cyclic lateral load-displacement relation between spread and concentrated plasticity 

model. Finally, thereis the ratio of 0.03 determined by the procedure in Chapter 2 which matches 

the maximum value of girder rotation of the spread plasticity model under a certain level of 

monotonic loading. These different values clearly point out the difficulty associated with the 

selection of appropriate parameters for the concentrated plasticity model. Most importantly, model 

parameters are loading dependent, as has been pointed out already in [ANA81-1]. This fact results 

in unreliable predictions of the global and, in particular, the local response of frame structures which 

are subjected to cyclic static and dynamic lateral loads, unless the loading history of the critical 

regions in the structure can be established a priori and the model parameters can be tuned accordingl y. 

By contrast, the spread plasticity model relies on the moment-curvature relation of a girder section, 

which can be derived by well established procedures. This is a considerable advantage of the spread 

plasticity model over the concentrated plasticity counterpart. 

An interesting feature of the hysteretic behavior of the spread plasticity model can be seen 

in the last cycle of Fig. 4.14a. To illustrate the point Fig. 4.18 is used which shows that the spread 

plasticity model does not reload towards the point of maximum previous inelastic rotation. Instead 

the reloading stiffness is slightly higher. This happens in spite of the fact that the moment-curvature 

relation at each section along the inelastic zone follows Clough's hysteretic model, which prescribes 

that reloading take place towards the point of maximum previous inelastic curvature. This higher 

reloading stiffness of beam inelastic regions has been observed in several experiments. Researchers 

have attempted to take this effect into account by introducing a reloading stiffness factor into the 
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, I 

actual behav iOT 

--- Takeda's model 

Fig, 4.18 Hysteretic behavior of spread plasticity model 

one-component model [KAN73-1]. The spread plastic subelement accounts for this effect without 

the introduction of additional empirical factors. Fig. 4.14a shows that the spread plasticity model 

also exhibits a slight increase in strength during reloading. 
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The contribution of fixed-end rotations at the beam-column interface to the global response 

of the subassemblage is illustrated in Fig. 4.19a. It is clearly seen that the contribution of fixed-end 

rotations makes up about 50% of the lateral displacement of the subassemblage in the later cycles. 
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This compares well with the observations of Soleimani et. al. [SOL79-1] and several other 

investigators [DUR82-1]. It is interesting to note that the maximum rotation values of the girder 

inelastic region are not affected much by the inclusion of the beam-column joint subelement 

(Fig. 4. 19b), because of the load-controlled arrangement adopted in the numerical testing. There 

is, however, a clear shift of one hysteretic relation with respect to the other. This occurs, because 

of an excursion into the inelastic range in one direction of loading, which is not recovered during 

load reversal. 

4.2.3 Beam-column subassemblage of Beckingsale 

The reliability of the proposed models was funher tested by comparing the analytical pre

dictions with the experimental data for one of the specimens tested by Beckingsale [BEC80-1]. 

The specimen was designed according to the requirements of the New Zealand Building Code 

[NZS82-1] and represents an approximately two-third scale model of a cruciform-shaped beam

column subassemblage froni the lower stories of a typical frame of 10 to 15 stories height. 

.. .. ... 

.. 
:; 

.. .. ... 

• 
Beam oortlono _ "..0.13 

jolnl"""lion ..... "'.5.14 and ll.lS 

Fig. 4.20 Beam-column subassemblage tested by Beckingsale in [BEC80-1] 

The size of the members and the amount and detailing of reinforcement (Figs. 4.20 and 4.21) 

were detennined so as to ensure that inelastic deformations would develop in the girder end zones 

and the beam-column joint. The axial load level of the columns was very low (0.05 . fc' . Ag). 
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Adequate shear reinforcement was provided in the beam-column joint region and the contribution 

of concrete to the joint shear resistance was neglected, thus ensuring that shear cracking was kept 

to a minimum and joint defonnations due to diagonal shear cracks were negligibly small. 
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The specimen geometry and reinforcement layout are shown in Figs. 4.20 and 4.21. Lateral 

loading of the subassemblage was simulated by loading one beam upwards and the other downwards 

until reaching the prescribed displacements, then releasing and applying the loads in the opposite 

direction. The induced column shear loading sequence is shown in Fig. 4.22. 
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The parameters of the spread plastic and beam-column joint subelements were derived 

analytically based on the actual material properties reported in [BEC80-1]. The parameters used in 

the spread plastic subelement were derived by fitting a bilinear envelope curve to the actual 

monotonic moment-curvature relation of a girder section. This was determined with the aid of the 

nonlinear section analysis program described in [FIL89-1] (Fig. 4.23). The beam model parameters 

are summarized in Table 4.3. The strain hardening ratio was equal to 0.016 in both directions of 

bending. 
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The parameters of the beam-column joint subelement were derived by fitting a bilinear 

envelope curve to the actual monotonic moment-rotation relation of the beam-column joint. This 

was determined with the aid of the finite element program presented in [FIL83-2] based on the 

geometry and reinforcement layou t of the joint (Fig. 4.24). The beam-col umn joint model parameters 

are summarized in Table 4.4. The strain hardening ratio of the moment-rotation relation was taken 

equal to 0.06 in both directions of bending. 
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Fig. 4.25 Load-displacement response of Beckingsale subassemblage 

The global load displacement relation of the subassemblage is shown in Fig. 425. Excellent 

agreement between analytically predicted values and experimental results is generally observed, 

particularly, if account is taken of the fact that the subassemblage is subjected to load-controlled 

loading conditions. The analytical model is capable of very satisfactorily representing the strength 

and stiffness of the subassemblage. There is a discrepancy in the prediction of the unloading stiffness 

of-the subassemblage, which can be mostly attributed to the stiff unloading slope of the beam 

subelement model. 
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4.3 Beam-column subassemblage with two joints 

The difference between the spread plasticity and the concentrated plasticity model can be 

further illustrated by studying the lateral response of a statically indeterminate beam-column sub- . 

assemblage. In order to retain some reference to the results of the statically determinate subas

semblage studied earlier, the statically indeterminate subassemblage is fonned by using two 

cruciform shaped subassemblages which are made continuous at one end, as shown in Fig. 4.26. 

The geometry and reinforcement layout of each subassemblage are identical to those of the crucifomi 

shaped subassemblage BC3. 

p 

Fig. 4.26 Geometry of statically indeterminate 

beam-column subassemblage 

The intent of these studies is to investigate the performance of the different models when 

coupling is present between the girder end moments. Since the amount of top reinforcement is 

different from that of bottom reinforcement, as is typically the case in practice, the point of inflection 

of the moment distribution under lateral loads does not lie at girder midspan. Moreover, the point 

of inflection shifts continuously as stiffness changes take place in the girders and the joints and as 

the loading direction is reversed. Such a shift is not accounted for in the concentrated plasticity 

model. The presence of coupling also leads to an interaction between the girder end moments, such 

that the moment-rotation relation at one end is affected by the moment at the other end. This effect 

is caused by the off-diagonal elements in the stiffness matrix of the spread plastic beam model. 
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The statically indeterminate subassemblage is subjected to the same loading history as sub

assemblage BC3. It should be noted that the total lateral load acting on the subassemblage with two 

joints is twice that acting on specimen BC3. A companson of the lateral load-displacement response 

of the two suba·ssemblages is presented in Fig. 4.27. The resulting hysteretic moment-rotation 

relation in two 9". zones on either side of one column is compared in Fig. 4.28. There is a slight 
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difference in the response of the two subassemblages. This difference is caused by the shift in the 

point of inflection and the coupling between the moments acting at the ends of the interior girder, 

since all model parameters are kept the same in both cases and the model does not account for axial 

defonnations of the girder elements. The effect of one end moment on the moment -rotation relation 

at the other end can be barely seen in Fig. 4.28. It is interesting to note, however, the small outward 

shift of the moment-rotation envelope curve upon reloading of the girder inelastic region in both 

subassemblages. This shift is partly caused by the definition of an average reloading stiffness for 

the entire inelastic zone and partly by the effect of the end moment at the other end of the girder. 

Figs. 4.29-4.31 compare the response of the statically indeterminate subassemblage in three 

cases: 

Case (a) Spread plasticity beam model using the same values used in the correlation with 

experimental results of subassemblage BC3. 

Case (b) Concentrated plasticity model with a strain hardening ratio of 0.03. 

Case (c) Concentrated plasticity model with a strain hardening ratio of 0.039. 

A strain hardening ratio of 0.016 results in too large a discrepancy with the results of the 

spread plasticity model and is not considered further. A careful study of Figs. 4.29-4.31 results in 

the following observations: 

(1) The concentrated plasticity model overestimates the maximum lateral displacement of the 

subassemblage. This overestimation amounts to 50% for a strain hardening ratio of 0.03 and 

to about 20% for a strain hardening ratio of 0.039. It is important to note that the latter strain 

hardening ratio gave excellent agreement of global response between concentrated and spread 

plasticity model in the case of subassemblage BC3 (statically determinate). 

(2) The overestimation of maximum girder rotation values by the concentrated plasticity model 

is even larger. It is as large as 150% for a strain hardening ratio of 0.03 and as large as 100% 

for a ratio of 0.039. 

(3) There is almost no difference of the maximum fixed-end rotation values between the different 

cases. 

This considerable discrepancy between concentrated plasticity and spread plasticity model can be 

attributed to two basic factors: 
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(a) The inability of the concentrated plasticity model to account for the shift of the point of 

inflection that takes place in the statically indeterminate subassemblage. 

(b) The change in stiffness and moment strength that takes place during reloading of the spread 

plasticity model (Fig. 4. 30a), which does not occur in the concentrated plasticity model. These 

changes are related to the definition of reloading stiffness and the coupling between the end 

moments at the girder ends. 

The results of the response of staticallly indeterminate subassemblages further stress the 

limitations of the concentrated plasticity model in accurately predicting the behavior of reinforced 

concrete frame structures without having to adjust the model parameters in each case. Since such 

adjustment has to be done by trial and error and does not follow a rational procedure, it appears 

highly undesirable. By contrast, the spread plasticity model is based on parameters which can be 

derived by well established procedures, while not resulting in unreasonable computational expense. 

It is, therefore, believed to be a good compromise between accuracy of local and global response 

predictions on one hand, and computational efficiency on the other. 





5.1 Summary 

CHAPTERS 

CONCLUSIONS 

This study has focused on the development of improved analytical methods for predicting 

the nonlinear static and dynamic response of multistory reinforced concrete frames. The present 

report is limited to the study of static response. An extensive study on the dynamic response of 

these structures will be presented in a following report. 

A new approach in describing the nonlinear hysteretic behavior of reinforced concrete frame 

elements has been proposed. This approach consists of isolating the basic mechanisms controlling 

the hysteretic behavior of girders and columns into individual subelementswhich are connected in 

series to form the girder or column superelement. Two particular subelement models were proposed 

in this study: one describes the inelastic behavior along the girder accounting for the gradual spread 

of inelastic deformations at the girder ends, while the other models the fixed-end rotations that arise 

at the beam-column interface due to bond deterioration and slippage of reinforcing bars in the 

beam-column joint region. The properties of these elements can be derived from basic principles 

or refined finite element models. 

Because several subelements are connected in series and each of these follows a different 

hysteretic rule, internal unbalanced moments might arise between these elements at any given load 

step. The implementation of the proposed superelement model thus requires the development of a 

numerical scheme which accounts for these unbalanced moments between subelements. Such a 

scheme was developed in this study within the framework of a special purpose analysis program 

for the nonlinear static and dynamic analysis ofreinforced concrete moment-resisting frames. 

To establish the validity of the proposed models correlation studies of analytical predictions 

with experimental evidence of the load-displacement response of beam-column subassemblages 

under static load reversals were conducted. 

The predictions of the proposed model were also compared with those of the widely used 

one-component model. The two models were compared by investigating the local and global 
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response of simple structural subassemblages under cyclic load reversals. One of the key parameters 

of the one-component model, namely, the post-yield stiffness of the moment-rotation envelope 

curve was varied in these studies. 

5.2 Conclusions 

A careful analysis of the methods and results which were presented in the preceding chapters 

leads to the following conclusions: 

(1) The proposed modeling approach of decomposing a structural element into subelements 

connected in series represents a flexible platfonn for the development of analytical models 

of any desired level of complexity. Such complexity can be achieved in two ways: first by 

adding any number of subelements into an existing structural element or, secondly, by refining 

the hysteretic law of a single subelement. Clearly, a combination of these two schemes is also 

possible. Studies to date have been limited to the second approach adopting a single element 

and refining the hysteretic law to account for various effects. This study points to the 

. advantages of the first modeling scheme. This approach results in simple hysteretic laws 

which can be derived from physical behavior rather than curve fitting. 

(2) By isolating mechanisms of hysteretic behavior in separate subelements it is possible to 

establish improved analytical models of such behavior. These models are based on parameters 

which are derived from the physical properties of the structural elements by well established 

procedures or by very refined local models. 

(3) The exchange of results between refined local models suitable for a detailed analysis of small 

regions and more simplified component models which are suitable for global analysis of 

multistory structures provides a powerful tool for the study of the seismic response of rein

forced concrete structures. 

(4) The proposed girder superelement correlates very well with available experimental evidence 

of the response of beam-column subassemblages to cyclic load reversals. Excellent agreement 

with experimental results is observed, both, at the local as well as the global level. The girder 

element currently consists of two subelements: one describes the inelastic behavior along the 

girder accounting for the gradual spread of inelastic defonnations at the girder ends, while 

the other models the fixed-end rotations that arise at the beam-column interface due to bond 

deterioration and slippage of reinforcing bars in the beam-column joint region. 
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(5) The monotonic envelope of the spread plastic subelement is derived from the moment

curvature relation of a section in the inelastic region of the girder. It depends on three values, 

namely, initial section stiffness, flexural strength and strain hardening ratio and can thus be 

readily established from fIrst principles. The law governing the hysteretic behavior of the 

spread plastic subelement is very simple with no additional parameters introduced. It is based 

on Clough's hysteretic model. 

(6) The properties of the beam-column joint subelement are established with the aid of a pre

viously developed refined model of the hysteretic behavior of beam-column joints. The 

monotonic envelope depends on three parameters in each direction of bending: the initial 

stiffness, the yield strength and the strain hardening ratio. The law governing the hysteretic 

behavior of the beam-column joint subelement is very simple with no additional parameters 

introduced. It is based on a modification of Clough's hysteretic model so as to account for 

the characteristic "pinching" effect observed in one direction of bending. 

(7) In spite of the simplicity of hysteretic behavior of both subelement models, excellent 

agreement of the predicted local behavior of beam-column subassemblages with experimental 

evidence is found. The only limitation of the hysteretic models appears to be the unloading 

stiffness which is consistently higher than observed in experiments. 

(8) The widely used one-component model shows limitations with respect to the spread plasticity 

model. These limitations appear in spite the fact that the fIxed-end rotations were modeled 

in a separate element in the present study. The limitations are: 

(a) There is no single rational method for deriving the post-yield stiffness of the 

moment-rotation relation of the model. In the most commonly used method the deri

vation of the post-yield stiffness hinges on several assumptions and depends on the 

load magnitude. 

(b) The post-yield stiffness depends on the loading history and the structural system of the 

subassemblage. Even though this parameter can be "tuned" to match the experimental 

results of a particular subassemblage under a given load history, the same post-yield 

stiffness yields poor results under different loading conditions. 

(c) Even in a case of excellent agreement of global response values between one-component 

model and experimental results, the local moment -rotation of the girder inelastic region 

does not show such good agreement. This is due to the inherent inability of the model 

to follow the gradual change of post-yield stiffness associated with the spread of inelastic 

deformations into the girder. 
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(d) The model does not account for the shift in the point of inflection of the girder during 

the response time history. Reinforced concrete girders are commonly reinforced so that 

the bottom steel area at the girder ends is only about half that at the top. When both 

ends yield, the point of inflection lies closer to the third span than the midspan point 

of the· girder, as is assumed in the derivation of the post-yield stiffness of the one

component model. When the loading is reversed until both ends yield in the opposite 

direction, the inflection point shifts to the third span point at the other end of the girder. 

(e) The model does not account for the coupling between the moments acting at the two 

ends of the girder. Even though this effect is relatively small, it leads to a more complex 

. hysteretic behavior than anticipated by the model. Previous research efforts have 

attempted to account for this phenomenon by introducing additional parameters into 

the hysteretic law of the one-component model. 

(9) The spread plasticity girder element overcomes all these limitations. An important advantage 

over the one-component model derives from fact that all parameters of the spread plasticity 

element are directly related with the physical properties of the structural element and can be 

derived by well established methods. 

(10) In addition to the excellent agreement with experimental results, the spread plasticity element 

maintains computational efficiency. This is achieved in three ways: 

(a) Each inelastic region possesses a single average effective stiffness. This concept, 

originally proposed by Soleimani et. al. in [SOL79-2], results in a symmetric element 

stiffness matrix. 

(b) The continuous process of plastic zone extension is discretized, as described in 

Chapter 3. 

(c) An efficient nonlinear analysis algorithm is developed which accounts for the non

linearities due to the gradual spread of the plastic zone length and the coupling between 

the end moments of the girder. 

(11) The spread plasticity model only approximately accounts for the effect of gravity loads. The 

effect of gravity loads on the location of plastic hinges is not accounted for. Since inelastic 

zones are assumed to form at the ends of the member, the girder needs to be subdivided into 

several elements, if plastic zones can form along the span. 
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(12) A new global algorithm of nonlinear analysis is proposed. This algorithm is based on the 

initial stress modification of the Newton-Raphson method. It solves satisfactorily the problem 

of possible internal unbalanced moments between the various subelements. These arise, 

because the subelements are connected in series, while each follows an independent hysteretic 

rule. Since this situation is encountered in many studies, the algorithm is generally applicable. 

(13) Finally, it is important to note that the proposed algorithm guarantees within a specified 

tolerance exact equilibrium between internal resisting moments and external loads at each 

load step. 

5.3 Recommendations for further research 

The proposed model provides a platform for the addition of new subelements which account 

for mechanisms of hysteretic behavior that have not been considered in this study. Among these 

are: 

(1) The effect of inelastic deformations in columns with due account of the interaction between 

bending moment and axial load. 

(2) The effect of shear in short span girders. 

(3) The effect of shear in short columns. 

(4) The effect of pull-out of column reinforcement from the foundation. 

In addition, the effect of various models on the local and global response of reinforced concrete 

frame structures subjected to earthquake excitations should be studied in detail. In this context the 

inclusion or not of a particular subelement will help establish the effect of the corresponding 

mechanism on the local ahd global response of reinforced concrete moment-resisting frames. 
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APPENDIX A 

Derivation of Eq. (3.22) 

The relation between the moment increments IlM E at the ends of the superelement and the 

corresponding rotation increments ~8 is given by 

MlE = [K]g· ~8+M1o (A.1) 

Let us define 

MI=[K] ·~8 (A.2) 

Since all subelements are in series the end moments are all equal 

(A.3) 

The rotation increments at the ends of each subelements are given by the following relations 

(AAa) 

(A Ab) 

(A .4C) 

Using Eqs. (A.1)-(A.3) we obtain 

(A.5a) 

(A.5b) 

~9· = [fJ .. [MI+Mlo-(.1mo)' ] IN IN IN 
(A.5b) 

Adding up Eqs. (A.5a-c) and noting that 

[F]g = [fJe/ + [fJpl + [fJjN 

we obtain 
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~e = [F] . (MI + Mlo) - [J]pl· (~O)pl- [J]jlll· (~O)jlll (A.6) 

MUltiplying both sides ofEq. (A.6) by [K]g and noting that [F]g . [K]g = [I], where [I] is the identity 

matrix, we can solve for Mlo and obtain 

Mlo= [K] . {[J]pl· (~O)pl+[J]jlll· (runo)jlll} 

which is the desired Eq. (3.22). 

(A.7) 
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