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ABSTRACT

This report presents the results obtained from an experimental study of two similar cylindrical

water tanks, and a corresponding theoretical solution. One of the tanks was directly fixed to the earth

quake simulator, the other was mounted on the base of a scaled nine-story steel structure. The struc

ture was isolated on eight multilayered elastomeric bearings. Because the base accelerations were

lower for the tank in the isolated structure, the dynamic pressure was reduced for this tank. Free sur

face water elevation was slightly higher because of the lower frequency that characterizes the motion

of base isolated structures. This problem can be overcome by appropriate selection of the isolation

system or by the addition of dampers at the locations of maximum water particle velocities. For the

tank in the isolated structure, the accelerations and displacements at the tank rim were lower than for

the tank directly fixed to the shake table. A theoretical solution developed from linear wave theory

correlates very well with the experimental results. The advantages of using base isolation for large

storage tanks are investigated.
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CHAPTER ONE
INTRODUCTION

Extensive work has been done on the response of internal equipment in structures subjected to

ground motion [1]. An important advantage of base isolation is the protection of internal equipment in

buildings located in seismic regions, against high accelerations transmitted from the ground and

amplified in the structure. Studies have been made on oscillators simulating the contents of a building,

where each oscillator was tuned to a chosen frequency [2].

Fluid containers are an important category of internal equipment for certain buildings and power

plants. In the present research, the response of a cylindrical water tank fixed to the shake table is

compared with that of a similar one installed at the bottom of a base isolated nine-story steel structure.

Quantities of interest in the response are the dynamic pressure at the tank walls, displacements

and accelerations in the shell, and the water free surface deformation. These quantities were measured

at certain locations. A detailed description of the experimental set-up is presented in the next chapter.

From a structural viewpoint, it is of primary concern to study the stresses and deformations in the

shell; however, in the present treatment we are mainly concerned with the loading exerted by the fluid

on the container in terms of the dynamic pressure at the interface, and the effect of base isolation on

the sloshing.

A theoretical solution is worked out and expressions for the dynamic pressure and the free

surface elevation are proposed and compared with some experimental results. It is commonly accepted

that the pressure at the interface consists of two components: an impulsive pressure and a convective

pressure. The first component is due to the container wall accelerating against the fluid, the second

component is due to the change in the fluid free surface elevation. The convective pressure is mainly

attributed to the sloshing resulting from the formation of forced waves in the tank. Sloshing in tanks

is a phenomenon of relatively low frequency (the first mode is predominant): for this reason base

isolation might increase it, causing a slightly higher convective pressure component. However, base

isolation has more effect on the impulsive component and thus leads to a much lower resultant

dynamic pressure.



- 2 -

This study provides some insight into the advantages of mounting large tanks in seismic regions

directly on base isolators, in order to reduce the hydrodynamic loading on the shell. The approach

should be studied further using the earthquake simulator. Meanwhile, since the expressions presented

in Chapter Three show good agreement with the experimental results, they can be used to predict the

response of the fluid in a base isolated rigid tank.

Finally, the validity of the theoretical results and the ease of the numerical determination of the

convolution integrals involved in the final expressions, suggest the direct use of the hydrodynamic

solution instead of converting the problem into an equivalent mechanical analog that provides a

modeling of only the overall behavior of the contained fluid.

Future research based on this work should include the effects of the tank flexibility on the

response of the fluid. It should also include studies of the response of tanks independently isolated and

of tanks isolated as groups on a simple isolation pad.
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CHAPTER TWO
EXPERIMENTAL SET-UP AND TEST PROGRAM

1. Structural Model

The structural model used is the nine-story K-braced steel frame described in [3]. The structure

was mounted on an isolation system consisting of eight elastomeric bearings provided by the

Malaysian Rubber Producers' Research Association (MRPRA SET #1). Each bearing had a horizontal

stiffness of about 1.1 kips/in. at 60% shear strain and a vertical stiffness of about 420 kips/in. The

extremely high vertical stiffness provides a conventional support condition in the vertical direction and

the high horizontal flexibility causes the entire structure to move like a rigid body at a very low

frequency. This arrangement reduces drastically the ground accelerations transmitted to the structure.

Since the total weight of the model was 91 kips, the natural frequency of the base isolated structure

was 0.97 Hz.

2. Tanks

Two similar tanks were used for the purpose of comparison. One of them was directly fixed on

the shake table, the other was fixed on the base of the isolated structure (Figures 2.1 and 2.2). They

were cylindrical steel tanks, 1/25 in. thick, 2 feet in height and 4 feet in diameter. Each tank was fixed

at its bottom by six 2x2x1/4 in. angles; two of the angles were along the diameter of excitation and the

four others were installed by pairs at 45° from that diameter. The tank on the structure was mounted

on a 1 in. thick steel plate welded to the bottom flanges of the two base beam girders.

For each tank, eight Piezo-electric pressure transducers were used to measure the dynamic water

pressure. Six of them were installed along two vertical lines in the plane of excitation at the bottom, at

mid-height and near the water free surface, while two others were installed at mid-height in a plane

perpendicular to the plane of excitation. Two accelerometers were installed at the shell rim, at the

north and west sides respectively, to measure horizontal accelerations. Two DCDTs were installed at

the north and south sides of the shell rim, respectively, to measure rim displacements relative to the

tank base. The locations of these instruments and their channel numbers are shown in Figures 2.3 to

2.6. A list of the channels with the symbols used and a brief description is given Table 2.1.
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The free surface water elevation was measured at the shell wall at the north and south sides,

using water level gages. The gages consisted of two parallel conductor wires connected to an electric

bridge. The resistance in the circuit varied with the water elevation and thus was converted from mQ

to inches.

3. Input Signals.

The shake table and the signals used were derived from previously recorded ground motions,

these are described in [3]. When the tanks were filled with water, these signals were applied at spans

ranging from 50 to a maximum of 100 due to water spilling for spans larger than 100. The spilling

problem can be solved by addition of a cover, however this problem is not pursued in the present

work. The data processed for comparison with theoretical prediction corresponded to spans of 50 and

75. Table displacement and acceleration time histories are shown with the experimental results in

Chapter 4.

4. Test Sequence

Initially the model was loaded with a different mass distribution, and weighed about 120 kips.

The bearings on which it was mounted were of the MRPRA SET #3 type, and had a horizontal

stiffness of 0.8 kip/in. each at 60% shear strain. For this arrangement, the natural frequency of the

isolated structure was of 0.7 Hz, which is very close to the frequency of the first sloshing mode in the

tanks. A first test sequence was performed, starting with sine input signals at 1.5 Hz. The input

frequency was then lowered to 0.7 Hz and 0.8 Hz. For this set of runs, overtopping of the water

gages and sometimes spilling occurred because of resonance. The files corresponding to this set-up

were used only for observation and were not compared with theoretical prediction.

The structural model was then lightened to 91 kips and the bearings replaced by eight MRPRA

SET #1 bearings which had a horizontal stiffness of 1.1 kips/in. each at 60%. This resulted in a

slightly higher base isolated natural frequency. Ground motions were used at various spans but

spilling still occurred for some spans higher than 100. The files used for comparison with the
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theoretical solution were chosen from the ones of spans lower than 75 and are listed in Table 2.2 under

"last test sequence".

It is to be noted, however, that the time scaling was dictated by the model and was fixed to 2,

and that if the tanks were to be tested without the structural model, the time scaling could be much

higher.
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Channel numbering

CHANNEL NUMBERING FOR WATER TANK INSTRUMENTATION

Channel Name Units Remarks
--------------------------------------------------------------------

84 ac1 tb g's north accelerometer for tank on table
85 ac2 tb g's west accelerometer for tank on table
86 ac1 md g's north accelerometer for tank on model
87 ac2 md g's west accelerometer for tank on model
88 ds1 tb inches north DCDT for tank on table
89 ds2 tb inches south DCDT for tank on table
90 ds1 md inches north DCDT for tank on model
91 ds2 md inches south DCDT for tank on model
92 wg1 tb inches north water gage for tank on table
93 wg2 tb inches south water gage for tank on table
94 wg1 md inches north water gage for tank on model
95 wg2 md inches south water gage for tank on model
96 pz1 tb psi north bottom pressure for tank on table
97 pz2 tb psi north mid-hi pressure for tank on table
98 pz3 tb psi north top pressure for tank on table
99 pz4 tb psi south bottom pressure for tank on table

100 pzS tb psi south mid-hi pressure for tank on table
101 pz6 tb psi south top pressure for tank on table
102 pZ7 tb psi west mid-hi pressure for tank on table
103 pz8 tb psi east mid-hi pressure for tank on table
104 pz1 md psi north bottom pressure for tank on model
105 pz2 md psi north mid-hi pressure for tank on model
106 pz3 md psi north top pressure for tank on model
107 pz4 md psi south bottom pressure for tank on model
108 pz5 md psi south mid-hi pressure for tank on model
109 pz6 md psi south top pressure for tank on model
110 pZ7 md psi west mid-hi pressure for tank on model
111 pz8 md psi east mid-hi pressure for tank on model
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Test sequence.

TESTING OF WATER TANKS.
TANK DIAMETER: 48"
TANK HEIGHT : 24"
WATER DEPTH : 17.5"
ONE TANK MOUNTED ON THE ISOLATED BASE
ONE TANK MOUNTED ON THE SHAKE TABLE

1st TEST SEQUENCE

BEARINGS USED
TOTAL WEIGHT OF MODEL

MRPRA #3, Kh=0.8 k/in
120 KIPS

FILENAME
861009.01
861009.02
861009.03
861009.04
861009.05
861009.06
861009.07
861009.08
861009.09
861009.10
861010.01
861010.02

SIGNAL
sine
sine
sine
sine
sine
sine
sine
sine
random30.d
sine
sine
ec2

TIME
20 sees
10 sees
20 sees
10 sees
10 sees
10 sees
10 sees
10 sees
32 sees
10 sees
10 sees
18 sees

RATE
.005
.005
.005
.005
.005
.005
.005
.005
.005
.005
.005
.005

REMARKS
1.54 hz
0.9 hz
0.9 hz and stop
0.7 hz sph=80
0.75 hz sph=60
0.8hz sph=8
0.8 hz sph=10
0.8 hz sph=12
sph=300
3.0 hz sph=70
2.0 hz sph=90
sph=150

Excessive spilling occurred for both tanks since the sine
inputs had frequencies close to the first sloshing mode frequency.

LAST TEST SEQUENCE

BEARINGS USED MRPRA #1, Kh=l.l k/in
TOTAL WEIGHT OF MODEL 91 KIPS

The files listed below were used for comparison with theoretical
solution.

861023.01 ec2 19 sees .005 sph=50 ts=1/4
861023.02 ec2 19 sees .005 sph=75 ts=1/4
861023.03 ec2 19 sees .005 sph=70 ts=1/4
861023.04 sf2 12 sees .005 sph=50 ts=1/4
861023.05 sf2 12 sees .005 sph=150 ts=1/4
861023.06 sf2 12 sees .005 sph=75 ts=1/4
861023.07 pac2 12 sees .005 sph=50 ts=1/4
861023.08 pac2 12 sees .005 sph=75 ts=1/4
861023.09 park2 14 sees .005 sph=50 ts=1/4
861023.10 park2 14 sees .005 sph=75 ts=1/4
861023.11 taft2 19 sees .005 sph=50 ts=1/4
861023.12 taft2 19 sees .005 sph=75 ts=1/4
861023.13 buc1 12 sees .005 sph=50 ts=1/4
861023.14 buc1 12 sees .005 sph=25 ts=l/4
861023.15 set 35 sees .005 sph=25 ts=1/4
861023.16 set 35 sees .005 sph=50 ts=1/4
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Figure 2.1 1/4 scale nine-story structural model and the tanks.
Tank #1 fixed to the shake table, tank #2 fixed to
the isolated base.
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CHAPTER THREE
THEORETICAL SOLUTION

1. General.

The equations of fluid motion for many applications have been solved with various boundary

conditions [4, 5]. Of particular interest were fluid containers of cylindrical shape because of their

numerous applications ranging from ground supported containers to aircraft fuel tanks. The problem of

forced oscillations of a fluid induced by the vibrations of its container is old and equivalent mechanical

models have been proposed [6].

In the following treatment, the equations of motion relevant to our problem will be stated for

completeness, then solved using commonly accepted boundary conditions for cylindrical fluid con-

tainers. It is found, however, that the solution can be carried out differently in order to yield an

expression for the quantities of interest, such as dynamic pressure at the tank wall and water surface

deformation, in terms of convolution integrals that represent the responses of single degree of freedom

oscillators of frequencies equal to the ones of the fluid sloshing modes, and subjected to the ground

motion. These integrals can be easily determined, and the exact solution involving the first few modes

can be directly used. This approach is much closer to the real behavior than the mechanical analogs

currently used in tank design. Furthermore, the expressions for the pressure and water elevation time

histories proposed here are simple to evaluate at any location in the tank, and render the conversion of

the hydrodynamics problem into a mechanical analogy unnecessary.

It is shown that the dynamic pressure at the tank wall is highly influenced by the ground

acceleration, and hence can be drastically reduced by base isolation.

2. Governing Equations - Boundary Conditions.

Consider a cylindrical tank of radius Ro and height H filled to a depth h with a fluid of density

p, and subjected to a horizontal translation described by a function of time vget). A cylindrical coordi-

nate system (r,cj>,z) is used and is shown in Figure 3.1. u, v and ware the water particle velocities

in the r, cj> and z directions, respectively. Assuming that the fluid is nonviscous, denoting by P the

total fluid pressure and by F an external force potential, the equations of motion for the water parti-

des satisfy Euler's equations:
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oU ou v ou ou v2 1 OP of
- + u- + - - + w - - - - -- - --ot or r o<j> oz r p or or

ov ov v ov av v u 1 OP aF- + u- + - - + w - + - - -- - --at ar r a<j> oz r p r a<j> a<j>

(3.1a)

(3.1b)

oW aw v ow ow-+u-+--+w-at ar r a<j> oz
1 ap aF--- ---p az az (3.1c)

For an irrotational fluid flow, the equations expressing the irrotationality condition in polar coordinates

are

1.- aw _~ _ 0
r o<j> az

~ _ aw _ 0
oz ar

ov v 1 OU-+-----0ar r r a<j>

(3.2a)

(3.2b)

(3.2c)

If V denotes the water particle velocity vector, then ctrrl V- 0 and there exists a scalar function

-+ -+o (r,<j>,z,t) that would define a velocity potential, or such that V 0 - V. This equation is equivalent to

three scalar equations, namely:

ao
--aU

or

1 ao
--- -v

r o<j>

00---waz

(3.3a)

(3.3b)

(3.3c)

Substituting equations (3.2a,b,c) and (3.3a,b,c) into equations (3.1a,b,c), and integrating the three

resulting equations with respect to r, <j> and z, respectively, we have

ao P 1 2 2 2-- + - + F + - (u + v + w-) - G(<j>,z,t)at p 2

00 P 1 (2 2 2) ( )-- + - + F + - u + v + w - H r,z,tat p 2

ao P 1 (2 2 2) L( )-at- + p + F + 2 u + v + w- - r,<j>,t
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where G, Hand L are arbitrary functions. Noting that the left hand sides are the same expression and

that r, <j> and z are independent variables, the arbitrary functions on the right hand side are all the same

function of time only, G(t). Thus, the preceding treatment reduces to the Bemouilli equation

ao P 1 2 2 2) ( )-- + - + F + - (u + v + W - G tat p 2
(3.4)

A function f(t) is defined such that G(t) - df(t), and when substituted in equation (3.4), a new velo
dt

city potential e - 0 + f(t) can be defined. The total pressure P(r,<j>,z,t) is then expressed as

( ) ( ae 1 2 2 2} )P r,<j>,z,t - p ---at - 2" {u + v + w - F

Linear wave theory is developed for small velocity magnitude and neglects the term V2; thus,

aeP(r,<j>,z,t) - p (- - F)at

Furthermore the only body force acting on the fluid is gravity and F can be replaced by -gz where g is

the gravitational constant:

ae
P(r,<j>,z,t) - p (- + gz)at (3.5)

Note that the total pressure is here expressed as the sum of the static component pgz and the

. aedynanuc component p-.at

From the definition of e, equations (3.3a,b,c) can be rewritten as

ae
(3.6a)---uar

1 ae
(3.6b)----v

r a<j>

ae
(3.6c)---waz

For constant fluid density, the condition of continuity in cylindrical coordinates is written

au u 1 av aw- + - + -- + --0ar r r a<j> az (3.7)
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When equations (3.6a,b,c) are substituted in equation (3.7), the Laplace equation to be solved for the

velocity potential is obtained:

(3.8)

At the free surface, the pressure P is constant at all points. This is expressed by setting to zero

the total derivative of P with respect to time:

DP ap ap v ap ap
- - - + u- + -- + w- - 0
Dt at ar r a<j> az

(3.9)

at the level z=O. Note that if the free surface deflection is expressed by a function 11(r,<j>,z,t) the above

condition should be satisfied at z - 11. Setting the condition at z=O is, however, a commonly accepted

approximation. Substituting equation (3.9) into equation (3.8) yields the free surface boundary condi-

tion

at z - 0 (3.10)

At the bottom of the tank, the fluid particles have zero vertical velocity. This results in the bottom

boundary condition

ae--0
az

at z - -h (3.11)

At the tank lateral surface the water particles and the tank wall must have the same velocity. Since the

tank is considered rigid, its displacement in the x direction is described by the ground motion vget).

Along r the tank wall velocity is then vg,t(t)cos<j> and we can write

ae
u--- Vgt(t)cos<j>

ar '
at r - Ro (3.12)
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3. Solution.

Equation (3.8) can be solved by separation of variables. If the velocity potential 8 is considered

as the product of three functions at any given time t, we have

8(r,<jJ,z) - R(r) <1>(<jJ) Z(z)

Substituting in equation (3.8) and dividing by R <I> Z we have

<I>,$<Il __ 2 Z,zz _ 2 R,rr _ r R,r
<I> Z R R

<I>
Since <1> is a function of <jJ only while Z and R do not depend on <jJ, : is equal to a constant. Note

that, in order to determine the sign of this constant, we must have <I>(2Jt) - <I>(O). Thus <I> has to be a

combination of trigonometric functions and the constant is then negative; and the above equation yields

<I>,$<Il--.
<I>

which has the solution

where K1 and Kz are arbitrary constants and k po! 0 since <1>(<1» must not be constant. Also we have

Z,zz kZ 1 R,r R,rr z
-- - - - -- - - .. n

Z rZ rR R

where n is a constant by the same reasoning followed earlier. If n - 0, then

where K3 and K4 are arbitrary constants. The equation in R, for this case (n =0) is rewritten as

(3.13)

for which R(r) .. rm is a general solution. When R(r) - ~ is substituted into the above expression

and the indicial equation solved for m, we find m • ±k and
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For the case where n;otO, equation (3.13) in Z(z) has the solution

Z(z) .. K7 coshnz + Kgsinhnz

and the equation in R(r) is a Bessel equation of order k and parameter n

iR,rr + rR,r + (nzrz - kZ)R .. 0

Its general solution has the form

and since for r .. 0 the velocity potential is finite, KlO • O.

Finally, the general solution for the velocity potential can be written as

8 .. 8 0 + 8 n

where 8 0 and 8 n are the two solutions corresponding to the cases n - 0 and n ;ot 0, respectively:

60(r,<j>,z) .. (KIcosk<j> + Kz sink<j»(K3 z + ~)(Kst< + ~r-k)

8 n (r,<\>,z) .. (KI cosk<\> + Kzsink<\»(K7 coshnz + Kgsinhnz)(K9 h(nr»

The Boundary Condition in equation (3.12) is satisfied if

(KIcosk<\>+Kzsink<\>)(K3z+K4)(KskRok-I+K~Ro-k-I)-vg,t(t)cos<\>

and

Equation (3.14a) yields

k .. 1, K z .. K3 .. ~ - 0,

KI K4 Ks - Vg,t(t), and 8 0 - Vg,t(t)rcos<\>;

while equation (3.14b) yields after substitution of the determined coefficients

(KI cos<\> )(K3 cosh nz + K4 sinh nz )K9JI' (n Ro ) - 0

(3.14a)

(3.14b)
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Therefore,

The above equation has an infinite number of real roots for which the derivative of the Bessel function

of the first kind and first order is zero. If we denote by nj Ro - aj the ith root aj of J1'(a) = 0, we

have (see Table 3.1)

aj - nj Ro - 1.84118, 5.33144, 8.53632, 11.70600, 14.86359,

18.01553, 21.16437, 24.31133, 27.45705, 30.60192, etc'"

and the general expression for the velocity potential becomes

i-oo
e - L Kj J1(njr)(K7;coshnjz + Ks;sinhnjz) cos<j> + Vg,t(t)rcos<j>

j.1
(3.14c)

The Boundary Condition for the bottom of the tank, in equation (3.11), applied to the above expression

yields

Substituting for Ks; in equation (3.14c) and rearranging the hyperbolic functions, we have

(3.15)

Note that up to this point in the preceding treatment, the equations were developed for a given time t

and hence the constants can be functions of time. In order to determine KiCt), we apply the free sur-

face boundary condition given by equation (3.10) to equation (3.15):

and
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The sum of the two above expressions for z=O yields, after we simplify by cos<j>,

j~ [Kj,tt(t) + (gnjtanhnjh) Kj(t)] J1 (njr) + vg,mr .. 0
1-1

(3.16)

Equation (3.16) can now be easily solved for the free vibrations if the term vg,ttt(t) representing the

forcing function is discarded. KiCt) will then be a trigonometric function and the frequencies of free

oscillations are (gnj tanhnj h)1/2. In the following, however, the forced oscillations solution will be

pursued. By denoting the first expression in the brackets by T(t),

T(t) .. j~ [ Kj,tt (t) + (g nj tanh nj h) Kj(t) ]
1-1

equation (3.16) can be solved for T(t) by noticing that the Bessel solutions satisfy certain Boundary

Conditions that make them orthogonal on the interval {O, Ro }:

and

with A2 .. 0

To use the orthogonality of the Bessel functions, expression (3.16) is multiplied by rJ1 (nj r), so that

j-co

L T(t)J1 (njr)J1 (njr)r + vg,m r2J1 (njr) .. 0
j-l

and integrated over the interval { 0 and Ro}' When the only non zero term in the summation is

retained, we find

Ro Ra

T (t) £J1
2( nj r ) r dr + vg,ttt £~ J 1 ( nj r ) dr .. 0

After the two integrals are evaluated, and the above expression solved for T (t), we have



- 22 -

or

~,tt (t) + A/ ~ (t) ... vg,ttt (t) Xj

where

(3.17)

and

The expression for Xj is further simplified by the use of the Bessel function identity

and by noting that J1'(nj Ro) ... O. The expression for Xj becomes

Equation (3.17) for ~ (t) is transformed to the Laplace domain and the initial conditions on vg (t) are

used. The expression is then solved algebraically for Kj (s) where s is the Laplace transform variable.

The following two properties of the Laplace transform,

L{f"(t)} ... s2 L{f(t)} - sf(O) - f'(O)

and

L{f'''(t)} ... s3 L{f(t)} - s2 f(O) - s f'(O) - f"(O)

are used, together with the assumption that the shake table, and hence the structural model motions,

start from rest; so that vg (0) ... vg,t (0) ... vg,tt (0) ... O. Since the water particle velocities are initially

zero, e (t ... 0) ... 0 , and since the dynamic pressure in the fluid is initially null, ae (t .. 0) = 0, and
at

this yields Kj (0) ... ~,t (0) ... O. When the transform of equation (3.17) is solved for Kj, it yields

(3.18)
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Equation (3.18) describes the response of a physical system to a given excitation, and the relation

between the input and the output for zero initial conditions of the excitation vg (t) has the form

K (s) __v-=-g_(s)_
l TRj(s)

where TRj (s) is a transfer function. Furthermore since the present system is linear, TRj(s) is simply

the quotient of two polynomials in s :

The Laplace transformation of the product of two functions of the same variable is expressed as

L{f(t)} L{g(t)} - L {If(t - 't)g('t)d't } - L {f(t) *get)} (notation)

To apply the above theorem, the convolution or Faltung integral theorem, to equation (3.18), we

rewrite it in the form

Then

(3.19)
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Finally the velocity potential takes the form

+ Vg,l (t) rcos <j>

cos<j>

(3.20)

The dynamic pressure and the water surface deformation can now be expressed from the velocity

potential. The dynamic pressure in the fluid is given by

aePd(r,<j>,z,t) - p  at

i-oo l t ] cosh n· (z + h)
-p cos<j> L 'Xi Vg,tt(t) - Ai {sin Ai (t-'t) Vg,tt (t) dt !t (nir) I

i-I -b cosh ni h

+ P Vg,ll (t) r cos <j> (3.21)

The pressure at the tank wall in the plane of excitation is obtained for r - Ro and <j> - O. Rearranging

the terms in vg,tt(t), we have

where

(3.22)

and

cosh ni ( z +h)

coshnih
(3.23)

(3.24)

The convolution integrals Ilt) can be directly used without transforming the oscillating fluid into a

mechanical equivalent system, since they each represent the undamped response of a single degree of
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freedom oscillator of frequency "-i, subjected to ground acceleration vg,tt(t). Two points of interest are

to be noted:

(1) The coefficients Cj and AjCi which control the rate of convergence of the solution decay very

rapidly especially at larger depths z; and the convolution integrals are bounded with the maximum

value of an IiCt) being the spectral pseudo-velocity response for a single degree of freedom oscillator of

frequency Aj. Table 3.2 lists those coefficients for the radius Ro - 24 in. and for z varying from 0 in.

at the water free surface to -17.5 in. at the tank bottom. These numerical values correspond to the

tanks used in the experiment. The coefficients are highest at the water surface and decrease with

depth; this decrease depends on the mode number. For the first mode, CI at the bottom is 48% of CI

at the water surface, while for the second mode, ~ at the bottom is about 4% of C2 at the surface.

On the other hand, for a given depth z the coefficients decay rapidly and the two or three first

coefficients are enough to yield accurate results. The values of "-i Ci were evaluated and presented in

Table 3.3. At the water surface (z=O) where the sloshing contributes most, the fourth mode coefficient

A4C4 is 4.7% of AICI and is 3.8% of the sum of the first three constants. The C/s and the "-iCi's are

plotted in Figures 3.2 to 3.5.

Similar results are obtained when these coefficients are multiplied by their respective convolution

integrals. These integrals were evaluated for the first four modes (i=1,..4) for the EI Centro and San

Francisco table motions at horizontal spans of 50. The forcing functions used were the shake table

recorded acceleration and the isolated base recorded acceleration, respectively. Their time history plots

are shown in Figures 3.6 and 3.7 for EI Centro and in Figures 3.12 and 3.13 for San Francisco. In

sum, the first two modes yield accurate results at higher depths and the first three modes at the water

free surface.

(2) Equation (3.22) shows explicitly the different factors influencing the dynamic pressure. The first

term

Pd1 = P Ro vg,tt (1 + L Ci )
i-I

(3.25)
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represents the direct effect of ground acceleration, and the term

i-co

Pdz - P Ro LAjCjlj(t)
j-I

represents the effect of the sloshing modes.

(3.26)

To illustrate this effect, Pd
1

and Pdz were evaluated using two modes only and were plotted in Figures

3.8a to 3.9b for the EI Centro record and in Figures 3.14a to 3.15b for the San Francisco record, at the

location z=-16 in. The resultant pressure time histories for the tank on the table and the tank in the

structure were then obtained by summing these components. For the EI Centro record, Figures 3.10

and 3.11 show the calculated dynamic pressure time histories using the recorded table acceleration and

the recorded isolated base acceleration as forcing functions, respectively. Figures 3.16 and 3.17 show

the same for the San Francisco record. Note the drastic reduction in the calculated dynamic pressure

for the tank in the structure under the San Francisco record.

The free surface displacement is given by

1 ae
l1(r,cj>,z,t) - - 

g at at z - 0

At the tank wall and along the diameter of excitation, we have

(3.27)

(3.28)

where the constants C{ are the Cj's at z=O. As mentioned above, the contribution of the sloshing at

z=O is much more important than it is at other locations along the water depth. Nevertheless, only the

first three modes are needed to yield accurate results.
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In many design situations, only the Peak Ground Acceleration and the response spectrum of the

selected design earthquake are given. By noting that the maximum value of AiIiCt) is the spectral

acceleration Sllj' expressions (3.22) and (3.28) can be used to provide an upper bound of the fluid

response. Equation (3.22), for instance yields

Furthermore, since it was found that a few modes yield good results, the sum can be limited to the first

three terms (i=1,2,3) and the root mean square values used similarly to a response spectra analysis for

multi-degrees of freedom systems. The predictions of peak values can now be written as

for the dynamic pressure, and as

i-3 i-3
-'!L S v (1 + ~C!) + (~C.'2S 2)1/2
R' max """ I """ 1 lljdg i-I i-I

for the water free surface deformation.

(3.29)

(3.30)

In the next section, the experimental results are presented and compared with the time histories

obtained from expressions (3.22) and (3.28).
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Table 3.1 The first ten roots Uj of J{(u) and the sloshing frequencies
Ai in rd/sec and fi in Hertz.

Uj Ai f i

(rd/sec) (Hz)

1.84118 5.08 0.81

5.33144 9.26 1.47

8.53632 11.72 1.87

11.70600 13.73 2.18

14.86359 15.47 2.46

18.01553 17.03 2.71

21.16437 18.46 2.94

24.31133 19.78 3.15

27.45705 21.03 3.35

30.60192 22.20 3.53
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Table 3.2 Coefficients Ci for Ro=24 in. and h=17.5 in.

z C1 C2 C3 C4 Cs C6

0.0 -0.836840 -0.072928 -2.782851e-2 -1.47025ge-2 -9.093955e-3 -6.181247e-3
-0.5 -0.809449 -0.065268 -2.329463e-2 -1.152073e-2 -6.672215e-3 -4.246936e-3

-1.0 -0.783249 -0.058415 -1.949943e-2 -9.027484e-3 -4.895390e-3 -2.917927e-3
-1.5 -0.758202 -0.052282 -1.632257e-2 -7.073807e-3 -3.591737e-3 -2.004812e-3
-2.0 -0.734271 -0.046796 -1.366330e-2 -5.542933e-3 -2.63524ge-3 -1.377440e-3
-2.5 -0.711420 -0.041887 -1.143731e-2 -4.343363e-3 -1.933476e-3 -9.463930e-4
-3.0 -0.689616 -0.037495 -9.573992e-3 -3.403396e-3 -1.418588e-3 -6.502361e-4
-3.5 -0.668827 -0.033567 -8.014278e-3 -2.666855e-3 -1.040814e-3 -4.467554e-4
-4.0 -0.649021 -0.030053 -6.70869ge-3 -2.089710e-3 -7.636426e-4 -3.06950ge-4
-4.5 -0.630171 -0.026910 -5.615854e-3 -1.63746ge-3 -5.60282ge-4 -2.10895ge-4
-5.0 -0.612249 -0.024100 -4.701090e-3 -1.28309ge-3 -4.110784e-4 -1.448995e-4
-5.5 -0.595227 -0.021587 -3.935404e-3 -1.005421e-3 -3.016074e-4 -9.95556ge-5
-6.0 -0.579081 -0.019341 -3.294511e-3 -7.878376e-4 -2.212887e-4 -6.840144e-5
-6.5 -0.563787 -0.017333 -2.758086e-3 -6.173434e-4 -1.623592e-4 -4.699634e-5
-7.0 -0.549323 -0.015540 -2.309122e-3 -4.837481e-4 -1.191227e-4 -3.228964e-5
-7.5 -0.535667 -0.013939 -1.933382e-3 -3.790664e-4 -8.740021e-5 -2.218517e-5
-8.0 -0.522799 -0.012510 -1.618951e-3 -2.970418e-4 -6.412554e-5 -1.524270e-5
-8.5 -0.510701 -0.011235 -1.355857e-3 -2.327715e-4 -4.704908e-5 -1.047276e-5
-9.0 -0.499354 -0.010099 -1.135758e-3 -1.824141e-4 -3.452023e-5 -7.195498e-6
-9.5 -0.488742 -0.009087 -9.516751e-4 -1.429596e-4 -2.532800e-5 -4.943804e-6

-10.0 -0.478849 -0.008188 -7.977697e-4 -1.120498e-4 -1.85838ge-5 -3.396746e-6
-10.5 -0.469661 -0.007390 -6.691622e-4 -8.783725e-5 -1.363604e-5 -2.333826e-6
-11.0 -0.461164 -0.006684 -5.617741e-4 -6.887478e-5 -1.000620e-5 -1.603544e-6
-11.5 -0.453346 -0.006060 -4.722002e-4 -5.40289ge-5 -7.343533e-6 -1.101813e-6
-12.0 -0.446194 -0.005510 -3.9760ooe-4 -4.241253e-5 -5.39066ge-6 -7.57122ge-7
-12.5 -0.439700 -0.005029 -3.356078e-4 -3.33310ge-5 -3.95884ge-6 -5.203453e77
-13.0 -0.433852 -0.004610 -2.842580e-4 -2.624187e-5 -2.909678e-6 -3.577315e-7
-13.5 -0.428642 -0.004248 -2.419221e-4 -2.072113e-5 -2.141748e-6 -2.461051e-7
-14.0 -0.424064 -0.003938 -2.072577e-4 -1.64388ge-5 -1.580833e-6 -1.69555ge-7
-14.5 -0.420109 -0.003677 -1.791655e-4 -1.313922e-5 -1.172715e-6 -1.171733e-7
-15.0 -0.416773 -0.003461 -1.567548e-4 -1.062488e-5 -8.779487e-7 -8.149133e-8
-15.5 -0.414050 -0.003288 -1.39314ge-4 -8.745596e-6 -6.680420e-7 -5.742424e-8
-16.0 -0.411936 -0.003156 -1.262927e-4 -7.389038e-6 -5.227061e-7 -4.15417ge-8
-16.5 -0.410428 -0.003062 -1.172752e-4 -6.474126e-6 -4.278933e-7 -3.158025e-8
-17.0 -0.409525 -0.003007 -1.119767e-4 -5.946174e-6 -3.744394e-7 -2.611983e-8
-17.5 -0.409223 -0.002988 -1.102290e-4 -5.773628e-6 -3.571775e-7 -2.438224e-8
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Table 3.3 Coefficients ~Ci for Ro=24 in. and h=17.5 in.

z A1Cl "-2Cz A3C 3 A4C 4 ASCS A6C 6

0.0 -4.255306 -0.675378 -0.326239 -2.018417e-l -1.406785e-l -1.052720e-l

-0.5 -4.116024 -0.604440 -0.273088 -1.581602e-l -1.032155e-l -7.232897e-2

-1.0 -3.982798 -0.540975 -0.228596 -1.239321e-l -7.572898e-2 -4.969481e-2

-1.5 -3.855435 -0.484178 -0.191353 -9.711142e-2 -5.55621ge-2 -3.414367e-2

-2.0 -3.733746 -0.433373 -0.160178 -7.609510e-2 -4.076586e-2 -2.34589ge-2

-2.5 -3.617550 -0.387911 -0.134082 -5.962703e-2 -2.990982e-2 -1.61178ge-2

-3.0 -3.506677 -0.347237 -0.112238 -4.672287e-2 -2.194477e-2 -1.107408e-2

-3.5 -3.400965 -0.310860 -0.093953 -3.661140e-2 -1.610083e-2 -7.60862ge-3

-4.0 -3.300253 -0.278318 -0.078647 -2.86881ge-2 -1.181313e-2 -5.22763ge-3

-4.5 -3.204401 -0.249211 -0.065836 -2.247968e-2 -8.66726ge-3 -3.59173ge-3

-5.0 -3.113268 -0.223187 -0.055112 -1.761478e-2 -6.359157e-3 -2.467763e-3

-5.5 -3.026712 -0.199915 -0.046136 -1.380273e-2 -4.665700e-3 -1.69551ge-3

-6.0 -2.944610 -0.179115 -0.038622 -1.081568e-2 -3.423215e-3 -1.164935e-3

-6.5 -2.866840 -0.160519 -0.032334 -8.475082e-3 -2.511607e-3 -8.003882e-4

-7.0 -2.793291 -0.143914 -0.027070 -6.641043e-3 -1.842762e-3 -5.499204e-4

-7.5 -2.723851 -0.129088 -0.022665 -5.203941e-3 -1.352033e-3 -3.778325e-4

-8.0 -2.658417 -0.115854 -0.018979 -4.077882e-3 -9.91986ge-4 -2.595962e-4

-8.5 -2.596899 -0.104046 -0.015895 -3.19555ge-3 -7.278234e-4 -1.783601e-4
-9.0 -2.539200 -0.093526 -0.013315 -2.504236e-3 -5.340091e-4 -1.225455e-4

-9.5 -2.485238 -0.084154 -0.011157 -1.962593e-3 -3.918102e-4 -8.419723e-5

-10.0 -2.434933 -0.075828 -0.009352 -1.538254e-3 -2.874826e-4 -5.784951e-5
-10.5 -2.388212 -0.068438 -0.007845 -1.205857e-3 -2.109420e-4 -3.974707e-5
-11.0 -2.345005 -0.061900 -0.006586 -9.455344e-4 -1.547904e-4 -2.730973e-5

-11.5 -2.305251 -0.056121 -0.005536 -7.417267e-4 -1.136oo4e-4 -1.876483e-5
-12.0 -2.268883 -0.051028 -0.004661 -5.822524e-4 -8.33906ge-5 -1.289446e-5
-12.5 -2.235861 -0.046573 -0.003934 -4.575796e-4 -6.124122e-5 -8.861928e-6

-13.0 -2.206124 -0.042693 -0.003332 -3.602565e-4 -4.501112e-5 -6.092476e-6

-13.5 -2.179632 -0.039340 -0.002836 -2.844660e-4 -3.313167e-5 -4.191382e-6
-14.0 -2.156353 -0.036469 -0.002430 -2.256782e-4 -2.445461e-5 -2.887683e-6

-14.5 -2.136242 -0.034052 -0.002100 -1.803792e-4 -1.814126e-5 -1.995562e-6
-15.0 -2.119278 -0.032052 -0.001838 -1.458616e-4 -1.358138e-5 -1.387868e-6
-15.5 -2.105432 -0.030450 -0.001633 -1.200622e-4 -1.033424e-5 -9.779844e-7
-16.0 -2.094682 -0.029227 -0.001481 -1.014390e-4 -8.085977e-6 -7.074924e-7
-16.5 -2.087014 -0.028357 -0.001375 -8.887881e-5 -6.619274e-6 -5.378388e-7
-17.0 -2.082422 -0.027847 -0.001313 -8.163092e-5 -5.792372e-6 -4.448431e-7
-17.5 -2.080887 -0.027672 -0.001292 -7.926216e-5 -5.525341e-6 -4.152504e-7
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Figure 3.2 Coefficients Cj (i=1,...,7) showing decrease with increasing depth and
mode number.
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Figure 3.3 Coefficients Cj (i=2,...,7) showing decrease with increasing depth and
mode number.
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Figure 3.4 Coefficients AjCj (i=1,...,7) showing decrease with increasing depth and
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Coefficients AjCj (i=2,...,7) showing decrease with increasing depth and
mode number.
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CHAPTER FOUR
TEST RESULTS AND CORRELATION

1. Some Experimental Results.

Seven different ground motion records were applied to the shake table at various spans ranging

from 25 to 100. In the following, five records v'4 time scaled and applied at a horizontal span of 50

will be presented then compared with the theoretical solution in the next section. The main concern is

the response of the fluid. Because of the size of the tank models, the shell deformations were not

studied in great detail and are not presented here. Shell defermations will be studied on a larger scale

model in the next earthquake simulator water tank test.

For each table input, the displacement and acceleration at the tank support along with the north

and south water surface deformation measured by the water level gages are shown. For the tank on

the table, the table displacement and table acceleration are provided while for the tank on the structure,

the structure's base absolute displacement and the structure's base acceleration are shown.

In general, the tanks on the model showed more sloshing and less pressure. The input

acceleration was more reflected in the response of tank #1 than it was in the response of tank #2. This

is due to the filtering provided by the isolation system.

The calculated frequencies of the fluid surface free vibrations, Aj - (gnjtanhnjh)1/2, were compared

with the experimental ones by using the FFT of the measured water elevation time histories for both

tanks under different ground motions. This is illustrated in Figure 4.1 for the FFTs of tank #1 and

tank #2 north water gage time histories.

El Centro

For the EI Centro record at 50 horizontal span, the Peak Table Acceleration (PTA) was 0.114 g. The

reduction in the accelerations transmitted to the structure's base was of the order of 2. This is shown

in Figure 4.2 where the Peak Base Acceleration (PBA) is around 0.05 g. The Peak Table

Displacement (PTD) was 0.25 in. while the Peak Base Absolute Displacement was 0.37 in. The

sloshing was slightly higher in the tank on the structure; the ratio of the positive peak values in the
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water surface deformation is about 1.2.

Figure 4.3 shows the dynamic pressure time histories measured at the north bottom transducer for both

tanks. The behavior of this transducer is descriptive of all the others with some slight differences.

Note the reduction in the pressure for the tank on the structure, and its lower frequency. The ratio of

the peak pressure at the bottom of tank #2 to that of tank #1 is 0.76.

San Francisco

For the San Francisco record at 50 horizontal span, the PTA was 0.331 g. This record is of relatively

high frequency and high acceleration. For this reason it did not excite the sloshing for the tank on the

table while it yielded higher sloshing for the tank in the structure since the whole system was

responding at low frequency. The ratio of the peak sloshing values is 1.47 for tank #2 to tank #1.

The base acceleration was drastically reduced in this case, and the reduction factor is 3.4 (Figure 4.4).

Figure 4.5 shows a drastic reduction in the dynamic pressure for the tank in the structure. The ratio of

the peak values for tank #1 to tank #2 is 4.3. That was expected since equation (3.22) predicts a high

dependence of the pressure on the tank support acceleration.

Pacoima Dam

For Pacoima Dam, the reduction in the acceleration at the structure base was not noticeable because

this signal at a span of 50 caused a very low PTA of 0.076 g, and the isolation system was not quite

activated. The lowering of the input frequency caused slightly higher sloshing while the reduction in

the pressure was still present, and the ratio of peak pressure in tank #1 to peak pressure in tank #2 is

1.75 (Figures 4.6 and 4.7).
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Parkfield

For the Parkfield record at 50 horizontal span, conclusions similar to the ones for Pacoima Dam can be

made. The only difference is that the table displacement here consists of a large sway in one direction

followed by small cycles and this sway corresponds to a spike in the acceleration. ,This behavior was

changed by base isolation, the displacement and the acceleration were transformed into more

distributed, equally spaced cycles at lower frequency. This is reflected in the pressure time history but

to a lesser extent; the few spikes in the dynamic pressure for tank #1 are reduced and distributed for

tank #2.

The ratio of Peak Water Elevation in tank #1 to tank #2 is 0.78 while the ratio of peak pressure at Z=

16 in. in tank #1 to tank #2 was 1.2 (Figures 4.8 and 4.9).

Taft

For Taft there were no major differences in the response, except the slight reduction in the dynamic

pressure for the tank on the structure, the reduction factor was around 1.4 (Figures 4.10 and 4.11).

The peak values of tank support motions and the fluid response are summarized in Table 4.1.

2. Comparison with Theoretical Solution.

The measured pressure time histories were compared with the ones given by equation (3.22)

using the first two modes 0=1,2), for the five table motions and for both tanks, and good agreement

was found. These are shown in Figures 4.12a to 4.21b. On the average, there is a difference of about

15% between calculated and measured peak pressures. This level of discrepancy is unavoidable

because of the difficulty in achieving perfect measurements on one hand, and because of the

assumptions made in the theoretical solution on the other hand.
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Correlation coefficients between measured and calculated pressure time histories were obtained for

most of the table motions and they were 97% for tank #1 and 94% for tank #2 with the EI Centro

record, 97% for tank #2 with the San Francisco record, 98% for both tanks with the Pacoima Dam

record, and 98% for tank #2 with the Parkfield and Taft records.

The water elevation at the tank wall was calculated for EI Centro using the first three modes

(i=1,2,3) for both tanks. The comparison is shown in Figure 4.22 for the tank on the table and Figure

4.23 for the tank on the structure. Good correlation (97%) was found for both. Obviously, the higher

frequencies in the water surface deformation are absent in the calculated time history but the behavior

is still well represented and equation (3.28) using three modes can predict spilling or overtopping

accurately.

The preceding comparisons show that the expressions for the dynamic pressure and the water

surface deformation can be directly used for a prototype to predict the response of the contained fluid

under a given ground motion. Furthermore, this formulation gave insight into the advantages of using

the approach to isolate a large tank. The pressure and the acceleration are reduced, and the sloshing is

slightly increased. If the isolation system is chosen such that it is not in resonance with the first two

sloshing modes, the effects on the water elevation will be small. The present experimental results do

not represent the behavior of such a tank because the structural model had a fundamental period very

close to the first sloshing mode of the 4 ft. diameter tank. Also, the scaling would be very different if

the tanks were to be tested without the structural model. In other words, the accelerograms were time

scaled by a factor of two because the geometric scale was dictated by the structure: if the 4 ft. diameter

tank is used to represent a prototype of, for example, 80 ft. in diameter, the accelerograms should be

time scaled by v20. This would lead to a ground motion of much higher frequency and thus yield a

much better behavior for the isolated tank.

The simplicity of the solution presented renders the transformation of the problem into a

mechanical analog unnecessary for tanks under the effect of ground motion. A mechanical analog is

needed for tanks that are part of a more complex system, like airplane fuel containers [7], where the
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tanks need to be incorporated in an overall response analysis of the system.

The equations governing the oscillations of a fluid are similar in nature to those for a spherical

pendulum. It has been shown, however, that the motion of a spherical pendulum under an excitation

in a vertical plane can become unstable near resonance and deviate from a planar trajectory because of

nonlinear coupling [8]. When nonlinear wave theories are used to study forced waves in a fluid

container they reveal coupling between the longitudinal modes of oscillation and the transverse modes

that linear wave theory ignores. For certain forcing frequencies and certain damping levels in the

system, the motion becomes chaotic [9]. These problems are of interest for applications where the

tank is subjected to excitations of very long duration, and where there is interaction with the supporting

structure, such as for tanks in moving vehicles or in aircrafts. However, for small tanks in structures

or large ground supported tanks subjected to earthquake excitation this problem is of less significance

and the present research shows that linear wave theory yields accurate results.
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Peak values of dynamic pressure and water elevation.

0 s0
0 U) ell ::go~o ·... 0
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Acceleration

0.114 0.331 0.076 0.070 0.088
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(g)

.a Peak Tableol...
Displacement 0.25 0.25 0.26 0.25 0.26c

.2- (in)

....
Peak Water Elevation::jj.::

at tan k wall (in) 1.77 0.70 0.64 0.89 0.93,.l(
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0.071 0.188 0.049 0.035 0.053(psi)
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Peak Balle
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CHAPTER FIVE
CONCLUSIONS

Damage to tanks in recent earthquakes has shown the need for new design techniques. In this

report, a specific application was pursued. Tanks were treated as internal equipment in a structure

mounted on a base isolation system. The findings, however, can be easily applied to tanks supported

independently on the ground, or tanks sharing a common rigid slab.

Base isolated structures are characterized by their low frequency motion. There is concern about

the effect of this motion on fluid containers housed in such structures. in this study water tanks were

mounted on the earthquake simulator and on the structure when a solely rubber isolation system was

used. The effect of base isolation on the tanks treated as internal equipment is summarized by a slight

increase in sloshing and a reduction in the dynamic pressure exerted by the fluid on the tank wall. A

linear wave theory was used in the theoretical solution. The final expressions for the dynamic pressure

and the water elevation consist of a term that directly depends on the ground acceleration and a series

of convolution integrals each corresponding to an oscillation mode of the fluid. These expressions

were compared with the measured pressure and water elevation time histories and very good agreement

was found by using only the first few modes. These expressions can be now directly applied to a pro-

totype subjected to an arbitrary support excitation.

Mechanical analogies for this problem have been proposed [6]. The simplicity of the solution

presented in this report renders the transformation of the system into a mechanical analog unnecessary.

Also, unlike the mechanical models that provide only the overall behavior, the present solution pro-

vides the desired quantities at any location in the fluid by using only a few modes. Moreover, the

mechanical model proposed in [6], which consists of a number of horizontal single degree-of-freedom

oscillators, ignores the effects of vertical support excitation while the proposed formulas accommodate

vertical support excitations by replacing the gravitational field acceleration by the resultant vertical

acceleration time history.
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From the expressions for the pressure and the water elevation time histories, expressions for

upper bounds of these quantities are derived and peak response prediction can be easily achieved

whenever the design ground motion is provided in terms of its peak acceleration and its response spec

tra.

A major limitation of the experimental set-up was the scaling problem. It becomes more impor

tant to include the deformational characteristics of a tank when its dimensions are larger. The interac

tion of the shell vibrations with the fluid oscillations can affect the response. In this case, however,

the difference between the measured and calculated pressure time histories was the presence of very

high frequencies in the measured one. The amplitudes of these superposed high frequencies were very

small and did not really affect the response. The earthquakes were time-scaled by a factor of two

because of the geometric scaling of the structural model. If the tanks were tested independently, the

time-scale factor could be increased to as high as 10 in order to extrapolate the results to realistic,

commonly-used tank dimensions.

An important topic of future research is the study of a tank directly mounted on a flexible foun

dation, and its response determined for different isolation systems of various stiffnesses and damping

capacities. Moreover, the use of different water depths in the tank would lead to the formation of

waves of different lengths and traveling at different frequencies.
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