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ABSTRACT

The dynamic response of systems with nonclassical damping

may be solved exactly by mode superposition, using the complex

mode shapes derived from the damped eigenproblem to uncouple the

equations of motion. However, to reduce the computational effort,

an approximate procedure that avoids the complex mode solution

often is preferred, in which the undamped mode shapes based on

the system mass and stiffness matrices are applied as generalized

coordinates, and the resulting coupling terms in the generalized

damping matrix are merely ignored. In this presentation two other

approximate procedures that parallel this are described: (1) the

mass matrix is transformed using eigenvectors based on the stiff

ness and damping matrices, and (2) the stiffness matrix is trans

formed using eigenvectors based on the damping and mass matrices;

the transformed equation sets are then uncoupled by ignoring the

coupling coefficients of the generalized mass and stiffness

matrices, respectively. A third procedure also is presented that

involves the use of corrected diagonal terms in the transformed

property matrices, taking into account contributions based on the

off-diagonal terms.

To demonstrate the accuracy of these approximations, a 2

DOF system is solved in closed form, using the standard method

and each of the three alternatives; results are compared with the

exact solution obtained using the complex eigenvectors.

The behaviour of general 2-DOF damped systems under

various conditions is considered with respect to the conventional

and proposed decompositions. Free vibration decay and forced

vibrations of an assumed "structure-equipment" system are studied

as illustrative examples.

The analysis is extended to MDOF systems; the appropriate

conditions for the approaches to be valid are obtained. The

response of a 9-story building undergoing a single sine wave

impulse in the basement are calculated using the different ap

proximate procedures.
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1. INTRODUCTION

The discrete equations of motion expressing the behaviour

of a dynamically loaded structure may be written as follows:

MV+CV+KV=Q, ( I)

in which V is the displacement vector, M and K are the mass and

stiffness matrices, respectively, Q is the applied load vector,

and C represents the viscous damping matrix. In most cases it may

be assumed that the system has classical damping, in which case

the coordinate transformation based on the undamped system eigen

vectors will lead to diagonalization of the generalized coor

dinate damping matrix in the same way that it produces diagonal

ized generalized mass and stiffness matrices. Thus, for a classi

cally damped system, the modal coordinate transformation leads to

a set of independent modal equations; the dynamic response then

may be obtained by solving separately these single-degree-of

freedom modal equations and superposing the modal responses to

obtain the total response.

In some situations, however, it is not reasonable to

assume that the system is classically damped; then the damping

matrix will not be diagonalized by the undamped modal coordinate

transformation. In such cases, an exact solution may be obtained

by mode superposition if the damped eigenproblem is solved for

the complex mode shapes. The orthogonality properties of these

damped mode shapes are such that they serve to diagonalize the

mass, damping and stiffness matrices when they are utilized in a

coordinate transformation. Thus the modal response equations are

uncoupled, and the total response may be obtained by solving the

independent equations and superposing the results [1-3]. In

principle this complex modal coordinate procedure will provide

the exact solution for any nonclassically damped structure;

however, it has the major disadvantages that the order of the

eigenproblem to be solved to get the mode shapes is doubled, and

that the mode shapes contain imaginary as well as real terms.
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One alternative to this complex mode shape solution is to

use the undamped mode shapes in transforming to modal coordinates

the nonclassically damped equations of motion. This leads to the

same diagonalization of the mass and stiffness matrices as is

obtained with a classically damped structure~ however, the damp

ing matrix is not diagonalized and the off-diagonal terms in the

generalized damping matrix provide coupling between the modal

response equations. These coupled modal equations can then be

solved simultaneously by standard step-by-step dynamic analysis

procedures [4].

In most cases this coordinate transformation is very

useful in that it permits a great reduction in the number of

equations to be solved simultaneously even though it does not

lead to uncoupled equations; the reduction is possible because

usually only the first several modal coordinates contribute

significantly to the response. However, a major disadvantage of

this approach is that the coupled modal equations cannot be

solved by the response spectrum method. For this reason an ap

proximate solution sometimes is obtained by uncoupling the modal

response equations by neglecting the off-diagonal coefficients in

the generalized damping matrix. omitting these terms introduces

an error in the dynamic response results, but it has been found

in many cases that the error is small enough to be acceptable

[5].

The purpose of this paper is to describe some alterna

tives to the approximate decoupling procedure explained above. It

is apparent in Eq.(l) that there are two possible equivalents to

the undamped eigenproblem which results from setting C = 0 : the

zero mass eigenproblem obtained by setting M = 0 and the zero

stiffness eigenproblem obtained if K = O. Eigenvectors calculated

from each of these eigenproblems can be used to perform a coor

dinate transformation of the equations of motion (Eq.I), leading

to diagonalization of the generalized damping and stiffness

matrices in the first case and of the generalized damping and

mass matrices in the second case. Off-diagonal coefficients

remain in the generalized mass and stiffness matrices in the two

cases, respectively, and an approximate mode superposition solu-
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tion can be obtained in each case by neglecting these coupling

coefficients. An additional approximation procedure also will be

discussed briefly, in which the off-diagonal terms of the

generalized damping matrix are used to derive modified diagonal

elements of the approximately uncoupled damping matrix.

In the following, the general principles of such ap

proximate modal uncoupling procedures will be explained first;

then the concepts will be applied to a general 2-DOF system for

which closed-form solutions can be derived for the error result

ing from neglect of the generalized modal coupling coefficients.

Finally, the approximate procedures will be applied to a multi

degree-of-freedom system to give a general example of the type of

results that may be obtained.
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2.APPROXIMATE MODAL UNCOUPLING

A-Superposition

For convenience in referring to the alternative uncou

pling procedures, the standard approximate mode superposition

analysis based on neglecting modal damping coupling coefficients

will be denoted the A-Superposition method. Neglecting the damp

ing matrix, the free vibration eigenproblem associated with

Eq. (1) may be written

where

-A V=AVa

and _\. - w2
A Ja - ja •

(2)

The minus sign is used with the eigenvalue Aja for generality in

describing this and the SUbsequent approximations.

As is well known, the matrix A of Eq.(2) may be decom

posed into its eigenvalues and eigenvectors, thus

where the eigenvectors ~a have been normalized so that

~{M~a =1,

~TK~ =-Aa a a

(3)

(4)

in Which Aa is a diagonal array of the eigenvalues.

Now using the mode shapes ~a to transform the coordinates

V=<P aa (5)

in which a is the vector of modal coordinate amplitudes, Eq.1 may

be transformed to the set of modal equations

(6)

where the generalized load vector Qa is given by
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and the generalized damping matrix is given by

(7)

Because the damping matrix C is assumed to be nonclassical, this

modal damping matrix includes off-diagonal coefficients that

couple the modal equations, Eq.6.

As was described above, an approximate uncoupled set of

equations may be obtained by neglecting the off-diagonal coeffi

cients in Ca. The corresponding modal frequencies w~ and damp

ing ratios cg may then be expressed as follows:
l.,Ja

(7a)

(7b)

Finally, the approximate response of the system in physical

coordinates is given by

(7c)

where aO is the vector of solutions of the uncoupled modal equa

tions.

l2.-Superposition

The corresponding B-Superposition formulation is

developed by omitting the mass matrix from the homogeneous equa

tions of motion with the result

where

-AbV = BV (8)

Following the standard procedure, the B matrix now may be

decomposed into its eigenvalues and eigenvectors , thus

in which the eigenvectors are normalized so that

4> {C4>b = I

4>{K4>b = -Ab

(9)

(10)
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where Ab is the diagonal eigenvalue array.

Now using the coordinate transformation

(11)

the equation of motion in terms of the generalized coordinates b

becomes

.. .
M bb + b - Ab b = Qb ,

in which the generalized load vector is

and the non-diagonal generalized mass matrix is

(12)

(13)

Eq.(12) may now be approximately uncoupled by neglecting

the off-diagonal coefficients of M b i then the approximate values

of the "modal" eigenfrequencies and modal damping ratios can be

expressed as follows:

1
~lb = ----

2Moobwflb
JJ J

Consequently, the final approximate response is

(13a)

(13b)

(13c)

where bO is a vector of solutions of Eq.12 neglecting the off

diagonal terms of the M b matrix.

n-Superposition

The D-Superposition is performed similarly

the stiffness matrix from Eq. (1), which leads to

-AdV=DV

in which

by omitting

(14)
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D then is decomposed into its eigenvalues Ad and eigenvectors

(15)

with the vectors normalized so that

ep{Mi'Pd = I

i'PlCiPd = -Ad • (16)

Now the coordinate transformation V = i'P d d transforms Eg.l to

the following generalized coordinate form
.. .
d - Ad d + K dd = Qd (17)

where the generalized load vector is

and the non-diagonal generalized stiffness matrix is

(18)

The approximate uncoupling is achieved by ignoring the

off-diagonal coefficients of this matrix. Eigenfrequencies and

corresponding modal damping ratios are evaluated according to the

approximations

(18a)

(18b)

Finally, the total response vector of the system in physical

coordinates is obtained from contributions of all modes

(18c)

where dO is the vector of modal responses obtained from Eq.17

when the off-diagonal terms in the transformed stiffness matrix

are neglected.

B-Superposition.

A modification of the A-Superposition method that has

been applied in some cases [6,7], is to compensate for neglecting
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the off-diagonal terms of the transformed damping matrix by

making adjustments to the diagonal terms. For a two-degree-of

freedom system, eigenfrequencies of the A - Superposition are

used as the basis for the eigenfrequency calculation; these

eigenfrequencies then give a better approximation of the damping

ratios. This concept will be called R-superposition; it will be

demonstrated in the following as a modification of A

Superposition, but in principle the same idea could be applied

with each of the approximation methods.
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3. CLOSED FORM SOLUTION FOR 2-DOF SYSTEM

The error that results when the A-Superposition ap

proximation is applied has been the subject of many investiga

tions [4,6-11]. A major purpose of the present work is to

evaluate similarly the other proposed methods of mode superposi

tion and to estimate the relative approximation errors in all the

methods under consideration.

The analysis of a two-degree-of-freedom (2-DOF) system is

used for a demonstration example because it permits a closed form

solution. In the following, comparisons will be made between the

exact analysis obtained by solving the complex eigenproblem, and

results derived from the various approximation procedures. Quan

tities that are compared include first the free vibration

parameters and second the amplitudes of forced harmonic response.

Finally, a specific numerical example is presented.

3.1. Free Vibration Parameters

The general 2-DOF system has property matrices of the

following form

M=

(19)c = [cn C12 ]
c21 c22

K= [kn k12 ]k
21

k
22

•

Complex mode superposition method (exact solution)

The characteristic equation of this system may be written

in Foss's form [12]

( 20)
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and after certain simplifications may be represented by the

fourth order polynomial equation

where .6.m = detM , .6.k = detK , .6.c = det C ,

.6.mc = det ( M + C ) -.6.m -.6.c ,

.6.mk = det ( M + K ) -.6.m -.6.k ,

.6.ck = det ( C + K ) -.6.c -.6.k •

(21)

This is a linear algebraic equation with constant coeffi

cients which has two pairs of conjugate roots in the complex

plane

A1,2 = a 1 .=: i 131 ,

A3,4 = a2 .=: i 132 .

(22 )

These may be expressed in terms o~ tne traditional free

vibration parameters, undamped frequency wand modal damping

ratio f, by transforming the complex plane from rectangular

coordinates to polar coordinates as follows:

13 = w cosp ,

a = w sinp,

where the polar angle is related to the damping ratio as

p = -arcsin f .

(23)

The negative sign in the last expression is explained in complex

eigenfunction theory.

Then, the real and imaginary parts of the characteristic

equation, in terms of the polar parameters reduce to

w'6.m (7 - 6(" )+cJ! { (6., +D."", )+2~wD."" }+ 6., = 0 ,

(24)

2uJ3 ( 1 - 2~ ) .6.m + vJ2 ( 1 - 4~.6. ) .6.mc - 2fw ( .6.c + .6.mk ) + .6.ck = 0 .

If we take into account that for many engineering problems
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(2 « 0.25,

the last pair of equations may be rewritten

w'~+u? { (L\, +L\m' ) +2Ew~, }+ L\, = 0 ,

2W36.m + v.?6.mc - 2Ew ( 6.c + 6.mk ) + 6.ck = 0 .

(25 )

Two levels of approximation

In the evaluation of approximation errors that result

from the neglect of off-diagonal terms in the generalized

property matrices we note that two levels of approximation may be

identified due to the fact that the uncoupled equation system has

two free vibration parameters in each mode - frequency and damp

ing ratio. In the simplest approach or first level of approxima

tion, both frequencies and damping ratios are evaluated directly

from the approximately uncoupled equations, as was described in

Chapter 2. Thus, in the standard method (A-Superposition) the

first level of approximation for frequencies and damping ratios

is given by Eqs.7a and 7b, respectively; i.e.

and
El,2 = Eta,2a

(26)

( 27)

where superscript 0 is used for designating the approximate value

of those parameters.

In the second level of approximation for A-Superposition,

the eigenfrequencies still are given by Eq.26, but the damping

ratios are calculated from the diagonal elements of the uncoupled

damping matrix together with these approximate frequency values,

as was mentioned in Chapter 2 in the description of the R

Superposition method.

A-Superposition (standard approximate solution)

The equations of motion (Eq.l) describe vibrations of a

corresponding conservative system if we set C = 0, Q = O. In

order to determine eigenfunctions of the matrix A it is necessary

to consider first Eq.2, from which the following characteristic
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equation is obtained:

(28)

Eq.28 can also be derived from Eq.21, if

since the property matrices are positive definite, the

biquadratic equation (28) has a discriminant

Da = D.~k - 4D.m D.k -

~ mf,kf, {( mr'kr' - mr'kr' )' + 4(mr' - kr' )(mr' - kr' ) }<29 l
which is non-negative and les~ than the square of the second

coefficient. The squares of the roots of the equation are real

and negative, so the roots themselves are imaginary. In the above

expressions, the following notation was adopted for the ratios of

the off-diagonal terms to the diagonal terms of the matrices

C12
c f =--

J c..'
JJ

k
kf=~

J k ..
JJ

( j = 1,2) .

Calculation of the eigenvalues and eigenvectors, cor

responding to matrix A, is carried out using the standard algo

rithm. If A-Superposition is used to change the equation of

motion in physical coordinates (Eq.l) to the general coordinate

form (Eq.6), then the characteristic equation to obtain the

complex eigenvalues becomes

where C11a , C22a are the elements of the principal diagonal, and

C12a , C21a are the off-diagonal elements of the transformed

damping matrix; also ~la ~2a are eigenvalues shown in the

matrix (Eq.4).

Note that Eq.30 is identical to Eq.25, thus exact values

of the eigenfrequencies and damping ratios are obtained by solv

ing the latter equation.

After some calculation, the characteristic equation

(Eq.30), which has a complex argument of the form (23), can be
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written as

w' (1 - 4~) - w'{we, +wi, - 2€w ( C ll, +C22 , ) - 6., }+ we, wi, ~ 0 (H)

As may be concluded from the expression in the brackets,

approximation (26) is valid if the following conditions are

imposed

~2 « 0.25

t:,.~+2E w( G l1a + GZ2a ) «
(32)

in which the determinant of the transformed damping matrix is

denoted as

Finally, the error of the frequency calculations is introduced as

a new parameter, defined as follows:

Ittja 1= « 1, ( J = 1, 2) . (33)

If the first expression (Eq.26) is precise enough for engineering

calculation, the damping ratios are easily calculated from

cr _ Glla C22a - Gl2a C2la
1,,1a,2a - 2 ( C C)w1a ,2a lla + 22a

But the second expression (Eq.27)

ratio expressions

(34)

implies the damping

Clla C 22a
~loa,2a = -2-----c(,....C---C--)

w1a ,2a l1a + 22a
(35 )

( 36)

Hence, the damping ratio errors that result from using the first

level of approximation may be evaluated according to the formula

~; - ~:
~a = E: = crcz

where ratios of the off-diagonal and the diagonal terms of the

transformed damping matrix are denoted as

C 2la G l2aci =-- Cz =--
Clla ' GZZa • (37)
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!!-Superposition

The first alternative eigenproblem (8) applied to the

case of a 2-DOF system leads to the quadratic characteristic

equation

(38)

(j=l,2) (40)

Two eigenvalues and two corresponding eigenvectors are determined

by solving this equation, in which the discriminant is

D - 2 k 2 {( r-1k r- 1 r-1k r- 1)2 + 4 (r-1 k r- 1
) (r-1 k r- 1

)}b - C12 12 C1 2 - C2 1 C1 - 1 C2 - 2
. (39)

The same notation as used in the Eq.29 is adopted here. Also the

same syllogism applied before leads to the same conclusion about

the negative roots of Eq. (38).

According to the new proposed approach, the free vibra

tion parameters are to be defined from the equation of motion

transformed to the B -coordinates as shown by Eq. (12), while the

off-diagonal terms of Mb (which induce coupling of the equations)

are neglected. Thus, the simplified formulas for determination of

frequency and damping ratio are as follows:

w9b = i >-'b M·"7b
1

J J 11 '

~lb = (2Mjjb Wjb ) -1

An effective tool for verifying the accuracy of the

method is to compare the values obtained with these from the

complex mode solution. The transformation to the B-domain or, in

another words, from source equations of motion to transformed

ones, does not change the roots of the characteristic equation.

Hence, as in the standard method, the complex roots in polar

coordinates can be determined from the transformed characteristic

equation

w'{(1 + 4~)t.~ - 8~{1 - ~)MwM22b }

+ w' {(Mw >-'b + M22b AI.) + 2~w ( M 1lb M + Z2! ) -1 } 'I- Alb A2b ~ 0 .
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The assumption that the approximate eigenfrequencies satisfy the

last equation leadsto two conditions: the first is the same as

(Eq.32), and the second is

f I 1
jb = 2 2 2

Mjjb ( Wlb + W2b )
« 1. (41)

The values of the second level approximation damping ratios for

each of the modes then are derived from the formulas

( i = 1,2 ) . (42)

On the other hand, if the non-diagonal terms of the

transformed mass matrix are assumed to be zero, for the first

level approximation the damping ratios are

1
~Jb =---

2MoobWob
11 1

( i = 1,2) . (43)

Thus, the errors for the less refined assumption are evaluated by

(44)

ll-Superposition

Considering now the D-Superposition type of eigenproblem

(Eq.14), one obtains another pair of basis vectors by solving the

characteristic equation

(45 )

) }. (46)

Retaining only the non-singular roots, this equation

be rewritten as a quadratic equation with a discriminant

D ( )2{( r-1 r-1 r-1 r-1 )2 (r-1 r-1 ) (r-1 r-1
d = m12 c 12 mll C22 - m22 Cll + 4 m ll - cll m22 - c22

may

Eigenvalues of the D matrix are again negative because of the

positive definite property matrices, as was indicated above.

According to the D-Superposition approach, the original

equation (Eq.l) is transformed to the form given by Eq. (17); then
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neglecting the off-diagonal terms of the transformed stiffness

matrix allows the separate solution of the uncoupled modal equa

tions. Now, it is relatively easy to obtain free vibration

parameters from each of the uncoupled transformed equations as

(47)u= 1,2) .

follows
A "d€ld =- _J_

2Wjd

The exact solution of the transformed equations by the

complex mode method gives a characteristic equation (45) in the

D-superposition general coordinates of the form

w' ( 1 - 4(') + uP {2a ( Aid + A" )- AId A,d - K lld - K"d

+(' (AId +A'd - AidA" ) }+ ~f ~ 0 (48)

where

To verify the first assumption (26) we note that the

eigenfrequencies of the simplified system will satisfy the

characteristic equation (42) only when conditions (32) and the

following expression

« 1, ( J" = 1,2) • (49)

are satisfied. The corresponding damping ratios are given by

( J. = 1,2) . (50)

Finally, the parameter to evaluate the second assumption

(damping ratio) errors, analogous to those from the previous

approximation procedures, is expressed by

KI2dK2Id

AId A2d W}d '
( j = 1,2.) .

B-Superposition

As was emphasized above, a revised superposition method
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could be derived from any of the approximation methods (A-, B-,

or D - superposition) by extending it to the second level of

approximation. In this study , only the extension based on the

standard method will be considered because it has been used most

widely in engineering practice. Thus, R - Superposition here is

nothing more than the second level of approximation of A - Super

position, as described above. In this case, it is convenient to

express the second level damping ratio as a correction of the

first level approximation, as expressed by Eqs.34 and 35, respec

tively. The improved damping ratio approximations thus are given

by

(51)

Remarks

For further development of the 2DOF system response to

various loadings, the following conclusions from this preliminary

general analysis may be useful:

(1) The accuracy of the approximately determined

eigenfrequencies (33) obtained by the standard (A-Superposition)

method depends on the terms which are neglected in the trans

formed damping matrix, whereas the accuracy of the eigenfre

quencies derived from the B-and D-transformations (41) and (49)

do not depend directly on the corresponding term s .

(2) The errors in damping ratios do not depend on the

eigenfrequencies for the standard method, but they increase as

the frequency increases for the B - Superposition method and they

decrease with frequency for the D- Superposition method. Conse

quently, it may be recognized that the first of the newly

proposed methods gives approximate parameters which match better

to the correct values for the lower harmonics ,while the second

proposed method gives better results for the higher harmonics;

(3) All the methods could be improved by using two levels

of approximation, that is, by using the frequencies from the

first level to calculate the damping ratios for the second level

( as illustrated by R - Superposition based on Eq.34).
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3.2. Forced Harmonic Vibration Parameters.

For completeness of the comparative analysis it is

desirable to formulate the frequency response characteristics of

all the simplified systems, because it is rather difficult to

predict the role of the neglected terms in the final behaviour of

a system from the free vibration parameters only. The paper by

Duncan P.E. and Taylor R.E. [10] has investigated 2DOF systems

already transformed by the standard method and with very a

specific damping property. That analysis shows the possibility of

significant errors in determination of the second harmonic

mode.

The estimation of the degree of modal coupling causing

the errors in the different approximate procedures is most

precisely carried out in general coordinates. In this way, it is

possible to observe the contribution error from the neighbour

mode and to get simpler closed form expressions for the mode

amplitudes. Hence, the purpose of the analysis herein is to plot

amplitude functions of the two principal modes in the two har

monic regimes for all of the considered methods.

A-Superposition.

After the A-transformation (standard method) has been

applied, the source equation of motion (Eq.1) for harmonic load

ing becomes

where

The solution of this equation with a full transformed

damping matrix gives an amplitude vector of the form

(53)



- 19 -

in which the elements are determined according to the conven

tional Gauss procedure with determinants of the form

-£G2Ia w

(-w + iC22a W - 'Aia )

For convenience let us define the dimensionless parameters

= Ala G2Ia G
Ala c1=-- c r =~ , ( J' = 1,2 )

A ja GUa '
2 G22a

q2a
f3a

W2a
fla =-- =--

qIa WIa

(54)

where Ala is derived from A ja when K I2d = o.
The points of main interest in the frequency domain are,

of course, the resonant peaks. Therefore, the resonant amplitudes

for the two modes of vibration (first SUbscript indicates number

of the mode, second shows number of the resonance) are estimated

herein as follows

where

{
l+G- I R GJ2A r _ 2a c

21a - 1 + H '
Ia

(55)

H -1 r ( -1 r 2 )Ia = fla CI fla c I -

(56)

~-Superposition

The transformed equations of motion in the B-coordinates

are derived similarly from the source equation (Eq.1) by trans

formation with respect to the B-eigenvectors, with the result:
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.. .
M b b + b - Ab b = qb e iwt (57)

where

q, = { qj'} .
The vibration mode amplitudes in this case have the form

A, = {1:: }
in which the elements are

D..}b
A}b =~ , ( j = 1,2 ) •

Here the expressions for the main and secondary deter

minants of the transformed system of equations have the form

- M 12b vJ
( - M 22 bvJ + i w - A2b )

(58)

( j = 1,2 ) •

R
_ mlm2 (m 1m2 + 8~lb~2b,Bb )

1m -
( 2~lb ~2b,Bb )2

R
_ m1mZ ( m1mZ + 8~1b~2b,Bb"1 )

2m -
( 2~lb ~2b ,Bb"l )2

(59)

( 60)



- 21 -

In the last expressions, the same parameters (54) are used as in

the standard method with the only differences being the replacing

of cj by mj and of the subscript a by b.

~-Superposition

Exactly the same procedure can be used to obtain the

frequency characteristics for the second of the proposed methods.

Applying the D -eigenvectors for the transformation of the equa

tion of motion (Eq.l) to the general D-coordinates, one obtains

(61)

The vector of modal amplitudes then has the form

where

(62)

( j = 1,2) . (63)

In this case the relevant determinant expressions are

(-w - iA1d w + K lld )

K 21d

K 12d

(-w - iA2d w + K 22d )
(64)

take

(65)
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R 1k -
k1kf ( k1kf + 8~ld~2d~il )

( 2~ld~2d~il )2

krkZ ( krkZ + 8~ld~2d~d )
R 2k = -----------

( 2~ld~2d ~d )2

(66)

In the last expressions, dimensionless parameters are used

similar to Eq.54, replacing cj by kj and the subscript a by d.

B-Superposition

All frequency response characteristics related to the R

Superposition method are the same as those derived for the stand

ard method (Eq.56) except for the parameters cj (j=1,2) that are

defined in Eq.54. In the R - Superposition these terms should be

replaced by the corresponding revised damping ratios as given by

Eq.51.

3.3. Examples

3.3.1. Vibration of a 2 lumped mass system

As a 2-DOF example, we will consider a simple two lumped

mass system as shown in Fig.l. This might represent many dif

ferent specific applications, but here it is assumed to be a

structure with equipment mounted on it. Many papers have been

written about the dynamic behaviour of such systems, for example

[9,11,13-15]. If an eigenfrequency of the added equipment alone

is the same as that of the structure alone, the "structure

equipment" system is called highly tuned. It was shown [14] that

a tuned system can represent a distinctly non-classically damped

structure, while a detuned system may have classical damping. For

such a system, usually the first (top) mass is less than the second
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one, and, correspondingly, the stiffness of the connection be

tween the masses is smaller than that between the second mass and

the base.

Parameters that will be useful in this discussion are

(1) the given equipment mass, stiffness and damping coeffi

cients, respectively,

(67)

and the derived frequency and damping ratio of the equipment

(68)

(2) the given structure mass, stiffness and damping coeffi

cients, respectively,

(69)

and the structure derived frequency and damping ratio

(70)

(3) the combined system natural frequencies and damping ratios;

respectively,

(71)

where j is mode number 1 or 2 and x = a,b or d corresponding to

the specific transformation being applied.

Property matrices in the physical coordinates and in all

the generalized coordinates, as well as the characteristic equa

tions related to the A-, B-and D-Superposition methods, are

listed in Appendix A. The eigenvalues and eigenvectors, in this

case can be expressed in closed form as shown below.

For the ~-superposition the eigenvalues are, for j = 1,2 ;

}..j, ~ - ~ {Wf(l + ::) + wi .! ({Wf (1+ mI!m2) + wiJ-4WfWif}, (72)

and the mode shape matrix normalized with respect to the first

degree of freedom is:



<PIa

- 24 -

W
I2a

] I 1'1'22a = 1 _ W[a

W 2
1

1
2W2a

1-
W 2

1

Also the mode shape matrix normalized with respect to the mass is

where Ma is the mass matrix transformed by the ,<PL~ matrix; its

elements are shown in Appendix A (A.3).

For ~-Superposition the eigenvalues are

W'b

Ajb = - 2E
j
b' (j = 1,2 )

and the mode shape matrices, normalized with respect

degree of freedom and to the mass, respectively, are

[ 1 1] <Pb= [CIO-lh C2-%]
cI>Ib = 0 1 ' ci %

(74)

to the first

(75)

For U-superposition, the eigenvalues are obtained from

Ajd = -{W1€l(1 + ::) + W,€, .c [(W1€1(1 + mJ!m,) + w,€,J-4W1W'€1€,]l (;6~ ~ 1,2)

Then the mode shape matrix normalized with respect to the

first elements of normal vectors is:

1-

and normalized with respect to the mass it is:

( mi + m2Wi2a ) -0.5 ]

W22d ( m 1 + m2'1'22d ) -0.5
(77)

where Md is the generalized mass matrix transformed by the 4>Id

mode shapes; its elements are shown in Appendix A (A.l0).

The first conclusion that results from consideration of
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the transformed mass matrix (A.6) is that the B-Superposition

method is not applicable to the analysis of a two lumped mass

system, because the off-diagonal terms of the transformed matrix

are the same as a first diagonal term; thus, great errors can be

expected when these terms are neglected. For this reason the B 

Superposition method will not be applied in the analysis of the

"structure-equipment" system that follows.

Taking into account the specific expressions shown in

Appendix A, the behaviour of the approximate solutions with

respect to the mass, stiffness and damping properties of the two

masses has been analyzed with results as shown in Figs.2-13. Two

groups of parameters were investigated and corresponding curves

were plotted for the eigen frequencies (Figs.2,6,lO) and for the

modal damping ratios (Figs.3,7,ll). According to the Eqs.55, 59

and 65 the amplitUde errors were plotted (Fig.4,5,8,9,12,13) in

comparison with exact solutions to estimate errors of approxima

tions defined by

A1P - A1.e1. = lJ IJ = A!. - 1
IJ A 1. IJ'

IJ

( i,y" = 1,2; x = a,b,d ) (78)

where Ai~ and Aij , respectively, represent approximate and exact

amplitUdes of the i-th mode in the j-th resonance; Alj are rela

tive amplitudes obtained from expressions (55),(59),(65). It is

obvious that in the first resonance the main contribution is

given by the first mode, and in the second resonance, correspond

ingly, by the second mode. Let us also define the acceptable

limit of the approximation error as 6% for many engineering

problems.

The main conclusions that may be drawn from the plotted

curves are:

(~) influence of the mass properties (Fiq.~-2); The

greater the mass ratio (Which is equivalent to increasing equip

ment mass in comparison with structure mass), the greater the

divergence between the exact and the approximately calculated

frequencies and damping ratios. The exact first eigenfrequency is

closer to that obtained by R-Superposition while the exact second

eigenfrequency almost coincides with the one obtained by D-
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Superposition (Fig.2). As for damping ratios (Fig.3), the stand

ard method gives the closest value in the first mode, while the

exact second mode damping ratio is located between those calcu

lated by the standard and R-Superposition method.

Analyzing the amplitude calculation errors, it is seen

(Figs.4,S) that all the approximate methods give an acceptable

error (about 2-6%) in the range with very small mass of the

equipment ; hence, for the detuned "structure-equipment" system

all the approximations are valid as has been suggested by the

results of previous research [14]. On the other hand, for mass

and stiffness ratios that are close to each other or are close to

0.1 (or in other words, for a highly tuned system) errors can be

as large as 7% . Fig.4 shows the range (m1/m2 = 0.16 - 0.3 if

k 1/k2 = 0.1 and €1/ €2 = 3) where the standard method and the R

Superposition methods are not valid because they give hundred

times magnified error in the second mode contribution to the

response in the first resonance. In this case, with respect to

the fundamental mode contribution in the first resonance, the D

Superposition method gives the more accurate solution.

Further, as the mass ratio increases (i.e. the system is

detuned), the D-Superposition method error grows significantly.

A- and R-Superposition errors vary similarly to each other; they

are almost constant (about 6%) in the first resonance and

gradually increase in the second resonance starting at 3% with a

mass ratio equal 0.4. R-Superposition leads to higher accuracy

than the standard method in both resonance amplitudes.

When the equipment response is evaluated, it is apparent

that if the mass ratio is greater than 0.44, even the best of the

of approximate methods gives an error greater than 6%; in this

case the exact solution is recommended.

(~) influence of stiffness properties (Fig.§-~).

Eigenfrequencies and damping ratios obtained using the different

approaches are different only when stiffness ratio varies in the

range up to 0.2, including the tuned system range (Figs.S,6). All

conclusions derived from mass ratio considerations can be trans

fered almost identically to the stiffness ratio range. For ex

ample, the standard method gives a high deviation from the exact
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solution in the first resonance (Fig.7) because of second com

ponent error for the parameter values m1/m2 = 0.1, k 1/k2 = 0.8 

1.4, ~1/~2 = 3 which also includes the tuned system range. 0

Superposition has about the same error as the A-& R-Superposition

methods in first mode amplitude, but only one-hundredth as large

an error in the second mode amplitude. For the second resonance

(Fig.8), the main contribution comes from the second mode. For

the tuned lIstructure-equipmentll system, R-superposition gives a

maximum of 16% error, O-Superposition gives up to 26% error and

the standard method gives up to 30% error.

Generally speaking, although the performances are

similar, the stiffness ratio has less effect on the approximation

error than does the mass ratio. The exact solution (complex mode

superposition) need be applied for the equipment response cal

culation only in the stiffness ratio range of 0.6 - 1.4.

(~) influence of damping properties (Fig.10-13). From the

preceding analysis, we have chosen the case of the highly tuned

lIstructure-equipment" system (m1/m2 = k 1/k2 = 0.1), because it

displays almost the same discrepancies for all the approximate

procedures. While the ratio of damping in the equipment and the

structure (which we will call a damping index) is increasing, the

modal damping ratios obtained by the standard and the R - Super

position methods are also smoothly increasing (Fig.11). But those

obtained by O-Superposition diverge gradually: the first mode

damping is almost exact in the damping index range greater than

one, while the second mode damping error is increasing rapidly.

As :'the damping index increases, the relative value of the modal

frequencies is reversed. This effect was also emphasized in

Veletsos and ventura's paper [lJ.

As we can see, there is a significant point in all the

amplitude error curves when the damping index for this tuned

system is unity (Which means that the damping ratios in both

structure and equipment have the same value). In this case all

methods give the exact solution because there is no modal cou

pling. In the amplitude analysis of systems with equipment damp

ing less than structure damping (Figs.12,13) we would recommend

the R-Superposition as it leads to less error (maximum 6 % error

in the first resonance, and maximum 8% error in the second
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resonance) than the standard method (correspondingly, 13% and

20%). D-Superposition is not recommended for such a system. If

the damping index is greater than one but less than 2.7, the

following conclusions may be drawn: (1) in first resonance

(Fig.12) R - superposition is best, the accuracy of the A-and D

Superposition varies depending on the second mode contribution ;

(2) in the second resonance (Fig.13) R-Superposition is best

(error < 13%), the standard method is not so good (error < 20%),

and D-Superposition is worst (error> 20%). But when the equip

ment damping ratio is high enough (damping index greater than

2.7), D-Superposition becomes definitely better than the standard

method; R-Superposition is still better ( error < 4% in the first

resonance, and error is 13% in second resonance).

The complex mode solution is required for equipment

response determination when the damping index is in the range

0.3-0.5 or greater than 1.5; however, it is not needed in the

structure response analysis for any range of damping index.

3.3.2. Different test loadings.

For numerical evaluation of the validity of the ap

proximation methods for "structure-equipment" system, we have

chosen two types of loadings: harmonic excitation and single sine

wave impulse.

Harmonic excitation (Fig.14)

A highly tuned "structure-equipment" system has been

analysed which has non-classical damping in the traditional

sense; damping in the connection between equipment and structure

is 3 times greater than that in the structure itself. The exter

nal load (PI = 4 Ton) is applied harmonically to the equipment.

The harmonic amplitude functions of both degrees of freedom for a

wide frequency range demonstrate quite different behaviour and

resonance values when the standard (A), revised standard (R) and

D-Superposition methods are used in comparison with the exact
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D-Superposition methods are used in comparison with the exact

(complex eigenvalues) results.

The standard A-Superposition method underestimates the

structure vibrations and gives a lower value for the structure

eigenfrequency, while it overestimates amplitudes of the equip

ment vibrations. For this reason, the R-and D-Superposition

methods are recommended in structure design problems. As for the

equipment, the revised standard method gives almost twice the

exact value for the resonance amplitude, so, it would be better

to calculate equipment response using the D-Superposition method

or the complex mode technique (for lower damping values).

sine wave impulse (Fig.15)

A simple single sine wave acceleration impulse is applied

at the base of the structure. The amplitude of the excitation is

100 sm/s2 and the impulse frequency ( w = 96 rad/s) is close to

the fundamental system frequency.

Analysing the curves presented in Fig.15, it may be

concluded that the D-superposition method is quite reliable for

analysis of a "structure-equipment" system, especially in evalua

tion of the structure behaviour. The equipment displacement decay

obtained with D-Superposition is similar to the exact behaviour

but with slightly modified frequency. The standard method is not

recommended for analysis of tuned "structure-equipment" system.

Remarks

The conclusion derived from this analysis that a high

error resulted from the standard superposition method applies

only to cases with high damping in the system. For small damping,

recent work by H.-C. Tsai and J.M. Kelly [16J, showed that stand

ard method gives only small errors in structure response results;

the method is not recommended for equipment response analysis

even for low damping level.
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4. APPLICATION OF THE APPROXIMATE MODE SUPERPOSITION

METHODS TO MDOF DAMPED SYSTEMS

For analysis of the vibrations of mUlti-degree-of-freedom

systems, the approximation procedures described above are still

valid, but further study must be given to the errors that are

produced by their application. Two types of approximation errors

should be distinguished: (1) those due to ignoring the off

diagonal terms in the transformed property matrices; and (2)

those that result from modal truncation, as is usually done with

finite element formulations involving a large number of degrees

of freedom [17].

In the following, only the first type of approximation

error is considered; specific criteria are derived for the stand

ard (A), the B-and the D-Superposition methods applied to MDOF

systems sUbjected to harmonic loading. Numerical results are

shown for the specific case of a 9-story building subjected to a

sine wave displacement history applied at the base. The R

Superposition method is not discussed because it can be evaluated

by closed form analysis, but those results are still under inves

tigation.

4.1. criteria for validity of approximation methods

Previous proposals

In 1976, T.K. Hasselman [8] suggested the following as a

criterion to indicate the validity of ignoring the modal coupling

terms in the standard A - Superposition approximation:

(79)

in which ~i is the i-th mode damping ratio, Wi is the higher

eigenfrequency and Wj is the lower one. A more general criterion

was proposed by Warburton and Soni [9] in 1977 using a different

approach. In our notations, their criterion for neglecting modal
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coupling is

~i « Di (80)

in which the criterion para;~tle:1Di i)S given by

D
i

= ~ _11 ) - 1 (81)
C" W2

I) i
minj

using the error parameter ~ = 0.05. In contrast with the Hassel-

man criterion, the parameter Di takes into account the ratio of

the diagonal to the off-diagonal terms in the transformed damping

matrix. Both criteria imply looking through the whole set of i

and j pairs to find the extreme value, but in most practical

cases " i " may be taken as unity (i. e. fundamental mode) while

only " j " varies. Thus the criterion parameter (81) considers

the minimum value with respect to " j II index.

In our opinion, the Warburton and Soni criterion is the

more rational,and also includes the Hasselman criterion as a

special case. Hence, in the following, the equivalent approach

will be used to obtain suitable criteria for each of the ap

proximation procedures.

~-Superposition

starting with the transformed equations of motion (Eq.6),

they can be rewritten taking account of the fact that only the

transformed damping matrix is non-diagonal. Thus the i-th equa

tion of the full set of n coupled equations may be written

(82)

If a harmonic load is applied, both the loading and the response

may be written as follows

Q = QO eiwt
sa sa ,

a. = aPe iwt
I I

(83)

so Eq.82 becomes

( w~ - w2 ) a P + ;w~ C·· a~ - ~),f/, QOla I· D I)a ) - D <P,S sa •
j=l s=l

Now considering the i-th resonance, Eq.84 takes the form

(84)
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n n
i Wia :E Gija aJ = :E <Pi~ Q80a • (85)

j=1 8=1

According to the A-Superposition method, it is assumed that the

off-diagonal damping coefficients Cija are negligible. In this

case, Eq.85 can be simplified to

n
i wia Giia aio = :E <Pi~ Q:a ( 86)

s=1

Now we consider the exact modal equation (Eq.84) in the alterna-

tive form

n n
. G o_,,),aQo . "
Zwia iia ai - LJ 'Pis sa - ZWia LJ Cija aJ

s=1 j=<i>
(87)

where j=<i> means all values of the " j " index from 1 to n

except II i ". In order to evaluate the last term on the right

hand side of this equation we have to express the j-th general

displacement from the corresponding equation for the j-th coor

dinate in the i-th resonance

n n
( Wja - w?a ) aJ + iWia :E Cjia at = :E <P]'sQ:a

i=1 8=1
(88)

Until now we have followed the procedure used by Warburton and

Soni. However, they neglected all the damping terms in the j-th

modal equation imposing their small effect on the j-th general

displacement in the i-th resonance, i.e. the third summation in

Eq.88. Such an approach seems to us to be too approximate. It is

a good idea to retain at least the diagonal terms of the trans

formed damping matrix in the last equation. Then, we have

n
( Wja - W,~ ) aJ + i wia Cjja aJ = :E <PJ~ Q80a

8=1

and the solution of this equation becomes

(89)

(90)

After substitution of term (90) into the exact modal equation of

motion (84) and interchanging the summation signs, the i-th modal
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equation becomes

i wia Giia at = t [¢i~ Qs
o
a

s=l

n G.. ,.f.,q. ]
. '" IJa 'f'JS Q°

- 2 Wia LJ 2 2. sa
i=<i> Wia - Wia + 2Wia Giia

(91)

Now, if we compare the last equation (which is the exact modal

equation of i-th generalized coordinate in the i-th resonance)

with the approximate one (Eq.S6), we can conclude that the ap

proximation is valid if a following inequality is satisfied:

n

¢i~» ~ mod
i=<i>

where mod means the absolute value of the complex quantity.

Considering the maximum term among all those under the summation

sign after mUltiplication by the number of series member, the

right and the left hand side expressions become even more unequal

¢i~ » 2 ( n -1 ) ~ia

maxi

(92 )

(93)

(94)

we come to
maxi

1
~ia« ( )2 n-1

¢i~ » 2 ( n -1 ) ~ia

or, taking into account Eq.7b,

Giia
---r---'----v;:-----

Giia

After converting this inequality with respect to c.
<"'w

the final condition for validity of the A-Superposition

G·· ,.f.,.a fw~ r G
2

~_'f'_ls_ --..!!!- _ 1 + 4c ~~
C.. ,.f., a 2 <",a 2

IJa 'f' js Wia Giia
mm)

If this condition is satisfied, the modal displacements

may be found from Eq.90 as

n
2: ¢>i~ Q:a
8=1

a P=----
I £Wia Giia

(95)

and the final displacements in the physical coordinates are
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defined according to (7c).

Thus, in a more general sense with only a minor assump

tion, the approximation criterion is formulated for the i-th mode

vibrating under the s-th component of the external load expan

sion, evaluating all of the modal contributions to find the

minimum one. It is interesting to compare criterion (Eq.94) to

that formulated by Warburton and Soni. Neglecting the second term

in the brackets in the denominator (Which apparently is not

always valid because of the possibly high ratio of the diagonal

to the off-diagonal terms in the transformed damping matrix) and

also assuming that the ratio of normal vector elements is unity,

one comes to the condition

1c. « __
l",a n-l

minj

which is equivalent to Warburton and Soni's condition, but assum

ing their error parameter is given by ~ = 1/ (n-1) ; of course its

value is 0.05 in the case of a 21 degree-of-freedom system.

~-Superposition

Keeping the same algorithm, one can rewrite the trans

formed equations of motion in the B-general coordinates (Eq.12)

as follows

n ". n b
~Mijbbj +bi -Aibb - ~<Pi$Q$b (j =l,n). (96)
j=l 8=1

For a harmonic load of the type of (Eq.83), the i-th physical

displacement has an analogous form

b. = bPe iwt (97)
I I

and i-th modal equation will be

n n
-W2 ~ Mijb b/ + i wb/ - \b b/ = ~ <Pi~ Q8b

j=l 8=1

At the i-th resonance it becomes

n n

-Wi~ ~ Mijb b/ + i wib b,P = ~ <Pi~ Q:b
j=l 8=1

(98)

(99)
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If, according to the B-Superposition method, the off-diagonal

terms in the transformed mass matrix are neglected, the i-th

modal equation takes the simple but approximate form

n

i wib bt = ~ ¢>i~ Qs~
s=1

(100)

Let us rewrite the exact i-th modal equation (109) in

correspondence to the approximate form

n n
iWib bt = ~ ¢\~Q~ + wi1 ~ M ijb bl (101)

s=1 j<i>

An expression for the modal contributions included in the second

term in the right-hand side (101) can be determined by consider

ing the j-th modal equation in the i-th resonance and neglecting

off-diagonal terms in the transformed mass matrix. Hence, the

mentioned equation becomes

-Wib Mjjb bl + i wib bl- Ajb bl = ~ ¢>}s Qs~ (102)
s=1

Solving this equation with respect to the term bj and substitut-

ing the result in Eq.101, after interchanging the summation signs

we obtain the exact modal equation of motion in j-th general

coordinates

n { n M" b A. q }. b0 _" A. b 2" IJ 'PJ.~ Q0
2 Wib i - LJ 'Pis + Wib LJ 2 . sb

s=1 j<i> - (Ajb + WibMjjb ) + 2wib

Consequently, the condition for the two equations (100) and

to be equal is

(103)

(101)

(104)

or, considering only the largest term in this expansion,

(105)

maxj

Applying relations (13a) and (13b) between approximate eigenfre

quencies and modal damping ratios from one side, using the ele

ments of the transformed property matrices from the other side,

and solving the last inequality with respect to the i-th modal
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damping ratio, one can estimate the validity

Superposition by the condition

c. ~ M iib <Pi~ Mj;'bIWJb -ll + 4c~
~lb « M b 2 2 ~lb

n -1 ijb <Pj8 M iib wib

If this condition is satisfied, we can use the

solution derived from (100)

of the B-

(106)

(107)

Then the final displacements in the physical coordinates are

found according to formula (13c).

~-Superpositionmethod

In order to get an equivalent expression related to the

n-Superposition, we will repeat the procedure using equations of

motion derived by the n-transformation (Eq.17). For the i-th

general displacement we have

" . n n
di - Aid di + :E K ijd dj = :E <Pi~ Q8d

j=1 8=1
In the harmonic regime, when

the i-th modal equation becomes

n n
-r.J2d/ - i wA,.d dt + :E K ijd dl = :E <PJ~ Q:d

j=1 8=1

and in the i-th resonance ~ W = Wjd ) it reduces to the

n n

-iWid A,.d d/ + :E Kijd dl = :E <Pi~ Q:d
j=<i> 8=1

(108)

(109)

(110)

(111)

According to the idea of the n-superposition method, the off

diagonal terms of the transformed stiffness matrix are neglected,

and the equation is simplified to the form
n

-iWid Aid d/ = :E ¢Ji~ Q8d
8=1

It is possible to express the contribution from the other modes

to the i-th modal displacement, similarly, by considering their
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behaviour in the i-th resonance and retaining only the diagonal

terms in the transformed stiffness matrix

n
-WI~ d/ - i wid Ajd d/ + KJj"d d/ = ~ <PJ~ Qsd (112)

s=1

Thus, substitution of the approximate displacement d,j into the

properly rewritten i-th modal equation results in the following

-iw'd A'd dP = ~ j),.d - ~ K
ijd <Pj~ lQO ( )

1 I 1 LJ 'f'IS . LJ, ( K 2)' \ sd 113
s=1 J=<I> jjd -wid - 2Wid A jd

So, Eqs.111 and 113 would be similar if the condition is met

<Pi~» ~ mod
j<i>

(114)

or in terms of the maximum value of this expression

<Pi~» (n-l)

maxj

(115)

SUbstituting the expressions for the approximate eigenfrequency

and damping ratio (18a),(18b), the approximation condition is

obtained in the form €'d K"d <p.
d
jw7

d

I K"d

~id «_1_ _II__I_S _J_ - 1 +4e
d

- JJ- (116)
n-l K"d),¢ w~ J K"dIJ 'f'Js Id II

mlllJ
If condition (116) is satisfied, one can determine the modal

response from the simple equation (111) as

n d °
~ <Pis Q 8d

8=1
dP=- (117)

1 i wid Aid

and the final response from formula (13c).

4.2. Vibration of 9 story building with external damper

Response to an impulse load

As an example of application of the approximation methods

to MDOF systems we will consider a 9 story lumped mass building

with uniform mass, stiffness and internal damping distribution
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but with alternative positions of additional interstory dampers.

Two cases were studied: (1) the added damper is installed in the

eighth story (Fig.16a); (2) the added damper is installed in the

third story (Fig.16b). The following values of the physical

properties of a typical floor are assumed for the numerical

analysis: floor mass m = 0.1 Ton, interfloor stiffness k = 104

KN/m, and interfloor viscous damping coefficient c = 5 Ns/m. The

viscous coefficient for the added damper is three times larger,

i.e. C = 15 Ns/m. The resulting transformed property matrices and

eigenfrequencies are shown in Appendix B. In Table 2 eigenfre

quencies and corresponding modal damping ratios obtained from all

the approximation procedures are given for both cases of external

damper location.

Absolute displacements of the 9th and 6th floors of the 9

story building subjected to a basement motion of the single sine

wave impulse type were calculated using the Cal 86 program. The

input basement acceleration can be expressed as follows:

{
lOa sin 96t , a < t < 0.26s.

H (t ) = 0 t > 0.26s.

The exact solution was calculated by direct time integra

tion using the Wilson B - method. Fig. 17 presents the time

history response of the specified floors when the added damper is

in the 8th story. It is clear that the D - Superposition method

gives a better approximation of the top displacement than does

the standard method. But notice that the accuracy of D

superposition deteriorates when a lower floor displacement is

considered. If we install the added damper at the third floor

instead of the 8th floor (Fig. 18), the standard method is more

accurate for calculating response of 9th floor, but for the 6th

floor, both the standard and D-superposition methods give almost

the same error (approximately 7%) in the maximum displacement

evaluation. As was noted previously for the 2 lumped mass system,

the B-Superposition method can not describe the behaviour of the

lumped mass system because of the regular tri-diagonal structure

of the damping and stiffness matrices.
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4.3. Analytical and numerical comparison

Usually in practical problems, a point of major interest

is the response of the structure in its first resonance. The

dominant contribution in such a case will be from the fundamental

mode. That is why in the following, we will consider first mode,

involving the first row in the non-diagonal transformed matrix.

Based on the criteria derived in the previous section and the

transformed property matrices from Appendix B, it is possible to

conclude which of the highest modes has the greatest influence on

the fundamental mode. For example, taking i=l we observe the

maximum contributions: for the standard method - from the eighth

mode (j=8) and for the B-and D-Superposition methods - from ninth

mode (j=9). Note that the diagonal terms in the transformed

matrices are increasing according to the number of the mode;

therefore, it is necessary to keep in mind the high value of the

ratios Cjja/Ciia' Mjjb/Miib and Kjjd/Kiid that are contained in

the corresponding criteria.

Formally comparing the criteria (94), (106) and (116)

shows that the accuracy of the proposed B-and D-Superposition

procedures should increase as the damping in the system in

creases. For complicated systems with well spaced eigenfre

quencies the last mentioned ratios of diagonal terms are expected

to be higher, and since for the standard method (94) this ratio

is squared, one can expect deteriorating accuracy when this

approximation is used. In the other cases, the error of the A

Superposition approximation is expected to be lower than the

errors of B- or D-Superposition. In cases where the off-diagonal

terms are small compared with those in the diagonal, and where

the last diagonal term is large in comparison with the first one

could expect less error when the B-Superposition is used

(Eq.106). But for the chain type structures such as the examples

considered here (Appendix B) we can note that B-Superposition

gives a final off-diagonal term that is 2 to 3 times bigger than

the first diagonal term. Hence, for such systems certainly, B

Superposition method is not recommended.
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5. CONCLUSIONS

The following may be stated as the principal general

conclusions drawn from the research described in this report:

1. The method of decoupling the equations of motion that

generally is used in dynamic analysis of structural systems with

non-proportional damping employs a coordinate transformation

based on eigenvectors derived from the original system mass and

stiffness matrices; this is referred to as the standard or A
Superposition method in this report. Results of this study show

that A-Superposition should be used in the analysis of any lumped

mass 2-DOF detuned system (i.e. a system in which the frequencies

of the individual components are distinctly different). It also

is recommended for mUltistory lumped mass shear buildings if the

damping in the lower stories is greater than or equal to that in

the upper stories. On the other hand, this method leads to rather

large approximation errors in the second mode for tuned lumped 2

DOF systems, as well as in all response quantities for multistory

shear building with greater damping in the upper stories than in

the lower.

Thus it is clear that the standard method may give unex

pected equipment response errors in analysis of 2-DOF equipment

structure system. The calculated response of the structure is

more reliable than that of the equipment, but still is sUbjected

to discrepancy for systems with high average damping due to the

large approximation errors in the second mode contribution to the

structure motion. In general, this work has confirmed previous

research results that show the error sensitivity of the standard

method (A-Superposition) to variations in the damping coeffi-

cients either by increasing of average damping value or by

increasing variation of the damping coefficients within the

structure. Usually the response error is more sensitive to

changes in damping of equipment than of the structure.

2. The first alternative to the standard decoupling

method employs a coordinate transformation based on eigenvectors

derived from the original system stiffness and damping matrices;

it is referred to here as the ~-Superpositionmethod. As would be
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expected, this method leads to errors that are more sensitive to

mass variation than to damping and stiffness variation.

In the lumped parameter systems considered in this study,

the original stiffness and damping matrices are of tri-diagonal

form while the original mass matrix is diagonal; the generalized

mass matrix resulting from the coordinate transformation then

often has off-diagonal terms equal to or greater than those on

the diagonal. In this case, it is clear that neglect of the

diagonal terms may lead to unacceptable errors. Also, the general

analysis of MOOF systems shows that B-Superposition gives better

results for the lower modes than the higher ones, but that the A

and o-superposition methods are preferable in all respects.

3. The coordinate transformation employed in the second

alternative to the standard method, called Q-Superposition, is

based on eigenvectors derived from original system damping and

mass matrices. In contradiction to what might be expected, the

approximation error in this method is not as sensitive to varia

tion of the stiffness coefficients as is the standard method to

the damping coefficients. In the analysis of a well detuned

equipment-structure system, results from O-Superpositon are quite

acceptable for cases in which the ratio of equipment to struc

ture stiffness is considerably greater than the corresponding

mass ratio. O-Superpositon also is preferred to the standard

method for tuned systems if the equipment damping is at least

three times greater than that of the structure. In general, 0

Superposition is especially recommended for analysis of the

structure response, and is somewhat less reliable in predicting

the equipment response. In cases where the equipment damping is

equal to or less than the structure damping, O-Superposition can

lead to large approximation errors.

The O-Superposition method also is recommended for

analysis of MOOF lumped mass shear buildings if the damping of

the upper stories is greater than in the lower stories.

4. The revised standard method (B-Superposition) is a

modification of the standard method and is based on the same

coordinate transformation. The eigenfrequencies are calculated

from the uncoupled equations of motion obtained by neglecting the
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off-diagonal coefficients of the transformed damping matrix, as

in the standard method, but uses these frequencies in calculating

the modified modal damping ratios. The procedure can be applied

directly only for 2- or 3-00F systems, and was used in this work

only for study of lumped equipment-structure systems. The results

show that R-Superposition is most effective in reducing the

equipment response amplitude error as compared with the error

given by the standard method.

In principle, similar improvements could be proposed for

B- and O-Superposition applied to equipment-structure systems,

but the concept has not been explored in this work. Also, no

analyses have yet been done of MOOF systems using a revised

standard (R-Superposition) method.
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Appendix A. Dynamic characteristics of the

two lumped mass system.

A.l. The properties matrices in the physical coordinates.

c = [ cI -cI J (A. 1)
-c 1 c 1 + c2

K = [!1
1

-kl J
k l + k2

A.2. Transformed properties matrices in the general A

-coordinates.

c =a

where

Cjj = Cj f3Ja + CS_j ( 1 - f3}a )2

Cl 2 = 2~2w2ml ( ~-1f3 -1 )

M ja = m 1 + m2 ( 1 - f3}a )

(A. 3)

with the dimensionless parameters

( f = 1,2 )
~2

~=- •
~l

(A. 4)

The characteristic equation in the A-Superposition modal coor

dinates

(A. 5)

A.3. Transformed properties matrices in the general B

-coordinates.
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(A.6)

The characteristic equation in the B -basic coordinates

of which roots are

k O

)..0b = _ _ J_
J Co

J

(A. 7)

(A.8)

A.4. Transformed properties matrices in the general D

-coordinates.

(A.9)

where

kjj = Cj13lct + C3_j ( 1 - ~jd13jd )2

k12 = wim 1 ( ~pl - 1 )

M jd = Tn 1 + m 2 ( 1 - ~jd 13jd )2

with the dimensionless parameters of the form

(A.I0)

~jd
~jd =~ (A. 11)

The characteristic equation in the D -basic coordinates.

=0 (A.12)
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Appendix B. Transformed property matrices
for the 9 story building

Transformed damping matrix (A-Superposition method) :

1.424

-0.464 15.609

0.904 -6.928 45.767

0.908 -6.964 13.565 73.466 SYMM

C a = 0.252 -1.930 3.758 3.777 92.789

-0.848 6.500 -12.662 -12.727 -3.525 136.428

1.820 -13.938 27.151 27.292 7.560 -25.474 209.320

2.070 -15.868 30.909 31.070 8.607 -29.000 62.185 249.706

1.368 -10.48 20.423 20.530 5.68 -19.162 41.090 46.777 225.490

Transformed mass matrix (B-Superposition method):

.0133

.0330 .3434

-.0055 -.0745 .0339

-.0081 -.0456 .0136 .0190 SYMM

M b = -.0173 -.1038 .0223 .0179 .0447

.0116 .0286 -.0048 -.0070 -.0150 .0200

.0360 .2464 -.0528 -.0411 -.0872 .0312 .2103

.0037 .0930 -.0118 -.0021 -.0223 .0032 .0551 .0488

.0306 .1670 -.0417 -.0352 -.0638 .0265 .1549 .0250 .1403

Transformed stiffness matrix (D-Superposition method):

.27E4

.98E2 .26E5

-.21E3 .15E4 .71E5

.25E3 -.19E4 .40E4 .13E6 SYMM

K d = -.62E2 .46E3 -.98E3 .12E4 .18E6

.12E3 -.91E3 .19E4 -.24E4 .58E3 .25E6

-.16E3 .12E4 -.25E4 .31E4 -.75E3 .15E4 .33E6

.l1E3 -.80E3 .17E4 -.21E4 .51E3 -.10E4 .13E4.38E6

-.23E4 .17E5 -.35E5 .44E5 -.l1E5 .21E5 -.27E5 .18E5 .33E6
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K2/2 C2 K2/2

Figure 1. 2-DOF "structure-equipment" model
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a) added damper is at 8th floor b) added damper is at 3rd floor

Figure 16. 9-DOF structural model
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* * * exact solution
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