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PREFACE

This is the fourth report in a research sertes which is based on measurements made
of seismic strong ground motion by the large-scale digital érray of accelerometers in Taiwan,
called SMART-1. The array was installed and is operated by the Institute of Earth Sciences
and National Science Council, Taiwan, R.O.C.. The uniformly diligent work carried out by
scientists at the Institute has provided high-quality data for many studies. SMART-1 began
operation in September 1980 and through June 1989 recorded strong ground motions (with
some accelerations exceeding 0.3g) from over 50 local earthquakes. The first two reports in
the series are: UCB/EERC-82/18 by B. A. Bolt, C. H. Loh, J. Penzien, Y. B. Tsai and
Y. T. Yeh and UCB/EERC-85/82 by N. A. Abrahamson. In 1988, R. B. Darragh published
” Analysis of Near Source Waves: Separation of Wave Types Using Strong Motion Array
Recordings” in Report UCB/EERC-88/08. A research Summary through 1986 was published
in "Earthquake Spectra”, 3, 263-287, 1987 by N. A. Abrahamson, B. A. Bolt, R. B. Darragh,

J. Penzien and Y. B. Tsal.

From its inception, the SMART-1 research program has had as a major goal the
accumulation of ground motion data which were useful in exploring the effect of seismic in-
puts on multiply-supported large structures. For thecretical reasons, it was expected that
multiple-input effects could not be represented adequately by a single base excitation because
of phase differences and loss of wave coherency. For dynamical analysis of large structures for
earthquake resistance, inclusion of multiple-inputs might well be envisaged in certain circum-
stances. Over the last several years, earthquake engineers around the world have made use
of SMART-1 data to explore aspects of this problem, particularly that related to inccherency
in strong ground motion over distances of order 100 meters. This work has led, among other
results, to the construction of various coherency models of wave propagation as functions of

separation distance of the supports and of the frequency.

The present report by Dr. Hong Hao advances the study of the effects of the spatial
variation of ground motions on large multiply-supported structures. He has applied random
processes to develop particular simulation techniques that generate multiple-support inputs
which allow more realistic assessment of structural response than the usual present practice.
His main conclusions bear on two aspects of the problem. The first is the simulation of
realistic ground motion for spatially-correlated, quasi-stationary multiple ground motions and
the second is the development of an appropriate computer program which would simulate
structural response itself, including soti-structure interaction effects. He has suggested a model
for coherency with four parameters and has explored the nonlinear interaction between the
parameters. The models have been tested using earthquakes recorded by SMART-1. In his

second main contribution, Dr. Hong Hao has developed ways to interpolate multiple-motion
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time histories to preserve the properties of the prescribed ground motion and response spectra.
His newly-written computer program demonstrates that often there is a general reduction in
structural response when multiple inputs are used and that response modes such as rocking

and rotation are significant when different phasing is allowed at each input.

The report uses methods of array analysis not ordinarily available in the engineering
literature. For a basic explanation of these methods, readers are referred to ”Seismic Strong
Motion Synthetics,” B. A. Bolt (Editor), Academic Press, 1987.

B. A. Bolt

J. Penzien
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ABSTRACT

The spatial variability of ground motions recorded during 17 earthquakes by a strong
motion accelerograph ai'ray in Taiwan (SMART-1) is analyzed. The power spectral density
functions and envelope functions of the ground motion are calculated and compared with
previous results. A coherency function is suggested for pairs of stations as a function of
both frequency and alsc the projected separation distances between the stations in the wave
propagation and transverse directions, respectively. The apparent velocities of the seismic
waves are studied in different time windows as a function of frequency. A method is developed
to simulate and interpclate multiple ground motions that are spatially correlated, quasi-
stationary, and response spectrum compatible. Also, the equations that describe structural
response under multiple ground motion excitations are formulated in the cases both with and
without soil-structure interaction effects. Numerical methods for solving these equations in

the frequency domain are presented.

A computer program SSIAM is developed. It can simulate and interpolate spatially cor-
related, stationary or quasi-stationary multiple ground motions compatible with the prescribed
ground motion properties and the given response spectrum. It then uses these simulated
ground motions as the multiple inputs to solve the structural responses. By using program
SSIAM, some examples of ground motion simulation and interpolation are calenlated. The
results are presented and compared with the prescribed ground motion properties; also, some
examples of structural responses under the simulated multiple ground motion excitations are
calculated with soil-structure interaction effects. The results show that it is important to

consider the ground motion wave propagation effects in seismic response analysis of large

dimensional structures.
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CHAPTER 1 INTRODUCTION

During an earthquake, the ground motions produced at the multiple support points of
large structures, such as dams, pipelines, bridges, and nuclear power plants, can differ consid-
erably. Therefore, realistic assessments of structural response must consider spatial variations
of free-field ground motions. The seismic inputs at the structure’s multiple support points
must not only possess realistic characteristics individually but they must also be properly

cross-correlated with each other.

Simulation techniques can be used to generate such multiple support inputs provided
the appropriate cross-correlation functions can be defined. Strong ground motion array data
are now available for this purpose, including data from the SMART-1 (Strong Motion Array,
Taiwan-1) array, located in Lotung, Taiwan, sece Bolt et al. (1982), Darragh (1987).

In the research investigation reported herein, exiensive use has been made of the
SMART-1 data to establish free-field ground motion meodels in terms of random processes,
with time and spatial coordinates as the independent variables. Simulation procedures are
developed for generating time-histories of ground motions consistent with these models. The
time-histories can be used as the multiple inputs to large structures. These procedures have
been implemented into a computer program SSIAM which can also generate structural re-

sponse, including soil-structure interaction effects.

Chapter 2 of this report introduces the pertinent numerical methods developed for
processing properly cross-correlated time series. The techniques used include Fourier and
Hilbert transforms, various forms of wave filtering, and truncation techniques. Random process
properties such as covariance, correlation, spectral density, coherency, and phase spectra are
also discussed. Processing steps used in the research are listed and an example solution is
obtained.

Chapter 3 presents the results of wave analyses using the SMART-1 data, including
power spectral density functions, shape functions, apparent velocities, and coherency functions.
The power spectral demsity functions were generated for all components of ground motion
measured at the inner ring stations (see Figure 3.2) during earthquake Events 24 and 45.
These results are compared with previously published results by Tajimi (1960), Bolotin (1960},
Barstein (1960), Toki {1968), and Iyengar and Iyengar (1969). It is found that most of
the generated power spectral density functions are similar to the Tajimi-Kanai form. The
exceptions are the power spectral density functions for the vertical components of motion

measured during Event 24 which have forms similar to those for banded white noise.

Shape functions were also generated for all of the above mentioned components of



motion measured during Events 24 and 45.. They were compared with previously proposed
shape functions of Bolotin (1960), Bogdanoff et al. (1961), Amin and Ang (1966), Shinozuka
(1967), Toki (1968), Jennings et al. (1968), and Iyengar and Iyengar (1969). Most of the
generated shape functions are quite similar to the Bogdanoff form except for those generated
for the vertical components of motion measured during Event 24. These latter shape functions

are more similar to the Amin and Ang form.

Apparent wave velocity is one of the most important properties associated with spectral
variations in the ground motions. Unfortunately, it is a difficult parameter to evaluate from
field test data due to the complexities caused by wave reflections and refractions and noise
effects. In the past, it has been evaluated by several different methods, e.g. the aligned
motion method by Harichandran and Vanmarcke (1984) and the cross-correlation method
used by Loh (1985), Oliveira (1985), and Loh and Yeh (1988). In the investigation reported
herein, all apparent velocities were calculated by the frequency-wave number (F-K) method
used by Abrahamson and Bolt (1987).

Using SMART-1 data, many researchers have developed ground motion coherency mod-
els, including Harichandran and Vanmarcke (1984), Loh (1985), Tsai (1988}, Abrahamson
(1988), and Loh and Yeh (1988). In this research, coherency functions were intensively in-
vestigated using the data from 17 SMART-1 events. This analysis leads to the definition of

a new coherency model.

In Chapter 4, previous ground motion simulation methods are reviewed, including those
reported by Ruiz and Penzien (1969), Penzien and Watabe (1975), Kubo and Penzien (1976),
Penzien (1988), Hoshiya et al. (1976), Samaras et al. (1987), and Watabe (1987). A new
method of simulating spatially correlated motions is then developed based on random process
assumptions, including that of quasi-stationarity. In addition, an interpolation method is
developed that reduces computational effort when many spatially correlated components of
ground motion are required. Examples of spatially correlated motions are generated and

compared with the prescribed random characteristics.

Structural seismic response equations of motion are formulated in Chapter § to ac-
commodate single or multiple support inputs and to include soil-structure interaction effects,
if desired. Foundation impedance functions are used to account for such effects. Solutions
of the equations of motion are obtained through the frequency domain. Example sclutions
are presented and discussed in Chapter 6 which illustrate the importance of considering the

spatial variations of ground motion when assessing the seismic response of large structures.

General conclusions and recommendations are presented in Chapter 7.



CHAPTER 2 NUMERICAL PROCESSING METHODS FOR
RANDOM PROCESSES

The basis for probability modelling, processing and simulation of spatial variations of
ground motion is the theory of random processes. The pertinent numerical processing methods

of such processes are presented in the following sections.

2.1 Estimation of Covariances

Assume that z;(t) and z,(¢), 0 £ t £ T, are two joint stationary random processes

having zero mean values. An estimation of the autocovariance function for z,(t) is

T ||
By (=47 { m=nt|rhd ogri<7 2
0 |7|>T

For discrete data scries having N data points at intervals At, so that NAt =T, the

autocovariance function is estimated using

N1
L
B, ., ()=RW El zi(n+hzi(n) 0KISN (2.2)
0 [>N

It can be shown that both B, . (r) and B,,.,({) are biased estimators of the autoco-
variance function for finite 7 and N, i.e., they are asymptotically unbiased only as T' — oo
and N — oo, respectively. However, they do satisfy the positive definite property and their
mean square errors are small. Therefore, B,,,, (r) and B,,, {I) can be used as proper esti-

mators of the autocovariance function for continuous and discrete time series, respectively.

The estimator of the cross covariance function for processes z;(t) and =z(t) is

T—r
L [ zm(t)a(t+r)dt 0<r LT
0
Baalr) =1 1 7 2.3
s (1) ‘;}fol(t)zz(t+r)dt T <7r<0 (2.3)
0 l7|>T
For a discrete data series, Eq.(2.3) becomes
i
= Y zi(n)za(n+l) 0KI<KN
n=1
Besea ) = 3 2.4
= LY zi(n)zz(n+1) -N<I<O (2.4)
n=1
0 |1|> N



It can be shown that both B, .,(r) and B,,.,{I) are also biased estimators of the cross

covariance. They become unbiased only when T' — oo and N — co.

The autocorrelation coefficient and cross correlation coefficient functions of the discrete

time series z;(t} and z:(t) can be easily calculated using

proo () = 2200 25)
Parz, () = Bey, 1) (2.6)

\/Bfﬂlfﬂl (O)Bﬁzxa (O)
2.2 Estimation of Spectra, Coherency and Phase Spectrum

Assume z,(t) is a series in 0 <t < T having sample increment At; thus, the total

number of data points is N = L. The power spectral density function of z,(t) can be

estimated by first tapering z,(t) (Hao, 1989), and then evaluating its Fourier transform

+

Xi{wn) = Z zy (t, )e" ¥ min (2.7}

nm=—cQ

The power spectral density function is then obtained using

M
1 2rm. ., 2Zrm
Soie (@)= 5 ;:M W Xi (0 + =) X (0 4+ =) (2.8)
where W, is a weight function used in the frequency domain to smooth the spectrum, and
2M + 1 is the window width defining the number of consecutive discrete frequencies to be
smoothed. The smoothing spectral window W,, is normalized so that its values at all 2M +1
points sum to unity. Function X*(w,,) is the complex conjugate of X{w,), and T is the

period of the series z(t) resulting from the FFT procedure.

Equation {2.8) is equivalent to the Fourier transform of the convolution of W(l) with

the autocovariance as shown by

+<¢0 +o0
1

Sevea () = 7 f[/ W(I)B,.., (v — )dl]e~ " dr (2.9)

—_—o0 — oo

Abrahamson and Darragh (1987) have used the triangular shape window in the fre-

quency domain. The inverse Fourier transform of this window is given by

sin® (wqnl)
()

w(l)= A (2.10)
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which can be used to smooth the covariance function.

To compute the cross power spectral density function between z,(t) and z,(t), both
z,(t) and z,(t) need to be tapered. Then after transforming z,(t) and z(t) to the frequency

domain, the cross power spectral density function can be obtained using

Zrm

=2) (2.11)

M
. 1 2rm. ..
Saun(iw) = 5 ;MWle(er )X (w +
where Xj(w) is the complex conjugate of X;(w}, the Fourier transform of z;(t). The co-

herency function can now be calculated in accordance with

Sz =, (1w)
[Szlzl (OJ)S,,,,,, (("))]%'L

Voras (iw) = (2.12)

If uncorrelated noise is present in each of z,(t) and z;(t), it should be eliminated to
the extent possible by smoothing the power spectra before evaluating the coherency function;

otherwise, significant error will be introduced.

The phase spectrum can be calculated by the following expression

oo (Il i)
=t (Rehm,(iw)]) ' (2.13)

It can be shown that the variance of the smoothed coherency and the phase estimators
depend not only on the type and band width of the spectral window employed, but alsc on
the coherency. The variances of these estimators are small when the coherency is high, but
increase as the coherency decreases. Noise in the series will tend toc dominate when the
coherency values are low; thus, for weakly correlated series, smoothing to remove the noise is
very important. Some researchers also set up confidence levels for coherency by calculating
the numerical coherency values of the noise. Abrahamson (1985) reported 0.4 as a reasonable
coherency confidence level. In the present investigation, the confidence level was found to be
approximately 0.35 at low frequencies, increasing to 0.45 at 10Hz. These are the numerical
coherency values of the white noise after smoothing with a triangular shaped window of width
0.97Hz.

2.3 Estimation of Envelope Function

The envelope function of a time series can be calculated using the Hilbert transform

technique. The envelope function f.(t) of z(t) is defined as
L) =z(t) — /(L) (2.14)

5



where f;(t) is the Hilbert transform, which introduces a 90° phase shift with respect to z(t)
so that the envelope of the real time function can be obtained. The function f,(t) can be

calculated by the formula,

+ oo

fu(t) = 2’—” f [X (fw)e™t — X{—iw)e “*|dw (2.15)
0
and its Fourler transform by
Fr(w) = iX(iw)Sgn(w) (2.16)
where
1, w >0
Sgn(w) = {0, w=0 (2.17)
-1, w<0

Function f,{t) can now be obtained by applying the inverse FFT to Fj(w); that is
+ oo
f(t) = [ Fr(w)e* dw (2.18)

Hence the envelope of the time series z(t) can be obtained by the following formula

E(t) =| £.(8) 1= () + 2 (0% (2.19)

A more detailed description of the Hilbert transform theory and its applications can be seen
in Kanasewich (1981).

2.4 Computational Procedures and Examples

The practical procedure of calculating the functions introduced above will now be

outlined and some examples given:

Let us consider the two time series z(t) and y(t) shown in Fig. 2.1, which are ac-
celerograms recorded in the same direction in discrete form at two stations in the SMART-1
array having 400m separation. The recording time increment is At = 0.01sec. Assume that
they are samples of stationary processes within the time window 7 — 27sec having zero mean
values. Using At = 0.0lsec, N = 2! = 2048, and T = NAt = 20.48sec, each wave form can
be transformed using the FFT technique. The following steps are followed in calculating the

desired functions:
(a) Covariances, correlations, and envelope functions

1. Reduce each series by its mean value to satisfy the assumption of zero mean

processes.



2. Taper the series to make the series compatible with the periodic property
of the FFT requiring that the beginning and the ending values of the series

be continuocus.

3. Use Eq.(2.2) to calculate the autocovariance function and Eq.(2.4) to cal-
culate the cross covariance function. Then, normalize the autocovariance
function by its value at zero time lag, which yields the autocorrelation coef-
ficient function as given by Eq.(2.5). Normalize the cross covariance function
by the product of B,,(0) and B,,(0), which gives the cross correlation co-
efficient function of Eq.(2.6). Note that the time lag 7 only needs to be
calculated up to 10 or 20 percent of 7. Larger lags will result in unreliable
results since, by shifting the two series away in the convolution process, a

lot of information will be lost.

4. Using the Hilbert transformation technique, the envelope function can be

calculated.

Figure 2.2 shows the autocorrelation coefficient function of z(t). Since this function
is an even function, it need be evaluated for positive time lags only. Figure 2.3 shows the
cross correlation coefficient function of z(t) and y(t). Unlike the autocorrelation coefficient
function, its peak value equals 0.769, which does not occur at zero lag but at r = 0.07sec.
For the wave propagation problem, this means that the dominant waves travel from the point
of measuring z(t) to the point of measuring y(t) in 0.07sec. This information which is very
important in studying the spatial variation of ground motion, can be used to calculate the
apparent wave velocity. This velocity is calculated by dividing the projected distance along
the main wave propagation direction by r. Figures 2.4 and 2.5 show envelope functions of

z(t) and y(t), respectively.
(b) Power spectrum, coherency and phase spectrum

1. Remove the mean and taper of the sample wave forms.
2. Compute the Fourier transform of each wave form

3. Filter the wave forms in the frequency domain. If the wave forms are
represented by frequencies higher than the Nyquist frequency f, = 1/(2At),
the power spectrum will be aliased into a power spectrum represented only
in the principal range [—f,,f.]. In this case, the wave forms should be
filtered to remove the power at frequencies above f,. Also, for practical

reasons, the power below a selected frequency should be removed.



. Choose the proper smoothing window shape and width. The bigger the
window width, the smoother the spectrum will be; however the resclution of
the calculated spectrum will be low. The window width should be chosen
so that it not only results in a satisfactory smoothing spectrum, but also

keeps the resolution as high as possible.

. Use Eq.(2.8) to calculate the power spectral density function. Figure 2.6
shows the power spectral density function of z(t) obtained using a triangular

smoothing window with a band width equal to 0.4Hz.

. Use Eq.(2.11) to calculate the cross power spectral density function. Figure
2.7 shows the absolute value of the cross power spectral density function of

z(t) and y(t) using a triangular smoothing window of band width 0.4Hz

. Use the results obtained in Step 5 and Step 6 to calculate coherency through
Eq.(2.12). Be sure that the power spectrum has been smoothed so that the
calculated absclute coherency values will not equal unity. Figure 2.8 shows

the absolute-value coherency function between z(t) and y(t).

. Use the cross power spectral density function or the coherency function to

calculate the phase spectrum for z(t) and y(t} as shown in Fig. 2.9.
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CHAPTER 3 MULTIPLE STATION GROUND
MOTION PROCESSING

When ground motions are simulated for engineering design purposes, they should be re-
alistic representations of the seismic motions expected at the site under consideration. Hence,
it is necessary to know such properties of the expected ground motion as duration, peak,
shape function, power spectral density function, coherency, and apparent velocity. Knowing
these ground motion properties, one can generate realistic inputs to be used in dynamic anal-
yses; and thus, contribute to the design of economical and safe structures. In this chapter,
the recorded SMART-1 ground motions of two earthquake events are analyzed to establish
shape functions, power spectral density functions, and apparent wave velocities with respect
to different frequencies. Also, the ground motions are analyzed to establish a coherency func-
tion which can be used in simulating spatial variation of the ground motions. While these
functions are site specific for the SMART-1 site, they can also be used for sites with similar

properties.

3.1 The SMART-1 Array

The SMART-1 array, see Bolt, et al. (1982) and Darragh (1987), is the first high
density array developed that permits the study of spatial variation of ground motion in
a small area. The array is located in the northeast corner of Taiwan near the city of
Lotung on the Lan-yang plain; see Fig. 3.1. The array consists of 37 force-balanced triaxial
accelerometers configured in three circular concentric rings of radii 200m, 1000m, and 2000m.
The three rings are named I(inner), M(middle), and O(outer), respectively. There are 12
stations in each ring named from 1 to 12, and one center station named C-00. The distance
between station pairs varies from a minimum of approximately 105m to a maximum of 4000m.
In June 1983, two additional stations, E-01 and E-02, were added tc the array at 2.8km and

4.8km south of the center station. The configuration of the array is shown in Fig. 3.2

The SMART-1 array is located on recent alluvium. The ground water level is almost
at ground surface. The area is very flat having surface elevations which vary from 2.4m
to 18.1m. All stations are located on soil sites, except for station E-02 which is located on
rock. Two north-south cross sections are shown in Fig. 3.3. The soils beneath the main array
consist of 4-12 meters of clays and muds over recent alluvium of depths up to 50m. Below
the alluvium layer are gravels having pebble sizes which increase with depth. The bedrock
below the gravels is slate. The depth of the bedrock varies from 170m at the southern end
of the outer ring to 600m at the northern end of the outer ring. The foundation properties
and the P and S wave velocities are given in Table 3.1. These data were obtained by the
HCK Geophysical Company by drilling seven holes and using crosshole and uphole seismic

14



methods.

3.2 Information Recorded by the SMART-1 Array

This array recorded its first earthquake on October 18, 1980. Up to January, 1988, 50
events had been recorded by some or all stations in the array. Figure 3.4 shows the epicentral
positions of the seventeen recorded events used in this study. Among all these events, Events
24 and 45 were chosen to be studied thoroughly for power spectral density functions, envelope
functions, apparent velocities, and coherency because of their long epicentral distances and
high magnitudes. Figure 3.5 shows some of the recorded accelerograms of Event 24. Besides
completely processing the recorded accelerograms of Events 24 and 45, a total of seventeen
events were chosen to be studied intemsively for coherency effects. Special study is needed
since coherency is the most important function characterizing spatial variations of ground
motion. The seventeen earthquakes chosen were selected on the basis of having epicentral
distances larger than 30km, magnitudes larger than 5, and having triggered at least seven of

the inner ring stations, Table 3.2 gives information on each of these events.

3.3 Power Spectral Density Function

The power spectral density function is a measure of the frequency content in a station-
ary random process. Earthquake ground motions are actually nonstationary in both the time
and frequency domains. It is found, however, that a satisfactory and practical way of treating
ground motion nonstationarity, is to assume the ground motions to be piecewise stationary or
quasi-stationary. This assumption is made on the basis that ground motions propagating in
the earth usually consist of three different types of wave; the primary P-wave, the secondary
S-wave, and surface waves (Rayleigh and Love waves). The motions of each wave type can
be modelled as a stationary process better than the combined motions of all the wave types.

The piecewise stationary assumption is applied in the subsequent treatment.

Power spectral density functions were calculated for all components of ground motion
recorded at the inner ring stations for Events 24 and 45 using the frequency domain method
given in the previous chapter, Eq.(2.8). Triangular smoothing windows were used for all
the calculations using the data of Events 24 and 45. The window width and M-value were
chosen such that the resulting power spectral density functions were smooth encugh while
their standard deviations were not too large. It was found that the vertical components of
ground motion have higher frequency content and less energy than the horizontal components
for both Events 24 and 45; see Hao (1989). Also, the power spectral density functions for a
particular component are almost the same at all the inner ring stations for each of the two
events, and that the frequency content of the ground motion decreases as the time window

moves to later times.
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On the basis of the results presented and discussed in Hao (1989) for Events 24 and
45, the following conclusions have been drawn.

1. Attenuation of the ground motion wave propagation can be neglected across
the SMART-1 array, i.e. the intensities of corresponding components of

motion are nearly constant for all stations in the array.

2. The quasi-stationary frequency content assumption can be used to model

the nonstationarity of the ground motion.

3. A power spectral density function of the Tajimi-Kanai form can be satisfac-

torily used for simulation purposes.

Thus, power spectral density functions representing the entire site can be obtained by
averaging those for corresponding components of motion recorded throughout the array. This
averaging procedure will greatly reduce the contributiocns from noise in the resulting power
spectral density functions. Such average results for each component, each time window, and
each event were obtained. The results for the EW components of motion for each of the
two events are shown in Figs. 3.6 through 3.11. These results were used to establish the
Tajimi-Kanai model in each case; the expression for the Tajimi-Kanai form is given by

144€22;
S{w) = (1“%)2+;§2£SO (3.1)
F

3
Owg

the corresponding values of w,, §,, and S, were obtained for Events 24 and 45; see Table
3.3.

The results for the vertical components of motion for Event 24 are missing in Table
3.3, since it was found that the Tajifni-Kanai model was inadequate. Figure 3.12 shows an
example of the averaged power spectral density function for the vertical component of motion
in the first window as recorded during Event 24. It is seen that the banded white noise
model fits better than the Tajimi-Kanai model in this case. It can be seen that the central
frequency w, decreases with time for all cases except the EW component for Event 24, where
wy actually increases from 1.0Hz to 1.2Hz. The damping ratio £, of the first time window
is much higher than that of the second window. In the first window, £, = 0.95, which
corresponds to a very broad band window. In the second window, £, = 0.3 which represents

a much narrower band.

The above power spectral density function results can be used to simulate ground
motions in consecutive time windows separately. The stationarity assumption can be used
in each time window consistent with the corresponding power spectral density function. The

ground motion mean square intensity in each window can be calculated by integration of the
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power spectral density function as

ﬁ=[ S(@)da (3.2)
0
Substituting the Tajimi-Kanai power spectral density function of Eq.(3.1) into Eq.(3.2) arnd

integrating gives the covariance of motion in the approximate form

1+ 4€2
46,

see Ruiz and Penzien (1969). By using Eq.(3.3) and the parameters in Table 3.3, the normal-

ﬁ:Lwamm=% (3.3)

ized scale factors for the power spectral density function in each time window are obtained
giving the results presented in Table 3.4. These scale factors for the power spectral density
functions are used to maintain uniform intensity of ground motion within each time window

before applying the time-dependent shape function.
3.4 Shape Function

The shape function is used to characterize ground motion nonstationarity in the time
domain. It is the normalized envelope function of ground motion. Shape functions of all
accelerograms recorded during Events 24 and 45 at the inner ring stations were evaluated
using the Hilbert transform approach described in Chapter 2; see Eq.(2.19). Since there is
no significant attenuation of the ground motions across the array, the shape functions of the
corresponding accelerograms recorded at all inner ring stations can be assumed the same.
Thus, a representative ground motion accelerogram shape function for each component of
motion can be obtained by averaging the shape functions for corresponding accelerograms.
These averaged shape functions for all three components were calculated and plotted. Figures
3.13 and 3.14 show the averaged shape function for the EW component using data from
Events 24 and 45.

It is seen that, except for those generated using the vertical components of motion
recorded during Event 24, all the calculated shape functions of accelerograms are similar to
the Bogdanoff type having the form

0 ={2n 130 (3.4

where @ and b are parameters to be determined consistent with observed ground motion
nonstationarity. Figure 3.15 shows the averaged envelope functions for motions recorded in
the vertical direction during Event 24. These shape functions fit better the Amin and Ang

form given by
() 0<t<ty

£(t) = I t<t<t (3.5)

Ioe_c(tut:) t; <1

17



where I, represents ground motion intensity. The normalized shape function is obtained by
setting I, = 1. Quantities t;, t; are values of time that separate the shape function into its
parabolic, constant, and exponential decay forms. Constant ¢ controls the rate of decay at

the end of the motion.

To fit the Bogdanoff shape function given by Eq.(3.4), two parameters a and b can be
determined by the condition that at a certain time t =t,, £(t) reaches its peak value which
is normalized to be one. Then, by differentiating Eq.(3.4) with respect to i, one obtains

1

tp: ‘z—b

(3.6)

and

a = /2be (3.7)

By solving these two equations for a and b, the shape functions can be determined in terms

of t, and e (the base of the natural logarithm) for all three components motion.

The results for a, b, and t, of Events 24 and 45 are shown in Table 3.5. Since the
results of the vertical component for Event 24 do not fit this type of shape function properly,

values for the above constants are not given in Table 3.5.

3.5 Apparent Velocity

Apparent velocity is one of the most difficult parameters to assess due to the fact that
the waves are of different types moving in different directions experiencing multiple reflections

and refractions.

Some example apparent velocities calculated for Event 45 by the frequency-wave-number
(F-K) method (Abrahamson, 1985) are shown in Fig. 3.16. In this report, the apparent
velocities are assumed to be frequency independent. Thus, by approximately fitting many
F-K results, the apparent velocities of Event 24 are obtained as 3km/s, and 4km/s for the
horizontal and vertical components, respectively, and 4km/s and 6km/s for the apparent
velocity values of Event 45. Two F-K diagrams of the approaching wave field are shown in
Fig. 3.17. From this figure, it is seen that the approaching wave directions are very diverse.

3.6 Coherency
As previously mentioned, coherency is one of the most important and effective quan-

tities used to describe the spatial variations of ground motion. Using the SMART-1 data,

several authors have studied the coherency relation given as

. . . Lig :
Vg (’wadij) :| Yig ("":dﬁj) I ezp[lwv{)i] (3'8)

a
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where subscripts i and j represent the two different stations, z;; is the projected distance
in the wave propagating direction between stations 1 and j, v, is apparent velocity, @ is
circular frequency, and | ~;;(i@,d;;) | is the loss of coherency with separation due to unknown
effects. All the loss of coherency models, that have been proposed, are dependent only on the
absolute distance between the the two stations; see Loh (1985), Harrichandran and Vanmarcke
(1984), Abrahamson (1988), Tsai (1988), and Loh and Yeh (1988). It has been found that
the loss of coherency is dependent on both the projected distance in the direction of wave

propagation (df.), and the projected distance transverse to it {dt;) (Hao, 1989).

To develop a new two-dimensional coherency model, the loss of coherency between all
station pairs for all components of ground motion recorded during Events 24 and 45 was
calculated. It has been found that the value‘s of loss of coherency were almost the same for
the ground motions recorded in the two horizontal directions, but were different for those
in the vertical direction (Hao, 1989). On the basis of the calculated losses of coherency
for Events 24 and 45, it was found that the coherency model of Eq.(3.8) can still be used
provided it is expressed in the two dimensional form given by

| 1S, dy, ) |= exp(~Fad, = BadtYezpl—(a (\Jdl; + o (1)y/d2,) 1] (3.9)

where f is frequency and where djj and d; are the projected longitudinal and transverse
distances defined above. Parameters §; and f; are constants which control the coherency
values at zero frequency while o, (f) and a2(f) are two frequency dependent parameters
which control the loss of coherency with respect to frequency. All parameters B:, 82, «,(/f)
and ao(f) were determined by fitting Eq.(3.9) to the coherency data using the least squares
method.

In order to investigate coherency, ground motions recorded during the 17 events shown
in Table 3.2 were used to evaluate f;, B2, a;(f) and ax(f). Since the loss of coherency
with distance can be assumed the same for the two horizontal components of motion, only
the NS components were analyzed. The coherencies of the vertical components were studied
for Events 24 and 45 only.

Loss of coherency values were calculated for all components of motion recorded at the
inner ring station pairs. To aid in interpreting the results, the inner ring station pairs were
divided into 9 groups with respect to the distances d! ; and d}; falling in the ranges 0-100m,
100-200m, and 200-400m. All loss of coherency values for station pairs in the same group
were averaged. These average values were then considered to represent the loss of coherency
for d;; and d}, at distances of 50m, 150m, and 300m.

The two constant parameters 8, and S; were determined using the loss of coherency
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values at zero frequency for each of the 9 distance groups for each event. The detailed

procedure can be seen in Hao (1989); the results are presented in Table 3.6 for all 17 events.

To calculate the two frequency parameter functions o;(f) and a{f) for each event,

the least squares method was used. It was found that two nonlinear functions

o =2 b c
(f) Frert

aa(f)=§+ef+g

best fit the raw data, where a, b, ¢, d, ¢, and g are six constants, which were obtained

(3.10)

by weighted least squares fitting. The values of the six constants obtained for all 17 events,
which are valid for 0.05H2 < f < 10Hz and 0 < dij,dﬁj < 400m, are presented in Table
3.7. When f > 10Hz, the loss of coherency values can be assumed to be constant at the
f =10Hz value. The detailed procedure can be found in Hao (1989).

Figures 3.18 through 3.21 show comparisons between the loss of coberency values cal-
culated by Eq.(3.9) and the generated values using the raw data for Events 24, 31, 45, and
48, Similar comparisons were found using the data for all 17 events. From these figures, it
cz;n be noticed that, at the lower frequencies, the analytical model values are always smaller
than those generated directly from the raw data. Also notice that the analytical model decays
as e~/ while the raw data loss of coherency decays more closely to e~/ * at short distances.
This latter incompatibility results from a lack of raw data for short distances. A more so-
phisticated model, that would properly control the loss of coherency in the short distance
range, could be obtained for a;(f) and a;(f), if more raw data were available. Figures 3.22
through 3.24 show the model errors in loss of coherency for Event 45 calculated for all the
available distances. The model e, (f) and a5 (f) functions for all 17 events were determined.
The results for Events 20, 22, 23, 24, 41, 45, 46, 47 are shown in Figs. 3.25 and 3.26.

From Table 3.8, and the calculated loss of coherency values, it is observed that the g
values are dependent on peak ground acceleration. Figures 3.27 and 3.28 show the 4, and 5,
relations, respectively, with respect to PGA. 'I:he B values are seen to decrease with increasing
PGA which corresponds to an increase in loss of coherency values. This is because the ground
motion energy dissipation from wave propagation through the same distance, is the same. A
ground motion having a higher PGA usually contains a higher amount of energy. Consider
two waves travelling along the same path between points P and Q, with energy content E,
and E, at the point P. If § is the amount of energy dissipated by the waves between P
and Q, then the proportional energy dissipation is defined to be ELI and E‘i—: respectively.

If B, > E,, then 6/E <6/E,

That is, the proportional energy dissipation of a ground motion with a higher PGA is smaller
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than the proportional energy dissipation of a ground motion with a lower PGA, along the
same path. It follows that the ground motion, that has the higher proportional energy
dissipation, has smaller loss of coherency values along the same path. Another property that
can be noticed is that B, is larger than B, for the events with azimuths between 90° and
180°, except for Event 33, and B, is smaller than B, for the events with azimuths in the
range 0° — 90 and 180° — 270°. This phenomencn takes place because of the presence of
a mountain to the north-west of the SMART-1 site while the terrain is flat in all other

directions. This mountain will certainly disturb the propagation of plane waves.

The same methods of processing were used for the ground motions recorded in the
vertical component of Events 24 and 45. The B values obtained were #; = 1.795 x 10™2 and
B2 = 1.442 x 1073 for Event 24, and #; = 2.014 x 10~* and B, = 1.066 x 10~* for Event 45.
The 6 constants in the a functions {(a, b, ¢, d, ¢, and g) are 5.331 x 10™*, —4.740 x 107°,
6.507 x 1075, —3.891 x 107°, ~7.571 x 10~° and 1.025 x 10~ 3, respectively, for Event 24 and
1.455 x 1072, 1.711 x 104, —3.024 x 107%, —1.255 x 1072, ~1.255 x 10~* and 2.327 x 1073,
respectively, for Event 45. The o functions for the vertical components of the two events are

shown in Fig. 3.29.

21



Table 3.1 Velocity and Moduli Values

d‘(*f[")th V(n/s)| V (m/s)| v | Glkg/en?)| E(kg/en?)
0-5 370 120 0.441 264 761

5-8 810 140 0.485 360 1069
8-13 1270 190 0.488 663 1973
13-31 1330 220 0.486 889 2642
31-34 1330 280 0.477 1440 4254
34-48 1250 250 0.479 1148 3396
48-60 1220 270 0.474 1339 3947
60-80 1470 320 0.475 1881 5549
80-150 1540 480 0.388] 4232 | 11833
Vp=P wave velocity G=Shear modulus:pV:

vs=s wave velocity E=Young's modulus=2G{1+v)

p =Bulk density = 1.8gm/cc

v =Poisson ratio
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Table 3.4 Scale Factors for the Power Spectral Density Functions

Window{ Event 24 Event 45
number | NS |EW [DN| NS |EW | DN

1 10]10 101010
2 1.3410.94 1.4911.24} 1.0
3 1.6511.06| 2.0711.80(2.82

Table 3.5 Parameters for the Shape Functions

Event 24 Event 45
NS EW |DN| NS EW DN
tmaz(8)| 8 11 12 12 8
a 0.206 0.15 0.1347 | 0.1347 | 0.206
b 0.0078 | 0.00413 0.00347 | 0.00347 1 0.0078

25



, OTX€CLY [ O1XG0Z T [, OIX0I0 6 |, OTXOEL'S [, OIX68°9 | o4
x - - : x - - .
g OTXI6E T [, 01%08%"L [ OIXE6L"T [, OIX601°1 |, 01%e90°€ | 14
8% ¥ 9 Sk 182 Ay
, OIXIZH 1 (. OIX0E8'9 |, O1X0E8'Z |, OIXOIL'E |, OIX088'¥ |, O1X001'S g
. : . . : . 1
g OIXECE'6 |, OIX0I6°L |, OIXOES'E |, OIX018°2 |, OIX029°¥ |, O1X05¢'2 d
oF 1€ ot £E 1€ o€ JusAY
p_O1Y0IE™9 |, OIX0Z8°T |, OIXI1Z'1 |, _01%098°1 |, OIXOIL'E |, O1%0L9°€E g
: . . : . : 1
,-O1X0SS°E€ |, OIX06€°% |, 01%629°g |, 01%062'S [, OIXOEL'T |, O1X0SE"S d
63 ord Ve €2 22 02 IUdAY

©0RA ¢ pale[noTed 9'¢ dquL,

26



vnoﬁthw.m mnogxMNv.©| vnoﬁxmmm.m| M|o~x®mo.~x mnoﬂxmwm.o m:oaxoﬁm.m s
vloﬁxmoo.m mnoﬁxomo.ﬁi m:oﬁxmhw.ﬁn v;o~xmmm.~x wloﬁxmbﬁ.m mloﬁxmmw.ﬁ V24
vlomxmmw.m m|o~x~0h.v| MIoﬁxoﬁﬁ.ﬁ vnoﬁxmoo.wl mno~xmom.~ mnoﬁxmmo.m or
vloﬁxmom.~| wloﬁxmwm.bl mnoﬁxmwﬁ.m vloﬁxuhﬂ.ﬁ mloﬁxﬂﬁm.ﬁl M|o~xmmm.m Sb
vaoﬁxmov.hl mloﬁwaN.v mloﬁxmmm.v vuoumeN.g oloﬁxwmw.mn muoﬂxmhm.ﬁ 1¥
m;oﬁxboo.ﬁl mloﬁxmmo.v M|o~xomo.w m:o~x~mw.~| mloﬁxomm.m Nloﬁtho.ﬁ oy
mloﬁxbmw.m V|o~x©wo.~| Nloﬁwiﬁ.ﬁl muoﬁxmmv.ml vloﬂxﬁmv.a N|o~x©m~.~ LE
vloﬁxaﬂm.wl mvo~xmvm.~ mloﬁxwmv.h vloﬁxmhv.~| mloﬁxhow.a vloﬁxovw.w 9t
mno~xmoo.~| mloﬁtho.m mloﬁxmﬁm.m mloﬁxwho.m mloﬁmeN.ﬁl mnoﬁxvmo.m €t
mro~xmw~.~| mloﬁxmmm.m mnoﬁxmwo.b mnoﬂxmhm.ﬁl mloﬁxoww.b mnoﬁxmmv.h £
m:oﬁxmﬁﬁ.ﬂl wloﬁxmmm.m. m|oﬁxmm©.© vnoﬁxmmm.ms m|o~x~m©.m Nloﬁxwoo.ﬁ ot
mloﬁxboo.ml v:oﬁxmom.ﬂ M|O~xhow.m mnoameN.ﬁ mloﬁxwmm.mn vloﬁxhhﬁ.vl 6¢
M|o~mem.Ml VIoﬁxmom.ﬁ N|o~xmmm.~ vloﬁxQVN.wn mloﬁxovo.m muoﬁxwﬁo.b Ge
vloﬁxomo.ﬁl mloﬁxomm.w mnoﬁxomw.m mloﬁxNvo.N wloﬁxmmw.wl mnoﬁxmﬁﬁ.m 144
vnoﬁxmwv.wu mloﬁxowv.m mnoﬁxwﬁo.h mloﬁxmvv.~| mlogxmvm.h mloﬁxmoo.m 1 X4
vloﬁxﬁmw.m mloﬁxvow.ml M|o~xvv©.m mno~x~mm.~| muoﬁxmﬁw.w MIoﬁxmmo.m [44
vnoﬁxmmm.vl mloﬁthw.ﬁ mtoﬂxvmm.v muoﬁxmmm.ﬁl mloﬁxomm.m N|o~x®mm.~ 074

3 = P o q 1] JUDAY

suoOUN] © syj Ul SHURISUCD ¢ dqe],

27



LATITUDE

2u.0

26.0

25.0

23.0

el

8.0 50.0 KM
|

T
121.0 122.0

LONGITUBE

Fig.3.1 Map of the SMART-1 Location

28

123.0



. M0
a
- Y
4 rY
3 ‘AAE:OI
P4 a
Sat a
& »H
r Y
a &
a a
-
r
a &
JEO1
| - . (]
0. 1. z.
E-02 ke

Fig.3.2 The Configuration of the SMART-1 Array




£2l1y T-LIVINS 943 JO SUONRG 88010 YINOS-YHON OM], ¢'¢'Stg

Juolispueg wy w [

3ua 203} TQ 01 2uUad0y

¥ (ooeg) 23e1s susvoy
(998 /w Q0LL)
238[S ‘PIT[IT31y SuadoIW

_ e . . 4
el var | (o@s/u 0001-005)  / as-ar S
suolspues “23TTIT8ay 2U03sSpuLeg 9UIDOITTQ 03 FUIV0Y UNTARTTY U203y
SUPDO 03 dua203TT0
,a-a @1130ad Buore A3071098 9oezansqng
wy'g [}
Nt
21e0s
(93s/u QOEE) \\ - \\
SITTS dusdod ITT1T8ay 2uadoTy
A\
- \\\\\\\
\l\l.\ \\\\\lu.'” i yi s _—
T A I\ ors-9L o031 ooh3L S
auozspues*aITTTTIday

(938 /wpp01-00%)

QU330 031 |3Uv208TT0 WNTANTTY 3USDBY

,0-V aT71301d Suore £3070s8 9devjansgng



25.50
i
r

LONGITUBE

“'Fig.3.4 Epicentral Positions of the 17 Recorded Events

31

[ =
L
a - -
20
8
7| .24
23 i
&
=
z o
Q- !
|}
m
ol
oJ b
o 0.0 0.0
0 KM
~N T T T
119.50 120. 37 121.23 122.10 122.97



¥g JudAy
Suunp uolall§ SN Ul sweiSolsaody papiodsy g¢'g iy

Of 0€ Oc 01 0

—de.-duddliJ‘dquJJldJ‘-J —JJJJJJ-di—-J-J-JJ-d—

J33S , ; 0701
1e8 o°0s-

0°05 -

1e8 o°os-

188 o0°0s-
0°0S- -
188 o0-0s-
0°0S- -

A AR e

00-2:p

SO-w:p

50-0:p

32



(09801-g mopuipyy auill) ¥
JUIAT SUUNp U0 MJ Ul papioddy Suol1vII[ID

-0y o uvyoung Kysue(] [eiyoedg amod paSuiaay 9'¢ g

(zy)Aausnbayy
0001 00’8 00’9 00'v 00°C _ co.m
000001
n
o
00000¢ =
00000¢

00000%

33



(09s61-6 mopuip awilL) ¥
JuaAy Suunp uolpeI MF Ul paploddy SUOIIRII[ID

-y 10y uolouny £yisua( [eipdadg 1amod padeieay  Lg81q

(zy)Aouanbaly :
om@ _. 00’8 00’9 [V 4 00°¢ 0

ettt a sl st st e b

<
oo

0000002
v
2

000000+

IR LR AR LR E R ER!

0000009



000l

(098gZ-81 mopuipy owiy) pz
JuaAl Buump uoydRIY] MF Ul Paploday SUOI}eId[3d

OV 10} uorpung Asud( [v1joadg 1emod paseleay 8¢ 81

(zy)Aouenba.y
00’8 009 00'¥ 00'¢ 0

o
oo

00000S

0000001

R ERE R R R e

00000%1

(3)es

35



(09s01-g mopuipy eung) cp
jusAg 3unnp uoljAII] MF Ul PIpIoIdY SUOIRII[ID

-0y 10} uotjpoung £yisua(g _wgoooam lamod padeloay g'¢B14

(zy)Aouenbauy
00's¢ 00°0¢ 00°si 00'0l w 00°0
Ll L L L A L L) LA L At 1 1.1 --rh—hPP-F-Ll—L?bnn Per\PFb-—lo

000006
w
o
000000} =
000006 |

000000¢



(99867-6 mopuipy auny) gp
JusAy 3ulnp uolpAI( MH Ul PIPI0IFY SUOIIRIIED

OV 10} uorpuny £yisua( [elpadg zemoq pafelsay QrgSig

(zy)Aousnbauy
00°'s¢ 00°0¢ oo'si- 00°0l

L s e 1 a2 00321 sxa 2220t frraasstarlrrirar

0000000+

(f)os

00000008

(TTrT I T Ty T T T TITTT Y

000000021}

37



(0988g-g7 mopuipy euny) gy
JUSAY 3ulnp UOIRI(J MH Ul PaPI0IIY SUOIJRIIID

-V o} uoipung Lysua(] [eijoadg iamog peSesoay medy

(zy)Aouenba.y
0Q°G¢ 00°0¢ 00°Gl 000l ow.m 00°0
ottt st s eablos ettt gsadbs s st g2 el et gratig O
000000S
- 00000001
000000s 1

0000000¢

(f)°s

38



000!

(09801-g mopuipy awiL) yg juesg
Suump uoldall(] [Bd1}M8 Ul PapIodsY SUOIJRIG[ED

-0V o} uompuny Aysua [erjoedg semoq paSeiaay gy-gdig

(zy)Aouanbauy
00’8 00°9 00'¥ 00°¢

0000¢

0000V

39



¥Z Ay Suunp uopoaIl MG Ul paploddy
SBUOIION punoiy) Joj uolpung adoppauy peSeraay £I'¢-31g

. (o8s)awily
00°0¢ 00°St ﬁ.E_.o_ ow.m 00°0

—WI.PIP.I.—IL'IEL—P—_%—P-- LA 1 1.1 it 3t 3 1 1 & O0.0

1
-
:
) - 0001
| :
- )
™ J
- 00°0Z.8
| | o
- 00°0¢
-
I~
-
-

00°0v



SP JUSAY Suunp UOIRRIIJ MT Ul PapiodRy

SUOIIO]\ PpUNOIN)

10} uwonpuny adojpauy paferday FI¢ Sy

(o9s)awny
(0] 00} 2 00°0¢ 00°0¢ 000l 00’
Lt FURE T U VK YUY U U0 NS WU WO UONE SN NN U NN U NN NN TN SN U NN U UUR SO O N A | !
»
r N
-
L

00°0S

00°001

00°0G!

adouysg

41



yZ jusAfq Suunp uoydaAIl(] [EdNISA Ul paploddy
suorjopy punoin Ioj uoipung adoppaufy pedersay gyigi3iyg

(oes)awily
00°0¢ 00'Gl oop.o— oﬁ_u.

—.llPl.-lL!Lln—l.P-P-—bL—-P-—— [ U WD DN WO W W |

]ll1l]flll]ll1r1ﬁ11}llllllllT]IlT]llIll

42



S JuUaAy 0] POYIPWN

M-d Aq pejemoe) S3V0JRA jusreddy aidwrexy gyrgSrg

(zy)Aauenbaeuy
oy 0C 00

1 v 3t a v ba sty O
—~Z

—¥

—9

—8

— 0l

—~Cl

14

(oesgL—o080Z) mopujm swp
(zy)Aausnbe.)
oy 0 00

U T T O N T T S O W Y
—C

—~¥

—9

—8

-0l

21

¥

(oesg—oeeg) mopum ewpq

dop

dop

{zy)Aouenbeuy
oy 0C (Y]
Lo e bty 0
—Z
—¥
—9
—8
— 0}
—Cl
4 ¥l
(ovsgz—oveGl) mopuim ewp
(zy)4auenbauy
Q.*-—-h--bOh.N—-F--_hO.QQ
—Z
Q\Ql/ Ly
-9
— 8
— 0l
~Zl
1 43

(oes9—0981) mopujm swip

dop

doa

43



Qp JuaAl SBuumnp
Papi029y SuoljeIS[EIDY 10} weidelq yf-J o|durexy ,1eSig

(WM/J3S) SSINMDIS (WM/J3S) SSANMOTIS
0°t S0 00 S§0- 0°1I- 0'1l S0 006 S5°0- 0°I-

l----«----- -duu--qdnuquduuul Ooﬂl SRR R R AR AR AR RARRARARRARARARARE D.ﬂl.
3 : 5 E
: E w 2 3 o
2 190~ ¢ : 350~ 2
= - = - p P
- pn m 3 m
E E a | : &
E 070 E 0°0
F 3 7] : E @
@ 1. 8 W T
190 3 : 150 3
N a't N (I
1912 = mnu.ooaweou HIMOd WAKWIXUW GEGS = Cmm (008 W0} HIMDL WNWIXHW
L°9 = (@8s/wx) JI1I0T3A INIWAdY §°G = (°8s/wy) ALIJDTIA LN3HYddY
081 = Yy3d 40 HLNWIZY Ohl = Wu3d 40 HLNWIZY

ZH S6°1 J38 Ge-ST N Sh ZH 9R°1 23S S2-ST N Sh



Loss of coherency values of event 24
NS eompomg {(x=50m, y=50m)
1.0 —
0t5 -
a.c 1
0 ] 10
frequency(hz)
Loss of coherency vaiuea of event 24
1.0 NS component (x=300m,y=300m}
0.5 -
0.0 T
0 L] 10
frequency(hz)
Loss of coherency vaglues of event 24
0 S component (x=150m,y=150m)
)
§ 0.5 —
£
8
0.0 T
0 5 10
frequency(hz)

Fig.3.18 Comparison the Model Coherency Values with the

Raw Data for Event 24

45



Loss of coheren

values of event 3

1.0 NS component (x=50m,y=350m)
f“‘\/\\ Vo W
AV AV
£
0.0 ,
° 5 10
frequency(hz)
Loss of coherency values of event 31
.0 NS component {x=30m,y=150m)
A M\ Fal
) W '\/ v NV,
g °l5 -

-1
s 5 10
frequency(hz)
Loss of cohsrency values of event 31
L0 NS component (x=50m,y=300m)
E 0.5 W‘J V

0.0 ,
5

frequency(hz)

10

~ Fig.3.19 Comparison the Model Coherency Values with the
Raw Data for Event 31

46



Losa of cohersncy vaiues of event 45

NS component (x=1350m,y=30m)

1.0
&
g 0.5 -
0. -
0 R 10
frequency(hz)
Loas of cohoronc{ values of event 45
.0 NS component (x=150m,y=150m)
&
[
% 0.5 ~ 'v‘*“&:‘%
0.0 —
0 ) 10
frequency(hz)
Loss of cohersncy values of aevent 45
0 NS component (xw=150m,y=300m)
&
=
£ os -
s
15}
0.0 ] :
0 5 10
frequency(hz)

Fig.3.20 Comparison the Model Coherency Values with the

Raw Data for Event 45

47



Loss of cnhomnc{ valuss of event 48
13

1.0 NS compone (x==300m,y=50m)
0.5 — \/f\ A !\.A Loa A A A
' RAVAALVA - wya s
0.0 T
0 5 10
frequency(hz)
Loss of coherency vaiues of event 48
1.0 NS cornponcz {(x=300m,y=150m)
&
0.5 R A A
g v (e \'\/1 \/
0.0 T
(1]} 5 10
frequency(hz)
Loss of coherency values of aevent 48
1.0 NS componert {x=300my=300m)
&
§ 0.5 -
E: 'M‘v A
0.0
0 ? 10
frequency(hz)

Fig.3.21 Comparison the Model Coherency Values with the

Raw Data for Event 46

48



Error of the model coherency Event 45
NS component (x=50m,y=S0m)

0.4
0.2 ~
B
g 0.0
~0.2 ~
-0.4 I
0 B - 10
frequency(hz)
Error of the mode! coharency Event 45
NS component (x=50m.y=150m)
0.4
0.2 -
i
S
0.0 4
v
-0.2 -
-0.4 T
(o} 5 10
frequency(hz)
Error of the model coherancy Event 45
NS tomponent {(x=50m y=300m)
0.4
0.2 -
i ]
g 0.0 ~
L4
-0.2
-0.‘ ]
0 10

5
frequency(hz)

Fig.3.22 Errors of the Model Coherency Values with respect

to the Raw Data of Event 45 for Different Distance
Groups

49



error

error

ervor

Error of the model

coherency Event 45

NS component (xm150m,y=50m)

0.4
0.2 —~
0.0
~0.2 ~
ﬂq‘ ]
0 S 10
frequency(hz)
Error of the model coherency Event 45
04 NS component (xw150m,y=150m)
0.2 -
0.0 —
-0.2 -
=0.4 3|
0 5 10
frequency(hz)
Error of the mods! coherency Event 45
0 NS component (x=150m,y=300m)
0.2 —
0.0 —
—0.2 -
0.4 T
1] $

frequency(hz)

10

Fig.3.23 Errors of the Model Coherency Values 'with respect
to the Raw Data of Event 45 for Different Distance

Groups



Error of the model coherency Event 45
NS compenent (x=300m,y=50m

0.4
0.2 -
[ 3
E 0.0 ~
-0.2 ~
=0.4 —
0 & 10
frequency(hz)
Error of tha modeal coherency Event 45
04 NS component (x=300m,y=150m)
0.2 —
b
2]
E 0.0
-0.2 <
-014 l
o L] 10
frequency{hz)
Error of the model coherency Event 45
04' NS component (x=300m,y=300m)
0.2 —
Bt
E 0.0 —
=0.2
=0.4 T
[+] 10

5
frequency(hz)

Fig.3.24 Errors of the Model Coherency Values with respect
to the Raw Data of Event 45 for Different Distance

Groups

51



SJUIAY JUSIYY(] 0] [SPON
£oudroyop ayy ul uonPUNg © Yy Jo sanjeA PO Gz'g Sy

{zy)Aouenbeuy
L]} ] 0
- 000'0
— 200°0
P
h-]
T
o
toydpy e————— —~ ¥00°0
Zoydly ~——-
900'0
72 eA3 Joj senjpa pydy
01 0
0000
-~ 200°0
£
joydyy ————— —~ %000
Zoydly ———-— |
\
900°0

2T WeA3 Jo) senipA pydy

ol

(zy)Aouenbayy
0

000°0

loydly ——
Zoydyy ———-

~ 2000

oydiy

~ ¥00°0

900°0

(113

‘€T WeA3 Joj senjpA oydyy

{zy)Aouenbedy

000°0

toydy ——
Zoydy ———~

— €000

pydy

\ —~ ¥00°0

9000

0Z JUSA3 1o} senjpA bydyy

52



BJUdAT] JUBIBYI(] 10} [dPON
£duazayo) ayy ur suonppung © Yy jo sonfep [9poN 9Z'¢ 814

(zy)Aouenbeyy
ol S 0
L 900°0—
— ¥00°0—
— ¢00°0—
~ P
e T 0000 %
e
toydly ———— - ¢00°0
Zoydyy ———— )
— %000
s 800°0
L¥ ueA3 o) senipA pydy
oi 0
0000
— 2000
P
h]
¥
o
joydyy ——— — ¥00°0
Toudy ~———
- 800°0

OF eA] Joj senjpa pydy

ol

(zy)Asuenbeuy
] 0
—1 0000
- 200°0
toydyy — — %000
Zoqdy ————
900°0
9% JueAl Joj senjoa oydyy
{zy)Aouenbeuy
0
000'0
— 2000
—~ ¥00°0
900°0

iy «.Lgm 4o} senjoA oydyy

oydry

oydly

53



| I

0¢d

1

SjueAly LT 3Y3) 10}

VOd 34y} o3 '3oadsar yym sonjep Ty pajenope)d L7°g Sig

[ W T VS O O O S T |

081

(vo)vod

| T W T T S

i

oct 08

TORE WS W U T VOO Y W WY A U N NN BN |

0¢

frye i T TriryrTrry vy r i e vy err iy T i e rryvervyire

©
(v—-301)1vi39



SjusAy LT 343 a0
VOd 94y 03 joadser  yyim sanjep 2z paje[noje) 87'¢ 34

(vo)vod
0£e 081 ocl 08 og
L1 1 Lt . 1 P | W N U N (N N U T | - L L L 1.1 1.1 _ L1 1.4 1 1 1.1 F } S I T I S I T A B

BRI L L L D AL L U UL N A U U e e v e O U A N T N N 9§

9 n o
(v-301)zv.i38

n
-—

o
N

55



SF PUv §g SusAg SuUNp KON [WINIA Y
Ul papioddy SUOMOJN PUNOIY) 10] SINBA © [PPON 6z ¢ g

Lpydy
Zoydly ———~-

jJusuodwiod |Dd[}4eA
C¥ JusA3 Joj SenjoA oydly

900'0-
~ ¥00°0—
~ 200°0~

000°0

~ 2000
~ %00°0

900'0

(zy)Asuenbayy

S
1

oydly

poydy ——
Zoydyy ———-

jueuodwiod {Doj}IeA
$Z jJusAl Joj senjoA oydyy

900°0~
~ #0070~
- 200°0~

0000

— 200°0

¥00°0
9000

oydly



CHAPTER 4 MULTIPLE STATION GROUND
MOTION SIMULATION

In this chapter, some previously used methods of simulating earthquake ground motions
are discussed, and a new method of simulating stationary or quasi-stationary motions, which

are spatially correlated and response spectrum compatible, is presented.
4.1 Review of Previous Methods

Amin and Ang (1968), Ruiz and Penzien (1969), Penzien and Watabe (1975), Kubo
and Penzien (1976) and many others have simulated components of ground acceleration using
the non-stationary model

a,(t) = &(t)z(t) (4.1)

where £(t) is an envelope function and z(t) is a stationary random process having a specified
power spectral density function. Both the envelope function and the power spectral density
function were discussed previously in Chapter 3. The stationary process z(t) can be obtained
either in the time domain or in the frequency domain from the power spectral density
functions (Hao, 1989).

Another way to simulate ground motions is to generate stationary motions using
n
z(t) = z A;cos(@gt + ;) (4.2)
i=1

where the A; are specified amplitudes and the ¢; are random phase angles uniformly dis-

tributed over the range [0,2x]. The A; can be generated from a specified power spectral

A; =4S (@;)Aw (4.3)

density function $(®) using

where A& is the frequency interval.
4.2 Ground Motion Simulation Criteria

When a ground motion time series is to be simulated for a given site, one should
(Penzien, 1988), (1) investigate all possible active faults or tectonic regions in the area, (2)
study the geological, seismological and geophysical conditions, (3) estimate the shortest source-
to-site distance and probabilistically predict the maximum possible earthquake event, (4) set
up an appropriate empirical attenuation law in order to determine the peak ground motions

or response spectra at the site, and (5) establish an empirical ground motion duration law.

Ground motion accelerograms can be simulated only after their durations, peak values

and response spectra have been specified. The peak values of ground motion are usually
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determined by deterministic methods with least squares fitting of available data. Since the
available data at different sites are different, the attenuation laws obtained by many authors
vary from site to site; see Estera and Rosenblueth (1964), Milne and Davenport (1969),
Joyner et al. (1981), Bolt and Abrahamson (1982), Peng et al. {1985), Watabe (1988).

Duration of ground motion also is a very important parameter since the overall re-
sponse of lightly damped linear systems and yielding nonlinear systems depends significantly
on the duration of shaking. Based on the different definitions and data studied, some empir-
ical relations for duration have been obtained by different authors, such as Housner (1965),
Estera and Rosenblueth (1964), Bolt (1973), Trifunac and Westermo (1976), Watabe and
Tohdo (1982).

The response spectrumn of the expected ground motion is another very important func-
tion to be specified. Newmark and Hall (1969) presented the idea of a design response
spectrum which is now commonly used in aseismic design. Many empirical relations for the
response spectrum have been obtained by different authors from studies of different data; see,
for example, Wong and Trifunac (1979), Trifunac (1979), Kobayashi and Nagahashi (1977),
and Watabe (1988).

4.3 Spatially Correlated Stationary Ground Motion Simulation

For structures having plan dimensions which are large compared with the wave length
of significant earthquake ground motion, the out-of-phase effects in the multiple input motions
play an important role in their overall dynamic response. Hence, realistic spatially correlated

ground motions should be simulated for use as inputs to multiple supports.

Ground motions, obtained from the SMART-1 array, have been intensively studied for
their correlation and coherency structures, see previous chapter. Using these models, spatially
correlated multiple ground motion time-histories can be simulated using multiple random
process theory. Every simulated time-history should be compatible with the prescribed power
spectral density function, and each pair should have coherency values compatible with the
prescribed cross coherency function. Assuming that earthquake ground motions are stationary
random processes having zero mean values and known power spectral density functions and
coherency functions, a series of spatially correlated ground motions can be simulated by means
of the following method (Samaras et al. 1987):

Assume the ground motion time series has the same power spectral density function
S{@) (~oy < @ < Wy, where @y is the Nyquist frequency) at every station. This is a
reasonable assumption when the epicentral distance is large compared with the site dimen-

sions, as discussed in the previous chapter. The power spectral density function matrix in
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the range —@y < @ < @y can be expressed in terms of S(@) and the coherency functions

vii (1@, di;, &, );

1 Y2 (i@, d5, d%,) .. ma(i@,dy,,d)
~ ’7 iﬁ:d‘ :d‘t 1 ’Tn(iw!d,n’dtn)
_-SL((D) _ 21( .21 21) ' ‘ 2 ‘2 2 S(u’)) (4.4)
Tni (i(z’:dlnl ’ d::l) Tn2 ('.‘-‘_-’sdizmdth) < 1

where @ is the circular frequency and n is the total number of points of input to the

structure.

To simulate spatially correlated ground motions, samples of stationary random processes

z:{t), 22(t), ..., z(t), which are compatible with the individual specified functions in $(@),
are generated first. To do this, let
i N
Z{(t) = ZZA{k((;JI)COS[E)lt‘f—ﬂ;k ((:);) +¢kl] i = 1,2,...,7] (45)
k=11l=1

where amplitudes A;.(@;} and phase angles B (@) are determined so that z;(t) is consistent
with the given power spectral density function and coherency functions, ¢ is a random
phase angle uniformly distributed over the range O to 2, N is the number corresponding to
the Nyquist frequency @y. Note that ¢, and ¢,, should be statistically independent unless

k=r and [l = s.

Since the matrix ﬁ(o‘J), given by Eq.(4.4), is Hermitian and positive definite, it can
always be factored into a complex lower triangular matrix L{iw,) and its Hermitian matrix
L7 (im:) (see Gantmacher, 1977), as shown by

5(@) = Lii@)L" (ix)S (@) (456)

Where h@ 0 ... 0
L(iw) = lay (:idz) 122:(@) (:) (1)

1 (8) 1a(D) .l (@)

and where I;; (1 =1,2,...,n;7=1,2,...,1) can be calculated by the Cholesky decomposition
method (Atkinson, 1979), as given by

Li(@) =1 - izik () (@) i=1,2,...,n (4.8)

s 18) = T Lo (01, (10)
W)=
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For the case of i > 7, the individual function in S(®} can be written as

;
Sij (i) A@ = 8(@x) Y Lim (@)L}, (ix)A0  k=1,2,...,N (4.10)

m=1

It can been shown that, see Hao (1989),

A,-J-((Iik) = 4S(Qk)A(I) l I,‘J' (fwk) l 0 < <@y (4.11)

(@) = tan (ARLEUS )y g g < 4.12
ﬂ.’r(wk) an (Re[l,-,-(zwk)]) S W S Wy ( )
Using Eqs.(4.5), (4.11), and (4.12), a set of spatially correlated time-histories z;(t) (i =
1,2,...,n) can be simulated, and the correspending ground motions a;(t) ( = 1,2,...,n)

can be obtained by multiplying each time-history by a proper shape function £(t). By this
procedure, one first simulates a time-history of motion for support point 1, and then, simu-
lates a time-history for support point 2 by summing up wave contributions that are properly
correlated with the simulated motion for point 1. Similarly, the simulated time-history for
the motions of support point 3 will be correlated with those previously simulated for points
1 and 2, etc.. The first time-history of motion can be either a synthetic motion or a real

motion provided that it is compatible with the prescribed spectral density matrix S (@).

Instead of using Eq.(4.5) to simulate z;(t}, it also can be simulated more easily in the
frequency domain. To proceed with this new approach, express the Fourier transform of z;(t)

in the form
X;(ian) = Z B; (w1 )[cosey, (@r) + tsinoy,, (@ )] k=1,2,...,N (4.13)
m=1

where B, (@x) is the amplitude at frequency &, and a;,, (@) is the corresponding phase
angle which is to be determined. By transforming Eq.(4.5) into the frequency domain, it can
be shown that

B () = 5 Ain (@) (4.14)
Oim (Wk) = Bim (@k) + Sk (4.15)

Then, by using Egs.(4.13), (4.14), and (4.15), the Fourier transform X;(iwy) of z;{t) can be
determined. The time-history z;(t) is then obtained by transforming X;(i@;) back to the

time domain.

4.4 Spatially Correlated Quasi-Stationary Ground Motion Simulation

The simulation method presented above is based on stationarity assumptions of the

ground motions even though the ground motions are actually nonstationary in both the time
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and frequency domains. The ground motion nonstationary property in the frequency domain
can be simulated by the guasi-stationary method. This method is based on a quasi-stationary
assumption for the ground motion P-waves, S-waves and surface waves, as discussed in the
previous chapter. The total ground motion time-history is divided into three time windows
for different types of waves and the time-history in each window is assumed stationary and
simulated independently. The total ground motion time-history is obtained by combining the

time-histories in the three windows.

Combined with the method discussed above to simulate quasi-stationary ground mo-
tions, the simulation method for stationary ground motions is still applicable. The only new
feature that needs to be studied is the combination. To combine the time-histories simulated
by different power spectral density functions in the different time windows, certain overlapping
of the different types of motion is needed; The transient part of the overlapping should be
made as smooth as possible in order to reduce the false energy and overshooting that will
be introduced by time-window cutting. The sum of the transient functions in the overlapping
part should be equal to one in order to keep the proper ground motion intensity in that
part. Several types of windows with different transient functions were tried for this purpose;
e.g., the triangular, cosine bell, and exponential types shown in Fig. 4.1. It was found that,
among the types tried, the exponential type produced the best results. As shown in Fig. 4.1,
with the four times t,, tz, t3, and t; specified, the exponential window transient part used

is 1—e (1) on the left side and e (*~%)" on the right side.

4.5 Simulated Ground Motion Correction

Because of uncertainties regarding the initial conditions for the ground motion and the
position of the zero acceleration axis in the recorded accelerogram, predictions of the corre-
sponding velocity and displacement time-histories are unreliable unless realistic adjustments
are made to account for these effects through baseline corrections to the accelerograms. The
adjustments can be made in either the time domain or the frequency domain. Many criteria
have been used to control the adjustments. The most common of these are: (1) zero mean
acceleration, which implies the initial and ending velocity values are the same, (2) zero initial
velocity, (3) zero initial displacement, (4) minimum mean square velocity , which implies
minimizing the ground motion energy content, and (5) zero mean velocity which implies no

permanent ground motion displacement.

Berg and Housner (1961) suggested the following method, based on the above criteria,
for adjustments in the time domain. The acceleration null line is assumed to have the shape
of a parabola which is determined by the method of least squares. The constants of the
parabolic equation should minimize the computed mean square of the velocity. After this

correction, both the acceleration and velocity terminate at the end of the motion. Using
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the same criteria and the same second order parabolic null line assumption for acceleration,
Kausel and Ushijima {1979} suggested a method of making adjustments in the frequency
domain.

Another correction for the simulated ground motions is their response spectrum. Once
a response spectrum has been specified for a given site, ground motion time-histories can
be adjusted to be compatible with the specified spectrum. A method by Scanlan and Sachs
(1974), that can be used for this purpose, is based on the fact that the Fourier spectrum
of the ground acceleration time-history is equal to the velocity response spectrum for zero
damping. The procedure is (1) to calculate the velocity response spectrum 5‘,,, (2) to cal-
culate the ratio of é'v to the specified response spectrum S,, o = 3;:, (3) to multiply the
Fourier series of the time-history by o, and (4} to inverse FFT the result back to the time
domain. The velocity response spectrum for this corrected motion can be evaluated and the
above procedure repeated. Through this iterative procedure, an accelerogram compatible with
the specbrufn is obtained. Usually, only 3 iterations are needed to make S, converge to a

satisfactory result.

4.6 Ground Motion Time-History Interpolation

When multiple inputs are specified for large structures, spatially correlated ground
motion time-histories at all structure-foundation contact points are needed. If the number
of contact points is large, the simulation of these motions becomes expensive. Therefore,
an interpolation method is suggested here to reduce costs. By this method, ground motion
time-histories are simulated at a limited number of support points, and at all other points,
the ground motion time-histories are interpolated in the frequency domain by adjusting phase

angles and amplitudes to provide the proper cross correlations and power spectral contents,

The interpolation function used is derived using the shape function idea. Consider the
one-dimensional case shown in Fig. 4.2, where z;, z; and z; are the points where the ground
motion time-histories are to be simulated, and z, is an arbitrary point where the ground
motion time-history is fo be interpolated. The interpolation function for the one-dimensional
case is

n
flen =
fix = —f—l’m i=L2,...,m (4.16)
oy
where m is the total number of points at which the ground motion time-histories are sim-
ulated, n is the total number of structure-foundation contact points, z;, z; and z; are the
corresponding coordinates, f,;; is the interpolation function represehting the contribution to

the ground mofion at point k from the ground motion at point j. For the two-dimensional
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case, see Fig. 4.2, the interpolation function is

ﬁ [ — fu{t,d + 1)]

e = 2 j=12,...,m (4.17)
H fv; — fi(1,4+1)]

where y;, y. are the corresponding coordinates, and fi (1,7 + 1) is the value on the line
connecting points ¢ and ¢+ 1 at z;; in general;

feliit ) =2 "% 0 s tw (4.18)
Tit1 — T

If £; = 2,41 OF ¥ = Yi+1, Eq.(4.18) becomes fi(i,i +1)=z; or fi(i,i+ 1) = y;, respectively.

Using the above interpolation functions, the ground motion time-history at any support
point can be interpolated using the time-histories simulated at the control points. The ground

motion time-history at point k is interpolated in the frequency domain using

_ d d., @
A (iw) = Z firA; (i@)[cos(¢; — J( ) ) +isin($; — ;JTS_;")’)] (4.19)

=1

where A (i@) is the Fourier transform of a(t) at frequency @; A;{(i@) is the amplitude of
the time-history a;(t) at point j at frequency @; ¢; is the phase angle of a,(t) at &; d}, is
the projected distance between points j and k in the wave propagation direction, and v(@)
is the apparent velocity at @. It can be shown that the interpolated time-history a(¢) will
have the correct phase differences and cross correlations.

An example interpolation for the one-dimensional case was calculated using three sta-
tions located 25m apart in the direction of wave propagation. The ground motion time-
histories at the two end points, Omm and 50m, were simulated by using the coherency model,
Eq.(3.9), three segments of quasi-stationary motion having power spectral densities of the
Tajimi-Kanai type. All coherency and power spectral density function parameters were based
on those obtained for the NS components recorded during Event 45; see chapter 3. The
apparent velocity was arbitrarily assigned the low value of 35m/sec in order to see the cross
correlation values more clearly. Figure 4.3 shows the simulated acceleration time-histories after
iteration to be compatible with the Newmark and Hall (1969) response spectrum normalized
to 0.3g PGA, where a; and a, are simulated at Om and 50m, respectively, and as; is inter-
polated at 25m. Figures 4.4 and 4.5 show the cross correlations of the three time-histories
before and after the response spectrum compatible iterations. It is obvious that the cross
correlation values are compatible with the prescribed wave propagation property. Also it can

be seen that the cross correlation values remain almost the same, and the phase difference
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exactly the same before and after the iterations. This is because the iteration procedure only
works on the Fourier amplitudes, not on the phase angles. Figures 4.6 through 4.8 show
the loss of coherency values between the three time histories. Figures 4.9 and 4.10 show the
power spectral density functions of the three time histories. From these results, it can be
seen that the interpolatéd time-history satisfies the prescribed cross correlation structure and

the power spectral density function.

4.7 Examples

Using the method discussed above and the coherency model presented in the previous
chapter, realistic examples of spatially correlated ground motion time-histories were simulated

giving the following results:

Spatially correlated stationary ground motion time-histories were simulated at four
stations along an epicentral direction separated 100m from one another (x=0; 100; 200;
300m). These time-histories with 20sec duration and At = 0.02sec were simulated using the

following specifications:

(a) The stationarity assumption was used with the Tajimi-Kanai (1960) power
spectral density function, Eq.(3.1) having parameters £, = 0.6 and w, =
5nrad/sec, and with S; = 1.0

{b} The Harichandran and Vanmarcke (1984) coherency model was used with
parameters A = 0.736, a = 0.147, and a spatial scale of fluctuation #{@) =
3300(1 + (:2-)?]5". The. apparent wave velocity used was v = 2.5km/sec.

{c} The shape function, Eq.(3.5), suggested by Amin and Ang (1968) was used
with £; = 2sec, t; = 10sec and I, = 1.0.

(d) The baseline correction was carried out by first filtering out the energy for
f < 0.5hz, and then using the time domain baseline correction method.

(e) The Newmark and Hall (1969) 5% damped design response spectrum, nor-
malized to a 0.59 PGA, was used.

The four simulated ground motion time-histories are shown in Figs. 4.11 through 4.13,
expressed in terms of acceleration, velocity, and displacement, respectively. Figures 4.14 and
4.15 show the auto and cross correlation coefficients of the four time-histories, respectively.
From the cross correlation coeflicients, it can be noticed that the proper phase differences
occur between the four simulated time-histories. Figure 4.16 shows comparisons between the
power spectral density functions of the simulated ground motions before the iterations to
be compatible with the response spectrum and the prescribed Tajimi-Kanai power spectral

density function. It can be seen that they match well, except for the apparent discrepancy
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of high values in the low frequency portion of the spectrum at z = 300m, which can be
attributed to the random nature of the process. Figure 4.17 compares the loss of coherency
values with the prescribed model. It can be seen that at Az = 300m, as the frequency
increases, the compatibility is not very good. This is because the calculated loss of coherency
values were not smoothed, and as the distance increases, the coherency values will be lower,
so that the noise will tend to be more dominant in the calculated values since the noise
level is increasing with frequency; the level is 0.35 at 1Hz and 0.45 at 10Hz; see chapter
3. Figure 4.18 shows the calculated response spectra after two iterations compared with the

prescribed Newmark and Hall design response spectrum.

Another example considered was the simulation of spatially correlated ground motions
at each corner of a 20m rectangular foundation. The ground motions were simulated for the
z, y and z directions. Suppose a wave propagates in a 45° direction to the foundation. Then,
in terms of the distances d}; and d}, as defined before, the coordinates of the corner points
are (0,0), (14.14,14.14), (28.28,0), and (14.14, —14.14), respectively. The ground motions were
first simulated in the wave propagating direction, transverse to the wave propagating direction,
and the vertical direction, independently. Because the wave propagating direction generally
coincides with the principal direction, the ground motions in that direction are uncorrelated
with the ground motions in its transverse direction, likewise, the vertical component of ground
motion is independent of the ground motions in the horizontal directions. The ground motions
in the z and y components were obtained by rotating the horizontal ground motions to these

directions. The simulated ground motions satisfy the following specifications:

(a) A quasi-stationarity assumption was used for all three components. The
time window width and the parameters used for the Tajimi-Kanai power
spectral density functions were those obtained by processing SMART-1 data
for Event 45; see Tables 3.3 and 3.4. The power spectral density functions
were all normalized using Sy, = 1.0. The corresponding scaling factors in
Table 3.4 were then applied.

(b) The suggested coherency meodel, Eq.(3.9), was used with the results obtained
for Event 45 as shown in Table 3.6 and Table 3.7.

(c) The same shape function, Eq.(3.4), with the results obtained for Event 45,
was used with the parameters in Table 3.5.

(d) The same baseline correction procedure was used as in the previous example.
The Newmark and Hall design response spectra with damping ratic 0.05
normalized to 0.5¢ PGA for horizontal components and 0.3g PGA for the
vertical component were used as the target response spectra.
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Figures 4.19 through 4.21 show the simulated accelerations for z, y, and z components,
respectively. Figures 4.22 through 4.24 show the corresponding displacements. From these re-
sults, it can be noticed that the cross correlations of the components were well controlled.
The two horizontal components are independent of the vertical component which has the
highest frequency content and lowest intensity. These results all coincide with the observed
ground motion records. Figures 4.25 through 4.27 show the comparisons between the calcu-
lated response spectra and the target response spectrum. Good results were obtained after

two iterations. It can be seen that the convergence is very good.

A final example was generated to illustrate the interpolation problem. Assume there
is a 50m rectangular foundation. The ground motion time-histories were simulated at the
four corner points with coordinates (0,0), (50,0), (50,50), (0,50). Five ground motion time-
histories at (25,0), (50,25), (25,50), (0,25), and {25,25) were obtained by interpolation.
Suppose the wave comes in the x direction. The four simulated ground motions all satisfy
the specifications of Event 45 as given in the previous example for power spectral density
functions, coherency, and shape functions. The baseline correction procedure used was the
same as in the previous example. The Newmark and Hall design response spectrum for 5%
damping ratio normalized to the 0.3¢g PGA level was used again as the target spectrum.
Note that, in order to save computing time, the interpolation procedure should be carried
out after the iterations. Following this procedure, the response spectra can be interpolated
the same way as the time histories. If the response spectra are the same for all interpolated
time histories, the response spectrum of the interpolated time-history will still be compatible
with the target response spectrum since the interpolating procedure actually works on the
amplitudes and phase angles independently while the response spectrum is controlled by the
amplitudes. Figure 4.28 shows the accelerograms in the z direction before tterations. Figure
4.29 shows the accelerograms after 3 iterations. Figure 4.30 shows the displacements after
3 iterations. From these figures, it can be concluded that the ground motion properties are

properly controlled by the simulation and interpolation procedures.
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One-Dimensional case
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cross correlation function of the generated
ground motion acceleration
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Fig.4.15 Cross Correlation Coefficient Functions between the Simﬁ-
lated Ground Accelerations
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CHAPTER 5 RESPONSE OF LARGE STRUCTURES
WITH MULTIPLE SUPPORTS

This chapter presents (1)} the equations of structural response for multiple inputs for
cases with and without soil-structure interaction effects, (2) the method of solving these
equations in the frequency domain, and (3) selected foundation impedances for treating soil-

structure interaction.

5.1 SDOF Structure without Soil-Structure Interaction Effects

Assume a SDOF structure supported at points A and B as shown in Fig. 5.1. The
structural system has mass m, stiffness -2": at each support, and damping ¢. The differential
ground motion inputs are ¥,4 and t,p at points A and B, respectively. If the two support
points are considered as two degrees of freedom with the prescribed ground displacements,
the structural system has 3 degrees of freedom. The general equilibrium equations of the

total structural system can be written as,
m# +eff +kr' =0 (5.1)

where r' is the total displacement vector with respect to a fixed reference containing 3
components; m, ¢, and k are 3 x 3 mass, damping and stiffness matrices, respectively. These

1 ==

equations of motion can be rewritten in the form

m 0 0 it c 00 3 ko E vt
G 00 oa | +[0 0 0 ba | +| 5 5 O vs | =0 (5.2)
6 0 O UgB 0 0 0 UgB _Z—k 0 ’25 VB
where the total displacement vector r* can be partitioned as,
yt yd yqa
= v | =10 )+ a4 (5.3)
Vg B 0 vgB

where y?* is the quasi-static displacement, y? is the dynamic displacement. To obtain the
quasi-static displacement, substitute Eq.(5.3) into Eq.(5.2), and let the dynamic terms be

zero; then

1
¥y = 5(%4 + vp) (5.4)

The final equation of motion for the SDOF structure with 2 points of input- is

. . -1 . .
§% + 26wyt + WPyt = — (o +¥55) {5.5)
where w = \/i is the natural frequency of the structure, { = ;%= is the damping ratio. The

total response y* can be calculated by Eq.(5.3) using Egs.(5.5) and (5.4).

97



5.2 MDOF Structure without Soil-Structure Interaction Effects

Consider a general MDOF structural system having a total of n degrees of freedom
where n = n, + n,; n, is the number of degrees of freedom associated with the structure
alone, and n; is the number of degrees of freedom associated with the structure-soil contact
points; see Fig. 5.2. The equations of motion can be written in the same form as Eq.(5.1)

and are given by

v ) (B) (& &) ()Gl =) (3)
as s - + Zas ] —6 + as i ? =0 56
(Mb, M, )\&) e e )\&) k. K, )\4)72 69

where M,,, M,,, M,,, and M,, are the corresponding mass matrices for the structure and

=5

soil elements, respectively. The total response can be separated into quasi-static and dynamic

#=(%)+(8) w e

where r? is the quasi-static displacement vector, r¢ is the dynamic response vector and v, is

responses as

the prescribed free field ground motion displacement vector for input at multiple structure-soil

contact points.

The quasi-static displacement vector r?* can be obtained by setting all the dynamic
terms in Eq.(5.8) to zero, from which

!-‘:, = _E—o—sliaby-g (58)
Substituting Eqs.{5.8) and (5.7) into Eq.{5.6), one obtains

M, 8+ M, 520+ M8, + Coufy +Co f1" + Copty + K, 1t + K\ ri + Kpp, =0 (59)

=L ¥ ¥ ¥ ) ==

It can be seen from Eq.(5.8) that K, r?* + K, v =0; Eq.(5.9) reduces to

=2 abtyg

M #+C

=88 =83

f:' + Kaa!j = [—M—aa-‘K-:a’lKab - M—ab]-ij-g + [Q,,K:,l._}:(_,gb - gab]!—'jg (510)

For stiffness proportional damping, the second term on the right hand side is zero, and it is
negligible for other types of damping. Also, M,, =0 if the lumped mass is used. Then, the

final equations of motion are

M i:d + c ':d + —K—aaz(: = Maa—‘[—(—a—al—K—abﬁg (511)

==—s88—0 —88=—4

By solving this system of linear equations for r¢, and calculating ﬂ’ by Eq.(5.8), the total
structural response can be obtained. The equations of motion can be solved either in the
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time domain by mode decomposition analysis or in the frequency domain. In the frequency
domain, Eq.(5.11) becomes

[~&*M,, +iaC,, + K, Jf; (@) = M, K K ,v,(i®) (6.12)

a8=> g8 =2-sbg

where 74(i@) and ¥, (i@) are the dynamic displacement vector and the ground motion accel-

eration vector, respectively.

5.3 SDOF Structure with Soil-Structure Interaction Effects

Assume a SDOF rigid bar with mass i, supported by two massless frames with
property EI on two different foundations at points A and B ; the foundation A has mass
m, and moment of inertia J,, and the foundation B has mass m, and moment of inertia
Jg; the structural system has damping c¢; the system is excited by two spatially correlated
ground motions ¥,4 and v,5 at points A and B, respectively; see Fig. 5.3. The total system
has 5 degrees of freedom, as shown in Fig. 5.3, which are y(t), va(t), vs(t), 04(t), 65(t). If
there is no soil-structure interaction effect, v4(t) and vp (¢t} will be equal to the corresponding
ground motions v,4 and wv,p, respectively, and #,(t) and #p(t} will be zero. The general

equilibrium equations for the structural system can be written as

M7?+C i+ K r=p) (5.13)

where p(t) is the interaction force vector which will be discussed later. Equation (5.13) can

be rewritten in the matrix form

m 0 0 0 O it c 00 0 0\ /¢
0 mgy 0 O O B 0000 0f}][uv,
0 0 mg 0 O iz |+]0 0 0 0 0} s
0o o 0 J, O b 0 600 0jfé,
0 0 0 0 Js/ \dp 000 0 0/ \4
2481 —12E1 ~12E7T BE I 8EI ¢
=5 5 0 ) 0 vy Va
+ | =2EL 0 1221 0 EeEL vg | = | Va (5.14)
sBL  sEL g &L g ||, My
fo 0 eff 0 4E_1 05 M,

where V4, Vg, My, and Mp are the corresponding interaction shear forces and moments.

The total displacement vector #* can be partitioned into the dynamic displacement

vector r* and the quasi-static displacement vector r?* as
yqa rd
Uga v
rf=ve |+ 5| =1"+r (5.15)
0 04
0 8y
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where v%¢ and v} are the dynamic interaction displacements at the foundations A and B,

and 8, and fp are the interaction rotations at foundations A and B. The quasi-static
displacement y?° can be determined by substituting Eq.(5.15) into Eq.(5.14), and setting all

the dynamic ferms to zero, then
|
yq = E(ng + UgB) (516)

It can be noted that this equation is the same as Eq.(5.4) for the case of no soil-structure

interaction effect.
By substituting Eq.(5.15) into Eq.(5.14), Eq.(5.14) becomes
M () +C )+ K () = M () - C () - K o (8) + pt) (5.17)

where K r9(t) = 0; C r'"(t) = 0, if stiffness proportional damping is used, and it is negligible

for other types of damping. The final equation of motion reduces to

M () +C ) K (1) = M (1) + pl) (5.18)

Equation {5.18) can be solved either in the time domain or in the frequency do-
main. The equation in the frequency domain can be obtained from the Fourier fransform of
Eq.(5.18),

[~&®M +iaC + K)Fi(io) = ~M £ (i@) + plia) (5.19)

where 7¢(i@) is the dynamic response displacement vector; r9°(iw) is the quasi-static displace-

ment vector and p(i@) is the interaction force vector.

5.4 MDOF Structure with Soil-Structure Interaction Effects

The most commonly used method of treating soil-structure interaction is the substruc-
ture method, see Gutierrez and Chopra (1976), Kausel (1974), which partitions the total
soil-structure system into two substructures: the structural system and the soil system. The
equilibrium equations are formed separately for the two substructures; the equilibrium equa-
tions are solved for the upper structure with the soil-structure interaction effects being con-
sidered by the interaction forces which can be represented through a foundation impedance
matrix. The foundation impedances are usually calculated independently of the upper struc-
ture. Another commonly used method is the hybrid method of Gupta, Lin, Penzien and
Yeh (1980), which separates the soil volume into a near field and a far field; the far-field
soil volume is modelled with an impedance matrix, in the same manner as in the substruc-
ture method, and the near-field soil volume is combined with the structural system. This
method, which is a medification of the substructure method, has been proposed to eliminate

the difficulties in calculating the impedance matrix for embedded structures required by the
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direct substructure method. Detailed formulations of these methods, and their advantages and
disadvantages can be found in the corresponding references. Only the substructure method

formulation is presented here.

Assume there are n, degrees of freedom for the upper structure, n, degrees of freedom
for the structure-foundation contact points, and n, degrees of freedom for the soil volume of
interest. The equations of motion for the upper structure are of the same form as given by

Eq.(5.6), except that an interaction force vector p, is included. In this case, the equilibrium
equations are given by

(0 ) (2)+ (& &) ) ( &) (R)-(G)  om

The total displacement response vector can again be partitioned into the dynamic

B |

response displacement and quasi-static displacement vectors

()= () () 521

where 77 is the interaction displacement vector at the structure-foundation contact points,

and v, is the corresponding spatially correlated free-field ground motion vector.

The quasi-static displacements can be obtained by substituting Eq.(5.21) into Eq.(5.20)

and setting all the dynamic terms to zero, so that

=K 'K,v, (5.22)

The equations of motion can now be written in terms of the dynamic response dis-

placements as

Ma Q Fd + Qu Qab -t:i

Q0 M, £y Coo Cop iy

+ (-‘Ku —K-sb ) (rg) - _ (Ms ) ( '——s—s'l.l{—abﬁg )
Ebs Ebb T, 0 Y,
l —l
(5 &) (R (5 ) (5E)(0) em
—Qba Q—bb Eg =2 bs Eb

The damping term at the right hand side of this equation is zero when stiffness proportional

ﬁ_h

Ii o

damping is used, and it can be dropped for other forms of damping as it has a negligible
effect on the response. Further, the stiffness term on the right hand side is zero since the

stiffness matrix is singular. Therefore, Eq.(5.23) can be reduced to

% 86 E 2 E B
M, ) \ i, Cp Ci/ \5 K,, Ky \1rg
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—_ -Msi;l;-abig Q
- (A L)1 (7) (5:24)

o,

Transforming Eq.(5.24) into the frequency domain, it becomes

(4 1)l )+ (& ED(E)

(M@ (0 ) o9

~M, 9, (ia) p, (i)
where interaction forces can be expressed in terms of the impedance matrix, S;(f@). Suppose
there is only one three-dimensional rigid mat foundation with 6 degrees of freedom, then the

resultant interaction forces are

V. (i@)
—My (i@)
e -V, (i@
- P, (iw)
-M_ (iw)
Suu (@)  Sup, (@) 0 0 0 0 @
Sgyu (1.0-.‘)) Sgygy (!(D) 0 0 0 0 By
_ 0 0 Sou(t®)  Syo, (@) 0 0 3
- 0 0 SO,u (10_.)) SO, 0, (i@) 0 0 0.
0 ¢ 0 0 Sww (1@) 0 W
0 (¢] 0 0 0 Sa, 0, (@) 7,
(5.26)
or
-p,(iw) = 8, (iw)f; (iw) (5.27)

If there are m such foundations, and it is assumed that they are independent of each other,

the total foundation impedance matrix becomes

Sn, 0 0
0 S, ... 0
S;0)y=1 . . . . (5.28)

Substituting Eq.(5.27) into Eq.(5.25), one obtains
_ 2 -—Ma g ;e -C—u Qab -K-u -Ewsb f:i(“:‘)
{-o (g M) t\c ) P\ K., +s )t \da)

(M’E o Kot (10 ) (5.29)
—M,v, (i)
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The above formulations are based on the viscous damping assumption. If the hysteretic

damping assumption is used, then, the stiffness matrix is modified to
KXK' =(1+iG)K (5.30)

and the viscous damping term is dropped; thus, Eq.(5.29) becomes

o (M, 0O K; K, 7 (iw) (M,K;li,big(iw)
- * I . 0 = - . 5.31
o (% ) (k0w (o ~M,5, (i) (531
where the coefficient ¢ can be determined by assuming the stress-strain relationship for

viscoelastic material. G = 2¢ for small damping ratios and G = 2¢£2 + 2£+/1 + £2) for large
damping ratios, see Lysmer et al. (1975). :

By summing the matrices on the left hand side of Eq.(5.29) or Eq.(5.31), the equation
of motion for the upper structure in the substructure method can be written as

(ffb 823 Ibb(z'és)bgfz)f(iw)) (gﬁﬁ) = (Mﬁ_{lb‘éfg;@) (5.32)

where I;;(1@) is the corresponding sub-matrix obtained by summing up the mass, damping

and stiffness matrices.
5.5 Impedance Matrix

Determining the foundation impedance matrix is one of the key elements in the for-
mulation of the substructure method of trealing soil-structure interaction effects. For a single
rigid mat foundation sitting on soil, the 6 x 6 impedance matrix relates the interaction forces
that the foundation exerts on the soil to the interaction displacements at the foundation.
The impedance matrix depends on the geometry of the foundation, on the soil characteris-
tics, on the nature of the contact between the foundation and the soil, and on the excitation

frequencies (Luco, 1982).

Evaluation of the impedance matrix for a rigid foundation is a mixed boundary value
problem, in which the displacements between the foundation and soil are prescribed and the
tractions on the free soil surface outside the mat foundation are zero. Usually, the problem
can be reduced to Fredholm integral equations of the second type. Veletsos and Wei (1971}
and Luco and Westmann (1971) evaluated the impedances for a rigid circular plate resting
on a uniform half space. Wong (1975), and Wong and Luco (1976) evaluated the impedances
for a rigid foundation of an arbitrary shape resting on the surface of the half space. Luco
(1976) evaluated the impedances of a rigid circular foundation on a multilayered viscoelastic
half space. Wong and Luco (1985) presented tables of impedances for a square plate resting

on layered soil. The impedances for various types of embedded foundations have also been
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calculated. Liou (1988) developed a method to obtain closed form solutions for embedded

foundations on layered scil.
The impedances obtained by previous authors can be used as follows:
Each impedance function is of the form

S, (1@) = G®(a,) + iG' (a,) (5.33)

where a, = %-“’E is a dimensionless frequency parameter. R, is related to the dimensions of

the foundation plate: for a circular plate foundation, R, is the radius of the plate, and for
a rectangular plate foundation for a = b, R, = \/4ab/m, where a and b are the dimensions of
the foundation. C, is the shear wave velocity in the soil;
G

— (5.34)
P) !

Cy —

where G is the shear modulus and p is the density of the soil.

The impedance values are usually given in terms of o and 3, as shown in Fig. 5.4;
see Penzien {1976). These results were obtained by Veletsos and Wei (1971) for a circular

rigid foundation on an elastic half space. The impedance values can be obtained using

4GR,a
R __ v
% (a,) = —— (5.35)
4G Rya,f
I _ - pTorv 5.
G (a,) - (5.36)
for the vertical translational degrees of freedom;
R SGRPQQ
_ 5.
G (ao) 2 -y ( 37)
8GR, a,p, \
I —
Glar) = — = (5.38)
for the lateral translational degrees of freedom:;
8GR
R . pom
G (a,) = -0) (5.39)
8GR3a, B,
I — P
Gl (a,) = " i) (5.40)
for the rocking degrees of freedom;
8GR} o,
R _ p M
G*(a,) = —2—— (5.41)



8G R20,Bum

G¥(a,) = 5.42
(o) = =525 (5.42)
for the rocking and lateral translational coupling terms; and
16GR3a,
G (a,) = __33_:_ (5.43)
16G R3a,p;.
G (a,) = —~;—é‘— (5.44)

for the torsional degrees of freedom. Where v is the Poisson ratio of the soil for a homoge-

neous half space, or the Poisson ratio in the first layer of the layered foundation.

5.6 Numerical Methods

Since the interaction forces depend on the excitation frequencies and the impedances
are expressed in terms of the frequency, the substructure formulation is solved in the frequency

domain.

In order to obtain the response time-history r%(t), Eq.(5.32) should be solved at every
discrete frequency inside the range of interest. It is very time consuming to solve the equa-
tion at all the frequency points. Fortunately, Tajirian (1981) has suggested an approximate
interpolation function, based on the response function of a two DOF structure, given by

‘4 —
c;w” + czjwz + ¢35

@ + cg; @2 + 55

y(iw) = (5.45)
where y(i@) is the interpolated response value, c;; are complex coefficients to be determined,

and j refers to the subdivided frequency range.

With this interpolation function, the response function only needs to be solved at fewer
selected frequency points, then its values at other points can be obtained by the interpolation
method. Since the interpolation function was based on the response function of a two DOF
structure, the interpolation range should be chosen assuming that only two modes contribute
significantly to the response in that range, and that the contributions from other modes are
negligible. In each range 7, five discrete frequencies @;, 1 =1,2,3,4,5, are selected; at these
five selected frequencies, Eq.(5.832) is solved in order to determine the coefficients ¢;;. The
selection of these five frequencies in each range j depends on the rapidity with which the
responses vary with the excitation frequency. The frequency points should be closely spaced
in the range where the responses vary sharply, and widely spaced in the range where the
responses vary slowly. This can be achieved by imposing a control constant b (Fok and
Chopra, 1985). Suppose ff;(i;) is the response vector solved at the frequency @; for the

range 7, and fﬁ._ln(z‘&;_l) is solved at the frequency @;.,, then the frequency interval can

1G5



be determined as ;

Aw; = A f',i,(in’l»)—i“‘(i (i@i-1) (5'46)
i 1 (i=-1)5 i—-1
maz ( ﬂy(“‘jl) )

d . d [y
L.',‘ (’wi)_i(,'.. 1)_,'(“""— l)

f.‘,"j (i@ "]

where max( ) is the maximum absolute value calculated by using all the

possible component in vectors f:.ij and fﬁ._l)j. With A&;, the next discrete frequency value
can be obtained:
@1 = @ + Ad; (5.47)

Sometimes, an impractically small or large value of A@; is obtained depending on the

calculated vectors F?

=ij

and f?l._l)j, so that 1t is necessary to set A®, ., andA&,;, values.

After five discrete frequency points have been selected in each range j, Eq.(5.32) can

be solved, and the five constants ¢;; for each DOF k can be determined as

of @i 1 -ffel -r e 7 ot

G’g "T’g 1 _fgj‘:’g ““fzij Caj i‘é,-u');

wy @5 1 -r5.@f - cs; | = | 13,98 k=1,2,...,n (5.48)
of @ 1 -rad -r | | o 7ot

wg @y 1 ""f.'i;j‘z’g "‘fsdj g Tk f-sdng k

where n = n,+n, is the total number of degrees of freedom. Using the coefficients determined,
the frequency response values at all other discrete frequency points in that range can be

determined by the interpolation function.

If n, is very large, solving Eq.(5.32) directly becomes very expensive. A good improve-
ment can be achieved using the normal modes of vibration to modify the equation before

solving it. For the structure only, the vibration modes can be obtained as

[K,, —«*M,]|®s =0 (5.49)

48

where K,, and M, are the stiffness and lumped mass matrices of the upper structure as
given before. By solving this eigenvalue problem, /(I < n,) natural frequencies w;,ws,...,w,
and the corresponding vibration mode shapes ¢ , $,:---»9, can be obtained. By forming an
n, X ! mode shape matrix @,

o=(p, ¢, --- &) (5.50)

The dynamic response 7 can be approximated as

(2)=( 3)(
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where [ is a n, X n, identity matrix, and y= ~X K .» 18 the influence coefficient matrix.
Substituting Eq.(5.51) into Eq.(5.24), and premultiplying both sides of Eq.(5.24) by

QT results in

o my 0 PN 0
0 myg ... O
z "M,y (g)
: v
0 0 m o
TM,P TMy+ M,
ZEleml ) 0
0 2&2w2m2 0 .
: '|(®)
0 0 2§,w;m; -
-0 0
mel 0 0
0 Wy my 0
: e
: v
0 0 w?my -
g g
M, 0 -K 'K, 0
=-Q" (—’ v ) ( —”..—-"’“g) +Q (*) (5.52)
SN0 M, b TR

my 0 e 0
0 Mg 0 @TM
o s My
0] 0 my
M,e T M+ M,
wf -+ i2£1w1@m1 Ve 0
: : : o | ( sz(zw))
0 e w? my + 2&wiomy Qb(":’)
= 8, (i@)
Megs_sl—K-s 5 e
_qr ( MK, b) 5 (is) (5.53)
My

The equation is now reduced to !+ n, degrees of freedom for the upper structure.

5.7 Numerical Procedure
The procedure for solving the general structural system with soil-structure interaction

effects excited by multiple inputs is given in the following:
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10.
11.

Form the stiffness, damping and mass matrices for the structure-foundation

system. Calculate the influence coefficient matrix v = —K K,

Form the impedance matrix S;(i@), taking into account the foundation and
soil properties, and using the impedance results obtained previously such as
those shown in Fig. 5.4 by Veletsos and Wei {(1971), and Eqgs.(5.35) through
(5.44).

Form Eq.(5.24), and transform it to the frequency domain, and incorporate
the impedance matrix S;(i@) to the equation to obtain Eq.(5.32).

If the structural system is very large, the mode decomposition method is

applied first to the structural system as shown in the previous section.

Use the interpolation method to solve Eq.(5.32) or Eq.(5.53) in the range
of 0 to Wpyes, Where ,,,, is the Nyquist frequency.

The control constant b, A&.i., and A@,,., should be determined first if

the interpolation method is used,

The equation is sclved starting at zero frequency, and A&; = Ad,;,. The
next frequency point can be determined by Eqs.(5.48) and (5.47}). Continue
to solve the equation at the frequency points selected by this procedure.
The last frequency point should be wp,,,.

Subdivide the frequency points into ranges with the five points selected
above as one range. @,,, should be the last frequency point in the last
range. I @,,4- 158 not, it can be forced to be by including the necessary

points from the previous range.

In each range, the coefficients ¢;; are determined by Eq.(5.48) for each
vibration DOF. The frequency response values for this DOF in that range
can be calculated by the interpolation function Eq.(5.45).

Calculate all the frequency responses for each DOF from 0 to @pq,.

Transform the calculated frequency responses back to the time domain to

obtain the response time-histories,
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CHAPTER 6 EXAMPLES

In the previous chapters, methods were presented for simulating spatially correlated
multiple ground motions compatible with a prescribed response spectrum and for evaluating
the structural responses to such motions. A computer program, named SSIAM, was developed

for these methods and is used below to determine the response in two examples.

6.1 Description of the SSTAM Program

The program SSIAM (Soil-Structure Interaction Analysis with Multiple Inputs) was
developed for the numerical methods discussed in the previous chapters. It is briefly described

as follows:

1. First, the total number of nodes, the number of contact nodes for the
structure and foundation, and the total number of element types in the
system are read. The element types include 3D truss elements, 2D and 3D
frame elements, 3 to 9 node plane stress and plane strain elements, and

axisymmetric elements.

2. Then, the element properties are read, and the element stiffness matrix and

lumped mass matrix are formulated.

3. The banded stiffness matrix and lumped mass matrix are formulated for the

system, and then the hysteretic damping matrix according to Eq.(5.30).

4. Whether the spatially correlated multiple ground motions are simulated or
given as inputs is next checked. I the ground motions are simulated, the
program reads the quasi-stationary power spectral density functions, co-
herency functions, and shape functions. Equation (4.13) is used and all
the ground motions are iterated until compatible with the given response

spectrurn.

5. These ground motions are interpolated to obtain the ground motions for the
locations on the structure-foundation surface where the ground motions were

not simulated.
6. The soil properties are read and the impedance matrix is formulated.

7. The total system is solved in the frequency domain using the interpolation

technique.
8. The structural responses are transformed into the time domain.

9. The stresses and strains of the elements are calculated.
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6.2 Verification of the SSIAM Program

Before the two examples were solved, the SSTAM computer program was tested using a
three-story building with stiffness k = 50.0, mass M = 10.0 at each floor, and a damping ratio
€ = 0.05, as shown in Fig. 6.1. The responses of this building were solved by both SSIAM
and the existing program CAL86 (Wilson, 1986). Figure 6.2 shows the displacement transfer
function at the top floor for a unit harmonic excitation. The two results were cbtained by
SSIAM with and without using the interpolation technique. From the figure, one can see that
both curves agree very well. Only about 5% of the effort spent to solve the equations without
using the interpolation, was used if the interpolation was included. The natural frequencies
obtained using SSIAM are f; = 0.2197THz, f; = 0.61035Hz, and f; = 0.952148 H2, which are
very close to the natural frequencies obtained using CAL86 and solved in the time domain;
they are f, = 0.22398Hz, f, = 0.62762Hz, and f; = 0.9068H =z, The differences between the
two sets of results increase as the mode increases. The largest error occurs in the third
mode. It is about 4.7%.

To calculate the structural responses, two cycles of a sine wave with amplitude 1.0 and
period m was chosen as the input, as shown in Fig. 6.3. The structural responses were first
calculated using SSIAM with and without using the interpolation technique. The results are
shown in Fig. 6.4. These results show very little differences. Figure 6.5 shows the results
obtained using SSIAM and CALS86. It can be seen that both results match well. The result
obtained using SSIAM does not start from rest because of the problem of a quiet zone in the
frequency domain approach. It is expected that if a longer quiet zone is used, the starting

value would be closer to zero.

From a close comparison of the results obtained using these two programs, it was

concluded that SSIAM is reliable.
6.3 Example I, A Long Span Arch Beam

A 100m long span arch frame constructed by steel is considered; see Fig. 6.6: area
A = 1080¢m?, moment of inertia I = 40255000cm*, Young’s modulus E = 2043050kg/cm?, and
density p = 0.00783kg/cm®. Hysteretic type damping is used with damping ratio £ = 0.05. A
homogeneous half-space foundation is assumed for soil-structure interaction purposes; the soil
properties used are: shear wave velocity V, = 130m/s, shear modulus G = 310kg/cm?, bulk
density p = 1.83 x 107®kg/em®, and Poisson’s ratio v = }. Assume there is a massless rigid
circular plate with radius R, == 6m at each support as in Fig. 6.6. These two plates are
assumed to respond independently of each other. The impedances used for each plate were
those obtained by previous authors, such as Veletsos and Wei (1971), which were derived for

a rigid massless circular plate resting on the homogeneous half space; see Fig. 5.4.
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Using SSIAM and neglecting shear and axial deformations, the structural responses
under the spatially correlated multiple ground motion excitations were solved. The displace-
ment transfer functions at Nodes 3, 6, and 9 in the horizontal direction were calculated by
inputing unit excitations at both supports throughout the frequency range; see Figs. 6.7
through 6.9. The two spatially correlated ground motions were simulated using an apparent
velocity V,,, = 3000m/s. The coherency model described in section 3.6 was used for this
purpose, i.e. Eq.(3.9). The parameters used in this model were those obtained for the NS
component of Event 45; see chapter 3. Two Tajimi-Kanal power spectral density functions
were used for two time windows of 0 — 9sec and 9 — 21sec to approximate the nonstationarity
property of the ground motions. The two power spectral density functions were assumed to
have the properties of ¢, = 0.63, w, = 0.9Hz and §, = 0.1, w, = 0.5Hz, respectively. The
power spectral density function for the second window was purposely chosen to have a low
central frequency and a low damping ratio. This low frequency was chosen because long
span structures usually have low vibration frequencies. The frequency range of the simulated
ground motions was selected to cover the structural primary vibration mode. The Bogdanoff
type shape function of Eq.(3.4) was used with its peak acceleration occurring at ¢ = 8sec.
The simulated ground motions were made response spectrum compatible using the Newmark
and Hall design response spectrum of damping ratio £ = 0.05 and normalized to the peak

ground acceleration of 0.59. The two simulated ground motions are shown in Fig. 6.10.

In order to see the effects of the ground motion phase differences on the structural
responses, two other sets of spatially correlated ground motions were generated using all of
the above ground motion properties, except for the apparent wave velocity. The apparent
wave velocities used for the three cases were V,,, = 3000m/s (Case 1), V,,, = 1500m/s (Case
2), and V,,, = 300m/s (Case 3). The simulated ground motions in these three cases were
derived from the same power spectral density and the same intensity function, and were made
compatible with the same Newmark and Hall design response spectrum. The only differences
among these three sets of ground motions were the phase differences between the two ground
motions in each set. The results calculated in both the time and frequency domains using
these three sets of ground motions as spatially correlated ground motion multiple inputs,
are shown in Figs. 6.11 through 6€.18. From these results, it can be noted that the peaks
of the structural responses are reduced due to the effect of phase differences in the input
ground motion time-histories; the larger the phase differences, the smaller the structural
responses. This result is consistent with the previous results obtained by Loh, Penzien and
Tsai (1982), and Abrahamson and Bolt (1985). From Figs. 6.14 through 6.16, it is also
seen that the phase differences in the multiple input ground motions introduce corresponding
phase differences or time lags in the structural responses; the larger the phase differences

of the multiple input ground motions, the larger the phase differences or time delay in the
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corresponding structural responses. The time lag between the structural responses obtained by
single input and multiple inputs is in the range of Osec to the time lag of the multiple input
ground motions. For example, the time lag between the two ground motion time-histories for
Case 1 1s 7 = 0.03333sec, and the time lag between the ground motion time-histories for Case
3 is 7 = 0.3333sec; then, the time lag between the structural responses obtained by these
two input cases is in the range of Osec to 7 = 0.3sec. Another observation is that, when
using the multiple inputs, the structural responses are no longer symmetrical. For example,
the structural responses at Nodes 3 and 9 are the same by the symmetry property when a
single rigid foundation input assumption is used, see Figs. 6.7 and 6.9. When using multiple
inputs, the structural responses at these two nodes are not the same, see Figs. 6.14 and

6.16. This conclusion is obvious because of the non-symmetry of the multiple inputs.

To compare the differences between the structural responses obtained using multiple
inputs and a single input, the displacement response in the horizontal direction at Node 6 is
calculated using the simulated ground motions for V,,, = 3000m/sec as the multiple inputs;
this case is now called Case 1. In Case 2, the structural response at the same degree of
freedom 1s calculated using the first time-history of the two simulated ground motion time-
histories as the single input. And in Case 3, the response is calculated using the second
time-history as the single input. The results for these three cases are shown in Figs. 6.17
and 6.18. From these results, it can be noted that the structural response obtained in Case 1
is the average of the responses obtained in Case 2 and Case 3. This conclusion is reasonable
because of the linear property in the structural response calculation. From Figs. 6.17 and
6.18, it is also noted that the phases in the responses in these three cases are different. The
peak response using multiple inputs is less than those using single input. Neither of the single
input cases can be used to represent the multiple input case. Another case calculated used the
averaged time-history of the multiple ground motion input time-histories as the single input
to calculate the structural responses and a comparison was made with the results obtained
using multiple inputs. This showed again that the structural response using multiple inputs

cannot be represented by that using a single input because of the phase differences.

6.4 Example II, A Long Span Continuous Beam

A three span continuous beam structure with 100m per span was considered, see
Fig. 6.19. Assume the structure was constructed by steel with Young’s modulus E =
2043050kg/cm?; mass density p = 0.00783kg/cm?; area of the cross section A = 1500¢m?; and
the moment of inertia I = 1.315x 10%¢m?*. Hysteretic type damping was used with the damp-
ing ratio £ = 0.05. A massless rigid circular plate with radius R, = 20m was assumed to be
placed at each support. An homogeneous half space with bulk density p = 1.83x 10~ %kg/cm?®,

shear modulus G = 310.0kg/em?, shear wave velocity V, = 130m/s, and Poisson’s ratio v = 1

@]

116



was assumed. It was also assumed that the soil-structure interaction effects of the rigid plates
at the supports were independent of each other. The results obtained by Veletsos and Wei
(1971), shown in Fig. 5.4, were again used.

SSIAM was used to solve the problem. The structural responses were calculated by
neglecting all shear and axial deformations. The displacement transfer function was calculated
for the midpoint of the central span in the vertical direction. The result iz shown in Fig.
6.20. Two spatially correlated ground motion time-histories were simulated to serve as the
multiple inputs at Nodes 1 and 31 in the vertical direction. All the specified ground motion
properties used in Example 1 were used here. The ground motions were simulated for three
different cases using three different apparent wave velocities: V,,, = 3000m/sec (Case 1),
Vapp = 1500m/sec (Case 2), and V,,, = 300m/sec (Case 3). The multiple input ground motion
time-histories at Nodes 11 and 21 were obtained by interpolating the two simulated ground
motion time-histories. All the ground motion time-histories were iterated until compatible with
the Newmark and Hall design response spectrum with 5% damping and normalized to the
0.5g PGA level. The displacement responses at midpoint of the central span in the vertical
direction were calculated for the three cases. The results in both the frequency domain and
time domain are shown in Figs. 6.21 and 6.22. From these results, it is noted that the
conclusions made for Example I are still valid. Figures 6.23 and 6.24 show comparisons
between the vertical displacement responses at the midpoint of the central span calculated
using single and multiple inputs. The single input time-history used is the first time-history
of the four time-histories used for multiple inputs. Again, it is noted that the displacement

response calculated for multiple inputs is smaller than that calculated for the single input.

To investigate differential displacements in the structure, which can cause higher shear
stresses and usually damage some kinds of structures such as pipelines, the vertical displace-
ments at two symmetric nodes, 12 and 20, were calculated using single input and multiple
inputs. The results for both single and multiple inputs at Node 12 in the frequency domain
and in the time domain are shown in Figs. 6.25 and 6.26. Like the previously obtained
results, they show the property that using multiple inputs reduces the structural responses.
The responses obtained for the single input at Node 20 are the same as those obtained for
Node 12 by symmetry property. The results at Nodes 12 and 20 in the frequency domain and
in the time domain for multiple inputs are shown in Figs. 6.27 and 6.28. It can be noted
that the two responses are not the same; hence, the differential displacements were produced.
This observation is consistent with the results obtained by Zerva, Ang and Wen (1988) using
spectral analysis, and the results obtained by Somaini {1988) using simple harmonic plane
waves travelling across the structure site. Figure 6.29 shows the differential displacement
between Nodes 12 and 20 calculated for multiple inputs.
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6.5 Conclusions

The following conclusions are based on the results for the calculated examples and the

previous discussion:

1. The results calculated in the frequency domain by the program SSIAM agree
well with the results calculated in the time domain by the existing program
CALS86; and they are consistent with the results obtained by various authors
such as Loh, Penzien and Tsai (1982), Abrahamson and Bolt (1985), Zerva,
Ang and Wen (1988), and Somaini (1988).

2. The structural responses are reduced by using multiple inputs because of
the effects of phase differences in the input ground motions; the larger the

phase differences, the bigger the reductions.
3. The responses obtained using multiple inputs cannot be represented by using
a single input.

4. The responses produced by multiple inputs have time delays due to the
phase differences in the input motions. The delay times increase as the

phase differences of the input ground motions increase.

5. Dynamic responses are reduced when using multiple inputs rather than a
single rigid base input; however, quasi-static responses are produced when

using multiple inputs which are not preduced by a single rigid base input.
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Fig.6.1 Simple Three-Story Building Models for the Program
SSIAM Test '
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the investigation reported herein, the following conclusions have
been reached:

1. The power spectral density functions of the recorded ground motions at the
SMART-1 site generally have the Tajimi-Kanai form except for the ground
motions in the vertical component recorded during Event 24, which fit more

closely banded white noise.

2. All the investigated time-histories have the Bogdanoff type shape function
with the exception for the vertical ground motions during Event 24. These

fit better the shape function proposed by Amin and Ang.

3. Apparent velocities were calculated for ground motions recorded during
Events 24 and 45, but there were no clear conclusions that could be made
based on those results, perhaps because of the high complexity of the seismic

wave scattering.

4. A preliminary coherency model for wave propagation on the ground surface
has been suggested based on the plane wave assumption. The suggested
model depends on the two parameter functions oy(f) and az(f), and two

parameters 3, and G..

5. The two parameter functions o;(f)} and ay{f) can be best represented by

two similar nonlinear functions with different parameters.

6. The two parameters §; and f; depend on the peak ground accelerations
(PGAs) of the ground motions. Higher PGAs correspond to the lower 8,

and B, values, and result in the higher absolute coherency values.

7. Ground motions have highest variations in the North-East direction due to

the presence of mountains to the north-west of the SMART-1 site.

8. From the diverse values of the calculated parameters for a;(f) and @ (f)
functions for the ground motions recorded during different events, coherency
functions are dependent on source mechanism, path effects, and some un-

known effects.

9. A method for simulation of spatially correlated, qguasi-stationary multiple
ground motions has been developed. All the simulated ground motions sat-
isfy the prescribed ground motion properties and can be made compatible

with the given design response spectrum.
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10. The quasi-stationary method can be used to accommodate the nonstationary
properties in the ground motions. Two or three time windows are chosen
to represent P, S, and surface waves or just S and and surface waves. An
exponential type transient function can be used to combine the stationary

time-histories simulated in two consecutive time windows.

11. An interpolation method has been constructed to interpolate the multiple
ground motion time-histories when many ground motion time-histories are
needed. The interpolated time-histories preserve the proper ground motion
wave propagation properties and the response spectrum.

12. A computer program SSIAM has been developed to simulate spatially cor-
related multiple ground motions and the structural responses subjected to

these motions, including soil-structure interaction effects.

13. The structural response is generally reduced by using multiple inputs due to
the phase differences in the inputs, the larger the phase differences of the

input ground motions, the larger the reductions.

14. The differential displacement in the structure is generally increased by using

multiple inputs.

15. Using multiple inputs, the structural response always has a time delay due
to the phase differences in the input ground motions, the larger the phase

differences, the larger the delay time.

16. Multiple inputs will excite some response modes such as rotation and rock-
ing, which sometimes will not be excited by a single input.

17. Multiple input effects cannot be represented by a single input due to the
phase differences and loss of coherency values in the input ground motions.

In the analysis of large dimensional structures, a multiple input technique
should be used.

Further work still needs to be carried out on the effects of spatial variations of ground
motion on large dimensional structures with multiple supports, a few of the possible projects

are:

1.- More data, either recorded at the SMART-1 site or elsewhere, need to be

analyzed to check the generality of the suggested ground motion model.
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2. In order to simulate more realistically the spatially correlated ground mo-
tions, the apparent wave velocity needs to be intensively studied to derive a
more reliable relation between the apparent wave velocities and frequencies
which would replace the constant value assumption.

3. The effects of the relation between the structural dimension and the domi-
nant wavelength on the structural responses needs further investigation.

4. Structural types need separating according to the importance of the multiple
ground motion excitations in each type.
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