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ABSTRACT

This report describes recent experimental results on the dynamic behavior of
a one story steel structure tested with fixed, semi-rigid, and flexible connections.
The structure was subjected to various intensities of threé historical earthqua,ke
acceleration time histories by means of the shaking table at the Earthquake

Engineering Research Center at the University of California, Berkeley.

The details of the structure are presented together with the instrumentation
programs; the extent of the data collected in the tests is described. In addition, to
the dynamic properties of the structure, moment- rotation, shear-rotation, and

several other response parameters of the three different connections are presented.

The global responses of the structure with the three different connections
under three types of excitations are examined. The behavior of the structure in
these tests ranged from elastic to inelastic. Loeal responses of the structure such as
forece and deformation time histories, hysteresis diagrams, and tabulated extreme
values are shown. Important observations are made on the tcst‘ results in each of

the tests.

The behavior of flexible and semi-rigid structures under dynamic loading is
studied, and their respective responses are compared to that of the fixed structure
subjected to similar earthquakes. The use of flexible and semi-rigid structures in

low to moderate earthquake zones is investigated and commented on.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction _

Steel frames are constructed using three types of connections: fixed, semi-
rigid, flexible. Flexible and semi-rigid steel structures are limited to areas of low
seismicity by the Uniform Building Code (16). The reason for this limitation may
be the belief that excessive deformations will occur in structures with semi-rigid
and flexible connections, or that buckling under the structures own weight and the
P-4 effect might take place during strong earthquakes. Tt is possible however, that
in low-rise buildings (up to 5 stories), the flexibility provided by the connections

might attract lesser inertia forces, and thus lesser deformations.

In order to investigate the effects of connection flexibility on the dynamic‘
response of structures, the behavior of a one story steel structure with flexible,
semi-rigid, and fixed connections was studied when subjected to three different
base excitations. Figure 1.1 gives a schematic illustration of the test specimen.
The three earthquakes are, the 1940 El-Centro, the 1952 Taft, and the 1985
Mexico-City earthquakes, The responses of flexible and semi-rigid structures were
studied and compared with these of fixed structures subjected to similar earth-

quake loadings.



1.2 Literaturé Review

A survey of the literature on the behavior of flexible and semi-rigid struc-
tures, resulted in a number of relevant papers, some of which are summarized

here,

Shing, Gerstle, and Harsoyo (12) studied the dynamic response of low-rise
steel building frames designed by the " Type 2 Construction " method and sub-
jected to moderate earthquakes. In this study, typical flexibly connected Type 2
frames were analyzed for selsmic resistance using the 1988 Uniform Building Code
(16). This study showed that these frames are adequate for seismic forces not
greater than those of zone 2B, of the UBC, but that they may not have adequate

lateral stiffness.

Hwang, Chang, Lee, and R. L. Ketter (11) investigated the seismic behavior
of a pinned-base steel gable frame structure designed according to the AISC
Manual (17). The inelastic lateral strength was evaluated and quantified. The
story drifts were up to 7% at moderate to severe damage levels, and the observed
experimental ultimate lateral strength was very close to the value of a 5% damp-

ing linear elastic response spectrum of the measured table acceleration.

Leon (13) conducted four full-scale tests on semi-rigid connections incor-
porating a composite floor slab at the University of Minnesota. These types of
connections were found to exhibit bilinear moment-rotation curves with large ini-

tial stiffness, excellent ductility and predictable ultimate moment capacity.

A study of an eccentrically braced dual steel system (EBDS) subjected to
severe earthquake ground motions was carried out by Whittaker, Uang, and Ber-
tero on the earthquake simulator at the University of California at Berkeley. A six
story EBDS system was analyzed according to current earthquake resistant regula-
tions and codes. The results of these tests showed that these dual systems have a

substantial overstrength when compared to its nominal yielding strength. The



UBC requirement that a ductile moment resisting frame be designed to resist 25%
of the design base shear was found to be questionable, because such frames lack

the strength and stiffuess to be compatible with the braced frames.

1.3 Objectives and Scope of the Research
The investigation reported here had the following objectives:

(1) To compare the lateral deflections of flexible and semi-rigid frames with those
of fixed frames when the structure is subjected to large base excitations

(0.5g), similar to those that occur during severe earthquakes.

(2} To compare the base shear forces that prevail in the structure for different

connections when subjected to similar earthquake loads.

(3) To investigate the moment-rotation hysteresis loops of the flexible, semi-

rigid, and fixed connections.

(4) To study the effects of plastification in the connection on the overall behavior

of the structure.

To achieve the above objectives, a single story steel frame was constructed.
The beam to column connections were changed, from simple (flexible), to semi-
rigid, to fixed. For each of the cases, three types of ground motions were used as
input motions to the structure, each applied at progressively increasing intensities,
making a total of forty four dynamic test runs. From this complete sequence of
test data, twenty four were chosen for investigation. These tests represent the full
range of performance of the structure in these experiments. The data collected is

presented in this report.



CHAPTER TWO

TEST SET-UP

2.1 Shaking Table Facility and Data Acquisition System

The 20 feet by 20 feet shaking table is located at the Earthquake Engineering
Research Center (EERC) of the University of California at Berkeley. The shaking
table is capable of moving in the vertical direction and one horizontal direction in
such a way that strong-motion earthquakes can be simulated accurately, The
maximum displacement and velocity that can be achieved by the table are 5
inches and 25 in/sec., respectively. The shaking table may be used to subject a
structure weighing up to 100 kips to a table acceleration of 1.0 g in the horizontal

direction. The useful frequency range is from 0 to 20 Hz.

The earthquake motions, which are in the form of digitized acceleration time
histories, cannot be used directly to excite the shaking table, since the input
requires displacement time histories. Acceleration is converted to analog form
using a digital to analog converter and then changed to displacement by integrat-
ing twice using an electronic analog integrator. The amplitude scaling of the dis-
placement recording during a test is controlled using a "span" setting. A span of
1000 will give é displacement time history that has a nominal peak of 5 inches,
the capacity of the table. The table facility is described in detail by Rea and Pen-

zien (18); the data acquisition system is also described thoroughly in that report.



2.2 Test Structure

A one-story one-bay structure was used in the experiments. The following

sections describe the properties of this test structure.

2.2.1 Geometry of the Structure

The test structufe consisted of two parallel one bay single story frames. The
frames were connected to each other by a horizontal channel at floor level, and by
two sets of diagonél X bracing. The structure is shown in Figure 2.1 mounted on
the shaking table. The dimensions of the test structure are given in Figure 2.2.
The ground excitation was applied to the table along the unbraced frames, Figure
2.2. As mentioned earlier the beam-to-column joints were changed from simple,
to semi-rigid, to fixed connections, thus providing three different test structures.
The floor diaphragm, which was made of channels and W-shape beams, was con-
nected to the girders by heavy structural tubes. Figure 2.3 gives a detail of the
floor system and the floor-to-girder connections. As can be seen the inertia forces
developed were transferred by six reinforced heavy 12x6x1/2 inch structural tubes
to the girders of the two frames. It is evident that the conerete blocks could not

interfere with the girder deformation.

Figures 2.4, 2.5, and 2.6 show details of the flexible, semi-rigid, and fixed
beam-to-column connections, respectively. In the case of the flexible connection,
two 2x2x3/16 inch angles were used with eight A325 1/2 inch diameter bolts
bolted to the column flange and the beam web. The semi-rigid connection con-
sisted of the same double-angle connection, with additional seated 2x3-1/2x3/16
inch angles which were added on the top and bottom flanges of the beam. In this
case also 1/2 inch diameter A325 bolts were used. The fixed connection consisted
of the same shear connection detail, but the double angles were welded to the

beam to insure rigidity. Also, the flanges of the beams were welded to the columns



by a full pe.netrzition field weld (E70XX) using backup plates, see Figure 2.6.

Base plates were 10x10x1 inch plates. Each base plate was bolted to another
10x10x1-3/4 inch plate by four 1 inch A490 bolts. The 1-3/4 inch base plate was
in turn prestressed to the table by high strength steel rods. To insure fixity of
columns to the base plates, a pair of trianguiar plates was used at the base of

each column. Figure 2.7 shows a detail of column base connection.

2.2.2 Material and Section Properties of the Structure

The columns were fabricated from standard rolled shapes of steel having a
vield strength of about 49 ksi according to the coupon tests. Tfm beams were
made of W10x15 section, while the colum-ns were made of W4x13. Table 2.1 gives
section properties of the beams and columns. The channels used to connect the
two frames along the weak axis of the columns, were C-9x15, while the diagonal
Cross bracin_gs were 2x2x1/4 angles. Table 2.1 gives the geometric properties of

these sections.

2;2 3 Design Criteria

In order to develop a period of vibration in the range of periods of actual
steel structures, six blocks of concrete were added to the structure. As shown in
Figure 2.8 the concrete blocks were prestressed to the fioor framing level so as to
prevent any sliding, thus making the blocks a fully reactive mass. The concrete
blocks were set in such a way so as to have the center of mass close to the center
line of the floor framing level. The extent to which this vertical eccentricity may
affect the earthquake response is thought to be small, Estimated weights of the
steel components and the concrete blocks are listed in Table 2.3. The total weight

of the structure was calculated to be 27,423 pounds.



The test structure was designed as an actual structural system and not as a
scale model of a specific prototype. The relatively small dimensions of the
members was due to the limitations of the shaking table dimensions. Member sec-
tions and, correspondingly, connection sizes were scaled down. In designing the
structure the intent was to test and observe the effect of inelasticity in the connec-
tions on the overall response of the structure. Obviously, yielding was expected in
the simple and semi-rigid connections only. Since the plastic moment of the semi-
rigid connection is larger than that of the simple, the column and beam section

moduli were controlled by the semi-rigid connection plastic moment.

2.2.4 Safety Considerations

The structures tested were planned to be subjected to severe ground motion
accelerations. Since flexible and semi-rigid frames are rarely tested under these
conditions, and their behavior is still unpredictable, two safety procedures were

adopted:

(1) A block of timber beams was built under the structure so as to protect the

table if the structure were to fail.

{(2) The mass was attached loosely to a 40 kip capacity crane that would be able

to hold up the mass.

Figure 2.9 shows a detail of the above two safety procedures.



CHAPTER THREE

INSTRUMENTATION

3.1 Introduction

To monitor the local as well as the global behavior of the structure four
types of measuring devices were mounted on the structure. In principal, it should
be sufficient to measure the behavior of one connection and to monitor the
response of one frame. However, variability in the geometry and material proper-
ties is unavoidable; hence it was ﬂecessary to include sufficient instrumentation to
verify the degree of symmetry in the structure. It was also necessary to include
some degree of redundancy in the instrumentation, so as to have some backup in
case one element of the instrumentation malfunctioned. In general, each quantity
reported here was measured and checked by means of two independent instrumen-

tation systems. -
The following quantities were measured by direct instrumentation:
(1) Rotation response of three of the connections
(2) Shear displacement of the four connections
(3) Axial displacement of the four connections
(4) Shear forces in the columns in both directions

(5) Moment in each column at 24 inches from the bottom



(6) Axial forces in the columns

{7} Acceleration of the floor level in the vertical, and the two horizontal direc-

tions, and the rotational acceleration.

3.2 Types of Transducers

Four types of transducers were used to monitor the behavior of the structure.
Accelerometers, potentiometers, DCDT’s, and strain gages were the basic measur-
ing devices used in this investigation. There were 88 data channels activated, 10 of
which were allocated to monitor the performance of the shaking table, the other
78 were used to measure the behaviof of the structure . There were 16 channels
allocated for DCDT’s, while 9 channels were allocated for potentiometers.
Accelerometers were allocated 5 channels, and the rest of the data channels (48)
were allocated for electric strain gages. Because various structural response quanti-
ties would eventually be determined from the data produced by these transducers,
it was necessary to understand the physical performance characteristics of these

transducers, as summarized here.

3.2.1 Accelerometers

The accelerometer was a model 141 made by Setre System, Inc. This model is
a linear accelerometer that produces a high level instantaneous DC output signal
proportional to sensed accelerations. The range of the accelerometer used is {-4g to

+4g) with 0.19% nonlinearity error.

3.2.2 Potentiometers

The potentiometer used was a model PT-101 position or displacement trans-

ducer designed for measurement from O to 30 inches made by Celesco Transducer



Products. It provides an electrical signal proportional to the linear extension of
the stainless steel cable. Nonlinearity errors are less than 0.19% of full range. Its

frequency response is up to 60 Hz, and its sensitivity is 32 mV/V/inch.

3.2.3 DCDT’s

DCDT stands for Direct Current Displacement Transducer. The DCDT used
was a model 240 made by Trans Tek. Of the sixteen DCDT's used twelve had a
range of (-1 inch to +1 inch), while the other four had a range of (-0.5 inch to

+0.5 inch). Nonlinearity errors were less than 0.5%.

3.2.4 Electric Strain Gages

Two types of strain gages were used; shear strain gages and uniaxial strain
gages. The shear strain gages were model EA-13250TD-120 made by Micro-
Measurements, for which the resistance was 120 ohms and the nonlinearity error
was 0.6%. Two brands of strain gages were used to measure axial strains. On the
columns, model YFLA-2 made by Tokyo Sokki Kenkyuju Co.LTD, with a resis-
tance of 120 ohms, and a nonlinearity error of 0.5% were used. On the diagonal
bracings, CEA-06-125UW-120 model strain gages made by Micro-Measurements,

with a resistance of 120 ohms, and a nonlinearity error of 0.6% were used.

All of these gages are capable of measuring strains up to 20% according to
their respective manufacturers specifications. All were bonded to the test strue-
ture with fast setting adhesives. A synthetic rubber coating was applied on the
top of the strain gages . This coating was intended to protect the gage from humi-

dity, and chemical intrusions.



3.3 Structural Response Measurement

The position of the 78 transducers used to monitor the behavior of the strue-

ture is described in the following section.

3.3.1 Floor Acceleration and Displacement

The five accelerometers that were employed in this investigation were distri-
buted as follows. Two accelerometers measured the horizontal floor response in the
direction of excitation in each of the two f;ames. The third accelerometer was
oriented upwards so as to detect any vertical component in the response of the
structure, while the fourth was oriented in the transverse direction of excitation to
detect any horizontal transverse component in the response. These four accelerom-
eters were all attached to the structure at the floor level center line. The fifth
accelerometer was attached to the concrete blocks at an elevation of 7 ft 5-1/2
inches, this accelerometer was used to measure the horizontal response of the mass
in the direction of excitation, and to check for any difference between the mass
and structural responses. Figure 3.1 shows the location of each of the accelerome-

ters.

Potentiometers, attached to the independent reference frame erected outside
the pit wall of the shaking table, were employed tc measure the absolute displace-
ment of the floor. Very light stainless steel cables were used to connect the poten-
tiometers to their targets on the structure. Two potentiometers were used to
measure the displacement of each of the frames at floor level. Another two poten-
tiometers were used to measure the displacements of the concrete blocks. Five
potentiometers were used to measure the deformation of the S-W column. Figure

3.2 shows the location of each of the potentiometers.
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3.3.2 Connection Defoxfma.tion Measurement

To measure the rotation of the connection four DCDT's were used as shown

in Figure 3.3. The rotation is thus given by:
& =(lé1]+ [62])/h (3.1)

Since the vertical deformation of the connection was thought to be of impor-
tance, it was also measured. Figure 3.4 shows the location of the DCDT’s.
Because of the limited number of available DCDT’s the rotation was only meas-
ured for three connections, while the vertical deformation was measured for all

four eonnections.

3.3.3 Force Measurement

Two types of strain gages were used to measure moments, shears, and axial
loads: shear strain gages, and uniaxial strain gages. Ten strain gages were
attached on each column at 24 inches from the top of the base plate. Four of
these strain gages were uniaxial resistors and were installed at the column flanges,
two on each side. TWO shear strain gages were mounted on the centerline of the
colurmn web. The other four shear strain gages were installed at the centerline of
the column flange, two on either side. Figure 3.5 shows the location of the strain
gages.

Also, uniaxial strain gages were installed on the diagonal bracings between
the two frames. Each brace had two strain gages installed at 26 inches, from the
edge of the beam, along its length. Figure 3.6 shows the location of the strain

gages.
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3.4 Instrumentation Channel Schedule

Table 3.1 lists the allocation of various transducers to specific channels of the
data acquisition system. As can be seen in the table , the first 10 channels were
reserved to monitor the performance of the shaking table, the next 5 channels
were used for the accelerometers. The following 16 channels were allocated for
DCDT’s, the next 9 channels were allocated for potentiometers, after which the

remaining 48 channels were allocated to strain gages.
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CHAPTER FOUR

TEST PROGRAM

4.1 Introduction

In this chapter the testing sequence and the different ground motions that the
structure was subjected to are summarized. In Chapter Five the experimental
resilts are presented, and in Chapter Six conclusions and remarks about the

investigation are given.

4,2 Test Sequence

As discussed earlier, the steel structure was tested with three different connec-
tions, simple (flexible), semi-rigid, and fixed. Details of the steel structure are
given in Chapter Two. The intent in selecting a test sequence was to subject each
of the three different structures to exactly the same sequence of eafthquake load-
ing. For each of the three structures a sequence of tests was selected. First a tie-
back test was conducted to measure the elastic stiffness, as well as to compute the
dynamic properties of the structure. Then the structure was subjected to white
noise of intensity 0.05g, to find its natural period of vibration more precisely.
Then, a series of forced ground motions was applied. Three different historical
earthquake ground motions were used to observe the behavior of the structure
under different ground motions, and thus a variety of frequency ranges. The 1940

El Centro SOOE earthquake, the 1952 Taft N21E earthquake, and the 1985 Mexico
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City {Sct.) S60E earthquake were chosen. Each of the earthquakes was increased
in intensity from 0.05g to 0.5g. This resulted in a total of 44 shaking table tests.
Table 4.1 lists the sequence which was followed in testing each structure. Usually,
the data for an earthquake is collected every 0.02 seconds. Looking at column five
in Table 4.1, one can see that all of the signals were inputed at a full time scale,
except for the Mexico earthquake, which was squeezed so that the earthquake
response spectra would have a peak close to the natural period of the structure.
In column six of this table, the span of each signal is listed. A span of 5 seconds
corresponds to a horizontal table displacement of 5 inches. The experimental data
was recorded on two tapes. The contents of these two tapes with the file name for
each run are listed in Table 4.2. Figures 4.1, 4.2, and 4.3 show diflerent accelera-

tion time histories of the ground motions that were used.

4.3 Runs Selected for Presentation

As stated earlier, one of the major purposes of this report is to present
detailed data on the structural response for a variety of test conditions. Cut of
the 44 shaking table tests, 24 test runs were selected for detailed evaluation. These
24 tests give a full representation of all the tests performed. These 24 tests include
the three earthquake loadings with three diflerent intensities for which the

behavior of the structure ranged from elastic to largely inelastic.
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CHAPTER FIVE

DATA REDUCTION

5.1 Introduction

For each shaking table test, the data collected was stored on a magnetic tape.
The data recorded was expressed in units of g's for accelerometers, in units of
inches for potentiometers and DCDT’s, and in units of micro strains for the strain

gages.

Before major data reduction was performed, two steps were taken. The first
was the zero correction, which was accomplished by subtracting the initial "zero
reading”. This zero reading was taken just before the shaking table test was
started. The second was a check on the validity of the reading taken by each
channel in that test. When a channel was found to have malfunctioned, it was
excluded in the data reduction process, and was replaced by other relevant back-

up channels in the reduction formulas.

An interactive environment for data analysis and graphics was used to reduce
the data collected. The "S" program was used in this ease (19). In the following

section, a detailed description of the data reduction process is presented.
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5.2 Data Noise

Recorded data containing noise is an inevitable phenomenon when using an

electronic data acquisition system. Significant noise was mixed with the true signal

especially in the data collected by the accelerometers. Two kinds of undesirable

noise were encountered during the tests.

(1)

High Frequency Noise: The high frequency noise could easily be identified.
A numerical filtering technique was used throughout the data reduction pro-
cedure. The Ormsby low-pass filter, was adopted and implemented into the S
computer program to remove the high frequency noise. A cut-off frequency of
20 Hz was used for the following reasons: (i) the frequency of vibration of the
structure was far lower than 20 Hz; (ii) the Fourier Amplitude of the input
excitation showed very little energy associated with frequencies higher than
20 Hz as shown in Figure 5.1; (iii) the oil column of the shaking table
changes the input frequency content at frequencies higher than 20 Hz, thus
introducing significant errors. A typical example of the time history response

before and after applying the Ormsby low-pass filter is shown in Figure 5.2.

Low Frequency Noise: The low frequency noise was not filtered in general.
Filtering low frequency noise would have been wrong because of permanent
deformations or plastic strains and therefore, strain gages and DCDT’s as
well as linear potentiometers were not filtered. On the other hand, accelerom-
eters were not allowed to show any permanent non-zero readings at the end
of each test run. The data recorded by the accelerometers were of very good

quality.
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5.3 Sign convention

(1)
(2)

The following sign convention is used throughout the report:
The lateral drift is positive to the right (south). Refer to Figure 5.3.

The rotation of the connections corresponding to a positive lateral drift is

positive. Refer to Figure 5.4.
Axial strains for elongation of the brace member are positive.

Positive column shear and axial forces are induced by positive floor drift,

refer to Figure 5.3.

The moment sign convention for the section at which the strain gages were

" mounted on the column is shown in Figure 5.3.

The sign convention for shear and moment for the connections is shown in

Figure 5.4.

5.4 Data Reduction

5.4.1 Table Motion Data

The table motion records are an important record, for they represent the

excitations the structure was subjected to. This information will be needed for

making analytical predictions. The acceleration time histories are thought to be

the important parameter. The basic table motion for each of eight different shak-

ing table tests is presented in the form of a time history plot of acceleration, see

Figures 4.1, 4.2, and 4.3. These plots were directly obtained by plotting the

readout of the respective channels versus time, specifically, Channel 3.



5.4.2 Structural Response

The global response of the structure is indicated basically by the accelerome-
ter, potentiometer, and the shear strain gage measurements. The member desig-
nation for the subsequent discussion is shown in Figure 5.5. In the following the

data reduction process for the main parameters is described.

(1) Base Shear: Since the structure under investigation had a single degree of
freedom, the shear force obtained by using the shear strain gages on each
column should agree with the shear force obtained from the accelerometers
attached to the structure. The formuia by which the shear value was

obtained using the accelerometers is:

Sphase = W (acl+4ac2)/2 (5.1)
where,
Sphage = base shear in kips

W = weight of the structure in kips
acl = accelerometer 1 in units of g's
ac2 = accelerometer 2 in units of g’s.

The formula for shear using the shear strain gages is:

Shase = Shearl + Shear2 + Shear3 + Shear4 (5.2)

where,

Shear(i) = shear force in column " i " in kips.
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The shear force in column "1 " can be evaluated as follows:

Shear (i) = (I/Q) ty, G (sgi5—sgi4) 106 (5.3)
where,
I = moment of inertia of the column (in?)
Q = moment area of the columnﬂ about the center

of gravity (in3)

tw = web thickness in inches

G = shear modulus of elasticity (11200 ksi)
sgib = strain gage i5 for column " i " in micro-strains
sgi4 = strain gage i4 for column " i " in micro-strains.

A comparison of these two shear forces, shows very good agreement between
the two independently measured values. Figures 5.6(a) and 5.6(b) show a com-
parison between shear force measured by these two methods. In the data
presented, the shear forces that are used are the ones obtained from the shear
strain gages attached to the columns. The reason for using the shear strain gages
was that no IOW-pass filter was needed for the strain gages, besides, the shear

values obtained by both methods were the same.

In all of the plots that contain the base shear, the absolute accelerations (in
g's) of the floor can be obtained by dividing the base shear values by the weight

of the floor which was 27.42 kips.



(2) Relative Lateral Floor Displacement: The relative floor displacement was

(3)

obtained by subtracting the table motions from the absolute floor level

motions. The displacements were calculated using the following formula:

Disp = ((pot8+pot5)/2)—((h1+h2)/2) {(5.4)
where,
Disp = lateral displacement of the floor in inches
pot8 = potentiometer 8 in inches
pot5 = potentiometer 5 in inches
h1 = horizontal displacement of shaking table {inches)
h2 = horizontal displacement of shaking table (inches)

Axial Force in the columns: The axial force in the columns consisted of
two parts, static, which was equal to the weight of the structure divided by

four, and a dynamic part which was calculated as follows:

Axial (i) = A E ((sgi0+sgi3 +sgi6 +sgi9)/4) 10~6 (5.5)
where,

Axial(i) = Axial force in column "i" in kips

A = area of column ecross section (in?)

E = modulus of elasticity (29000 ksi)

sg = strain gage in micro-strains

(4) Local moment in the columns: The moment in the columns at the loca-

tion where the strain gages were attached, was calculated using the following

formula:
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Moment (i} = S E ((sgi0+sgi3 —sgi6—sgi9)/4) 106

where,

Moment(i) = moment in column " i " at 24 inches from the
bottom (k —in )
S = column section modulus (in3)

E = modulus of elasticity (29000 ksi)

sg = strain gage in micro-strains

(5.6)

(5} Moment at the connection: The moment at the connection was easily

- derived from the local moment and shear in each eolumn. The following for-

mula describes the statics equation:

Moment (connectionl) = (48.75) Shearl1 — Moment 1

(5.7)

(6) Connection Rotation: The method by which the connection rotation was

calculated was described earlier in section 3.3.2. The following formula shows

how the rotation was calculated for connection 1:

©=((dc5+dc4—dc3—dc2)/2)/16.87

-D9.
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CHAPTER SIX

TEST RESULTS

6.1 Introduction

In this chapter, the results obtained from the 24 selected shaking table tests
are presented. The chapter is divided into two parts. In the first part, an investi-
gation of the three structures (flexible, semi-rigid, and fixed) when subjected to a
simulated 0.36g Taft ground motion is presented. The second part considers the
major response parameters of the structures. In this part, a description of the
behavior of each structure in each of the 24 tests is summarized, then extreme
values of various response variables are tabulated, after which time history plots,

as well as hysteresis plots, are presented.

6.2 0.35 g Taft Earthquake

A complete investigation of the three structures when subjected to a simu-
lated 0.35g Taft Earthquake is presented in this section. This part of the investi-

gation had three objectives:

(1) To study the complete response of the structures, globally as well as locally,
in order to identify the parameters that affect the response significantly. The
behavior of these parameters in the 24 shaking table tests was later investi-

gated.
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(2)

For certain response parameters, one series of tests (for the three different
structures: flexible, semi-rigid, and fixed) was deemed to be sufficient for com-
parative studies of the behavior. The data collected from the 0.35g Taft test

provided some of the the most dependable and significant data.

Comparisons of data collected from different channels were important in
checking the validity of such assumptions as (1) the mass does not slip during

testing, and (ii) the structures tested have one major degree of freedom.

6.2.1 Checking Performance of the Structure during Tests

Using the experimental data an investigation was conducted to study the

adequacy of the structure tested. The reason for this investigation was that in

designing and constructing the test structure certain objectives were set and

assumptions were made. Therefore, it was necessary to investigate the validity of

the assumptions, and how well the structure fulfilled its function. Some of the

objectives were:

(i) to rigidly connect the mass to the floor system;
(ii) to build the structure to have one major dynamic degree of freedom;

(iii) to add some stiffness to the structure in the direction of the weak axis of

bending of the columns.
The following three plots were generated for this purpose, these are:

A comparison of the time histories of accelerometers 1 and 4, for the semi-
rigid frame, see Figure 6.1. Accelerometer 1 was attached to the structure,
while accelerometer 4 was attached to the concrete blocks, refer to Figure 3.1.
This comparison was essential, beéause a diflerence between the two readings
would mean that the mass was not rigidly connected to the floor diaphragm,

and probably the mass was slipping. Figure 6.1 shows almost exact replicas,
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which indicates that the mass was a dynamic reactive mass, and was almost

completely in tune with the rest of the structure.

(b) Aithough the response of the structure to the ground excitation would have
three components, one vertical, and two horizontal, the horizontal component
perpendicular to excitation and the vertical component were expected to be
very small as compared to the horizontal component paralle] to excitation.
Figures 6.2, 6.3 and 6.4 show that, indeed, the response of the structure was
mainly in the direction of excitation, and the other two components are rela-
tively very small. Before testing, there was a concern about development of a
significant second torsional mode. To control torsion, diagonal braces were
added to the structure in the direction perpendicular to the direction of exci-

tation.

{c) During testing, it was noticed that the response of the structure included a
minor torsional component. Figure 6.5 shows a comparison of the responses
of the two parallel semi-rigid frames. It can be seen that the two time his-
tories of the two frames are not similar, and that a torsional component is
present. Figure 6.6 shows time histories of the rotational acceleration of the

response of the flexible, semi-rigid, and fixed structures.

6.2.2 Global Response of the Structure
The global response of the structure is presented by the following three plots.

(a) A time history plot of the lateral horizontal drift of the floor in the direction
of excitation. The time history plots in Figure 6.7 indicate that for this case,
the drift response of the three structures; flexible, semi-rigid, and rigid did
not have large variations in amplitude. However, the period of vibration were

dominated by the natural periods of the structures.
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(b)

(d)

A time history plot of the base shear of the structure. Figure 6.8 shows these
plots. Unlike drift response, the three structures with increasing level of con-
nection stiffness, showed distir_;ctly different base shear responses. As Figure
6.8 indicates, as stiffness of connection increased the base shear value also
increased. Again, because of the dominant first mode of vibration, the fre-
quency of the base shear response was governed by the natural frequency of

the structure.

A plot of base shear versus lateral drift, refer to Figure 6.9. This plot is an
indicator of structural stiffness, strength, and energy dissipation characteris-

tics, The following observations could be made

(i) The response of the rigid frame was almost elastic with very small hys-
teresis loops. In addition, the lateral stiffness of the structure was rela-
tively stable and equal to about 22.5 k/in. Maximum values of shear

and drift were 25.88 kips, and 1.22 inches, respectively.

(i) The semi-rigid frame showed more inelastic hysteresis response than the
rigid structure. However, the stiffness did not show significant deteriora-
tion. The stiffness was about 13.5 k/in. Maximum values of shear and

drift were 20.00 kips, and 1.41 inches, respectively.

(iii) The response of the flexible frame was significantly nonlinear. The ini-
tial stiffness was about 10.14 k/in., while the stiffness at later cycles was
close to 5.27 k/in.. Maximum values of shear and drift were 9.52 kips

and 1.57 inches, respectively.

A fast Fourier transform was performed on the horizontal response of the
structure, to find its natural frequency of vibrations. Figure 6.10 shows the
FFT for the three structures. The fundamental frequencies of vibration for
the three structures were established at 2 Hz, 2.5 Hz, and 2.87 Hz, respec-

tively. As Figure 6.10 (b) indicates, the semi-rigid frame had a pronounced
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second mode of vibration at 4.7 Hz. This mode was torsior_la.l and is also

shown in Figure 6.6.

8.2.3 Connection Response

Connection forces and deformations, are plotted against each other as listed

below. In the following, connection 4 (N-W) is investigated for the three different

structures.

(a) Axial Force versus Axial Displacement. Figure 6.11 shows typical plots of

axial foree versus axial deformation, for the three connections. The following

observations can be made from the experimental data:

(i)

(i1

In the rigid structure, the connection showed a symmetric axial response
with initial stiffness of about 540 k/in. During large deformations, non-
linearities were observed that are related to cyclic yielding of steel in the

connection area.

In the semi-rigid connections, Figure 6.11 (b), the response was
significantly unsymmetric. The compressive side response (left half of the
plot) was almost elastic with some nonlinearity for cycles that were pre-
ceded by large tension cycles. However, the tension side of the hysteresis
loops (right half of the plot) showed significant nonlinearity. The non-
linearity is mainly attributed to gap openings due to inelastic deforma-

tion of the connection angles, as shown in Figure 6.12.

The response of the flexible connection was completely unsymmetric and
nonlinear. The nonlinearity is attributed mainly to two sources: (a) gap
openings due to bending of the outstanding legs of the web angles; and
(b) slip in the bolt holes. It should be mentioned that observation of
connection angles during and after the tests of the flexible frames, clearly

indicated that considerable slip was taking place in bolt holes of back-
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to-back legs. An examination of web angles after the test indicated
minor hole elongation as well, that might have contributed to develop-
ment of larger slips. The response of the flexible connections showed cer-
tain hardening and increase of axial force, when deformations were large.
The main component of hardening is believed to be kinematic and due
to formation of catenary forces when angle legs undergo large deforma-

tions.

(b) Shear Force versus Shear Deformation. Figure 6.13 shows typical plots of
shear force versus shear deformation, for the three connections. These plots
indicate that the energy dissipation due to shear was more pronounced in the
semi-rigid connections, than in either the flexible or rigid. The approximate
shear stiffness of the connections could be established as 80, 390, and 392

k/in. for flexible, semi-rigid, and fixed connections, respectively.

(¢) Moment versus Rotation, Figure 6.14 shows typical plots of moment versus
rotation, for the three connections. In these plots the response resembles very
closely, the lateral load versus lateral displacement response of the three
structures shown in Figure 6.9. The moment-rotation response of the rigid
connection was almost elastic whereas a pronounced " pinching " effect could
be observed in the semi-rigid conneption response. In the case of the flexible
connection, large rotations imposed by the column deformation resulted in a
rotation in the opposite direction of the connection moment. Figure 6.15

gives a schematic explanation.

(d) Moment versus Shear. Figure 6.16 shows typical plots of moment versus
shear, for the three connections. In this plot, the intent is to demonstrate the
relation between moment and shear, and to see how connection yielding
affects this relationship. The slope in this plot, represents the distance of the

point of inflection of the beam from the center line of the column, in inches.
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Refer to Figure 6.17 for a schematic explanation, The plot of the flexible
connection shows that there was a lot of slippage, and that the point of
inflection moved back and forth in the vicinity of the connection center line.
The plot in the semi-rigid case shows some slippage in the connection, but an
approximate slope of 26 inches is dominant. In the plot for the fixed connec-
tion, the relation between shear and moment is very consistent, and shows a
slope of 27 inches. The irregular behavior that prevails in this plot is due to
the mass slipping at the end of the test. The slope in these plots also

represents the path of the load on the column in the interaction diagram.

Shear versus Rotation. Figure 6.18 shows typical plots of shear versus rota-
tion. For the flexible and most likely in the semi-rigid connections, the shear
force is the major force affecting the behavior of the connection, and not the
moment as in the case of the fixed connection. This type of relation has been
investigated by Astaneh and Nader (15). The slope in the shear—rotatioﬁ plots
represents the off-diagonal term relating shear to rotation in the 3x3 stifiness

matrix of moment, shear, and axial forces.

where,

N = W g IZJ 2 (6.1)
M = moment on the connection
V = shear on the connection
N= axial force on the connection
© = rotation of the connection
A = shear displacement of the connection
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« = axial displacement of the connection

To properly understand and represent the behavior of a connection, one

should treat it as a structure and develop the complete 3x3 stiffness matrix as

given by equation (6.1).

6.2.4 Other Significant Responses

Other structural and local parameters that were studied are summarized in

the following section:

(a)

The forces in the braces were of interest, because they represent the torsional

- effect on the structure. Figures 6.19, 6.20, and 6.21, cIéarly indicate that con-

siderable torsional effects were present in the semi-rigid frame. The torsional
mode was also observed in other tests of semi-rigid structure. As noted in
the case of the fixed structure the braces show permanent deformation, also

the time at which the mass slipped can be easily noted.

The deformation of the column during severe dynamic loading was of
interest, so a plot of extreme column deflection with the corresponding forces,

for each of the three structures, is shown in Figure 6.22.

The time history of the moment at the base plate of column 4 for each of the
structures is plotted in Figure 6.23. The base plate moment response was the
same for the three structures. Again the period of vibrations were dominated
by the natural period of the structure, The maximum values of the base plate
moment for the flexible, semi-rigid, and fixed frames were §00.8, 165.9, and
254.9 k-in. respectively. It is believed that the base plate moment of the
semi-rigid structure was less than that of the flexible structure, because of the
slight rocking that was observed in the base plates when the semi-rigid struc-

ture was being tested.



6.3 Test Data of the Selected Test Runs

6.3.1 Introduction

In this section, results from representative ltests are presented. Table 4.1 pro-
vides information on shaking table tests that were conducted. For each of the
three structures, a free vibration tie-back test was conducted to obtain the
dynamic properties of the structures. The dynamic test runs selected, present the
full range of the experiments. Of the different plots that were presented in previ-
ous section (6.2), a number of plots were found to be necessary to generate for all

the selected tests, mainly:
(1) Connection 4: Moment versus Rotation
(2) Connection 4: Shear versus Rotation
(3} Connection 4: Moment versus Shear
(4) Time history of moment of basé plate 4
(5) Plot of the fast Fourier amplitude versus frequency
(6) Time history of the base shear
(7) Time history of the lateral drift
(8) Plot of stiffness

Locations of connection 4 and base plate 4 are shown in Figure 5.5.

6.3.2 Important Observations During Testing

In this part a descriptive behavior of the structure response is given. Each of
the structures was subjected to similar sequences of dynamic loading. The follow-
ing sections give important observations that were noted during the testing of
each of the structures. As the discussion proceeds, the reader is advised to refer to

Tables 4.1, and 4.2.
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{i) Semi-Rigid Frame

The semi-rigid frame was the first structure tested. The initial test was a
Pull-Back test, in which the structure was displaced 0.1 inch, followed by White
Noise Shaking of intensity of 0.05g. The structure response was elastic as
expected, and very small drifts were observed when the White Noise was applied.
White Noise was followed by El Centro, Taft, and Mexico-City earthquakes,

respectively.

The El Centro Earthquake was applied with different intensities (0.05g,
0.15g, 0.20g, 0.25g, 0.35g peak accelerations}. In the El Centro Earthquake series,
the structure behaved almost elastically, and no significant yielding could be
observed, until an intensity of 0.35g was applied. The semi-rigid connections did
not experience significant rotation, and behaved almost as fixed connections.
When the 0.35g intensity was applied, yielding was observed in all the columns at
the areas immediately beneath the connections. Also, the seated bottom angle in
both south columns showed a slip of about 1/8 inch. Figure 6.24 shows the

observed yielding.

The Taft Earthquake was applied after the El Centro Earthquake. The
Taft earthquake was also applied with increasing intensities (0.05g, 0.15g, 0.25g,
0.35g, 0.50g). At 0.25g peak acceleration very thin yield lines were observed at the
N-W column at the same location as shown in Figure 6.24. At 0.35g peak base
acceleration, the base plates were observed to be slightly rocking, which meant
that the prestressing of the plates to the shaking table was not enough. Also, at
this intensity the torsional mode was clearly apparent. The behavior of the struc-
ture was inelastic at 0.5g, and significant yielding and plastic deformations could

be observed in the same locations as in Figure 6.24.

The Mexico Earthquake was applied with three intensities, 0.05g, 0.35g,

0.50g. At 0.35g intensity the S-W connection showed clear signs of plastic
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deformations. The shear connection slipped 3/16 inch, and the top and bottom
seated angles were bent about 1/8 inch in the out-of-plane direction. Figure 6.25
shows the connection. At 0.50g the N-W and N-E connections also experienced

plastic deformations similar to the S-W connection, but more pronounced.

(ii) Flexible Frame

Shaking table tests of the flexible frame were conducted after the tests of the
semi-rigid frame. As mentioned in section 4.2 each of the three structures was sub-

jected to the same sequence of dynamic loading.

Tie-back and White Noise: In the pull-back test, higher damping was
observed for the flexible frame compared with that of the semi-rigid frame. The

response of the structure was very flexible when the White Noise was applied.

El Centro Earthquake: The column deflection under lateral loads was a
single curvature deflection, and not a double curvature as in the case of the semi-
rigid connection. At 0.35g intensity significant lateral drif@ was taking place. Also
the simple connections showed large slippage and almost no yielding, see to Figure

6.26.

Taft Earthquake: No yielding was observed in the structure during this
test even under 0.5g intensity. However, ever-increasing slippage took place in the
connections, as the intensity was increased from 0.05g to 0.5g. The slip in shear
was about 3/16 inch, while the slip in rotation was about 3/32 inch. The bolt
holes on the web of the beam were suspected to be undergoing bearing deforma-

tions.

Mexico Earthquake: The behavior of the structure under the Mexico

Earthquake was very similar to its behavior under the Taft Earthquake.
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(i) Fixed Frame

The flexible structure tests were followed by the same sequence of tests of the
fixed frame. |

Tie-back and White Noise: In the pull-back test, the structure was noted
Ato have lesser damping and higher natural frequency of vibration.

El Centro: At 0.25g intensity, some vielding was observed at the weld of the
stiffeners in the N-W column at the connection location. At 0.35g yielding was
observed in the N-W column, as shown in Figure 6.27.

Taft Earthquake: At 0.25¢ intensity more yielding in all the columns was
noted (Figure 6.27). At 0.35g a very loud noise occurred due to slippage of the
concrete blocks acting as the mass. This slip resulted from the very violent
response of the structure. At 'this point, it was decided to stop the test for the fol-
lowing reasons:

(1) There was concern for the safety of the personnel and instrumentation.

(2) At this point enough data had been collected.

(3) The slip of the mass meant that it was no longer a fully reactive mass.

6.3.3 Tables of Extreme Response Values

The data collected is presented in two forms; first, in the form of tables of
extreme values of various response parameters, and second, in the form of plots

showing variation of important variables.

In Table 6.1, the dynamic properties of the three structures are presented,
These values are determined from the tie-back tests, and thus represent the elas-

tic dynamic properties of the structures,

In Table 6.2 a comparison between the maximum values of the base shear

and lateral drift for flexible, semi-rigid, and fixed structures for different tests, is
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given,

Tables 6.3 through 6.10 list the maximum values of moment, shear, and

rotation that occurred in connection 4, as well as, the moment of base plate 4.

In Table 6.11 a comparison of stiffnesses of the three structures, subjecte(i to
different earthquakes, is given. Since the behavior of a structure ranges from elas-
tic to inelastic, the stiffnesses recorded vary. To show the range of stiffness, an
elastic stiffness is given, which represents the unloading cycle; followed by an ine-

lastic stiffness, which is the slope of the inelastic portion of the loading branch.

Table 6.12 gives the Fast Fourier Transform reading for the lateral and tor-
sional harmonic periods of vibration of the three structures under different earth-

quake loads.

6.3.4 Description of the Schedule of Plots

As mentioned earlier, only 8 ploté were developed for the 24 selected shaking
table tests. These plots are presented in Appendix A. For each of the test runs

the the following plots are presented:
(1) Connection 4: Moment versus Rotation
(2) Connection 4: Shear versus Rotation
(3) Connection 4: Moment versus Shear
(4) Time history of the moment of base plate 4
(5) Time history of the base shear
(6) Time history of the lateral drift
(7) Plot of stiffness

(8) Plot of the fast Fourier amplitude versus frequency
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CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

The purpose of this investigation was to study and explore the behavior of

flexible and semi-rigid structures under dynamic loading. The potential for using

semi-rigid structures in low seismic zones was the main drive behind this experi-

mental research. Also, the effect of yielding in the connection zones on the

response of different structures was of great interest.

From the data collected and presented in Chapter Six and Appendix A, the

following remarks can be made.

(1)

As the stiflness of the connection increased, the base shear resulting from the
same ground motion increased, while the corresponding lateral drift did not
decrease in a similar manner. This type of structural behavior leads to the
idea of optimal design and how it can be approached. To design a structure
to resist a certain dynamic load, one should search for the optimum system
of beam-to-column connections so that the structure would develop the least
possible amount of basé shear, and yet not have large lateral deformations.
In this case of a single story structure, having a fixed connection is not the

optimal solution.

To understand and incorporate the real behavior of a connection, a 3x3
stiffness matrix should be established for the connection. This matrix would
relate moment, shear, and axial force to rotation, displacement, and elonga-

tion.
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(3)

(4)

Energy can be dissipated in a connection in different ways and not only by
moment-rotation hysteresis loops. The energy can also be dissipated by axial
force - axial displacement hysteresis loops, and shear force - shear displace-

ment, hysteresis loops.

Changing the connection type in a structure can drastically change the
response characteristics of the structure. This was demonstrated when the
torsional mode was actually excited in the case of the semi-rigid structure,

although it was not as apparent in the other two types of structures.

The semi-rigid connections behaved almost as a rigid connection in most of
the dynamie tests. The moment capacity of the semi-rigid connections turned
out to be higher than expected. The catenary forces that were developed in
the seated connections, could double the expected plastic moment of such
connections. Semi-rigid connections have considerable potential for resisting

earthquake loading, and need further study.

Need for Further Research

As can be noted from the experimental results presented in this report, flexi-

ble and semi-rigid connections have considerable potential for resisting dynamic

loading in low to medium earthquake zones. The behavior of such connections

can drastically change the response of a structure. To understand how such con-

nections can be used in optimal design of structural systems, more research is

needed. The research should include testing structures with more degrees of free-

dom and various configurations of connections. It is also necessary to include

non-structural elements in the structure under investigation.
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TABLE 2.1. Section Properties

SECTION PROPERTIES

FRAME MEMBERS TRANSVERSE MEMBERS
PROPERTIES | Column Girder Channel Bracing
W4x13 W10x15 Cox15 L2x2x1/4
A (in2) 3.83 4.41 4.41 0.94
d (in) 4.16 9.99 9.00 2.00
ty (in) 0.28 0.23 0.29 0.25
be (in) 4.06 4.00 2.49 2.00
te (in) 0.35 0.27 0.41 0.25
wt /5 (/1) 13.00 15.00 | 15.00 3.19
I (in1) 11.30 68.90 51.00 0.35
S, (in3) 5.48 13.80 11.30 0.25
Iyy (in?) 3.86 2.89 1.93 0.35
S, (in3) 1.90 1.45 1.01 0.25
J (in%) 0.15 0.10
Z, (in3) 6.28 16.00
Zy (in?) 2.92 2.30




TABLE 2.2. Weight of the Structure

WEIGHT OF STRUCTURE

Weight /foot Length * Weight
Member
(Ibs/ft) (feet) (Ibs)
Column 13.0 13.33 173.3
Beam 15.0 11.20 168.0
Channel 15.0 18.70 280.5
Bracing 3.2 292 .40 71.7
Connections 30.0
Floor

2300.0

Diaphragm ,
Added Mass 24400.0
TOTAL WEIGHT = 27423.5

* length included for columns and diagonal bracings are from mid height of structure to floor level
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TABLE 3.1. Allocation of Various Transducers to Specific Channels

CHANNEL ALLOCATION CHANNEL ALLOCATION
CHANNEL # NAME UNITS CHANNEL # NAME UNITS
1 Horizontal Disp.1 inches 61 Strain Gage 12 | mstrain
2 Horizontal Disp.2 inches 62 Strain Gage 13 | mstrain
3 Av. Horizontal Acc. g’s 63 Strain Gage 14 | mstrain
4 Av. Vertical Ace. g’s 64 Strain Gage 15 | mstrain
5 Pitch Acceleration rad/sec2 65 Strain Gage 16 | mstrain
6 Roll Acceleration rad /sec2 66 Strain Gage 17 | mstrain
7 not activated 87 Strain Gage 18 | mstrain
8 Vertical Disp.1 inches 68 Strain Gage 19 | mstrain
9 Vertical Disp.2 inches 69 Strain Gage 20 | mstrain
10 Vertical Disp.3 inches 70 Strain Gage 21 | mstrain
11 Horizantal Velocity | inches/sec 71 Strain Gage 22 | mstrain
Channels 12 through 25 were not activated 72 Straén Gage 23 | mstrain
26 Accelerometer 1 ' 73 Stra!n Gage 24 mstrafn
o7 Accelerometer 2 &'s 74 Stra}n Gage 25 mst.ra%n
- 98 Accelerometer 3 g’s 75 Stragn Gage 26 mstra}n
29 Accelerometer 4 s 76 Stra}n Gage 27 mstra}n
30 Accelerometer 5 g's ;; gtra}n gage Zg mszrafn
; : rain Gage mstrain
Channels 31 through 33 were not acthLted 79 Strain Gage 30 | mstrain
34 DCDT 1 fnches 80 Strain Gage 31 | mstrain
35 DCDT 2 ¥nches 81 Strain Gage 32 | mstrain
36 DCDT 3 inches 82 Strain Gage 33 | mstrain
37 DCDT 4 inches 83 Strain Gage 34 | mstrain
38 DCDT 5 {nch% 84 Strain Gage 35 | mstrain
39 DCDT 6 inches 85 Strain Gage 36 | mstrain
40 bODT 7 Inches 86 Strain Gage 37 | mstrain
41 DCDT 8 !nches 87 Strain Gage 38 | mstrain
42 DCDT 9 fDCh% 88 Strain Gage 39 | mstrain
43 DCDT 10 }nches 89 Strain Gage 40 | mstrain
44 DCDT 11 inches 90 Strain Gage 41 | mstrain
45 DCDT 12 inches 91 Strain Gage 42 | mstrain
46 DCDT 13 inches 92 Strain Gage 43 | mstrain
47 DCDT 14 %nches 93 Strain Gage 44 | mstrain
48 DCDT 15 inches 94 Strain Gage 45 | mstrain
49 DSDT 16 inches 95 Strain Gage 46 | mstrain
50 Potentiometer 1 inches 96 Strain Gage 47 | mstrain
51 Potentiometer 2 inches 97 Strain Gage 48 | mstrain
52 Potentiometer 3 inches 98 Strain Gage 49 | mstrain
53 Potentiometer 4 inches 99 Strain Gage 51 | mstrain
54 Potent%ometer 5 {nches 100 Strain Gage 52 | mstrain
55 Potentfometer 6 ¥nches 101 Strain Gage 53 | mstrain
36 Potent'lometer 7 }nches 102 Strain Gage 54 | mstrain
57 Potentiometer 8 inches 103 Strain Gage 55 | mstrain
58 Potentiometer 9 inches 104 Strain Gage 56 | mstrain
59 Stra..in Gage 10 mstra..in 105 Strain Gage 57 | mstrain
60 Strain Gage 11 mstrain 106 Strain Gage 58 | mstrain
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- Table 4.1.a. Sequence of Testing

SEQUENCE OF TESTING
Semi-Rigid Connection
EXCITATION | DURATION
REMARKS
RATE
FILENAME of SIGNAL
SIGNAL ** INTERVAL
(sec) (sec) (sec) SPAN
880705.01 * f.v. 20 .005
880705.02 r.30.d 39 005 250
880705.03 ec2 35 005 0.02 55
880705.04 * ec2 35 005 0.02 110
880705.05 ec2 35 005 0.02 275
880705.06 * ec2 35 .005 0.02 362
880705.07 * ec2 35 .005 0.02 551
880705.08 r.30.d 35 005 110
880705.09 taft2 35 005 0.02 104
880705.10 * taft2 35 005 0.02 312
880705.11 taft2 35 .005 0.02 520
880705.12 * taft2 35 005 0.02 758
880705.13 * taft2 35 005 0.02 1000
880705.14 set.o 13 005 0.0035 50
880705.15 * set.o 13 .005 0.0035 116
880705.16 * sct.0 | 13 005 0.0035 166

* selected tests reported here
** f.v. = Free Vibration

r.30.d = Random White Noise

ec2 = El-Centro S00E Earthquake

taft2 = Taft N21E Earthquake
sct.0 = SCT SB0E Mexico City Earthquake

**% a span of 1000 corresponds to 5 inches of shaking table displacement
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TABLE 4.1.b. Sequence of Testing

SEQUENCE OF TESTING

Flexible Connection

EXCITATION| DURATION _
REMARKS
RATE
FILENAME of SIGNAL
SIGNAL ** INTERVAL
SPAN ***
(sec) (sec) (sec)

880706.01 fov. 20 005
880706.02 r.30.d 35 005 250
880706.03 ec2 35 .005 0.02 55
880706.04 ec2 35 005 0.02 110

Retightened the prestress rods attached to the base plates to 60 ksi.

880706.05 *
880706.06
880706.07
880706.08 *
880706.09
880706.10 *
880706.11 *
880706.12
880706.13
880706.14 *
880706.15
880706.16 *
880706.17 *
880706.18
880706.19 *
880706.20 *

f.v.
r.30.d
ec2
ec2
ec2
ec2
ec2
r.30.d
taft2
taft2
taft2
taft2
taft2
sct.o
sct.o

sct.o

20
35
35
35
35
35
35
35
35
35 -
35
35
35
13
13
13.

005
005
005
005
005
005
005
005
005
005

005

005
005
005
005
005

0.02
0.02
0.02
0.02
0.02

0.02
0.02
0.02
0.02
0.02
0.0035
0.0035
0.0035

110
55
110
275
362
551
110
104
312
520
758
1000
50
116
166

* selected tests reported here

** same notation are used as in Table 4.1.a

*** a span of 1000 corresponds to 5 inches of shaking table displacement.
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TABLE 4.1.c. Sequence of Testing

SEQUENCE OF TESTING

Fixed Connection

EXCITATION | DURATION
REMARKS

RATE

FILENAME of SIGNAL
SIGNAL ** INTERVAL
SPAN #%#
(sec) (sec) (see)

880707.01 * f.v. 20 005
880707.02 r.30.d 35 .005 250
880707.03 ec? 35 .005 0.02 55
880707.04 * ec2 35 005 0.02 110
880707.05 ec? 35 005 0.02 275
880707.06 * ec 35 .005 0.02 362
880707.07 * ec2 35 .005 ©0.02 551
880707.08 r.30.d 35 005 250
880707.09 taft? 35 .005 0.02 104
880707.10 * taft2 35 005 0.02 312
880707.11 taft2 35 005 0.02 520
880707.12 * taft2 35 005 0.02 758

* selected tests reported here
** f v. = Free Vibration
r.30.d = Random White Noise

ec2 = El-Centro SOOE Earthquake

taft2 = Taft N21E Earthquake
sct.o = SCT SB0E Mexico City Earthquake

*** a span of 1000 corresponds to 5 inches of shaking table displacemrnt
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Table 4.2. Contents of Magnetic Tapes
Which Save the Data

CONTENTS OF TAPES
Tape 1 Tape 2

Semi-rigid Flexible Fixed

880701.01 * 880706.01 880707.01

880701.02 * 880706.02 880707.02

880701.03 * 880706.03 880707.03

880701.04 * 880706.04 880707.04
l  880701.05 * 880706.05 880707.05

880705.01 880706.06 880707.06

880705.02 880706.07 880707.07

880705.03 880706.08 880707.08

880705.04 880706.09 880707.09

880705.05 880706.10 880707.10

880705.06 880706.11 880707.11

880705.07 880706.12 880707.12

880705.08 880706.13 |

880705.09 880706.14 -

880705.10 880706.15

880705.11 880706.16

880705.12 880706.17

880705.13 880706.18

880705.14 880706.19

880705.15 880706.20

880705.16

* preliminary tests with load cells



TABLE 6.1. Elastic Dynamic Properties

FREE VIBRATION
Damping . Period of Vibration (sec)
Structure
(%) FFT Cycles/time
Flexible 1.87 0.44 0.44
Semi-rigid 0.50 0.33 0.31
Fixed 0.67 0.30 0.31

TABLE 6.2. Base Shear and Lateral Drift

MAXIMUM VALUES OF BASE SHEAR AND LATERAL DRIFT

Earthquake Flexible Semi-rigid Fixed
Structure : Structure Structure
Signal and
Shear Drift Shear Drift Shear Drift
Intensity . . .
(kips) (in.) (kips) (in.) (kips) (in.)
F1-Centro 0.15¢ 4.14 0.42 4.62 0.20 5.40 0.23
El-Centro 0.25g 8.10 1.09 11.76 0.56 14.95 0.61
El-Centro 0.35g 10.00 2.08 18.81 1.15 18.12 0.82
Taft 0.15g 5.35 0.61 9.14 0.55 16.82 0.60
Taft 0.35¢g 9.52 1.57 20.00 1.41 25.88 1.22
Taft 0.50g 11.49 2.00 24.28 2.35 N.C N.C
Mexico 0.35¢ 9.22 1.45 21.2 2.00 N.C N.C
Mexico 0.50g 12.26 2.05 22.26 2.30 N.C N.C

N.C = test was not conducted
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TABLE 6.3. Extrerne Response Values For 0.15g El Centro

0.156¢g El-Centro Earthquake

Variable Flexible Semi-rigid Fixed
Connection Moment *

14.0 44.1 48.5
(k-in.)
Connection Shear *

1.08 1.94 1.90
(kips)
Connection Rotation *

. 0.0071 0.0007 0.0006

(radians)
Base Moment {k-in) ** 77.3 51.2 57.8

* Moment, shear, and rotation for connection # 1

**+ Moment for base plate # 1

TABLE 8.4. Extreme Response Values For 0.25g El-Centro

0.25g El Ceniro Earthquake

Variable Flexible Semi-rigid Fixed
Connection Moment *

33.9 123.2 146.0
{k-in.)
Connection Shear *

2.16 4.61 4.59
(kips)
Connection Rotation *

. 0.022 0.0020 0.0016

(radians)
Base Moment (k-in) ** 166.9 123.6 151.4

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1
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TABLE 6.5. Extreme Response Values For 0.35g El- Centro

0.35g El Centro Earthquake

Variable Flexible Semi-rigid Fixed
Connection Moment *
. 112.5 183.8 175.9
(k-in.)
Connection Shear *
2.11 7.34 5.62
(kips)
Connection Rotation *
0.040 0.008 (0.0018
(radians)
Base Moment (k-in) ** 247.6 214.3 187.7
* Moment, shear, and rotation for connection # 1
** Moment for base plate # 1
TABLE 6.6. Extreme Response Yalues For 0.15g Taft
0.15g Taft Earthquake
Variable Flexible Semi-rigid Fixed
Connection Moment *
- 27.4 107.5 161.2
(k-in.)
Connection Shear *
1.34 4.25 5.50
(kips)
Connection Rotation *
0.015 0.003 0.0018
(radians)
Base Moment {k-in) ** 111.9 101.4 152.9

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1
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TABLE 8.7. Extreme Response Values For 0.35g Taft

0.35g Taft Earthquake

Variable Flexible Semi-rigid Fixed
Connection Moment *

44.6 200.7 251.2
(k-in.)
Connection Shear *

1.93 7.86 11.97
(kips)
Connection Rotation *

0.026 0.008 0.0033
(radians)
Base Moment (k-in) ** 200.8 165.9 254.9

* Moment, shear, and rotation for connection # 1
** Moment for base plate # 1
TABLE 6.8. Extreme Response Values For 0.50g Taft
0.50g Taft Earthquake

Variable Flexible Semi-rigid Fixed
Connection Moment *

590.5 228.0 N.C
(k-in.)
Connection Shear *

2,47 8.70 N.C
(kips)
Connection Rotation *

0.037 0.031 N.C
(radians)
Base Moment (k-in) ** 239.9 292.0 N.C

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1

N.C == test was not conducted




TABLE 6.9. Extreme Response Values For 0.35g Mexico

0.35g Mexico Earthquake

Variable Flexible . Semi-rigid Fixed
Connection Moment *

40.8 203.2 N.C
(k-in.)
Connection Shear *

1.58 7.67 N.C
(kips) |
Connection Rotation *

0.027 0.024 - N.C
(radians)
Base Moment (k-in) ** 166.4 238.7 N.C

* Moment, shear, and rotation for connection # 1
** Moment for base plate # 1

N.C = test was not conducted

TABLE 6.10. Extreme Response Values For 0.50g Mexico

0.50g Mexico Earthquake

Variable Flexible Semi-rigid Fixed
Connection Moment *

59.5 225.6 N.C
(k-in.)
Connection Shear *

- 2.26 . 9.46 N.C

(kips)
Connection Rotation *

0.033 ‘ 0.030 N.C
(radians)
Base Moment (k-in) ** 253.6 281.0 N.C

* Moment, shear, and rotation for connection # 1
** Moment for base plate # 1

N.C = test was not conducted
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TABLE 6.11, Structure Stiffnesses

STIFFNESS OF THE THREE STRUCTURES
Earthquake Flexible Semi-rigid Fixed
Structure Structure Structure
Signal and
Elastic |Inelastic| Elastic |Inelastic| Elastic |[Inelastic
Intensity Unloa.ding""Loading'#'Unloading""Loading'"Unloading""Loading'
(k/in) | (cfim) | (fin) | (/i) | (cfin) | (k/in)
[/l-Centro 0.15g]  10.33 10.33 22.57 22.57 25.2 25.2
[21-Centro 0.25g]  10.33 6.49 23.14 19.06 24.0 24.0
[ l-Centro 0.35g 7.77 4,30 19.81 16.1 23.5 23.5
Taft 0.15¢ 9.88 7.43 17.46 17.46 24.05 24.05
Taft 0.35¢ 10.14 5.27 14.58 12.4 23.65 21.38
Caft 0.50g 8.16 5.21 18.00 13.20 N.C N.C
Mexico 0.356g 8.47 .42 18.38 8.38 N.C N.C
Mexico 0.50g 9.62 9.39 16.81 7.61 N.C N.C

N.C = test was not conducted
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TABLE 6,12, Natural Periods of Vibration

PERIODS OF VIBRATION USING FFT *

Earthquake Flexible Semi-rigid Fixed
Structure Structure Structure
Signal and
. Lateral | Torsional | Lateral | Torsional | Lateral | Torsional
Intensity
(sec) (sec) (see) (sec) (sec) (sec)
El-Centro 0.15g || 0.47 0.23 0.33 0.17 0.36 0.17
El-Centro 0.25g || 0.48 0.24 0.35 0.19 0.38 0.18
El-Centro 0.35¢g 0.52 0.23 0.35 0.19 0.38 0.17
Taft 0.15g 0.48 0.22 0.40 0.20 0.32 0.17
Taft 0.35g 0.50 0.25 0.40 0.21 0.36 0.18
Taft 0.50g 0.53 0.25 0.46 0.23 N.C N.C
Mexico 0.35g 0.49 0.25 0.48 0.22 N.C N.C
Mexico 0.50g 0.53 0.25 0.44 0.25 N.C N.C
N.C = test was not conducted
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TEST STRUCTURE

~fl— -
BASE EXCITATION DIRECTION

Figure 1.1 Test Structure

Figure 2.1 Test Structure Mounted on the Shaking Table
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Figure 2.2 Dimensions of the Test Structure
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Figure 2.3 Floor System and Floor-to-Beam

Connection Detail
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Figure 2.4 Flexible Connection Detail

Reproduced from
best available copy.
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Figure 2.5 Semi-Rigid Connection Detail
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Figure 2.6 Fixed Connection Detail
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Figure 2.9 Safety Considerations
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Figure 3.2 Location of Potentiometers
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Figure 3.5 Location of Strain Gages on Columns
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Figure 5.5 Member Designations
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APPENDIX A

As mentioned earlier, only 8 plots were developed for the 24 selected shaking

table tests. The plots are presented as follows:

I. FLEXIBLE FRAME II. SEMI-RIGID FRAME
FREE VIBRATION ' FREE VIBRATION
EL CENTRO E.Q. EL CENTRO E.Q.

0.15g intensity 0.15g intensity
0.25¢ intensity 0.25g intensity
0.35g inlensity 0.35g intensity
TAFT E.Q. TAFT E.Q.
0.15g intensity 0.15g intensity
0.35g intensity 0.35g intensity
0.50g intensity | 0.50g intensity
MEXICO E.Q. MEXICO E.Q.
0.35g intensity 0.35g intensity
0.50g intensity 0.50g intensity
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ITII. FIXED FRAME
FREE VIBRATION
EL CENTRO E.Q.

0.15g intensity

0.25g intensity

0.35g intensity
TAFT E.Q.

0.15¢g intensity

0.35g intensity

NOT AVAILABLE
MEXICO E.Q.

NOT AVAILABLE

NOT AVAILABLE

For each of the test runs the the following plols are presented:
(1) Connection 4: Moment versus Rotation

(2) Connection 4: Shear versus Rotation

(3) Connection 4: Moment versus Shear

{4) Time history of the moment of base plate 4

(6) Time history of the base shear

{6) Time history of the lateral drift

(7) Plot of stiffness

(8) Plot of the fast Fourier amplitude versus frequency
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COUPON TESTS

The stress-strain relation of different parts of the structure were developed,
using standard ASTM coupon specimens. The basic interest was to find the
stress-strain curve of the connection angles, since most of the yielding was in that
area. The behavior of the columns, in the areas near the connection, was also ine-
lastic. This inelastic behavior, made it necessary to find the stress-strain curve of

the column so as to understand the behavior of the structure.

Since it had been anticipated that the yield point for material in different
parts of the rolled sections would be different due to variation in rolling of web
and flanges, it was decided that the mechanical properties should be identified for

each pert of the sections.

As indicated in Figure B.1, a total of six coupon specimens, three for W4x13,
two for L2x3-1 /2x3) 16, and one for L2x2x3/16 were prepared for the uniaxial
monotonic axial tests. The tests were run by a 120 kip Baldwin machine, the out-
put of which was fed to the vertical input of an XY recorder. The strains were
monitored by extentiometers coﬁsisting of two LVDT’'s with a gage length of 1
inches, whose output served as horizantal input of the XY plot. The load rate

used was 20,000 #/min.

Typical Stress-strain curves are shown in Figure B.2. Table B.1 summarizes

the findings.
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TABLE B.1. Coupon Test Results

STRESS-STRAIN RELATIONSHIP

[.2x3-1/2x3/16

Variable Column W4x13 L2x2x3/16
Specimen 1 2 3 1 2 1

Avg. Thickness (in) || 0.312 | 0.329 | 0.338 | 0.190 0.191 | 0.188
Avg. Area (in?) 0.232 | 0.244 | 0.250 | 0.141 | 0.141 0.069
Mod. of Elasticity

(1 03 ks ) 29.03  30.49 | 29.57 | 29.20 28.70 20.04
Fy upper (ksi ) 56.55  50.08 | 48.00 | 61.90 52.70 52.03
Fy lower (ksi) 53.86 | 47.20 | 47.00 | 59.70 49.80 52,03
¢y (strain) 0.022 | 0.016 | 0.018 | 0.018 | 0.018 0.017
Byt hard (ksi) 48.00 | 45.00 | 41.00 | 37.00 | 44.00 50.00
Fyt, (ksi) 73.52 | 70.00 | 68.40 | 74.02 | 69.40 NA
eylt, (strain ) 0.196 | 0.210 | 0225 | 0.200 | 0210 NA

NA == test was stopped before reaching ultimate strength due experimental problems
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