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ABSTRACT

This report describes recent experimental results on the dynamic behavior of

a one story steel structure tested with fixed, semi-rigid, and flexible connections.

The structure was subjected to various intensities of three historical earthquake

acceleration time histories by means of the shaking table at the Earthquake

Engineering Research Center at the University of California, Berkeley.

The details of the structure are presented together with the instrumentation

programs; the extent of the data collected in the tests is described. In addition, to

the dynamic properties of the structure, moment- rotation, shear-rotation, and.

several other response parameters of the three different connections are presented.

The global responses of the structure with the three different connections

under three types of excitations are examined. The behavior of the structure in

these tests ranged from elastic to inelastic. Local responses of the structure such as

force and deformation time histories, hysteresis diagrams, and tabulated extreme

values are shown. Important observations are made on the test results in each of

the tests.

The behavior of flexible and semi-rigid structures under dynamic loading is

studied, and their respective responses are compared to that of the fixed structure

subjected to similar earthquakes. The use of flexible and semi-rigid structures in

low to moderate earthquake zones is investigated and commented on.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

Steel frames are constructed using three types of connections: fixed, semi

rigid, flexible. Flexible and semi-rigid steel structures are limited to areas of low

seismicity by the Uniform Building Code (16). The reason for this limitation may

be the belief that excessive deformations will occur in structures with semi-rigid

and flexible connections, or that buckling under the structures own weight and the

P-o effect might take place during strong earthquakes. It is possible however, that

in low-rise buildings (up to 5 stories), the flexibility provided by the connections

might attract lesser inertia forces, and thus lesser deformations.

In order to investigate the effects of connection flexibility on the dynamic

response of structures, the behavior of a one story steel structure with flexible,

semi-rigid, and fixed connections was studied when subjected to three different

base excitations. Figure 1.1 gives a schematic illustration of the test specimen.

The three earthquakes are, the 1940 EI-Centro, the 1952 Taft, and the 1985

Mexico-City earthquakes. The responses of flexible and semi-rigid structures were

studied and compared with these of fixed structures subjected to similar earth

quake loadings.
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1.2 Liter~tureReview

A survey of the literature on the behavior of flexible and semi-rigid struc

tures, resulted in a number of relevant papers, some of which are summarized

here.

Shing, Gerstle, and Harsoyo (12) studied the dynamic response of low-rise

steel building frames designed by the " Type 2 Construction " method and sub

jected to moderate earthquakes. In this study, typical flexibly connected Type 2

frames were analyzed for seismic resistance using the 1988 Uniform Building Code

(16). This study showed that these frames are adequate for seismic forces not

greater than those of zone 2B, of the UBC, but that they may not have adequate

lateral stiffness.

Hwang, Chang, Lee, and R. L. Ketter (11) investigated the seismic behavior

of a pinned-base steel gable frame structure designed according to the AISC

Manual (17). The inelastic lateral strength was evaluated and quantified. The

story drifts were up to 7% at moderate to severe damage levels, and the observed

experimental ultimate lateral strength was very close to the value of a 5% damp

ing linear elastic response spectrum of the measured table acceleration.

Leon (13) conducted four full-scale tests on semi-rigid connections incor

porating a composite floor slab at the University of Minnesota. These types of

connections were found to exhibit bilinear moment-rotation curves with large ini

tial stiffness, excellent ductility and predictable ultimate moment capacity.

A study of an eccentrically braced dual steel system (EBDS) subjected to

severe earthquake ground motions was carried out by Whittaker, Uang, and Ber

tero on the earthquake simulator at the University of California at Berkeley. A six

story EBDS system was analyzed according to current earthquake resistant regula

tions and codes. The results of these tests showed that these dual systems have a

substantial overstrength when compared to its nominal yielding strength. The

-2-



UBC requirement that a ductile moment resisting frame be designed to resist 25%

of the design base shear was found to be questionable, because such frames lack

the strength and stiffness to be compatible with the braced frames.

1.3 Objectives and Scope of the Research

The investigation reported here had the following objectives:

(1) To compare the lateral deflections of flexible and semi-rigid frames with those

of fixed frames when the structure is subjected to large base excitations

(O.5g), similar to those that occur during severe earthquakes.

(2) To compare the base shear forces that prevail in the structure for different

connections when subjected to similar earthquake loads.

(3) To investigate the moment-rotation hysteresis loops of the flexible, semi

rigid, and fixed connections.

(4) To study the effects of plastification in the connection on the overall behavior

of the structure.

To achieve the above objectives, a single story steel frame was constructed.

The beam to column connections were changed, from simple (flexible), to semi

rigid, to fixed. For each of the cases, three types of ground motions were used as

input motions to the structure, each applied at progressively increasing intensities,

making a total of forty four dynamic test runs. From this complete sequence of

test data, twenty four were chosen for investigation. These tests represent the full

range of performance of the structure in these experiments. The data collected is

presented in this report.
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CHAPTER TWO

TEST SET-UP

2.1 Shaking Table Facility and Data Acquisition System

The 20 feet by 20 feet shaking table is located at the Earthquake Engineering

Research Center (EERC) of the University of California at Berkeley. The shaking

table is capable of moving in the vertical direction and one horizontal direction in

such a way that strong-motion earthquakes can be simulated accurately. The

maximum displacement and velocity that can be achieved by the table are 5

inches and 25 in/sec., respectively. The shaking table may be used to subject a

structure weighing up to 100 kips to a table acceleration of 1.0 g in the horizontal

direction. The useful frequency range is from 0 to 20 Hz.

The earthquake motions, which are in the form of digitized acceleration time

histories, cannot be used directly to excite the shaking table, since the input

requires displacement time histories. Acceleration is converted to analog form

using a digital to analog converter and then changed to displacement by integrat

ing twice using an electronic analog integrator. The amplitude scaling of the dis

placement recording during a test is controlled using a "span" setting. A span of

1000 will give a displacement time history that has a nominal peak of 5 inches,

the capacity of the table. The table facility is described in detail by Rea and Pen

zien (18); the data acquisition system is also described thoroughly in that report.
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2.2 Test Structure

A one-story one-bay structure was used in the experiments. The following

sections describe the properties of this test structure.

2.2.1 Geometry of the Structure

The test structure consisted of two parallel one bay single story frames. The

frames were connected to each other by a horizontal channel at floor level, and by

two sets of diagonal X bracing. The structure is shown in Figure 2.1 mounted on

the shaking table..The dimensions of the test structure are given in Figure 2.2.

The ground excitation was applied to the table along the unbraced frames, Figure

2.2. As mentioned earlier the beam-to-column joints were changed from simple,

to semi-rigid, to fixed connections, thus providing three different test structures.

The floor diaphragm, which was made of channels and W-shape beams, was con

nected to the girders by heavy structural tubes. Figure 2.3 gives a detail of the

floor system and the floor-to-girder connections. As can be seen the inertia forces

developed were transferred by six reinforced heavy 12x6x1/2 inch structural tubes

to the girders of the two frames. It is evident that the concrete blocks could not

interfere with the girder deformation.

Figures 2.4, 2.5, and 2.6 show details of the flexible, semi-rigid, and fixed

beam-to-column connections, respectively. In the case of the flexible connection,

two 2x2x3/16 inch angles were used with eight A325 1/2 inch diameter bolts

bolted to the column flange and the beam web. The semi-rigid connection con

sisted of the same double-angle connection, with additional seated 2x3-1/2x3/16

inch angles which were added on the top and bottom flanges of the beam. In this

case also 1/2 inch diameter A325 bolts were used. The fixed connection consisted

of the same shear connection detail, but the double angles were welded to the

beam to insure rigidity. Also, the flanges of the beams were welded to the columns

-5-



by a full penetration field weld (E70XX) using backup plates, see Figure 2.6.

Base plates were lOxlOxl inch plates. Each base plate was bolted to another

10x1Oxl-3/4 inch plate by four 1 inch A490 bolts. The 1-3/4 inch base plate was

in turn prestressed to the table by high strength steel rods. To insure fixity of

columns to the base plates, a pair of triangular plates was used at the base of

each column. Figure 2.7 shows a detail of column base connection.

2.2.2 Material and Section Properties of the Structure

The columns were fabricated from standard rolled shapes of steel having a

yield strength of about 49 ksi according to the coupon tests. The beams were

made of W10x15 section, while the columns were made of W4x13. Table 2.1 gives

section properties of the beams and columns. The channels used to connect the

two frames along the weak axis of the columns, were C-9x15, while the diagonal

cross bracings were 2x2x1/4 angles. Table 2.1 gives the geometric properties of

these sections.

2.2.3 Design Criteria

In order to develop a period of vibration in the range of periods of actual

steel structures, six blocks of concrete were added to the structure. As shown in

Figure 2.8 the concrete blocks were prestressed to the floor framing level so as to

prevent any sliding,thus making the blocks a fully reactive mass. The concrete

blocks were set in such a way so as to have the center of mass close to the center

line of the floor framing level. The extent to which this vertical eccentricity may

affect the earthquake response is thought to be small. Estimated weights of the

steel components and the concrete blocks are listed in Table 2.3. The total weight

of the structure was calculated to be 27,423 pounds.
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The test structure was designed as an actual structural system and not as a

scale model of a specific prototype. The relatively small dimensions of the

members was due to the limitations of the shaking table dimensions. Member sec

tions and, correspondingly, connection sizes were scaled down. In designing the

structure the intent was to test and observe the effect of inelasticity in the connec

tions on the overall response of the structure. Obviously, yielding was expected in

the simple and semi-rigid connections only. Since the plastic moment of the semi

rigid connection is larger than that of the simple, the column and beam section

moduli were controlled by the semi-rigid connection plastic moment.

2.2.4 Safety Considerations

The structures tested were planned to be subjected to severe ground motion

accelerations. Since flexible and semi-rigid frames are rarely tested under these

conditions, and their behavior is still unpredictable, two safety procedures were

adopted:

(1) A block of timber beams was built under the structure so as to protect the

table if the structure were to fail.

(2) The mass was attached loosely to a 40 kip capacity crane that would be able

to hold up the mass.

Figure 2.9 shows a detail of the above two safety procedures.

-7-



CHAPTER THREE

INSTRUMENTATION

3.1 Introduction

To monitor the local as well as the global behavior of the structure four

types of measuring devices were mounted on the structure. In principal, it should

be sufficient to measure the behavior of one connection and to monitor the

response of one frame. However, variability in the geometry and material proper

ties is unavoidable; hence it was necessary to include sufficient instrumentation to

verify the degree of symmetry in the structure. It was also necessary to include

some degree of redundancy in the instrumentation, so as to have some backup in

case one element of the instrumentation malfunctioned. In general, each quantity

reported here was measured and checked by means of two independent instrumen

tation systems.

The following quantities were measured by direct instrumentation:

(1) Rotation response of three of the connections

(2) Shear displacement of the four connections

(3) Axial displacement of the four connections

(4) Shearforces in the columns in both directions

(5) Moment in each column at 24 inches from the bottom
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(6) Axial forces in the columns

(7) Acceleration of the floor level in the vertical, and the two horizontal direc

tions, and the rotational acceleration.

3.2 Types of Transducers

Four types of transducers were used to monitor the behavior of the structure.

Accelerometers, potentiometers, DCDT's, and strain gages were the basic measur

ing devices used in this investigation. There were 88 data channels activated, 10 of

which were allocated to monitor the performance of the shaking table, the other

78 were used to measure the behavior of the structure . There were 16 channels

allocated for DCDT's, while 9 channels were allocated for potentiometers.

Accelerometers were allocated 5 channels, and the rest of the data channels (48)

were allocated for electric strain gages. Because various structural response quanti

ties would eventually be determined from the data produced by these transducers,

it was necessary to understand the physical performance characteristics of these

transducers, as summarized here.

3.2.1 Accelerometers

The accelerometer was a model 141 made by Setre System, Inc. This model is

a linear accelerometer that produces a high level instantaneous DC output signal

proportional to sensed accelerations. The range of the accelerometer used is (-4g to

+4g) with 0.1% nonlinearity error.

3.2.2 Potentiometers

The potentiometer used was a model PT-101 position or displacement trans

ducer designed for measurement from 0 to 30 inches made by Celesco Transducer
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Products. It provides an electrical signal proportional to the linear extension of

the stainless steel cable. Nonlinearity errors are less than 0.1% of full range. Its

frequency response is up to 60 Hz, and its sensitivity is 32 mVIVlinch.

3.2.3 DCDT's

DCDT stands for Direct Current Displacement Transducer. The DCDT used

was a model 240 made by Trans Tek. Of the sixteen DCDT's used twelve had a

range of (-1 inch to +1 inch), while the other four had a range of (-0.5 inch to

+0.5 inch). Nonlinearity errors were less than 0.5%.

3.2.4 Electric Strain Gages

Two types of strain gages were used; shear strain gages and uniaxial strain

gages. The shear strain gages were model EA-13250TD-120 made by Micro

Measurements, for which the resistance was 120 ohms and the nonlinearity error

was 0.6%. Two brands of strain gages were used to measure axial strains. On the

columns, model YFLA·2 made by Tokyo Sokki Kenkyuju Co.LTD, with a resis

tance of 120 ohms, and a nonlinearity error of 0.5% were used. On the diagonal

bracings, CEA-06-125UW-120 model strain gages made by Micro-Measurements,

with a resistance of 120 ohms, and a nonlinearity error of 0.6% were used.

All of these gages are capable of measuring strains up to 20% according to

their respective manufacturers specifications. All were bonded to the test struc

ture with fast setting adhesives. A synthetic rubber coating was applied on the

top of the strain gages. This coating was intended to protect the gage from humi

dity, and chemical intrusions.

-1~



3.3 Structural Response Measurement

The position of the 78 transducers used to monitor the behavior of the struc

ture is described in the following section.

3.3.1 Floor Acceleration and Displacement

The five accelerometers that were employed in this investigation were distri

buted as follows. Two accelerometers measured the horizontal floor response in the

direction of excitation in each of the two frames. The third accelerometer was

oriented upwards so as to detect any vertical component in the response of the

structure, while the fourth was oriented in the transverse direction of excitation to

detect any horizontal transverse component in the response. These four accelerom

eters were all attached to the structure at the floor level center line. The fifth

accelerometer was attached to the concrete blocks at an elevation of 7 ft 5-1/2

inches, this accelerometer was used to measure the horizontal response of the mass

in the direction of excitation, and to check for any difference between the mass

and structural responses. Figure 3.1 shows the location of each of the accelerome

ters.

Potentiometers, attached to the independent reference frame erected outside

the pit wall of the shaking table, were employed to measure the absolute displace

ment of the floor. Very light stainless steel cables were used to connect the poten

tiometers to their targets on the structure. Two potentiometers were used to

measure the displacement of each of the frames at floor level. Another two poten

tiometers were used to measure the displacements of the concrete blocks. Five

potentiometers were used to measure the deformation of the S-W column. Figure

3.2 shows the location of each of the potentiometers.
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3.3.2 Connection Deformation Measurement

To measure the rotation of the connection four DCDT's were used as shown

in Figure 3.3. The rotation is thus given by:

e = ( 181 I + 182 I ) / h (3.1)

Since the vertical deformation of the connection was thought to be of impor

tance, it was also measured. Figure 3.4 shows. the location of the DCDT's.

Because of the limited number of available DCDT's the rotation was only meas

ured for three connections, while the vertical deformation was measured for all

four connections.

3.3.3 Force Measurement

Two types of strain gages were used to measure moments, shears, and axial

loads: shear strain gages, and uniaxial strain gages. Ten strain gages were

attached on each column at 24 inches from the top of the base plate. Four of

these strain gages were uniaxial resistors and were installed at the column flanges,

two on each side. Two shear strain gages were mounted on the centerline of the

column web. The other four shear strain gages were installed at the centerline of

the column flange, two on either side. Figure 3.5 shows the location of the strain

gages.

Also, uniaxial strain gages were installed on the diagonal bracings between

the two frames. Each brace had two strain gages installed at 26 inches, from the

edge of the beam, along its length. Figure 3.6 shows the location of the strain

gages.
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3.4 Instrumentation Channel Schedule

Table 3.1 lists the allocation of various transducers to specific channels of the

data acquisition system. As can be seen in the table , the first 10 channels were

reserved to monitor the performance of the shaking table, the next 5 channels

were used for the accelerometers. The following 16 channels were allocated for

DCDT's, the next 9 channels were allocated for potentiometers, after which the

remaining 48 channels were allocated to strain gages.
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CHAPTER FOUR

TEST PROGRAM

4.1 Introduction

In this chapter the testing sequence and the different ground motions that the

structure was subjected to are summarized. In Chapter Five the experimental

results are presented, and in Chapter Six conclusions and remarks about the

investigation are given.

4.2 Test Sequence

As discussed earlier, the steel structure was tested with three different connec

tions, simple (flexible), semi-rigid, and fixed. Details of the steel structure are

given in Chapter Two. The intent in selecting a' test sequence was to subject each

of the three different structures to exactly the same sequence of earthquake load

ing. For each of the three structures a sequence of tests was selected. First a tie

back test was conducted to measure the elastic stiffness, as well as to compute the

dynamic properties of the structure. Then the structure was subjected to white

noise of intensity 0.05g, to find its natural period of vibration more precisely.

Then, a series of forced ground motions was applied. Three different historical

earthquake ground motions were used to observe the behavior of the structure

under different ground motions, and thus a variety of frequency ranges. The 1940

EI Centro SOOE earthquake, the 1952 Taft N21E earthquake, and the 1985 Mexico
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City (Set.) S60E earthquake were chosen. Each of the earthquakes was increased

in intensity from 0.05g to 0.5g. This resulted in a total of 44 shaking table tests.

Table 4.1 lists the sequence which was followed in testing each structure. Usually,

the data for an earthquake is collected every 0.02 seconds. Looking at column five

in Table 4.1, one can see that all of the signals were inputed at a full time scale,

except for the Mexico earthquake, which was squeezed so that the earthquake

response spectra would have a peak close to the natural period of the structure.

In column six of this table, the span of each signal is listed. A span of 5 seconds

corresponds to a horizontal table displacement of 5 inches. The experimental data

was recorded on two tapes. The contents of these two tapes with the file name for

each run are listed in Table 4.2. Figures 4.1, 4.2, and 4.3 show different accelera

tion time histories of the ground motions that were used.

4.3 Runs Selected for Presentation

As stated earlier, one of the major purposes of this report is to present

detailed data on the structural response for a variety of test conditions. Out of

the 44 shaking table tests, 24 test runs were selected for detailed evaluation. These

24 tests give a full representation of all the tests performed. These 24 tests include

the three earthquake loadings with three different intensities for which the

behavior of the structure ranged from elastic to largely inelastic.
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CHAPTER FIVE

DATA REDUCTION
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5.2 Data Noise

Recorded data containing noise is an inevitable phenomenon when using an

electronic data acquisition system. Significant noise was mixed with the true signal

especially in the data collected by the accelerometers. Two kinds of undesirable

noise were encountered during the tests.

(1) High Frequency Noise: The high frequency noise could easily be identified.

A numerical filtering technique was used throughout the data reduction pro

cedure. The Ormsby low-pass filter, was adopted and implemented into the S

computer program to remove the high frequency noise. A cut-off frequency of

20 Hz was used for the following reasons: (i) the frequency of vibration of the

structure was far lower than 20 Hz; (ii) the Fourier Amplitude of the input

excitation showed very little energy associated with frequencies higher than

20 Hz as shown in Figure 5.1; (iii) the oil column of the shaking table

changes the input frequency content at frequencies higher than 20 Hz, thus

introducing significant errors. A typical example of the time history response

before and after applying the Ormsby low-pass filter is shown in Figure 5.2.

(2) Low Frequency Noise: The low frequency noise was not filtered in general.

Filtering low frequency noise would have been wrong because of permanent

deformations or plastic strains and therefore, strain gages and DCDT's as

well as linear potentiometers were not filtered. On the other hand, accelerom

eters were not allowed to show any permanent non-zero readings at the end

of each test run. The data recorded by the accelerometers were of very good

quality.

-17-



5.3 Sign ~onvention

The following sign convention is used throughout the report:

(I) The lateral drift is positive to the right (south). Refer to Figure 5.3.

(2) The rotation of the connections corresponding to a positive lateral drift is

positive. Refer to Figure 5.4.

(3) Axial strains for elongation of the brace member are positive.

(4) Positive column shear and axial forces are induced by positive floor drift,

refer to Figure 5.3.

(5) The moment sign convention for the section at which the strain gages were

- mounted on the column is shown in Figure 5.3.

(6) The sign convention for shear and moment for the connections is shown in

Figure 5.4.

5.4 Data Reduction

5.4.1 Table Motion Data

The table motion records are an important record, for they represent the

excitations the structure was subjected to. This information will be needed for

making analytical predictions. The acceleration time histories are thought to be

the important parameter. The basic table motion for each of eight different shak

ing table tests is presented in the form of a time history plot of acceleration, see

Figures 4.1, 4.2, and 4.3. These plots were directly obtained by plotting the

readout of the respective channels versus time, specifically, Channel 3.
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5.4.2 Structural Response

The global response of the structure is indicated basically by the accelerome-

ter, potentiometer, and the shear strain gage measurements. The member desig-

nation for the subsequent discussion is shown in Figure 5.5. In the following the

data reduction process for the main parameters is described.

(1) Base Shear: Since the structure under investigation had a single degree of

freedom, the shear force obtained by using the shear strain gages on each

column should agree with the shear force obtained from the accelerometers

attached to the structure. The formula by which the shear value was

obtained using the accelerometers is:

Sbase - W (ac 1 +ac 2 ) / 2

where,

Sbase = base shear in kips

W = weight of the structure in kips

ac1 = accelerometer 1 in units of g's

ac2.= accelerometer 2 in units of g's.

The formula for shear using the shear strain gages is:

Sbase - Shear 1 + Shear 2 + Shear 3 + Shear 4

where,

Sh (.) h f . I " . ". k·ear I = sear orce III co umn 1 III IpS.
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The shear force in column " i " can be evaluated as follows:

Shear(i) - (I/Q) tw G (sgi5-sgi4) 10- 6

where,

I = moment of inertia of the column (in4 )

Q = moment area of the column about the center

of gravity (in3 )

tw = web thickness in inches

(5.3)

G = shear modulus of elasticity (11200 ksi)

sgi5 = strain gage i5 for column" i " in micro-strains

sgi4 = strain gage i4 for column " i " in micro-strains.

A comparison of these two shear forces, shows very good agreement between

the two independently measured values. Figures 5.6(a) and 5.6(b) show a com

parison between shear force measured by these two methods. In the data

presented, the shear forces that are used are the ones obtained from the shear

strain gages attached to the columns. The reason for using the shear strain gages

was that no low-pass filter was needed for the strain gages, besides, the shear

values obtained by both methods were the same.

In all of the plots that contain the base shear, the absolute accelerations (in

g's) of the floor can be obtained by dividing the base shear values by the weight

of the floor which was 27.42 kips.
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(2) Relative Lateral Floor Displacement: The relative floor displacement was

obtained by subtracting the table motions from the absolute floor level

motions. The displacements were calculated using the following formula:

where,

Disp - ((pot 8 +pot 5 ) / 2 ) - ((h 1 +h 2 ) / 2 ) (5.4)

Disp = lateral displacement of the floor in inches

pot8 = potentiometer 8 in inches

pot5 = potentiometer 5 in inches

hI = horizontal displacement of shaking table (inches)

h2 = horizontal displacement of shaking table (inches)

(3) Axial Force in the columns: The axial force in the columns consisted of

two parts, static, which was equal to the weight of the structure divided by

four, and a dynamic part which was calculated as follows:

where,

Axial (i) - A E ((sgi 0 +sgi 3 +sgi 6 +sgi 9) /4) 10- 6

Axial(i) = Axial force in column "i" in kips

A = area of column cross section (in2 )

(5.5) .

E = modulus of elasticity (29000 ksi)

sg = strain gage in micro-strains

(4) Local moment in the columns: The moment in the columns at the loca

tion where the strain gages were attached, was calculated using the following

formula:

-21-



Moment (i) - S E ((sgi 0 +sgi 3 -sgi 6 -sgi 9) / 4) 10-6 (5.6)

where,

Moment(i) = moment in column It i If at 24 inches from the

bottom (k -in)

S = column section modulus (in3 )

E = modulus of elasticity (29000 ksi)

sg = strain gage in micro-strains

(5) Moment at the connection: The moment at the connection was easily

. derived from the local moment and shear in each column. The following for

mula describes the statics equation:

Moment (connection 1) = (48. 7 5) Shear 1 - Moment 1 (5.7)

(6) Connection Rotation: The method by which the connection rotation was

calculated was described earlier in section 3.3.2. The following formula shows

how the rotation was calculated for connection 1:

e = ((de 5 +dc 4 -de 3 -de 2 ) / 2 ) / 1 6. 8 7
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CHAPTER SIX

TEST RESULTS

6.1 Introduction

In this chapter, the results obtained from the 24 selected shaking table tests

are presented. The chapter is divided into two parts. In the first part, an investi

gation of the three structures (flexible, semi-rigid, and fixed) when subjected to a

simulated O.35g Taft ground motion is presented. The second part considers the

major response parameters of the structures. In this part, a description of the

behavior of each structure in each of the 24 tests is summarized, then extreme

values of various response variables are tabulated, after which time history plots,

as well as hysteresis plots, are presented.

6.2 0.35 g Taft Earthquake

A complete investigation of the three structures when subjected to a simu

lated O.35g Taft Earthquake is presented in this section. This part of the investi

gation had three objectives:

(1) To study the complete response of the structures, globally as well as locally,

in order to identify the parameters that affect the response significantly. The

behavior of these parameters in the 24 shaking table tests was later investi

gated.
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(2) For certain response parameters, one series of tests (for the three different

structures: flexible, semi-rigid, and fixed) was deemed to be sufficient for com

parative studies of the behavior. The data collected from the O.35g Taft test

provided some of the the most dependable and significant data.

(3) Comparisons of data collected from different channels were important in

checking the validity of such assumptions as (i) the mass does not slip during

testing, and (ii) the structures tested have one major degree of freedom.

6.2.1 Checking Performance of the Structure during Tests

Using the experimental data an investigation was conducted to study the

adequacy of the structure tested. The reason for this investigation was that in

designing and constructing the test structure certain objectives were set and

assumptions were made. Therefore, it was necessary to investigate the validity of

the assumptions, and how well the structure fulfilled its function. Some of the

objectives were:

(i) to rigidly connect the mass to the floor system;

(ii) to build the structure to have one major dynamic degree of freedom;

(iii) to add some stiffness to the structure in the direction of the weak axis of

bending of the columns.

The following three plots were generated for this purpose, these are:

(a) A comparison of the time histories of accelerometers 1 and 4, for the semi

rigid frame, see Figure 6.1. Accelerometer 1 was attached to the structure,

while accelerometer 4 was attached to the concrete blocks, refer to Figure 3.1.

This comparison was essential, because a difference between the two readings

would mean that the mass was not rigidly connected to the floor diaphragm,

and probably the mass was slipping. Figure 6.1 shows almost exact replicas,
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which indicates that the mass was a dynamic reactive mass, and was almost

completely in tune with the rest of the structure.

(b) Although the response of the structure to the ground excitation would have

three components, one vertical, and two horizontal, the horizontal component

perpendicular to excitation and the vertical component were expected to be

very small as compared to the horizontal component parallel to excitation.

Figures 6.2, 6.3 and 6.4 show that, indeed, the response of the structure was

mainly in the direction of excitation, and the other two components are rela

tively very small. Before testing, there was a concern about development of a

significant second torsional mode. To control torsion, diagonal braces were

added tothe structure in the direction perpendicular to the direction of exci

tation.

(c) During testing, it was noticed that the response of the structure included a

minor torsional component. Figure 6.5 shows a comparison of the responses

of the two parallel semi-rigid frames. It can be seen that the two time his

tories of the two frames are not similar, and that a torsional component is

present. Figure 6.6 shows time histories of the rotational acceleration of the

response of the flexible, semi-rigid, and fixed structures.

6.2.2 Global Response of the Structure

The global response of the structure is presented by the following three plots.

(a) A time history plot of the lateral horizontal drift of the floor in the direction

of excitation. The time history plots in Figure 6.7 indicate that for this case,

the drift response of the three structures; flexible, semi-rigid, and rigid did

not have large variations in amplitude. However, the period of vibration were

dominated by the natural periods of the structures.
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(b) A timE;l history plot of the base shear of the structure. Figure 6.8 shows these

plots. Unlike drift response, the three structures with increasing level of con-

nection stiffness, showed distinctly different base shear responses. As Figure

6.8 indicates, as stiffness of connection increased the base shear value also

increased. Again, because of the dominant first mode of vibration, the fre

quency of the base ,shear response was governed by the natural frequency of

the structure.

(c) A plot of base shear versus lateral drift, refer to Figure 6.9. This plot is an

indicator of structural stiffness, strength, and energy dissipation characteris-

tics. The following observations could be made

(i) The response of the rigid frame was almost elastic with very small hys

teresis loops. In addition, the lateral stiffness of the structure was rela

tively stable and equal to about 22.5 k/in. Maximum values of shear

and drift were 25.88 kips, and 1.22 inches, respectively.

(ii) The semi-rigid frame showed more inelastic hysteresis response than the

rigid structure. However, the stiffness did not show significant deteriora-
/

tion. The stiffness was about 13.5 k/in. Maximum values of shear and

drift were 20.00 kips, and 1.41 inches, respectively.

(iii) The response of the flexible frame was significantly nonlinear. The ini

tial stiffness was about 10.14 k/in., while the stiffness at later cycles was

close to 5.27 k/in.. Maximum values of shear and drift were 9.52 kips

and 1.57 inches, respectively.

(d) A fast Fourier transform was performed on the horizontal response of the

structure, to find its natural frequency of vibrations. Figure 6.10 shows the

FFT for the three structures. The fundamental frequencies of vibration for

the three structures were established at 2 Hz, 2.5 Hz, and 2.87 Hz, respec

tively. As Figure 6.10 (b) indicates, the semi-rigid frame had a pronounced
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second mode of vibration at 4.7 Hz. This mode was torsional and is also

shown in Figure 6.6.

6.2.3 Connection Response

Connection forces and deformations, are plotted against each other as listed

below. In the following, connection 4 (N-W) is investigated for the three different

structures.

(a) Axial Force versus Axial Displacement. Figure 6.11 shows typical plots of

axial force versus axial deformation, for the three connections. The following

observations can be made from the experimental data:

(i) In the rigid structure, the connection showed a symmetric axial response

with initial stiffness of about 540 k/in. During large deformations, non

linearities were observed that are related to cyclic yielding of steel in the

connection area.

(ii) In the semi-rigid connections, Figure 6.11 (b), the response was

significantly unsymmetric. The compressive side response (left half of the

plot) was almost elastic with some nonlinearity for cycles that were pre

ceded by large tension cycles. However, the tension side of the hysteresis

loops (right half of the plot) showed significant nonlinearity. The non

linearity is mainly attributed to gap openings due to inelastic deforma

tion of the connection angles, as shown in Figure 6.12.

(iii) The response of the flexible connection was completely unsymmetric and

nonlinear. The nonlinearity is attributed mainly to two sources: (a) gap

openings due to bending of the outstanding legs of the web angles; and

(b) slip in the bolt holes. It should be mentioned that observation of

connection angles during and after the tests of the flexible frames, clearly

indicated that considerable slip was taking place in bolt holes of back-
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to-back legs. An examination of web angles after the test indicated

minor hole elongation as well, that might have contributed to develop

ment of larger slips. The response of the flexible connections showed cer

tain hardening and increase of axial force, when deformations were large.

The main component of hardening is believed to be kinematic and due

to formation of catenary forces when angle legs undergo large deforma

tions.

(b) Shear Force versus Shear Deformation. Figure 6.13 shows typical plots of

shear force versus shear deformation, for the three connections. These plots

indicate that the energy dissipation due to shear was more pronounced in the

semi-rigid connections, than in either the flexible or rigid. The approximate

shear stiffness of the connections could be established as 80, 390, and 392

k/in. for flexible, semi-rigid, and fixed connections, respectively.

(c) Moment versus Rotation. Figure 6.14 shows typical plots of moment versus

rotation, for the three connections. In these plots the response resembles very

closely, the lateral load versus lateral displacement response of the three

structures shown in Figure 6.9. The moment-rotation response of the rigid

connection was almost elastic whereas a pronounced" pinching" effect could

be observed in the semi-rigid connection response. In the case of the flexible

connection, large rotations imposed by the column deformation resulted in a

rotation in the opposite direction of the connection moment. Figure 6.15

gives a schematic explanation.

(d) Moment versus Shear. Figure 6.16 shows typical plots of moment versus

shear, for the three connections. I~ this plot, the intent is to demonstrate the

relation between moment and shear, and to see how connection yielding

affects this relationship. The slope in this plot, represents the distance of the

point of inflection of the beam from the center line of the column, in inches.
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Refer to Figure 6.17 for a schematic explanation. The plot of the flexible

connection shows that there was a lot of slippage, and that the point of

inflection moved back and forth in the vicinity of the connection center line.

The plot in the semi-rigid case shows some slippage in the connection, but an

approximate slope of 26 inches is dominant. In the plot for the fixed connec-

tion, the relation between shear and moment is very consistent, and shows a

slope of 27 inches. The irregular behavior that prevails in this plot is due to

the mass slipping at the end of the test. The slope in these plots also

represents the path of the load on the column in the interaction diagram.

(e) Shear versus Rotation. Figure 6.18 shows typical plots of shear versus rota

tion. For the flexible and most likely in the semi-rigid connections, the shear

force is the major force affecting the behavior of the connection, and not the

moment as in the case of the fixed connection. This type of relation has been

investigated by Astaneh and Nader (15). The slope in the shear-rotation plots

represents the off-diagonal term relating shear to rotation in the 3x3 stiffness

matrix of moment, shear, and axial forces.

where,

[~1-
x V W
V Y tJ
W tJ Z

(6.1)

M = moment on the connection

V = shear on the connection

N= axial force on the connection

e - rotation of the connection

~ - shear displacement of the connection
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a = axial displacement of the connection

To properly understand and represent the behavior of a connection, one

should treat it as a structure and develop the complete 3x3 stiffness matrix as

given by equation (6.1).

6.2.4 Other Significant Responses

Other structural and local parameters that were studied are summarized in

the following section:

(a) The forces in the braces were of interest, because they represent the torsional

. effect on the structure. Figures 6.19, 6.20, and 6.21, clearly indicate that con

siderable torsional effects were present in the semi-rigid frame. The torsional

mode was also observed in other tests of semi-rigid structure. As noted in

the case of the fixed structure the braces show permanent deformation, also

the time at which the mass slipped can be easily noted.

(b) The deformation of the column during severe dynamic loading was of

interest, so a plot of extreme column deflection with the corresponding forces,

for each of the three structures, is shown in Figure 6.22.

(c) The time history of the moment at the base plate of column 4 for each of the

structures is plotted in Figure 6.23. The base plate moment response was the

same for the three structures. Again the period of vibrations were dominated

by the natural period of the structure. The maximum values of the base plate

moment for the flexible, semi-rigid, and fixed frames were 200.8, 165.9, and

254.9 k-in. respectively. It is believed that the base plate moment of the

semi-rigid structure was less than that of the flexible structure, because of the

slight rocking that was observed in the base plates when the semi-rigid struc

ture was being tested.
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6.3 Test Data of the Selected Test Runs

6.3.1 Introduction

In this section, results from representative tests are presented. Table 4.1 pro

vides information on shaking table tests that were conducted. For each of the

three structures, a free vibration tie-back test was conducted to obtain the

dynamic properties of the structures. The dynamic test runs selected, present the

full range of the experiments. Of the different plots that were presented in previ

ous section (6.2), a number of plots were found to be necessary to generate for all

the selected tests, mainly:

(1) Connection 4: Moment versus Rotation

(2) Connection 4: Shear versus Rotation

(3) Connection 4: Moment versus Shear

(4) Time history of moment of base plate 4

(5) Plot of the fast Fourier amplitude versus frequency

(6) Time history of the base shear

(7) Time history of the lateral drift

(8) Plot of stiffness

Locations of connection 4 and base plate 4 are shown in Figure 5.5.

6.3.2 Important Observations During Testing

In this part a descriptive behavior of the structure response is given. Each of

the structures was subjected to similar sequences of dynamic loading. The follow

ing sections give important observations that were noted during the testing of

each of the structures. As the discussion proceeds, the reader is advised to refer to

Tables 4.1, and 4.2.
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(i) Semi-Rigid Frame

The semi-rigid frame was the first structure tested. The initial test was a

Pull-Back test, in which the structure was displaced 0.1 inch, followed by White

Noise Shaking of intensity of O.OSg. The structure response was elastic as

expected, and very small drifts were observed when the White Noise was applied.

White Noise was followed by EI Centro, Taft, and Mexico-City earthquakes,

respectively.

The EI Centro Earthquake was applied with different intensities (0.05g,

0.15g, 0.20g, 0.25g, O.3Sg peak accelerations). In the EI Centro Earthquake series,

the structure behaved almost elastically, and no significant yielding could be

observed, until an intensity of O.35g was applied. The semi-rigid connections did

not experience significant rotation, and behaved almost as fixed connections.

When the 0.3Sg intensity was applied, yielding was observed in all the columns at

the areas immediately beneath the connections. Also, the seated bottom angle in

both south columns showed a slip of about 1/8 inch. Figure 6.24 shows the

observed yielding.

The Taft Earthquake was applied after the EI Centro Earthquake. The

Taft earthquake was also applied with increasing intensities (O.OSg, O.lSg, 0.2Sg,

O.3Sg, O.SOg). At 0.25g peak accelerationvery thin yield lines were observed at the

N-W column at the same location as shown in Figure 6.24. At O.35g peak base

acceleration, the base plates were observed to be slightly rocking, which meant

that the prestressing of the plates to the shaking table was not enough. Also, at

this intensity the torsional mode was clearly apparent. The behavior of the struc

ture was inelastic at 0.5g, and significant yielding and plastic deformations could

be observed in the same locations as in Figure 6.24.

The Mexico Earthquake was applied with three intensities, O.OSg, O.35g,

O.SOg. At O.3Sg intensity the S-W connection showed clear signs of plastic
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deformations. The shear connection slipped 3/16 inch, and the top and bottom

seated angles were bent about 1/8 inch in the out-of-plane direction. Figure 6.25

shows the connection. At O.50g the N-W and N-E connections also experienced

plastic deformations similar to the S-W connection, but more pronounced.

(ii) Flexible Frame

Shaking table tests of the flexible frame were conducted after the tests of the

semi-rigid frame. As mentioned in section 4.2 each of the three structures was sub

jected to the same sequence of dynamic loading.

Tie-back and White Noise: In the pull-back test, higher damping was

observed for the flexible frame compared with that of the semi-rigid frame. The

response of the structure was very flexible when the White Noise was applied.

EI Centro Earthquake: The column deflection under lateral loads was a

single curvature deflection, and not a double curvature as in the case of the semi

rigid connection. At O.35g intensity significant lateral drift was taking place. Also

the simple connections showed large slippage and almost no yielding, see to Figure

6.26.

Taft Earthquake: No yielding was observed in the structure during this

test even under O.5g intensity. However, ever-increasing slippage took place in the

connections, as the intensity was increased from O.05g to O.5g. The slip in shear

was about 3/16 inch, while the slip in rotation was about 3/32 inch. The bolt

holes on the web of the beam were suspected to be undergoing bearing deforma

tions.

Mexico Earthquake: The behavior of the structure under the Mexico

Earthquake was very similar to its behavior under the Taft Earthquake.
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(iii) Fixed Frame

The flexible structure tests were followed by the same sequence of tests of the

fixed frame.

Tie-back and White Noise: In the pull-back test, the structure was noted

to have lesser damping and higher natural frequency of vibration.

EI Centro: At O.25g intensity, some yielding was observed at the weld of the

stiffeners in the N-W column at the connection location. At O.35g yielding was

observed in the N-W column, as shown in Figure 6.27.

Taft Earthquake: At O.25g intensity more yielding in all the columns was

noted (Figure 6.27). At O.35g a very loud noise occurred due to slippage of the

concrete blocks acting as the mass. This slip resulted from the very violent

response of the structure. At this point, it was decided to stop the test for the fol

lowing reasons:

(1) There was concern for the safety of the personnel and instrumentation.

(2) At this point enough data had been collected.

(3) The slip of the mass meant that it was no longer a fully reactive mass.

6.3.3 Tables of Extreme Response Values

The data collected is presented in two forms; first, in the form of tables of

extreme values of various response parameters, and second, in the form of plots

showing variation of important variables.

In Table 6.1, the dynamic properties of the three structures are presented.

These values are determined from the tie-back tests, and thus represent the elas

tic dynamic properties of the structures.

In Table 6.2 a comparison between the maximum values of the base shear

and lateral drift for flexible, semi-rigid, and fixed structures for different tests, is
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given.

Tables 6.3 through 6.10 list the maximum values of moment, shear, and

rotation that occurred in connection 4, as well as, the moment of base plate 4.

In Table 6.11 a comparison of stiffnesses of the three structures, subjected to

different earthquakes, is given. Since the behavior of a structure ranges from elas

tic to inelastic, the stiffnesses recorded vary. To show the range of stiffness, an

elastic stiffness is given, which represents the unloading cycle; followed by an ine

lastic stiffness, which is the slope of the inelastic portion of the loading branch.

Table 6.12 gives the Fast Fourier Transform reading for the lateral and tor

sional harmonic periods of vibration of the three structures under different earth

quake loads.

6.3.4 Description of the Schedule of Plots

As mentioned earlier, only 8 plots were developed for the 24 selected shaking

table tests. These plots are presented in Appendix A. For each of the test runs

the the following plots are presented:

(1) Connection 4: Moment versus Rotation

(2) Connection 4: Shear versus Rotation

(3) Connection 4: Moment versus Shear

(4) Time history of the moment of base plate 4

(5) Time history of the base shear

(6) Time history of the lateral drift

(7) Plot of stiffness

(8) Plot of the fast Fourier amplitude versus frequency
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CHAPTER SEVEN

SUMMARY AND CONCLUSIONS

The purpose of this investigation was to study and explore the behavior of

flexible and semi-rigid structures under dynamic loading. The potential for using

semi-rigid structures in low seismic zones was the main drive behind this experi

mental research. Also, the effect of yielding in the connection zones on the

response of different structures was of great interest.

From the data collected and presented in Chapter Six and Appendix A, the

following remarks can be made.

(1) As the stiffness of the connection increased, the base shear resulting from the

same ground motion increased, while the corresponding lateral drift did not

decrease in a similar manner. This type of structural behavior leads to the

idea of optimal design and how it can be approached. To design a structure

to resist a certain dynamic load, one should search for the optimum system

of beam-to-column connections so that the structure would develop the least

possible amount of base shear, and yet not have large lateral deformations.

In this case of a single story structure, having a fixed connection is not the

optimal solution.

(2) To understand and incorporate the real behavior of a connection, a 3x3

stiffness matrix should be established for the connection. This matrix would

relate moment, shear, and axial force to rotation, displacement, and elonga

tion.
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(3) Energy can be dissipated in a connection in different ways and not only by

moment-rotation hysteresis loops. The energy can also be dissipated by axial

force - axial displacement hysteresis loops, and shear force - shear displace

ment hysteresis loops.

(4) Changing the connection type in a structure can drastically change the

response characteristics of the structure. This was demonstrated when the

torsional mode was actually excited in the case of the semi-rigid structure,

although it was not as apparent in the other two types of structures.

(5) The semi-rigid connections behaved almost as a rigid connection in most of

the dynamic tests. The moment capacity of the semi-rigid connections turned

out to be higher than expected. The catenary forces that were developed in

the seated connections, could double the expected plastic moment of such

connections. Semi-rigid connections have considerable potential for resisting

earthquake loading, and need further study.

Need for Further Research

As can be noted from the experimental results presented in this report, flexi

ble and semi-rigid connections have considerable potential for resisting dynamic

loading in low to medium earthquake zones. The behavior of such connections

can drastically change the response of a structure. To understand how such con

nections can be used in optimal design of structural systems, more research is

needed. The research should include testing structures with more degrees of free

dom and various configurations of connections. It is also necessary to include

non-structural elements in the structure under investigation.
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TABLE 2.1. Section Properties

SECTION PROPERTIES

FRAME MEMBERS I TRANSVERSE MEMBERS

PROPERTIES Column Girder Channel Bracing

W4x13 W10x15 C9x15 L2x2x1/4

A (in2 ) 3.83 4.41 4.41 0.94

d (in) 4.16 9.99 9.00 2.00

t w (in) 0.28 0.23 0.29 0.25

bf (in) 4.06 4.00 2.49 2.00

tf (in) 0.35 0.27 0.41 0.25

wt /ft (#/ft) 13.00 15.00 15.00 3.19

Ixx (in4 ) 11.30 68.90 51.00 0.35

Sx (in3 ) 5.46 13.80 11.30 0.25

Iyy (in4 ) 3.86 2.89 1.93 0.35

Sx (in3 ) 1.90 1.45 1.01 0.25

J (in4 ) 0.15 0.10 ... ...
Zx (in3 ) 6.28 16.00 ... ...
Zy (in3 ) 2.92 2.30 ... ...
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TABLE 2.2. Weight of the Structure

WEIGHT OF STRUCTURE

Member
Weight/foot Length * Weight

(lbs/ft) (feet) (lbs)

Column 13.0 13.33 173.3

Beam 15.0 11.20 168.0

Channel 15.0 18.70 280.5

Bracing 3.2 22.40 71.7

Connections ... ... 30.0

Floor ... ... 2300.0
Diaphragm

Added Mass ... ... 24400.0

TOTAL WEIGHT - 27423.5

* length included for columns and diagonal bracings are from mid height of structure to floor level
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TABLE 3.1. Allocation of Various Transducers to Specific Channels

CHANNEL ALLOCATION
CHANNEL # NAME UNITS

1 Horizontal Disp.l inches
2 Horizontal Disp.2 inches
3 Av. Horizontal Ace. g's
4 Av. Vertical Ace. g's
5 Pitch Acceleration radjsec2

6 Roll Acceleration radjsec2

7 not activated ...
8 Vertical Disp.l inches
9 Vertical Disp.2 inches

10 Vertical Disp.3 inches
11 Horizantal Velocity inches/sec

Channels 12 through 25 were not activated

26 Accelerometer 1 g's
27 Accelerometer 2 g's
28 Accelerometer 3 g's
29 Accelerometer 4 g's
30 Accelerometer 5 g'S

Channels 31 through 33 were .not activated

34 DCDT 1 inches
35 DCDT 2 inches
36 DCDT3 inches
37 DCDT4 inches
38 DCDT5 inches
39 DCDT6 inches
40 DCDT 7 inches
41 DCDT8 inches
42 DCDT9 inches
43 DCDT 10 inches
44 DCDT 11 inches
45 DCDT 12 inches
46 DCDT 13 inches
47 DCDT 14 inches
48 DCDT 15 inches
49 DSDT 16 inches
50 Potentiometer 1 inches
51 Potentiometer 2 inches
52 Potentiometer 3 inches
53 Potentiometer 4 inches
54 Potentiometer 5 inches
55 Potentiometer 6 inches
56 Potentiometer 7 inches
57 Potentiometer 8 inches
58 Potentiometer 9 inches
59 Strain Gage 10 mstrain
60 Strain Gage 11 mstrain
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CHANNEL ALLOCATION
CHANNEL # NAME UNITS

61 Strain Gage 12 mstrain
62 Strain Gage 13 mstrain
63 Strain Gage 14 mstrain
64 Strain Gage 15 mstrain
65 Strain Gage 16 mstrain
66 Strain Gage 17 mstrain
67 Strain Gage 18 mstrain
68 Strain Gage 19 mstrain
69 Strain Gage 20 mstrain
70 Strain Gage 21 mstrain
71 Strain Gage 22 mstrain
72 Strain Gage 23 mstrain
73 Strain Gage 24 mstrain
74 Strain Gage 25 mstrain
75 Strain Gage 26 mstrain
76 Strain Gage 27 mstrain
77 Strain Gage 28 mstrain
78 Strain Gage 29 mstrain
79 Strain Gage 30 mstrain
80 Strain Gage 31 mstrain
81 Strain Gage 32 mstrain
82 Strain Gage 33 mstrain
83 Strain Gage 34 mstrain
84 Strain Gage 35 mstrain
85 Strain Gage 36 mstrain
86 Strain Gage 37 mstrain
87 Strain Gage 38 mstrain
88 Strain Gage 39 mstrain
89 Strain Gage 40 mstrain
90 Strain Gage 41 mstrain
91 Strain Gage 42 mstrain
92 Strain Gage 43 mstrain
93 Strain Gage 44 mstrain
94 Strain Gage 45 mstrain
95 Strain Gage 46 mstrain
96 Strain Gage 47 mstrain
97 Strain Gage 48 mstrain
98 Strain Gage 49 mstrain
99 Strain Gage 51 mstrain

100 Strain Gage 52 mstrain
101 Strain Gage 53 mstrain
102 Strain Gage 54 mstrain
103 Strain Gage 55 mstrain
104 Strain Gage 56 mstrain
105 Strain Gage 57 mstrain
106 Strain Gal!:e 58 mstrain



Table 4.l.a. Sequence of Testing

SEQUENCE OF TESTING

Semi-Rigid Connection

EXCITATION DURATION
REMARKS

RATE
FILENAME of SIGNAL

SIGNAL ** INTERVAL
SPAN ***

(sec) (sec) (sec)

880705.01 * f.v. 20 .005 ... ...
880705.02 r.30.d 35 .005 ... 250

880705.03 ec2 35 .005 0.02 55

880705.04 * ec2 35 .005 0.02 110

880705.05 ec2 35 .005 0.02 275

880705.06 * ec2 35 .005 0.02 362

880705.07 * ec2 35 .005 0.02 551

880705.08 r.30.d 35 .005 ... 110

880705.09 taft2 35 .005 0.02 104

880705.10 * taft2 35 .005 0.02 312

880705.11 taft2 35 .005 0.02 520

880705.12 * taft2 35 .005 0.02 758

880705.13 * taft2 35 .005 0.02 1000

880705.14 sct.o 13 .005 0.0035 50

880705.15 * sct.o 13 .005 0.0035 116

880705.16 * sct.o 13 .005 0.0035 166

* selected tests reported here

** f.v. = Free Vibration

r.30.d = Random White Noise

ec2 = El-Centro SOOE Earthquake

taft2 = Taft N21E Earthquake

sct.O = SCT S60E Mexico City Earthquake

*** a span of 1000 corresponds to 5 inches of shaking table displacement
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TABLE 4.l.b. Sequence of Testing

SEQUENCE OF TESTING

Flexible Connection

EXCITATION DURATION
REMARKS

RATE
FILENAME of SIGNAL

SIGNAL ** INTERVAL
SPAN ***

(sec) (sec) (sec)

880706.01 f.v. 20 .005 ... ...
880706.02 r.30.d 35 .005 ... 250

880706.03 ec2 35 .005 0.02 55

880706.04 ec2 35 .005 0.02 110

Retightened the prestress rods attached to the base plates to 60 ksi.

880706.05 * f.v. 20 .005 ... ...
880706.06 r.30.d 35 .005 ... 110

880706.07 ec2 35 .005 0.02 55

880706.08 * ec2 35 .005 0.02 110

880706.09 ec2 35 .005 0.02 275

880706.10 * ec2 35 .005 0.02 362

880706.11 * ec2 35 .005 0.02 551

880706.12 r.30.d 35 .005 ... 110

880706.13 taft2 35 .005 0.02 104

880706.14 * taft2 35 .005 0.02 312

880706.15 taft2 35 .005 0.02 520

880706.16 * taft2 35 .005 0.02 758

880706.17 * taft2 35 .005 0.02 1000

880706.18 sct.o 13 .005 0.0035 50

880706.19 * sct.o 13 .005 0.0035 116

880706.20 * sct.o 13· .005 0.0035 166

* selected tests reported here

** same notation are used as in Table 4.1.a

*** a span of 1000 corresponds to 5 inches of shaking table displacement
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TABLE 4.l.c. Sequence of Testing

SEQUENCE OF TESTING

Fixed Connection

EXCITATION DURATION
REMARKS

RATE
FILENAME of SIGNAL

SIGNAL ** INTERVAL
SPAN ***

(sec) (sec) (sec)

880707.01 * f.v. 20 .005 ... ...
880707.02 r.30.d 35 .005 ... 250

880707.03 ec2 35 .005 0.02 55

880707.04 * ec2 35 .005 0.02 110

880707.05 ec2 35 .005 0.02 275

880707.06 * ec2 35 .005 0.02 362

880707.07 * ec2 35 .005 0.02 551

880707.08 r.30.d 35 .005 ... 250

880707.09 taft2 35 .005 0.02 104

880707.10 * taft2 35 .005 0.02 312

880707.11 taft2 35 .005 0.02 520

880707.12 * taft2 35 .005 0.02 758

* selected tests reported here

** f.Y. = Free Vibration

r.30.d = Random White Noise

ec2 = EI-Centro SOOE Earthquake

taft2 = Taft N21E Earthquake

sct.O = SCT S60E Mexico City Earthquake

*** a span of 1000 corresponds to 5 inches of shaking table displacemrnt
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Table 4.2. Contents of Magnetic Tapes

Which Save the Data

CONTENTS OF TAPES

Tape 1 Tape 2

Semi-rigid Flexible Fixed

880701.01 * 880706.01 880707.01

880701.02 * 880706.02 880707.02

880701.03 * 880706.03 880707.03

880701.04 * 880706.04 880707.04

880701.05 * 880706.05 880707.05

880705.01 880706.06 880707.06

880705.02 1/ 880706.07 880707.07

880705.03 880706.08 880707.08

880705.04 880706.09 880707.09

880705.05 880706.10 880707.10

880705.06 880706.11 880707.11

880705.07 880706.12 880707.12

880705.08 880706.13

880705.09 880706.14 .

880705.10 880706.15

880705.11 880706.16

880705.12 880706.17

880705.13 880706.18

880705.14 880706.19

880705.15 880706.20

880705.16

* pre! iminary tests with load cells
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TABLE 6.1. Elastic Dynamic Properties

FREE VIBRATION

Damping Period of Vibration (sec)
Structure

(%) FFT Cycles/time

Flexible 1.87 0.44 0.44

Semi-rigid 0.50 0.33 0.31

Fixed 0.67 0.30 0.31

TABLE 6.2. Base Shear and Lateral Drift

MAXIMUM VALVES OF BASE SHEAR AND LATERAL DRIFT

Earthquake Flexible Semi-rigid Fixed

Structure Structure Structure
Signal and

Shear Drift Shear Drift Shear Drift
Intensity

(kips) (in.) (kips) (in.) (kips) (in.)

EI-Centro 0.15g 4.14 0.42 4.62 0.20 5.40 0.23

EI-Centro 0.25g 8.10 1.09 11.76 0.56 14.95 0.61

EI-Centro 0.35g 10.00 2.08 18.81 1.15 18.12 0.82

Taft 0.15g 5.35 0.61 9.14 0.55 16.82 0.60

Taft 0.35g 9.52 1.57· 20.00 1.41 25.88 1.22

Taft 0.50g 11.49 2.00 24.28 2.35 N.C N.C

Mexico 0.35g 9.22 1.45 21.2 2.00 N.C N.C

Mexico 0.50g 12.26 2.05 22.26 2.30 N.C N.C

N.C = test was not conducted
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TABLE 6.3. Extreme Response Values For O.15g El Centro

O.15g EI .. Centro Earthquake

Variable Flexible Semi-rigid Fixed

Connection Moment *
14.0 44.1 48.5

(k-in.)

Connection Shear *
1.08 1.94 1.90

(kips)

Connection Rotation *
0.0071 0.0007 0.0006

(radians)

Base Moment (k-in) ** 77.3 51.2 57.8

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1

TABLE 6.4. Extreme Response Values For O.25g EI-Centro

O.25g EI Centro Earthquake

Variable Flexible Semi-rigid Fixed

Connection Moment *
33.9 123.2 146.0

(k-in.)

Connection Shear *
2.16 4.61 4.59

(kips)

Connection Rotation *
0.022 0.0020 0.0016

(radians)

Base Moment (k-in) ** 166.9 123.6 151.4

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1
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TABLE 6.5. Extreme Response Values For O.S5g El,Centro

O.S5g EI Centro Earthquake

Variable Flexible Semi-rigid Fixed

Connection Moment *
112.5 183.8 175.9

(k-in.)

Connection Shear *
2.11 7.34 5.62

(kips)

Connection Rotation *
0.040 0.008 0.0018

(radians)

Base Moment (k-in) ** 247.6 214.3 167.7

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1

TABLE 6.6. Extreme Response Values For O.15g Taft

O.15g Taft Earthquake

Variable Flexible Semi-rigid Fixed

Connection Moment *
27.4 107.5 161.2

(k-in. )

Connection Shear *
1.34 4.25 5.50

(kips)

Connection Rotation *
0.015 0.003 0.0018

(radians)

Base Moment (k-in) ** 111.9 101.4 152.9

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1
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TABLE 6.7. Extreme Response Values For O.35g Taft

O.35g Taft Earthquake

Variable Flexible Semi-rigid Fixed

Connection Moment *
44.6 200.7 251.2

(k-in.)

Connection Shear *
1.93 7.86 11.97

(kips)

Connection Rotation *
0.026 0.008 0.0033

(radians)

Base Moment (k-in) ** 200.8 165.9 254.9

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1

TABLE 6.8. Extreme Response Values For O.50g Taft

O.50g Taft Earthquake

Variable Flexible Semi-rigid Fixed

Connection Moment *
59.5 228.0 N.C

(k-in.)

Connection Shear *
2.47 8.70 N.C

(kips)

Connection Rotation *
0.037 0.031 N.C

(radians)

Base Moment (k-in) ** 239.9 292.0 N.C

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1

N.C = test was not conducted
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TABLE 6.9. Extreme Response Values For 0.35g Mexico

0.35g Mexico Earthquake

Variable Flexible Semi-rigid Fixed

Connection Moment *
40.8 203.2 N.C

(k-in.)

Connection Shear *
1.58 7.67 N.C

(kips)

Connection Rotation *
0.027 0.024 N.C

(radians)

Base Moment (k-in) ** 196.4 238.7 N.C

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1

N.C = test was not conducted

TABLE 6.10. Extreme Response Values For 0.50g Mexico

0.50g Mexico Earthquake

Variable Flexible Semi-rigid Fixed

Connection Moment *
59.5 225.6 N.C

(k-in.)

Connection Shear *
2.26 9.46 N.C

(kips)

Connection Rotation *
0.033 0.030 N.C

(radians)

Base Moment (k-in) ** 253.6 281.0 N.C

* Moment, shear, and rotation for connection # 1

** Moment for base plate # 1

N.C = test was not conducted
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TABLE 6.11. Structure Stiffnesses

STIFFNESS OF THE THREE STRUCTURES

Earthquake Flexible Semi-rigid Fixed

Structure Structure Structure
Signal and

Elastic Inelastic Elastic Inelastic Elastic Inelastic

Intensity Unloading' ''Loading' Unloading' ''Loading' Unloading' 'Loading'

(k/in) (k/in) (k/in) (k/in) (k/in) (k/in)

EI-Centro 0.15g 10.33 10.33 22.57 22.57 25.2 25.2

EI-Centro 0.25g 10.33 6.49 23.14 19.06 24.0 24.0

EI-Centro 0.35g 7.77 4.30 19.81 16.1 23.5 23.5

Taft 0.15g 9.88 7.43 17.46 17.46 24.05 24.05

Taft a.35g 10.14 5.27 14.58 12.4 23.65 21.38

Taft 0.50g 8.16 5.21 18.00 13.20 N.C N.C

Mexico 0.35g 8.47 5.42 18.38 8.38 N.C N.C

Mexico a.50g 9.62 5.39 16.81 7.61 N.C N.C

N.C = test was not conducted
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TABLE 6.12. Natural Periods of Vibration

PERIODS OF VIBRATION USING FFT *

Earthquake Flexible Semi-rigid Fixed

Structure Structure Structure
Signal and

Lateral Torsional Lateral Torsional Lateral Torsional
Intensity

(sec) (sec) (sec) (sec) (sec) (sec)

EI-Centro 0.15g 0,47 0.23 0.33 0.17 0.36 0.17

EI-Centro 0.25g 0,48 0.24 0.35 0.19 0.38 0.18

EI-Centro 0.35g 0.52 0.23 0.35 0.19 0.38 0.17

Taft 0.15g 0,48 0.22 0,40 0.20 0.32 0.17

Taft 0.35g 0.50 0.25 0,40 0.21 0.36 0.18

Taft 0.50g 0.53 0.25 0,46 0.23 N.C N.C

Mexico 0.35g 0,49 0.25 0,48 0.22 N.C N.C

Mexico 0.50g 0.53 0.25 0.44 0.25 N.C N.C

N.C = test was not conducted
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TEST STRUCTURE

__B_AS_E_E_X_C_IT:_T_IO_~_D_IR_E_C_T_IO_N /

Figure 1.1 Test Structure

Figure 2.1 Test Structure Mounted on the Shaking Table
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Figure 2.2 Dimensions of the Test Structure
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1/2" E70-XX Fillet Welds

"

Floor Diaphragm
to Support Added Mass

~
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Figure 2.3 Floor System and Floor-to-Beam

Connection Detail
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4.16"

A325 1/2" bolts

at 1.5" c-c spacing

2L2x2x3/16"

++
W4x13 0.5"
Column

10"

W10x15
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Figure 2.4 Flexible Connection Detail
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4.16"

W4x13
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++
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Figure 2.5 Semi-Rigid Connection Detail

-58-



4.16"

W4x13
Column

/ -++
Stiffeners 0.5"

E70XX Welds

A325 1/2" bolts

at 1.5" c-c spacing
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Figure 2.6 Fixed Connection Detail
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APPENDIX A

As mentioned earlier, only 8 plots were developed for the 24 selected shaking

table tests. The plots are presented as follows:

I. FLEXIBLE FRAME

FREE VIBRATION

EL CENTRO E.Q.

O.15g intensity

O.25g intensity

o.35g intensity

TAFT E.Q.

O.15g intensity

O.35g intensity.

O.50g intensity

MEXICO E.Q.

O.35g intensity

O.50g intensity
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II. SEMI-RIGID FRAME

FREE VIBRATION

EL CENTRO E.Q.

O.15g intensity

O.25g intensity

o.35g intensity

TAFT E.Q.

O.15g intensity

O.35g intensity

O.50g intensity

MEXICO E.Q.

O.35g intensity

O.50g intensity



llI. FIXED FRAME

FREE VIBRATION

EL CENTRO E.Q.

O.15g intensity

O.25g intensity

o.35g intensity

TAFT E.Q.

O.15g intensity

O.35g intensity

NOT AVAlLABLE

lviEXICO E.Q.

NOT AVAlLABLE

NOT AVAlLABLE

For each of the test runs the the following plots are presented:

(1) Connection 4: Moment versus Rotation

(2) Connection 4: Shear versus Rotation

(3) Connection 4: Moment versus Shear

(4) Time history of the moment of base plate 4

(5) Time history of the base shear

(6) Time history of the lateral drift

(7) Plot of stiffness

(8) Plot of the fast Fourier amplitude versus frequency
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COUPON TESTS

The stress-strain relation of different parts of the structure were developed,

using standard ASTM coupon specimens. The basic interest was to find the

stress-strain curve of the connection angles, since most of the yielding was in that

area. The behavior of the columns, in the areas near the connection, was also ine

lastic. This inelastic behavior, made it necessary to find the stress-strain curve of

the column so as to understand the behavior of the structure.

Since it had been anticipated that the yield point for material In different

parts of the rolled sections would be different due to variation in rolling of web

and flanges, it was decided that the mechanical properties should be identified for

each pert of the sections.

As indicated in Figure B.l, a total of six coupon specimens, three for W4x13,

two for L2x3-1/2x3/16, and one for L2x2x3/16 were prepared for the uniaxial

monotonic axial tests. The tests were run by a 120 kip Baldwin machine, the out

put of which was fed to the vertical input of an XY recorder. The strains were

monitored by extentiometers consisting of two LVDT's with a gage length of 1

inches, whose output served as horizantal input of the XY plot. The load rate

used was 20,000 =IF/min.

Typical Stress-strain curves are shown in Figure B.2. Table B.l summarizes

the findings.
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TABLE B.lo Coupon Test Results

STRESS-STRAIN RELATIONSHIP

Variable Column W4x13 L2x3-1/2x3/16 L2x2x3/16

Specimen # 1 2 3 1 2 1

Avg. Thickness (in) 0.312 0.329 0.338 0.190 0.191 0.188

Avg. Area (in2 ) 0.232 0.244 0.250 0.141 0.141 0.069

Mod. of Elasticity
29.03 30.49 29.57

(103 ksi)
29.20 28.70 29.04

Fy upper (ksi ) 56.55 50.08 48.00 61.90 52.70 52.03

Fy lower (ksi ) 53.86 47.20 47.00 59.~0 49.80 52.03

Cy (strain) 0.022 0.016 0.018 0.018 0.018 0.017

Estr.hard (ksi ) 48.00 45.00 41.00 37.00 44.00 50.00

F ult. (ksi) 73.52 70.00 68.40 74.02 69.40 NA

Cult (strain) 0.196 0.210 0.225 0.200 0.210 NA

NA = test was stopped before reaching ultimate strength due experimental problems
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