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ABSTRACT

Reliable analytical procedures to predict the earthquake response of intake-outlet
towers are necessary in order to design earthquake resistant towers and to evaluate the
seismic safety of existing towers. The objectives of this investigation are : (1) to develop
reliable and efficient techniques for analyzing the earthquake response of intake-outlet
towers of arbitrary geometry but with two axes of plan symmetry, including tower-water
interaction and tower-foundation-soil interaction; (2) to investigate the significance of these
interaction effects on the earthquake response of towers; (3) to develop a simplified analysis
procedure for the preliminary phase of design and safety evaluation of towers that provides
sufficiently accurate estimates of the design forces directly from the earthquake design spec-
trum; and (4) to develop the necessary techniques, tables, and charts for convenient imple-

mentation of the simplified analysis procedure.

The available procedure for earthquake analysis of axisymmetric intake-outlet towers is
extended to towers of arbitrary geometry, but with two axes of plan symmetry, and to
include the effects of tower-foundation-soil interaction. The‘total system is represented as
four substructures: tower, surrounding water, contained water, and the foundation supported
on flexible soil. The substructure representation of the system permits use of the most
effective idealization for each substructure. The tower is idealized as an assemblage of one-
dimensional beam élements, including bending and shear deformations as well as rotatory
inertia. The fluid domain outside the tower but within a fictitious, circular cylinder having
an appropriately selected radius is discretized by three-dimensional finite elements, and the
effects of the unbounded extent of the fluid outside the fictitious cylinder are treated by the
boundary integral procedures utilizing classical solutions for Vdomains exterior to a circular
cylinder. The water contained within a hollow tower, being a bounded domain, is simply
discretized by the standard finite element method. For the time being, rigorous treatment of
tower-foundation-soil interaction effects has been restricted to towers with a circular founda-

tion supported near the surface of a viscoelastic halfspace. However, an approximate
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treatment of non-circular foundations is also included.

Utilizing the analytical procedure the responses of idealized intake-outlet towers to har-
monic ground motion are presented for a range of parameters characterizing the tower
geometry, surrounding and inside water, and foundation-soil system. Based on these fre-
quency response functions, the effects of tower-water interaction and tower-foundation-soil
interaction on the response of towers are identified and shown to be significant in many

Casges.

The dynamic fesponsc of Briones Dam Intake Tower to Taft ground motion 1is
presented for various cases: rigid or flexible foundation rock, and with or without water.
Study of these response results demonstrates that the earthquake response of this tower is
increased because of hydrodynamic effects and decreased as a result of tower-foundation-soil
interaction. 1t is also demonstrated that the earthquake response of this tower can be com-
puted to a satisfactory degree of accuracy by considering the contributions of only the first
two natural vibration modes. This observation provides a basis for developing a simplified

analysis procedure suitable for practical application.

Such a simplified procedure is developed to determine the maximum earthquake forces
in intake-outlet towers directly from the design earthquake spectrum without the need for a
response history analysis. All the significant effects of tower-Water interaction and tower-
foundation-soil interaction are included in the analysis. It is delrnonstrated that the hydro-
dynamic effects can be approximated by added mass functions for outside and inside water.
It is also shown that the added mass associated with surrounding water or inside water can
be determined to a useful degree of accuracy without requiring rigorous three-dimensional
analysis of the two fluid domains. An equivalent single-degree-of-freedom system is
developed to consider approximately the effects of tower-foundation-soil interaction in the
fundamental fnode response of towers, and standard data are presented to conveniently
determine the effective natural period and damping of the interacting system. The

simplified response spectrum analysis procedure utilizes convenient methods for computing
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the first two natural frequencies and modes of vibration of the tower and the above men-
tioned simplified representation of hydrodynamic and foundation interaction effects. This
procedure i1s demonstrated to be accurate enough for preliminary design and safety evalua-

tion of towers.



ACKNOWLEDGEMENTS

This research investigation was supported by the National Science Foundation under
Grants CEE-8401439 and CES-8719296. The authors are grateful for this support.

The report is an expanded and revised version of Alok Goyal’s doctoral dissertation
submitted to the University of California at Berkeley in March 1988. The dissertation com-
mittee consisted of Professors Anil K. Chopra (Chairman), Bruce A. Bolt and Ray W,
Clough. The authors are thankful to Professors Bolt and Clough for reviewing the disserta-
tion manuscript.

The authors are also grateful to graduate student Tsung-Li Tai who assisted with the

final preparation of the report.

iv



;
Table of Contents

ABSTRACT .ottt ettt st e e e et e e s st e s e e et e e sabe e e encseebne et raesneesearenins i
ACKNOWLEDGEMENTS ...ttt st e s st iv
TABLE OF CONTENTS oottt ettt s et e e s sse s s e enres e nmenas v
1. INTRODUCTION ...ooiriooriiieseeess st esess s sensssesssisssssss s S 1
2. SYSTEM AND GROUND MOTTION ...ioiiiiiiieiieiiiieerecte st sie et aaasie s eneeas 6
3. GENERAL ANALYTICAL PROCEDURES ........ccociiiiiiiiciicn, vt 9
3.1 INEFOAUCIION. «.cviiiiiiiis ettt sttt ar e bt me s e e nenneeen 9

3.2 Frequency Domain EQUAtIONS ...ccoceiiiiieciie e nie et ee e 9

3.2.1 Tower SubSITUCTUTE ....oooiiiii e s 9

3.2.2 Foundation-Sotl Substructure ........cc..occoiiiiiiiinien e 16

3.2.3 Tower-Foundation-Soil SYStem ...........cooviiiimiiiiiiieeie e, 16

3.2.4 Surrounding Water Domain SubStructure .............oocvvviciiinnnincenen, 18

3.2.5 Inside Water Domain SubStrucCture .........c.cccoevvccnvniiinneinnenieenecceeieeens 26

3.2.6 Tower-Water-Foundation-Soil System .......cccccccocevviiieiiiinieiieiceeee 30

3.3 Response to Arbitrary Ground Motion ..........ccceiiieiiiiiicsiee e 32

4. NUMERICAL EVALUATION PROCEDURES .......cocoiiiieee e 35
4.1 Tower Vibration Properti€s .........cccccoeiiimiiccir e riies s eeeeeirieesiee s eres e e 35

4.1.1 Eigen’ Value Problem ..ot e 35

4.1.2 Finite Element APProXimatiOn .......cccceieevieeieeiiieiiiniierreeeeeiieeeseesisreeeseeess 37

4.2 Foundation Impedance Functions .........ccoeeviviieviiiverniereeirereeenene, e 40



Vi

4.2.1 System IdealiZation .......cccccivieieeiiiiir e e e 40
4.2.2 Circular Foundation on Elastic Half-Space ...........ccceeoiviiiiiiiiieneeeinn, 44
4.2.3 Circular Foundation on Viscoelastic Half-Space .......c..cccooeevviiiiiecnnnnn. 48
4.2.4 General FOundations .......c...cccovviiiiiciiniiicieeneesveerree e esen s see s cene 50

4.3 Hydrodynamic Solutions for Surrounding Water ..........coccocceeiiiieieciceiiieeeenn. 53
4.3.1 Boundary Value Problems .....cccccoovveviennnnn. e 33
4.3.2 General SOIUTION ..o e eeane 55
4.3.3 The Variational PrincCiple ... et 56
4.3.4 Finite Element Approximation ...........ccccooeeeiivieieeeeeeireiinnnn .................... 59

4.3.5 Semi-Analytical Process for Axisymmetric TOWers ......ooccoveeivvveiieeiennns 635
4.3.6 Evaluation of the Procedure ..........cocciiiiiiiiicniie e 69

4.4 Hydrodynamic Solutions for Inside Water ............cccooiiiniiinienicncin e, 74
4.4.1 Boundary Value Problems ... e 74
4.4.2 Finite Element APProximation .......ccccccciesiiviiieeesiiereinsieismnrrnsneeseesreseaseanns 78
4.4.3 Semi-Analytical Process for Axisymmetric TOWErS ........cccoeveveveiveiiineenn. 81
4.4.4 Evaluation of the Procedure ...........c.cooiiiiiiiiiii e 84

4.5 COMPULET PTOBIAIN ..o.iiiiiiiiiiiiiiie e ecree et et e e e st s st estb e en s 86
5. FREQUENCY RESPONSE FUNCTIONS ..ot 88
5.1 INEFOAUCTION <.oooootceeee et ettt st s st ettt et st anaes s senas st s s ennsens 88
3.2 Systems and Soil-Structure Interaction Parameters .........cocccoeevviiiieeeieineceeiens 88
5.2.1 Tower-Water-Foundation-Séil SYSIEIMS ..vvvviiiieee e ee e 88

5.2.2 Soil-Structure Interaction Parameters ........ooocceeervieiniiinniiinicen e 91

5.3 Cases Analyzed and Response QUAanTIties ....cccoccovvvrreeiniireerecnnnininernee e serce e 93

5.3.1 €ases ANAIYZEA .viiviiiiiiiiee et 93



vii

5.3.2 Response Quantities ....... ettt h e b eeee e et et ae i b et et eeete e bt pae e e e artterae e nbnns 93

5.4 Tower-Water Interaction Effects .............ccoiceiiiiii i, v 96
5.4.1 Principle Effects of Interaction .........c....cooevveeeeiu ettt erteearaeaeene e e e e e 96
5.4.2 Direction of Ground Motion .........ocveiiiiiiniiniiiree e e 100

5.5 Tower-Foundation-Soil Interaction EfTects .......coovveiiviiieiieiee e e 103
5.5.1 Principle Effects of Interaction .....c.ccccevvivvemviieeiieeerieinineneenens e eeeeranie 103

5.5.2 Inﬂuence}of Hydrodynan{ic INteraction ......cccccceviveeerieeni el 108

6. EARTHQUAKE RESPONSE OF BRIONES DAM INTAKE TOWER ...................... [11
6.1 Introduction ........cccooeiivieeiiee e, et etie e nure e batt e nraet s rras eraerae e {11
6.2 Briones Dam Intake Tower and Ground Motion ..............cccoocevieiiiieneciiiniieeen, 111
6.2.1 Briones Dam Intake TOWET ..ocoicvieiiiiiiiiire e et veree e 111
6.2.2 Ground Motion .............. PSPPSR 114

0.3 RESDOMNSE REBUITS coiieieiri ittt ettt et e e s ettt e e e ea i sre e s et rasre e eans T 114
6.4 Tower-Water and Tower-Foundation-Soil Interaction Effects ...........cccccoeneeen.. 117
6.4.1 Tower-Water Interaction Effects ......ccccoovmmmiiiiiiiiiiieee s 117
6.4.2 Tower-Foundation-Soil Interaction Effects ..........ccoocovveeeiiiiii 128

6.5 Practical Earthquake Analysis of Intake-Outlet Towers ...........c.cocoveeveeeeiiininninn, 129

7. SIMPLIFIED REPRESENTATION OF HYDRODYNAMIC AND FOUNDA-

TION INTERACTION EFFECTS .............................................................................. N 132
7.1 INEPOAUCTION 1oeeiiiiiiiicin et e s et sr e b e e e nnt s e rte e e araeenneaseamraens 132
7.2 System and Ground MOLION .....ccccceviemirieiiiinceeeeireer e eeereraretern et 132
7.3 Modal ReSponse of TOWEIS ...ccuiiieiiies et eeee et mabees 137
7.4 Towers with Water ......... 139

7.4.1 Exact Individual Mode Response ......c.ccoceeeee I 139



viii

7.4.2 Added Hydrodynamic Mass ......cc..ccceeeeiiieeiieiiiiiieccieeeseeee s sae e e eevnenes
7.4.3 Response RESUILS ..o e e e e s e

7.5 Towers on Flexible SOil ..o s
7.5.1 Exact Fundamental Mode Response .......cccccvviveciiiieiieec e
7.5.2 Approximate Fundamental Mode Response .....ccccoeevvemveireeireivccnneecinnnn.
7.5.3 Response RESULLS .....o.uvuiiiuiieiieiiieeecc e rte e e e e e e e eeea e bnnees

7.6 Towers on Flexible Soil with Water ...
7.6.1 Exact Fundamental Mode Response ........ccccovveeeeiieeiiiicicciiiieeeee e
7.6.2 Approximate Fundamental Mode ReSponse ....cc....oovvvvivivinveiecrcnieiieenns
7.6.3 ReSPONSE RESUILS ..ooviiureiiiiieii i ieeei et ieetieee e rrereee s eeeeesirestees s enteess b nannns

7.7 Equivalent Lateral FOICES ......iiiiiiiiiiiiiiii ettt tisees s seeees tesseree heatane annaniaes
8. SIMPLIFIED EVALUATION OF ADDED HYDRODYNAMIC MASS ....................
8.1 INTFOUCTION ..eiiiiiiiie et e encs s e rree e eene st
8.2 Added Hydrodynamic Mass for Surrounding Water .........cc.cccoeceeeinninnrccnnnnnns
8.2.1 Uniform Towers ................... | ................ et e et e e e naneens e
8.2.2 Uniform TOWErs -- SUMMATY ...ccciviiiieiiiiniiiriiiineene e issierescisniensssesseesnanns
8.2.3 NON-Uniform TOWETS .......cccovivrerciimireiriesierrreeeressiesseesrenereesemanssreessvnnsses
8.2.4 Non-Uniform TOWers - SUMMATY .....coooviveeriiiieeeiieeineiierieeirereneceessesanans

8.3 Added Hydrodynamic Mass for Inside Water ......... e eretee it ——rrrr—reaaieaeeeereaan
8.3.1 UnNIform TOWETS ...ooiiiieiiceee ettt re st e
8.3.2 Uniform TOWETS - SUMMATY .. ceooviiiiriiiieirimeieiiineeerieieiersninees e i ssesasees
8.3.3 NOM-UNIFOIM TOWETS .veovrrvveereeeeeerreeeoseseseeoseresssesseseneseeessssnssseeesssssesnesen
8.3.4 Non-Unif;rm TOWerS -- SUMMATY ...coccoiviinnininien e

9. SIMPLIFIED EARTHQUAKE ANALYSIS OF INTAKE-OUTLET TOWERS



1x

............................................................................................................................................... 241
B2 01 50 Ta L1 ot U ) « A SRRSO 241

9.2 Natural Frequencies and Vibration Modes of Tower .........ccocoeiiiiiiiciiieninne. 242

9.2.1 Fundamental Mode ................................... 242

9.2.2 Second MOde ...coooiiiiiiieeieii e e st 246

9.3 Added Hydrodynamic Mass ... e 247

9.3.1 Added Hydrodynamic Mass for Surrounding Water ..........cccoecvevrevieeenns 248

9.3.2 Added Hydrodynamic Mass for Inside Water ........cccocvevererreemmeerernnneernenns 250

9.4 Tower-Foundation-Soil Interaction Effects 251
9.4.1 SyStem Parameters .........ccoeevveiieecireerinieeeneseseetsesnesessessseesreesessensenesaeens 252

9.4.2 Effective Period of System ....... et ettt et s eeera et eernees 254

G.4.3 Effective Damping SYSIEIM .....rceiiiiiiiiiiiiiiiie i eeen s veerrerarr s ssessenes e s eeranens 262

9.4.4 Criterion for Assessing Importance of Interaction ......... e ———— 268

9.4.5 Summary of the Procedure ..ottt eetreeeeereseeenecreee 271

9.5 Simplified Analysis ProCeAUIE ........ccoocciieiiiiiiiii e e 272

9.6 Evaluation of Simplified Analysis Procedure .........ccoooovieiiiiiemiecieciiiee e, 277
9.6.1 System and Ground MOtION .....cccceiveiiciiniiie e e e aeaae e e eeeaiaees 277

9.6.2 Vibration Frequencies and Mode Shapes ....c..ccoovvoiiivviciiree e 279

9.6.3 Simplified Analysis Procedure .......c..ccocooeiimiiiieiivccicniennnnn e e v e 279

9.6.4 Comparison with Refined Analysis Procedure .........ccooovivviiiniiiiieiiinnes 283

10, CONCLUSION S s ettt re ettt e sae e et e ente e seteesaseeantes s nbresanbaeens 300
REFERENCES ... .o eececreetee e e e ettt e et et e are e e r e e e s 306

NOTATIONS ettt sttt et e e st s e e e e s enteaeenataeteas e ernsennsannasasens 309

APPENDIX A - RECIPROCITY PROPERTY OF HYDRODYNAMIC FORCES



A1 SUITOUNAINE WALET oriiiiriiiiiiiiiiiiriiieeis e s veseireetessiensiesersssiesaisesisnsseesiertessnseersarrntes
A2 TNSIAE WaALET ..ot e e e e e et e e e s e e s tnstreaeeeeese e bantbsseaeeeaae e eaaasnns

APPENDIX B - COMPUTATION OF SHEAR FORCES AND BENDING

MO EN T S e et sttt et r e :

APPENDIX C - DERIVATION OF EULER-LAGRANGE EQUATIONS ........ccovevuee..
C.1 Surrounding Water Domain ...
C.2 Inside Water Domain .........c.cccoooee. et taeeraoeteeeerrteesiare ey ie e rretae e abae et s aesranerens

APPENDIX D - HYDRODYNAMIC ANALYSIS OF AXISYMMETRIC FLUID

O M AT N S ettt e et e et e st e e e e s et e e eseeeeaaste e e asteeette s e eatteaenneeaasteeararae e raeteanraesanra e ans
D.1 Surrounding Water Domain ..... ettt ettt et eie et e ae————rera et aaa e b sraaraaaaeaaaaaaran
D.2 Inside Water DOmMain ....ccoocoeevvenenevccenicnnnnnns et et te e e e ene s

'APPENDIX E - COMBINED EFFECTS OF SURROUNDING AND INSIDE
WATER ON TOWER VIBRATION PROPERTIES ...

APPENDIX F - PROPERTIES OF EQUIVALENT SINGLE-DEGREE-OF-
FREEDOM SYSTEM WITH CONSTANT HYSTERETIC DAMPING ........................

APPENDIX G - ADDED HYDRODYNAMIC MASS FOR INFINITELY-LONG
UNIFORM TOWERS ___..____. oooooooooeooooeooooeoe oo eeseeee e SO

G.1 Added Mass for Surrounding Water ......coooiiiiieiiiiiieeeee et e
(.2 Added Mass for Inside Water ........cocoviiiiiee et s e

APPENDIX H - SIMPLIFIED EVALUATION OF ADDED HY DRODYNAMIC

MASS -- NUMERICAL EXAMPLE ....coooiiiiiiiiii ettt e S
H.l Added Hydrodynamic Mass for Surrounding Water ..........cccceecvicvreniiinnneennn,
H.2 Added Hydrodynamic Mass for Inside Water ...........ccccviinienniinicinnivnnieaeen,

APPENDIX I - SIMPLIFIED EVALUATION OF TOWER-FOUNDATION-SOIL



X1

INTERACTION EFFECTS -- NUMERICAL EXAMPLE ........ooocoiiiiieeeeeiee 353
APPENDIX J - TOWERINF SERIES OF PROGRAMS : USERS MANUAL .............. 355
J.1 Introduction ........................................................................ 355
1.2 Organization of TOWERINF Series of Programs .........coccccooonee et r e 355
J.3 EXecution Of PTOBIAMIS ..oooiiiiiiiiiii ettt eae e semer et nnee e e neas 357
J.4 Idealization of Surrounding Water Domain ..........ccceeeeeivieeiinnnnn. eetrer e ——— 357
J.5 Input Data File (TOWERINF.DAT) ..o 357
J.6 Numerical EXAmpPle ..o e e 364
APPENDIX K - TOWERRZ SERIES OF PROGRAMS : USERS MANUAL ............... 366
K.1 Introduction ................ et eete e e Eeeeiueeee onaeee i Ateeeiuheteemaneeiehareenantt et s i bee e s renenatneaen 366
K.2 Organization of TOWERRZ Series of Programs 366
K.3 EXecution Of PrOIAMS ...cccociiviiiiiiiiiis i ectris e esceiinee e esennr e resennsntressessenetsneeesaes 367
K.4 Idealization of Tower-Water-Foundation Soil System ................ I 369
K.5 Input Data File (TOWERRZ.DAT) ....ooiiieiieie e 371
K.6 Numerical EXampPle ..ot 386
APPENDIX L - TOWER3D SERIES OF PROGRAMS : USERS MANUAL ................ 392
L1 INTEOQUCTION .ooiiiteiiiiiiiiircc et sree et st she e e sne e e ere et sre e ne s ene e - 392
L.2 Organization of TOWER3D Series of Programs ...........ccccccooviviiicieimeneeeeeenenn. 392
L.3 Execution of PrOSrams .......c..coieoiiiiiii e e ee et 393
L..4 Idealization of Tower-Water-Foundation Soil System ...........ccooeeiiiiiiiniinienn, 395
L.5 Input Data File (TOWER3D.DAT) .ooooiiiiiieee e 397
L.6 NUMEECAl EXAMPIE oo e 415






1. INTRODUCTION

Earthquake analysis of cantilever tower structures, such as intake-outlet towers, requires
special considerations which do not arise in structures on land. Any procedure for analysis
of earthquake response of these structures must recognize the interaction forces and
modifications in the vibration properties caused by the surrounding as well as the contained
water. Similarly, the analysis procedure must be general e¢nough to consider the
modifications in the vibration properties and effective damping due to deformability of the
supporting foundation rock or soil. Thus, just like in the case of concrete gravity dams,
structure-water and structure-foundation-soil interaction effects should be considered in
developing methods for analysis of intake-outlet towers. The advances that have been made

in the analysis of concrete dams [10,19,22] can be used to advantage in the development.

The significance of tower-foundation-soil interaction effects is not clear because of two
competing factors that can be identified based on the research on buildings [45,46]): On the
one hand, these tower structures tend to be relatively flexible long-period structures which
suggests that soil-structure interaction effects are likely to be small; and on the other hand,
many of these tower structures are slender with a large height-to-radius ratio and the soil-
structure interaction effects become increasingly significant for slender structures. For tall
chimneys; these effects have been shown to be significant under certain situations [35]. Thus
the influence of towér-foundation-soil interaction needs to be investigated in earthquake

response of intake-outlet towers.

Earlier research on the earthquake analysis, response and design of axisymmetric (circu-
lar plan with radius varying arbitrarily over height) intake-outlet towers culminated in (i) a
general procedure for linear response analysis considering hydrodynamic effects by neglect-
ing tower-foundation-soil interaction effects [32-34] ; (ii) the computer program EATSW [32]
to implement this procedure which has been widely used in practice ; (ii1) improved under-
standing of how the surrounding water influences the vibration properties and earthquake

response of towers [33,34] ; (iv) correlation of analytical results with experimental data from



forced vibration ficld tests [41] ; and (v) a procedure for carthquake resistant design of
intake-outlet towers [11,13]. The U.S. Army Corps ‘of Engineers adopted this design pro-

cedure in their standard practice [38].

Thus much of the existing work that rigorously considers tower-water interaction effects
is restricted to axisymmetric towers, i.e. towers of circular plan with radius varying arbi-
trarily over height supported on rigid foundation rock. This work is aimed at relaxing both

of these restrictions.

In order to analyze the earthquake response of intake-cutlet tower§ having non-circular
plans with dimensions véryling along the height, the tower must be i1dealized as a discretized
system, utilizing, say, the finite element method. Three-dimensional shell elementsvhave
been used to discretize hollow prismatic structures partially submerged in water [8]. How-
ever, this idealization seems unnécessarily complcxllunless the cross—scctidfis of the tower are
éxpected to undergol significant in-plane distortions. Suéh distdnions generally do not
develop iﬁ reinforced-coﬁcrete intake-outlet towers. Therefore, such a structure cén be
effectively idealized as an assemblage of one-dimensional beam elements, including bending
-.and shear de.fo-rmations as well as rotatory inertia [28]. The shear deformatidns are included
to permit accurate analysis of squat towéré. A simpler version of such an approach has been

utilized in the dynamic response analy;sis of tall chimneys [35].

The hydrodynarﬁic terms in the finite elemeni equations for the towe‘r are determinéd
by solving appropriate boundary value problemstfor the surrounding ﬂuid and the contained
ffuid. Because surface’ wave and wat.er compressibility effects have been shown to be negligi-
ble in the dynamic reéponse of towers [33], the hydrodynamic terms will be determined by
solving the simpler Laplace equation over three-dimensional idealizations of the fluid
doméins subject to appropriate bouﬁdary conditions. The fluid domain outside the tower
(of arbitrary plan) but within a fictitious, circul‘ar'cylinder‘ having an éppropriately selected
radius is discretized by three-dimensional finite elements, and the effects of the unbounded

extent of the fluid outside the fictitious cylinder are treated by the boundary integral



procedures utilizing classical solutions for domains exterior to a circular cylinder [33]. The
water contained within a hollow tower, being a bounded domain, is simply discretized by

the standard finite element method.

The above mentioned analysis procedure is extended in this work to include tower-
foundation-soil interaction effects. For the time being, rigorous treatment of these effects .
has been restricted to towers with a circular foundation supported near the surface of a
viscoelastic halfspace. However, an approximate treatment of non-circular foundations is

also 1ncluded.

The objectives of this investigation are : (a) to develop reliable and efficient techniques
for analyzing the response of intake-outlet towers of iarbitrary geometry, but with two axes of
plan symmetry, to earthquake ground motion, including the effects of tower-water interac-
tion and tower-foundation soil interaction ; (b) to develop an efficient hydrodynamic
analysis procedure for the unbounded fluid domain exterior to the tower (c) to investigate
the significance of various interaction effects on the earthquake response -of intake-outlet
towers; (d) to develop a simplified analysis procedure appropriate for the preliminary phase
of design and safety evaluation of intake-outlet towers that provides sufficiently accurate
estimates of of design forces directly from the earthquake design spectrum ; and (e) to
develop necessary techniques, tables and charts for convenient implementation of the

simplified analysis procedure.

A general procedure for the earthquake response analysis of intake-outlet towers includ-
ing tower-water interaction and tower-foundation soil interaction is presented in Chapter 3.
The general analytical procedure is based on the substructure method, wherein each sub-
structure -- the tower, the foundation and supporting soil, the surrounding water domain,
and the inside water domain -- is idealized, as mentioned earlier, in a manner appropriate to
its properties and dynamic behavior.” Presented in Chapter 4 are numerical methods for the
efficient evaluation of various terms appearing in the equations of motion. These include

the mass, stiffness and damping terms for the tower structure, added hydrodynamic mass



and excitation terms associated with surrounding water as well as inside water, and founda-

tion impedance functions.

The dbjective of Chapter 5 is then to investigate how the response of towers is affected
by tower-water interaction and by tower-foundation-soil interaction for a wide range of basic
parameters characterizing the tower geometry, surrounding and inside water, and foundation
Soil, For a number of towers with different geometries in plan as well as along the height,
the response to harmonic ground motion is presented in the form of frequency response
functions. Based on these response results, the effects of tower-water interaction and tower-

foundation soil interaction on the response of towers are investigated.

Chapter 6 presents the dlisplacement responses and envelope of maximum shear forces
and bending moments along the height of the Briones Dam Intake Tower to Taft ground
motion for various assumptions for the water and the foundation soil. Based on the results
from these analyses, the effects of tower-water interaction and tower-foundation-soil interac-
tion on the displacements, maximum shear forces and bending moments are investigated. It
is shown that hydrodynamic effects significantly influence the earthquake response of towers

but the influence of tower-foundation-soil interaction is relatively small.

In Chapter 7, the more important factors influencing the dynamic response of towers
are incorporated in a simplified analysis procedure that is intended for the preliminary
phase of earthquake resistant design and safety evaluation of intake-outlet towers. In this
simplified procedure, the hydrodynamic effects are represented by the added hydrodynamic
mass evaluated from the analysis of a rigid tower [13], the tower-foundation-soil interaction
effects are included using concepts similar to those developed for building foundation sys-
tems [45,46] and concrete gravity dams {20,21], and the maximum response considering the
first two vibration modes -of the tower [11] is computed directly from the earthquake design

spectrum.

Chapter 8 presents simplified methods for evaluation of the added hydrodynamic mass

associated with water surrounding the tower or contained within a hollow tower. Figures



and tables of appropriate data are presented for convenient computation of the added mass. -

A step-by-step summary of the simplified analysis procedure for intake-outlet towers is
presented in Chapter 9, wherein the concepts developed in Chapters 7 and 8 are combined.
Also included is a simplified procedure for evaluating the frequencies and shapes of the first
two vibration modes of the tower. Additionally, the simplified procedure is shown to be
sufficiently accurate for the preliminary phase of design and safety evaluation of intake-
outlet towers.

Finally, the coﬁclusions of this investigation regarding the effects of tower-water

interaction, and tower-foundation-soil interaction on the response of intake-outlet towers to

horizontal earthquake ground motion are presented in Chapter 10.



2. SYSTEM AND GROUND MOTION

The system considered consists of a hollow reinforced concrete intake-outlet tower par-
tially submerged in water and supported through a rigid foundation on the horizontal sur-
face of flexible soil (Figure 2:1). The surrounding water is idealized by a fluid domain of
constant depth, extending to infinity in radial directions. The hollow tower is also partially
filled with water. The tower may be of arbitrary cross-section having two axes of symmetry.
This restriction allows the hydrodynamic pressures on the inside and outside surfaces of the
tower, caused by the horizontal components of the earthquake ground motion along the
planes of symmct-ry, to be represented as equivalent lateral forces and external moments dis-
tributed over the tower height acting along these planes. The system is analyzed under the
assumption of linear behavior for the tower concrete, the surroundiﬁg and inside water, and

the foundation soil.

The tower is idealized as a one-dimensional Timoshenko beam including the effects of
rotatory inertia and shear deformations [44], the latter included to permit accurate analysis
of squat towers. Because surface wave and water compressibility effects have been shown to
be negligible in the dynamic response of towers for a wide range of slenderness ratios
[32,33], the lateral hydrodynamic forces and external hydrodynamic moments are deter-
mined by solving the Laplace equation over three—diménsional fluid domains (both inside
and outside) subject to appropriate boundary conditions. The part of the foundation above
the ground level is treated as a part of the tower and the remaining part of the foundation
below the ground level is idealized as a rigid footing of infinitesimal thickness supported on
the surface of a homogeneous viscoelastic halfspace. The latter assumption is reasonable
because the embedment is usually shallow. Perfect bonding between the foundation and the
foundation soil is assumed, i.e. the effect .of transient partial separation of the foundation

from soil is not considered.

The earthquake excitation for the tower-water-foundation-soil system is defined by two

horizontal components of the free-field ground acceleration. The vertical component of the

6
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ground motion is expected to have little influence on the response of towers and is therefore
not considered in this investigation. The ground motion is assumed to be identical at all
- points on the horizontal base of the tower. The analysis procedure is presented for one
component of horizontal ground motion in a plane of symmetry. The dynamic response of
the tower for each horizontal component of ground motion can be evaluated separately and

the responses to the two components superimposed to determine the total response.



3. GENERAL ANALYTICAL PROCEDURES

3.1 Introduction

The governing equations of motion for the tower including the effects of tower-water
interaction and tower-foundation-soil interaction are conveniently written in the Fourier
transformed frequency domain because the impedance functions for the foundation on a
halfspace depend on the excitation frequency. The system consists of four substructures :
the tower, the foundation and supporting soil, the surrounding water domain, and the inside
water domain (Figure 3.1). The governing equations for these substructures are presented
next in the frequency domain followed by a general analytical procedure based on the sub-

structure method.

3.2 Frequency Domain Equations
3.2.1 Tower Substructure
The equations of motion for planar vibrations of a tower idealized as a Timoshenko

beam and subject to harmonic ground acceleration ii () = e’ (Figure 3.2) are written in

frequency domain as two coupled partial differential equations :

my(z) i (z,w) — (L+in,) % Gk(2)A(2) | aiza(z,w) Bz ]]

= - fzw) - fi(z,w) (3.1a)
I2) 67 (z.0) ~(1+in,) [3‘1;[ EJ(2) 50l Gk () [i(z,0) - §(z,0)] ]

oM ew) -1 (z0) (3.1b)

in which my(z) and Iy(z) are the mass and rotatory inertia per unit of height of the tower ; n,

is the constant hysteretic damping factor for the tower ; and G,k(z)4(z) and E J(z) are the
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cross-sectional stiffnesses for the tower in pure shear and pure bending at a location z above
the base, respectively. In these equations, #{z,w) is the complex frequency response function
for the lateral displacement due to bending plus shear deformations of the tower and 6(z,w)

is the similar function for the bending slope of the tower axis ; and il (z,w) and g (z,w) are

the response functions for total (beam deformation plus base translation and rotation) lateral

—_ —_—0
and rotational accelerations, respectively. In equation (3.1), f°(z,0) and ” (z,w) are the
response functions for equivalent lateral forces and external moments acting along the height

of the tower in its plane of vibration due to hydrodynamic pressure on the outside surface ;
-, —i
and f'(z,») and M (z,») are the corresponding functions due to hydrodynamic pressure on
0
the inside surface. The response functions for external hydrodynamic moments, ¥ (z,0)

—_
and M (z,w), are non-zerc only for non-uniform towers.

In addition to equation (3.1), the total equilibrium of horizontal forces leads to the fol-
lowing equation :

H“ PR
é [ my(z) ii' (z,w) + [°(z,w) + [(z,0) ] dz + V{w) = 0 (3.2)

Similarly, total equilibrium of moments about the base of the tower leads to the following

equation:
H;

! z [ my2) i (z,0) + [O(z,0) + [ (z,0) ] dz

4. — o — i —
+ g [I(z) 6" (z.0) + M (z,w) + M (z,0) 1 dz + M g(w) = 0 (3.3)

. In these equilibrium equations, Vf(w) and m s(w) are the frequency response functions for
shear force and bending moment, respectively, at the base of the tower, and H, is the height

of the tower.
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Assuming small displacements and rotations, the frequency response functions for total
lateral and rotational accelerations along the height can be expressed in the following form

(Figure 3.2):

i (zw) = 1 = @ A(z.0) - & HAw) — 0 2 6 (w) . (3.4a)

0'(z,w) = — w? B(z,0) — w® 8 (o) (3.4b)

where # ;(w) and 6 s(w) are the complex frequency response functions for the lateral displace-

ment and rotation of the foundation, respectively, relative to the free field ground motion.

The natural frequencies and mode shapes of the tower without water on fixed base are
given by solutions of the associated eigen value problem for equation (3.1) {26,27]. The n-th
mode shape is completely defined by two functions ¢,(z) and ,,(z) describing the lateral dis-
placements and rotations of the fower axis [27]. The numerical procedure to evaluate these

functions by solving the associated eigen value problem is presented in Chapter 4. The

lateral displacements and rotations of the tower, #(z,w) and 6(z,w), can be expressed as a

linear combination of its fixed-base natural modes of vibration :

dn(2) ¥ (@) (3.52)
1

|
b8

u(z,w) =

g
]

0(z.w) = 3 ¥n(2) ¥ ,(w) (3.5b)
n=1

where }_’,,(m) is the frequency response function for the generalized (modal) coordinate asso-

ciated with the n-th mode of vibration.

The equations of motion for the tower are transformed to modal coordinates by substi-
tuting equations (3.4) and (3.5) into equation (3.1), using the principle of virtual work and
the orthogonality properties of normal modes. Similarly, the total equilibrium equations for
horizontal forces and moments are transformed to modal coordinates by substituting‘equa-

tions (3.4) and (3.5) into equations (3.2) and (3.3), and using the orthogonality properties of
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normal modes. This leads to :

M, [-o? +(+ingdwi | ¥ plw) ~o? LY i (w) ~? L} 6 f(w) = —L, ~I(w) —1j(w) (3.6a)

- % LY u(w) = @ my ifw) - o Ly 8 (@) = - my, = [(w) = [}(w) = V ) (3.6b)
n=1

~? P L V@) - o? Ly i) - P T 0 fw) = - Ly - T9w) - THw) — M (w) (3.6¢)
‘n=1

in which w, represents the natural frequency for the n-th mode of vibration of the fixed-base

tower without water. The generalized mass A, generalized excitation term L,, and general-

ized excitation terms L and L] associated with base translation and rotation, respectively,

are given by :

8, H,
M, = ! my(z) [ ¢u(z) 1 dz + t[ L(z) [ ¥n(z) * dz (3.7)
i _
L,=L}-= 1( my(z) 6,(2) d (3.8)
H, HJ‘
L} = ! z my(z) dplz) dz + l[ls(z) ¥ul2) dz (3.9)

Similarly, the total mass of the tower, m,, is :
H;
my, = ! my(z) dz (3.10)
the total mass moment of inertia of the tower about its base, /,, is:
H, H,

I, = ‘[ 22 my(z) dz + l; I(2) dz (3.11)

and the mass coupling between the lateral and rotational motions of the foundation is

represented by :
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H;
L} = £ z my(z) dz : (3.12)

For a rigid tower supported on deformable soil through a rigid foundation, m,, 1, and L]
can be interpreted as generalized mass terms for lateral and rotational motions of the foun-

dation. .

The hydrodynamic terms in equation (3.6) are given by :

H, H.
T%(w) = 1{ 6.,(2) Tz,0) dz + £ () () dz 5 a= o, (3.13)
P Ha p—
Hw) = ‘gf“(z,w) dz . a=o, (3.14)
H, H, N
[*w) = é z [z,w) dz + £ M (zwdz ; o=o0, (3.15)

in which a= ¢ and {, are used to identify the terms for outside and inside water, respec-

tively; H, ( H,, =0 ) and H; ( H, , a=i ) are the outside and inside water depths.

The frequency response functions f °(z,w) and m O(z,w) of hydrodynamic forces due to

pressures on the outside surface of the tower will be expressed later in terms of accelerations

of the modal coordinates Y ,(w), the lateral displacement i s(w) and of the rotation 7 7{w) of

the foundation by analysis of the surrounding water domain substructure. Similarly,
—. —i

corresponding functions f ‘(z,w) and M (z,w) for inside water will be expressed in terms of

Y (w), i 7(w) and 73 f(w) by the analysis of the inside water domain. Also, the response func-

tions for the tower-foundation-soil interaction forces, I7f(w) and M r(w), will be expressed in

terms of response functions for interaction displacements # ((w) and 6 r(w) by analysis of the

foundation supported on a viscoelastic halfspace.
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It is well known that the magnitude of L,, L and L] decreases with mode number x,
which implies that the contribution of higher vibration modes in the response of towers sub-
jected to horizontal ground motion tends to be small. As a result, only the first N modes of
the tower need to be cénsidered in the dynamic response of the tower. Therefore, in what
follows, equation (3.6a) is included only for n=1,2, . _, N and only N terms are included in
the infinite summations in equations (3.6b,c). For a particular excitation frequency w, equa-
tion (3.6) represent N +2 simultaneous complex algebraic equations in the unknowns ?n(w),
n=12,...,N;up«)and Ef(w).

3.2.2 Foundation-Soil Substructure

The governing equations for the rigid foundation subjected to free-field ground motion

iig(t) = ¢ and harmonic interaction forces V(1) = Vw) et and mg(t) = m rw) e

(Figure 3.3) are:

_ W my il fw) + Kpplw) it (@) + Kyy(w) 0 {w) = = my + V() (3.16a)

— &P I 0 fw) + Kypplw) H0) + Kyppw) 8 (w) = 1 {w) (3.16b)

in which m, is the mass and I, is the rotatory inertia of the foundation. Ky (w), Kyps(w)
and Ky (w) [_KA,V(w) = Kyps(w) by reciprocity theorem ] are the impedance functions which
may be obtained from the solutions of two boundary value problems for the foundation-soil
- domain, arising from the application of a harmbnic horizontal fqrce and a harmonic
moment separately to the rigid foundation. Available solutions for these problems will be
summarized in Section 4.2. Inherent iﬁ the evaluation of these impedance functions is the
assumption that the hydrodynamic pressures on the surface of the foundation soil outside

the foundation have negligible influence.

3.2.3 Tower-Foundation-Soil System

Substitution of equation (3.16) for I_/f(w) and n—’if(w) into equations (3.6b,c) leads to
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N +2 complex simultaneous equations for the tower-foundation-soil system :
M, [~ o+ (I+in) 2 1 ¥ (w) - 0? LF (@) - o? L] 0 Aw)
= - L,~ %) - [Yw) ; n=12, ..., N (3.17a)

N
—&? T LY (@) - 0t (my + mp ) Tw) - o L 8 Aw) + Kpp{w) i {w)

== (my = mp) - Tfw) - Th(w) (3.17b)

+
s
S
S
£
@
-
&
|

N — —
~w? P LY (w) - w? LY dip(w) - & (1, + 17 ) 6 dw) + Kppp(w) B pw)

+ Kypelw) 0 p(w) = - L - [%w) - [}(w) (3.17¢)

These equations have the same structure as developed earlier {12] for building-foundation
systems. The additional terms appearing in equation (3.17) because of hydrodynamic pres-
sures on towers are evaluated from the analysis of fluid domain substructures described in

the next two sections.
3.2.4 Surrounding Water Domain Substructure

Boundary Value Problem-- The frequency response functions of unknown hydrodynamic

forces f°(z,w) and l’ﬁo(z,w), whiéh'appear 1n equations (3.13) to (3.15), can be expressed in
terms of accelerations of the outside surface by analysis of the surrounding (outside) water
domain. Assuming water to be incompressible and neglecting its internal viscosity, the
small amplitude, irroltational‘motion of water is governed by the three-dimensional Laplace
equation :

azﬁ—o azﬁo 62‘50

+ +
ox? ay? az*

=0 (3.18)
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where p°(X ,w) is the frequency response function for hydrodynamic pressure (in excess of
hydrostatic pressure); i.e. the hydrodynamic pressure p°(X ,t), where X = (x,y,z) defines the
coordinate vector of a point, due to harmonic ground acceleration iig(t) = e™' is given by

p°GE,t) = p%X ,w) €. The hydrodynamic pressure in the Water surrounding the tower is
generated by acceleration of the outside surface of the tower and vertical acceleration of the
reservoir bottom. The motion of these boundaries is related to -the hydrodynamic pressure
by the boundary conditions in equations (3.19) and (3.22) which aré presented using the

notations of Figure 3.4.
For horizontal ground acceleration ii(z) = e™! in a plane of symmetry for the tower,
the boundary condition at the tower-water interface, I'Y , becomes :

]
an®

PI¥ w) = — py, af(X ) (3.19)

in which p,, is the mass density of water ; #° represents the direction of the normal to the
surface ; and af(X ,«) is the spatial distribution of the acceleration of the outside surface in
its normal direction. For ground acceleration applied in the x direction, a2(X ,») at the

tower-water interface T is related to the total lateral and rotational accelerations of the

tower axis by the following equation :
8% w) = n2F) i (z,0) - x nFE) 0 (z,0) (3.20)

where n2(X) and n%X) are the direction cosines of the normal at a point X on the outside

surface with respect to x and z axes respectively. Expanding it (z,w) and '3 (z,w) by equa-

tion (3.4) and using equation (3.5), the equation (3.20) becomes :
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G;E%Yw%:—mngfﬂl—wi§¢ﬂﬂfﬂ@—w2@w)-ﬁzﬁﬂw]

vi(2) Yj(w) - «? 8 4(w) ] (3.21)

oy

Il
—_—

+ py X (XY [ - o
J

Since vertical ground motion is not considered, the vertical acceleration of the reservoir

bottom is caused only by the rotation of the foundation, which may be partially exposed to
the water surrounding the tower. If I'J represents the exposed part of the foundation at

reservoir bottom I'f, then the boundary condition at the reservoir bottom I') becomes:

o X [ - & 0/(w)] X €I?

0 —_,5,—
3z pox ) = 0 otherwise (3.22)

In this equation, the vertical acceleration of the reservoir bottom caused by its deformation
due to rotation of the foundation is assuméd equal to zero away from the foundation only
for simplicity in the numerical solution. The errors introduced by this simplification are
insignificant because these vertical accelerations of the reservoir bottom are small and
rapidly decrease with increasing radial distance from the foundation, [36], and the hydro-
dynamic forces due to vertical acceleration of the reservoir bottom away from the tower are

small [18].

Neglecting the effects of surface waves which are known to be small [32,33], the boun-
dary condition at the free surface, '} , is :
prRw) =0 (3.23)

The frequency response function p?(X ,w) for the hydrodynamic pressure in the water

surrounding the tower is the solution of equation (3.18) subject to boundary conditions in

equations (3.21) to (3.23). In addition to these boundary conditions, p°(X ,») should remain

bounded at all distances in radial directions of the unbounded fluid domain.
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Solution for Hydrodynamic Pressure-- The linear form of the governing equation and boun-

dary conditions allow p°(X ,w) to be expressed as :

N

PoF w) = p§(X) - & Y pAX) ¥ j(w) - &® pR(X) i Aw) - &? PR 6 fw) (3.24)
j=1

In equation (3.24), the hydrodynamic pressure pg(X ) due to the horizontal free-field ground

acceleration of a rigid tower is the solution of equation (3.18) subject to the following boun-

dary conditions :

d

poe P°(X) = - pyniX) X I (3.25a)
6 =0 — — )

o, 7YY =0 X eIY (3.25b)

po(x)=0 X eTY | (3.25¢)

The hydrodynamic pressure function pj—’(?c> ) due to horizontal acceleration ¢;(z) and rota-
tional acceleration y;(z) of the tower axis that correspond to the j-th mode of vibration, with
no motion at the tower base, is the solution of equation (3.18) subject to the following boun-

dary conditions :

3

o PXY = — pu [ MAX) ¢)(2) ~ x n2(X) ¥y(2) ] X €17 - (3.26a)
9 5F)=0 Y eTY (3.26b)
az ¥ B b )
Fo(X)=0 I eI% (3.26¢)

The pressure function pf(X) due to horizontal, interaction acceleration of the foundation

with a rigid tower is the solution of equation (3.18) with the boundary conditions of equa-

tion (3.25). Thus pf(X) = p3(X). The pressure function pd(¥) due to rotational, interaction

acceleration of the foundation with a rigid tower is the solution of equation (3.18) with the
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following boundary conditions :

a

o7 D) = o () 2 - n2) X1 X ed? (3.27a)
3 Py X X € )
50Ty — - 0
oz P @x)=19 otherwise x eI (3.27b)
pe(X)=0 X eI (3.27¢)

An ecthcient analysis procedure, which uses the finite element method coupled with

boundary integral procedures, is presented in Chapter 4 to solve the above-defined boundary

value problems and determine the pressure functions p§(X), p?(x), pf(X) and pi(X).

Hydrodynamic Forces-- Due to symmetry of the tower with respect to the vertical plane in
the direction of applied ground motion, the hydrodynamic pressures on the outside surface
of the tower can be replaced by equivalent lateral forces and external moments acting in this

plane along the height of the tower. Similar to equation (3.24) for hydrodynamic pressures,

— 20
the frequency response functions for hydrodynamic forces f“(z,w) and moments #1 (z,w),

appearing in equations (3.13) to (3.15), can be expressed as :

— N — —
fz.0) = fi(z) - &? 2] f9z) Y () — o f3(2) #p(w) — &* f2(2) 8 dw) (3.28a)
J=1i.

0 N —_ -
M (z,0) = MG(z) - ¥ T MIz) ¥ (@) - w® M{(2) i dw) - & MI2) 8 () (3.28b)
j=1

These forces and moments are evaluated at any location z along the height by integrating

their corresponding pressure functions along the perimeter of the tower-water interface I'?

pertaining to that location by the following equations :

12(z) =]jngg(5c')pg(5c') ds9 ; B8=012 ... Nhyr (3.29a)
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0
!

mi(z) = - J x n2(X) p3(¥) ds9 - 6(2)‘[ x p3(X)dT ; 8=0,1,2,...,Nhr (3.29b)
in which s{ defines the local coordinate along the perimeter of the outside surface for any
fixed location z along the height (Figure 3.4) and &(z) is the Dirac delta function. The
second term in equation (3.29b) for external hydrodynamic moments represents a concen-
trated external moment at the base of the tower due to hydrodynamic pressures on the
exposed surface of the foundation.

Introducing ¢,(z) = 1 and ¥, (z) = 0 as the rigid body lateral displacement and rotation
of the tower axis associated with the unit lateral displacement of the foundation and

¢,{z) = z and ¢, {z) = | as the corresponding functions associated with the rotation of the

foundation, the functions f§(z) and mg(z), 8 = 0,1,2, .. ., N,h,r can be shown (Appendix

' A) to have the following reciprocity property :

H, H,

‘ H, H,
i a(2) [3(z) dz + £ ¥slz) my(z) dz = t( 6,(2) [3(z) dz + t[] Vl2) ME(z) dz (3.30)
in which 8,y = 0,1,2, . . ., N,h,r and H, is the depth of water surrounding the tower.

Generalized Forces -- Substitution of equation (3.28) into equations (3.13) to (3.15) and the
reciprocity property of hydrodynamic forces [equation (3.30)] allows the response functions

for generalized hydrodynamic forces appearing in equation {(3.17) to be expressed as :

N
[8w)= - ? 2 M Y (w) - P LIt w) - ? LG w) + L ; n=12,...,N  (3.31a)
Jj=1
N _ —
IPw)= - w? 3 LMY () - &? mf ii(w) - 0 LE 8 () + mf (3.31b)

N
Iw) = - 0* 3 LI Y(w) - o* LY i f{w) - «® I7 6 fw) + LEP (3.310)
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where
H, H,
Mg = [ on(z) f2(2) dz + ‘[ Vo(z) Mi(z)dz  jn=12,...,N (3.32)
Hg . Hu
Lo =1L} - ! on(2) f8(2) dz + ! Y(z) Mi(z)dz  n=12,... N (3.33)
H, H, ‘
L? = 1[ dn(2) f2z) dz + l[ Yolz) MA2z)dz n=12,.. . ,N (3.34)

Comparison of equation (3.31) with equation (3.6) and equations (3.32) to (3.34) with equa-

tions (3.7) to (3.9) suggests that M,; and L; can be interpreted as generalized added mass

and added excitation associated with the hydrodynamic pressure on the outside surface.

Similarly, L and L!° can be interpreted as the coefficients of the associated generalized

added excitation due to translation and rotation, respectively, of the base of the tower.

In equation (3.31), the constants my, I and L{° are given by the following equations:

H, '
m = l,fﬁ(z) dz (339
H, H,
I° = ! z f%z) dz + ({ m?l(z) dz (3.36)
H, H,
Ly = £ z fi(z) dz + é mi(z) dz (3.37)

Similar to m,, 1,, and L{ for the tower [equations (3.10) to (3.12)], m/, I7, and L{° represent

the inertial influence of surrounding water due to lateral and rotational motions of the foun-

dation. For a rigid tower supported on deformable soil, m/, I7, and L{’ can be interpreted
as the generalized added hydrodynamic mass terms of the surrounding water associated with

lateral and rotational motions of the foundation.
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3.2.5 Inside Water Domain Substructure

Parallel to the analysis of surrounding water domain substructure, the frequency

—. : —i
response functions of unknown hydrodynamic lateral forces f'(z,w) and moments ¥ (z,w),

acting on the inside surface of the tower, are expressed in terms of inside surface accelera-
tions, a.,(X ,w). For ground acceleration acting in the x direction, a’(X¥ ,») at the tower-water
interface T is related to the total lateral and rotational acceleration of the tower axis by the
following equation :

ai(¥ w) = ni(Z) i (z,0) — x HF) 8 (z,0) (3.38)

where ni(X) and ni(X) are the direction cosines of the normal at a point X on the inside

surface with respect to x and z axes respectively (Figure 3.5). The frequency response func-

tion for hydrodynamic pressure for inside water domain, p i(3c' ,w), also satisfies the Laplace
equation [equation (3.18)], and therefore, similar to equation (3.21) for surrounding water

domain, the boundary condition relating hydrodynamic pressure to acceleration of tower-

water interface I‘f (Figure 3.5) can be ¢xpresscd as:

N — —
OB R = - oy E [ 1 - 0?3 (2) T ) - o? w) - &2 2 0 (w) ]
on j=1
. t N — —
+pw X EE) [ - 0 T vi2) Y (o) - o 04(w) ] (3.39)
j=1

in which n' represents the direction of the normal to the inside surface. The vertical

acceleration of the bottom boundary T (Figure 3.5) of the water domain inside the tower

due to rotation of the foundation is related to the hydrodynamic pressure on the boundary

I, by the following equation which is similar to the first part of equation (3.22) for sur-

rounding water :
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Figure 3.5 Notations and Definitions for Inside Water Domain
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L5 Ew = owx [ - )] (3.40)

In addition to the boundary conditions of equations (3.39) and (3.40), the hydrodynamic

pressure for inside water domain, p*(X ,w), also satisfies the free surface boundary condition,

equation (3.23).
Similar to equations (3.24), (3.28a) and (3.28b) for surrounding water domain, the

linear form of the governing equation and boundary conditions allow p*(X¥ ), f'(z,w) and

'
m (z,w) to be expressed as :

P'Ew) =ph(X) - o® T pi(X) ¥ (w) - 0? ph(X) T p(w) - w? piX) 6 f(w) (3.41)
j=1
— - N . — N . —
fizw) = fh(z) - o 21 Filz) Y(w) - & [1(2) Tfw) - o fi(2) 8 fw)- (3.42)
Jj=
i . N . _ ‘ .
M (z,w) = Mp(2) - o® 3 M(2) Y () - o® My(2) T {w) - o Mz) § {w) (3.43)
j=1

- Parallel to the definitions for surrounding water domain, in equations (3.41) to (3.43),

pf;. (X), f5(z) and mf)(z) are the hydrodynamic pressure, resultant lateral force and external
hydrodynamic moment on the inside surface when the tower is rigid and excited by unit

horizontal acceleration at the base (boundary conditions similar to equation (3.25) for out-
side water domain); pi(X), f(z) and mj(z) are the corresponding functions when the tower
is excited in its j-th mode and there is no motion of its base [c.f. equation (3.26)]; pi(X),
f}(z) and m;t(z) are the corresponding functions due to unit horizqntal, interaction accelera-

tion of the foundation with a rigid tower [c.f. equation (3.25)]; and pi(X), fi(z) and M.(z)
are similar functions for a rigid tower excited by a unit rotational acceleration at the base

[c.f. equation (3.27)]. A numerical procedure to solve the boundary value problems govern-

ing py(X), pi(X), ph(X), and piX’) is presented in Chapter 4.
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The hydrodynamic force and moment functions are evaluated at any location z along
the height by integrating their corresponding pressure functions along the perimeter of the

inside surface I} pertaining to that location by the following expressions .

y

fiz) = ! nGypi(Xyds) 5 =012, . Nhr (3.44a)

r
!

my(z) = -‘j x ni(X) pi(X) dsi - 5(z—b)r[ x ph(X)dT 5 =012, ... ,N,hr (3.44b)
; b
in which s} defines the local coordinate along the perimeter of the inside surface at location
z above the base and & represents the distance of the bottom boundary for inside water
domain from the assumed ground level (Figure 3.5). The second term in equation (3.44b)
for hydrodynamic moments represents a concentrated external moment due to hydro-
dynamic pressures at the bottom boundary of the inside water domain. However, this term
contributes only to those hydrodynamic terms which are associated with the rotation of the
foundation [equation (3.15)].

Since the reciprocity property of hydrodynamic forces for surrdunding water [equation

(3.30)] also applies for inside water [ Appendix A, Section A.2], the frequency response func-
tions for generalized hydrodynamic forces appearing in equation (3.17), namely I—,’;(w), H®)

and Tﬁ(w), are expressed, in a form similar to equation (3.31) for surrounding water:

My Yiw) - LF @) - ® LY 0w) + L) ; n=12,...,N  (3.45a)

=

It
—

HOREES
7

2 LY () - f my i) - @ LY 6w) + m{ (3.45b)

M =

(w = -w

n=1

THw) = - 0* 2 LI Y (@) - o LE 1 (w) — > I 6 f(w) + LY (3.45¢)
. ! f

n=1



30

The added hydrodynamic mass and excitation terms M};, L}, L, and L} are given by

equations (3.32) to (3.34) ; and the generalized mass terms m|, I/, and L} due to horizontal
and rotational, interaction accelerations of the foundation by equations (3.35) to (3.37) with

the following modifications : (i) the integration limit 1s the height H; ( 1.e. up to the free sur-
face) from the assumed ground level (Figure 3.5) and (ii) f§(z) and mg(z) are replaced by
fé(z) and mé(z), respectively. Parallel to their counterparts for surroundiﬁg water, all these
terms carry similar physical interpretation for inside water.
3.2.6 Tower-Water-Foundation-Soil System

Substitution of equations (3.31) and (3.45) into equation (3.17) and retaining only the

first N natural vibration modes leads to :

-~

M, )_’j(w) + (1+in) M, w2 ¥ p(w) ~ «? L~,}: Upw) - w? f,,’; B_I(w)

|

€

[\
M =

e,
[}
—

=-L, ; n=12 ..., N (3.46a)

N
- w? B LY () - o (i, + mp) ) - o L] § f(w) + Kypl) i p(w)

n=1

+ Kyr(w) 0 (w) = — (R, + my) (3.46b)
N . . N
- w? 2}{ Lj Yp(w) - @ L figw) - o> (I, + I7) 6 (w) + Kppplw) it ()

+ Kyp(w) 04(w) = - L§ (3.46¢)

where

M, =M, 6, + M3 + M}; 5 nj=12...,N (3.47a)
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Lh=f =L, +L0+L) ; n=12 ..., N (3.47b)
fr—Ll+LP+LF . n-12....N (3.47¢)
W, = m + mP + mi (3.47d)

I, =1, +1¢+1I (3.47¢)

Li=LL+ Ly +L§ (3.47)

Equation (3.46) contains the effects of tower-water interaction and tower-foundation-soil
interaction. The surrounding water introduces the added hydrodynamic mass terms M,
and added excitation terms LS, and the inside water contributes corresponding terms M ¥

and L. The translation f(w) and rotation 7 f(w) of the foundation permitted by the defor-

mability of the underlying soil introduce two additional equations which are coupled to the

modal equations of the tower through inertia terms L, and L;. In these two additional

equations, the lateral and rotational motions of the foundation result in the generalized mass
terms my;,, I,, and L] associated with the mass of the tower ; m?, I7, and L{’ associated with

the inertial influence of the surrounding water ; and m|, I/, L associated with the inertial
influence of the inside water. The lateral and rotational motions of the foundation also lead

to added excitation terms (which are also the coupling terms between motions of the foun- -

dation and the modal coordinates) LS and L/° due to the surrounding water; and L) and L}
due 1o the inside water. It should be noted that equation (3.46) is identical to equation (5)
in Reference [12] for building-foundation systems except for added hydrodynamic mass and
excitation terms associated with the effects of outside and inside water.

These equations represent N +2 complexed valued equations in the frequency response

functions for the modal coordinates Y Hw), j=12, ..., N, corresponding to the first NV |
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vibration mode shapes of the tower without water on fixed base, and the frequency response

functions #(w) and g f(w) for interaction displacement and rotation of the foundation,

respectively. For each excitation frequency of interest, these simultaneous equations are to

be solved to give Y ;(w). Repeated solution for the excitation frequencies covering the range
over which the earthquake ground motion and structurai response have significant com-

ponents leads to the complete frequency response functions for the modal coordinates.

3.3 Response to Arbitrary Ground Motion |
The response of the tower to arbitrary ground motion can be computed once the fre-

quency response functions )_’j(w), j=12, ..., N, for the modal coordinates have been
obtained from the solution of equation (3.46) for excitation frequencies in the range of
interest. The response time histories of modal coordinates are given by the Fourier integral

as a superposition of responses to individual harmonic components of the ground motion :

1 +0o0

Yj(z)=g j Y () il () "' duw (3.48)

-G

where il g(w) is the Fourier transform of the specified free-field ground acceleration ii,(t) :

d
7 y(w) = ! iig(t) e~ dt (3.49)

‘in which d is the duration of the ground motion. The Fourier integrals in equations (3.48)
and (3.49) are computed in their discrete forms using the Fast Fourier Transform (FFT)
algorithm [6,23]. The lateral displacements and bending slopes of the tower axis are

obtained by superposing modal responses [equation (3.5)]:

N
u(z,t) = 2 ¢,(2) Y;(0) (3.50a)
j=1



33

N
izt) = T ¥,(2) Y;(0) (3.50b)
j=1

The shear force Q(z,t) and bending moment »1(z,?) along the height of the tower can
be determined by the static force-displacement relationship using the cross-sectional

stiffnesses G,k(z)4(z) in shear and E./(z) in bending :

N
Qz,t) = 2 Qu(2) Y,(1) (3.51a)
n=1
N
M) = 3 My2) V(1) (3.51b)
n=1 .
where
Qn(z) = Gs k(Z)A(Z) _diz- ¢n(z) - ‘Pn(z)} : (3523)

M) = B, 1) 2 g, (3.52b)

In equation (3.52), Q,(z) and M,(z) represent the height-wise distribution of shear forces
and bending moments associated with deflections of the tower in the n-th vibration mode
described by lateral displacements ¢,(z} and bending slopes ¥,(z) of the tower axis. Instead
of equation (3.52) which involves the derivatives of mode shape functions ¢,(z) and ¥ ,(z),

the elastic forces can be expressed in terms of the mass of the tower [14]. This leads to :

H,
Onl2) = wp [ my(8) $u8) d (3.53a)
H, H; .
Mu(z) = @) | [ (&~ 2)mye) u(d) db + [ I8) ¥ulf) dt (3.53b)

where w,, 15 the natural frequency of the n-th vibration mode of the fixed-base tower without

water. A complete derivation of equation (3.53) is presented in Appendix B. Once Q,(z)
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and #1,(z) are computed using equation (3.53), then at any instant of time, the shear force

and bending moment at any location along the height can be evaluated from equation (3.51).

In practical applications, it would be necessary to analyze the tower for two com-
ponents of the horizontal ground motion applied along the planes of symmetry.: In that
case, the response of the tower to each component of the ground motion can be computed
individually by the above-mentioned procedure utilizing the tower properties appropriate for
vibration aloné the direction of ‘the ground motion component. The analysis will result in

forces (shears and bending moments) acting in two mutually perpendicular planes.



4. NUMERICAL EVALUATION PROCEDURES

The procedure presented in Chapter 3 to analyze the earthquake response'of intake-
outlet towers requires the evaluation of natural vibration frequencies and mode shapes of
the tower, the foundation impedance functions, and the added hydrodynamic mass and exci-
tation terms in the equations of motion [equation (3.46)]. In this chapter, efficient numeri-
cal solution procedures are developed for evaluating these quantities separately for each of
the four substructures : tower, foundation-soil system, fluid domain surrounding the tower,‘

and the fluid domain contained within the tower.

4.1 Tower Vibration Properties
4.1.1 Eigen Value Problem

The eigen value problem governing the undamped free vibrations of the tower (with
fixed base and no water) can be derived from equation (3.1) by expressing the lateral dis-

placements x#(z,t) due to bending and shear deformations, and bending slopes 4(z,t) along

the height of the tower axis in the following form :
u(z,t) = o(z) ™ (4.1a)
8(z,t} = ¥(z) e™* (4.1b)

which results in two coupled differential equations in two unknown functions, ¢(z) and y(z),
for the deflection curve of the tower axis corresponding to lateral displacements and bending

slopes, respectively [28]:

]
— w? my(z) ¢(z) - % [Gsk(z)A(z) [ %d)(z) - w(z)] . ._= 0 (4.2a)

) d d . Ta. . '
- w" I(z) Y(z) - dz E(z) EHL(Z) } — Gk(2)A(2) g(f)(z) -¥(z)|=0 (4.2b)

35
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in which w is the natural frequency of vibration of the tower; m,(z), I,(z) represent the mass
and rotatory inertia along the height; and Gk(z)A(z), EJ(z) are the cross-sectional

stiffnesses of the tower in pure shear and pure bending, respectively, at a location z above

the base. The boundary conditions associated with equation (4.2) can be expressed in terms

of variables ¢{z} and ¥(z) as follows :

(1} The deflection at the tower base vanishes :

[ #(z) ] =0 (4.32)

(i1) The slope, due to bending only, vanishes at the tower base :

(v ], -0 (4.3b)

(i'ii) The bending moment at the top of the tower vanishes :

d
[Esl(z) W) ] o 0 (4.3¢)
(iv) The shear force at the top of the tower vanishes :
[Gsk(z)A (z) I dié(Z) - l.b(Z)] ‘ =0 (4.3d)
z z=H.,

Equations (4.2) and (4.3) constitute the strong formulation of the eigen value problem.
Its analytical solutions are available only for simple cases, e.g. towers of uniform cross-
section and constant material properties along the height [28]. In order to analyze towers of

arbitrary geometry considered here, a weak formulation of the eigen value problem is
obtained by multiplying equations (4.2a) and (4.2b) respectively by variation functions ¢(z)

and ¥ (z), adding them together, integrating by parts over the height and using the boundary

conditions of equation (4.3). This leads to :
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H;

H, B
lg EI(z) d%@(z) %yb(z) dz + tg Gk (2)A(z) ¥(2) ¥(z) dz

H,
" é Gk L(z) %qb(z) dz

H H,

- [ ke LI ¥ d: - [ GhAE) Fo) Foto) dz

H, H,
= o? £ my(z) $(2) ¢(z) dz + ! 1(2) ¥(2) ¥(2) dz (4.4)

This integral form permits approximate solutions of natural vibration frequencies and mode

shapes by the finite element method.
4.1.2 Finite Element Approximation

The tower structure is idealized by a one-dimensional finite element system with Ng
nodal points. Let ¢;, ¢;,, 1 = 1,2, ..., Ns be the unknown values of functions ¢(z), ¥(z), at
Ng nodal points and Ni(z), i = 1,2, .. ., Ng be the locally supported one-dimensional con-
tinuous interpolation functions of class C corresponding to each nodal point, then the func-

tions ¢(z) and ¢(z) are approximated by :

Ns

¢lz) = 2 Ni(z) ¢; (4.5a)
: i=1
Ns

wz)= 2 Ni(@) ¥ (4.5b)
=1

in which all interpolation functions satisfy the following condition at nodal points to main-

tain the global continuity of functions ¢(z) and ¥(z) :

Nizy =9, 3 ij=12...,Ng (4.6)

where z; represents the coordinate for the j-th node and §;; is the Kronecker delta function.

Corresponding to 2Ng unknowns, namely ¢;’s and y;’s, the 2Ny different set of variation
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functions ¢(z) and ¥ (z) are defined by the Galerkin method [53] :

¢(z) = Ni(2) .
Jz) =0 i=12...,Ng (4.7a)
and
gg; : ?v,(z) i=12 ..., Ng (4.7b)
Let ¢ be a vector of order 2N defined as :
T=lo1,¥1,62.%2..... s » ¥ | (4.8)

then substituting equation (4.5) into equation (4.4), and using equations (4.7a) and (4.7b)
'alternatively for each nodal point to define the variation functions, leads to standard matrix

form of the eigen value problem :
K.¢=0'M ¢ (4.9)

in which K; and M, are the symmetric stiffness and mass matrices, respectively, of order
2Ny x 2Ng. The elements of the stiffness matrix K, are related to the cross-sectional

stiffness properties of the tower and the interpolation functions :

H,
(K )io1j-1 = £ Gsk(2)A(z) — N(Z) N(Z) dz (4.10a)

H, H;
A K )i 05 = g EI(z ) N(z) N(z) dz + ({ Gk (z)A(z) Ni(z) Nj(z) dz (4.10b)

H,

(K212 = - { Gk (2)4(2) = N(z)N(z) dz (4.10¢)
g d

(K aiajo1 = - { Gk (2)4(2) Ni(2) —-N(z) dz (4.10d)
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where'i,j = 1,2, ..., Ng. Similarly, in terms of the cross-sectional inertial properties of the
tower (i.e. mass and rotatory inertia distributions of the tower) and the interpolation func-

tions, the ¢lements of mass matrix M, are:

(M )3i_1,2j-1 = Z mg(z) Ni(z) Ny(z) dz (4.11a)
H
(M)y0; = g I(z) Ni(z) Ni(z) dz (4.11b)
(M )i_12) = (M )yi25.1=0 (4.11¢)
where i,/ = 1,2, . ,Ng. Since N,(z),i = 1,2, ..., Ng are locally supported interpolation

functions, integration in equations (4.10) and (4.11) is not performed over the full height of'
the tower for each term but only over the height of each one-dimensional finite element to
obtain the element stiffness and mass matrices. These element’matrices are assembled by
standard procedures [53] to yield global stiffness and mass matrices, K; and M, respectively.

Many numerical techniques are available to solve the eigen value problem of equation
(4.9). The procedure used here is inverse iteration with Gram-Schmidt orthogonalization to
obtain the first N mode shapes, ¢,,, in vector form, and then compute the corresponding fre-
quency w, from the Rayleigh Quotient [2]. The mode shape functions ¢,(z) and ¢,(z) are
then evaluated from ¢, by equation (4.5), §vhich have the following orthogonality properties
[27]):

H, H,

{ M(2) &p(2) b(z) dz + l LD () dz =0 if @, #w,  (4.122)

H,

g Gk (2)4(z) [ —- n(2) - %(Z)] [Ed;cbm(Z) - %(Z)} dz

H,
é El(z) .p,,(z) ¢,,,(z) dz =0 if w, # w, (4.12b)
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As is well known, it is due to these orthogonality properties that the modal equations for the
tower alone [equation (3.6a)] are not coupled through the generalized mass and stiffness

terms.

The effects of shear deformations and rotatory inertia on the vibration properties of
tower arc examined by evaluating the natural vibration frequencies of circular cylindrical
towers with inside and outside radii ratio equal to 0.8 by two methods, resulting in w, from
the weak formulation of the Timoshenko beam theory and w,, from the analytical solutions
of the classical Euler’s beam theory [[4] which includes only bending deformations and
neglects rotatory inertia. The frequency ratio w,/wp, for circular cylindrical towers is plot-
ted against the avcrage radius-to-tower-height ratio, r,/H,, for the first two natural modes of
vibration of the fixed-base tower withoutdwater (Figure 4.1). These results demonstrate the
well known results that the influence of shear deformations and rotatory inertia on the
vibration frequencies increases for increasing mode number and for decreasing slenderness
ratio, i.e. increasing r,/H;, and that more than three-fourths of the change in frequencies
because of these two effects is due to shear deformations [14,28]. Therefore, in the dynamic
analysis of towers considering only one or two modes of vibration, while the contributions
of shear deformations should be included in the analysis of squat towers, the influence of

rotatory inertia may be neglected.

4.2 Foundation Impedance Functions
4.2.1 System Idealization

The foundation is idealized as a rigid, massless footing of infinitesimal thickness with
shape and size of the actual foundation (F’igure 2.1}. The foundation is supported on the
surface of a linear viscoelastic halfspace, which is idealized as a constant hysteretic solid
characterized by its shear modulus of elasticity, Gy, the mass density, oy, Poisson’s ratio, v/,
and the specific loss factor, AW /W . For a viscoelastic solid in harmonic motion, AW is the

area of the elliptical hysteresis loop in the stress-strain relationship and W is the strain
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Figure 4.1 Effects of Shear Deformations on Natural Frequencies of Circular
Cylindrical Towers
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energy stored in a linear e¢lastic material which is subjected to the same amplitudes of stress
and strain as the viscoelastic material (Figure 4.2). For a linear material AW = 0. For a

constant hysteretic solid, AW/W is independent of the excitation frequency, and can

expressed as

AW
7 =211'17f (413)

where 7, is the damping factor. The effective shear modulus for a constant hysteretic solid

undergoing harmonically varying stresses and strains is

Gp=Gp(1+1iny) (4.14)

Laboratory tests [43] on soils indicate that generally the stress-strain loop 1s not an
ellipse, i.e. soils are not perfect viscoelastic solids, and AW /W is essentially independent of
the vibration frequency but a function of the strain amplitude. In this investigation, it is
presumed that, provided the values of AW /W for the soil and the viscoelastic solid are
taken equal, the viscoelastic model considered adequately simulates the actual behavior of

soils.

Under these assumptions, the impedance functions Kpjp{w), Kys{w) and Ky (w)
[Kpyrp(w) = Kpp(w) by reciprocity theorem], which appear in the equations of motion for
tower-water-foundation-soil system [equation {3.46)], are obtained from the solution of two
boundary value problems for a viscoelastic halfspace, arising from the application of a har-
monic horizontal force and a harmonic moment separately to the rigid foundation. These
solutions can be obtained by the application of the correspondence principle [5] to analytical
approximations of numerically obtained solutions for the corresponding elastic problem
[47]). This approach may be used if (i) the solutions of the impedance functions for the
corresponding elastic f)roblem are available, and (ii) they do not fluctuate strongly with fre-
quency, thus permitting analytical approximations. Numerical values of the impedance

functions have been reported for circular and rectangular foundations supported on the
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[47))
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surface of an elastic halfspace [48,51]. For other foundation geometries, the impedance
functions can be obtained by discrete methods [50]. Utilizing the procedures of Reference
[47], the impedance functions are derived next for a circular foundation supported on the

surface of a viscoelastic halfspace.
4.2.2 Circular Foundation on Elastic Halfspace

The impedance functions for a rigid circular foundation supported on the surface of an

elastic halfspace can be represented in the following form :

Kyp(w) = [ kpylapvy) + 1 ay cpplagrs) 1 K, (4.15a)
King(w) = [ kpppalapvg) + 0 ap cypelap v} 1 K (4.15b)
Kym(w) = [ kiprlarvp) + 1 ap cpp(apvp) 1 Ky 1y (4.15¢)

in which k’s and ¢’s are the dimensionless real-valued coeflicients that depend on Poisson’s

ratio v, and the frequency parameter :

wrf

ar = C5 (416)

where r, is the radius of the foundation, and C, = V(G;/p;) is the shear wave velocity in
the halfspace. In equation (4.15), the symbols K, and K, represent the static stiffness of the

foundation in horizontal and rotational directions; they are defined as :

8 Gf Fr
Kx" (_Z_Tf)- (4.17&)

SGfr}

K, = T (4.17b)

The real parts of the impedance functions represent force components in phase with the dis-
placements, and may be therefore be interpreted as dynamic stiffness coefficients for the
foundation-soil system. The imaginary parts, on the other hand, are force components in

phase with the velocities and when positive, are indicative of energy dissipation by radiation
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of waves away from the foundation into the halfspace, and may therefore be interpreted as

damping coefficients.

The coefficients kypy, cpy, kyar and ¢y, which appear in-equation (4.15) have been
obtained by solving the two boundary value problems mentioned above and tabulated [48].
In the present investigation, these coefficients are approximated by the following semi-

cmpirical expressions [47] :

[v2a,F 5
-y —L 4.1
kyylagvy) Y1 T+ [z as I Y3 4y (4.18a)
[ vz ar 1P
cypl@rvs) = v4 + 71 72 I:%f—af? (4.18h)
2
kusrlapop ~ | - 5 —L24 Y o (4.192)
MM f!f"‘" 11+[ﬁ2af]2 1&r .
[Bra; P
Camla@rvr) = Bs + B B2 W (4.19b)
| 2

where v; and 3; are numerical coefficients which depend on Poisson’s ratio, vr. An iterative
numerical scheme was used to determine these coefficients in order for the semi-empirical
expressions to provide a "best" fit to the "exact” data.

The numerical values of impedance functions for an elastic halfspace presented in
Reference [48] are used in this investigation as "exact” data to evaluate coefficients v, and
B;. The resulting coefficients presented in Table 4.1 differ from those originally suggested in
Reference [47]. The stiffness coefficients &y, kp,s and damping coefficients ¢y and ¢y,
evaluated from equations (4.18) and (4.19) using two sets of numerical values for coefficients
v; and 8;, one from Table 4.1 and the other from Reference [47], are presented in Figure 4.3
along with their "exact” values [48]. It is apparent that the coefficients of Table 4.1 are
preferable to those of Reference [47] as the former provide a better approximation. ‘Since

the coupling terms ks and ¢y show strong fluctuations with frequency [48], they are not
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Quantity Vf=0 br= 1/3 Vf=0.45 V= 1/2
Y1 0.19 (0.00)" 0.16 (0.00) 0.06 (0.00) 0.00 (0.00)
¥2 0.44 (0.00) 0.44 (0.00) 0.16 (0.00) 0.00 (0.00)
v3 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Ya 0.70 (0.775) 0.59 (0.65) 0.59 (0.60) 0.59 (0.60)
B 0.72 (0.525) 0.69 (0.50) 0.53(0.45) 0.40 (0.40)
B, 0.60 (0.80) 0.60 (0.80) 0.73 (0.80) 0.78 (0.80)
B3 -0.003 (0.00) -0.001 (0.00) 0.020 (0.00) 0.029 (0.00)
B4 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

* Values in () are from Reference [47]
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approximated by expressions like equation (4.18) or (4.19).
4.2.3 Circular Foundation on Viscoelastic Halfspace

The impedance functions for the foundation on a viscoelastic halfspace are determined
from equation (4.15) by application of the correspondence principle [5] merely by replacing
the real-valued shear modulus G, by the complex modulus éf. Implicit in this statement is
the assﬁmption that Poisson’s ratio for the viscoelastic material is a real-valued quantity
equal to that for the material in the corresponding elastic problem. It should be noted that
G enters in equation (4.15) both directly in the expressions for a;, K, and Kj [equations

(4.16) and (4.17)], and indirectly, through the dependence of k’s and ¢’s on a, [ equations

(4.18) and (4.19)]. Application of the correspondence principle to equation (4.15) leads to :

Kyp(w) = [ kypldrwp) + i dp cpldpry) ) Ky (4.202)
Ky (@) = [ kapar(@ps) + i @5 capa(Gpr) 1 Ky (4.20b)
Kyp(w) = [ kypg(@rvs) + 0 d5 cypl@rw) 1 Ky 1y (4.20c)

where
Ke=K. (1+ins)
Ky=Ky(1+ing) (4.21)

dr=as/ VI +ing

Equations (4.20a) and (4.20b) can be evaluated directly by substituting equétions (4.18) and
(4.19) with a; replaced by d;. Since analytical expressions are not available for the coupling
terms, the numerically obtained values of corresponding elastic problem [48] are used

directly for the viscoelastic problem :
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kys(arws) = kyy(ag,vr) (4.22a)
cymldry) = cyplasvy) (4.22b)

The errors introduced due to this approxirﬁation should be negligible for most engineering
purposes because the coupling terms are relatively small and usually not even considered
[46].

Using equations (4.18) to (4.22) and separating the real and imaginary parts, equation
(4.20) which defines the impedance functions for viscoelastic halfspace can be rewritten in

the following form :

Kyp(w) = [ kpy + 1 ap ey 1 Ky (4.23a)
Ky (@) = [ ks + 1 a5 cipn 1 Ky (4.23b)
KVM(QJ) = [k;M +1 aj' C{/M ]Kx rf (423C)

where ks and ¢"’s are real-valued functions of ay, v,, and n, and the v superscript refers to
viscoelastic problem. For fixed values of Poisson’s ratio », and hysteretic damping constant

77, comparison of equation (4.23a) to equation (4.20a) after substitution of equation (4.18)

yields the following expressions for Ay and ¢}y ¢

R + ViA(R-1 2
ki =1 - iR+ 2,( ) (may) 1¢ ,Y?af) - ‘/m Y4 ay - 73 af (4.24a)
R + 2 VIR 1) (vaap) + (valty
VIR +1 : '
= VYRR D) yq + Y1 y2 V2R +1D) (vaar) L (4.24b)

R+ 2VH(R-1) (vaap) + (vaas B &

where R = VI + n}. Similarly, comparison of equation (4.23b) to equation (4.20b) after

substitution of equation (4.19) leads to the following expressions for ky,, and cjyyy :
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B[R+ Vl/z(R—l)(ﬁzaf)](ﬁzaf )2
i = 1 - V(R -1) By ay - B a} |
o R + 2 VAR 1) (Baay) + ( Baa; ) (R=1) By ay = 83 4 (4.252)

Vi 2
v \/mm . B By VA(R+1) (Bray) N K7

_ 4.25b
R+ 2VWB(R-1)(Ba)) + (Baas )} ar ( )

M =

and comparison of equation (4.23c) to equation (4.20c) gives the following expressions for

the coupling terms &}, and ¢}y E

kiang = kyye — ap VAR -1) cppy . (4.26a)
ay = VAR 41) eppp + gi Kyus (4.26b)
’ f

Equation (4.26) is limited in the sense that it provides kj,, and ¢}y, for only those values of

ay for which kyy, and ¢y, are available. Therefore, linear interpolation should be used for

other values of a,. For vy = 1/3, the functions k{v, cpy, Kins, Cha, Avar and cjns have
been evaluated over a range of frequency parameter a, for various values of hysteretic
damping coefficient 7, (Figure 4.4).

4.2.4 General Foundations

The analytical procedure presented in Chapter 3 is applicable to towers of arbitrary
. cross-section with surface suppoﬁed or embedded foundations of general shape supported
on a homogeneous or.non-homogeneous viscoelastic halfspace. Solutions to two boundary
value problems for the halfspace, arising from the application of a harmonic horizontal force
and a harmonic moment applied separately to the mat foundation, are required to define the
impedance functions Ky (w), Kys{w) and Ky (w), which appear in the equations of motion
for the tower [equation (3.46)}. Such solutions were obtained for a circular foundation sup-
ported on the surface of a viscoelastic halfspace, as described in Sections 4.2.2 and 4.2.3.

Using available procedures, the impedance functions may be determined for surface-
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supported or embedded foundations of arbitrary éhape [3,42,50], and utilized in the com-

puter program implementing the tower analysis procedure.

However, the present version of the computer program includes an approximate treat-
ment of non-circular foundations supported on the surface of a viscoelastic halfspace. This
approach is, in part, based on ATC-3 design recommendations for buildings [55] and is
expected to be accurate enough for many practical applications. The information for circu-
lar foundations presented in Sections 4.2.2 and 4.2.3, incorporated in the computer pro-

gram, is applied to mat foundations of arbitrary shapes with the following changes :

1. The radius 7, in the expressions for K and a, that enters in equations (4.15a) and

(4.15¢c} is replaced by the quantity :

Ty = — (4.27a)

which represents the radius of a circular foundation that has the area, A;, of the

actual foundation.

2. The radius r, in the expressions for K, and a, that enters in equation (4.15b) is

replaced by the quantity :

1
a1+
re = [ o ]4 (4.27b)

kL

which represeni:s the radius of a circular foundation that has the moment of iner-
tia 1, of the actual foundation. It is of interest to note that for nearly square foun-

dations, r, = rg.
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4.3 Hydrodynamic Solutions for Surrounding Water

4.3.1 Boundary Value Problems

The hydrodynamic lateral forces f§(z) and = external moments #5(z),

8 =012, ..., N,,r, associated with the hydrodynamic pressures pg(f ) acting on the out-
side surface of the tower [equation (3.29)] enter into the equations of motion in the frequen-

¢y domain [equation (3.46)] through added hydrodynamic mass and excitation terms. As

mentioned in Section 3.2.4, pf}(“x’) are solutions of the three-dimensional Laplace equation:

2.0 2.0 2,0 .
Z

for the N +2 sets of boundary conditions given by equation (3.25) for p§(X) [ or pf(X), since
PR(X) = p§(X) ], by equation (3.26) for p%X), j = 1,2,...,N, and by equation (3.27) for

p%(X). These boundary conditions can be collectively written in generalized form :

630 PE) = - oy a2F) X eT9 (4.292)
3 = Pw br?(f) X e ) A
9 oy _ - o
per )= 1o otherwise x eI (4.290)
p°(X)=0 X eT9 (4.29¢)

in which a2(X) represents the spatial distribution of the acceleration of the tower-water
interface T along its normal direction n%; function h2(X) represents the distribution of vert-
ical acceleration on the exposed surface I'Y of the footing, which is also a part of réservoir
bottom, I'}; and I'? defines the free surface of water. The boundary conditions of equation

(4.29) are equivalent to equations (3.25), (3.26) and (3.27) if the functions a2(X) and b2(xX)
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are defined by equations (4.30), (4.31) and (4.32), respectively :

ad(xX) = nd(x) X eIY (4.30a)

b)Y = 0 X €Ty (4.30b)

aF) = n9@) b,(2) - x 2@ g z) X €Ty (@31a)
boR) = 0 X eI? © (4.31b)

aggf) = Ini’(f) z — x niX) X eIY (4.32a)
bAF) = - x X eI (4.32b)

where n%(X) and n2(X) are the direction cosines of the normal at a point X on the tower-
water interface with respect to x and z axes, respectively; and functions ¢;(z) and ¢¥;(z)
characterize the shape of the deflection curve of the tower in the j-th mode of vibration. In
addition to the boundary conditions of equation {4.29), the pressure function p°(X) should
remain bounded at all distances in the radial direction of the fluid domain which 1s assumed

to extend to infinity.
The symmetry of the tower geometry about the vertical plane I'Y (Figure 3.4) along
which the horizontal ground motion is applied leads to an additional requirement : '

3 o -
Ep"(x) =0 x eI? (4.33)

‘Similarly, the symmetry of tower geometry about the vertical plane I'J (Figure 3.4) in the

direction normal to the applied ground motion requires that :

p°(X) =0 X eI¢ (4.34)
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Equation (4.28) together with appropriate boundary conditions at various boundaries -~
the tower-water iﬁterface [equation (4.29a)], the reservoir bottom [equation (4.29b)] and the
free surface of water [equation (4.29¢)] -- define the complete boundary value problem for
the surrounding water domain. The symmetry and antisymmetry conditions of equations

(4.33) and (4.34) only restrict the form of possible solutions.

4.3.2 General Solution

If there is no vertical acceleration of the reservoir bottom [i.e. XX ) = 0], the general
solution p%(X) of the three-dimensional Laplace equation in cvlindrical co-ordinates

X = (r,z,0) for the surrounding water domain subject to the boundary conditions of equa-

tions (4.29b), (4.29¢), (4.33) and (4.34) is of the form:

[N/E

PG = T E Ay Koot (anr/Hy) cos@n— 1) cos(az/H,) (4.39)
L n=1

m

where a,, = (2m-1) = / 2, H, represents the depth of the surrounding water, and X, is the
modified Bessel function of order n of the second kind. The unknown coefficients 4,,, are
determined to satisfy the boundary condition at the tower-water interface [equation (4.29a)].
This boundary condition and the geometry of the tower dictate the choice of procedure to be

used in evaluating the coefficients A,,,,.

o

These coefficients have been analytically evaluated for circular-cylindrical towers
[33,40] using the orthogonality of cos(2n-1)8 cos{w,, z/H, ) functions over the tower sur-
face. However, it is usually necessary to use numerical methods in order to evaluate these
coeflicients if the geometry of the tower is more complex or if the effects of the vertical
acceleration of the reservoir bottom are to be considered. Using boundary integral pro-
cedures [25] directly on the tower-water interface involves rapidly changing behavior of
Bessel functions for small r/H, values [1] resulting in poor convergence of the series solu-
tion. On the other hand, the conventional finite element method which gives directly the

hydrodynamic pressure functions instead of the coefficients in equation (4.33), would
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involve a large number of elements and excessive computational requirements, and even
then, the complete fluid domain may not be modeled accurately [54]. To overcome these
difficulties, the idea of combining numerical and analytical methods [7,24,52], known as
mixed approach, is adopted here with some modifications while maintaining the symmetry
of matrices. The method presented is similar, in principle, to the method presented for the
analysis of two-dimensional harbor oscillations [7] but is developed specially for the three-
dimensional hydrodynamic analy.sis of symmetric intake-outlet towers. A variational princi-
ple is derived which makes it possible to localize the numerical computations within a small
region of the fluid domain and gives directly the values of hydrodynamic pressure on the

outside surface of the tower and on the exposed surface of the footing.
4.3.3 The Variational Principle

Let the surrounding-water domain % be divided into two sub-domains 74 and 7% by
the hypothetical circular-cylindrical surface I'? which has radius 7, and contains the tower as

well as the portion I'? of the reservoir bottom which may undergo vertical acceleration (Fig-
ure 4.5). The choice of a cylindrical surface is advantageous because it allows the use of

general analytical solutions given in equation (4.35) as the set of trial functions for the boun-

dary integral procedure for domain r%. Because the radius r,. of this hypothetical surface I'?
B ¢ ¢

can be made reasonably small and the tower plan has two axes of symmetry, only a very
small portion of the fluid domain 74 need be discretized into finite elements (Figure 4.5).

The hydrodynamic pressure in domain 7% is represented by the linear combination of trial

functions of equation (4.35) with unknown coefficients which must be determined by match-

ing it with the pressure and pressure gradient in 7§ along I':

pi(xX) = ps(x) X el? (4.36a)
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)

pix) = P3(x) X eI (4.36b)

an§ ang

where ng represents the unit normal to the surface I' pointing outward from region 7%; and
P9, pp represent the values of hydrodynamic pressure in regions 7§ and r% respectively.

Due to the special structure of pj, the infinite extent of the fluid domain is exactly

represented in this formulation.

According to the well known Euler’s theorem [37], the function p°(X¥) which minimizes

the functional :

I 1 opg
H(p):Epr-Vpdf+5pr'VPdT+)L [p§ - p§1dr
% 74 ¢ ang

- P ‘[ pg a3 (X)dT - p, 1[ p§ by (X)dr (4.37)
satisfies equation (4.28) and boundary conditions of equations (4.29), (4.33), and (4.34).
The first two terms defined as volume integrals represent the potential energy of the sub-
domains 7§ and r% respectively. The third surface integral term in this functional is a con-
straint to match the pressure and its gradient across the hypothetical surface I'?. The last

two terms defined as surface integrals on the tower-water interface I'Y and on the portion of

reservoir bottom inside the hypothetical cylinder, T'9, produce forcing terms.

The application of Green’s identity to the second integral of equation {4.37) with

appropriate boundary conditions for 7% leads to :

op§

%J’Vp-Vp dr = ‘Lpﬁ [ - 1dT (4.38)

% ang
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Substitution of equation (4.38) into equation (4.37) and further simplification of terms lead

to the following localized functional:

an? ap$
i ]dr+leg[- P5 14t

| I
Np) =~ [ VoVpdr+ 3 Lpﬂ [
] anj ong

]

- pwl[]pz al (X)dT - pwipﬁ b (X)dT (4.39)

Thus, with p§ restricted to the form of equation (4.35), no numerical calculation is required
beyond the hypothetical surface T', in contrast to the conventional variational principle

which would involve only the first integral with 74 extending to infinity and the last two sur-

face integral terms. The function p?(X) which renders this localized functional stationary,
satisfies the governing equation for hydrodynamic pressure (equation 4.28), the associated
boundary conditions of equations (4.29), (4.33), (4.34),"and the required constraint of equa-

tion (4.36) [Appendix C]. The numerical procedure developed to evaluate the pressure func-
tion p%(X) is presented next.
4.3.4 Finite Element Approximation

The hydrodynamic pressure on the tower surface is numerically evaluated by minimiz-

ing the functional of equation (4.39). For this purpose, the fluid domain 7§ is idealized as

an assemblage of three-dimensional finite elements with N, nodal points and consequently,

the surfaces I'Y, T'Y and TI'g get discretized into a number of subdivisions as shown in Figure

45 Llet p;,i=12,...,N, be the unknown pressures at the N, nodal points and

N(X)i=12 ..., N4 be the locally-supported continuous interpolation functions of class

Cy corresponding to each nodal point, then the pressures in domain 7§ are approximated by
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N4
pixX) =3 NX) p; X €74 (4.40)
i=1

in which all interpolation functions satisfy the following condition at nodal peints to main-
tain the global continuity of pressure function p, in domain 74:
N,—(fj) =d&; 5 I,j=12,...,N, (4.41)

where X ; represents  the coordinate for the j-th node in domain 7§ and 6;; is the Kronecker

delta function.

Similarly, the pressures in domain 7% are represented by the linear combination of the

first Np normalized functions in the general solution [equation (4.35)] :

N
p3(x¥) = 2 M) g, X erh (4.42)
i=1 '

in which ¢;’s are the unknown coefficients and in cylindrical co-ordinates, M, (X) are

defined as:
—- Kap-y (apr/Hy)
Mi(x) = cos(2n-1)6 cos{e,,z/H 4.43
) = R Ty Cos2n= 10 cos(az/H,) (4.43)
where m=1,2, ... M, ; n=12, ... Ny ; Npg=M,xN, ; i=(n-1)M,+m ; M, and N, are

the number of terms included in the first and second series, respectively, in equation (4.35).

Due to the cylindrical geometry of the hypothetical surface T'?, its outward normal always

satisfies the following equation :

d

-9 along T? {4.44)
o af’ L
GnA

Therefore, due to the special structure of M;(X), the pressures p§(X) and their gradients on

surface I'? can be represented in the following form using equation (4.44) and substituting



61

r = r. in equation (4.43) :

Npg

rp(X)y =3 MIX)q X el? (4.45)
i=1 .
3 R
)= 3 B, MFG) g, X eT? (4.46)
ong =t

in which functions M,[(X) and constants B, are defined as :

MFX) = cos(2n-1)8 cos(e,,z/H,) | (4.47)

‘ 1 aym Kyflapre/Hy) + Kap_olaywr./Hg)
B,g = - = 448
2 Ho KZn—](amrc/Ho) ( )

where m=1,2, ... . M, ; n=12,.. ., Ny ;Np = M,xNy ; i=(n-1)M,+m.
Substitution of equations (4.40), (4.45), and (4.46) into equation (4.39) leads to a func-
tional in vectors p and g containing the unknowns p;, i =12,... Ny, and g,

i =1,2,...,Ng, respectively:

1 1 1 .
(p.q) = T p'K;p + 0 g Ky q + 3 [p"K;qa+q¢"'Kipl-p70r - PTQy (4.49)

in which K; is N, x N, symmetric matrix with its jk-element given by :

(K )i = | INEYINGR ) dr 5 jk=12, . Ny (4.50)

The zero pressure boundary condition on surfaces I' and Ty is satisfied by assigning zeros

to the rows and columns in the matrix K; corresponding to the nodes on these surfaces.

Since M, i=1,2, ..., Ny is a set of orthogonal functions on surface I'?, the matrix Kj; in

equation {4.49) is a diagonal matrix of order Ng with its jj-element given by :
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(K ), = B t[QMfo?)-M,—“(Bc’)a’F . j=1,2, ..., Ny (4.51)

/ ,
If the nodal points in the finite element mesh for domain 7% are numbered in a special way,

assigning the first N+ numbers to the tower-water interface and the last N~ numbers to the
hypothetical surface between domains 74 and =%, the matrix Kj; defining the coupling

between the pressures in domains 75 and 7% is of size N-xNp and its jk-element is given by

(Kyp)jx = - BkLNj(}’)-M,{(Sc’)dr . j=Ny4=Ng+l, ... N4 5 k=12 .., Np (4.52)

The vectors Q; and @;; appearing in the functional [equation (4.49)] are of order N, and

their j-th terms are given by :

(Q,)j=LNj(3c’)-ag(5c’)dr s j=1,2,...,N, , (4.53)

(Q,,),-:LN,(SE)‘b,?(}’)dr coj=12,..., Ny (4.54)

]

In vector Q;, only first N terms are non-zero which correspond to the nodes on the tower-
water interface. Similarly, in matrix @;; only those terms which correspond to the nodes on

the exposed portion of the foundation footing surface in contact with water are non-zero.

Only matrix Kj; can be evaluated analytically and, therefore, all other matrices are
estimated by numerical integration. Since the interpolation functions N;(X), i=1,2, ..., N,
are locally supported, integration is not performed over the full domain or the entire surface

for each element of these matrices. The domain 79 is discretized into volume elements and

surfaces I'?, T'? and I'? into surface elements. Integration in equations (4.50) to (4.54) is
done at the element level and the element matrices are assembled by standard procedures

[53].
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Returning 1o equation (4.49), stationarity of the functional [I(p,q) implies :

dll . :

Ao . i=12.. . N (4.55a)
ap; § :

dll .

—_— 0 ; l= 1,2’ Ve ey N (4.55b)
a%’ g

which leads to a system of linear algebraic equations
Kr=0 | (4.56)
in Ngy + Ny unknowns :
rf=1p", 4" 1=(p1p2 - DN, > 102 - - - an, ) (4.57)

The structure of matrix K and vector Q is shown in Figure 4.6. These equations can be

condensed to give :

K,p=0, (4.58)

where
K, = K; - Ky K/ K} (4.59a)
Q, =0+ 0y (4.59b)

The unknown hydrodynamic pressure vector p is evaluated by solving these simultane-

ou’s equations and its analytical representation p°(X) is then estimated by using equation
(4.40), the symmetric properties of pressure functions along surface I'Y, and the anti-
symmetric properties along surface I';. This analysis procedure is repeated N+2 times to
evaluate the complete set of pressure functions pg(f), 8=0,12 ..., N,h,r, using different

values of functions a2(X) and #2(X) given by equations (4.30) to (4.32). Once the pressures

ar¢ known, the height-wise distributions of resultant hydrodynamic lateral forces and
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moments are evaluated by integrating the components of thes¢ pressures along the perimeter

of the outside surface of the tower using equation (3.29).

4.3.5 Semi-Analytical Process for Axisymmetric Towers

kS

The finite element approximation within sub-domain 7% coupled to the continuum

solution for domain r% through the boundary integral procedures has been shown in the
preceding sections to be capable of solving the Laplace equation over three-dimensional
fluid domains exterior to a tower. This general procedure can be simplified for axisym-
metric towers because spatially-varying surface motions of axisymmetric towers can be
expressed as a Fourier series in the circumferential coordinate ¢, and therefore, the ortho-
gonality of trigonometric functions can be exploited to replace the three-dimensional prob-
lem by a series of uncoupled two-dimensional problems. The complete solution then is the

superposition of all the two-dimensional solutions.

For axisymmetric towers, the direction cosines of the outward normal to the tower-
water interface at a point X -- n%(X) with respect to the horizontal direction of excitation
and nd(X) with respect to the vertical direction along the height -- can be represented in
terms of their corresponding functions #%(r,z) and 72(r,z) defined along the surface of the
tower in the r-z plane at =0 :

nUX) = 9(r,z) cosb (4.60a)

ni(X) = nl(r,z) - (4.60b)

Using this geometric property, the linear structure of the boundary conditions [equation

(4.29)], and the relationship x = ¥ cosf between the cartesian and cylindrical coordinate sys-
tems, the distributions of acceleration g2(X) on the tower-water interface and »2(X) on the

reservoir bottom can be redefined in terms of their corresponding functions &5(r,z) and
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b 2(r,z) evaluated along the surface of the tower in the r-z plane at =0 i.e.
al(X) = al(r,z) cost (4.61a) -

boAX) = b2r,z) cosh {4.61b)

Because of the orthogonality of trigonometric functions, the hydrodynamic pressures associ-
ated with acceleration distributions of equation (4.61) also vary as cos# in the circumferen-

tial direction i.e.
p°X) = p°r,z) cosf ‘ (4.62)

Thus only the first term in both the Fourier expansions of tower-surface acceleration and
reservoir bottom acceleration are relevant for the analysis at hand [32,34], and only one

two-dimensional problem need be solved.

To obtain the hydrodynamic pressures in the form of equation (4.62), the functions

p3(X) and p%(3) must also vary as cosf :

TN
pq(X) = p3(r,z) cosd = 3, N;(r,z) cost p, (4.63)
i=1
Ng
p3(X) = pi(r,z) cosh = 3, M, (r,z) cost g; (4.64)
: i=1
where
Mr) = | e 15 o a 2/H) ¢ =12, N (4.65)
) = o; = P ey -
o K (e 1/ Ho) Pl e ?
In equation (4.63), N,(r,z), i=1,2,...,N, are the two-dimensional interpolation functions

in the r-z plane and M, (r,z) cosé equals M,(X) in equation (4.43) for m=i and n=1,
Substitution of equations (4.61), (4.63), and (4.64) into the functional of equation

(4.39) and integration along 6 direction leads to a two dimensional functional in the r-z
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plane:

_1 op dp  9p dp 11
H(p)_Z‘L[ar 6r+62 ag]rdra’z+2Jg rppdrdz

I [ _, | P8 _, | 9%
+2]Lp3 o rd; Lp,{ = r dz

= pw { pg ayrz)rdA - p, 1 P9 bor.z)r dA

(4.66)

wherein the area domains Qj’,‘ and Q% in the r-z plane appear instead of the volume

domains 7% and 7% in equation (4.39), and the contours Ay , A? and A9 in the r—z plane

appear instead of the surface domains I'? , T'? and I’ (Figure 4.7).

Applying the numerical procedure presented in Section 4.3.4 to axisymmetric fluid

domains [see Appendix D for details], the functional of equation (4.66) can be minimized to

obtain p°(r,z). The procedure is implemented for the N+2 different distributions of

acceleration on the tower-water interface and the reservoir bottom [equations (4.30) to

(4.32))], specialized for axisymmetric towers through equation {(4.61) :

aore) = AUrE) () e A
Forz) =0  (r,2) A2
30,2 = AT 85(2) - P AALD YD) (D) e A
Forz) =0  (r)e Al
Zor2) = BRI 7 - RARE) () € A7

boArzy=-r (r,z) e AS

(4.67a)
(4.67b)
(4.68a)
(4.68b)
(4.692)

(4.69b)
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This would result in the complete set of pressure functions pg(r.,z), 8 = 0,1,2, ... ,N,hr.
The resultant lateral hydrodynamic force and moments per unit of height, acting on the
tower surface in the vertical plane of ground motion, are then evaluated by a special case of

equation (3.29) which is obtained by utilizing equation (4.62):
f8(z) = [r r fix(r,z) pa(r.z) ] r=roz) (4.70a)

mg(z) = [1r rt al(r,z) pa(r.z) ] rerzy = T 8(2) [ r [ﬁg(r,z) ] s_p Ar (4.70b)

where r,(z) defines the radius-of the outside surface at a location z along the height.

By exploiting the orthogonality of trigonometric functions along with the geometric
properties of axisymmetric towers, what was originally a three-dimensional problem has now
been transformed to a two-dimensional one and, consequently, the computational éﬂ"ort i$
substantially reduced.

4.3.6 Evaluation of the Procedure

Convergence -- The computational effort required for an accurate representation of the

hydrodynamic pressure p% in domain r% is directly proportional to M, and N, the number
of terms to be included in equation (4.35) corresponding to cos(«,,z/H,) and cos(2n—1)6
functions, respectively. Therefore, it is necessary to establish the smallest values for M, and

N, sufficient to achieve the desired degree of accuracy.

The smallest value of A, that yields sufficiently accurate results can be estimated by
analyzing an axisymmetric tower for increasing values of M. An axisymmetric tower is
chosen because, as shown in Section 4.3.5, only the A, = 1 term 1s necessary in equation

{4.35) which makes it convenient to evaluate the dependence on AM_. The axisymmetric
finite element system used to discretize the subdomain 9 to determine the lateral hydro-

dynamic force f§(z) is presented in Figure 4.8. Determined by the procedure of Section
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4.3.5, the results are also summarized in Figure 4.8 for a rigid, tapered axisymmetric tower -
[with H,/r,(0) = 5 and r,(0)/r,(H,) = 2] subjected to unit harmonic, horizontal ground
acceleration for different values of M,. It is apparent that M, > 3 is sufficient for accurate

results.

In order to estimate N,, the number of circumferential functions necessary to obtain

accurate results, the lateral hydrodynamic force f§(z) on a rigid, uniform tower of non-
circular cross-section subjected to unit harmonic, horizontal ground acceleration has been

computed by the procedure of Section 4.3.4 using M, = 12 and different values of N,. By
- discretizing the subdomain 79§ with the finite element system shown in Figure 4.9, the

height-wise distribution of lateral hydrodynamic force f§(z) ié obtained by using various
values of Ny The results presented for a tower with H,/b,= 10 indicate that analysis using
Ny = 2 provides suﬂiéient]y accurate results. Conservative values of M, = 12 and N, = 6 are
used for all subsequent analyses so that the results are sufficiently accurate for all flexible

towers of arbitrary geometries.

Accuracy -- The accuracy of the ﬁnife element method coupled with the boundary integral
procedures presented in Sections 4.3.4 and 4.3.5 is demonstrated by comparing the numeri-
cal results from this approach with the analytical, infinite series solution for circular cylindr-
ical towers [32,33]. The fluid domain exterior to a rigid circular cylinder subjected to unit
harmonic, horizontal ground acceleration can be numerically analyzed by solving (i) a two-
dimensional axisymmetric problem by the methods of Section 4.3.5, or (ii) a general three-

dimensional problem by the methods of Sections 4.3.3 and 4.3.4. It is apparent from Figure
4.10, wherein the finite element idealizations of subdomains 74 in each case are also shown,

that the two sets of numerical results for the distribution of lateral hydrodynamic force f§(z)
are essentially identical to analytical results. Therefore, the hydrodynamic analysis pro-

cedures presented in Sections 4.3.3 to 4.3.5 will lead to accurate values for the
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'hydrodynamic terms required in equation (3.46) for earthquake analysis of towers.

Efficiency -- In the conventional finite element method (FEM), the subdomain 7§ (Figure

4.5) would not exist and the subdomain 7§ must extend far enough to obtain an accurate

representation of the unbounded fluid domain with the pressure gradient assumed to be zero

at the outside surface I'? of the subdomain 7§ [34]. In order to compare the computational
effort required by conventional 15EM and the procedure presented in Sections 4.3.3 to 4.3.5,
a rigid, tapered, axisymmetric tower subjected to unit harmonic, horizontal ground accelera-
tion has been analyzed by both methods. The conventional finite element analysis is
repeated for several values of the radial dimension r. of the finite element system, character-
ized by the ratio r./r, where r, represents the radius of the outside surface of the tower at

the base. It is apparent from the numerical results (Figure 4.11) for the lateral hydro-

dynamic force f§(z) that, in order to obtain accurate results by the conventional FEM, the

dimension 7, of the finite element system should exceed 8r,. On the other hand, accurate

results are obtained by the procedure presented in Section 4.3.5 using a finite element sys-

tem with 7. = 1.5 r, coupled with boundary integral procedures for the subdomain 7%.- The
CPU time required on an IBM 3090 main-frame computer in the conventional FEM with
r. = 8 r, is approximately three times of what is required in the coupled finite element-

boundary integral procedure, a comparison that demonstrates the efficiency of the latter.

4.4 Hydrodynamic Solutions for Inside Water
4.4.1 Boundary Value Problems

Similar to the analysis for surrounding water domain, the hydrodynamic lateral forces
f jg (z) and external moments mé(z), 8=0,1.2 ..., N,h,r, associated with the hydro-

dynamic pressures p’é (X) acting on the inside surface of the tower [equation (3.44)] enter

into the equations of motion in frequency domain [equation (3.46)] through the added

-~
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hydrodynamic mass and excitation terms. As mentioned in Section 325, pé, (X) are solu-
tions of the three-dimensional Laplace equation:

azp!' . azpi azpf

+ =0 4.71
ax? ay? 8z .71

subjected to the N +2 sets of boundary conditions collectively written in a generalized form:

2P = - palF) X e (4.722)
6 = i - i

27 (X) = = py bu(x) x eI (4.72Db)

pi(xX)=0 X eTh (4.72¢)

in which a’(X) represents the spatial distribution of the acceleration of the tower water
interface, I, along its normal direction, n’ ; function »i(X) represents the distribution of
vertical acceleration of the reservoir bottom, I‘f,; and I‘} defines the free surface of water.
The boundary conditions of equation (4.72) apply to pj(X) [or pj(X) since p§(X) = pj(F)],

pi(X), and pi(X) if the functions ai(¥) and bi(¥) are defined by equations (4.73), (4.74) and

(4.75), respectively :

al(X) = nt(@) X el¥ (4.73a)
BiZ)Y=0 X el (4.73b)
an(X) = m(x) ¢;(z) - x ni(xX) ¥;(2) X €Ty (4.74a)

biX) =0 X eTh (4.74b)
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al(xX) = n}(f) z - x nix) X eIt (4.75a)
biX) = - x X el (4.75b)

in which nf;()*c' ) and né(f ) are the direction cosines of the normal at a point X on the tower-
water interface with respect to x and z axes respectively ; and functions ¢;(z) and y;(z)
characterize the shape of the deflection curve of the tower in the j-th mode of vibration. In

addition to the boundary conditions of equation (4.72), the symmetry of the tower geometry
about the vertical plane I‘f;, along which the horizontal ground motion is applied, and about
the vertical plane T%, in the direction normal to the applied ground motion (Figure 3.5)
results in two additional requirements :

%pj(f) -0 YT (4.76)

P'@)=0 X eI ‘ (4.77)
If there is no vertical acceleration of the bottom boundary of the inside water domain

[i.e. bi(X) # 0], the hydrodynamic pressure functions p;(X') for circular cylindrical towers

can be obtained from available analytical solutions [29,40]. However, it is usually necessary

to use numerical methods in order to evaluate p} (¥ ) if the geometry of the tower is more
complex or if the effects of the vertical acceleration of the bottom boundary of the inside
water domain are to be considered. For a bounded water domain inside a tower of arbitrary
geometry, a numerical procedure based on the variational principle and conventional finite
element method is presented next which gives directly the hydrodynamic pressures on the

tower-water interface and on the inside reservoir bottom.
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4.4.2 Finite Element Approximation

According to Euler’s theorem [37], the function p'(X ) which minimizes the functional :

O(p) = ijVp dr - py J pai(x)dT - p, J 2 bi(X)dT (4.78)
7 / X

1
2
satisfies equation (4.71) and boundary conditions of equations (4.72), (4.76), and (4.77)

[Appendix C, Section C.2]. The first volume integral term in equation (4.78) represents the

potential energy of the inside water domain ' and the last two terms, defined as surface

integrals on the tower-water interface I and on the. reservoir bottom T, produce forcing
terms.

The hydrodynamic pressure on the tower surface is numerically evaluated by minimiz-
ing the functional of equation (4.78). Fér this purpose, the fluid domain ' is idealized as

an assemblage of three-dimensional finite elements with Ny nodal points and consequently,

the surfaces T and T get discretized into a number of sub-divisions as shown in Figure
4.12. Similar to equation (4.40) for the surrounding water domain, pressure in domain 7' is
expressed in terms of the unknown pressures p; at i-th node for N, nodal points by the fol-
lowing equation:

Ny

' : P'X)= 3 N(X)p X er (4.79)
1=1 i

where N;(X) represents the locally supported continuous interpolation functions of class Cy

corresponding to i-th nodal point. Substitution of equation (4.79) into equation (4.78) leads

to a functional in vector p containing the unknowns p;, i=1,2, .. . Ny :
1
p) = 3 pTKip-p" Qr-p" Oy (4.80)

in which K is Nyx N, symmetric matrix with its jk-element given by:
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(Ki)jk = [ INGYING )Y dr 5 jk=12,... N, (4.81)

The zero pressure boundary condition on surfaces I‘J’} and I is satisfied by assigning zeros
to the rows and columns in the matrix K, corresponding to the nodes on these surfaces.
Similarly, the vectors @; and @ appearing in the functional [equation (4.78)] are of order

N4 and their j-th elements are given by:

(Q,)J-=F[Nj(3c’)-a:;(3c’)dr . j=12,...,N, (4.82)

(sz)j=iN,(3c')-b:;()?)dr . oj=1,2.. . Ny (4.83)

In matrix @;, only those terms are non-zero which correspond to the nodes on the tower-
water interface. Similarly, only the terms corresponding to the nodes on the reservoir bot-

tom, are non-zero in matrix Q.

Since the interpolation functions N,(X), i=1,2, ..., N, are locally supported, integra-
tion is not performed over the full domain or the entire surface to determine elements of
these matrices. Similar to the procedure used for surrounding water domain, integration in
equations (4.81), (4.82) and (4.83) is done at e]ément level and the matrices are assembled
by standard procedures [53].

* Minimization of the functional of equation (4.80) with respect to p;, i=1,2, ..., 6 Ny

leads to a system of linear, algebraic equations in N4 unknowns :
K p=0, (4.84)

in which X; = K; and Q; = @, + Q;;. The unanwn hydrodynamic pressure vector p is

evaluated by solving these simultaneous equations and its analytical representation p*(¥) is

then estimated by using equation (4.79), the symmetric properties of pressure functions

along surface T?, and the anti-symmetric properties along surface I',. This analysis
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procedure is repeated N+2 times to evaluate the complete set of pressure functions

py(X), B=0,12, ... N,hr using different values of functions a,(X) and bj(X) given by
equations (4.73) to (4.75). Once the pressures are known, the height-wise distributions of
resultant hydrodynamic lateral forces and external moments are evaluated by integrating the

components of these pressures alohg the perimeter of the inside surface of the tower using
equation (3.44).

4.4.3 Semi-Analytical Process for Axisymmetric Towers

Similar to equation (4.61) for the surrounding water domain, acceleration a(X) on the
tower-water interface and b/(X) on the reservoir bottom can be redefined in terms of their

corresponding functions Z.(r,z) and b }(r,z) evaluated along the surface of the tower in the

r-z plane at =0 i.e.
al(X) = ai(r,z) coss (4.852)

bUF) = bl(r,z) cost (4.85b)

Using the orthogonality property of trigonometric functions, it has been shown [40] that the
hydrodynamic pressures associated with acceleration distribution of equation (4.85) also

varies as cosf in the circumferential direction i.e.
p'(X) = p'(r,z) cosh (4.86)

Thus, as for the surrounding water domain, only one two-dimensional problem needs to be

solved. Therefore, to obtain the hydrodynamic pressures in the form of equation (4.86), the
function p'(¥) appearing in the functional of equation (4.78) must be of the following form:

Ny
PIX)Y = pi(r,z) cosb = > N;(r,z) cosb p; (4.87)

i=1

in which ]_VT (r,z),i=1.2, ..., N, are the two-dimensional interpolation functions in the r-z
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plane.

Substitution of equation (4.87) into the functional of equation (4.78) and integration

along @ direction leads to a two dimensional functional in the r-z plane:

_ 1 9p dp  9p dp 1
H(p)—zi F™ 6r+az. e rdrdz+2£rppdrdz
- P J plairzyrda - p, 1 plblrz)rda (4.88)
H 13

wherein, parallel to Section 4.3.5, the volume domain 7' has been replaced by area domain

Q' in the r—z plane and the surface domains I'} and I}, by contours A} and A}, , also in the
r—z plane (Figure 4.13). Applying the numerical procedure presented in Section 4.4.2 to
axisymmetric fluid doméins [see Appendix D, Section D.2 for details}, the functional of
equation (4.88) can be minimized to obtain Ei(r,z). The procedure is implemented for the
N +2 different distributions of acceleration on the tower-water interface and the reservoir

bottom [equations (4.73) to (4.75)], specialized for axisymmetric towers through equation

(4.85):
an(rz) = Ay(r.z) | (r.z) € Al | (4.89)

blr,z) = 0 (r,z) € A}, (4.89b)

an(r,z) = Ar,z) ¢;(z) = r Arz) Yilz)  (rz) e A (4.902)

birz) = 0 (r.z) € A} (4.90b)

al(rz) = Al(r,z) z — r AL(r,z) (r,z) € Al (4.915)

birz)=-r (r,z) € A} (4.91b)
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This would result in the complete set of pressure functions ﬁé(r,z), B=012 ... Nh,r
The resultant lateral hydrodynamic force and moments per unit of height on the tower sur-
face in the vertical plane of ground motion are then evaluated by a special case of equation

(3.44)which is obtained by utilizing equation (4.86):
150 = |7 r 7802 5502 | ronee (4.92a)

Mj(z) = [7r r? fl(r,z) ph(r,z) ] rangz) = 8z — b){ r [ﬁé (r.2) ] ,p dr  (4.92b)

where r;(z) defines the radius of the inside surface at a location z along the height; and b
represents the z-coordinate of bottom boundary for the inside water domain. The computa-
tional effort required for an axisymmetric analysis 1s substantially lower compared to a

three-dimensional analysis of the inside water domain.
4.4.4 Evaluation of the Procedure

The accuracy of the finite element method presented in the preceding sections is
demonstrated by comparing the numerical results by this approach with analytical, infinite
series solution for circular cylindrical towers [40]. The fluid domain interior to a rigid circu-
lar cylinder subjected to unit harmonic horizontal ground acceleration can be numerically
analyzed by solving (i) a t\x;o-dimensional axisymmetric problem by the methods of Section
4.4.3, or (ii) a general three-dimensional problem by the method of Séction 442, 1t is

apparent from Figure 4.14 that the two sets of numerical results for the distribution of

lateral hydrodynamic force f 6(2) are essentially identical to analytical results. Therefore,
the hydrodynamic analysis procedures using the finite element method presented in Sections
4.4.2 and 4.4.3 will lead to accurate values for the hydrodynamic terms required in equation

(3.46) for earthquake analysis of towers of arbitrary geometry.
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4.5 Computer Program

The response analysis proéedure presented in Chapter 3 is implemented in two series of
computer programs, 'TOWERRZ’ series for axisymmetric towers and "TOWER3D’ series for
towers of arbitrary cross-sections having two axes of symmetry, to numerically evaluate the
earthquake response of intake-outlet tower systems described in Chapter 2. The effects that
arise from the interaction between the tower and surrounding water, the tower and con-
tained water, and the_ tower-foundation-soil interaction are included in the analysis.
Efficient computational procedures described in Sections 4.1 to 4.4 have been incorporated
into the computer program to make it an eﬁ'ective tool to compute the earthquake responses

of intake-outlet towers of arbitrary geometry.

A 3-node, one-dimensional, Timoshenko beam element. is included in the computer
program to model the tower. Two different elements -- an 8-node, axisymmetric element
and a 20-node, three-dimensional element are included to model the fluid domains. The
numerical values of impedance functions for a circular foundation supported on the surface
of a viscoelastic halfspace are evaluated by this program using the expressions derived in
Sectionl4.2.3. However, an approximate treatment of non-circular foundations supported on
the surface of a viscoelastic halfspace, presented in Section 4.2.4, is adopted in these pro-
grams. Alternatively, the user may provide the foundation impedance functions for the par-
ticular foundation-soil system being analyzed. The FFT algoriihrn used to evaluate the
Fourier integrals in equations (3.49) and (3.50) recognizes that ground ‘acceleration records
and response histories are real-valued functions to reduce the computational time and

storage requirements [23].

The input for the computer program consists of various system control parameters,
geometric and material properties of the tower, control parameters to generate finite element
meshes for the fluid domains, the number of natural vibration modes of the tower to be

included, the FFT parameters, and‘ the horizontal component of free-field ground
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acceleration. The output from the computer program consists of the complex-valued fre-
quency response functions for the modal coordinates, the complete response-history of dis-
placements, and the maximum values of shear force and bending moment at speciﬁed loca-
tions alo}ng the height of the tower.

The user’s guide for the "TOWERRZ’ series of programs is presented in Appendix K of
this report along with a numerical example. Similarly, the user’s guide for the " TOWER3D’
series of programs is presented in Aplpendix L of this report along with a numerical exam-

ple.



5. FREQUENCY RESPONSE FUNCTIONS

5.1 Introduction

The response of idealized intake-outlet towers to harmonic horizontal ground motion is
presented iﬁ this chapter in the form of frequency response functions. The response results
are computed using the general analytical procedure developed in Chapter 3 and the efficient
numerical evaluation procedures presented in Chapter 4. The response resulis are presented
for a wide range of important parameters that characterize the dynamic response of the
tower-water-foundation-soil system. Based on the frequency response functions, the effects
of tower-water interaction and tower-foundation-soil interaction on the ‘dynamic response of

towers are investigated.

5.2 Systems and Soil-Structure Interaction Parameters
5.2.1 Tower-Water-Foundation-Soil Systems

The response results are computed for towers with three different geometries : circular
- cylindrical towers, circular tapered towers, and non-circular uniform towers. For a circular
cylindrical tower (Figure 5.1a), three different values for the ratio of tower height to average
radius, H,/r,= 20, 10, and 5 are considered. The first one is typical of many slender towers,
whereas the last one is selected as a rather extreme example for squat towers. The ratio of
the inside and outside radii, r;/r,, is selected equal to 0.8, i.e. the wall thickness ¢, = 0.2 r,,
a value typical of many towers. For a tapered tower with a circular cross-section (Figure
5.1b), the inside and outside radin at the top of the tower are taken equal to half of what
they are at the base. The inside and outside radii decrease linearly along the height but their
ratio 7;(z)/r,(z) at any location z above the base remains 0.8. Three values of the ratio of
the tower height to its average radius r, at the base, H,/r,= 20, 10 and 5, are considered.
The responses of a uniform tower with the non-circular cross-section shown in Figure 5.1c,
and with H./r, = 20, are éorﬁputed for ground motion applied separately along x and y

38
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dXxcEs,

All towers are assumed to be homogeneous and isotropic with linear elastic properties
for the concrete : Poisson’s ratio = 0.17, unit weight = 155 Ib/ft? and the Young’s modulus
of elasticity £, = 4.5 million psi. The modification in the effective modulus of elasticity due
to reinforcing steel is not considered. Energy dissipation in the tower concrete is
represented by constant hysteretip damping factor of n, = 0.10. This value corresponds to a
viscous damping ratio of 0.05 in all ﬁatural vibration modes of the tower without water on

rigid foundation soil.

Tower-foundation-soil interaction effects are investigated only for circular (both
cylindrical and tapered) towers. In both cases, the tower structure is assumed to be sup-
ported through a rigid circular foundation on the surface of deformable soil idealized as a
horﬁogeneous, isotropic, viscoelastic halfspace. The following material properties of the
foundation soil or rock are kept constant : Poisson’s ratio », = 1/3, and the ratio of the soil
mass density to concrete mass density, os/ps, = 1. Similarly, the ratio of the mass of the
foundation to the mass of the superstructure, my/m;, and the ratio of the rotatory inertia of
the foundation to the tdtal rotatory inertia of the tower structure about the base, I7/1,, are
taken equal to 1.0 and 0.2, respectively. The selected values for ms/m, and I/, are more
or less representative of many existing towers{_. They need not be varied because, within the
ranges of values that are of interest in practical applications, the response of the structure is
generally insensitive to variations in these particular ratios [45]. Energy dissipation in the
flexible foundation so'il is represented by constant hysteretic damping with damping factor
Ny = 0.10.

The interpretation of tower-foundation-soil interaction effects is facilitated by three
dimensionless parameters suggested, in part, by earlier research on buildings [46] : (i) The
wave parameter ¢ = C fi'"l /r, which is a measure of the relative stiffness of foundation soil

and the tower, where Cy is the shear wave velocity in the foundation soil, T is the fixed



91

base natural period of vibration of the tower without water, and r, is the averagé radius of

the tower cross-section at the base; (i1) the ratio H;/r; of the height of the tower to the

radius of the foundation footing; and (ii1) the mass distribution parameter vy = I,/(psarrasz).
To cover the wide range of tower properties and foundation soils, the wave parameter o 18
varied from 20 to co, where the latter value represents rigid foundation soil ; the ratio H/rs
is varied from 2 ‘to 8 ; and two values of parameter v are considered : 0.15 for circular
cylindrical towers (Figure 5.1a), and 0.06 for circular tapered towers (Figure 5.1b). This par-
ticular choice of dimensionless parameters for the tower-foundation-soil systems is discussed

in Section 5.2.2. All the dimensionless parameters affecting tower-foundation-soil interac-

tion are listed in Table 5.1 along with the range in which they are varied.
I

The water surrounding (outside) the tower is idealized as a fluid domain of constant
depth extending to infinity in radial directions. The unit weight of water is taken equal to
62.4 1b/ft>. Two values of inside water depth, H,, and surrounding water depth, H,, are
considered : no water (f{,/H, = 0, H;/H; = 0 ), and full water level (H,/H;, = 1, H;/H,; = 1
). The hydrodynamic effects in the earthquake response of towers are influenced by the

slenderness ratio H,/r,, in addition to H,/H; and H;/H,.
5.2 2 Soil-Structure Interaction Parameters

Two of the more significant parameters controlling tower-foundation-soil interaction
effects are : ¢ and H/ry. Because Hy/ry = (Hy/r,)-(r,/7/), it would be useful to determine
whether interaction effects depend individually on the slenderness ratio H,;/r, and the ratio

r¢/r, of the footing and tower radii or only on the combined parameter H/r,. For this pur-

pose, the ratio 79{/T,, where 7{ is the fundamental resonant period of the tower-
foundation-soil system, is computed for three circular cylindrical towers (Figure 5.1a), all
with v = 0.15 but varying slenderness ratio H,/r, = 20, 10 and 5, while keeping ¢ and Hg/rs
constant by. adjusting Cy and ratio rs/r,. These computations are repeated for different

combinations of ¢ and H,/r,. Similar computations are also performed for three circular
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Table 5.1 -- Dimensionless Parameters for

Tower-Foundation-Soil Systems

Description Definition Value, this study
T, _
Wave parameter a= Cf-T— Variable, 20 to o
. a
. . . . Hs .
Height to footing radius ratio - Variable, 2 to 8§
f
S ‘ I, .
Mass distribution parameter ¥y = Variable, 0.15 and 0.06
psTr 3Hs3
Damping factor for soil ny Fixed, 0.10
. . my .
Footing mass ratio o Fixed, 1.0
i
N : I, my :
Rotatory inertia ratio 7= 0.10 (l+—m—) Fixed, 0.2
! t
) . or :
Mass density ratio — Fixed, 1.0
Py
Poisson’s rétio Fixed, 1/3

vy
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tapered towers (Figure 5.1b), all with v = 0.06 but varying slenderness ratio H,/r, = 20, 10

and 5. These results are summarized in Figure 5.2, wherein T{ /T, is plotted as a function

of 1/¢ for three different values of H,/r, for circular cylindrical towers (Figure 5.2a) and for

circular tapered towers (Figure 5.2b). It is apparent that the period ratio T{/7 is essentially
independent of the individual values of ratios H,/r, and r;/r,, so long as H./rs is kept con-
stant. Therefore, the dimensionless parameters o, H;/rs, and v, are appropriate to charac-

terize the effects of tower-foundation-soil interaction.

5.3 Cases Analyzed and Response Quantities
5.3.1 Cases Analyzed

The response results for the idealized tower-water-foundation-scil systems listed in
Table 5.2 are presented in this chapter. Thése systems are defined by the geometry of the
tower structure, direction of ground motion, and the chosen values for the important system
parameters : Hy/r,, H,/H;, H;/H,, o, H,/r;, and v. The response results for various cases
and their interpretations are organizéd to understand the effects of various parameters on
tower-water interaction, on tower-foundation-soil intergction, and ultimately on tower

response.
5.3.2 Response Quantities

The complex-valued frequency response functions presented here are dimensionless
response factors that represent the amplitude of the acceleration at the top of the tower,
excluding the rigid body motions of the tower associated with translation and rotation of the

foundation, due to unit harmonic free-field horizontal ground acceleration.
The frequency response functions, describing the response to harmonic horizontal
ground motion, are computed for the excitation frequency w varied over a relevant range of

interest. Five fixed-base modes of the tower are included in the response computations for

all cases. With these modal coordinates, the resulting frequency response functions are
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Table 5.2 -- Cases of the Idealized

Tower-Water-Foundation-Soil Systems Analyzed

'
|

C Tower Foundation Rock Surrounding Water Inside Water
3¢ TH/r, | Condition | o H,/r; | Condition | H,/H, | Condition | H,/H,
CIRCULAR CYLINDRICAL TOWERS
¥y =0.15
1 | 10 rigid oo - none 0 none 0
2 10 rigid ) - full 1 none 0
3 10 rigid oo - nong 0 full 1
4 10 rigid 00 - full 1 full 1
5 20 rigid o0 partial Oto 1 partial Otol
6 10 rigid o0 - partial Otol partial Oto |
7 5 rigid co - partial Oto 1 partial Oto |
g 10 flexible 40 3 none 0 none 0
9 10 flexible 20 5 none . 0 none 0
10 10 flexible 60 5 none 0 none 0
11 10 flexible 40 3 none 0 none 0
12 10 flexible 40 7 none 0 none 0
13 20 flexible 20 to oo 8 none 0 none 0
14 10 flexible 20to o 5 none 0 none 0
15 5 flexible 20 to = 2 none 0 none 0
16 10 flexible 40 5 full 1 full 1
AXISYMMETRIC TAPERED TOWERS
v = 0.06
17 10 rigid oo - none 0 none 0
18 10 rigid o0 - full 1 none 0
19 10 rigid o0 - none 0 full 1
20 10 rigid 0o - futl 1 full 1
21 20 flexible 20 to oo 8 none 0 . none 0
22 10 flexible 20 to oo 5 none 0 none 0
23 5 flexible 20to0 o0 2 none 0 none 0
24 10 flexible 40 5 none 0 none 0
25 10 flexible 40 5 full 1 full 1
NON-CIRCULAR UNIFORM TOWERS
GROUND MOTION ALONG X-AXIS
26 20 rigid o0 - none 0 none 0
27 20 rigid oo - full 1 none 0
28 20 rigid o0 - none 0 full 1
NON-CIRCULAR UNIFORM TOWERS
GROUND MOTION ALONG Y-AXIS
29 20 rigid o's) - none 0 none 0
30 20 rigid oo - full 1 nong 0
31 20 rigid oo - none | 0 full l
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accurate for excitation frequencies up to approximately six times the fundamental natural

frequency w,; of the tower on rigid foundation soil with no water.

For each case in Table 5.2, the modulus of the complex-Qalued frequency response
function for acceleration is plotted against the excitation frequency parameter w/w;. When
presented in this dimensionless form, the response results apply to all towers, which have
the same geometry and the chosqn values of Poisson’s ratio, H,/r,, H,/H,, H,/H,, o, Hj/rf,

and «, irrespective of their actual height and elastic modulus or unit weight.

5.4 Tower-Water Interaction Effects
5.4.1 Principal Effects of Interaction

The effects of interaction between the tower and the water (both surrounding and
inside) on the response of towers to horizontal ground motion are shown in Figure 5.3
where the results from analyses of cases 1 to 4 and 17 to 20 (Table 5.2) are plotted. The
response of a tower without water (Case 1 or 17) is characteristic of a multi-degree of free-
dom system with frequency-independent mass, stiffness and damping properties. The
response of the tower with surrounding and inside water, however, is affected by the hydro-
dynamic terms appearing in the equations of motion (Chapter 3) which can be interpreted as
vmodifying the dynamic properties of the tower by introducing an added mass and an added

force.

The results presented in Figure 5.3 reveal that water, inside or outside, has two princi-
pal effects : (i)‘ the fundamental resonant frcquency of the tower decreases because of the
added hydrodynamic mass ; and (ii) the amplitude of the fundamental resonant peak
increases in part due to the added hydrodynamic force. This amplitude increase is less than
reported earlier [34] because the effective damping at the reduced resonant frequency is
unchanged with the frequency-independent constant hysteretic damping assumed in this
study, but is reduced in Reference [34] because of the frequency-dependent viscous damping

model, leading to larger resonant response.
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CIRCULAR CYLINDRICAL TOWER

CURVE

1 NO WATER

2 SURROUNDING WATER ONLY

3 INSIDE WATER ONLY

4 SURROUNDING & INSIDE WATER

w/wl

Figure 5.3 Hydrodynamic Effects in Response of Towers due to Harmonic
Ground Motion. Results Presented for Various Assumptions of Surrounding and
Inside Water (Cases 1 to 4 and 17 to 20 of Table 5.2)
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It is apparent from Figure 5.3 that the resonant frequencies of the tapered towers are
more closely spaced than those of the unifqrm tower and that the amplitudes of the resonant
peaks without water are larger for the tapered towers. However, fhe tower-taper has very lit-
tle influence on the percentage decrease in the fundamental resonant frequency, and the per-
centage increase in the amplitude of the fundamental resonant peak, due to surrounding or

inside water.

The values of T¢/T,, and T)/T, are presented for the first two resonant peaks (n= 1, 2)
in Figure 5.4 as functions of the ratio of water depth to tower height, H,/H, for surrounding
water and H,/H; for inside water, for three different values of H/r, (Cases 5, 6, and 7 of

Table 5.2). In these period ratios, T, is the n-th natural vibration period of the tower on
rigid foundation soil without water, which is increased to 7 due to the surrounding water,

and to T,i due to the inside water, Since these results demonstrate the qualitative similarity
between the effects of surrounding water and of the inside water, the following observations
are valid for both cases : (i) Water lengthens the fundamental vibration period with this
effect being very small for H,/H, or H;/H, lé;s than 0.5, but increases rapidly at greater
water depths; (i1) The lengthening of vibration period for the second resonant peak is very
small for H,/H, or H,/H, less than 0.2, increases rapidly for water depth ratios up to 0.6,
but the rate of increase slows down between water depth ratios of 0.6 to 0.8. This particular
behavior is closely related to the variation of generalized added hydrodynamic mass with
water depth which in turn depends on the second mode shape and the added mass distribu-
tion ; (iii) For full reservoir ( i.e. H,/H, = 1 or H;/H; = 1 ), the percentage lengthening of
the first two vibration periods is about the same ; however, for partially filled reservoir, spe-
cially when 0.2 < H,/H; or H,/H; < 0.8, the percentage increase in the second vibration
period is substantially larger than that in the fundamental vibration period ; and (iv) Vibra-
tion periods of slender towers (i.e. large H,/r, values ) are lengthened to a greater degree

than for squat towers.
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Figure 5.4 Ratio of Vibration Periods of a Tower (on Rigid Foundation Soil) with and without Water;
Results are Presented for Fundamental and Second Vibration Period and for Surrounding and Inside
Water
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As expected, the reductions in resonant frequencies { or increases in resonant periods )
due to surrounding and inside water are cumulative (Figure 5.3). By considering the free
vibration of a tower supported on rigid foundation soil and constrained to vibrate in its n-th

mode shape on fixed base without water, it can be shown that [Appendix E] :

2 2 12

r 0 i
% = % + % -1 (5.1)
in which 77y, is the effective n-th natural vibration period of the tower on rigid foundation
soil due to combined effects of surrounding and inside water. Based on the above men-
tioned numerical results it can be verified that, although equation (5.1) is not exact when
coupling of the natural vibration modes of the tower caused by the added hydrodynamic
mass is considered, it is an excellent approximation for the fundamental vibration mode but
errors tend to increase with increasing mode number.

5.4.2 Direction of Ground Motion

The frequency response function for a tower of circular cross-section, with or without
water, is independent of the orientation .of the horizontal ground motion. However, thils
may not be the case for other cross-sections. In order to examine this matter, frequency
response functions are presented iﬁ Figure 5.5 for a uniform tower with non-circular cross-
section (Figure 5.1¢) subjected to excitations in two different directions along the plangs of

symmetry {Cases 26 to 31, Table 5.2). In order to facilitate interpretation of the response,

the height-wise distribution of lateral hydrodynamic forces f§(z) and f%(z) on a rigid tower
due to the surrounding and the inside water, respectively, associated with the two directions

of excitation are also presented in Figure 5.6. The hydrodynamic forces are presented in
their normalized form, i.e. f§(z) has been normalized by the mass of the displaced water

per unit of height of the tower, p,, 4,, and f}(z) by the mass of the water contained in the

tower per unit of its height, p,, 4,. An added mass, equivalent to the hydrodynamic force
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assumed to be moving with the tower, adequately represents the hydrodynamic interaction

effects in the fundamental mode response of towers [33].

The response results presented in Figure 5.5 indicate that, as expected, the frequency
response functions of the tower by itself (no water) are essentially independent of the direc-
tion of ground motion (Cases 26 and 29 in Table 5.2). In fact, the two responses would be
identical if the effects of shear deformations and rotatory inertia were neglected. Although
these effects were included, they are small for slender towers like the one considered here.
However, the dynamic response of towers with surrounding water, in particular the redﬁc-
tion in the fundamental resonant frequency due to surrounding wafer, is strongly influenced
by the direction of ground motion (Figure 5.5) because the magnitude of the added hydro-
dynamic mass strongly depends on the direction of ground motion (Figure 5.6a). For a tower
of particular cross-section, one of the parameters governing the magnitude of added hydro-
dynamic mass is the cross-sectional dimension perpendicular to the direction of ground
motion, which is quite different for the tower of Figure 5.1(c) in the two directions. On the
contrary, the frequency response functions for the tower with inside water, in particular the
decrease in the fundamental resonant frequency due to inside water, is essentially indepen-
dent of the direction of excitation (Figure 5.5) because most of the water contained in the
hollow tower moves as a rigid mass for either direction of ground motion (Figure 5.6b).
When presented in the normalized form of Figure 5.5, the amplitude of the fundamental
resonant peak is essentially unaffected by the direction of ground motion because, as will be

shown in Chapter 8, the distribution of added hydrodynamic mass is about the same.

5.5 Tower-Foundation-Soil Interaction Effects
5.5.1 Principal Effects of Interaction

The effects of tower-foundation-soil interaction on the response of towers are demon-
strated in Figure 5.7 where the response results from analyses of cases 1, 8, 9, 10, 11, and 12

are plotted. Tower-foundation-soil interaction reduces the fundamental resonant frequency
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HS/I’f = 5

AMPLITUDE OF HORIZONTAL ACCELERATION AT TOP OF TOWER

(0/0)1

Figure 5.7 Influence of Wave Parameter ¢ and Ratio H,/rs on Response of Towers to

Harmonic Ground Motion, Ug(t) = e ; Response Results Presented for Circular
Cylindrical Towers (Cases 1, and 8 to 12, Table 5.2)
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of the tower, reduces the amplitude of the fundamental resonant peak, and increases the
bandwidth at resonance because of the radiation and material damping in the foundation
soil region. Similarly, the higher resonant frequencies are reduced, although to a lesser
degree than the fundamental resonant frequency, and the ampl‘itudes of the higher resonant
peaks are substantially reduced. The second resonant frequency of bending beams, such as
the towers considered, is affected more than the shear beams [46] because the interaction
forces, base shear and moment, due to the second mode are more significant in the former
case. The larger reduction in the amplitudes of higher resonant peaks is the result of the

increased radiation damping in the foundation soil at high excitation frequencies.

The response results presented in Figure 5.7 (Cases 1, 8, 9, and 10, [1, and [2) show
the dependence of tower-foundation-soil interaction effects on the dimensionless wave
parameter ¢ = Cy T/r,, and the ratio of tower-height to foundation radius, H,/r;. For
more flexible foundation soils (lower shear wave velocity C;) or for a stiff structure (lower
fundamental vibration period T,), the wave parameter ¢ is smaller and the interaction
effects are larger, i.e. larger reductions of the fundamental resonant f:requency and ampli-
tudes of the fundamental resonant peak are observed. Similarly, for larger values of H/r/,
the interaction éﬁ'ects are larger. For lower values of ¢ and higher values of H;/r,, the
higher amplitudes of the rocking motion at the fundamental resonant frequency generate
stress waves of higher amplitudes propagating away from the structure-foundation interface
which dissipate more energy through radiation and material damping. Consequently, the
apparent damping of the structure increases causing lower amplitudes of resonant peaks and

wider bandwidths at resonance.

For systems characterized by constant values of shear wave velocity, Cr, and the ratio
of footing-radius to tower-radius, r;/r,, the influence of the slenderness ratio of the tower,
H,/r,, 1s not clear because of two competing factors : On the one hand, towers with large
H,/r, ratio are usually relatively flexible long-period structures leading to a larger value of

wave parameter ¢ which suggests that the structure-foundation interaction effects are likely
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to be small (Figure 5.7a); and on the other hand, Iargeﬂl.r H,/r, ratio usually leads to larger
ratio of tower-height to footing-radius, H;/r;, for which the structure-foundation interaction
effects become increasingly significant (Figure 5.7b). Since the response results presented in
terms of ¢ and Hj/rf for a fixed value of v are independent of H,/r, (Section 5.2.2), the
influence of the ratio H;/r, on the tower-foundation-soil interaction effects can be investi-

gated by simply comparing the dependence of ¢ and H,/r; on H/r,. Using bending theory

for uniform towers, it can be shown that T, is proportional to sz/ra. Therefore, for fixed
Cy, the wave parameter o, which by definition is proportional to T'\/r,, is proportional to
the sq‘uare of Hy/r,. For fixed r¢/r,, however, the ratio H,/r; is proportional to H,/r, only.
Therefore, with increasing value of H,/r,, the influence of tower-foundation-soil interaction
on the response of the towers is reduced because the increase in the value of ¢ is much
greater than the increase in the value of ratio Hs/rf. This is the >primary reason that the
tower-foundation-soil interaction eﬁects are likely to be more significant in the response of
squat towers than in the response of slender towers even though the latter have larger

tower-height to footing-radius ratio.

The influence of mass distribution parameter v (Table 5.1) on the tower-foundation-soil
interaction effects is demonstrated by plotiing the ratio T{ /T, where T is the fundamental

resonant period of the fixed-base tower which is increased to 7§ due to soil flexibility, in
Figure 5.8 as a function of 1/¢ and Hi/re for two different families of towers : circular
cylindrical towers (Cases 13 to 15) and circular tapcfed towers (Cases 21 to 23). As demon-
strated in Figure 5.8, soil flexibility has less influence on the fundamental vibration period
for lower values of 4. Because the parameter v for tapered towers is smaller than for uni-
form towers, for the same values of ¢ and H/ry, tower-foundation-soil interaction therefore
has less influence on the response of tapered towers. Physicaily, for the same total mass and
height, the overturning moment at the base tends to be smaller for tapered towers resulting

in reduced rocking motion of the footing and associated interaction effects.
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Figure 5.8 Influence of Mass Distribution Parameter on Period Ratio T{/T| ;
Response Results Presented for Cases 13 to 15 and 2110 23
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5.5.2 Influence of Hydrodynamic Interaction

The simultaneous effects of tower-water interaction and of tower-foundation-soil in-
teraction on the dynamic response of axisymmetric towers (both cylindrical and tapered) can
be observed from the response functions presented in Figure 5.9 for four systems ; towers on
rigid foundation soil with no water (Case 1 and 17); towers on flexible foundation soil with
no water (Case 8 and 20); towers on rigid foundation soil with full water (Case 4 and 24);

and towers on flexible foundation soil with full water (Case 16 and 23).

The response results demonstrate thgt the effects of tower-foundation;soil interaction
on the frequency and amplitude of the fundamental resonant peak are qualitatively similar
whether the hydrodynamic interaction effects are included in the analysis or neglected.
Additionally, the percentage increase in the fundamental resonant period {(or reduction of
fundamenfal resonant fréquenCy) due to fower-foundation-soil interaction is almost indepen-
dent of hydrodynamic interaction effects. This observation leads to the following approxi-
mation:

T T

T
1. 2
T, T, T (3-2)

where 7| is the fundamental vibration period of the tower on rigid foundation soil without

water, which increases to 7] due to tower-water interaction, to T{ due to tower-foundation-

soil interaction, and to 7, due to both types of interaction simultaneously. Similarly, the
percentage decrease in the amplitude of the fundamental resonant peak resulting from the
increase in effective damping due to tower-foundation-soil interaction effects remains practi-

cally independent of the hydrodynamic interaction effects.

The response results presented in the previous section suggest that hydrodynamic
interaction should reduce the effects of tower-foundation-soil interaction on the frequency
and amplitude of the fundamental resonant peak but the response results of Figure 5.9 do

not support this suggestion. Because water lengthens the fundamental vibration period of
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CIRCULAR CYLINDRICAL TOWER
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Figure 5.9 ‘Response of Towers due to Harmonic Ground Motion for Four Condi-
tions: Tower on Rigid Soil with No Water (Cases 1 and 7); Tower on Flexible Soil
with No Water (Cases 8 and 24); Tower on Rigid Soil with Full Water (Cases 4 and
20); and Tower on Flexible Soil with Full Water (Cases 16 and 25)
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the tower leading to an increase in the effective value of the wave parameter o, the results of
Figure 5.7 would indicate reduced effects of tower-foundation-soil interaction. It appears
that this reduction is compensated by the increase in tower-foundation-soil interaction
effects due to increased overturning moment (or due to higher value of +) caused by the

added hydrodynamic mass.

The influence of tower-foundation-soil interaction on the higher resonant peaks is, how-
ever, smaller in the presence of water. For towers vibrating in ‘higher vibration modes, the
added hydrodynalﬁic mass produces small overturning moments which are not large enough
to compensate for the reduction in interaétion effects resulting from the lengthening of the

higher vibration periods due to water.



6. EARTHQUAKE RESPONSE OF BRIONES DAM INTAKE TOWER

6.1 Introduction

The earthquake response of Briones dam intake tower to Taft ground motion is
presented in this chapter. The analyti(,;al and numerical procedures developed in Chapters 3
and 4, are used to co’mpute the response of the intake tower under various assumptions for
the impounded water and the foundation rock. Based on the results from these analyses, the
eﬂ’ec;ts of tower-water interaction and tower-foundation-soil interaction on the tower
responses are investigated. Certain aspects of practical earthcjuake analysis for intake-outlet

towers are also discussed.

6.2 Briones Dam Intake Tower and Ground Motion
6.2.1 Briones Dam Intake Tower

This reinforced concrete intake tower, located east of San Francisco Bay, is approxi-
mately 230 ft high, has a hollow circular cross-section of outside diameter of 22.67 ft near
the base and tapering to a diameter of 11.5 ft at the top. The wall thickness is 1.33 ft at the
base, decreasing to 1.06 ft near the top. The tower is supported on a 13 ft high solid con-
crete block which has a diameter of 60 ft at the ground level (Figure 6.1a). The one-
dimensional finite element idealization of the intake tower consists of 15 three-node. ele-
ments with 31 nodal points (Figure 6.1b), resulting in 60 degrees of freedom if the founda-
tion soil is assumed to be rigid and 62 degrees of freedom if the flexibility of foundation soil

is considered. The solid concrete block supporting the hollow tower is treated as rigid.

The concrete in the intake tower is assumed to be a homogeneous, isotropic, linear elas-
tic solid with the following properties : Young’s modulus of elasticity £, = 4.5 million psi,
unit weight = 155 Ib/ft’, and Poisson’s ratio = 0.17. The effects of reinforcing steel on ‘the
elastic modulus, which are expected to be small, are neglected. Energy dissipation in the

tower is represented by a constant hysteretic damping factor of ; = 0.10. This damping
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factor corresponds to a viscous damping ratio of 5% in all the natural vibration modes of
the tower (on rigid foundation soil without water) which is greater than 2% to 3% measured
in forced vibration tests [41] because of much larger motions and higher stresses expected

during strong earthquake ground motion.

The tower structure, including the foundation block, is idealized as supported through a
massless, rigid foundation of radius r; equal to 30 ft on a homogeneous, isotropic, viscoelas-

tic half space. The material properties of the foundation soil are assumed to be : shear wave
velocity Cy = 1000 ft/sec ; unit weight = 165 1b/ft3, Poisson’s ratio = 1/3, and a constant
hysteretic damping factor of 7, = 0.10.

The water in the reservoir surfounding the tower is idealized as a fluid domain that
extends to infinity in all radial directions and has a constant depth of 201 ft. Because water
level inside operating intake-outlet towers is typically within a few feet of the elevation of
surrounding water, the elevation of the inside and surrounding water is kept the same which
results in a depth equal to 188 ft for the water contained inside the hollow tower (Figure

6.1). As mentioned in Chapter 3, water is treated as incompressible ; and its unit weight is

taken as 62.4 1b/ft>. The added hydrodynamic mass and excitation terms in the equations of
motion for the tower are calculated from numerical solutions of the Laplace equation using
procedures presented in Sections 4.3.5 and 4.4.3. The selected finite element idealizations
for the fluid domains, using eight-node quadrilateral axisymmetric elements, are shown in
Figure 6.1¢ for the outside water and in Figure 6.1d for the inside water. Twelve analytical
functions are used to express the hydrodynamic pressures [Equation (4.64), Section 4.3.5)] in

the boundary integral domain (Figure 6.1¢) for analysis of the surrounding water domain.

The properties selected for the tower and foundation soil in this response analysis have
not been determined from field, laboratory or design data. Thus the computed response

results should not be used directly to evaluate the seismic safety of this tower.
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6.2.2 Ground Motion

The ground motion recorded at Taft Lincoln School Tunnel during the Kern County,
California, earthquake of July 21, 1952 1s selected as the free-field ground motion for the
analysis of Briones Dam Intake Tower. Only one component of the ground motion acting in
the horizontal plane, defined by the S69E component of the Taft ground motion (Figure
6.2), is used in this study. Since the Briones Dam Intake Tower is essentially axisymmetric
(except for openings along its height), the response results are independent of the orientation
of the horizontal ground motion. This ground motion i1s much less intense than is expected
at the site if a major earthquake were to occur on the nearby Hayward fault. Thus the

presented results should not be used directly to evaluate the safety of this tower.

6.3 Response Results

With the objective of evaluating the effects of tower-water interaction and tower-
foundation-soil interaction, the Briones Dam Intake Tower is analyzed for the six sets of
assumptions and conditions listed in Table 6.1. For each case, the earthquake resbonse of
the tower is computed under the assumption of linear behavior of the tower-water-
foundation-soil system. The displacement history is obtained by Fourier synthesis of the
complex-valued frequel_lcy, response functions for the modal coordinates. These response
functions for Briones Dam Intake Tower are computed for the excitation frequency range 0
to 25 Hz, which includes all the significant responses. To represent accurately the response
of the tower in this frequency range, five modes on fixed base (w; = 1.08 Hz to ws = 31.36
Hz) are included in the analyses for all cases. In the Fourier synthesis for the response his-
tory, 2048 time steps of 0.02 seconds are used, of which the last-half number of steps form a

"quiet zone" to reduce the aliasing error inherent in the discrete Fourier transform.

The fundamental resonant period and the effective damping ratio at that period deter-
mined by the half-power bandwidth method, both obtained from the frequency response

function, are listed in Table 6.1 for each case, along with the corresponding ordinates
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Table 6.1 -- Cases of Briones Dam Intake Tower Analyzed, Periods of Vibration, Damping Ratios,

and Response Spectrum Ordinates for S69E Component of Taft Ground Motion

Sur-

Fundamental Mode Properties

Second Mode Properties

Founda- Inside |Resonant|Damping|S,(T.£) |Sy(T,f) |Resonant|Damping|S,(T,8) |S4(7,¢)
Case tion Soil rounding Water Period in|Ratio, as|in g’s in inches |Period in|Ratio, as|in g’s in inches
Water seconds |a percen- seconds |a percen-
tage tage

1 rigid none none 0.927 5.0 0.196 1.647 0.214 5.0 0.440 0.197

2 rigid normal none 1.173 5.0 0.151 2.032 0.292 5.0 0.362 0.302
3 rigid none normal 1.130 5.0 0.148 1.849 0.280 5.0 0.360 0.276
4 rigid normal | normal 1.324 5.0 0.124 2.126 0.331 5.0 0.516 0.553
5 | flexible | none none 0.970 54 0.166 1.528 0.232 7.2 0.367 0.193
6 | flexible | normal | normal | 1.415 5.5 0.121 2.370 0.358 6.6 0.349 0.438

911
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S,(T,£) and S4(T.£) of the pseudo-acceleration and deformation spectra for the S69E com-
ponent of Taft ground motion. Similar data for the second vibration mode of the tower is
also presented in Table 6.1. Because energy dissipation in the tower is modeled by hys-
teretic damping, which is independent of excitation frequency, the damping ratio is not |

affected by the shift in resonant frequency due to hydrodynamic effects (Cases 1 to 4).

The results of the computer analysis consist of the response history of horizontal dis-
placements (in the direction of the ground motion) at the nodal points and the shear forces
and bending moments along the height of the tower. Due to the axisymmetric geometry of
the tower, the weight of the tower and hydrostatic pressures on the outside and inside sur-
face of the tower do not cause lateral displacements, shear forces or bending moments. Only
a small portion of the response results are presented here to highlight the imbortant effects.
The maximum horizontal displacement at the top of the tower (nodal point 31) and max-
imum shear force and bending moment at the tower base (nodal point 1) are summarized in
Table 6.2 for cach case. Presented are the dynamic responses of the tower on rigid founda-
tion soil, including the frequency response function for the modal accelerations (Figure 6.3),
the time history of horizontal displacement at the top of the tower (Figure 6.4) and the dis-
tribution of envelope values of the maximum horizontal displacements, shear forces and
bending moments along the height of the tower (Figures 6.5 and 6.6). Similar response

results considering tower-foundation-soil interaction are presented in Figures 6.7 to 6.10.

6.4 Tower-Water and Tower-Foundation-Soil Interaction Effects
6.4.1 Tower-Water Interaction Effects

Interaction between the tower and the water, surrounding or inside the tower, intro-
duces hydrodynamic terms into the equations of motion that affect the dynamic response of
the tower. As described in Chapter 3, the hydrodynamic terms can be interpreted as an
added mass and an added force. Tower-water interaction reduces the resonant frequencies (

or lengthens the resonant periods) due to added hvdrodynamic mass and magnifies the
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Table 6.2 -- Maximum Responses of Briones Dam Intake Tower to Taft Ground Motion

Horizontal Forces at Base
Displace-
Surrounding Shear Force | Bending
Case Inside Water | ment at Top
Water in kips Moment 1n 7
of Tower in
kips-ft
inches
(a) Tower on Rigid Foundation Soil
l none none 2.91 347 36632
2 normal none 4.34 562 55596
3 none normal 171 ‘477 50590
4 normal normal 4.59 1069 88726
(b) Tower on Flexible Foundation Soil
5 none none 2.55 296 30491
6 " normal normal 4.90 1028 81805
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amplitudes of resonant peaks due to added hydrodynamic force (Figure §,3). The fundamen-
tal vibration period of the tower lengthens from 0.927 sec to 1.173 sec due to the effects of
water surrounding the tower, to 1.130 sec due to the effects of inside water, and to 1.324 sec
due to the combined effects of surrounding and insi‘de water (Table 6.1). Similarly, the
second vibration period of the tower lengthens from 0.214 sec to 0.292 sec due to the effects
of water surrounding the tower, to 0.280 sec due to the effects of inside water, aﬁd to 0.331

sec due to the combined effects of surrounding and inside water.,

The hydrodynamic interaction effects on the response of a tower to a specified earth-
quake ground motion are controlled by (1) the change in the response spectrum ordinates
(Table 6.1) corresponding to the change in the fundamental and second (and higher)
resonant periods, and (2} by the change in ihe frequency response functions, in particular
the amplitudes of the resonant peaks (Figure 6.3). As a combined result of these two fac-
tors, the maximum displacement at the top of the tower increases from 2.91 in. to 4.34 in.
due to the effects of surrounding water, to 3.71 in. due to the effects of inside water, and to
4.59 in. due to the effects of both surrounding and inside water (Figure 6.4). This increase
in displacements is accompanied by larger increases in maximum shear forces and bending
moments along the height of the tower {(Figure 6.5) because the higher vibration modes con-

tribute more to shears and moments than to displacements.

The relative contributions of the various vibration modes to the response of the tower
with both surrounding and inside water (Case 4) are demonstrated in Figure 6.6 where the
envelope values of the maximum lateral displacements, shear forces and bending moments
along the height of the tower are presented, obtained from three different analyses consider-
ing one, two and five modes. [t 1s apparent that, for this particular tower-water system and
ground motion, the second mode response contribution is significant because the ordinate of
the pseudo-acceleration response spectrum associated with the second vibration mode is
larger compared to that for the fundamental vibration mode (Table 6.1). It is also apparent

that the first two vibration modes are sufhicient to predict the response of this tower to the
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selected earthquake. The relative contributions of the various vibration modes to response
of the towers depend, of course, on the vibration periods of the towers and the shape of the

earthquake response spectrum. This matter will be addressed further in Chapter 7.
6.4.2 Tower-Foundation-Soil Interaction Effects

Interaction between the tower and the foundation supported on flexible soil reduces the
resonant frequencies as well as the amplitudes of resonant peaks (Figure 6.7). Tower-
foundation-soil interaction lengthens the fundamental resonant period of Briones Dam
Intake Tower from 0.927 sec to 0.970 sec because of foundation-soil flexibility and increases
the effective damping from 5.0% to 5.4% at that period because of material damping and the
radiation of waves in the foundation-soil region (Table 6.1). Similarly, tower-foundation-
soil interaction lengthens the second vibration period from 0.214 sec to 0.232 sec and
increases the effective damping from 5% to 7.2% (Table 6.1). This larger increase in
effective damping for the second vibration mode comes from the increased radiation damp-
ing at higher frequencies. The tower-foundatioﬁ-soil interaction effects are small in the
response of Briones Dam Intake Tower, which is consistent with the results of Chapter 5

where it is shown that these effects are small for long-period, slender towers.

Tower-foundation-soil interaction reduces the maximum displacement at the top of the
tower from 2.91 in. to 2.55 in. (Figure 6.8). Similar reductions are also observed in the
maximum shear forces and bending moments along the height of the tower (Figure 6.9).
These reductions in the response of a tower to a specified ground motion are controlled, in
part, by the change in the response spectrum ordinate due to lengthening of the fundamental
vibration period and increased damping. In this particular case, the reductions in responses
due to tower-foundation-soil interaction are much smaller than the response increases due to
hydrodynamic effects.

As noted earlier, the fundamental resonant period of the tower is lengthened because of

tower-water interaction and also because of tower-foundation-soil interaction. Simultaneous

consideration of the two sources of interaction results in a fundamental resonant period of
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the tower that is longer than the period including either interaction effect individually (Table
6.1). In particular, tower-water interaction lengthens the fundamental resonant period by
approximately the same percentage whether the foundation soil is rigid or flexible. Similar 1o
the observations from earlier results presented in Chapter 5, hydrodynamic interaction
reducés the influence of tower-foundation-soil interaction effects on the second vibration
mode, e.g. the increase in damping ratio for the second vibration mode from 5% to 7.2%
due to tower-foundation-soil interaction is reduced to an increase from 5% to 6.6% when

hydrodynamic interaction effects are also included (Table 6.1).

Because the increase in effective damping due to tower-foundation-soil interaction is
larger in the higher vibration modes, their contributions to the tower response should be
reduced when foundation flexibility is considered in the analysis. For this particular tower,
however, the contributions of higher modes, specially the second vibration mode, to the
response of tower remain significant (Figure 6.10), in part, because the effects of tower-
foundation-soil interaction are small to start with and they are further reduced, as men-
tioned above, because of hydrodynamic interaction effects. Tower-foundation-soil interac-
tion, when considered with hydrodynamic interaction effects, slightly increases the max-
mum displacements at the top of the tower (Figure 6.9a) but reduces the maximum shear
forces and bending moments over most of the tower height (Figures 6.9b and 6.9c). These
different effects on the various response quantities result from the fact that the second vibra-

tion mode contributes differently to various response quantities (Figure 6.10).

6.5 Practical Earthquake Analysis of Intake-Outlet Towers

The analytical and numerical procedures, which were developed in Chapters 3 and 4,
and used to compute the carthquake response results presented in this chapter, are very
efficient and hence useful in the design of new intake-outlet towers and in the safety evalua-
tion of existing towers. In practical applications, the analysis should be performed for each

of the two components of the horizontal ground motion, applied along the planes of



130

symmetry of the tower, to obtain the maximum shear forces and bending moments acting
along the height of the tower in two mutually perpendicular planes. The effects of static
loads should be considered simultaneously with the dynamic response to two horizontal
components of ground motion considering tower-water interaction and tower-foundation-soil
interaction. Dynamic response analysis performed iﬁcluding the first five vibration modes

of the tower should provide sufficiently accurate estimates of makimum responses.

The computational time required to obtain a complete response history of displace-
ments and forces in Briones Dam Intake Tower (including the solution of associated eigen
value problem and fast Fqurier transforms) is shown in Table 6.3 for six cases mentioned
earlier. Although each of the interaction effects significantly complicate the analysis, the
additional computational time required to include them is modest, demonstrating the
efficiency of the numerical procedures presented in Chapter 4 for the evaluation of various
terms in the equations of motion. The overall efficiency of the analytical procedure, as
demonstrated by the data in Table 6.3, Lies in the use of the substructure method along with

the transformation of displacements to generalized coordinates.



131

Table 6.3 -- Computation Times for Complete Analysis of Briones Dam

Intake Tower to S69E Component of Taft Ground Motion

Case | Foundation Surrounding Inside Water | No. of Gen- | Central Pro-
Soil Water eralized cessor Time*
Coordinates in seconds
| rigid none none 5 4.9
) rigid normal none 5 6.8
3 rigid none normal 5 6.1
4 rigid normal normal 5 8.3
5 flexible none none 5 5.6
6 flexible normal normal 5 9.4

* IBM 3090 Computer




7. SIMPLIFIED REPRESENTATION OF HYDRODYNAMIC AND
FOUNDATION INTERACTION EFFECTS

7.1 Introduction

A general analytical procedure for computing the complete response-history of an
intake-outlet tower subjected to specified earthquake ground motion has been presented in
Chapters 3 and 4. The procedure is intended for the final design analysis of a new tower,
and for.the final safety-evaluation analysis of an existing tower. For the preliminary phase
of design or safety-evaluation of intake-outlet towers, it would be useful to develop a
simplified version of the analysis procedure, which is easie; to implement and provides
sufficiently accurate estimates of the maximum earthquake forces directly from the design
earthquake spectrum without the need for a response history analysis. Utilizing the
response results and conclusions of Chapters 5 and 6, such a simplified analysis procedure is
developed in this chapter that includes all the significant effects of tower-water interaction

and tower-foundation-soil interaction influencing the earthquake response of towers.

7.2 System and Ground Motion

The system considered consists of a hollow reinforced concrete intake-outlet tower par-
tially submerged in water and supported on the horizontal surface of flexible foundation soil
(Figure 7.1). The hollow tower is also partially filled with water. The tower may be of arbi-
trary cross-section having two axes of symmetry. This restriction allows the hydrodynamic
pressures on the inside and outside surfaces of the tower, caused by the horizontal com-
ponents of the earthquake ground motion along the planes of symmetry, to be represented as
equivalent lateral forces and moments distributed over the tower height acting along these
planes. The part of the tower foundation which is above the ground level is treated as a
rigid part of the towér and the remaining part of the foundation below the ground level is

idealized as a rigid foundation of infinitesimal thickness supported on the surface of a

132
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homogeneous viscoelastic halfspace (Figure 7.1). This simple idealization is reasonable for
the typical situation where the foundation is either surface supported or is at most slightly
- embedded. The system is analyzed under the assumption of linear behavior for the tower

concrete, the surrounding and inside water, and the foundation soil.

The response results are computed for towers with three different geometries : circular
cylindrical towe}s, circular tapered towers, and non-circular uniform towers. For a circular
cylindrical tower (Figure 7.2a), three different values for the ratio of tower height to average
radius, H,/r,= 20, 10, and 5 are considered. The ratio of the inside and outside radii, r;/r,,
. 1s selected equal to 0.8, i.e. the ‘wall thickness ¢, = 0.2 r,, a value typical of many towers.
For a tapered tower with circular cross-section (Figure 7.2b), the inside and outside radii at
the top of the tower are taken equal to half of what they are at the base. The inside and
outside radii decrease linearly along the height but their ratio r,(z)/r,(z) at any !ocation z
above the base remains 0.8. Three values of the ratio of the tower height to its average
radius r, at the base, H,/r,= 20, 10 and 5, are considered. The responses of a uniform
tower with the non-circular cross-section shown in Figure‘ 7.2¢, and with H,/r, = 20, are

computed for ground motion applied separately along two axes of symmetry.
All towers are assumed to be homogeneous and isotropic with linear elastic properties

for the concrete : Poisson’s ratio = 0.17, unit weight = 155 Ib/ft? and the Young’s modulus
of elasticity E; = 4.5 million psi.r The modification in the effective modulus of elasticity due
to reinforcing steel is not considered. Energy dissipation in the tower concrete is
represented by constant hysteretic damping factor of 5, = 0.10. This value corresponds to ;a
viscous damping ratio of 0.05 in all natural vibration modes of the tower without water on

rigid foundation soil.

Tower-foundation-soil interaction effects are investigated only for axisymmetric (both
cylindrical and tapered) towers. In both cases, the tower structure is assumed to be sup-
ported through a rigid circular foundation on the surface of deformable foundation soil

idealized as a homogeneous, isotropic, viscoelastic halfspace. The following material



St

~1.8a, = _
e —
v
Hq H. Hy

? Z * Z * z
Ifo
| ri — ‘ |

—— X —a X ]
DU — "

CIRCULAR CIRCULAR NON-CIRCULAR
CYLINDRICAL TOWER TAPERED TOWER UNIFORM TOWER

Figure 7.2 Three Idealized Towers



136

properties of the foundation soil are kept constant : Poisson’s ratio », = 1/3, and the ratio of
the rock mass density 1o concrete mass density, oy/p;, = 1. Similarly, the ratio of the mass
of the foundation to the mass of the superstructure, m;/m,, and the ratio of ‘the rotatory
inertia of the foundation to the total rotatory inertia of the tower structure about the base,
I¢/1,;, are taken equal to 1.0 and 0.2, respectively. The selected values for ms/m, and I,/I,
are more or less representative of many existing towers.

In order to/ check the accuracy of the simplified representation of the interaction effects
for the wide range of tower materials and tower-foundation systems, the wave parameter o is
varied from 20 to oo, where the latter value represents rigid foundation soil ; the ratio H;/r,
is varied from 2 to 8 ; constan; hysteretic damping factor g, for the foundation soil is varied
from 0.0 to 0.50 ; and two values of parameter vy are considered : 0.15 for circular cylindri-
cal towers without water (Figure 7.2a), and 0.06 for axisymmetric tapered towers without
water (Figure 7.2b). This particular choice of dimensionless parameters for the tower-
foundation-soil systems is discussed in Section 5.2.2,

The water surrounding (outside) the tower is idealized as a fluid domain of constant
depth extending to infinity in radial directions. The unit weight of water is taken equal to
62.4 Ib/ft’. Three values of inside water depth, H;, and surrounding water depth, H,, are
considered : no water (H,/H; = 0, H;/H; = 0), full surrounding water only (H,/H, = I,
H;/H, = 0), and full outside and inside water (H,/H; = |, H;/H; = 1).

The earthquake excitation considered for the simplified analysis of intake-outlet towers
is the horizontal free-field ground acceleration #,(¢) in a plane of symmetry of the tower
plan. Using this simplified procedure, the maximum response of the tower to each horizon-
tal component of ground motion can be evaluated separately and the combined effects of the

responses to the two components should be censidered in designing a new tower or evaluat-

ing the safety of an existing tower.
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7.3 Modal Response of Towers

As in the ‘exact’ analysis procedure {Chapters 2 and 3), the tower is idealized as a one-
dimensional Timoshenko beam including the effects of shear deformations and rotatory iner-‘
tia. The lateral displacements u(z,/) and rotations #(z,t) of the tower axis resulting from the
deformations of the to§ver, r.e. excluding the rigid body motions associated with translation
and rotation of the foundation due to horizontal ground motion, can be expressed as a
linear combination of the fixed-base natural vibration modes :

u(z,t) = § d,(z) Y,(1) (7.1a)

n=1
0(z,0) = 2 ¥nl2) V() (7.1b)
n=|

where Y, (1) irs the generalized (modal) coordinate associated with the n-th vibration mode,
defined by two functions ¢,(z) and ¢,(z) describing the lateral displacements and rotations
of the tower axis in n-th vibration mode. As demonstrated earlier [11], two vibration modes
are sufficient to represent the response of intake-outlet towers with their fundamental vibra-
tion period in the acceleration or velocity-controlled regions of the earthquake response
spectrum ; even the fundamental mode alone is sufficient in the acceleration controlled
region of the spectrum. In a simplified analysis, it is therefore appropriate to consider only
the contribution of the first two vibration modes to the response of the tower. The displace-

ments of the tower in the n-th vibration mode are ;
u(z,t) = ¢pp(z) Y,(2) {7.2a)
8(z,t) = ¥, (z) Y, (1) (7.2b)

The equation of motion for a fixed-base tower without water restricted to vibrate in its
n-th mode shape due to harmonic free-field ground acceleration ii (r) = e™! can be written

in terms of the frequency response function )7,,(@) for the associated modal coordinate :
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[ - M, + (1 +in)eiM,]Y,(0)=-L, (7.3)

in which w, is the n-th natural vibration frequency ; n, is the constant hysteretic damping
factor which is related to §,, the fraction of critical damping for the n-th vibration mode, by

7s = 2 £, ; and the generalized mass term A, and generalized excitation term L, are given

by :
H, | H, .
-M=£mﬂﬂmmfﬁ+£QM[WﬂFﬂ (7.4)
H,
a=£mwuwaﬂ (7.5)

in which my(z) and I (z) are the mass and the mass moment of inertia, respectively, of the

tower per unit of its height; and H, is the height of the tower.

The frequency response function for the modal coordinates ¥ ,(w) is directly obtained

from equation (7.3) :

Y (w) = ~ L (7.6)
M, [ -+ (1 +in)a}]

The response-history of the modal céordinate Y,(¢) due to a specified ground motion then
can be computed from its frequency response function, equation (7.6), using standard
Fourier synthesis techniques. The displacement response history of the tower is then given
by equation (7.2) ; other response quantities (shear forces or bending moments) can be
~ expressed in terms of Y,(¢). Furthermore, the maximum deformations and forces can be

directly computed from the response spectrum for an earthquake ground motion [9,14].

As demonstrated in Chapter 4, the influence of shear deformations and rotatory inertia
on the fixed-base vibration frequencies of towers without water increases with increasing
mode number and for decreasing slenderness ratio, and more than three-fourths of the

change in frequencies because of these two effects is due to shear deformations. It was
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thclfefore concluded in Chapter 4 that, in the dynamic analysis of towers considering only
the first two modes of vibration, while the contributions of shear deformations should be
included in the analysis of squat towers, the influence of rotatory inertia may be neglected
without introducing significant errors. This approximation has the advaﬁtage that it is not .
necessary to compute the bending slope functions, ¥,(z), in the simplified analysis.
Presented in the following sections of this chapter are extensions to equation (7.3) necessary
to include the effects of surrounding and inside water and of tower-foundation-soil interac-

tion in the simplified analysis of the modal response of towers to earthquake ground motion.

7.4 Towers with Water
7.4.1 Exact Individua! Mode Response

The governing equation for the response of tower constrained to vibrate in the n-th
vibration mode [equation (7.1)] can be modified to include the hydrodynamic interaction.

effects. The resulting equation is a special case of equation (3.46a), considering N vibration

modes and the coupling among them due to hydrodynamic effects :

[ - o (M) + (I+in) @2 M, 1 ¥ () = - L, (1.7)
M, =M, + M%, + M., | (7.8a)
L,=L,+L%+ L} (7.8b)

in which M, and L, were defined by equations (7.4) and (7.5) ; and M2, and L7 are the
added mass and the added excitation terms, respectively, arising from interaction between

the tower and the surrounding water :

H, H, R .
Mg, = £ $,(2) f(z) dz + J ValZ) M2A2) dz (7.9)
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H, H, .
Ly < ‘g ¢nlz) F3(2) dz + L[ ¥u(z) Mi(z) dz (7.10)

in which H, is the depth of surrounding water. In equations (7.9) and (7.10), f§(z) and

m{(z) are the hydrodynamic lateral forces and external moments acting in the plane of

vibration on the outside surface of the tower when the excitation is a unit horizontal

acceleration of the ground and the tower is rigid; and f9(z) and #p(z) represent the
corresponding functions when the excitation is the horizontal acceleration ¢,(z) and rota-

tional acceleration ¥,(z) of the tower axis with no ground motion. Similarly, the added

mass term M}, and the added excitation term L} due to inside water in the n-th mode

vibration of the tower are evaluated by the following equations:

H, H.
M}, = £ ba(2) 1(z) dz + £ ¥n(2) M(2) dz (7.11)
. _ H, ,
CLn= [ en(e) fo(e) dz + [ 4n2) Mo () dz (7.12)

where H; is the inside water depth; f}(z) and mé(z) are the hydrodynamic lateral forces
and external moments acting in the plane of vibration on the inside surface of the tower

when the excitation is unit horizontal acceleration of the ground and the tower is rigid; and

fi(z) and m:;(z) are the corresponding functions when the excitation is the horizontal

- acceleration ¢,(z) and rotational acceleration y,(z) of the tower axis with no ground motion.

The functions f§(z), My(z), f2(z), and M,(z) for the surrounding water and functions

15(2), mf)(z), fi(z), and mf,(z) for the inside water can be evaluated by solving the Laplace
equation, governing the dynamics of incompressible fluids, subjected to appropriate boun-
dary conditions at the free surface of water, the bottom boundary of the water domain, and

the tower water intgrface. These boundary value problems have been described in Chapter
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4, wherein eflicient numerical procedures to solve the Laplace equation for surrounding and

inside water domains have also been presented.

The external hydrodynamic moment functions #13(z) and Mi.(z) are zero if the cross-

section of the outside surface of the tower is uniform over the height of the tower. Similarly

mé(z) and mf,(z) are zero for towers with uniform cross-section of the inside surface. In
other words, these external hydrodynamic moments are non-zero for tapered towers, in
which éase they contribute to the hydrodynamic terms through equations (7.9) to (7.12). In
order to evaluate the influence of external hydrodynamic moments on the dynamic response
of towers, analyses were carried out by the procedure developed in Chapters 3 and 4, using
the implementing series of computer programs "TOWERRZ" and "TOWERJ3D", for the
towers described in Section 7.2. Presented in Figure 7.3 is the amplitude of the steady state
response of two tapered towers due to harmonic ground motion plotted against the excita-
tion frequency. These results were computed by two methods : (1) exact analyses as
described in Chapters 3 and 4, and (2) similar analyses but neglecting external hydro-
dynamic moments. It is apparent from these results that the effects of hydrodynamic
moments, which increase for squat towers, may be neglected in representing the hydro-
dynamic effects in the dynamic analysis of practical, tapered towers. Neglecting hydro-
dynamic moments leads to the same advantage as in neglecting rotatory inertia effects that

the bending slope function ¥,(z) need not be computed in the simplified analysis.

If the contribution of hydrodynamic moments to the added hydrodynamic mass and
excitation terms [equations (7.9) to (7.12)] is neglected, the effects of surrounding water on
the dynamics of towers in the n-th mode of vibration are completely and exactly accounted
for by considering

fn(2)
bn(2)

m(z) = (7.13)
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as an added mass per unit of height of the tower. Similarly, the effects of inside water in the

n-th mode of vibration of the tower are completely and exactly accounted for by considering

fh(2)
én(2)

mi(z) = (7.14)

as an added mass per unit of height of the tower. It can be shown that, in the absence of
hydrodynamic moments, equation (7.7) is also the equation of motion for a tower in air

with mass distribution

my(z) = my(z) + m2(z) + m(z) (7.15)

constrained to be vibrating in the shape ¢,(z), with m3(z) and m,ﬂ(z) given by equations
(7.13) and (7.14). The added hydrodynamic mass functions for the surrounding and inside

water depend on the shape ¢,(z) of the vibration mode considered. This, of course, implies

that no one function, m2(z) for the surrounding water or m’(z) for the inside water, will be

exactly valid for all vibration modes of the tower.
7.4.2 Added Hydrodynamic Mass

On the other hand, for many years the concept of an added hydrodynamic mass to
represent the inertial influence of water interacting with a structure has been based on the
assumption of a rigid structure. This concept has been applied in different situations,
including problems in classical hydrodynamics [31], dams imlpounding water [49], cylindri-
cal tanks containing water [29], and cylindrical structures surrounded by water [32]. For

towers such a concept leads to the following definitions for added hydrodynamic mass,

mi(z) and mi(z) :
mg(z) = f§(z) (7.16)

mi(z) = fb(z) (7.17)
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where, as defined earlier, f§(z) and f}(z) are the lateral hydrodynamic forces acting in the
plane of vibration on the outside and inside surfaces of a rigid tower, respectively, due to

unit horizontal acceleration of the ground. The additional generalized excitation terms in

H,
the n-th vibration mode associated with these added masses are l m3(z) ¢,(z) dz and

H,
‘g ml(z) ¢,(z) dz which can be shown to be equal to L? and L} [equations (7.10) and
(7.12)), respectively, if the hydrodynamic moments are neglected [32, Chapter 3]. However,

the additional generalized mass terms associated with the added masses of equations (7.16)

H, H,
and (7.17), given by ! m(z) ¢2(z) dz and { mi(z) #2(z) dz , are not equal to M2, and

M,ﬂ,, [equations (7.9) and (7.11)], respectively. Consequently, the added masses defined by
equations (7.16) and (7.17) are not exact representations of the hydrodynamic effects. How-
ever, they have the advantage that they do not depend on the vibration mode shapes of the

tower.

It is thus of interest to investigate whether these added masses, equations (7.16) and
(7.17), are adequate as approximate representations of the hydrodynamic effects. The accu-
racy of these added masses is evaluated for three towers described earlier. For this purpose,
the distributions of equivalent lateral forces are examined first. With the added mass
repreﬁentation of equation (7.15), the equivalent lateral forces associated with the maximum
response in the n-th vibration mode of the fixed-base tov?ers are [9,11]:

L .
F(z) = == SATHED 1y(2) ¢,(2) (7.18)
My,
where S, is the ordinate of the pseudo-acceleration response spectrum for the earthquake

ground motion evaluated at vibration period T and damping ratio ¢, = &, = 0,/ 2. The

period T} = 2x/w}, is the vibration period of the n-th vibration mode of the tower including
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the effects of water. The contribution of the surrounding water in the equivalent lateral

forces f,(z) of equation (7.18) for the n-th vibration mode 1s :

L,
U2 outside = IV; SATr.8,) mi(z) ¢.(2) (7.19)

The distributions of these forces over the depth of water is displayed in Figures 7.4 to 7.9

for the first two vibration modes for two definitions of the added hydrodynamic mass m3(z):
exact value of equation (7.13) and the approximate value of equation {7.16). Although exact
and approximate distributions of added mass differ ovcf the height, their integrals over the
height can be shown to be equal using the reciprocity property of hydrodynamic forces

[equation (3.28)]. Thus, the discrepancies in the distribution of the associated shearing
forces Q,(z) and bending moments #1,(z) are small enough in circular uniform towers (Fig-
ures 7.4 to 7.6) as well as in circular tapered towers (Figures 7.7 to 7.9), over a wide range of

H,/r, values, to make the approximate added mass suitable for simplified analysis.

Similarly, the contribution of the inside water in the equivalent lateral forces f,(z) of

equation (7.18) for the n-th vibration mode is :

i | | |
U2 inside = Y} Sa(Ty,kn) my(z) ¢,(2) (7.20)

The distribution of these forces, and the associated shears and moments over the depth of .

water, are displayed in Figures 7.10 to 7.15 for the first two vibration modes for two distri-

butions of the added hydrodynamic mass mé(z) . exact value of equation (7.14) and the
approximate value of equation (7.17). As in the case of surrounding water, and for similar
reasons, the approximate added mass of equation (7.17) provides results that are sufficiently
accurate for simplified aﬁalysis. The results presented also demonstrate that the approxi-
mate added mass concept is better in representing the effects of inside water (Figures 7.10 to

7.15) compared to outside water (Figures 7.4 to 7.9).
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7.4.3 Response Results

Presented in Figures 7.16 to 7.18 is the amplitude of the steady state response of towers
with full outside water only, and with full outside and inside water, to harmonic ground
motion, plotted as a function of the normalized excitation frequency w/w|, w; being the fun-
damental vibration frequency of the fixed-base tower without water, for three towers
described 1n Section 7.2 for various values of the slenderness ratio. These results were com-
puted by : (1) exact analysis described in Chapter 3 , and (2) analysis of the tower in air
with its mass equal to the actual mass plus the added hydrodynamic masses of equations

(7.16) and (7.17).

These results demonstré_te that the added mass approximation provides accurate
responses in the fundamental vibration mode, resulting in accurate values of the fundamen-
tal resonant amplitude for towers with a wide range of H,/r, values, with the results being
most accurate for slender towers. The added mass approximation is not as good in predict-
ing the second mode response and hence the second resonant period, with the errors increas-
ing for squat towers. However, over a wide range of slenderness ratios, the resonant
responses and the resonant periods (Figures 7.19 and 7.20) including hydrodynamic effects,

are reasonably accurate.

Based on the response results presented in this section, it is apparent that the hydro-

dynamic interaction effects can most simply be included in the response spectrum analysis

of towers by replacing the mass of the tower m(z) by the virtual mass m(z) [equation
(7.15)], with the added hydrodynamic mass distributions given by equation (7.16) for the
surrounding water and by equation (7.17) for the inside water. However, the analytical
expressions to evaluate the added hydrodynamic mass are available dnly for circular cylindr-
ical towers [33.40] and for uniform elliptical towers [30]. For towers of arbitrary cross-
section in plan and dimensions varying along the height, the computation of the added
hydrodvnamic mass requires a finite element solution of the boundary value problem for

rigid towers (Chapters 3 and 4). In order to avoid this complicated analysis in the
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preliminary design or safety evaluation of towers, an approximate procedure is presented in

Chapter 8 to evaluate the added hydrodynamic mass.

7.5 Towers on Flexible Soil

Simplified procedures have been developed to include the effects of soil-structure
interaction in the earthquake response analysis of buildings [45,46] and concrete gravity
dams [20]. The basic concepts underlying these procedures are : (i} structure-foundation
interaction effects in the fundamental vibration mode of the structure can be expressed by
changes in the vibration period and damping ratio for the fixed-base mode; and (ii) the con-
tribution of the higher vibration modes to the response may be approximately computed as
if the structure was supported on rigid soil. Based on these same concepts, a simplified pro-
cedure is developed for the analysis of intake-outlet towers including tower-foundation-soil
interaction effects. Although the contribution of the second mode to the base shear and
moment is more significant in the response of towers compared to most buildings [15],
resulting in increased influence of tower-foundation-soil interaction in the response confribu-
tion of this mode (Chapters 5 and 6), the above mentioned approximation is reasonable
because, over a wide range of fundamentai vibration periods, the tower response is dom-

inated by the fundamental mode.
7.5.1 Exact Fi undamentlal Mode Response

The equation governing the frequency response function ¥ ;(w) for the modal coordi-
nate associated with the fundamental vibration mode of the tower on fixed-base, equation
(7.1) for n = 1, must be modified to include the response functions for the rotation 8 Fw)

and horizontal translation #(w) of the tower foundation relative to the free-field ground

motion, permitted by the soil flexibility [equation (3.17) with N = ] :
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[
[-w?M+(1+in)etM,] 2Lk ~w?L? 7 1(w)
—W2L} —wXm+mp)+Kpp{w)  —@?Li+Kpp(w) it f(w)
, _
L‘ -—sz’f —w2L6+KMV(W) —w (It +If)+KMM(w) Bf(w)
L,
= - | m+my ' (7.21)
|

in which LY = L, ; m, is the total mass of the tower and I, is the mass moment of inertia of
the tower about the base including the contributions of the portion of the foundation above

the ground level (Section 7.2) :

H,
m, = ! m(z) dz (7.22)
H, H, B
I = lg 22 my(z) dz + 1[ I(z) dz (7.23)

In equation (7.21), my and I, are the mass and mass moment of inertia of the part of the

foundation below the ground level (Section 7.2) ; and

H: Hs .
L] = t{ z my(2) ¢y(z) dz + “m Vi(2) dz (7.24)
H,
Ly = !; z my(z) dz (7.25)

The frequency-dependent impedance functions, Kyp(w), Kynrlw), and Kyy{w) (since Ky (w)
= Kyp(w) by reciprocity property) which appear in the equations of motion for tower-
foundation-soil system [equation (7.21)] are obtained from the solution of two boundary
value problems for a viscoelastic halfspace, arising from the application of a harmonic hor-

izontal force and a harmonic moment, separately, to the rigid foundation. Procedures to
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evaluate these impedance functions have been presented in Chapter 4. The frequency

response function for the modal coordinate )_’l(w) can be evaluated by numerically solving
equation (7.21) repeatedly for various values of the excitation frequency w over the range of

interest.

The influence of coupling impedances K} {w) and Kjs(w), which are usually neglected
in the analysis of multistory buildings [45,46] but should be included in the analysis of con-
crete gravity dams [20], is insignificant in the fundamental mode response of towers, as)
shown in Figure 7.21 for circular cylindrical towers. The additional radiation damping asso-
ciated with the coupling impedances is small for intake-outlet towers and the resonant
response is slightly overestimated by neglecting coupling impedances. Therefore, in the

‘simplified analysis procedure presented next, the coupling impedances are neglected.

7.5.2 Approximate Fundamental Mode Response

The inertia terms my,, [, and L{ associated with the rigid body motion allowed by

foundation-soil flexibility may be approximated by the contributions of the fundamental
vibration mode: m, = m], L} = mih{, and I, = m|(h{)’, where m| = (L,)*/M, and

hy = L{/L, are the effective mass and effective height, respectively, of the tower in its fun-

damental vibration mode. With this approximation, equation (7.21) also governs the

response of a single degree of freedom (SDF) system with mass =], height hf, fixed-base fre-
quency w;, and constant hysteretic damping factor n,, supported on the actual foundation-
soil system. Therefore, following the procedure developed earlier for building-foundation
systems [45,46], the contribution of the fundamental vibration mode of the tower to its
earthquake response can be modeled by an equivalent SDF system on fixed base. The pro-
perties of the equivalent system are defined to recognize the reduction in stiffness and

change in damping of the tower due to soil-structure interaction.
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The natural frequency ] of the equivalent SDF system that models the fundamental

- mode response of the tower without water on flexible soil is given by (Appendix F) :

of < “1 (7.26)
\/ I + Re[F(«])]

in which '

(A1) 1

- ‘w2
Fy=met | g @+ Kool

(7.27)

and Re[F(w)] is the real part of the complex-valued function F(w). In deriving equations
(7.26) and (7.27), the effect of the second order damping term is ignored, and the foundation
mass m, and rotatory inertia I, are neglected, simplifications which do not introduce

significant errors [45]. Equation (7.26) must be solved iteratively to obtain the vibration fre-

quency f, which will always be less than w, because Re[F(w)] > 0 for all excitation frequen-
cies. By substituting equation (7.27), it can be shown that equation (7.26) is the same as the

corresponding expression in Reference [46] for building-foundation systems.

The frequency response function for the equivalent SDF system with natural frequency

«/ and constant hysteretic damping factor #| can be shown to have the following form
(Appendix F) :

2

of -L,

Yiw = | — (7.28)
U] o™y + (1 + i) (W) M

in which the constant hysteretic damping factor Tr{ is (Appendix F) :

5 !
of
n{=[“ M5 + N | (7.29)
wy
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where
2
of

ng=— | — | Im[F({)] (7.30)
W)

and Im[F(w)] is the imaginary part of the complex-valued function F{(w). In equation (7.29),

the first term on the right represents the contribution of the structural damping to n{ , and

the second term represents the added damping due to the contribution of foundation damp-

ing. The added damping factor 5, is always positive because Im[F(w)] < O for all excitation

frequencies. The equivalent viscous damping ratio 5{ is, of course, related to the hysteretic

damping factor #{ by & = #{/2.

In earlier work on simplified analysis of buildings [45,46] and concrete gravity dams
[20], energy dissipation in the structure on fixed-base was modeled by the viscous damping
ratio £;. With this damping model, the viscous damping ratio for the equivalent SDF sys-
tem representing the structure-foundation-soil system was shown to.be [20] :

3

wf .
g = w—i £+ &, (7.31)

where the added damping ratio £, due to soii—structure interaction 1s :
2
1] oef
fa=- 5| oo | miF)] (7.32)

1
g

The contribution of foundation damping is unaffected by the damping model for the struc-

ture, and consequently equations (7.30) and (7.32) are equivalent. However, the structural

damping is reduced proportional to (w{/w;)? - the same factor as in equation (7.30) or (7.32)

-- in case of the frequency-independent hysteretic damping model for the structure but the

reduction is proportional to (w|/w)® if frequency-dependent viscous damping is used to



170

model energy dissipation in the structure. The frequency dependence of viscous damping

results in the additional factor (w{ /w;) because of the frequency shift due to soil-structure

interaction.
7.5.3 Response Results

Figure 7.22 shows the amplitude of the horizontal accele;ation at the top of circular
cylindrical towers (Figure 7.2a), relative to the tc;wer base, due to horizontal harmonic free-
field ground acceleration, computed from equation (7.21) for several values of the wave
parameter ¢ and tower-height-to-footing-radius ratio H;/r, with hysteretic dampiné factors
ns = 0.10 for the tower and n, = 0.10 for the foundation soii. Similar results for circular
tapered towers (Figure 7.2b) are also presented in Figure 7.23. As the wave parameter ¢
decreases or the ratio H;/r; increases, the fundamental resonant frequency of the tower
decreases and the amplitude of the fundamental resonant peak also decreases. These effects
of foundation-soil flexibility and damping, both material and radiation, have been discussed
extensively for buildings [46], for concrete gravity dams [18,20], and for intake-outlet towers

(Chapters 5 and 6). The frequency response function for the equivalent SDF system, com-

puted from equation (7.28), with the natural frequency w{ and damping ratio mf given by
equations (7.26) and (7.29), respectively, is also presented in Figures 7.22 and 7.23. These
results demonstrate that, over a wide range of excitation frequencies and tower-foundation-
soil system parameters o, H,/r; and «, the equivalent SDF system accurately represents the

fundamental mode response of towers supported on flexible soil.

o

The lengtheﬁing of the fundamental resonant period of the tower due to tower-

foundation-soil interaction, determined from the resonant peak of ?l(w), obtained by solv-

ing equation (7.21), is shown in Figure 7.24 for a range of ¢ and H/r, values. The vibra-

tion period T{ of the équivalent SDF system, where T{ =27r/w{ is computed from equation
(7.26), is close to the fundamental resonant period of the tower-foundation-soil system for

large values of ¢ and low values of H;/r,, but its accuracy decreases as ¢ decreases or H,/ry
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increases, i.e., as tower-foundation-soil interaction effects become more significant.

The added damping factor n, due to tower-foundation-soil interaction is presented in

Figures 7.25 and 7.26, and the overall damping factor n{ of the equivalent SDF system is

shown in Figures 7.27 and 7.28 for circular cylindrical and tapered towers with n, = 0.10 for

a range of values of 5/, o, and H,/r;. Considering that w{ is less than wy, equétion (7.30)
indicates that tower-foundation-soil interaction reduces the effectiveness of structurél damp-
ing and therefore, the damping ratio in the fundamentalt vibration mode of the interacting
system will be less than the damping ratio of the fixed-base tower unless this reduction is
compensated by the increascdue to added foundation damping. This is apparent from Fig-
ure 7.28 for towers supported on purely elastic soil. In most cases, however, this reduction
is more than compensated by the added damping 7, resulting in an increase in the overall

damping.

7.6 Towers on Flexible Soil with Water
7.6.1 Exact Fundamental Mode Response

When modified to include the effects of tower-water interaction, the frequency domain
equations for the fundamental mode response of towers on flexible foundation soil, equation

(7.21), become [equation (3.46) specialized for N = 1] :

28 ; 2 ~ 2rr —
[-w M +(1+ing)wiM] ~WRLE ,, —w'Lj ¥ («)

~wiLt — (i +m)+Kpde)  —w’Li+Kp(w) i ()

_sz"rlf —w2E6+KMV(w) _wz(ft+1f)+KMM(w) 9_f(¢°)
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L
=~ gemy | | (7.33)

L

in which

M, =M+ M + M|, (7.34a)
Ly=L;+L{+Lj | (7.34b)
Ph b s Lk 4 L (7.34¢)
Ej=Li+LP+ LY | (7.34d)
wm, = m, + mf + m (7.34e)
I, =1 +1I¢+ I (7.341)
Li=L5+ LY +L§ (7.34g)

where L} = L, ; i{’ = L, ; the hydrodynamic terms M {, and L{ due to surrounding water

and M!,, L{ due to inside water, all of them associated with the vibration of tower in the
fundamental mode, have been defined in equations (7.9) to (7.12). In these equations, the

lateral and rotational motions of the foundation result in additional generalized mass terms
mf, I? and L{? associated with the inertial influence of the surrounding water ; and m/, I}

and L§ associated with the inertial influence of the inside water :

H,
mé = lfg(‘z) dz ; a=o0,i - (739
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H, H,
w=£z?ﬁuuk+£rmmoﬂ s a=o0,i (7.36)
H, .
L?=£zjﬂﬂdz; a=0,i (7.37)

in which subscript or superscript « = ¢ and / identify the terms for the outside and the

inside water, respectively ; and the functions f%(z), M1;(z) represent the hydrodynamic
lateral forces and moménts, respectively, on the outside or inside surface of the rigid tower
when the excitation is the unit rotational acceleration of the base. The additional hydro-
dynamic terms associated with the coupling between the rigid-body motion of the tower per-
mitted by supporting-soil flexibility and the vibration of the tower in its fundamental vibra-

tion mode are given by :

L =LY ; a=o0,i o (7.38)

H, a

L = ‘{ $1(2) f2(z) dz + !) Vi(z) mi(zydz ; a=o0,i (7.39)

X

The frequency response function for the modal coordinate }_’[(w) can be evaluated by
numerically solving equation (7.33) repeatedly for varying values of the excitation frequency

w over the range of interest.
~ 7.6.2 Approximate Fundamental Mode Response

It has been demonstrated in Section 7.4 that the influence of tower-water interaction on
the response may be approximately represented by the added hydrodynamic mass m3(z) due
to outside water [eqha‘tion (7.16)] and mé(z) due to inside water [equation (7.17)]. Based on
this added mass representation, the hydrodynamic forces f7(z) for the surrounding water

and fi(z) for the inside water may be approximated by : - -
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J7(z) = z mg(z) (7.40)

fi(z) = z mi(z) (7.41)

That this is a reasonable approximation is indirectly supported by the results of Figures 7.4
to 7.15 where the added mass approximation was shown to be accurate for the ﬁfst twol
modes of vibration of the tower on fixed-base. Similar numerical resulis have demonstrated
that the same added mass representation is satisfactory in rigid body motions of the tower

due to foundation rotation.

If the contribution of hydrodynamic moments to the hydrodynamic terms is neglected,

which was already shown to be small in Section 7.4.1, and the hydrodynamic effects are

represented by the added mass mZ(z) and mi(z) of equations (7.16) and (7.17), it can be

shown that the equation (7.33) for the tower-water-foundation-soil system is identical to the

equation (7.21) for a tower on flexible soil in air but with virtual mass distribution mg(z)
given by equation (7.15). Implicit in the above statement is the fact that wiM| = (c.:{)v2 M,,

where ] is the fundamental vibration frequency of the tower-water system on rigid founda-

tion soil.

The amplitude of the steady state acceleration response at the top of the tower to har-
monic ground motion is presented in Figure 7.29 for a circular cylindrical tower and for a
circular tapered tower, described in Section 7.2, both on flexible foundation soil. These‘

results were computed by two different methods : (1) the exact analysis described in Chapter

3 and (2) analysis of the tower in air with virtual mass my(z). It is apparent from these
results that, even on flexible foundation soil, the added hydrodynamic mass provides a satis-
factory representation of the hydrodynamic effects in the lower vibration mode response of
towers. Therefore, the equivalent SDF system defined in Section 7.5 to model the funda-
mental mode response of towers on flexible foundation soil without water can be extended

to include the hydrodynamic effects. To this end, the fundamental mode properties of the
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tower without water, namely the fundamental vibration frequency w;, generalized mass M|,
generalized excitation L, effective mass m| and effective height 4| are replaced by the
corresponding properties of the tower with water, i.e. w}, M|, Ly, #1| = (L)*/M,, and A{ =

f,{ /ﬁl. The latter set of properties can be determined by vibration analysis of the tower in

air but its mass taken as the virtual mass #2,(z) of equation (7.13).

Thus the natural frequency @, of the equivalent SDF system that models the fundamen-
tal mode response of the tower with water on flexible soil is given by an extension of equa-

tions (7.26) and (7.27) :

r

- )
- _ (7.42)
STV RelF @)
where
. . h)?
Fia) = " @wp? | =20 ! (7.43)

K (w) K yile)

Similarly, the constant hysterctic damping factor 7, of the equivalent SDF system that
models the fundamental mode response of the tower with water on flexible foundation soil is

given by an extension of equations {7.29) and (7.30) :

- 2

-~ w !

7 = it s + Mg (7.44)
w] ‘ ' :

where
- 2
3 ) ,
e = - | — | Im[F(&))] (7.45)

L w]
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The frequency response function for the equivalent SDF system with natural frequency w,;

and constant hysteretic damping factor %, is similar to equation (7.28) if the actual mass of

the tower is replaced by the virtual mass [equation (7.15)] :

2 -
- o - L,
Yi(w) = | — - - | (7.46)
Wi | —w?M i+ (1 + i 7)) &7 M,

7.6.3 Response Results

The final results of the series of approximations used to simplify the analysis of the fun-
damental mode response of the tower-water-foundation-soil systems are shown in Figure
7.30 for circular cylindrical towers and in Figure 7.31 for circular tapered towers. The
"exact” fundamental mode response of the tower on flexible foundation soil with full water
was computed by solving equation (7.33). The response of the equivalent SDF system was
computed using equation (7.46) with natural frequency w; and constant damping factor 7,
evaluated from equations (7.42) and (7.44) for the tower with virtual mass m(z). These
response results demonstrate that the equivalent SDF system provides a good approximation
of the fundamental mode response of the towers with water for a wide range of values for ¢
and Hy/ry. In fact, the quality of approximation is better when the effects of tower-water
interaction and of tower-foundation-soil interaction are simultaneously included compared
to when these effects are considered individually because the added hydrodynamic mass
overestimates the decrease in the resonant frequency due to hydrodynamic effects, whereas
the equivalent SDF system underestimates the decrease in resonant frequency due to soil-

structure interaction , and thus the errors in the two approximations are partially canceled.

7.7 Equivalent Lateral Forces

It has been shown in this chapter that the¢ hydrodynamic effects in the dynamic

response of towers may be represented by the added mass functions m2(z) and m/}(z) defined
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by equations (7.16) and (7.17), respectively. Thus, the hydrodynamic effects can most sim-

ply be considered by replacing the actual mass m,(z) of the tower by the virtual mass

1hy(2) = my(z) + m(z) + mj(z) | (7.47)

and analyzing the tower. Because such an approximation satisfactorily prcdictsjhe response
of towers to harmonic ground motion over a complete range of excitation frequencies, it can
be used in the analysis of tower response to arbitrary ground motion. In particular, the
equivalent lateral forces associated with the maximum response in the n-th mode of vibra-
tion of the tower are [9]:

L,

fal2) = o So( ThEL ) g(2) éu(2) (7.48)

in which 77 and ¢,(z) are the n-th natural vibration period and mode shape of the tower
with virtual mass m,(z), S,(T,¢y) is the ordinate of the pseudo acceleration response spec-

trum for the ground motion at vibration period 7, and damping ratio £, = £, = n,/2; note
that the hydrodynamic effects do not change the damping ratio. The generalized mass M’,,
and generalized excitation term E” is given by equations (7.4) and (7.5) with m(z) replaced

by m,(z) and neglecting the effects of rotatory inertia:

H;
M, = £ iy(z) [ dnlz) 1* dz ' (7.49)
H, N ’ .
L,= é W(z) $ulz) dz (7.50)

Recognizing . that the first two vibration modes are usually sufficient for the approxi-
mate evaluation of the earthquake design forces [11], it will be necessary to evaluate equa-
tion (7.50) for n = 1 and 2. This will require evaluation of (i) the first two vibration frequen-

cies and mode shapes by solving the associated eigenvalue problem for the tower with
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virtual mass #7,(z) ; and (ii) the added mass functions mZ(z) and m(z) by solving three-
dimensional boundary value prablems for the outside and inside water domains respectively.
Simplified methods for computing these quantities in practical application are developed in

Chapters 8§ and 9.

It has also been shown that the fundamental mode response of towers including tower-

- foundation-soil interaction effects is accurately predicted by an equivalent SDF system with

the following properties: natural frequency «; given by equation (7.42) and constant hys-

teretic damping factor 5, given by equation (7.44). Because the equivalent SDF system
representation is accurate over a complete range of frequencies, it can be used in the
analysis of tower response to arbitrary ground motion. Following the coﬂcepts developed
earlier for buildings [45] and dams [20], it can be shown that the equivalent lateral forces

associated with the maximum response in the fundamental mode of vibration are:

~

L - -
S12) = == S(TLE ) my(2) ¢4(2) (7.51)
M,

"where Sa(f Is .§ 1) is the ordinate of the pseudo acceleration response spectrum for the ground

motion at vibration period f'l = 27/w, and damping ratio 51‘ = 5;/2. As mentioned earlier,
the equivalent lateral forces associated with the response in the second vibration mode may
be computed from equation (7.48) because tower-foundation-soil interaction effects are
negligible in higher mode response. Thereafter, the shear and bending moment at any sec-
tion of the tower are computed by static analysis of the tower subjected to forces f,(z), n =

1 and 2, and appropriately combining the modal maxima.
Required in the evaluation of equation (7.51) is an iterative solution of the frequency

equation (7.42) to determine «; and subsequently 7, from equation (7.44). In these equa-
tions, the impedance functions K, {(w) and Ky ;,(w) for the foundation-soil system are also
required. Simplified methods for computing these quantities in practical application are

developed in Chapter 9.



8. SIMPLIFIED EVALUATION OF ADDED HYDRODYNAMIC MASS

8.1 Introduction

It has been demonstrated in Chapter 7 that the hydrodynamic interaction effects can
most simply be included in earthquake response spectrum analysis of an intake-outlet tower,

having an arbitrary cross-section with two axes of symmetry, by replacing the mass of the

tower m;(z) by the virtual mass #(z) defined as:

my(z) = my(z) + m2(z) + mi(z) (8.1)

where the added hydrodynamic masses m2(z) and ml(z) represent the effects of the sur--

rounding (outside) and inside water, respectively, on the dynamic response of the tower.

Added mass functions m%(z) and m/(z) have beer defined in Chapter 7 to account for
hydrodynamic effects in the dynamic response of the tower constrained to be vibrating in
the n-th vibration mpde shape ¢,(z) of the tower without water. The hydrodynamic effects
in the n-th mode of vibration of the tower are represented exactly by these added mass func-
tions if the tower is uniform and quite accurately (but not exactly) if the cross-sectional
dimensions of the tower vary along its height (Chapter 7). Because the added mass func-

tions obviously depend on the shape ¢,(z) of the vibration mode considered, no one func-

tion, mj(z) for the surrounding water or mé(z) for the inside water, will be exactly valid for

all vibration modes of the tower.

On thé other hand, for many vears the concept of an added hydrodynamic mass to
represent the inertial influence of water interacting with a structure has been based on the .
assumption df a rigid structure. This concept has been applied in different situations includ-
ing problems in classical hydrodynamics [31], dams impounding water [49], cylindrical tanks
containing water [29], and on cylindrical towers surrounded by water [33]. Although not

exact, this added mass has been shown to account for the hydrodynamic effects to a useful
)
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degree of accuracy for preliminary analysis of towers (Chapter 7).

Based on this concept, the added hydrodynamic mass functions mJ(z) and m’(z) are
the lateral hydrodynamic forces along the plane of vibration acting on the outside and inside
surfaces, respectively, of a rigid tower due to unit horizontal ground acceleration. Analytical
expressions for -these added hydrodynamic mass functions arch available only for ‘circular
cylindrical towers [32,40] and for uniform elliptical towers [30]. For a uniform tower of
arbitrary cross-section or for towers with cross-sectional dimensions varying along the
height, computation of the added hydrodynamic mass functibns requires a finite element
solution of boundary value problems for the outside and inside fluid domains (Chapters 3
and 4). Such analyses may be too complicated in the preliminary stage of design or safety

evaluation of towers.

The objective of this chapter is to develop a simplified procedure for evaluating the
added hydrodynamic mass which is accurate enough for preliminary earthquake analysis of

k3

towers.

8.2 Added Hydrodynamic Mass for Surrounding Water
8.2.1 Uniform Towers

The added mass for circular cylindrical towers associated with hydrodynamic effects of
surrounding water, obtained from an analytical solution of the Laplace equation [29,32,40],
1s :

-1

H, = '
I‘— E 7 Em(amro/Ho) cos(amz/Ho) (82)

o .| 16 L0
ma(z) = (owr3) | — . 22 2m-1)

where z = distance above the base of the tower, H, = depth of the surrounding water, p, =

mass density of water, r, = radius of the outside surface of the tower, «,, = 2m-1)x/2, and
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E H e Kl(an.qro/Ha) 8.3
m(amro/ o/ = KO(amro//Ho) + KZ(aer/HO) ( . )

in which K, is the modified Bessel function of order n of the second kind. For an infinitely

long uniform tower with the same circular cross-section, the added mass per unit of height is

Me = Ppuw T ?‘g (8.4)
which is equal to the mass of the water displaced by the (solid) tower per unit of height.

The normalized added mass mj(z)/mY, for circular cylindrical towers is presented in Figure
8.1 for a range of values of r,/H,, the ratio of the outside radius to water depth. It is
apparent that the normalized added mass is unity for the limiting case of an infinitely
slender cylinder (i.e. H,/r, = oo), and it decreases as the tower becomes more squat (i.e. the
slenderness ratio H,/r, decreases). In case of a finite-length tower, the fluid flows along the
height as well as around the circumference, whereas the fluid flow is two dimensional, only
around\‘. the circumference, for an infinitely long tower. Therefore, the inertial resistance to

motion is less in case of a finite tower than that for an infinitely long tower.

For a uniform tower of arbitrary cross-section, the added hvdrodynamic mass can also
be determined by solving the Laplace equation for the surrounding water domain. In this
case, however, analytical solutions are generally not feasible, and discrete methods of

Chapter 4 are necessary for computing the added hydrodynamic mass. Solution of a three-
dimensional boundary value problem (BVP) i1s required to evaluate mg(z)'[Section 4.3] but

mY, can be determined by solving a simpler two-dimensional BVP in the cross-sectional
plane of the tower using the semi-analytical process in the finite element procedure of Sec-

tion 4.3 (Appendix G, Section G.1).

Determined by this procedure, the added mass m2, per unit height of an infinitely-long
uniform tower is presented in Table 8.1 for a variety of cross-sections. The cross-section of

the outside surface of the tower has an area A4, with a width of 24, perpendicular to the
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Figure 8.1 Normalized Added Hydrodynamic Mass for Circular Cylindrical Towers
Associated with Surrounding Water
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Table 8.1 -- Added Hydrodynamic Mass m?, for Infinitely-Long

Towers Associated with Surrounding Water"

Direction

Cross-Section of the Qutside Surface a, mo me
of Ground b, x x
Motion pvy puTas
T.
j{ai -— 1 1.000 1.000
250 FOR

l | 0 -— ALL a,/b, 1.000

ST VALUES

. 0 !

1/5 0311 .| 1.980
1/4 0377 1.920
1/3 ©0.480 1.835
] 1/2 0.667 1.701
20, «— 2/3 0.853 1.630
{ | 1.186 1.511
—2b,— 32 1.661 1.411
2 2.136 1.359
3 3.038 1.289
4 3,896 1.242
5 4,752 1.211

* Values for some cross-sections also presented in Reference [17]
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Table 8.1 (Continued)

Cross-Section of the Outside Surface Direction a, o 0
' - mg, M
of Ground b, —

Motion Pwo pyTay

~——2bo—=
1/2 0.527 0.671
-— 1 1.189 0.756
2ch0 y 2 2.661 0.847

20,

-— 1 1.046 1.165

et
1/5 0.261 1.592
) 1/4 0.314 1.511
C ) 20, 13 | 0397 1.408
| | 1/2 0.555 1.262
—2bg 2/3 0.707 1.157
1 1.000 1.000
3/2 1.444 1.050
' 2 1.896 1.077
( ) 2+b° I 3 2.787 1.098
‘ ono——’ 4 3.658 1.102
5 4.516 1.101
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Table 8.1 (Continued)

Cross-Section of the Qutside Surface Direction a, e "o
of Ground b, —= *
Motion pwAs pwmaa2 :
2bo ' 1/5 0.282 1.779
(+ o +\ _1_ 1/4 0339 1.704
T » - 1/3 0.429 1.609
a a
Sl | N 0 1/2 0.597 1.479
\ | 23| 0.756 1392
1 1.059 1.276
-(2bg-ag )]
200
3 3/2 1.540 1.261
T (4 + ] 2 2.007 1.244
bo 2b, 3 2.909 1.213
U + ) l 4 3.786 1.189
\ ‘ .
' 5 4.646 1.170
k- (20, by)+]
—2a5 r/a,=1.0 | 1000 1.000
- | r/a,=0.8 | _ 1.009 1.109
* "(a 1 ria,=0.6 - 1 1.037 1.218
200 r/a,=0.4 ' 1.080 1.328
) vem02 1.135 1.433
" r/a,=0.0 , ' 1.186 1.511
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direction of ground motion, and its dimension along the direction of ground motion is 25,.

The computed added mass has been normalized with respect to (1) p,4,, the mass of the

water displaced by the (solid) tower per unit height ; and (2) p,,ma?, the mass per unit height

of a circular cylinder of water having diameter equal to 2a,. It is apparent that the added

mass m2, depends on the shape of the cross-section, and for a given shape, say a rectangle, it
varies with the ratio a,/b, of the cross-sectional dimensions perpendicular and parallel to

the direction of ground motion. Furthermore, contrary to the recommendations of Refer-

ence [39], the added mass m?2, for a non-circular cross-section with dimension 24, perpen-
dicular to the direction of ground motion can be much different than that for a circular

cross-section of diameter 2a,,.

Not only does the added mass mS, for an infinitely long tower vary with a,/b,, so does

the normalized added mass mJ(z)/m?, for a tower of finite height. This is demonstrated in
Figure 8.2 where this quantity, determined by the procedure of Section 4.3, is plotted for
towers with elliptical cross-section for two values of a,/H, and several values of a,/b,. It is

apparent that the influence of a,/b, increases with decrease in slenderness ratio H,/a,,.

Similarly the normalized added hydrodynamic mass depends on the shape of the cross-

section of the tower. This is apparent from Figure 8.3 where m2(z)/m?, is presented for two
towers with different cross-septions, rectangle and ellipse, but with the same slenderness raiio
H,/a, and the same ratio a,/b, of the cross-sectional dimensions. For a fixed a,/b,, the
area A, of the cross-section depends on the shape, e.g. 4, is 4a,b, for a rectangle and wa,b,
for an ellipse. Thus 4, may be treated as an indicator of the ‘cross-sectional shape. It is
only a partial indicator because even if the parameters a,/H,, a,/b, and A4, are identical for
two towers, the normalized added hydrodynamic mass need not be identical if their cross-
sectional sﬁapes are different. Thus, the normalized added hydrodynamic mass is influenced

by the slenderness ratio H,/a, (Figure 8.1), the ratio a,/b, of the cross-sectional dimensions
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(Figure 8.2), the cross-sectional area 4, (Figure 8.3), and the cross-sectional shape. In order
to identify the conditibns under which the normalized added hydrodynamic mass is essen-
tially the same for two towers, this quantity is computed fbr two towers with diﬁ'ereﬁt Cross-
sections, rectangle and ellipse, under two conditions : (1) same H,, H,/a, and ‘Ao, resulting
in different values of b, and hence a,/b, (Figure 8.4), and (ii) same H,, a,/b, and 4,, result-
ing in different values of a, and hence H,/a, (Figure 8.5). Figure 8.6 is similar to the latter
figure but shéws results for a practical cross-section. It is apparent from these figures that
the normalized added hydrodynamic mass for towers with same H,, a,/b, and A4, 1s essen-
tially independent of the shape of the cross-section.  The influence of the cross-sectional
shape, however, increases as the slenderness ratio H,/a, decreases.

Thus the normalized added hydrodynamic mass for uniform tower of arbitrary cross-
section is essentially the same és that for an "equivalent” elliptical tower. The plan dimen-
sions ratio d;,/l;o and the slenderness ratio H,/d, of the equivalent elliptical tower are

related to a,/b,, /310 and H, for the actual tower by :

H,  H, b, .. .50
- = i - ' .oa
a~o \/Ao/‘ll' aO ,

a~0 aO

Go _ 4o 8.5b

5 "%, (8.5b)

These properties of the equivalent elliptical towers corresponding to towers with ‘cross-
sections considered in Figures 8.5 and 8.6 are presented in Table 82 - Therefore, the nor-
malized added hydrodynamic mass for a uniform tower of arbitrary cross-section can be
readily determined if this quantity were available for towers of elliptical cross-section for a
practical range of values of a,/b, and H,/a,. Using the discrete methods of Section 4.3, the
norfnalized added mass for uniform towers with elliptical cross;sectioné can be determined
and tabulated for a number of values of the parameters a,/b, and Hf;/a;, but this will

require a large number of graphs and tables, and interpolation for intermediate values of the
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Table 8.2 -- Properties of ‘Equivalent’, Uniform Elliptical Towers

for Actual Uniform Towers

Direction Actual Tower | Equivalent, Elliptical
B Tower
Cross-Section of the Outside Surface|of Ground

Motion ~l ~ .,

aO/bO. aO/HO aﬂ/bO aO/HO

* : 2] 010 |12 0113

| ioo | o= 27| 020 | 122 0.226
—2bs— | 12 | 030 | 12 0.339
T 2 | 010 | 2 0.113

%bo 1 2 | 020 | 2 0.226

le—2 05— ‘ 2 | 030 | 2 0.339

7 1727 0.10 | 1/2° 0.107 -

’C ) 2::0 | = iz o2 |12 0.213
~—2Dbg o Jw2) 030 {1220 0320
‘ 2] 010 | 2 0.107

( ) ZEO " l 2 | 020 | 2 0.213
]ﬁ 205 2 | 030 | 2 0.320
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parameters.

The approach that is more convenient in practical application is to replace the uniform
elliptical tower by an "equivalent” circular cylindrical tower. Thus for fixed values of a,/8,
and H,/a, for an elliptical tower, determined is the radius 7, and hence slenderness ratio

H,/7, of the equivalent circular cylindrical towér, such that the integrals over water depth of

the normalized added hydrodynamic mass mg(z)/mg, of the two towers are equal. The pro- »

pe;rties of the equivalent circular cylindrical tower.are determined by iterative, numerical

techniques wherein m2(z)/m?, is determined from equation (8.2) for the circular cylinidrical

tower and by the methods of Section 4.3 for the uniform elliptical towér. The results are
summarized in Figure 8.7 wherein 7,/H,, the inverse' of the sléndérness ratio of the
.equivalent circular cylindrical tower, is presented against the corresponding quantity a,/H,
for the elliptical tower for various valﬁes of a,/b, for the elliptical cross-section. The nor-
malized added mass for elliptical towers determined approximately by evaluating equation
(8.2) for the equivalent circular cylindfical tower turns out to be essentially identical to the
‘exact’ results obtained by>the numerical methods of Section 4.3 (Figure 8.8). Although only
the integ}als over water depth of the normalized added mass for the elliptical and equivalent

circular towers were enforced to be equal, the ‘two added mass functions are essentially

identical throughout the water depth. -

Motivated by the observation from Figure 8.7 that, for-a fixed value of a,/b,, 7,/H, is
almost a linear function of a,/H,, the data of Figure 8.7 is presented in a different form in
Figure 8.9. It 1s apparent that the ratio r,/q, 15 essentially independent of the slenderness
ratio H,/a, if a,/b, is wiihin 1/3 to 3 which- would cover most practical cases. However,
outside this range of a,/b,, H,/a, has more influence on the ratio 7,/a,. Therefore, the

mean curve presented in Figure 8.9 can be used to determine the ratio 7,/a, if

1/3 < q,/b, < 3.
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8.2.2 Uniform Towers -- Summary

Based on the analysis and results presented earlier, the added hydrodynamic mass asso-

ciated with surrounding water for uniform towers of arbitrary cross-section with two axes of

symmetry can be determined by the following steps :

1..

Evaluate the parameters d,/b, and H,/d, for the ‘equivalent’ uniform elliptical
tower, using equation (8.5), corresponding to the properties of the actual tower :
slenderness ratio H,/a,, cross-sectional area A4, and ratio' a,/b, of the plan dimen-
sions.

Evaluate the slenderness ratio H,/r, of the ‘equivalent’ circular, cylindrical tower

from the properties d,/b, and H,/d, determined in step 1 for the equivalent,

elliptical tower using the data of Figure 8.7 or Table 8.3. Use linear interpolation
between the curves of Figure 8.7 for intermediate values of d,/b,. Alternatively, if
1/3 € dO/EO < 3, 7,/a, may be determined from the mean curve of Figure 8.9

corresponding to d,/b, determined in step 1.

Evaluate the normalized added mass m2(z)/mS, for the circular cylindrical tower

with slenderness ratio ratio f1,/7,, determined in step 2, from Figure 8.1 or Table

8.4. Use linear interpolation for intermediate values of #,/H,.

Determine the added hydrodynamic mass m2, for an infinitely long tower with the
actual cross-section from Table 8.1 where such results are prese_nted foi’ a few
splected cr({s;-sections'. For other cross-sections, a two-dimensional solution of the
Laplace equation should be carried out f(;_)r the surrounding water domain. For
convenience of the user, the finite element procedure to implement the analysis is
presented in Appendix G, and the required series of compqter programs "TOWER-
INF’, and their user’s manuals are presented in Appendix J of this report ,with a

numerical example.



‘Table 8.3 -- 7,/H, for ‘Equivalent’, Circular Cylindrical Tower for a Uniform-Elliptical Tower

with Plan Dimension Ratio a,/b, and Slenderness Ratio H,/a, ;

Associated with Added Hydrodynamic Mass due to Surrounding water

ao/bo J

ao/H, ,
1/5 1/4 /3 1/2 2/3 1 312 2 3 4 5
/ - ,
0.05 | 0.146 | 0.117 | 0.094 | 0.071 | 0.060 | 0.050 | 0.043 | 0.040 | 0.037 | 0.036 | 0.035
0.10 | 0279 | 0228 | 0.185 | 0141 | 0120 | 0010 | 0087 | 0080 | 0075 |-0.072 | 0.070
0.15 || 0408 | 0337 | 0274 | 0211 | 0180 | 0150 | 0431 | 0421 | o112 | 0.108 | 0.105
020 || 0.536 | 0.445 | 0363 | 0280 | 0240 | 0.200 | 0.175 | 0.162 0.150 | 0.144 | 0.141
025 | 0661 | 0551 | 0450 | 0348 | 0299 | 0250 | 0219 | 0203 | 0.188 | 0.181 | 0.177
030 | 0785 | 0656 | 0536 | 0416 | 0358 | 0300 | 0263 | 0245 | 0227 | 0218 | 0213
0.40 1.026 | 0.861 | 0.707 | 0.551 | 0.475 | 0400 | 0.352 | 0328 | 0305 | 0.294 | 0.287
0.50 - | 1062 | 0875 | 0.685 | 0.591 | .0.500 | 0441 | 0412 | 0385 | 0371 | 0363
0.60 - - 1040 | 0817 | 0708 | 0.600 | 0.531 0497 | 0465 | 0449 | 0.440
0.70 - . - 0949 | 0823 | 0700 | 0621 | 0583 | 0.546 | 0528 | 0.517

60T



Table 8.4 -- Normalized Added Mass mJ(z)/mJ, for Circular Cylindrical Towers Associated with Surrounding Water

ro/ Ho

z/H, - ' -

: 0.05 | 0.10 0.5 | 020 | 025 030 | 040 | 050 | 0.60 0.80 1.00
1.00 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0000 | 0000 | 0.000
098 || 0.455 | 0306 | 0236 | 0.194 | 0166 | 0.146 | 0.118 | 0.099 0086 | 0.068 | 0.056
096 | 0.634 | 0459 | 0366 | 0308 | 0.267 | 0.236 | 0.193 | 0.164 | 0.143 | 0.114 | 0.095
0.94 || 0.736 | 0.561 | 0.459 | 0.392 | 0343 | 0306 | 0254 | 0217 | 0190 | 0.153 | 0.128
0.92 | 0802 | 0.636 | 0.531 | 0459 | 0.405 | 0.364 | 0.304 | 0262 | 0230 | 0.186 | 0.156
0.90 | 0.846 | 0.693 | 0.588 | 0.514 | 0457 | 0413 | 0348 | 0301 | 0266 | 0215 | 0.181
088 | 0.878 | 0737 | 0.635 | 0.560 | 0.502 | 0.456 | 0.386 ‘| 0336 | 0297 | 0242 | 0.204
086 | 0901 | 0.773 | 0.674 | 0.599 | 0.541 | 0493 | 0420 | 0367 | 0326 | 0266 | 0.225
0.84 || 0.919 | 0802 | 0708 | 0.634 | 0.574 | 0.526 | 0.451 | 0.395 | 0.351 | 0.288 | 0.244
082 | 0932 | 0826 | 0.736 | 0.663 | 0604 | 0555 | 0478 | 0421 | 0375 | 0309 | 0262
0.80 | 0.943 | 0.846 | 0761 | 0.690 | 0.631 | 0582 | 0504 | 0.444 | 0.397 | 0328 | 0279
0.78 | 0.951 | 0.863 | 0.782 | 0.713 | 0.655 | 0.606 | 0.527 | 0.466 | 0417 | 0345 | 0.294
0.76 | 0958 | 0.878 | 0.801 | 0.734 | 0676 | 0627 | 0548 | 0486 | 0436 | 0362 | 0.309
074 | 0963 | 0890 | 0.817 | 0752 | 0.696 | 0.647 | 0.567 | 0.504 | 0454 | 0377 | 0323
072 | 0.968 | 0901 | 0.831 | 0769 | 0.713 | 0.665 | 0.585 | 0.521 | 0470 | 0392 | 0.335
070 || 0972 | 0910 | 0844 | 0784 | 0729 | 0.682 | 0.602 | 0537 | 0485 | 0405 | 0.347
068 || 0975 | 0918 | 0.856 | 0797 | 0744 | 0697 | 0.617 | 0552 | 0499 | 0418 | 0.359
0.66 | 0977 | 0925 | 0866 | 0.809 | 0.757 | 0.711 | 0631 | 0566 | 0513 | 0.430 | 0.370

01T



Table 8.4 '(Continﬁed)

r,/H,
z/H,
0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00

0.64 0.980 0.931 0.875 0.820 0.770 0.724 0.644 0.579 0.525 0.441 -0.38()'
0.62 0.982 | 0.937 0.883 0.830 0.781 0.736 0.657 0.591 0.537 0.452 0.389
0.60 0.983 0.942 0.891 0.840 0.791 0.747 0.668 0.603 0.548 0.462 0.399 -
0.56 0.986 0.950 0.904 0.856 0.810 0.766 0.689 0.624 0.568 0.481 0.415.
0.52 0.988 0.956 0.914 0.869 0.825 0.783 0.707 0.642 0.580 0.497 | 0.430
0.48 0.990 0.961 0.923 0.881 0.838 0.798 0.723 | 0.658 0.602 0.512 0.444
0.44 0.991 0.965 0.930 0.890 0.850 0.810 0.736 0.672 0.616 0.525 0.456
0.40 0.992 0.969 0.936 0.898 0.859 0.821 0.748 0.684 0.628 0.536 0.466
0.36 0.993 0.972 | 0.941 0.905 0.868 0.830 0.759 | 0.695 0.639 0.546 0.475
0.32 0.993 0.974 0.945 0.911 0.875 0.838 0.768 0.704 0.648 -| -0.555 | 0.484
0.28 | . 0.994 0.976 0.949 0.916 0.881 0.845 | 0.775 0.712 | 0.656 0.563 0.491
0.24 |- 0.994 0.977 0.951 0.920 0.886 0.850 0.782 0.719 0.663 0.569 0.497
0.20 0.994 0.978 0.954 | 0.923 ] 0.890 0.855 0.787 0.724 0.668 0.575 0.502
0.16 0.995 0.979 | 0.955 0.926 0.893 0.859 0.791 0.729 0.673 0.579 0.506
0.12 0.995 | 0.980 0.957 0.928 0.895 | 0.861 0.795 0.732 0.676 | 0.582 0.509
0.08 | 0.995 0.981 0.958 0.929 0.897 0.863 0.797 - | 0.735 0.679 0.585 0.511
0.04 0.995 0.981 0.958 0.930 0.898 0.865 0.798 0.736 0.680 | 0.586 0.512
0.00 0.995 | 00981 0.958 0.930 (0.898 0.865 | 0.799 0.737 0.681 0.587 0.513

[1¢
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5. Determine the added hydrodynamic mass m3(z) for the actual tower by multiply-

ing the normalized added mass determined in step 3 by mZ, computed in step 4.

For uniform towers of selected cross-sections, and cach with three different values of
the slenderness ratio, the added hydrodynamic mass has been determined by two methods :
(1) ‘exact’ analysis procedure presented in Section 4.3, and (2) the simplified analysis pro-
cedure presented above. It is apparent from Figures 8.10 to 8.12 that the results obtained
by the simplified procedure are satisfactory for a wide range of parameters. The accuracy is
more thaﬁ satisfactory for analyzing towers in their preliminary phase of seismic design or

safety evaluation.
8.2.3 Non-Uniform Towers

Although the cross-sectional shape of an intake-outlet tower usually does not change
along its height, the cross-sectional dimensions often decrease with increasing height above
the base. The procedure described in the preceding section to determine an equivalent cir-
cular, cylindrical tower for a uniform tower of arbitrary cross-section can be extended to
such a non-uniform tower. Because the cross-sectional dimensions of such a tower vary over
its height, this extension results in an equivalent, non-uniform tower with circular plan.

It was demonstrated in the preceding section that an equivalent circular, cylindrical
tower can be defined for the purpose of determining the normalized added hydrodynamic
mass for a uniform tower of arbitrary cross-section. The slenderness ratio H,/7, of the
equivalent tower depends on the shape, the area A,, and ratio a,/b, of the actual cross-
section of the actual tower. Thus, for a given water depth H,, the radius 7, of the
equivalent circular cross-section can be determined, which depends on the cross-sectional
shape and dimensions of the actual tower. This procedure can be successively applied to
several cross-sections of a non-uniform tower to determine the radii of the corresponding

equivalent circular cross-sections. The result would be an ‘equivalent’ tower of circular

cross-section, or an equivalent axisymmetric tower, with its radius 7,(z) varying with height.
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Such equivalent towers are shown for selected tapered towers in Figure 8.13. Because, as

discussed earlier, 7,/a, is essentially independent of H,/a,, 7,(z) is almost a linear function,
1.e, if the cross-sectional dimensions of the actual tower decrease linearly with height, the

equivalent axisymmetric towers also have close to a linear taper.

The normalized added hydrodynamic mass m;‘,’(z)/mgo(z) for selected non-uniform
towers is presented in Figure 8.14 as determined by two methods : (l) exact three-
dimensional hydrodynamic analysis of the §urrounding water domain for the actual tower
using the methods of Sections 4.3.1 to 4.3.3 ; and (2} exact, axisymmetric hydrodynamic

analysis of the surrounding water domain for the equivalent axisymmetric tower by the pro-
cedures presented in Section 4.3.4. The added mass m2(z) at any location z of the tower

has been normalized by m? (z), the added mass for the cross-section .at the same location,
i.e., the added mass per unit height of an infinitely long tower with that cross-section. The
latter added mass is determined ‘exactly’ by a two-dimensional hydrodynamic énalysis in the
x-y plane (Appendix G). It is apparent that the equivalent axisymmetric tower provide

results for normalized added hydrodynamic mass that are quite accurate.

Although, the evaluation of the normalized added hydrodynamic mass is considerably
simplified in replacing the three-dimensional hydrodynamic analysis by an axisymmetric
analysis, the latter is by no means simple.enough or used widely enough in engineering prac-
tice to be convenient in practical application. However, it can be shown that, at the expense

of some accuracy, a simple procedure can be developed [13]. The normalized added hydro-

dynamic mass m5(z)/mS (z) at any location z of the equivalent axisymmetric tower, where
the radius is 7,(z), 1—nay be computed from the analytically obtained normalized added mass
for a circular cylindricalltower with r,/H, = r,(z)/H,. [equation (8.2), Figure 8.1, or Table
8.4]. The resulting approximate values for the normalized added hydrodynamic mass are

compared in Figure 8.15 with ‘exact’ solutions for axisymmetric tapered towers obtained by

the rigorous analysis procedures of Section 4.3.4. It is apparent that the approximate
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procedure leads to good results for the upper half of the tower. Because the vibration fre-
quencies and mode shapes of the tower would not be much affected by the errors in the
added mass near the tower base, this simplified procedure should be accurate enough for the

preliminary phase of design and safety evaluation of towers.
8.2.4 Non-Uniform Towers -- Summary

Based on the analysis and results presented earlier, the added hydrodynamic mass asso-
ciated with surrounding water for non-uniform towers of arbitrary cross-section with two

axes of symmetry can be determined by the following steps :

1. Select a sufficient number of locations along the height where the added hydro-

dynamic mass for the non-uniform tower will be estimated to obtain the the

height-wise distribution of added mass mJ(z). Compute the height coordinate z

for the selected locations.

2. Determine the cross-sectional radius 7,(z) of the equivalent axisymmetric tower at
a selected location z. This is achieved by using the procedure for uniform towers
(Section 8.2.2) with the cross-section of the uniform tower taken to be the same as

the actual cross-section pertaining to that location.
3. Evaluate the normalized added hydrodynamic mass for the equivalent axisym-
metric tower at the selected location z as the normalized mass from Figure 8.1 (or

Table 8.4) for a circular cylindrical tower corresponding to r,/H, = 7,(z)/H, per-

taining to that location, determined in step 2.

4. Compute th‘e added hydrodynamic mass mZ,(z=0) for an inﬁnitcly long tower
with its cross-section same as at the base of the actual tower .from either Table 8.1
or a two-dimensional analysis of the Laplace equation for the surrounding water
domain (Appendix G). If the shape of the cross-section of the actual tower is

unchanged along its height and only its dimensions vary, determine the added

mass rhgo(z) at the selected location z by recognizing that the ratio m2.(z)/m%,(0)
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is equal to the ratio 4,(z)/A4,(0) of the cross-sectional areas at the two locations. If

the cross-sectional shape changes, evaluate m2 (z) directly from the cross-sectional

properties of the actual tower at the location z selected in step 2 (Appendix Q).

5. Determine the' added hydrodynamic mass mJ(z) for the actual tower at the loca-

. tion z selected in step 2 by multiplying the normalized added mass, determined in

step 3, by m%,(z) for that location computed in step 4.

6. Repeat steps 2 to 5 for various locations along the tower height, selected in step 1,
to obtain the complete distribution of added hydrodynamic mass for a non-

uniform tower.

For selected non-uniform towers (Figure 8.13), the added hydrodynamic mass associ-
ated with outside water has been determined by two methods : (1) the simplified analysis
procedure just summarized, and (2) the ‘exact’ analysis pro;:edure presented in Sections
4.3.1 to 4.3.3. It is apparent from Figure 8.16 that the simplified procedure leads to results
that seem accurate enough for use in preliminary design and safety evaluation of towers,

especially for slender towers.

8.3 Added Hydrodynamic Mass for Inside Water
8.3.1 Uniform Towers
The added hydrodynamic mass for circular cylindrical towers associated with hydro-

dynamic effects of inside water, obtained from an analytical solution of the Laplace equation

[29,40], is :

) H = _1yn-1
mi(z/H;) = (pyrr?d)- ;‘r% + 2 %_17 Dyenti/Hy) coslanz/H) | (8.6)

where z = distance above the base of the tower, H; = depth of the inside water, p,, = mass

density of water, r; = radius of the inside surface of the tower, «,, = (2m-1)x/2, and
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Do (ar /H,) = I{apyri/H;) 8.7)
Pl L) = T (T HG) + Tty T HY) '

in which I, is the modified Bessel function of order » of the first kind. For an infinitely-

long tower with the same circular cross-section, the added mass per unit of height is :

méo =Py T riz (8.8)
which is equal to the mass of the water contained within the hollow tower per unit height,

The nérmalized added mass m.(z)/m!, for circular cylindrical towers is presented in Figure
8.17 for a range of values of r;/H;, the ratio of the inside radius to water depth. ‘It is
apparenf that the normalized added mass is unity for the limiting case of an infinitely
slender tower (i.e. H;/r; = ©0), and it decreases as the tower becomes more squat, i.e; the
slenderness ratio #,/r; decreases. When compared with the normalized added mass of sur-
rounding water {(Figure 8.1), it is apparent that for the same slenderness ratio, the normal-

ized added mass for the inside water is larger.

For a uniform tower of arbitrary cross-section, the added hydrodynamic mass can also
be determined by solving the Laplace equation for the inside water domain. In this case,
however, analytical solutions are generally not feasible and discrete methods of Chapter 4

are necessary for computing the added hydrodynamic mass. Solution of a three-dimensional

boundary value problem (BVP) is required to evaluate mé(z) [Section 4.4]. However, it can

be demonstrated [Appendix G, Section G.2] that for any tower cross-section
miy = py A; | (8.9)
where A4; is the cross-sectional area of the inside surface of the tower (Appendix G, Section

G.2). Thus, m', is simply equal to the mass of the water contained within the hollow, uni-

form tower per unit of height.
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It has been demonstrated in Section 8.2.1 that the normalized added hydrodynamic

mass ma(z)/mZ, associated with surrounding water for a uniform tower of arbitrary cross-
section is essentially the same as that for an "equivalent” circular cylindrical tower. A pro-
cedure to determine the properties of the equivalent tower was summarized in Section 8.2.2.
Once these properties have been determined, the normalized added hydrodynamic mass is
‘directly obtained from the analytical results for circular cylindrical towers. These concepts
are also applicable to the analysis of the inside water domain, which could have been
demonstrated in a manner similar to Section 8.2.1. Without going through the detailed
development, a simplified procedure parallel to the presentation of Section 8.2.2 for sur-

rounding water is summarized next for inside water.
8.3.2 Uniform Towers - Summary

Consider a uniform tower of arbitrary cross-section with two axes of symmetry having
an interior cross-section with area A4;, width 24, perpendicular to thel direction of ground
motion and interior dimension 254; along the direc_tion of ground motion , and the interior
water depth equal to H;. The added hydrodynamic mass associated with inside water may
be determined by the following steps :

1.I Evaluate the properties of the ‘equivalent’ uniform, elliptical tower with interior

cross-sectional dimensions 2d; and 25,— perpendicular and along the direction of

ground motion, respectively. The ratio g; /b; and the slenderness ratio H;/a, are

given by
, 1, b, (8.10a)
_ . el (8.10a
di a;
= =7 (8.10b)
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2. Evaluate the slenderness ratio H;/#; of the ‘equivalent’, circular cylindrical tower

from the properties &@;/5; and H,/d; determined in step | for the equivalent, ellipt-
ical tower using the data of Figure 8.18. These data were developed by procedures
parallel to those of section 8.2.1. However, when the data of Figure 8.18 is

presented in the form of Figure 8.19, it is apparent that, for all values of the ratio

&,—/5;, Fi = I;i which after utilizing equation (8.10) becomes :

"—\/A" b 8.11
ri— T al_ (' )

3. Evaluate the normalized added mass m.(z)/m', for the circular cylindrical tower
with slenderness ratio H;/7;, determined in step 2, from Figure 8.17 or Table 8.5.

~Use linear interpolation for intermediate values of 7;/H;.

4. Determine the added hydrodynamic mass m.(z) for the actual tower by multiply-

ing the normalized added mass determined in step 3 by m', = p,, 4;.

For uniform towers of selected cross-sections and each with three different values of the
slenderness ratio H; /a,-,lth-e added hydrodynamic mass associated with inside water has been
determined by twd methods : (1) the simplified analysis procedure just summarized, and (2)
the ‘exact’ ana]ysis procedure of Section 4.4, It is apparent from Figures 8.20 to 8.22 that
the results obtained by the simplified procedure are excellent indeed for a wide range of
parameters. A comparison of Figures 8.20 to 8.22 with Figures 8.10 to 8.12 indicates that
the simplified procedure works better for inside water than it does for surrounding water. In
both cases, the simplified procedure is accurate enough for analyzing towers in their prelim-

inary phase of design or safety evaluation.
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Table 8.5 -- Normalized Added Mass mﬁ,(z)/ pwA; for Circular Cylindrical Towers Associated with Inside Water

ri/H;

z/H; ; ;

0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 | 0.60 0.80 1.00
.00 | 0.000 | 0.000 | 0.000 { 0000 | 0.000 | 0000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
098 | 0.588 | 0388 | 0295 | 0.240 | 0204 | 0178 | 0.143 | 0.120 | 0.104 | 0.082 | 0067
096 | 0.806 | 0.589 | 0.466 | 0388 | 0335 | 0295 | 0.240 | 0204 | 0177 | 0.141 | 0.117
0.94 || 0907 | 0.719 | 0589 | 0501 | 0.437 | 0389 | 0320 | 0274 | 0240 | 0.192 | 0.160
092 || 0956 | 0.807 | 0.682 | 0589 | 0.520 | 0.466 | 0.389 | 0334 | 0294 | 0237 | 0.198
0.90 || 0979 | 0867 | 0752 | 0.661 | 0.589 | 0533 | 0448 | 0388 | 0343 | 0278 | 0233
088 | 0990 | 0908 | 0.807 | 0.719 | 0.648 | 0590 | 0501 | 0.436 | 0387 | 0316 | 0265
0.86 | 0.995 | 0936 | 0.849 | 0.767 .| 0.698 | 0.639 | 0.548 | 0.480 | 0428 | 0350 |- 0.295
0.84 || 0997 | 0956 | 0.882 | 0.807 | 0.740 | 0.682 | 0589 | 0520 | 0465 | 0382 | 0322
0.82 | 0.999 | 0969 | 0908 | 0840 | 0776 | 0.720 | 0.627 | 0556 | 0499 | 0412 | 0349
0.80 || 0.999 | 0979 | 0928 | 0867 | 0807 | 0.753 | 0.661 | 0589 | 0.530 | 0440 | 0373
0.78 | 1.000 | 0985 | 0944 | 0889 | 0834 | 0782 | 0692 | 0619 | 0.560 | 0467 | 0396
0.76 || 1.000 | 0.990 | 0956 | 0908 | 0857 | 0.807 | 0.719 | 0647 | 0.587 | 0491 | 0418
0.74 || 1.000 | 0.993 | 0965 { 0923 | 0876 | 0830 | 0744 | 0673 | 0.612 | 0514 | 0439
0.72 || 1.000 | 0.995 | 0973 | 0936 | 0.893 | 0849 | 0767 | 0.696 | 0.635 | 0536 | 0.458
0.70 | 1.000 | 0.997 | 0.979 | 0.947 | 0908 | 0867 | 0788 | 0.718 | 0.657 | 0557 | 0.477
0.68 || 1.000 | 0.998 | 0983 | 0956 | 0921 | 0882 | 0807 | 0738 | 0.678 | 0576 | 0495
0.66 ( 1.000 | 0998 | 0987 | 0.963 | 0931 0.757 | 0.697 | 0.595 | 0.511

0.8%96

0.824

6¢C



Table 8.5 (Continued)

ri/H;

z/H; : . -

0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.80 1.00
0.64 1.000 | 0.999 | 0.990 | 0.969 | 0.941 0.908 | 0.839 | 0.774 | 0.715 | 0.612 | 0.527
0.62 1.000 | 0999 | 0992 | 0.975 | 0949 | 0919 | 0.853 | 0.790 | 0.731 | 0.628 | 0.542
0.60 1.000 | 0.999 | 0994 | 0979 | 0956 | 0928 | 0.866 | 0.805 | 0.747 | 0.644 | 0.557
- 0.56 1.000 1.000 | 0996 | 0.985 | 0.967 | 0944 | 0.889 | 0.831 0.775 | 0.672 | 0.583
0.52 1.000 1.000 | 0.998 | 0.990 { 0976 | 0.956 | 0.907 | 0.854 | 0.800 | 0.697 | 0.607
0.48 || 1.000 1.000 | 0.998 | 0.993 | 0982 | 0965 | 0923 | 0873 | 0821 | 0.720 | 0.628
0.44 1.000 1.000 | 0.999 .| 0.995 | 0986 | 0973 | 0.935 | 0.889 | 0.840 | 0.740 | 0.647
0.40 1.000 1.000 | 0.999 | 0997 | 0990 | 0.979 | 0.946 | 0903 | 0.856 | 0.757 | 0.664
0.36 1.000 1.000 1.000 | 0998 | 0.992 | 0983 | 0954 | 0915 | 0.870 | 0.773 | 0.679
0.32 1.000 1.000 1.000 | 0.998 | 0.994 | 0987 | 0.961 0.925 | 0.882 | 0.786 | 0.693
0.28 1.000 1.000 1.000 | 0.999 | 099 | 0990 | 0967 | 0933 | 0892 | 0.798 | 0.704
0.24 1.000 1,000 1.000 | 0999 | 0997 | 0992 | 0972 | 0.940 | 0.900 | 0.808 | 0.714
0.20 1.000 1.000 1.000 | 0.999 | 0.998 | 0993 | 0.976 | 0.946 | 0.907 | 0.816 | 0.722
0.16 1.000 1.000 1.000 1.000 [ 0998 | 0994 | 0978 | 0950 | 0913 | 0822 | 0.729
0.12 1.000 | 1.000 1.000 1.000 | 0998 | 0.995 | 0.981 0.954 0.917 | 0.827 | 0.734
0.08 1.000 1.000 1.000 1.000 | 0999 | 0996 | 0.982 | 0956 | 0.920 | 0.831 | 0.737
0.04 1.000 | 1.000 1.000 1.000 | 0999 | 0.996 | 0.983 | 0.957 | 0.922 | 0.833 | 0.740
0.00 1.000 1.000 1.000 1.000 | 0999 | 0996 | 0.983 | 0958 | 0922 | 0.834 | 0.740

0£C
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8.3.3 Non-Uniform Towers

It has been demonstrated in Section 8.2.3 that, for purposes of evaluating the added hy-
drodynamic mass associated with water surrounding a non-uhiforlrn tower, it is possible to
define an ‘equivalent’ axisymmetric tower, i.e. a tower with its exterior surface héving a cir-
“cular cross-section, with its radius 7,(z) varying with height.

This idea works even better for inside water. The interior radius r;{(z) of the equivalent
axisymmetric. tower would be determined as in the case of surrounding wéter, by applying
the procedure for uniform toweré (steps | and 2 of Section 8.3.2) successively for several -
locations along the height. At each location, the cross-section of the uniform tower is taken

as the cross-section at that location of the actual tower. This is demonstrated in Figure 8.24

where the normalized added hydrodynamic mass mi(z)/m',(z) is presented for selectéd
towers (Figure 8.23) as determined by two methods : (1) exact three-dimensional analysis of
the inside water domain: for the actual tower using the méthods of Section 4.4.2 ; and (2)
-¢xact, axisymmet}ic hydrodynamic analysis of the inside water domain for the equivalent
axisymmetric tower by the procedure presented in Section 4.4.3. It is apparent that the

agreement between the results from the two analyses is excellent.

It was also shown in Section 8‘2_.3 that the normalized added hydrodynamic mass at
each cross-section of the equivalent axisymmetric towef could be computed to a satisfactory
degfee of accuracy from the analytical results for a circular cylindrical tower. It can be
shown that this concept is also satisfactory for evaluating the added hydrodynamic mass

associated with water contained inside an axisymmetric tower. Thus, the normalized added

hydrodynamic mass m;(z)/méo(z) at any location z, where the radius is #;(z), of the
| equivalent axisymmetric tower may be computed from the analytically obtained results for a
circul'ar. cyliﬁdfical tower with r;/H; = F;(z)/H; [equation (8.6), Figure 8.17 or Table 8.5].
The resulting approximate vélues appear td._be satisfactory for preliminary analysis of towers

(Figure 8.25). . Therefore, a simplified procedure, parallel to the presentation of Section 8.2.4
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for surrounding water, is summarized next for inside water.

8.3.4 Non-Uniform Towers -- Summary

Based on the analysis and results presented earlier, the added hydrodynamic mass asso-

ciated with inside water for non-uniform towers of arbitrary cross-section with two axes of

symmetry can be determined by the following steps :

1.

Select a sufficient number of locations along the height where the added hydro-

dynamic mass for the non-uniform tower will be estimated to obtain the height-

wise distribution of added mass m)(z). Compute the height coordinate z for the

selected locations.

- Determine the cross-sectional radius 7;(z) of the equivalent axisymmetric tower at

a selected location z. This is achieved by using the procedure for uniform towers
[equation (8.1!)] with the cross-section of the uniform tower taken to be the same

as the actual cross-section pertaining to that location.

Evaluate the normalized added hydrodynamic mass for the equivalent axisym-

- metric tower at the selected location z as the normalized mass from Figure 8.17

{or Table 8.5) for a circular cylindrical tower corresponding to r;/H; = F{(z)/H,;

'pertaining to that location, determined in step 2.

Determine the added hydrodynamic mass mX(z) for the actual tower at location z

. selected in step 2 by multiplying the normalized added mass, determined in step 3,

by ml.(z) for that location. If 4;(z) is the area of the interior cross-section,

M, (2) = pw 4i(2).

Repeat steps 2 to 4 for various locations along the tower height, selected in step 1,

to obtain the complete distribution of added hydrodynamic mass m)(z) for a non-

uniform tower.
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For selected non-uniform towers (Figure 8.23), the added hydrodynamic mass associ-
ated with insiﬁe water has been determined by two methods : (1) the simplified analysis pro-
cedure just summarized, and (2) ‘exact’ analysis procedure présented in Section 4.4.2. It is.
apparent from Figure 8.26 that the simplified procedure leads to results that seem accurate

enough for use in preliminary design and safety evaluation of towers.

For a non-circular tapered tower, the added hydrodynamic mass due to surrounding
and inside water has been computed using. the simplified procedure presenlted in this
chapter. Since the added hydrodynamic mass for a non-circular tower usually depends on
the direction of ground motion (Chapter 5), the added hydrodynamic mass. for the selected
tower has been computed for two orthogonal directions of ground motion. The step-by-step

computational details for this numerical example are summarized in Appendix H.



TOWER A TOWER B

= 08 5
S~
N
w
(7]
&
W 0.6
>
Q
m
< EXACT ANALYSIS
3 04+ -—---—~ SIMPLIFIED B
Z ANALYSIS
< b
[y
24
Q

0.2} -

0 | 1 | 1 ] | J ]

O 02 04 06 08 100 02 04 06 08 10
NORMALIZED ADDED MASS mi(z) / p,, A(Z)

Figure 8.26 Comparison of Exact and Approximate (Simplified Analysis Procedure) Values of the Normalized
Added Hydrodynamic Mass for Two Non-Uniform Towers Associated with Inside Water

)44



9. SIMPLIFIED EARTHQUAKE ANALYSIS OF INTAKE-OUTLET TOWERS

9.1 Introduction

A general procedure for analysis of the earthquake response of intake-outlet towers of
arbitrary geometry but with two axes of plan symmetry was developed in Chapters 3 and 4.
Based on the response results obtained by this procedure, which were presented in Chapters
5 and 6, and the conclusions derived from these results, a simplified representation of the
hydrodynamic and foundation interaction effects to approximately model the more
significant factors influencing the response of intake-outlet towers, was presented in Chapter
7. In particular, it was demonstrated that : (1) the added mass representation of hydro-
dynamic effects due to surrounding (outside) and inside water is appropriate and provides .
sufficiently accurate results ; and {2) tower-foundation-soil interaction effects can be appro‘xi-
mately included in the response analysis by simply meoedifying the fundamental vibration
period and the associated damping ratio. Earlier work on buildings suggests that the contri-
bution of the second vibration mode to the response may be computed as if the the tower
was supported on rigid foundation soil [45,46]. Similarly it has been demonstrated that the
first two vibration modes are usually sufficient for the approximate evaluation of the earth-

quake design forces in the preliminary phase of design and safety evaluation of towers [11].

However, the procedure presented in Chapter 7 for the approximate earthquake
response analysis of intake-outlet towers still requires : (1) evaluation of the first two vibra-
tion frequencies and mode shapes by solving the associated eigen value problem for the
tower ; (2) evaluation of the added hydrodynamic mass associated with surrounding (out-
side) and inside water by solving three-dimensional boundary value problems for the outside
and inside water domains, respectively ; and {3) computation of the modifications in the
vibration period and damping ratio of the fundamental vibration mode due to tower-
foundation-soil interaction effects by iterative solution of the frequency equation [equation

(7.26)).
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The objective of this chapter is to develop a simplified version of the earthquake
analysis procedure presented in Chapter 7 for intake-outlet towers, including tower-water
interaction and tower-foundation-soil interaction effects, which is easier to implement but
still provides sufficiently accurate estimates of the maximum earthquake (design) forces
directly from the earthquake design spectrum without the need for a response history
analysis. Utilized in the simplified énalysis are the procedure and standard data of Chapter
8 for evaluation of the added hydrodynamic mass due to surrounding and inside water. Also
included are convenient methods for computing the first two natural frequencies and modes
of vibration of the tower, and the modifications to the frequency and -damping ratio of the
fundamental mode due to tower-foundation-soil interaction. The resulting analysis pro-
cedure is intended for the preliminary phase of design and safety evaluation of intake-outlet

towers.

9.2 Natural Frequencies and Vibration Modes of Tower

Computaﬁon of the natural frequencies and shapes of the first two vibration modes of
an intake-outlet tower requires solution of an eigen problem for a one-dimensional finite ele-
ment idealization of the tower considering flexural and shear deformations. Such solutions
can be obtained readily if appropriate computer programs are available. Otherwise,
simplified procedures based on Stodola and Rayleigh methods [4,14] that can be readily
implemented are recommended. They have been utilized earlier for multistory buildings
[16], which are specialized next for intake-outlet towers with distributed mass and stiffness
properties. The influence of rotatory inertia on the frequencies and mode shapes, which
already has been shown to be small (Chapter 4), is neglected in order to simplify the compu-

tational procedure.
9.2.1 Fundamental Mode

The fundamental frequency and mode of vibration can be computed from the following

step-by-step procedure :
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1. Determine the height-wise distribution of an initial set of inertia forces associated with

7 ?(z), an initial estimate of the fundamental mode shape of the tower normalized to

unit value at the top (z = Hj) :

Fi@) = miz) alz) RS

where m(z) is the mass of the tower per unit of height. If the tower to be analyzed is an

existing tower or is a proposed tower for which a preliminary design is available, then m(z)

is known and i U(z) could be any reasonable deflected shape e.g. the fundamental mode
shape of a uniform cantilever, the parabola (z/HS')z, etc. On the other hand, if the tower to
 be analyzed is a proposed tower for which a preliminary design is not available, the distribu-
tion of lateral forces F(z)} may be estimaied as specified by the govqrning design code, and a

preliminary design of the tower may be developed to resist the forces and other appropriate

design loads specified by the code. The lateral displacements u?(z) may then be computed

by static analysis of the tower (see steps 2 and 3) subjected to lateral forces F(z) and nor-

5

malized to obtain 7 (z) = u®(z)/ul(H,).
2. Compute shear forces and bending moments by static analysis of the tower subjected to

lateral forces F';(z) :

s .
Qiz) = [ Fu®) ds | (9.2)
H, i
miz) = [ (¢-z) Fi(§)de (9.3)

3. Compute lateral displacements of the tower axis due to static forces F,(z) by the princi-

ple of virtual work :
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y mi(¢) 2 Qi
u@) = [ - 2) g &+ [ oooam

dr 9.4)

in which E; is the Young’s modulus and G, the modulus of rigidity for the tower con-
crete, A(z) is the area, and /(z) is the moment of inertia at a location z above the base.
The shape factor k(z) accounts for the shear stress distribution over the cross-section of
the tower; e.g. k is 5/6 for a solid rectangular section and 9/10 for a solid circular sec-
tioln [44]. Values of k for typical cross-sections of intake-outlet towers are presented in
Table 9.1. Step.s 2 and 3 describe just one method for computing deflections. Any
standard method, including analysis of a one-dimensional finite element idealization

(including flexural and shear deformations) of the tower, may be used.

Normalize the computed displacements by the displacement at the top of the tower:

u(z) = uy(2) / uy(Hy) (9.3)

Compare displacement function # ,(z) computed in step 4 with the E?(z) used in equa-

tion (9.1). If they do not agree to a desired degree of accuracy, replace #%(z) in equa-

tion (9.1) by i ;(z) and compute a new set of forces F,(z), and repeat steps 2, 3 and 4.
After a few such iterative repetitions, the two deflection functions will agree to a

sufficient degree of accuracy. Then proceed to the next step.

The fundamental mode shape, ¢,(z), is given by u(z) computed in the final iteration

cvcle.
Compute the fundamental frequency w; from

H;

t( F(z) u\(z) dz
wl = i (9.6)
’ ,[ my(z) [u(2))? dz
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Table 9.1 -- Shape Factor k For Selected Tower Cross-Sections

Cross-Section of the Tower_

Direction of

Shape Factor &

Ground.
Motion
20 2'|5° ’ -— 0.680
4 50—
| ——4a | -~ 0.774
R T
2a , 0.552
2.5a
¥
2a I - 4
J 2 5q 0.442
4.50—»
(9 4a >
0.734
i 0.794
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9.2.2 Second Mode

Because the contributions of the second vibration mode to tower response are smaller
compared to the fundamental mode, 1t seems unnecessary to compute the vibration proper-
- ties of the second mode to a high degree of accuracy. Thus the Stodola method with itera-
tion, described above, is avoided in computing the vibration properﬁes of the second mode.

Instead the simple procedure developed for buildings [16] is utilized.

The approximate vibration properties of the second mode are therefore computed by

the following step-by-step procedure :

I. ~ Compute the height-wise variation of the remainder (total minus first mode cohtribu-

tion) of the effective forces :
L,
F(z)=-myz) | | - T ¢1(2) (9.7)
1

where ¢,(z) is the fundamental mode shape determined from the procedure of the
preceding section and the generalized mass M} and excitation term L, associated with

the fundamental mode are :

.

M, = l( my(2) [¢,(2))* dz (9.8)
. H,

L= 1{ my(z) ¢1(z) dz (9.9)

2.  Compute the lateral deflection of the tower axis, u,(z), by static analysis of tower sub-
jected to lateral forces F(z). Any appropriate method may be used, including the one
summarized in stéps 2 and 3 of Section 9.2.1 with F(z) replaced by F,(z).

3. Determine the approximate sccond mode shape ¢,(z) by normalizing the computed

deflections, i.e dividing them by a convenient reference value :
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salz) = 222 (9.10)
zZ) = .
BT upH)
4.  Compute the second mode frequency from the mode shape by :
H,
! F(z) uy(2) dz
w} = (9.11)

,

[ my(2) stz d=

Two useful properties of the approximate frequenéy w> and mode shape ¢,(z) deter-
mined in this manner have been demonstrated [16]: Firstly, the approximate frequency w, is
always larger than 1ts exact value. Secondly, the approximate second mode shape 1s orthogo-
~ nal to the exact fundamental mode shape; and is a linear combination of higher vibration

modes with the combination dominated by the second mode.

9.3 Added Hydrodynamic Mass

The hydrodynamic interaction effects can most simply be included in response spec-
trum analysis of intake-outlet towers by replacing the mass of the tower m(z) by the virtual

mass (Chapter 7) :

rig(z) = myz) + m(z) + my(z) ‘ (9.12)

where the added hydrodynamic masses m2(z) and m)(z) represent the effects of the sur-
rounding (outside) and inside water, respectively, on the dynamic response of the tower. It

has been demonstrated in Chapter 7 that the earthquake response of towers can be com-

puted to a useful degree of accuracy with the added mass functions m2(z) and mi(z) given
by the lateral forces associated with hydrodynamic pressures acting on the tower, assumed to
be rigid, due to unit horizontal acceleration of the ground and the tower. Because the

analytical expressions for the added hydrodynamic mass for a rigid tower are available only
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for circular cylindrical towers [32,40] and for uniform elliptical towers [30], a simplified pro-
cedure for evaluating the added hydrodynamic mass which is accurate enough for prelim-
inary earthquake analysis of towers was developed in Chapter §. Presented next is a sum-

mary of this simplified procedure.
9.3.1 Added Hydrodynamic Mass for Surrounding Water

Consider a tower of arbitrary cross-section with two axes of syfnmetry and its outside
surface having cross-sections of Iarea A,(z), width 2a,(z) perpendicular to the direction of
ground motion, and dimension 2b,(z) along the direction of ground motion. The depth of
the surrounding water is f7,, and z is the height coordinate above the base. The added
hydrodynamic mass associated with surrounding water can be determined by the following
steps :

1. Select a sufficient number of locations along the ‘height where the added hydro-

dynamic mass for the tower will be determined to obtain the height-wise distribu-

tion of added mass m3(z). Compute the height coordinate z for the selected loca-

tions.

2. Determine the cross-sectional radius 7,(z) of the ‘equivalent’, axisymmetric tower
at a selected location z. This i1s achieved by using the following procedure for uni-
form towers with the cross-section of the uniform tower taken to be same as the

actual cross-section pertaining to that location :

(a) Evaluate the parameters a”o(z)/l;o(z) and H,/d,(z) for the ‘equivalent’, uni-
form, elliptical toWer, using equation (9.13) along with the properties of the
actual tower at the selected location z : slenderness ratio H,/a,z), cross-

sectional area A4,(z), and ratio a,(z)/b,(z) of the plan dimensions.

HO _ HO . bo(z)
ifz) VA z)/x a,(2)

(9.13a)
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do(z)  a,(z)
bo(z)  bu(2)

(9.13b)

(b) ‘Evaluate the slenderness ratio H,/r,(z) of the ‘equivalent’, axisymmetric
tower for the selected z location from the properties do(z)lgb(z) and H,/a,(z)
~ -- determined in step 2(a) for the equivalent, uniform, elliptical tower pertain-
ing to the selected location z -- using the data of Figure 8.7 or Table 8.3.
Alternatively, if 1/3 < do(z)/l;c,(z) <3, 7,(2)/a,(z) may be determined from
the mean curve of Figure 8.9 corresponding to a,(z)/ Ea(z) determined in step |

| 2(a). .
Evaluate the normalized added hydrodynamic mass for the ‘equivalent’, axisym-
metric tower at the selected location z as the normalized méss from Figure 8.1 (or

Table 8.4) for a circular cylindrical tower corresponding to r,/H, = F,(z)/H, per-

taining to that location, determined in step 2.

Compute the added hydrodynamic mass mZ,(z=0) for an infinitely long tower
with its cross-section same as at the baég of the actual tower from cither Table 8.1
or a two-dimensional analysis of the Laplace equation for the surrounding water
domain (Appendix G). If the shape of the cross-section of the actual tower is

unchanged along its height and only its dimensions vary, determine the added
mass m,(z) at the location z selected in step 2 by recognizing that the ratio
m3 (z)/m?,(0) is equal to the ratio 4,(z)/4,(0) of the cross-sectional areas at the

two locations. If the cross-sectional shape changes, evaluate mS (z) directly from
the cross-sectional properties of the actual tower at the location z selected in step

2 (Appendix G).

Determine the added hydrodynamic mass m2(z) for the actual tower at the loca-

tion z selected in step 2 by multiplying the normalized added mass, determined in
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step 3, by mZ,(z) for that location computed in step 4.

Repeat steps 2 to 5 for various locations along the tower height, selected in step 1,
to obtain the complete distribution of added hydrodynamic mass for a non-

uniform tower.

If the outside surface of the tower is uniform, i.e. A4,(z), q,(z), and b,(z) are constants

independent of z, the computations required in the procedure just summarized are reduced.

In particular, the ‘equivalent’ axisymmetric tower defined in step 2 will reduce to an

‘equivalent’, circular cylindrical tower, i.¢. 7,{(z) = F,, independent of z, and steps 2 and 4

need to be carried out only once and step 3 is much simpler to implement,

9.3.2 Added Hydrodynamic Mass for Inside Water

Consider a tower of arbitrary cross-section with two axes of symmetry and its inside

surface having cross-sections of area A4;(z), width 24,(z) perpendicular to the direction of

ground motion, and dimension 25,(z) along the direction of ground motion. The depth of

inside water is H;, and z is the height coordinate above the base. The added hydrodynamic

mass associated with inside water can be determined by the following steps :

l.

Select a sufficient number of locations along the height where the added hydro-

dynamic mass for the non-uniform tower will be determined to obtain the height-

wise distribution of added mass m.(z). Compute the height coordinate z for the

selected locations.

Determine the cross-sectional radius 7;(z) of the ‘equivalent’ axisymmetric tower
at a selected location z. This is achieved by using the procedure for uniform
towers with the cross—séction of the unif;)rm tower taken to be same as the actual
cross-section pertaining to that location, i.e. using equation (9.14) along with the
cross—sectional properties of the actual tower, 4,(z), ¢;{z) and b,(z) at the selected

location :
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3. Evaluate the normalized added hydrodynamic mass for the ‘equivalent’ axiéym—

metric tower at the location z selected in step 2 as the normalized mass from Fig-

ure 8.17 (or Table 8.5) for a circular cylindrical tower corresponding to

r;/H; = F(z)/H; pertaining to that location, determined in step 2.

4. Determine the added hydrodynamic mass mi(z) for the actual tower at the Iloca-

tion z selected in step 2 by multiplying the normalized added mass, determined in
step 3, by mgo(z) for that location. If 4;(z) is the area of the interior cross-section,

and p,, is the mass density of water, m’_ (z) = p,, 4,(z).

5. Repeat steps 2 to 4 for various locations along the tower height, selected in step 1,

.10 obtain the complete distribution of added hydrodynamic mass for the tower.

If the interior surface of the tower is uniform along the height, i.e. 4,(z), q;(z) and b,(z)
are constants independent of z, the computations required in the analysis procedure just
summarized are reduced. In particular, the ‘equivalent’, axisymrlnetric tower defined in vstep
2 will reduce to an ‘equivalent’, circular, cylinrdrical tower, 1.e. 7;(z) = 1, independenf of z,
and step 2 neceds to be carried out only once and \steps 3 and 4 are much simpler to imple-

ment.

9.4 Tower-Foundation-Soil Interaction Effects

As demonstrated in kChapter 7, tower-foundation-soil in;(eraction effects can be approxi-
mately included in the response contribution of the fundamental vibration mode of towers
By modifying the vitr)ration period and dambiné raﬁo for this \}ibratio‘n mode. Standard data
and simplified procedures for gétimating the modified vibration period and damping ratio

without requiring an iterative solution of equation (7.26) are presented in this section.
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Earlier work on buildings [46] suggests that the response contribution of the second vibra-
tion mode may be determined by standard procedures disregarding the effects of tower-

foundation-soil interaction.
9.4.1 System Parameters

The dimensionless parameters chosen in Chapter 5 to characterize tower-foundation-
soil interaction are not the most appropriate to present standard data for modifications in
the fundamental mode period and damping ratio. For this purpose, the fundamental vibra-

tion mode of the tower on fixed base is represented by a singe-degree-of-freedom (SDF) sys-
tem having the natural vibration period 7’|, lumped mass equal to mI, the effective mass for
the fundamental vibration mode, located at height kf , the effective height for the fundamen-
tal mode. The effective mass m; of the tower in the fundamental mode of vibration
(Chapter 7) is :

m; = Lt/ M, (9.15)

where M and L, are the generalized mass and excitation terms for that mode, defined by
equations (9.8) and (9.9), respectively. The effective height of the tower in the fundamental

mode of vibration (Chapter 7) is :

h; = Lj/L, : (9.16)
in which
H, ‘
L= [ 2 m2) o) dz (9.17)

The parameters characterizing the-single-degree-of-freedom (SDF) system, representing
the fundamental vibration mode of the tower, supported through a rigid foundation on a

viscoelastic halfspace, are listed here in order of more or less decreasing importance [45] :
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The wave parameter

. Ci T ‘
o = L1 (9.18)
hy
which is a measure of the relative sfiﬁ'ness of the foundation soil and the SDF sys-

tem; Cy is the shear wave velocity in the halfspace ; T, is the fundamental vibra-

tion period of the fixed-base tower;

The ratio 4 /r¢ of the effective height of the tower to the radius of the circular
foundation. Since towers are usually slender structures and rocking motion of the
foundation is more influential in controlling the tower-foundation-soil interaction
effects (Chapter 3), the ‘equivalent’ radius for a non-circular foundation can be
approximately computed from the moment of inertia /, of the actual foundation

(Chapter 4) :

. |
- [ e ]4 (9.19)

T

The fixed-base fundamental vibration period of the tower, Tl;

The constant ﬁystcretic damping factor 7, for the supporting foundation soil.

The démping ratio of the fixed-base tower in its fundamental mode of vibration,
£

The relative mass density for the tower and the supporting foundation soil

. my
¥ = " . (9.20)
pp T r}; h
in which p, is the mass density of the soil.
The ratio my/ mf of the mass of the foundation to the effective, first-mode mass of

the tower.
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8. Poisson’s ratio for the foundation solil, »;.

For the solutions presented in this section, the mass of the foundation beléw the
ground l§vel is neglected and the Poisson’s ratio for the foundation soil, vy, is taken as 1/3,
a value representative for rock. Within the range of values that are of pr_actical applications,
thg response of the structure is genefally insensitive to variations in these particular parame-
ters and therefore, the applicability of the results presented in this section is not limited
[45].

Special attention is required in assigning numerical values to the shear wave velocity
Cr and damping factor 5, for the foundation soil or rock, because both are strain-dependent
quantities [43], and the tower response is influenced by these quantities (Chapters 5 to 7).
The strains induced in the foundation soils depend on the properties of the soil and the
severity of ground motion. Other things being equal, stronger therground motion, smaller is
the effective value of Cy, and greater is the value of n, [43]. Therefore, the chdice of these
values in a given case must be based on an estimate of the magnitude of strains that may be
induced in the foundation soil by the chign ground moiion, and the.information of the type
presented in Reference [43]. However, these noﬁlinear considerations are less significant in

the case of towers as they are typically founded on rock.

9.4.2 Effective Period of System

The fundamental vibration period, 7{, of the tower considering soil-structure interac-

tion is given approximately by the equation

o, (A1
K, kyvy  Kskym

T{ = T, 1+ ki (9.21)
in which k{ = w{ m] is the generalized stiffness of the fixed-base tower in its fundamental

vibration mode; K, and K, represent the static stiffness of the foundation in translational

and rocking directions, defined by
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8Gfl‘f
Ky=5_," » (9.22a)
K, - 8 G/ 17 9.22b
6 — 3( | - Vf) ( - )

The quantity G in these equations represents the shear modulus of elasticity, and %y and
kyy are dimensionless real-valued coefficients that are functions of the Poisson’s ratio and
the period of vibration. These coefficients may be determined from the information
presented in Chapter 4.

Equivalent to the corresponding result for building-foundation systems, equation (9.21)

is an approximate version of equation (7.26), obtained by dropping the terms associated

with radiation and material damping of the foundation. The resulting errors in 77§ can be

demonstrated to be negligible.

Because of the period-dependence of the coefficients ky and kyy,,, equations (9.21) or
(7.26) must be evaluated by iteration. This computation may be significantly simplified,

however, by the use of static values of the stiffnesses, i.e. by taking kyr = kpyar = 1. The use

of static stiffness values lead to results for the period 7{ which are sufficiently accurate for

practical applications, especially for slender structures such as intake-outlet towers [45].

In Figure 9.1, the ratio T{/T, is plotted as a function of the relative flexibility parame-

ter, 1/o, for towers having several different values of the ratio hf/ Fy. 'fhese ’exact’ results
were obtained by an iterative solution of equation (7.26) with the mass density parameter,
~* = 0.10 ; Poisson’s ratio ve=1/3; and _foundation dampin_g factor,‘—qf = 0. As shown in
Figure 9.2, the influence of #, on the vibration period is small. Therefore, the results

presented in Figure 9.1 are applicable for all values of ;.

For other values of 4*, T{/T, can be approximately estimated from'(T{/Tl)T-zo_m, the

value determined for 4" =0.10 from Figure 9.1, using the following equation :
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rf Lo
T, - 0.10 | | T,

-1 (9.23)
v'=0.10

As shown in Figure 9.3, the ratio 7{/T, evaluated from equation (9.23) for v = 0.05 and
0.15 is in excellent agfeement with the ‘exact’ results obtained from an iterative solution of
equation (7.26).

The exact solutions of Figure 9.1 for ¥* = 0.10 and similar results for v* = 0.05 and v"

= (.15 are replotted in Figure 9.4 as a function of the dimensionless parameter \/? x In

' 1/4 1/4 : ‘
h_f = h; h_f (9.24)
rf Cf T] rf )

which

An alternative measure of the relative flexibility of the foundation soil and the structure, this
parameter was determined by trial and error so that the results would fall within a relatively

narrow band, 'making them especially useful for practical application to building design [45].

For the range of h,*/rf and v relevant to intake-outlet towers, the ‘spr’ead in the results of
Figure 9.4 is about 20%, which is about twice of that o.bserved for buildings [45].

In order that the results fall vslfithin an even narrower band, additional trials led to the
selection of a modiﬁed parameter F x in which |

2/5
- | }11 1 h; ‘ '
— = — 9.25
X = °l ] o ol B (9.25)

When the results of Figure 9.4 are replotted in Figure 9.5 as a function of V4~ x, they fall

within a narrower band, and the maximum deviation from the mean is about 3%. The

value of 7{ may, therefore, be evaluated readily with good accuracy from the mean curve

presented in this figure.
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9.4.3 Effective Damping of System

The effective damping ratio of the interacting system, {{, is given approximately

(Chapter 7) by :

- Ly ‘ (9.26)
(r{/1))’°

in which the first term represents the contribution of structural damping and the second
term represents the damping arising from soil-structure interaction including both material

and radiation damping effects.

Considering that T{ is greater than T, it is apparent that soil-structure interaction

reduces the effectiveness of structural damping. The contribution of structural damping is

inversely proportional to the square of the period ratio T{ /T if the damping mechanism in

the structure is characterized as constant hysteretic, and is inversely proportional to the cube

of T{/ T, for viscously damped structures (Chapter 7). Since the actual damping mechanism

for the structure is usually unknown, the latter mechanism is selected for presenting equa-
tion (9.26) as it leads to smaller damping £ and hence to conservative estimates of earth-
quake response.

The foundation damping factor £,, obtained by evaluating equation {7.32), is shown in
Figures 9.6 to 9.10 for various values of 7y and hf/rf. For convenience in practical applica-
tion, following Reference [45], the results are plotted as a function of the period ratio
T{ / T, instead of the flexibility parameter 1/¢" used in Figure 9.1.

It is apparent from these figures that the foundation damping may be a significant con-
tributor to the overall damping of the system. Considering that intake-outlet towers usually
are slender structures, the contribution of soil material damping would be 'particularly

significant because the contribution of radiation damping is known to be small for such
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structures [45].

The data presented in Figures 9.6 to 9.10 are for systems with v* = 0.10. For systems
having any value of y" between 0.05 to 0.15, £, may be estimated by multiplying the results

obtained from Figures 9.6 to 9.10 by the factor C, determined by trial and error [45]:

C, = & (9.27)

If this correction factor exactly accounted for the effect of ¥*, the three curves for any fixed
value of hf/rf in Figure 9.11 would be coincident. Clearly this is not the case for the range

of hf/rf‘and ~" relevant to intake-outlet towers, whereas much better agreement was

obtained for the range of parameters considered for buildings [45].
Noting that the agreement among the curves in Figure 9.11 for various v~ deteriorate
with increasing #;/ rs, it seemed that better results could be obtained by modifying C, to be

dependent on r;/h] leading to

it
é, - [O'I, ] (9.28)
Y

This correction factor is adopted for towers as it reduces the spread in the results (Figure

9.12) compared to the factor of equation (9.27).

Having determined 7{/ T; and £,, the effective damping ratio ¢| can be computed from

equation (9.26). If the computed value turns out to be less than the damping ratio £, of the
fixed-base tower, in design applications it is appropriate to take 5{ = £ [45].

9.4.4 Criterion for Assessing Importance of Interaction

The ratio T{/T, may be used as a basis for assessing the importance of tower-

foundation-soil interaction; e.g. these interaction effects may be considered negligible if
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T-{‘/T, is less than about 1.05. Although it is not difhcult to compute T{‘ from equation
(9.21), especially if it is evaluated using the static values of the foundation stiffnesses, it may

be more convenient to assess the importance of interaction by a criterion based on the

parameter x. Based on the results for 7{/7", and £, presented earlier, it has been concluded
that the interaction effects are generally of negligible importance for design applications

when the dimensionless parameter defined by equation (9.25) is less than 0.20, i.c.

X <020 (9.29)

This inequality corresponds approximately to values of T{/Tl < 1.10 for ~" = 0.10, a rea-

sonable average value for intake-outlet towers with added hydrodynamic mass,

9.4.5 Summary of the Procedure

Based on the information presented in the preceding sections, the vibration period T-{

and the damping ratio £/ for the fundamental vibration mode of the tower, Consideri:ng the

effects of tower-foundation-soil interaction, can be estimated as follows :

I.  Evaluate the fixed-base natural period, T, and mode shape, ¢,(z), of the fundamental
vibration mode of the tower by the procedure of Section 9.2.1. Use structural proper-

ties which are consistent with the severity of the design ground motion.

2 Determine the effective mass m; and the effective height 4, for the fundamental vibra-

tion mode by equations (9.15) and (9.16) respectively. .

3 Evaluate the dimensionless ﬂ;xibility parafnete;rs x. defined by équation (9.25), and v,
defined by equation (9.20). Use soil propérties which are consistent with the severity of
the design ground motion. The parameter r, Iis the radius of the circulavr foundation.
For a non-circular foundation, use equation (9.19) to determine the radius of the
‘equivalent’ circular foundation. If x £0.20, ignore the effects of interaction and

analyze the structure as if it were fixed at the base. Otherwise, proceed with the
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following steps.

4  Determine the effective natural vibration period 7{ of the system from the mean curve
presented in Figure 9.5. If desired, a more accurate estimate may be obtained by itera-
tion from equation (9.21), recognizing that stiffnesses kyp and kq, depend on the

vibration period.

5. Estimate the values of 5, and §; which would be appropriate for the severity of the
design ground motion, and evaluate the added foundation damping, £,, from Figures

9.6 to 9.10 and by use of equation (9.28).

6. Compute the effective damping ratio & of the interacting system from equation (9.26).

If £ turns out to be less than &;, take & = £,.

9.5 Simplified Analysis Procedure

Utilizing the procedures presented earlier to compute the first two vibration periods
and mode shapes (Section 9.2), the added hydrodynamic mass associated with surrounding
and inside water (Section 9.3), the modifications to the vibration period and damping ratio
for the fundamental vibration mode (Section 9.4), a simplified procedure is presented next
to compute, directly from the earthquake design spectrum, the maxtmum shear forces and
bending moments in an intake-outlet tower.' The procedure is presented as a sequence of

computational steps :

1. Define the smooth design spectrum for the tower at the particular site. This may
be an elastic design spectrum or a reduced inelastic design spectrum to accdunt for
the effects of ductility. The design ductility of towers generally should not exceed
2, which is much smaller than typically selected for building design for reasons

discussed earlier [13]. -
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-

Compute the added hydrodynamic mass m2(z) associated with the surrounding

(outside) water, using the procedure of Section 9.3.1.

Compute the added hydrodynamic mass m.(z) associated with the inside water,

;

using the procedure of Section 9.3.2.

Define structural properties of the tower :

(a) Virtual mass,v my(z), per unit of height is given by the equation

mz) = myz) + mYz) + mi(z) ’ (9.30)

where m,(z) is the mass of the tower by itself, m(z) is computed in step 2,
and mf,(z) iﬁ step 3.
(b) Flexural stiffness, E./(z), and shear stiffness, G,k (z)4(z), per unit of height.
‘(c) Modal damping ratios, £,,.

Compute the periods 7 = 27/« and mode shapes ¢;,1(z) for the first two modes

of vibration (i.e. n = 1,2) by the simbliﬁed procedure of Section 9.2 with mass

my(z) replaced by the virtual mass m.(z). The superscript r 1n w, 1s included to be

consistent with earlier notation as w}, includes the effects of water on the vibration
frequencies, and the notation ¢:,,(z) is used to indicate that these are mode shapes

of the tower with mass #1,(2).

Compute the vibration period 7, and damping ratio £, for the fundamental vibra-

tion mode of the tower including the hydrodynamic effects and the tower-
foundation-soil interaction effects. For this purpose, the period ratio 7 /Tt and

damping ratio £, are given by T{/T, and #|, respectively, determined by the pro-

cedure of Section 9.4.5 with m(z) replaced by the virtual mass r1,(z).
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The vibration period 'f’z and damping ratio £, for the second vibration mode are
determined by standard procedures disregarding the effects of tower-foundation-

soil interaction. Thus :
Ty=T5 | (9.31)

where T3 was determined in step 5, and

£y =8 (9.32)

where the damping ratio £, was estimated in step 4(c).

Compute the maximum response (shears and moments) in individual modes of
vibration by repeating the following steps for the first two modes of vibration (i.e.

n=1,2):

{a) Corresponding to period f‘n and damping ratio § »» Tead the ordinate S, of the

pseudo-acceleration from the design spectrum.

(b) Compute equivalent lateral forces f ,;(z) associated with vibration of the tower
in its n-th mode from:
fn(z) = A;[ .Sa(ngn) m;(z) ¢n(z) (933)
n

in which the generalized mass M, and generalized excitation I, terms,

including the added hydrodynamic mass, are :

=

M, = ! my(z) [ (z) Pdz (9.34)

H, ' : . .
L, = t{ W(z) &,(2) dz (9.35)
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(¢} Compute the shear Q,(z) and bending moment #1,(z) at any section by static

analysis of the tower subjected to equivalent lateral forces f,(z) :

| .
On(2) = [ fult) dg | (9.36)

H;
Mu(z) = [ (€= 2) ful§) dt (9.37)

9. Determine an estimate of the maximum shear Q(z) and bending moment #1(z) at

any section by combining th¢ modal maxima Q,(z) and #,(z) in accordance with

the equations :

e =Voim + 6@ (9.38)

m(z) :\/mf(z) + mi(z) | . (9.395

This square-root-of-the-sum-of-squares (SRSS) combination rule is appropriate
because the vibration periods f"] and fz of towers are well separated. Essentially
no improvement in accuracy will result by including correlation of modal

responses in equations (9.38) or (9.39).

For the special case of ngid foundation soil, f”n = T}, and ¢, = 0 leading to £, = £,. If
there is no water, use m,(z) = mg(z) throughout the above analysis.

In practical applications, it would be necessary to determine the total response consid-
erin'g the combined effects of the two horizontal components of ground motion. With the
selected design spectrum, taken to be the same for both components of ground motion, the
procedure described above should be implemented for each component, using tower prdper-
ties appropriate for vibration in that direction. The peak value of any response quantity R,
due to the combined .effects of the gravity loads and ground motion components, can be

obtained by combining the peak responses R, due to the x-component of ground motion,
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and R, due to the y-component of ground motion, and the response R, due to gravity loads.
The design value of R is approximately equal to the largést of the values obtained from the
following equations::
R=R,*R. *aR, (9.40a)
R=R,taR xR, (9.40b)
In particular, this procedure is applicable to the computation of an individual stress com-
ponent at a point-in the tower.

For reinforced concrete towers, however, it is more useful to compute the shearing
force and bending moment at each section of the tower instead of evaluating the stress dis-
tribution across the section.y For a tower with plan symmetric about x and y axes, at any
section the x component of ground motion will cause shear only in the x direction, Q,, and
bending moment only about the y-axis, #,, and the y-component of ground motion will
produce shear only in the y direction, (), and bending moment only about the x-axis, /.

In designing a reinforced concrete tower, with its plan being symmetrical in geometry
as well as reinforcement about the x and y axes, it would be sufficient to consider at each
section the following combinations of shears: (1) @, and a @,, and (2) « Q, and @,. Simi-
larly, the combinations of bending moments that need to be considered are: (1) #1, and

o My, and (2) a M, and M1,. The gravity loads will not contribute to the shearing forces or

bending moments in a symmetrical tower.

In the case of towers with hollow circular cross-sections, O, = J, and M, = M,
because the tower properties for vibration in x and y directions are the same, and the design

spectrum is taken to be the same for the two components of ground motion. Therefore, the

tower section should be designed for shearing force = @, V1 + a? and bending moment =

m, vl + o
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Based on Reference [42], it is appropriate to take « = 0.5 for towers which is

significantly larger than the value of 0.3 recommended for buildings.

9.6 Evaluation of Simplified Analysis Procedqre

As mentioned in Chapters 7 and &, and in the preceding sections of this chapter, vari-
ous approximations were introduced to develop the simplified analysis procedure and the‘se
were individually checked to ensure that they would lead to acceptable results. In order to
provide an overall evaluation of the simplified analysis procedure, earthquake-induced shear
forces and bending moments computed by this procedure were compared with those
obtained from the refined response history analysis, rigorously including effects of tower-

water interaction and tower-foundation-soil interaction (Chapters 3 and 4).
9.6.1 System and Ground Motion

The system considered is a tapered tower with circular cross-section supported through
a rigid circular foundation on the horizontal surface of a homogeneous viscoelastic halfspace
(Figure 9.13). The inside and outside radii at the top of the tower are taken equal to half of
their respective values at the base. The inside and outside radii decrease linearly along the
height but their ratio r;(z)/r,(z) at any location z above the base remains 0.8. Three values
of the ratio of the tower height to its average radius at the base, H,/r, = 20, 10 and 5, are
considered. The foundation radius r, is taken as twice of the average radius of the tower at
the base.

All towers are assumed to be homogeneous and isotropic with linear elastic properties
for the concrete : Poisson’s ratio », = 0.17, unit weight = 155 Ib/ft®> and the Ydung’s
modulus of elasticity E; = 4.5 million psi. Energy dissipation in the tower is represented by
constant hysteretic damping factor of 5, = 0.10 in the refined analysis but by viscous damp-
ing in the simplified gnalysis with damping ratios £, = 0.05 in all the natural vibration

modes of the tower on rigid foundation soil. The properties of the viscoelastic halfspace
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material are : Poisson’s ratio vy = 1/3, unit weight = 165 1b/fi?, elastic shear wave velocity

C 'r = 1000 ft/sec, and the constant hysteretic damping coefhicient of 5, = 0.10. The depths

of the surrounding (outside) and inside water are taken equal to the height of the tower.

The ground motion for which the selected towers are analyzed is the S69E component
of the ground motion recorded at the Taft Lincoln School Tunn'el during the Kern County,
California, earthquake of July 21, 1952. The response spectrum for this ground motjon 18

-shown in Figure 9.14. Such an irregular spectrum of an individual groﬁnd motion is inap-
propriate in ¢conjunction with the simpliﬁed procedure, wherein a smooth design spectrum is
recommended, but is used herelto provide direct comparison With the results obtained from

the refined analysis procedure.
9.6.2 Vibration Frequencies and Mode Shapes

In the simplified analysis procedure, the nétural frequency and shape of the fundamen-
- tal mode Qf vibration are computed by the Stodola method. By performing a sufficient
number of iterations, these vibration properties can be computed almost exact-ly. On the
other hand, the natural vibfation frequency and shape of the second vibration mode is com-
puted approximately -- without any iteration and neglecting rotatory inertia (Section 9.2.2).
In Figure 9.15, the approximate results obtained by this procedure for the selected towers on
rigid soil without water are compared with the exact frequency and shape of the second
vibratioﬁ mode obtained by computer analysis of the eigen-problem, includring rotatory iner-
tia (Chapter 4). Considvering the simplicity ofrthe approximate procedure, the results from

this procedure are very good, which indicates that this procedure to evaluate the frequencies

and mode shapes should be useful in practical applications.
9.6.3 Simplified Analysis Procedure

The earthquake induced forces for each of the 12 cases of Table 9.2 are computed by
the simplified response’ spectrum analysis (SRSA) procedure, in which the maximum
response in each of the first two vibration modes of the tower are determined from equa-

tions (9.33), (9.36) and (9.37) with n = 1 and 2, and the modal maxima are combined in
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Table 9.2 -- Circular Tapered Tower Analysis Cases, and Fundamental Mode Properties

from Simplified and Refined Analyses

Exact Analysis Simplified Analysis
Case E Water | Foundation Soil T 3 = i T, 1 - .
I, Sa(Ty,&1) SAT(, &)
g g
(sec.) (percent) (sec.) (percent)
1 20 | none rigid 10.722 5.00 0.238 0.720 5.00 0.240
2 20 none flexible 0.870 4.96 0.293 0.852 4.49 0.325
3 20 full rigid 1.203 5.00 0.145 1.210 5.00 0.143
4 20 full flexible ~ 1.444 4.89 0.125 1.433 4.45 0.127
5 10 none rigid 0.187 5.00 0.380 0.186 5.00 0.387
6 10 none flexible 0.267 6.22 0.352 0.251 5.44 0.356
7 10 full rigid 0.304 5.00 0.426 0.305 5.00 0.430
8 10 full flexible 0.425 5.25 0.533 0.414 4.77 0.487
9 5 none rigid 0.053 5.00 0.188 0.052 5.00 0.186
10 5 none flexible 0.106 21.28 0.198 0.080 24.81 0.192
[l 5 full rigid 0.081 5.00 0.195 0.082 5.00 0.198
(2 5 full flexible 0.152 13.94 (206 0.137 12.11 - 0.210

[4:14
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accordance with equations (9.38) and (9.39) to obtain an estimate of the total valﬁes of the
earthquake inducéd forces. Contained in these results are the errors associated with the
approximate evaluation of the frequency and shape of the second‘vibration mode, the
approximate fepreseﬁtation of hydrodynamic and foundation interaction effects, neglecting
responsé contributions of higher vibration modes (i.e. higher than‘second mode), and with
the usual procedures of combining the peak modal responses. Computational details of the
steps concerned with tower-foundation-soil interaction effects are presented in . Appendix I as

an example.

In order to eliminate the errors associated with combining modal maxima, the response
of each tower was also determined by a variation of the simplified analysis procedure.

Instead of computing the modal maxima from equation (9.33), the modal response-history is
obtained by replacing Sa(f“ ,,,g”n) by the time-history of pseudo-acceleration for a single-

degree-of-freedom system with vibration period T, and damping ratio £, due to the selected
ground motion. At any instant of time, the shear.and bending momen't at any section of the
tower is then obtained by static analysis of the tower subjected to the equivalent lateral
forces f,(z,t) at that time. The instantanecus values of the modal contributions are com-
bined exactly and the peak value of the combined value is then determined. The results of
this simplified response history anélysis (SRHA) procedure are not affected by the approxi-

mations involved in the procedures for combining peak values of modal responses.
9.6.4 Comparison with Refined Analysis Procedure

The earthquake response of towers is computed for each of the 12 cases of Table 9.2 by
the ’exact’ analysis procedure in which the hydrodynamic and foundation interaction effects
are rigorously considered (Chapter 3). In this procedure the deformations of the tower ére
expressed as a linear combination of the fixed-base natural vibration modes of the tower.
Two separate ‘exact’ énalyscs were implemented in each case, considering two and five
modes, respectively. The responses were essentially unaffected by the contributions of vibra-

tion modes higher than the 5-th mode.
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Before examining the response results, the effective period and damping ratio for the
fundamental vibration mode obtained from the refined and simplified analysis procedures
are presented in Table 9.2 along with the corresponding values of the ordinate of the
pseudo-acceleration response spectrum of the Taft ground motion. It is apparent that the
simplified procedure leads to acceptable estimates of the vibration period and the damping
ratio for the fundamental mode. Since for some towers the response is dominated by the
fundamental vi})ration mode, this comparison provides a confirmation that the simplified
analysis procedure is able to represent the important effects of tower-water interaction and
tower-foundation-soil interaction. ~ The underestimation of the damping ratio in the
simplified anélysis of some towers on flexible foundation soil (Table 9.2) is the result, in
part, of the assumption pf viscous damping mechanism for the tower in the simplified
analysis in contrast to the constant hysteretic damping mechanism used in the refined
analysis. N

The accuracy of the simplified response history analysis (SRHA) is illustrated in Figures
9.16 to 9.18 and Table 9.3 in which are presented the computed shears and bending
moments in the tower and compared ;wvith those obtained from the ’exact’ analysis consider- .
ing two fixed-base modes. The agreement is satisfactory implying that the errors arising
from approximations in the vibration properties of the second mode and in the simplified

representation of hydrodynamic and foundation interaction effects are acceptably small.

In the SRSA procedure, the peak value of each of the the first two modal responses is
conﬁputed directly from the response spectrum without a response history analysis. The
accuracy of combining the peak modal responses is evaluated in Figures 9.19 to 9.21 and
Table 9.3 in which the combined value is compared with the results obtained by the SRHA
in which the inétahtaneousl values of the modal contributions were combined exactly. It is
apparent that significant errors can result from the usual procedure for combining modal
maxima when the results are based on/response to a single ground motion. These errors are

inherent in response spectrum analysis (RSA) procedures and are well known. However,



Table 9.3 Maximum Values of Base Shear and Base Moment for Circular Tapered Towers
due to S69E Component of Taft Ground Motion

Base Shear / (m,g) " Base Moment / {mgH,)
Found. Exact Simplified Exact Simplified
Case | Hy/r, | Water ) ) . . i

Soil Analysis Analysis Analysis Analysis
2 Mode | 5Mode | RHA RSA 2 Mode | 5 Mode | RHA RSA
I 20 none rigid | 0.182 0.193 0.206 | 0.153 | 0.088 | 0.090 0.094 | 0.079
2 20 none flexible | 0.168 0.193 0.187 | 0.182 | 0.098 0.099 0.100 | 0.098
3 20 full rigid 0.297 0.381 0.325 | 0.347 | 0.152 0.149 0.156 | 0.147
4 20 full flexible | 0.313 0.399 0.348 | 0.335 | 0.141 0.141 0.131 | 0.134
5 10 none rigid 0.193 0.216 0.207 | 0.191 | 0.124 0.125 0.128 | 0.125
6 10 none flexible | 0.208 0.241 0.189 | 0.177 | 0.123 0.126 0.118 | 0.115
7 10 full rigid 0.669 0.746 0.713 | 0.618 | 0.402 0.409 0.417 | 0.394
B8 10 full flexible | 0.900 0.974 0.810 | 0.694 | 0.528 0.534 0.474 | 0.446
9 5 none rigid 0.139 . | 0.164 0.150 | O0.111 | 0.073 0.075 0.073 | 0.066
10 5 none flexible | 0.145 0.173 0.151 | 0.114 | 0.077 0.079 0.075 | 0.068
11 5 full rigid | 0.399 0.469 0.436 | 0.332 | 0.203 0.205 - | 0.207 | 0.187
12 5 full flexible | 0.394 0.453 0.433 | 0.347 | 0.205 0.207 0.213 | 0.198

¢8¢
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Moments in Circular Tapered Tower with H/r, = 20 due to S69E Component of
Taft Ground Motion; Cases | to 4
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Figure 9.17 Comparison of Exact (2 Modes) and Simplified Response History
Analysis Results for Envelope Values of Maximum Shear Forces and Bending
Moments in Circular Tapered Tower with H /r, = 10 due to S69E Component of
Taft Ground Motion; Cases 5to 8
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Figure 9.18 Comparison of Exact (2 Modes) and Simplified Response History
Analysis Results for Envelope Values of Maximum Shear Forces and Bending
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Ground Motion; Cases 9 to 12
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Figure 9.19 Comparison of Simplified Response Spectrum and Simplified Response
History Analysis Results for Envelope Values of Maximum Shear Forces and Bend-
ing Moments in Circular Tapered Tower with H,/r, = 20 due to S69E Component of
Taft Ground Motion; Cases | to 4
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Figure 9.20 Comparison of Simplified Response Spectrum and Simplified Response
History Analysis Results for Envelope Values of Maximum Shear Forces and Bend-
ing Moments in Circular Tapered Tower with Hy/r, = 10 due to. S69E Component of
Taft Ground Motion; Cases 5to 8
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Figure 9.21 Comparison of Simplified Response Spectrum and Simplified Response
History Analysis Results for Envelope Values of Maximum Shear Forces and Bend-
ing Moments in Circular Tapered Tower with Hy/r, = 5 due to S69E Component of
Taft Ground Motion; Cases 9 to-12
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they become smaller when the RSA procedure is used in conjunction with a smooth design
spectrum.' Although the peak modal responses were combined by the SRSS procedure to
obtain the results of Figure 9.19 to 9.21 and Table 9.3, the results would have been essen-
tially unaffected by using any procedure, such as CQC, that considers correlation of modal

responses because the modal vibration periods of towers are well separated.

The response contributions of the vibration modes higher than the second mode are
illustrated in Figures 9.22 to 9.24 and Table 9.3 where the results from the two ’exact’ ana-
lyses are compared. The higher mode contributions vary with slenderness ratio, among
other parameters, being more signiﬁcam in the response of slender towers. Such towers are
usually long-period structures (Table 9.2) and, as is well known, the higher mode contribu-

tions are relatively more significant in the responses of such structures.

Finally, In Figures 9.25 to 9.27 and Table 9.3, the results obtained from the SRSA pro-
cedure are compared with the ’exact’ analysis considering five vibration modes. As men-
tioned earlier, contained in the SRSA results are the errors arising from approximations in
evaluating the frequency and shape of the second vibration mode, representing hydro-
dynamic and foundation interaction effects, neglecting response comributions of higher
vibration modes (i.e. higher than second mode) and in the usual pfocedures of combining
the peak modal responses. Because of these approximations, significant errors can be noted
in the SRSA results for some éases in these figures. However, these errors will become
significantly smaller when the SRSA procedure is used in conjunction with a smooth design
spectrum instead of the irregular spectrum (Figure 9.14), typical of an individual ground

motion.

It is apparent from the comparisons presented above that the acCuracy of the response
results obtained by the simpiiﬁed analysis procedure is satisfactory for the preliminary phase
in the design of new towers and in the safety evaluation of existing towers, considering the
complicated effects of tower-water and tower-foundation-soil interactions, and the number of

approximations neces_sary' to develop the procedure. The simplified analysis procedure
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Figure 9.23 Influence of Higher Vibration Modes on the Envelope Values of Max-
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should be used only in conjunction with a "smooth” earthquake design spectrum in order to
obtain reliable results by minimizing the errors associated with the simplified computation
of effective vibration periods of the two modes, and of the effective dambing in the funda-
mental mode (Table 9.2), and with the usual procedures of combining peak modal

responses.



10. CONCLUSIONS

A general procedure for the earthquake analysis of linear response of intake-outlet
towers of arbitrary cross-section, having two axes of symmetry, including the effects of
tower-water interaction and tower-foundation-soil interaction, has been developed in
Chapter 3. The idealized tower-water-foundation-soil system is treated as four interacting
substructures :I the tower by itself, the foundation and supporting soil, the surrounding water
domain, and the inside water domain. Efficient numerical solution procedures have been
developed in Chapter 4 for evaluating the dynamic properties of each substructure : natural
vibration frequencies and mode shapes of the tower, impedance functions for the founda-
tion, and the added hydrodynamic mass and excitation terms, associated with fluid domains
surrounding the tower and contained within the tower, iﬁ the equations of motion for the

tower,

Evaluation of the added hydrodynamic mass and excitation terms due to surrounding
water require solutions of the Laplace equation over the three-dimensional, unbounded fluid
domain exterior to the tower. Efficient numerical techniques have been developed to solve
the boundary value problems for towers of arbitrary geometry. In this mixed approach, the
fluid domain exterior to the tower but contained within a hypothetical circular-cylindrical
surface is discretized by finite elements, whereas analytical solutions for the fluid domain
exterior to the hypothetical cylinder are utilized in a boundary integral procedure for this
sub domain. The resulting procedure is advantageous compared to the standard finite ele-
ment procedure in that it Jeads to accurate results with much less computational effort and

core-storage requirements.

Utilizing the analytical and computational‘procedures developed in Chapters 3 and 4,
Ithe responses of idealized i}ltake-outlet towers to harmonic ground motion have been
presented in Chapter 5 for a wide range of system parameters. Based on the frequency
response functions, it has been shown that tower-water interaction and tower-foundation-soil

interaction may have a significant effect on the dynamic response of intake-outlet towers.

300
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Specifically, the response results lead to the following conclusions :

L.

Water, inside or outside, has the effect of Iengthening the vibration periods of the
tower because of the added hydrodynamic mass. The vibration peri‘ods of slender
towers are lengthened to a greater degree than for squat towers. However, the
effective damping is unchanged because energy diss%pation in the towers is
modeled as frequency-independent hysteretic damping and water compressibility .

effects are negligible.

For full reservoir (i.e. H,/H, = 1 or H;/H, = 1), the percentage lengthening of the
first two vibration periods is about the same ; however, for partially filled reser-
voir, specially when 0.2 < H,/H, or H;/H; < (.8, the percentage increase in thg
second vibratton period is substahtially larger than that in the fundamental vibra-

tion period.

The increases in a resonant period due to surrpunding and inside water are cumu-

lative. The individual effects can be combined by equation (5.1).

The frequency response functions for a tower having unequal plan dimensions in
two orthogonal directions with surrounding water, in particular the lengthening of
vibration period due to surrounding water, may be significantly influenced by the
direction of ground motion. The resulting differences in the fesponse are the
result of different values for the added hydrodynamic mass, for vibration inlthe
two directions. On the contrary, frequency response functions for a tower with
inside water are essentially independent of the direction of excitation because the

added hydrodynamic mass is close to the total mass of the contained water.

Tower-foundation-soil interaction lengthens the fundamental resonant period of
the tower and increases the effective damping at this period because of the radia-
tion' and material damping in the foundation-soil region. Similarly the higher
resonant periods are lengthened, although to a lesser degree, but the effective

damping at these periods is substantially larger.
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Tower-foundation-soil interaction effecté are stronger for towers with short funda-
mental vibration period (1.e. stiff structures) and with large tower-height-to-
footing-radius ratio. The interaction effects depend, in part, on the relative flexi-
bility of the foundation soil and the tower, and on the height-wise mass distribu-

tion of the tower.

The effeqts of tower-foundation-soil interactidn on the period and amplitude of the
fundamental resonant peak afe qualitatively similar, whether hydrodynamic
interaction effects are incl.uded_in the analysis or not. In particular, percentage
lengthening of the fundame;ntal resonant period due to tower-water-foundation soil
interaction is almost independent of hydrodynamic effects. The influence of

tower-foundation interaction is however smaller in the presence of water.

Utilizing th_g analytical and numerical procedures of Chapters 3 and 4, the earthquake

response of Briones Dam Intake Tower to Taft ground motion has been presented in

Chapter 6 for various assumptions of the water and the foundation soil. These response

results lead to the following conclusions :

1.

The earthquake response of Briones Dam Intake Tower is increased because of
hydrodynamic interaction effects and decreased as a result of tower-foundation-soil
interaction. These interaction effects in the response of a tower to a specified

earthquake ground motion are controlled, in part, by the changes in response spec-

trum ordinates corresponding to the fundamental and second (and higher)

resonant peaks associated with the changes in the resonant periods and effective

damping because of interaction.

The response of this tower to typical ground motion can be computed to a satis-
factory degree of accuracy by considering only the contributions of only the first
two natural vibration modes of the tower on fixed base without water in the

analysis procedure of Chapter 3.
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The effects of tower-water interaction and tower-foﬁndation-soil' interaction on the
response of an intake-outlet tower depend, in part, on the particular tower and eafthquake
ground motion, so that the conclusions deduced in Chapter 6 from the computed response
of Briones Dam Intake Tower to Taft ground motion would not apply in their entirety to all
towers and ground motions. Whereas the detailed observations may be problem dependent,

the broad conclusions should be valid for many cases.

The response résults presented in this investigation have demonstrated that the
response of intake-outlet towers to earthquake ground motion is affected by tower- water
interaction, and by tower-foundation-soil interaction. These effects can be efhiciently
included in practical analysis of towers utilizing the analytical and numerical procedures

developed in Chapters 3 and 4.

In Chapter 7, it was demonstrated that the hydrodynamic interaction effects can be

represented to a useful degree of accuracy in the response spectrum analysis of towers by

replacing the mass of the towers my(z) by the virtual mass, #m(z)

g (z) = my(z) + m2z) + mi(z)

where the added hydrodynamic mass distributions m2(z) and mi(z) for outside and inside
water, respectively, are determined from hydrodynamic analyses with the assumption of
rigid tower. In order to avoid these complicated hydrodynamic analyses in practical appli-

cations, a simplified procedure 1s presented in Chapter 8.

Following ecarlier work on buildings and déms, an equivalent single-degree-of-freedom
(SDF) system is developed to represent approximately the response of towers in their funda-
mental vibration mode including the éﬂects of tower-foundation-soil interaction. Because
the equivalent SDF sy§tem accurately predicts the response of towers to harmonic ground
motioniover the complete range of excitation frequencies, it can be used in response analysis
of towers to arbitrary ground motion. Thus the equivalent lateral forces associated with the

maximum response in the fundamental vibration mode are given by equation (7.51).



304

A simplified procedure has been presented in Chapter 8 to evaluate the magnitude and
height-wise distribution of added hydrodynamic mass for a tower of arbitrary cross-section
having two axes of symmetry, and its dimensions varying along the height. It has been
demonstrated that the added mass associated with surrounding water or inside water can be
determined accurately without rigorous three-dimensional analyses of the fluid domains. In
particular, the added mass can be determined as the product of (1) the normalized added
mass for an "equivalent” axisymmetric tower which can be determined by two-dimensional
hydrodynamic analysis ; and (2) the added mass for an infinitely-long tower with cross-
section same as that at the base of the actual tower, which also requires a two-dimensional
analysis. The computational effort required in this approximate procedure is an order of

magnitude less that required for the rigorous three-dimensional analysis.

Both of these two-dimensional analyses can be avoided, as-shown in Chapter 8, at the
expense of some accuracy. The normalized added hydrodynamic mass for the equivalent
axisymmetric tower can be determined to a useful degree of accuracy as the normalized
mass from analytical solutions for circular cylindrical towers. These analytical solutions
have been computed and presented in the form of standard data. Similarly, for convenience
of the user, the added mass values for infinitely-long towers have been presented for several

different cross-sections.

In Chapter 9,— a simplified analysis procedure for intake-outlet towers, including tower-
_water and tower-foundation-soil interaction effects, 1s presented to compute the maximum
earthquake forces direcltly from the earthquake design spectrum without the need for a
response history analysis. This presentation utilizes the procedure and standard data of
Chapter 8 for simplified evaluation of the added hydrodynamic mass. Also included are
convenient methods for (1) computing the natural periods and shapes of the first two modes
of vibration of the tower, which are shown to be sufficient for approximate evaluation of the
design forces ; and (2) the modifications to the vibration period and damping ratio of the

fundamental mode due to tower-foundation-soil interaction. Following the earlier work on
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buildings, the contribution of the second vibration mode to the response can be computed as
if the tower was supported on rigid foundation soil. This simplified procedure is presented
as a sequence of computational steps along with all the standard data necessary for con-
venient implementation. It is shown that this procedure leads to solutions that are
sufficiently accurate for the preliminary phase of design aﬁd safety evaluation of intake- -

outlet towers.
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NOTATIONS

outside/inside surface acceleration in its normal direction
frequency parameter for foundation

cross-sectional dimension of the outside/inside surface of a non-

circular tower in the perpendicular direction of ground motion

cross-sectional dimension of the outside/inside surface of an equivalent
elliptical tower for a non-circular tower in the perpendicular direction

of ground motion
cross-sectional area for tower structure

cross-sectional area of the foundation

~area enclosed by the cross-section of the inside surface

area enclosed by the cross-section of the outside surface
distance of inside water bottom from ground level

cross-sectional - dimension of the outside/inside surface of a non-

circular tower in the direction of ground motion

cross-sectional dimension of the outside/inside surface of an equivalent
elliptical tower for a non-circular tower in the direction of ground-

motion

outside/inside acceleration of reservoir bottom

" damping coefficients for elastic foundation

damping coeflicients for viscoelastic foundation
shear wave velocity for foundation medium
factor defined by equation (9.27)

factor defined by equation (9.28)

duration of ground motion

elastic modulus for tower material

lateral hydrodynamic force functions of outside/inside water for rigid

towers subjected to horizontal acceleration at base

309



310

1o, 1t ' lateral hydrodynamic force functions of outside/inside water for vibra-
tion shape ¢,(z) , ¥,{2).

1o, fi ' lateral hydrodynamic force functions of outside/inside water due to

rocking motion of rigid towers

fo.f i frequency response functions for lateral hydrodynamic forces on the

outside/inside surface

fa equivalent lateral forces in n-th vibration mode

Gy elastic shear modulus for foundation

G r viscoelastic shear modulus for foundation

G, . . elastic shear modulus for tower material

hi ' effective height of tower without water in the fundamental mode of

vibration

h{ effective height of tower with water in the fundémental mode of vibra-
tion

H,, H outside/inside water depth

H Height of the tower

i V-t

I mohient of inertia for tower cross-section

Ip ~mass moment of inertia for footing

I, | moment of inertia for the foundation

I . ‘ = p./, mass moment of inertia for tower cross-section

1, ' modified Bessell function of order n of the first kind

1, ' integral defined by equation (3.11)

., , integral defined by equation (3.36) for outside/inside water

k - shape factor of cross-section for shear stress distribution

kyy o, kang s kv stiffness coefficient for elastic foundation

kv . kigg > kKing  stiffness coefficients for viscoelastic foundation
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modified Besseil function of order n of the second kind

static stiffness of the foundation in translation [equation'(9.22a)]
static stiffness of the foundation in rocking [equation (9.22b)] -
foundation impedance functions

finite element matrices for outside/inside water domain

stiffness matrix for tower structure
integrals defined by equatipn (3.13) for outside/inside water
integrals defined by equation (3.14) for outside/inside water

integrals defined by equation (3.15) for outside/inside water

generalized excitation due to structure mass
generalized excitations due to outside/inside water

generalized mass terms due to tower-foundation-soil interaction

generalized mass terms due to outside water-foundation-soil interaction

generalized mass terms due to inside water-foundation-soil interaction
mass of the footing.

mass of the tower per unit of height

added hydrodynamic mass for outside/inside water

total structural mass

effective mass of tower without water in the fundamental mode of

vibration

effective mass of tower with water in the fundamental mode of vibra-
tion

integral defined by equation (3.35) for outside/inside water

generalized mas term for tower structure

number of cos(ci,,z/H,) functions in equation (4.43)
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o M} j generalized mass term due to outside/inside water
M J—(Ec’ ) " three-dimensional trial functions for boundary integral domain
M[(X) trial functions on hypothetical cylinder
M i(r.2) axi-symmetric trial functions
m(z) bending moment along the height
nm, bending moment due to x component of ground motion
m, bending moment due to y component of ground motion
m,(z) | bending moment distribution in n-th mode
m I response function of interaction moment at the base
m ¢ ,m l respoﬁse functions for hydrodynamic moments due to outside/inside
water
mg , m(") hydrodynamic moments due to outside/inside water for rigid towers

subjected to horizontal acceleration at base

m?, m:, hydrodynamic moments due to outside/inside water for towers vibrat-

ing in shape ¢,(z) , ¥,(2).

m?, m, hydrodynamic moments due to outside/inside water for rigid towers in
rocking motion

M mass matrix for tower structure
n®, nl direction of normal to outside/inside surfaces
ng , ng direction cosines of normal to outside surface
nt., nt direction cosines of normal to inside surface
N number of modes considered
N;(z) one-dimensional interpolation functions

/
N; (xX) three-dimensional interpolation functions
N;(r,z) axi-symmetric interpolation functions

Ng number of nodes in finite element system for tower structure
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number of cos(27—1)# functions in equation (4.43)

. number of nodal points in finite element system for fluid domains

number of trial functions in boundary integral procedure

frequency response functions of hydrodynamic pressure in

outside/inside water domain

hydrodynamic pressure functions of outside/inside water for rigid
towers subjected to horizontal acceleration at base

pressure functions of outside/inside ’water vibrating in shape
bn(2) . ¥n(2)

pressure functions ’of outside/inside water for rigid towers in rocking
motion

shear force along the height

shear force due to x component of ground motion

shear force due to y component of ground motion

shear force distribution in n-th mode of vibration

finite element vectors for outside/inside domains

cylindrical coordinates

radius of hypothetical cylindrical surface

radius of equivalent cylindrical tower for added mass computation for
outside/inside water

radius of circular footing

outside/inside radius of axisymmetric towers

= V1 + 77 (Chapter 4, Section 4.2.3)
peak value of any response quantity

peak value of any response quantity due to gravity loads in equation
(9.40) ‘

peak value of any response quantity due to ground motion along x axis
in equation (9.40)
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peak value of any response quantity due to ground motion aldng Y axis
in equation (9.40)

local co-ordinate along the perimeter of the outside/inside surface
time

n-th mode vibration period of fixed-base tower without water
n-th mode vibration period of fixed-base tower with surrounding water
n-th mode vibration period of fixed-base tower with inside water

n-th mode vibration period of fixed-base tower with surrounding and

inside water .

n-th mode vibration period of tower without water on flexible founda-
tion soil

n-th mode vibration period of tower on flexible foundation soil with

“surrounding and inside water

transverse displacement of neutral axis

frequency response function of u

relative displacement of footing

ground acceleration

frequency response function of interaction shear force at base
specific loss factor for viscoelastic medium

cartesian coordinate

co-ordinate vector

generahized coordinates

frequency response function for Y,

subscript or superscript to identify parameter for outside and inside
water (Chapter 3)

coeflicient used for combining responses of x and y ground motion

components (equation 9.40)

=2m-1)x/2
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numerical coefficients .

tower-foundation-soil interaction parameter defined in Table 3.1

numerical coefficients

interaction parameter for eqliivalent SDF system defined 'by equation

(9.20)
surface of anti-symmetry for outside/inside water domain
reservoirr'bottom for outside/inside waterr don'lain
hypothetical cylindrical surface

portion of footing exposed to outside water

free surface for outside/inside water domain

surface of syrp:ﬁetry for outside/inside water domain

tower-water interface for outside/inside water domain
Dirac-delta function

Kronecker delta function

belongs to

hysteretic damping factor for foundation material

hysteretic damping factor for tower

added damping factor in the fundamental vibration mode due to foun-

dation dambing

effective damping factor in the fundamental vibration mode of tower-

foundation-soil system

effective damping factor in the fundamental vibration mode of tower-

water-foundation-soil system

frequency response function for slope of neutral axis due to behding

deformations only

rocking of the footing

axisymmetric reservoir bottom for outside/inside water domain
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axisymmetric hypothetical surface
axisymmetric exposed surface of footing to outside water

axisymmetric tower-water interface for outside/inside water domain
Poisson’s ratio for foundation material

damping ratio for tower in fundamental vibration mode

added damping ratio in the fundamental vibration mode due to foun-

dation damping

effective damping ratio in the fundamental vibration mode of tower-

foundation-soil system

effective damping ratio in the fundamental vibration mode of tower-
water-foundation-soil system

damping ratio for tower in n-th vibration mode without water

damping ratio for tower in n-th vibration mode with water
mass density of tower material

mass density of foundation material

mass density of water

tower-foundation-soil interaction parameter defined in Table 5.1

interaction parameter for equivalent SDF system defined by equation
(9.18)

three-dimensional outside/inside water domain

transverse deflection in n-th mode of vibration

;

interaction parameter for equivalent SDF system defined by equation
(9.24)

interaction parameter for equivalent SDF system defined by equation
(9.25)

slope due to bending in n-th mode of vibration

excitation frequency

-n-th mode vibration frequency of fixed-base tower without water
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wh) n-th mode vibration frequehcy of fixed-base tower with surrounding
water

W, " n-th mode vibration frequency of fixed-base tower with inside water

wh n-th mode vibration frequency of fixed-base tower with surrounding

and inside water
ar,f, n-th mode vibration frequency of tower without water on flexible foun-
dation soil

@, ‘ n-th mode vibration frequency of tower on flexible foundation soil
- with surrounding and inside water

Whn natural vibration frequency of n-th mode of tower by Euler’s bending

theory

Q,Q axisymmetric outside/inside water domain



. APPENDIX A
RECIPROCITY PROPERTY OF HYDRODYNAMIC FORCES

A.1 Surrounding Water

If the distribution of lateral and rotational accelerations of the tower axis is character-

ized by the mode shape functions ¢4(z) and y4(z), respectively, 8 being the shape identifier,
then the spatial distribution of the acceleration, a,‘fﬁ(f ), of the tower-water interface T in its
normal direction is [equation (3.20)] :

ang(X) = nd(X) ¢5(2) - x nI(X) ¥s(z) X ¢ I7 (A.1)

where n2(X) and n2(X) are the direction cosines of the normal at a point X on the outside
surface with respect to x and z axes respectively. If I'? represents the exposed part of the
foundation at reservoir bottom I'§, the spatial distribution of the accelerations, b,‘,’ﬁ(}’), at

the reservoir bottom T'§ is [equation (3.22)] :

-X Yfr‘g

bs) = | 0 otherwise (A.2)

As mentioned in Section 3.2.4, the resulting hydrodynamic pressure function pﬁ(f )
satisfies the Laplace equation :

V2 pa(X) =0 (A.3)
for the surrounding water domain along with the following boundary conditions :

¢

P Pe(X) = - py ads(X) X eI? (A.4a)

3 oy - Pw br?ﬁ(}’) fcl_‘g - o
22P5x) = |9 otherwise | % €T (A.4b)
pEEY=0 X eT? (A.4<)

in which I'} is the free surface of the surrounding water domain and p,, is the mass density
of water. The resulting hydrodynamic lateral forces f§(z) and external moments mg(z) are
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computed at any location z along the height by inltegrating pressure function pg(ff ) along the

perimeter of the tower-water interface I'Y pertaining to that location {equation (3.29)] :

g
!

f3(z) = ! nIX) p§(x) dss (A.52)

mi(z) = - 11 x n2(X) pd(¥) dsg —6(z)l£xp§(5c’) dr (A.5b)

{ €

in which s{ defines the local coordinate along the perimeter of the outside surface for any

fixed location z along the height such that
dI¢ = ds{ dz : (A.6)

Similarly, if ¢.(z) and ¥.(z) characterize the accelerations of the tower axis, the

accelerations of the tower-water interface are given by :

ag (%) = nUF) ¢(z) - x ndF) ofz) X €T (A.7)

and the accelerations of the reservoir bottom by :

g o
-x XGF(,

)= | o otherwise (A.8)
The resulting hydrodynamic pressure pJ (X) also satisfies :
2 o0 ' ‘
VEpy(x) =10 ' (A.9)
fqr the surrounding water domain along with the following boundary conditions :
8_p0F) = - puatu(®) ¥ (T - (A.10a)
ano p.’, = Pw Up~y €1y . d
3 —pwb,‘fw(f) - X eI? .
227 = | g " otherwise | X €Tb (A.100)
poxX) =0 X eI (A.10c¢) -

and the resulting hydrodynamic lateral forces and external moments are computed by the

following equations :
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J3(z) = L ng(X) pY(X) ds? (A.11a)

t

mi(z) = - ix n(X) po(X) ds§ - 5(z)ixp$(3c’) dT (A.11b)

Substituting equation (A.11) into the left hand side of equation (3.29), the reciprocity

property of hydrodynamic forces, using the definition of s{ [equation (A.6)], and then substi-
tuting equations (A.1) and (A.2) lead to :

H, H,
t[ 65(z) f9(z) dz + { Ve(z) MS(z) dz = l a%(¥) po(¥) dT + Lb,?ﬁﬁc’)ps(f)dr (A.12)

Using the boundary conditions of equation (A.4), the equation (A.12) can be written as

H, H,

l ou(2) f2(2) dz + t[ Valz) M2(z) dz = — pL ‘j [

on®

PG pg(¥)dr  (A.13)

in which T represents the entire surface of the surrounding water domain.

Similarly, it can be shown that

H, H,

[ 62 131 dz + [ @) mie) e = - — [ PG ) AT (A1)

Since p§(3c' ) and pfi(f ) satisfy Laplace equation for the same domain, Green’s theorem
implies that

9

a o> o _ o ‘—" ory = |
L (5,781 P& dT L (=PI PR dT = 0 (A.15)
which leads to
H, H, H, H,
l{ 5(z) f3(z) dz + t( ¥slz) my(z) dz = 1[ ¢,(2) f§(2) dz + £ ¥,(2) Mg(z) dz (A.16)

the reciprocity property for hydrodynamic forces due to surrounding water.

A.2 Inside Water

Since the accelerations of the inside surface, als(X), bis(X), ah, (X), and b, (X), are

related to the accelerations of the tower axis, ¢4(z), ¥5(2), ¢,(2), ¥,(z), through direction

cosines n.(X) and n/(X) in a manner similar to that for the surrounding water, and the
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pressure functions pé (X) and pfr(f) also satisfy the similar equations and boundary condi-

tions, except T, = Il for the inside water domain, it can be shown that

H, H,

! de(z) f1(2) dz + [[ velz) M) (2) dz

‘[ [—pﬂ(x ) pLE)dr (A7)

and

©OH; H,

‘[ ¢.(2) fi(2) dz + £ w.(2) My(z) dz

'_![ —pl () py(X)dT  (A.18)

in which I represents the entire surface of the inside water domain. Application of Green’s

theorem leads to

H, Hi HA HA

g 0a(2) fL(z) dz + é Yalz) Ml (z) dz = é 6.(2) [h(z) dz + i ¥.(z) Mj(z) dz (A.19)

the reciprocity property for hydrodynamic forces due to inside water.



APPENDIX B
COMPUTATION OF SHEAR FORCES AND BENDING MOMENTS

The shear force Q(z,t) and bending moment #(z,t) along the height of the tower can
be determined by static force-displacement relationship, i.e. using the cross-sectional
stiffnesses -- (;k(z)A4(z) in shear and E,/ in bending -- and the response history of lateral

displacements, u(z,t), and bending slopes, #(z,t), of the tower axis :
0.0) = GA@AR) [ u(z) - 8z.0) ) (B.1a)

4
m(z,z) = EJ a—zf}(z,t) (B.1b)

Since the lateral displacements and bending slopes of the tower axis are obtained by super-

posing modal responses [equation (3.50}] :

N
u(z,t) = 2 ¢;(2) Y(¢) - (B.2a)
J=1 ‘

N N
ozt) = 3 ¥i(2) Vo) (B.2b)
j=1

Consequently, the shear force Q(z,f) and bending moment #1(z,t) along the helght of the
tower can be determined as :

N .
Qz.1) = 2 Qu(2) Y1) (B.3a)
. n=1

v ‘
M(z,t) = 2 My(z) Y, (t) (B.3b)

n=1

in which Q,(z) and Mm,(z) represent the height wise distribution of shear forces and bending
moments associated with deflection of the tower in the n-th mode of vibration, described by

lateral displacements ¢,(z) and bending slopes y,(z) of the tower axis. They are defined as :

On(2) = Gk(DAD) [ ¢n(2) ¥n(2) ] (B.4a)

m,(z) = EJI ix!/,,(z) ' (B.4b)
dz

In undamped free vibration of the tower in its n-th mode shape, the lateral displace-

ment #(z,t) and bending slope #(z,¢) of the tower axis varies as
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u(z,t) - dn(z) €™ " (B.5a)
B(z,t) = Yp(z) e (B.5b)

where «, is the n-th vibration frequency of the fixed-base tower without water. - Since the

shear forces and bending moment also varies as
Q(z,t) = Oylz) € : (B.6a)
miz,t) = m,(z) et (B.6b)

it is possible to compute the functions @,(z) and 1,(z) by direct mtegratlon of the cqua-

tions of motion for the undamped free vibration of the tower.

The equation of motion for the undamped free vibration of the tower, restricted to
vibrate in its n-th mode shape, can be written as a special case of equation (3.1) which after

substitution of equation (B.4) becames :
d
- “"n mz) (25”(2) dz —0u(z) =0 (B.7a)

- 6 142 Yal2) = () - Q) = 0  (B7Y)

' _
Integration of equation (B.7a) and using the boundary condition. Q,(H,) = 0 leads to :

H,

Qulz) = f my(£) ba(8) dt (B.8)

Substitution of equation (B.8) into equation (B.7b), use of boundary condition #1,(H,) = 0
and integration of equation (B.7b) leads to :

H; ‘ H,

Mu(z) = b [ [ (6-2) ml®) 6a(8) dE + [ L(8) ¥n(8) dE ] B9

in which the second term comes from the contributions of rotatory inertia.



APPENDIX C
DERIVATION OF EULER-LAGRANGE EQUATIONS

C.1 Surrounding Water Domain
Let p?(X) be the function in domain 9 of the following form :
piE) X ey
p'(x) = N (C.1)
Pp(x) X etg
and the function p§(X) is restricted to the form of equation (4.35). If the function p{(X)

and the unknown coefficients in function p$(X) are selected in such a way that the function

p°(X) renders the following localized functional stationary:

H(p)——pr Vp

anA < anﬁ

- pw Lpﬁ(?) aiX) dT - py [ P§E) 6IF) 4T (C.2)

Then the first variation of the functional of equation (C.2) evaluated for the function p°(X)
must be zero, i.e.

[U- 9 1ops(E) dr + ‘L

ong ong
!pg(x) 5 Le_spz(ic’) ’Lp,,(x) of -
an§ ; anA . ong
- by l sp§(¥) af(X) dT - p, J 0p3(X) bE(R) dT = 0 (C.3)
in which T'* represengs the entire surface of domain 75, 1.e.
M=T{Ur;u(ry -rg)uryure (C.49)

In equation {C.4), I'{ is the tower-water interface, I'J is the exposed surface of the footing,
I' is the bottom boundary of the surrounding water domain, I'Y is the hypothetical cylindri-

" cal surface, and I'¢ is the free surface of the surrounding water domain.
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' Using

ao -9 on T¢

dn ang
g _ _ 9 0
e - ez on T}
6o _ 9 on T¢

n® ant

A
a _  d 0
an® = 3z on Ff

and the following special property of function p%(X) on surface I'? :

ang : ang

equation (C.3) can be written in the following form :

[ U= T25F) 1 opg() dr + a$(F) 1 8p4(F) dT

4

« [1= 5240 - oy 636 1 003T) dT + HIH[ - Zpg() 1 epgE) dr

+ [ Uzrat o ar s+ [

¢ ang ang

rL[pg(x)—

anA

(C.5a)

(C.5b)

(C.5¢)

(C.54d)

(C.6)

(C.7)

This implies that ‘if the function p3(X )=0 on the free surface '}, then the function po(xX) of

the form of equation (C.1), .which makes the functional of equation (C.3) stationary, will

also be the solution of the following boundary value problem :
Vp°(X) =0 X er’

d
‘6n°

p°X) = - pyaiX) X eI

(C.8)

(C.9a)
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9 - — Pw br?(-;-‘.) X e Iy -
9z? X)=1o otherwise x ¢Tf (C.9b)
PP¥)=0 X eI (C.9¢)

Additionally, the function p°(X ) will also satisfy the constraints on the hypothetical cylindri-
- cal surface :

pi(X) = p§(xX) X el? (C.10a)
a orr 6 o> —» o
pa(x) = pE(x) X eI? (C.10b)
ang : ang .

Therefore, the function p°(X ) which renders the functional of equation (C.2) stationary,
is the required solution of the boundary value problem for the surrounding water domain.

C.2 Inside Water Domain

 Let p'(X) be the function which renders the following functional [equation (4.78)] sta-
tionary : ‘ '_

p) = 5 [ V655" dr = py [ P 6l dT - o [ FE BE T (€11

Then setting the first variation of this functional equal to zero leads to

[ U= 1ap' @ dr + [ [op' () ) ap!() T
~ by r[ 3p'(X) al(X) dT - pw‘[ 5p'(X) by(X) dT = 0 (C.12)
j b o
Using
M=T;UT,UT (C.13)
and |
9 iRy - 2 pE)  Fer (C.14a)
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8 ;= d i .

a—np’(x) = - gz—p‘(x) X el | (C.14b)
a F¥an 6 i — i

a7 0 = =P (x) x €Ty (C.14c)

equation (C.12) can be written in the following form :

[T @ VoG e+ [1= 2p @) - i) 1 3p'T) T
i Zp/(F) - pw bi(F) 1 8p/(F) dT + 1[[ 2P apE)dr =0 (C15)

This implies that if p/(¥) is restricted to be zero on surface I, and if p’(X') renders the
functional of equation (C.11) stationary, it is also the solution of the following boundary

value problem:

V(X)) =0 Xer © , (C.16)

6 i - i‘ —_ —_ i ! .
an,-p(x)= -pwan(x) X €Ty | | (C.17a)
%p"(}' ) = — py BIX) X €T . (C.17b)
PIXYy=0 X e} (C.17¢)

Thus, the function p'(¥), which renders the functional of equation (C.11) stationary, is also

the solution of the boundary value problem associated with hydrodynamic pressures due to

inside water.



APPENDIX D
HYDRODYNAMIC ANALYSIS OF AXISYMMETRIC FLUID DOMAINS

D.1 Surrounding Water Domain

As mentioned in Section 4.3.5, the functions p3(r,z) and pg(r,z) which render the fol-

lowing functional

syl L 8z Bo0, 80 80 110 5

“@)-zéfaﬁ’f' o+ gz Ph gpPArdrde v o [ PG P drde
L zo 9 2 I
+2[gpalar1’3]’d2’ LPA[G’,PB]’CJZ

- pw [ Pg agrz)rda - p, [ P batrzyrda (D.1)

stationary, are also the solution of the boundary value problem for the fluid domain sur-
rounding the axisymmetric tower.

Let N, be the number of nodal points for the finite element system in r-z plane, then

the pressure function p{r,z) in domain Q4 is approximated by
Ne
palr,z) = 2 Ni(r,z) p; (r,z) € QF (D.2)
i=1 .

Similarly, the pressure function p3(r,z) in domain Q% is approximated by the linear combi-
nation of the.first Nz normalized functions : '
Ny
Eg(raz):: E Mi(r9z) q; (r,Z) € Q% (D3)

=1
in which g;’s are the unknown coeflicients and

K(oyr/H,)

Mi(r’Z) B [ Kl(airc/Ho)

Jcos(w,z/H,) ; i=12...,Ng (D.4)

Since function p3(r,z) and its derivatives appear in the functional of equation (D.1)
only under the integral of A2, (i.e r=r.), it is sufficient to compute pg(r,z) and its derivatives

g .
on A;:
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Ny
p3rz) =3 M(rz) g (r,z) e GCI (D.5)
i=1
3 ALQE—
Eﬁg(r,z) =~ ) B; M,—F(r,z) 4; (r,2) e GCI (D.6)
i=1

“in which functions M [(r,z) and constants B; are defined as

M Fr,z) = cos(a;z/H,) ;o i=1,2,..., Ny (D.7)
- 1 o Koleyr/Hy) + Koleyr/H,))
B, = - 3 . Rt JH) = i=1,2,...,Ng (D.8)

Substitution of equations (D.2), (D.5) and (D.6) into equation (D.1) leads to a func-

tional in vectors p and g containing the unknowns p;, i=1,2, .. .', Nsandg;,i=12, ..., Ng
respectively:

1 | 1
W(pg)= 52 Kip + 54" Kimg + 5[ p"Kya + a"Kip 1 - p"Qr - p7Qy (D.9)

which is similar to equation (4.49) for a general three-dimensional fluid domain.
In equation (D.9), K; is N; x N, symmetric matrix with its jk- element given by
Ko = [ [ EF02) LRrz) + 2R 0r2) - L No(r2) | v dr d
I . or JA e ar ’ 9z 1’ dz ’
+ J Nirz) - N(r.z) % drdz . jk=12.. N, (D.10)

The zero pressure boundary condition on surface A7 is satisfied by assigning zeros to the

rows and columns in the matrix K; corresponding to the nodes on this surface.

Since ML, i=1,2,...,Ng is a set of orthogonal functions on surface A%, the matrix Kj; in

equation (DD.9) is a diagonal matrix of order Ny with its jj- elements given by :

(Kup);j = B; rcl M.z M/ (r,z)dz ; j=12,...,Np . (D.11)

If the nodal points in the finite element mesh for domain Q% are numbered in a special way,

assigning the first Ny numbers to the tower-water interface and the last N~ numbers to the
hypothetical surface between domains @ and 23, the matrix defining the coupling between

the pressures in domains Q5 and Q3 is of size No x Ny and its jk- element is given by
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(Kijx = - Bere J Ni(roz) M{(r,z)dz 5 j=N4-Ne+l,... Ny ; k=12, .. .(Dj32)

~The vectors @y and Qj; appearing in the functional [equation (D.1)} are of order N, and

their jj-terms are given by :

Q1) =[0Nj(r,z) as(rzyrda ; j=12,..., Ny (D.13) -

Q) = {Nj(r,z)E,?(r,z)rdA c =12, N, (D.14)

In vector @, only the first Ny terms are non-zero which correspond to the nodes on the
tower-water interface. Similarly, in vector @y, only those terms which correspond to the
nodes on the exposed portion of the foundation surface in contact with water are non-zero.
Similar to the procedure presented in Section 4.3.4, stationarity of the functional of
equation (D.9) ieads to N,+Np linear algebraic equations in unknowns p;, i=1,2, ... N,

and ¢;,,i=1,2, ..., Ng. Solution of these equations leads to unknowns p;’s and g¢,’s. The

pressure functions pj(r,z) and ﬁf’;(r,z) then can be approximated from equations (D.2) and
(D.3). The hydrodynamic pressures, their equivalent lateral forces and external moments
are then evaluated by equations (4.63), (4.64) and (4.70).

D.2 Inside Water Domain

As mentioned in Section 4.4.3, the functions Ei(r,z) which renders the following func-
tional [equation (4.88)] '

NS RPN I VR I Ll i,
H(p)_Zn[,-[arp arp +azp azp]rdrdz+2£rp pldrdz

- Py [ Pl Ei,(r,z) rdA - p, J B Eg(r,z) rdA (D.15)
. b

stationary, is also the solution of the boundary value problem for the fluid domain con-
tained within the axisymmetric tower.

Similar to eguation (D.2) for the surrounding water domain, pressure in domain Q is
expressed in terms of the unknown pressure p, at i-th node for N, nodal points by the fol-

lowing equation :



331
Ny

plrzy= X Nir2)pi (rz) e @ - (D.16)
i=1

Substitution of equation (D.16) into equation '(D.15) leads to a functional in ‘ygctor p

containing the unknowns p;, i=1,2, . . . , N :
t .
o(p) = EPTKIP -p7Q; - p7TQy ' (D.17)
in which K is Ny x N, symmetric matrix with its jk- element given by

Kk = 1{ [ 3, Ni2) - oNK(r,2) + —=N(r,z) - =N ilr.z) ) r dr dz
+ J Firz) Nulr.2) % drdz ; jk=12.. N, (D.18)

The zero pressure boundary condition on surface Aj} 1s satisfied by assigning zeros to the
rows and columns in the matrix K; corresponding to the nodes on this surface. The vectors
Q; and @Qy; appearing in the functional [equation (D.15)] are of order N, and their jj-terms

are given by :

(Q,)j=l{ﬁj(r,z) alrzyrdr ;. j=12,....N, (D.19)

Q) = A{ Njroybirzyrda 5 j=12,... Ny (D.20)

In vector (J;, only first Ny terms are non-zero which correspond to the nodes on the tower-
water interface. Similarly, in matrix @, only those terms which correspond to the nodes on
the reservoir bottom are non-zero. - )

Similar to the procedure presented in Section 4.4.2, stationarity of the functional of
equation (D.17) leads to N4 linear algébraic equations in unknowns p;, i=1,2, ..., N,.
Solution of these equations leads to unknowns p;’s. The pressure functions p i(r,z) then can
be approximated from equation {D.16). The hydrodynamic pressurés, their eQuivélent
lateral forces and external moments are then evaluated by equations (4.87) and (4.92). '



APPENDIX E

COMBINED EFFECTS OF SURROUNDING AND INSIDE WATER
ON TOWER VIBRATION PROPERTIES

The equation of motion for a fixed-base tower without water, restricted to vibrate in its

n-th mode shape, due to harmonic ground acceleration iig(t) = " §s
(- M, + (1 +in)wiM,Y,(0)=-1L, (E.1)

in which w, is the n-th natural vibration frequency, n, is the constant hysteretic damping
factor; and the generalized mass M,, and the generalized excitation term L, are given by
equations (7.4) and (7.5).

‘As shown in Chapter 3, the surrounding (outside) water introduces an added mass term
M?, and an added excitation term L7 in equation (E.l), leading to:
(- (My+ Mo )+ (1 +ing)wn Myl Vpw)=-Ly - L] (E.2)

From this equation, the natural frequency of the tower with surrounding water may be
expressed as

“’?1 = @y \/Mn /[ (M, + Mr?n ) (E.3)

which can be rewritten in terms of the corresponding vibration periods as:

Ti =Ty V1+ (Mg, /| M) (E.4)

Similarly, as shown in Chapter 3, the inside water introduces an added mass term M,

and an added excitation term L} in equation (E.1), leading to:

[- 0 (M, + ML)+ (1 +in )M, Y, (w)=-L,-L)} (E.5)

From this equation, T;, the n-th vibration period of the tower with inside water is given by: '

ﬁ=nVHwWUMn (E.6)

When the effects of surrounding and inside water are considered together, the equation
of motion becomes :
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[~ (M, + M7+ M)+ (1 +img)of MY (@) = ~L, - L7~ L, (ET)

From this equation, 7}, the n-th vibration period of the tower with surrounding and inside

water can be expressed as:

T, =T, V01 + (M / M)+ (M, M) . (E.B)

Elimination of My, / M, and M, /| M, fronﬁ equation (E.8) by substituting equations (E.4)
and (E.6) respectively, leads to :

2 2 2
Ty Ty T,
?,, = —ﬁ + ?,, -1 (Eg)



APPENDIX F -

- PROPERTIES OF EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM
WITH CONSTANT HYSTERETIC DAMPING

The frequency domain equations for the fundamental mode response of towers on flexi-

ble foundation soil with impounded water are [equation (7.21)]:

- ]
[-w?M | +(1+in)eiM] ALk ~w’L] 7 (w)
~w?Lt —w¥m+m)+Kyy(w)  ~w?Li+Kyp(w) i ()
ey _l Lt Kylw) UKy | | 6Aw)
L,
= - | mptm (F.1)
Lj

This system of three complex-valued equations can be solved for Y |{w), the frequency
response function for the modal coordinate corresponding to the fundamental mode of

vibration of the tower.

Solution of equation (F.1) for the frequency response function Y ((w) for the fundamen-
tal mode coordinate is complicated by the implicit contributions of the higher vibration

modes of the tower to the three terms, m,, I, and Lg representing the inertial influence of
the tower mass due to rigid-body motions allowed by foundation-soil flexibility. It can be
shown from numerical results that the influence of m, and I, on the tower response is small,
and that the tower response is accurately predicted with the assumption that these inertia
- terms are approximated by the contribution of the fundamental vibration mode :

m; = m; ‘ (F.za)
Ly =m] h| | ' (F.2b)
L =m (hy ) | R (F.2¢)

in which my = (L;)*/ M, and A] = L] / L, are the effective mass and effective height,
respectively, of the tower in its fundamental mode of vibration [20,46]. Similarly, the
influence of coupling impedances Ky s(w) and K, {w) can be neglected (Chapter 7). Substi-

tution of equation (F.2) into equation (F.l1). and neglecting» myg, Iy, and the coupling
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impedances leads to :

i
2 2 -

[~ M +(1+indolM ] ~9h —wLi ¥ ()

—w2L1 —wsz-i-KVV(w) —wsz h; 7 ﬁf(w)

—WiLT —wtmi by —wtm) (B +Kops(w) J 8 p(w)

(
L,
= - m (F.3)
m} b |

Solving equation (F.3) for Y |(«) using Cramer’s rule gives :

_ - L,
¥ (o) = (F.4)

[’ M +(1+inwiM ] - &*M (1+in,) F(w)

where

. (hi)? 1
N 2
Flo) = my o Karar(w) T Ko@)

(F.5)

The natural vibration frequency w] of the equivalent single-degree-of-freedom (SDF)
system that models the fundamental mode response of the tower on flexible foundation soil
without water is given by the excitation frequency that makes the real valued component of

the denominator in equation (F.4) zero :
= (wf P + of = (@ ) Re[F(«])] + (wf ) ny Im[F(wf)] = 0 (F.6)

Neglecting the effect of the second order damping terms leads to

Wi

= (E.7)
, \/ I + Re[F(w})]

which must be evaluated iteratively. The vibration frequency w| will always be less than w,

because Re[F(w)] > 0 for all excitation frequencies.

The frequency response function ;l(w) for the equivalent SDF system can be obtained

from the frequency response function f’-l(w) for the fundamental mode response of the
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tower, equation (F.4). Evaluating the frequency dependent terms at excitation frequency u:{ \

using equation {F.6) and (F.7) for the real valued terms in the denominator of equation

(F.4), and grouping the imaginary valued terms, gives the frequency response function }T’l(m)

for the equivalent SDF system :

2

w] - L

w) —w?M+(1 +in)) ()M,

in which the constant hysteretic damping factor n{ is

2

wf

’Tl[= w_] s T Mg

where

|

ne=- | — | Im[F()
Wi

(F.8)

(F.9)

(F.10)

The two terms on the right side of equation (F.9) represent the contributions of structural

damping and foundation damping, respectively. The damping factor n, is always positive

because Im[F(w)] < 0 for all excitation frequencies. This added damping due to soil-

structure interaction is the combined effects of soil material damping and radiation damp-

ing.



APPENDIX G
ADDED HYDRODYNAMIC MASS FOR INFINITELY-LONG UNIFORM TOWERS

G.1 Added Mass for Surrounding Water

The geometry of the fluid domain surrounding an infinitely-long uniform tower does
not vary with the z coordinate defined along its length, and the normal to the outside sur-
face remains in x-y plane. These special geometric properties allow the distribution of sur-

face acceleration for a rigid tower to be written in the following form :

ay(x) = ni(s?) (G.1)

in which 57 is the local coordinate defined along the perimeter of the outside surface in the

x-y plane, as shown in Figure G.1, and »? is the direction cosine of the normal to the out-
side surface with respect to the direction of ground motion. Consequently, the solution for

the hydrodynamic pressure is sought independent of z coordinate :

p°(X) = p°(x.) (G.2)
and it 1s sufhicient only to solve the two-dimensional Laplace equation in the x-y plane. For
- this purpose, the domains 7% and I'§ in Section 4.3.4 are replaced by domains Q% and Qf, -

both in x-y plane (Figure G.1), and surfaces I'Y and I'? are replaced by contours A? and AY,
also in x-y plane. Thus, similar to the procedure of Sections 4.3.3 and 4.3.4, the pressure

function 7°(x,y) is computed by making the following functional stationary :

J

ang

1 1o, _ _ 9
Hw°)=34Vp°-Vp”d9+5[p§[ p%]dA+[pﬁ[——p§]dA
G g : ang

- by ,{ P4 ag(s3) dA | (G.3)

The functions p§ and pg in domains Q% and Q%, respectively, are approximated by interpo-
lating them in x-y plane using the special forms of equations (4.40) and (4.42):
N‘ _
Pax.y) = 2 N{x.y) p; (x,p) € QF (G.4)

i=1
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Ny
Pexy)= 2 Mi(x,y)q; . (x.p)eQf _ (G.5)

i=1
- In these equations, N,(x,y), i=1,2, ..., N, are the interpolation functions in the x-y plane
and M,(x,y),i=1,2, ..., Np are general solutions of the Laplace equation for the fluid

domain exterior to a hypothetical, infinitely-long, circular cylinder. If r,. is the radius of the
hypothetical cylinder, M ;(x,y) can be written in cylindrical coordinates in the following
form:

Mxy)=[r/r., 7% Yeos2i-18 ; i=12,...,Ng (G.6)

This form of the solution of the Laplace equation comes from the lack of boundary condi-
tions at the free surface and at the horizontal base of an inﬁnitely-lohg tower. It should also
be noted that the symmetry of pressure functions about the plane df motion, and the
antisymmetry of pressure functions about the plane normal to the direction of motion have

been used to obtain this form of the general solution.

Because A is a circle, its outward normal always satisfies the following equation:

ad

ang

s |
=< along A° (G.7)

Therefore, due to the special structure of M ;(x,y), the pressure function p3(x,y) and its gra-

dient on the contour AZ can be represented in the following form by using equation (G.7)

and substituting 7=r, in equation (G.6):

Ns
PR y) =3 M (x) g (x,y) e A2 - (G.8)
i=1
3 ALE—
PRy =3 B, MI(x ) g, (x,)) e A? (G.9)
' i=1 :

ang
in which functions M [(x,y) and constants B, are defined as
Hf(x,y) = cos{2i-1)d ;o i=1,2;..., Ny (G.10)

B, =-Qi-1/r, ; i=1,2,...,Ng (G.11)

Substitution of equations (G.4), (G.8) and (G.9) into equation (G.3) leads to a func-

tional in vectors p and g containing the unknowns p;, i=1,2, ... ,Nyand g;,, i1=1,2, . .. ,Npg
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respectively:

1 1 1
(pg)-= 5pTK1p + EqTKmq + E[PTKHG +a’Klp1-pTQ (G.12)

which is similar to equation (4.49) for a general three-dimensional fluid domain.

In equation (G.12), K; is N, A- x N4 symmetric matrix with its jk- element given by

Kp), i = J VN (x,) - VN (xp) dQ 5 jk=12, ... N, (G.13)

Since M, i=1,2, ..., Ny is a set of orthogonal functions on surface A2, the matrix Ky in

equation (G.12) is a diagonal matrix of order Ny with its jj- element given by :

(K = B; i]\?}‘(x,y) -M[(x,y)dA ; j=12,...,Ng (G.14)

If the nodal points in the finite element mesh for domain Q4 are numbered in a special way,

assigning the first Ny numbers to the tower-water interface and the last N- numbers to the
hypothetical surface between domains Q% and Q%, the matrix defining the coupling between

the pressures in domains Q% and Q3 is of size No x Np and its jk- element is given by :

Ki)jx = - Ekx[ﬁj(x,y) Mi(xy)dA ;5 j=N;j=Ne+l, ... N4 ; k=12,...,1G.15)

The vector Q; appearing in the functional [equation (G.3)}] is of order N, and its j-term is
given by : '

-

(Q)); =][Nj(x,y) al(s dA  ; j=12,...,N, (G.16)

in which a3(s7) = n(s7) [equation (G.1)] for the ground motion along x-axis. In vector @y,
only the first N+ terms are non-zero which correspond to the nodes on the tower-water inter-
face.

Only matrix K;; can be evaluated analytically and therefore, all other matrices are
evaluated by  numerical integration. Since  the  interpolation functions

Nix,y),i=12 ...,N, are locally supported, integration is not performed over the full
domain or the entire surface for each element of these matrices. The domain Q9% is discre-

tized into two-dimensional elements and contours A? and A into one-dimensional elements, -
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Integration in equations (G.13) to (G.16)' is done at element level and the element matrices

are assembled by standard procedures [53].

Stationarity of the functional of equation (G.12) with respect to p;’s and g;’s leads to

N, +Np simultaneous, linear algebraic equations [Section 4.3.4]. Solution of these equations

results in p;’s and ¢;’s. The pressure function 7°(x,y) then can be obtained using equations
(G.4) and (G.5), and the conditions of symmetry and antisymmetry for pressure function
along the direction of ground motion, and normal to the direction of ground motion, respec-

tively.

" The added hydrodynamic mass per unit of length, mZ,, which is equal to the hydro-

dynamic force computed by integrating the component of pressure function 7°(x,y) in the
direction of ground motion along the perimeter of the tower-water interface is then given by

mg, = | 5°0e,y) n%s9) d A | G.17)

G.2 Added Mass for Inside Water

The hydrodynamic pressure function p‘(X) for the water domain contained inside an

infinitely-long uniform tower is also independent of z coordinate :
Pi(X) = (%) | (G.18)
The pressure function 7 i(x,y) is the solution of the two-dimensional Laplace equationf

& _; 92 I_,'
Wp (x,p) + a—ygp (x,y) =0 (G.19)

‘subjected to the following boundary conditions on the tower-water interface, A!, if the

ground motion is assumed to act along the x-axis :

9 i _ - " :

ax? (x,y) = - py | (G.20a)l
9 Sty = 0 , ©(G200)
ay? 5 :

If the origin of the coordinates is selected at the point of intersection for the two axes

of the symmetry of the cross-section, the solution

PxY) = - oy x (G.21)
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satisfies equation (G.19) and the boundary conditions of equation (G.20). The added hydro-

dynamic mass per unit of length, m’_ is given by an equation similar to equation (G.17) :

mb, = ,[ P'(x.y) ni(sh) dA (G.22)

in which n. is the direction cosine of the normal of a point on the tower-water interface
with respect to the direction of ground motion. Substitution of equation (G.21) into equa-
tion (G.22) and using Stoke’s theorem leads to :

miy = py A, (G.23)

in which A4; 1s the area enclosed by the curve defining the cross-section of the inside surface
of the tower. Equation (G.23) implies that the added mass per unit of length for an
infinitely-long uniform tower associated with hydrodynamic effects of the inside water is

equal to the mass of water per unit of length contained inside the hollow tower.



APPENDIX H
SIMPLIFIED EVALUATION OF ADDED HYDRODYNAMIC MASS --
NUMERICAL EXAMPLE

The objective of this appendix is to illustrate the use of the simplified procedure of
Chapter 8 to compute the added hydrodynamic mass for a selected non-circular tapered
tower. This example tower is shown in Figure H.1 and its geometric properties are summar-
ized in Tables H.1 and H.2. Since, as shown in Chapter 5, the added hydrodynamic mass
for a non-circular tower may depend on the direction of ground motion, the added mass for
the selected tower is evaluated for ground motion acting sepalrately in x and y directions.

The added hydrodynamic mass is computed at selected locations along the height of the
tower. More specifically, the added hydrodynamic mass due to surrounding water is com-
puted at nodes 1 to 12 while the added mass due to inside water is computed at nodes 3 to
11 (Figure H.1). Nodes 2 and 3 are defined at the same location because the cross-section of
the tower changes abruptly. The added mass is computed using both the cross-sections at
this location. Since the bottom boundaries of the outside and inside fluid domain may not
be at the level of the tower base, two new coordinates, z, and z;, measured from the bottom
boundaries of the outside and inside fluid domains, respectively, have been introduced along
the height of the tower.

The added hydrodynamic mass is computed by implementing the simplified procedure
described in Sections 8.2.4 and 8.3.4, and the computational details are presented in Tables
H.3 to H.6.

H.1 Added Hydredynamic Mass for Surrounding Water

The detailed step-by-step computations of added hydrodynamic mass due to surround-
ing water for the ground motion along x - axis are summarized next for one location along

the height corresponding to node 7 (Figure H.1).

I. The addeded hydrodynamic mass for surrounding water has been computed for twelve
locations along the height, identified by node numbers 1 to 12 (Figure H.1). The z,
coordinate for node 7 is 100.0 ft.

2a. Fora,/b, = 1/2, A, = 457.1 ft%, and H, = 200.0 ft, equation (8.5a) gives H,/d, =
23.47 implying a,/H, = 0.043. For a,/b, = 1/2, from equation (8.5b), 50/50 =1/2

2b. From Table 8.3 (or Figure 8.7), corresponding to &0/50 = 1/2 (Step 2a), 7,/H, = 0.071
for 4,/H, = 0.05, and 7,/H, = 0.0 for d,/H, = 0.0. For 4,/H, = 0.043 (Step 2a),

linear interpolation gives 7,/H, = 0.060.
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Table H.1 -- Geometric Properties of Tower for Ground Motion along x-Axis

.Node Outside Surface Inside Surface
" z Z, a, bo | z/Hy | a,/by A, Z 3 b; z/H; | a/b; A;
(fty | (ft) (fty | (ft) (ft?) (ft)y | (fty | (fv) (ft%)
I o| o0 2601 39 | 000 23 | 34757 | - - - - - -
2 | 20| 20| 2601 39 | 0.10 23 | 34757 | - ; ; ; ; ;
3 0 20| 20| 100] 20| 010 | w2 | 7a2| o s0/l 160|000 | 12 | 4571
4 40 | 40 | 95 | 19 | 020 1/2 6445 | 20 | 7.6 | 152 | 0125 | 172 | 4125
5 60 | 60 | 9.0 | 18 | 0.30 1/2 578.5 | 40 | 7.2 | 144 | 025 172 | 3702
6 80 | 80 | 85 | 17 | 040 1/2 5160 | 60 | 6.8 | 13.6 | 0375 | 172 | 3302
7 |.100 | 100 | 8.0 | 16 | 0.50 12 457.1 | 80 | 6.4 | 12.8 | 0.50 172 | 292.5
8 120 | 120 | 7.5 | 15 | 0.60 1/2 4017 | 100 | 6.0 | 12.0 | 0.625 | 172 | 257.1
9 140 | 140 | 7.0 | 14 | 0.70 1/2 3499 | 120 | 56 | 11.2 | 0.75 172 | 2240
10 | 160 |- 160 | 65 | 13 | 0.80 172 301.7 | 140 | 52 | 104 | 0875 | 172 | 193.1
1 180 | 180 | 6.0 | 12 | 0.90 /2 | 2571 | 160 | 48 | 9.6 | 1.00 172 | 164.5
12 [ 200 | 200 | 55| 11 | 1.00 172 2160 | - | 44 | 8.8 - - 138.3
13 | 220 | - 50 | 10 - 1/2 1785 | - | 40 | 80 ; ; 114.3

SE



Table H.2 -- Geometric Properties of Tower for Ground Motion along y-Axis

‘Node Outside Surface Inside Sl_1rfacc

4 z Z, a, by z,/H, | a5/bg A, z; a b; zi/H; | ai/b; A;
(ft) (fty | (fv) (ft) (ft?) (fv) (ft) (ft) (ft?)

[ 0 0| 39 | 260 | 0.00 32 | 34757 | - - - - - -

2 | 20| 201} 39 | 260 | 0.10 32 | 34757 | - - - - - -
3 20 | 20| 20 | 100 | 0.10 2 714.2 0| 160 | 8.0 | 0.00 2 475.1
4 40 | 40 | 19 9.5 | 0.20 2 644.5 | 20 | 152 | 7.6 | 0.125 2 412.5
5 60 | 60 | 18 9.0 | 0.30 2 578.5 | 40 | 144 | 72 | 025 2 370.2
6 80 | 80 | 17 8.5 | 0.40 2 5160 | 60 | 13.6 | 6.8 | 0.375 2 330.2
7 100 | 100 | 16 8.0 | 0.50 2 457.1 80 | 12.8 | 6.4 | 0.50 2 292.5
8 120 | 120 | 15 7.5 | 0.60 2 4017 | 100 | 12.0 | 6.0 | 0.625 2 257.1
9 140 | 140 | 14 7.0 | 0.70 2 3499 | 120 | 11.2 | 56 | 0.75 2 224.0
10 | 60 | 160 | 13 | 65| 080 2 3017 | 140 | 104 | 52 | 0875 | 2 | 1931
11 180 | 180 | 12 6.0 | 0.90 2 257.1 | 160 | 9.6 | 4.8 | 1.00 2 164.5
12 | 200 | 200 | 11 55 | 1.00 2 2160 | - 8.8 | 4.4 - - 138.3
13 | 220 | - 10 | 50 ; 2 178.5 | - 8.0 | 4.0 - . 114.3
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Table H.3 -- Computation of Added Hydrodynamic Mass for Surrounding Water --

Computational Details for Ground Motion along x-Axis

Outside

Node Equivalent Equivalent [nfinitely-
Geometry Ellipse Cylinder Long Tower
T oy T omg, mg(z)
a, a, o a, T, o | mi(z m3,
S T I N - R T I P A e
(ft) (ft?) (ks™2f-1/ft) (ks 20 1/11) | (ks™2f~!/ft)
I 012/3]{0.130)3475.7|2/3] 0.136 0.16310.0 | 0951 6.739 0.707 4.765 4.531
2 20 (2/3710.130 34757 | 2/3| 0.136 | 0.163|0.10| 0.949 6.739 0.707 4.765 4,522
3 201 1/2 {0050 7142 1/2| 0.053 |0.075|0.10 | 0.988 1.385 0.555 0.768 0.759
4 40 | 1/2 1 0.048 | 644.5| 1/2| 0.051 | 0.071|0.20| 0.987 1.250 0.555 0.694 0.685
5 60| 1/20.045] 5785 1/2| 0.048 | 0.068 | 0.30 | 0.987 1.122 0.555 0.622 0.614
6 80 | 1/2]0.042| 516.0| 172 | 0.045 |0.064|0.40| 0.986 1.000 0.555 0.555 0.548
7 {100 | 1/2 {0.040 | 457.1( 1/2| 0.043 0.060 | 0.50 | 0.983 0.886 0.555 0.492 0.484
8 120|172 ]0.038| 401.7|1/2] 0.040 |0.056 | 0.60 0.978 0.779 0.555 0.432 0.423
9 | 140 [ 1/210.035| 349.9| 1/2| 0.037 |0.053]0.70 | 0.968 0.678 0.555 0.377 0.364
10 1160 1/210.032 ) 301.7|1/2] 0.935 | 0.049 | 0.80 | 0.945 0.585 0.555 0.325 0.307
11 180 | 1/2 [ 0.030 | 257.1 | 1/2| 0.032 | 0.045]0.90 | 0.861 0.500 0.555 0.277 0.238
12 (200 1/210.028] 216.0| /2| 0.029 |0.041 [ 1.00 | 0.0 0.420 0.555 0.232 0.00

LyE



Table H.4 -- Computation of Added Hydrodynamic Mass for Surrounding Water -- _V

Computational Details for Ground Motion along y-Axis

Node Outside Equivalent Equivalent Infinitely-
Geometry Ellipse Cylinder * Long Tower
N N N o) . m, m3(z)
a | 8o d, a, To | 2, | mp(z mg, -
S R i B -l B A N e A s
(f1) () (ks 2f~1/ft) (ks™21/ft) | (ks 20! /M)
1 032019534757 3/2| 0.204 |0.179| 0.0 | 0.942 6.739 | 1.444 9.732 - 90167
2 | 20]3/2]0.195|3475.7|3/2| 0204 |0.173]0.10 | 0.941 6.739 1444 | 9.732 9.158
3 [ 200 2 |0.100| 7142| 2 | 0.107 .| 0.086 | 0.10 | 0.985 1.385 1.896 2.626 2.586
4 | 40| 2 0.095| 6445 2 | 0.101 |0.081|0.20| 0.984 1.250 1.896 2.369 2.330
5 1 60| 2 {009 | 578.5| 2 | 0.096 |0.077|0.30 | 0.984 1.122 1.896 2.127 2.093
6 | 80| 2 |0.085| 516.0| 2 | 0.091 |0.073|0.40| 0.981 1.000 1.896 1.896 1.861
7 [100| 2 [0.080| 457.1| 2 | 0.085 |0.068|0.50| 0.978 0.886 1.896 1.680 1.643
8 [120| 2 |0.075| 401.7| 2 | 0.080 |0.064|0.60| 0.972 0.779 1.896 1.477 1.435
9 |140| 2 [0.070| 349.9| 2 | 0.075 |0.060|0.70 | 0.960 0.687 1.896 1.286 1.235
10 {160 2 |0.065| 301.7| 2 | 0.069 |0.055|0.80| 0.933 0.585 1.896 (.109 1.035
11 [ 180 2 |0.060| 257.1| 2 | 0.064 |0.051|0.90| 0.843 0.498 1.896 0.945 0.797
12 {200 2 |0.055| 216.0| 2 | 0.059 {0.047 | 1.00 | 0.00 0.419 1.896 0.794 0.00

8t



Table H.5 -- Computation of Added Hydrodynamic Mass for Inside Water --

Computational Details for Ground Motion along x-Axis

Node Inside Equivalent mi, mk(z)
' Geometry Cylinder
# z; a;/b; ai/H; A ri/H; zy/H; mjy(z)/ml, =pwAi

(ft) (ft?) (ks~2f-1/ft) (ks 1/ft)

3 20 1/2 0.050 4571 0.107 0.000 1.000 0.886 0.886
4 40 1/2 0.048 412.5 0.101 0.125 1.000 0.800 0.800
5 60 1/2 0.045 370.2 0.096 0.250 1.000 - 0.718 0.718
6 80 1/2 | 0.042 330.2 0.091 0.375 1.000 0.640 0.640
7 100 1/2 0.040 292.5 0.085 0.500 1.000 0.567 0.567
8 120 1/2 0.038 257.1 0.080 0.625 0.999 0.498 0.498
9 140 1/2 0.035 2240 0.075 0.750 0.996 0.434 0.433
10 160 1/2 | 0.032 193.1 0.069 0.875 0.961 0.374 0.360
11 180 1/2 0.030 164.5 0.064 1.000 0.00 0.319 0.00

- 6b¢



Table H.6 -- Computation of Added Hydrodynamic Mass for Inside Water --

Computational Details for Ground Motion along y-Axis

Node Inside Equivalent m!, ;n;(z)
Geometry Cylinder
i z | a |/l | A | EH | a/H | mi@mh, | =sA
(ft) (ft%) (ks 1/ft) (ks 21 1/ft)

3 20 2 0.100 | 4571 | 0.053 | 0.0 1.000 0.886 0.886

4 40 2 0.095 | 4125 | 0051 | 0.125 1.000 0.800 0.800

5 60 2 0.090 | 3702 | 0.048 | 0.25 1.000 0.718 0.718

6 80 2 0.085 | 3302 | 0045 | 0.375 1.000 0.640 0.640
7 100 2 0.080 | 2925 | 0043 | o050 1.000 0.567 0.567

8 120 2 0075 | 257.1 | 0.040 | 0.625 1.000 0.498 0.498

9 140 2 0.070 | 2240 | 0037 | 0750 1.000 0.434 0.434

10 160 2 0.065 | 193.1 | 0.035 | 0.875 0.993 0.374 0.372

11 180 2 0.060 | 1645 | 0032 | 1.000 0.000 0.319 0.000

0¢¢
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For node 6, z, = 100 ft, H, = 200 ft, which givg z,/H, = 0.50 From Table 8.4 (or Fig-
ure 8.1), for 7,/H, = 0.05, z,/H, = 0.52, mj(z)/m&,(z) = 0.988, gnd for F,/H, = 0.05,
z,/H, = 0.48, m2(z)/mZ,(z) = 0.990. Linear interpolation gives m3(z)/mS.(z) = 0.989
for r,/H, = 0.05 and z,/H, = 0.50. Similarly from Table 8.4 {or Figure 8.1), for 7,/ H,,
= 0.10, z,/H, = 0.52, m2(z)/m%(z) = 0.956, and for 7,/H, = 0.10, z,/H, = 0.48,
m3(z)/mS,(z) = 0.961. Linear interpolation gives n’t“,’(z)‘/mgo(z)‘= 0.958 for 7,/H, =
0.10 and z,/H, = 0.50. Linear interpolation for mJ(z)/m2,(z} corresponding to z,/H,

=050and 7,/H, = O.I06 (Step 3) from the two calculated values gives m3(z)/m,(z) =
0.983 for 7,/H, = 0.06 and z,/H, = 0.50, |
For unit weight of water 62.4 1b / fz3, acceleration due to gravity g = 32.18 ft / Sec?,
mass density of water p,, = 0.001939 Kips Sec? / ft4. For 4, = 457.062 ft? correspond-
ing to location for node 7, p,, 4, = 0.8862 Kips Sec? / fr>. From Table 8.1 for the

cross-sectional shape of the tower corresponding to a,/b, = 1/2, m&,(z)/p,4, = 0.555,

which multiplied by the value of p,4, computed earlier gives mZ (z) = 0.492 Kips Sec?
/ f12. '

For mj(z)/m&(z) = 0.983 (computed in Step 3) and mZ (z) = 0.492 Kips Sec? / fr?

(computed in Step 4), multiplication of both values gives mg(z) = 0.484 Kips Sec? fr-!
/ ft, the added hydrodynamic mass per-unit height due to surrounding water at the
location of node 7 for the ground motion along x - axis.

Steps 2 to 5 for various locations along the heigh, selected in step 1, have been repeated
and the results are summarized in Table H.3.

H.2 Added Hydrodynamic Mass for Inside Water

The detailed step-by-step computations of added hydrodynamic mass due to inside

water for the ground motion along x - axis are summarized next for one location along the

height corresponding to node 7.

The addeded hydrodynamic mass for inside water has been computed for nine loca-
tions along the height, identified by node numbers 3 to 11 (Figure H.1). The z; coordi-
nate for node 7 is 80.0 ft.
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For a;/b; = 1/2, A; = 292.520 f?. from equation (8.11), ; = 13.65 ft.
For H, = 160.0 ft, 7,/H; = 0.085 and for z; = 80.0 ft, H, = 160.0 ft, z;,/H; = 0.50.

From Table 8.5 (or Figure 8.17), mi(z)/m',(z) = 1.000 for 0.48 < z;,/H; < 0.52 and
0.05 = r;,/H, < 0.10. Therefore, for z;/H; = 0.50, and #;/H; = 0.085 (computed ear-

lier), mi(z)/m’, (z) = 1.000.

For p,, = 0.001939 Kips Sec? / fr* (Section H.1), 4; = 292.520 ft2, equation (8.9) gives
m' (z) = 0.567 Kips Se‘c2 / ft%. For mfz(zr)/mf,o(z) = 1.000 (computed in Step 3) and
ml (z) = 0.5672 Kips Sec? / ft? (computed above), multiplication of both values gives

mi(z) = 0.567 Kips Sec? ft~! / ft, the added hydrodynamic mass per unit height due to

inside water at the location of node 7 for the ground motion along x - axis.

Steps 2 to 4 for various locations along the heigh, selected in step 1, have been repeated

and the results are summarized in Table H.5.



APPENDIX 1

SIMPLIFIED EVALUATION OF TOWER-FOUNDATION-SOIL INTERACTION

EFFECTS -- NUMERICAL EXAMPLE

It has been demonstrated in Chapter 7 that the tower-foundation-soil interaction effects

can be approximately included in the response analysis of towers by modifyving the vibration

period and damping ratio for the fundamental mode. The objective of this appendix is to

illustrate the use of the simplified procedure presented in Chapter 9, Section 9.4, to compute

the vibration period T{ and the damping ratio E{ for the fundamental mode of the tower,

considering the effects of tower-foundation-soil interaction. The tower is supported through

a circular footing of radius ry = 25 ft. on the viscoelastic halfspace. The following values are

selected for various parameters of the halfspace: shear wave velocity Cr = 1000.0 ft./ Sec. ;

constant hysteretic damping factor n, =0.10 ; unit weight = 165 b/ft3 ; and Poisson’s ratio |

vr = 0.33. The computational details of the step-by-step procedure of Section 9.4.5 are sum- |

marized next.

1.

The following vibration properties have been selected for the numerical example:

Vibration period for the fundamental mode = 7', = 0.3 Sec. generalized mass M, for

the fundamental mode M, = 19.6 kips Sec? / ft ; generalized excitation L, for the fun-

- damental mode = L, = 37.4 kips Sec? / ft ; and L] = 2829.1 kips Sec?. These values

are taken from the numerical example of Chapter 5 for a tapered circular tower.
For L, = 37.4 kips Sec? / ft, M, = 19.6 kips Sec? / ft, using equation (9.15), the
effective mass m| = 37.4 x 374/ 19.6 = 71.4 kips Sec? / ft. The effective height A

from equation (9.16) is 4] = 2829.1 / 37.4 = 75.6 ft.

For the shear wave velocity, Cy, of the foundation soil equal to 1000 ft / Sec., from
equation (9.18), the wave parameter o~ = 1000 x 0.3 / 75.6 = 4.03, leading to 1/ ¢ =
0.25. For r; = 22.5 ft, the ratio of the effective height of the tower to the radius of the

footing is hy/ry = 75.6 / 22.5 = 3.36. Using equation (9.25), x = 0.25 x ( 3.36 )*/° =
0.40. For mass density of soil p; = 0.165 / 32.18 = 0.005127 kips Sec? / ft%, m] =

71.4 kips Sec? / fi, hi = 75.6 ft, and rp = 22.5 ft, from equation (9.20), the relative
mass density parameter ¥ = 71.4 / (0.005127 x 3.14 x 22.5 x 22.5 x 75.6) = 0.116.

'Sinqe x = 0.20, proceed to next step.
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Corresponding to Vy*% = V0.116x0.40 = 0.137, from Figure 9.5, T{ / T, = 1.36.

Thus, 7{ = 1.36 x 0.3 = 0.418 Sec.

In this numerical example, damping in the fundamental vibration mode of the tower on

rigid foundatiqn—soil is selected as 5%, i.e. £, = 0.05. For 5y = 0.10, and T{/T; = 1.36,
3 and

H

computed in step 4, from Figure 9.7, added damping ratio ¢, is 3.2% for hf/rf

2.6% for hf/rf = 4. Interpolating linearly for hf/’rf = 3.36 leads to £, = 3.0 %. Modi-
fying this damping ratio for v* = 0.116 using equation (9.28) leads to £, = 3.0x(0.10/
0.116 )1/3381 .= 2 9%,

From equation {9.26), for £, = 5%, T{/Tl = 1.36 and £, = 2.92 %, the effective damp-

ing ratio & = ( 1/ 1.36 )* x 0.05 + 0.029 = 0.492 %. ‘Since £f is less than &, & is
taken equal to £; = 0.05 or 5%.



APPENDIX J
TOWERINF SERIES OF PROGRAMS : USERS MANUAL

J.1 Introduction

The TOWERINF series of computer programs implements the procedure presented in
Appendix G, Section G.1 to evaluate the added mass associated with the hydrodynamic
effects of the water surrounding an infinitely-long, uniform tower. The tower is restricted to
cross-sections with two axes of symmetry, and the added mass is computed for motion along
* an axis of symmetry. |

The added mass is determined by solving the Laplace equation in a cross-sectional (x-y)
plane with the tower subjected to unit acceleration in the x direction. The surrounding fluid
domain up to a hypothetical cylindrical surface is discretized in the x-y plane by a finite ele-
ment system (Figure J.1) and the effects of the unbounded extent of the fluid outside the
hypothetical cylinder are treated by the boundary integral procedures utilizing classical solu-
tions for domains exterior to a circular cylinder. Because of two axes of plan symmetry,
only one quadrant of the fluid domain needs to be discretized (Figure J.1)..

J.2 Organization of TOWERINF Series of Programs
The TOWERINF series of programs contains the following two modules:

1. TOWERINF This program reads the information about the fnathematical model
from the input file TOWERINF.DAT in free-field type of input and
create a data base for the second module.

2. AMASSINF This program computes .the added hydrodynamic mass per unit of
length for an infinitely-long uniform tower of the specified cross-
section. The results are written on a file named TOWERINF.OUT
and it contains : (a) Normalized added hydrodynamic mass; (b) Nodal
coordinates and equation numbers; (c) Connectivity of elements; (d)
Connectivity of segments on tower-water interface; and (e) Connec-
tivity of segments on hypothetical cylindrical surface.

The source listings of both the modules are available in FORTRAN-77 programming

language.
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HYPOTHETICAL
CYLINDRICAL
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Figure J.1 Finite Element Idealization of Surrounding Fluid Domain in Example
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~J.3 Execution of Programs

Both the program segments can be compiled and linked independently using commonly
available FORTRAN compilers. TOWERINF should be executed first fo create a data base
for the program AMASSINF. The program AMASSINF should be executed after TOWER-
INF has been executed. It is recommended that the user should check the file
TOWERINF.OUT for possible errors in input data file.

. Whenever the data file TOWERINF.DAT is modified, it is necessary to execute
TOWERINF first and then run the module AMASSINF.

J.4 Idealization of Surrounding Water Domain’

The boundary value problem associated with surrounding water domain is solved using
finite elements coupled with boundary' integral procedure. The fluid domain between the
outside surface of tower and a hypothetical cylindrical surface is discretized by finite ele-
ments and the effects of the fluid domain exterior to this surface are treated by boundary

integral procedures. The user should follow the instructions listed below:

1. The nodes on the hypothetical cylindrical surface should be numbered last at the end of
the sequence.

2. The connectivity of eight-node ¢lements should be provided in the order shown in Fig-
ure J.2b.

3. The connectivity of the three-node segments on the interface of the tower and the out-
side water should be provided in the ordér shown in Figure J.2a.

4. The connectivity of the three-node segments on the hypothetical cylindrical surface
should be provided in the order shown in Figure J.2a.

5. No node should be common to the tower-outside water interface and the hypothetical
cylindrical surface. |

J.5 Input Data File (TOWERINF.DAT)

The free-field input data format is similar to that introduced by E.L. Wilson, and M.
Hoit, at the University of California, Berkeley for SAP-80 series of programs.

In this system, "separator lines" are used to subdivide the data into logical groups. The
data group can be in any order with each group being terminated with a line having colon 7
in "column 1". The name on the separator line must be in CAPITAL LETTERS and must
start in “column 1°. The program identifies the separator only by its first four characters.

‘ Rest of the characters are optional and used only for user’s own understanding.
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Figure J.2 Order of Node Numbering for Elements and Segments in the Finite Ele-
ment Idealization
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All lines of numerical data are entered in the following free field form:

NI,N2,N3,-- R=R1,R2,R3,--- Z=7Z1,Z2, -
where the input data is designated by Ni, Ri or Zi. Numerical data lists must be separated
by a single comma or by one blank. A numerical data list without identification, such as .
NI,N2,N3,---, must be the first information on the line. A data list of the form
R=R1,R2,R3,--- can be in any order or location on the line. The data list is identified by
"R=" only; therefore additional symbolic data must be entered between data lists.

A colon ":", which is optional, indicates the end of information on a line. Information
entered to the right of the colon is ignored by the program; therefore, it can be used to, pro-
vide additional information or comments within the input file.

A "C" in column 1 of any line will cause the line to be ignored by the program. Such
lines can be used as comment lines to identify the data.

Simple arithmetic statements are possible when entering floating point real numbers.

For example, the following type of data can be entered:
D=200+12/3.5-2,4.5%34
The statement 200+12/3.5-2 is evaluated as (((200+12)/3.5)-2).

In this manual, the values given in [?] are the default values of the parameters, i.e. the
values adopted by the program if they are not provided or if the required identifier is missing.

The following sections provide the user with the necessary information to generate the
TOWERINF.DAT input file.

J.5.1 CONTROL Information
The line of data which follows the CONTROL separator is used to supply general data

about the finite element system used to idealize the surrounding (outside) water domain.
This line contains the following information:

N=? E=7 T=7 H=? M=? R=? W=7 A=?

where

N= Number of nodes required in the idealization of water domain surrounding
the tower.

E= Number of elements in the idealization of the fluid domain surrounding the

tower. Eight-node isoparametric elements are used for the finite element ideal-

1zation of the surrounding water.

T= Number of three-node segments defining the tower-water interface.
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H= ‘ Number of three-node segments defining the hypothetical cylindrical surface
for boundary integral procedure. '

M= Number of trial functions to be used in the boundary integ;al procedure. [5]

R= Radius of the hypothetical cylindrical surface.

W= Mass density of water, i.e. unit weight divided by the acceleration due to grav-
ity.

A= Constant with the dimensions of area used for the normalization of added

hydrodynamic mass, e.g. area enclosed by the curve defining the cross-section.
[1.0] -

This data group must be terminated by a line with a colon '’ in the first column.
J.5:2 ONODES Information |

The lines which follow the ONODES separator define the location of the nodes of the
idealized fluid domain surrounding the uniform infinitely-long tower. These lines contain

the folloWing information:

Nid X=? Y=? 1I1=? G=-m R=em C=emm

where

Nid= Node identification number to be éelccted by the user. The node number Nid
must be less than or equal to the total number of nodes specified after the
CONTROL separator.

X= x-ordinate -

Y= y-ordinate |

I= I for node on tower-water interface. For other nodes, need not be specified. [
0]

The data may be automatically generated using the linear generation option, which can
“be activated by the addition of the following information on any line which contains the

information about a nodal point:

G=NfNLInc
where
Nf= The first node mi_mber in the sequence
Nl= The last node number in the sequence

Inc= Increment used to define generated node numbers. [ 1 ]
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The generated nodes will be at equal interval along a straight line between nodes Nf
and NL ' -

The data may be automatically generated using the radial generation option, which can
be activated by the addition of the following information on any ling which contains the

information about a nodal point:

R=Nf,Nl,Inc,Nc

where

Nf= The first node number in the sequence

Nl= The last node number in the sequence

Inc= Increment used to define generated node numbers. [ 1 ]

Nc= The node number for the center of the radial arc. ‘If Nec=0, theA center of the
radial arc can be specified by adding the following information on the same
line where radial generation is requested: ‘

C=Cx,Cy |

where ‘

Cx= x-ordinate of the center of the radial arc

Cy= y-ordinate of the center of the radial arc

The generated nodes will be at equal interval along a radial arc with the specified center
between nodes Nf and NL

Alternatively, the location of a node not on the tower-water interface may be specified
in terms of two nodes already defined. The program will place this node in the middle of
the specified nodes. This information can be provided in a separate line in the following

form:

Nid M=MI1 M2 L=Nad,Nidin¢,Mlin¢c,M2inc

where

Nid=' Node identification number to be selected by the user.

MIl= First node number to be used in generation.

M2= Second node number to be used 1n generation.

Nad= Number of additional nodes to be generated using similar option.

Nidinc Increment of Nid in generated nodes. |

Mlinc= Increment of M1 in generated nodes.
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M2inc= Increment of M2 in generated nodes.
This sequence of lines must be terminated by a line with colon *:’ in the first column.
J.5.3 OELEMENTS Information

The sequence of lines which follow OELEMENTS separator define the connectivity of
eight-node isoparametric elements used to idealize surrounding water domain in x-y plane.

No dummy nodes are allowed.
These lines contain the following information:
Nid,J1,J2,13,4,J5,6,J7,J8 G=neemes
where

Nid= Identification (ID) number for the element. Must be less than’lorr equal to the
total number of elements specified under CONTROL separator.

J1 to J8= Node numbers defining the connectivity of the element

The option to autométically generate element connectivity data is activated by the

addition of the following information on any line:

G=Nad,Nidingc,J lin¢,J2in¢,J3in¢,J4inc,J 5inc,J6inc,J 7inc, ) 8inc

where
Nad= Number of additional elements to be generated.
Nidinc= Increment of ID.number in generated elements.[ 1 ]
Jlinc= Increment of J1 in generated elements. [ 2 ]
J2inc= Increment of J2 in generated elements. [ 2 ]
I3inc= Increment of J3 in generated elements. | 2 ]
Jdinc= Increment of J4 in generated elements. [ 2 ]
JSinc= Increment of J5 in generated elements. [ 1 ]
- J6inc= Increment of J6 in generated elements. [ 2 ] !
- Jinc= Increment of J7 in generated elements. [ 1 ]
J8inc= Increment of J§ in generated elements. [ 2 ]

This group of data lines must be terminated by a line having colon *’ in the first
column.

J.5.4 OTOWER-WATER INTERFACE [Information

The sequence of lines which follow OTOWER-WATER separator define the connec-
tivity of three-node segments of the fluid elements in the surrounding water domain on the
tower-water interface. These lines contain the following information:
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Nid,J1,J2,J3 =
where

Nid= Identification (ID) number for the segment on the tower-outside water inter-
face. Must be less than or equal to the total number of segments specified
under CONTROL separator.

J1,J2,J3 = Node numbers defining the connectivity of the segment on the tower-outside
water interface.
The option to automatically generate segment connectivity data is activated by the

addition of the following information on any line:

G=Nad,Nidinc,J1inc,J2inc,J3inc

where

Nad= Number of additional segments to be generated.
Nidinc= Increment of ID number in generated segments.[ 1 ]
Jlinc= Increment of J1 in generated segments. [ 2 ]

J2inc= Increment of J2 in generated segments. [ 2 ]

J3inc= Increment of J3 in generated segments. [ 2 ]

This group of data lines must be terminated by a line having colon ’’ in the first

column.
J.5.5 OHYPOTHETICAL CYLINDER Information
The sequence of lines which follow OHYPOTHETICAL separator define the connec-

tivity of three-node segments of fluid elements in the outside water domain on the hypothet-
ical cylindrical surface. These lines contain the following information:
Nid,J1,J2,J3 G=----

where

Nid= Identification (ID) number for the segment on the hypothetical cylindrical sur-
face. Must be less than or equal to the total number of segments specified
under CONTROL separator.

J1,J2,)3= Node numbers defining the connectivity of the segment on hypothetical
cylindrical surface

The option to automatically generate segment connectivity data is activated by the

addition of the following information on any line:
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G=Nad,Nidinc,J linc,J2inc,J3inc

where

Nad= Number of additional segments to be generated.
Nidinc= Increment of ID number in generated segments.[ 1 ]
Jlinc= Increment of J1 in generated segments. [ 2 ]

J2inc= Increment of J2 in generated segments. [ 2 ]

J3inc= Increment of J3 in generated segments. [ 2 ]

This group of data lines must be terminated by a line having colon *° in the first
column.

J.6 Numerical Example

For the convenience of the user, the input data file TOWERINF.DAT used for analysis
of a infinitely-long uniform tower with a non-circular cross-section is presented. The
mathematical model and the numbering schemes used in the finite element idealization of
the fluid domain surrounding the tower in x-y plane are also presented in Figure J.1. The
output file AMASSINF.OUT for the example case is also provided on the diskette with the
source codes.
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Covaninn EXAMPLE DATA FOR PROGRAM TOWERINEF SERIES

CONTROL
N=33 E=12 T=6 H=6 M=5 R=2B.0 W=1.0 A=714,159265

ONCDES

1 X=20.000 Y=.000 1-1
g %=10.000 ¥=10.000 I1-1 R=1,9,1 €=10.6,06.0
13 ¥=0.000 ¥=10.000 I=1 6=9,13,1

21 X=23.0 Y=0.0

31 X=5.0 ¥=17.0 R=21,31,1 €=5.0,0.0
33 X=0,0 Y=17.0 G=31, 33,1

14 M=1,21 L1=6,1,2,2
41 X%28.0  Y=0.0
53 X=0.0 ¥=28.0 R=41,53,1 ¢=0.0,0.0
34 M=21,41 L=6,1,2,2
OELEMENTS
1,1,21,23,3,14,22,15,2 Gm5
7,21,41,43,23,34,42,135,22 G=5
OTOWER-WATER
1,1,2,3 6=5,1,2,2,2

OHYPOTHETICAL
1,41,42,43 G=5,1,2,2,2



APPENDIX K
TOWERRZ SERIES OF PROGRAMS : USERS MANUAL

K.1 Introduction

The TOWERRZ series of programs were specifically developed for the earthquake
response analysis of axisymmetric intake-outlet towers; i.e. towers with hollow circular
cross-section with radius varying arbitrarily over height, subjected to one or two components
of ground motion. The effects of tower-water interaction, due to water surrounding the tower
and contained inside the tower, and tower-foundation-soil interaction can be included

independently or simultaneously.

The output of the computer program consists of the maximum responses- -- lateral dis-
placement, shear force, and bending moment -- at selected locations along the height of the
tower. The time variation of each response quantity due to one ground motion component is
computed from which the maximum value is determined. Denoting any response quantity
as R(t), its time variation due to the x-component of ground motion, R,(¢), and due to y-
component of ground motion, R(¢), is determined by the computer program using the
analytical procedure developed in Chapters 3 and 4 but specialized for axisymmetric towers.
The resultant value of the two responses is given by the equation

R(1) = VRt + Ry(t)?

The program prints the maximum values (over time) of R(z), R,(7), and R{¢).

K.2 Organization of TOWERRZ Series of Programs

The TOWERRZ series of programs are divided into six modules. The major advantage
of the modular organization is that the modules can be restarted at certain points after data
changes without starting other modules. The separate program segments interact by com-
munication with a common file data base. So, the user has to prepare only one input data
file TOWERRZ.DAT. The TOWERRZ series of programs contain the following six modules:

1. TOWERRZ This program reads the information about the mathematical model
from the input file TOWERRZ.DAT in free-field type of input and
create a data base for various modules.

2. OUTPUTRZ This program writes the information about the mathematical model in
a file TOWERRZ.OUT and is used to check the correctness of the

input data.

—
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3. EIGENRZ This program computes the frequencies and mode shapes of the tower
without water, generates generalized mass and excitation matrices and
computes modal shears and moment transformation vectors. The gen-
erated section properties of the tower, its natural frequencies and mode
shapes are written on a file TOWERRZ.VEC .

4. OUTWRZ This program computes the generalized added mass matrix and excita-

tion vector due to water surrounding the tower.

5. INWRZ This program computes the generalized added mass matrix and excita-

tion vector due to water inside the tower.

6. RESPRZ This program evaluates the impedance functions of the foundation
footing, computes the frequency response functions of modal coordi-
nates; the maximum displacement, shear force and bending moment at
specified locations, and displacement time history at specified loca-
tions. The amplitudes of the frequency response functions for the first
two modal coordinates only are written on a file TOWERRZ.FRF, the
maximum responses are written on a file TOWERRZ.MAX, and
response history on a file named TOWERRZ.HIS.

The source listings of all these modules are available in FORTRAN-77 programming
language.

I4

K.3 Execution of Programs

All the program segments can be compiled and linked independently using commonly
available FORTRAN compilers. The sequence in which the programs should be executed is
summarized in Figure K.1. TOWERRZ should be executed first. EIGENRZ comes next. ~
RESPRZ should be executed in the end. Programs QUTWRZ should be executed after
EIGENRZ only when interaction effects due to surrounding water need be included. Simi-
larly, INWRZ should be executed after EIGENRZ but before RESPRZ if the effects of
inside water need be included. The programs OUTWRZ and INWRZ can be executed in
any order. The program OUTPUTRZ can be executed any time after TOWERRZ has been
executed. It is recommended that the user should check the file TOWERRZ.OUT for possi-
ble errors in input data file before executing the subsequent program segments.

Whenever the data file TOWERRZ.DAT is modified, it is necessary to execute
TOWERRZ and then run the module for which data has been changed. The other modules
need not be executed if input data for them is not changed.
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TOWERRZ

OUTWRZ

( ) INPUT FILES
( )* OUTPUT FILES

(TOWERRZ.DAT)!
OUTPUTRZ
(TOWERRZ.QUT)?
EIGENRZ
INWRZ
RESPRZ
(TOWERRZ.MAX)?
(TOWERRZ.FRF)? .
(TOWERRZ.HIS)?

Figure K.l Order of Execution for TOWERRZ Series of Programs
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K.4 Idealization of Tower-Water-Foundation Soil System

The tower, the surrounding water domain, the inside water domain, and the
foundation-soil system are idealized independently as substructures. The user should follow

these instructions carefully in idealizing each substructure:
K.4.1 Tower Substructure

1. The numbering of the nodes should always start from the base to the top. Each node
has two degrees of freedom, translational and rotational displacements.

2. The program uses a three-node Timoshenko beam element for which the connectivity

should be provided from bottom to top in the order shown in Figure K.2a.

3. At any location above the base where the cross-section is discontinuous, two nodes
need be specified with consecutive numbers and different section properties. The lower
numbered node should define the section just below the node and the higher numbered
node should define the section just above the node. The equation numbers for the
degrees of freedom of the higher numbered node should be equal to that of lower num-
bered node. This is obtained by setting restraint code for higher numbered node to ’-1°
(see under TRESTRAINT separator). The two nodes defining a discontinuous sections
must belong to different elements, i.e. the lower numbered node will be the third node
of one element and the higher numbered node will be the first node of a different ele-

ment,
K. 4.2 Outside Water Domain Substructure

The boundary value problem associated with surrounding water domain is solved using
finite elements coupled with boundary integral procedure. The fluid domain between the
outside surface of tower and a hypothetical cylindrical surface is discretized by finite ele-
ments and the effects of the fluid domain exterior to this surface are treated by boundary

integral procedures. The user should follow the instructions listed below:

1. The radius r. of the hypothetical cylindrical surface should be selected as the smallest
value sufficient to contain the tower (Figure 4.5), and the nodes on this surface should
numbered last at the end of the sequence.

2. The connectivity of eight-node elements should be provided in the order shown 1n Fig-
ure K.2b.

3. The connectivity of the three-node segments on the interface of the tower and the out-

side water should be provided in the order shown in Figure K.2a.

4. The connectivity of the three-node segments on the hypothetical cylindrical surface

should be provided in the order shown in Figure K.2a.
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(a) 3-NODE ELEMENT OR SEGMENT
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(b) 8-NODE ELEMENT

Figure K.2 Order of Node Numbering for Elements and Segments in the Finite Ele-
ment Idealization :
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5.  No node should be common to the tower-outside water interface and the hypothetical

cylindrical surface.
K 4.3 Inside Water Domain Substructure

1. The connectivity of eight-node elements should be in the same order as shown in Fig-
ure K.2b for the elements of surrounding water domain.

2. The connectivity of three-node segments on the interface between the tower and the
inside water should be in the same order as shown in Figure K.2a for the segments of

the surrounding water domain.
K. 4.4 Foundation-Soil Substructure

1. The program uses analytical functions to compute the frequency-dependent foundation
impedances for surface-supported circular foundation (Chapter 4). The program selects
the necessary constants,‘ already ‘ provided in the program, based on the selected
Poisson’s ratio for foundation rock or soil. These constants are provided only for
Poisson’s ratio 0.0, 0.33, 0.45 and 0.5. For intermediate values, it interpolates the con-
stants linearly, However, it is recommended to use on¢ of these four values, as the
tower response is not sensitive to the Poisson’s ratio values within a practical range.

2. The location of the footing must be at z=0.
3. The program will use user’s defined impedance functions if the radius of the footing is

set equal to 0.0. Details are provided in section K.5.17 under FOUNDATION separa-

tor.

K.5 Input Data File (TOWERRZ.DAT)

The free-field input data format is similar to that introduced by Wilson, E.L. and Hoit,
M. at University of ‘California, Berkeley for SAP-80 series of programs.

In this system, "separator lines" are used to subdivide the data into logical groups. The
data group can be in any order with ¢ach group being terminated with a line having colon *’
in "column 1". The name on the separator line must be in CAPITAL LETTERS and must
start in "column 1°. The program identifies the separator only by its first four characters.

Rest of the characters are optional and used only for user’s own understanding.
All lines of numerical data are entered in the following free field form:
NI,N2,N3,-- R=R1,R2,R3,--- Z2=721,72, -

where the input data is designated by Ni, Ri or Zi. Numerical data lists must be separated
by a single comma or by one blank. A numerical data list without identification, such as
NI1,N2,N3,---, must be the first information on the line. A data list of the form
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R=R1,R2,R3,--- can be in any order or location on the line. The data list is identified by
"R=" only; therefore additional symbolic data must be entered between data lists.

A colon ":", which is optional, indicates the end of information on a line. Information
entered to the right of the colon is ignored by the program; therefore, it can be used to pro-
vide additional information or comments within the input file.

A "C" in column 1 of any line will cause the line to be ignored by the program. Such
lines can be used as comment lines to identify the data.

Simple arithmetic statements are possible when entering floating point real numbers.
For example, the following type of data can be entered:

D=200+12/3.5-2,4.5%34
The statement 200+12/3.5-2 1s evaluated as (((200+12)/3.5)-2).

In this manual, .the values given in [?] are the default values of the parameters, i.e. the

values adopted by the program if they are not provided or if the required identifier is missing.

The following sections provide the user with the necessary information to generate the
TOWERRZ.DAT input file.

K.5.1 CONTROL Information

The line of data which follows the CONTROL separator is used to supply general data
required by the program and contains the following information:

\ D=? M=7 T=?

where

V= Number of natural vibration modes to be included. In most cases, 5 modes
are sufficient.

D= Hysteretic damping coefficient for tower concrete. A value of 0.10 implies 5%
modal damping in all vibration modes of the tower without water on rigid
foundation soil.

M= Number of iterations in computing the natural frequencies and mode shapes.
[20]

T= Tolerance in frequency. [0.001]

This data group must be terminated by a line with colon ’.’ in the first column.
K.5.2 TOWER STRUCTURE Information

The line of data which follows the TOWER STRUCTURE separétor 1s used to supply
general data about tower substructure and contains the following information:
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N=? E=? M=? A=?
where

N= Number of nodes in the idealization of tower. This must be equal to the max-
imum node number. Extra nodes without any unknown degrees of freedom
attached can be used. However, they should be properly identified.

E= The number of elements in the idealization of tower. The program uses three-
node quadriléteral Timoshenko-beam element.

M= Number of material types used in tower structure.

A= Number of nodes where extra concentrated or lumped mass is specified. From
the mass density of tower materials, program itself computes the mass of
tower structure. This option is useful in considering the mass of machinery
etc.] 0]

This data group must be terminated by a line with colon ’:” in the first column.

K. 5.3 TGEOMETRY Information

The sequence of lines which follow the TGEOMETRY separator defmé the tower
geometry, and the location of nodes in the finite element idealization of the tower. These

lines contain the following information:
Nid Z=" R=Ri,Ro G=--—--
where

Nid= Node identification number to be selected by the user. The node number Nid
must be less than or equal to the total number of nodes specified after the
TOWER separator.

Z= z-ordinate.
Ri= Inside radius of the tower at node Nid
Ro= QOutside radius of the tower at node Nid

The part of the finite element system may be automatically generated using the linear
generation option, which can be activated by the addition of the foillowing information on

any line which contains the information about tower geometry at a nodal point:
G=Nf,NlLInc

where

Nf= The first node number in the sequence

Nl= The last node number in the sequence
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Inc= Increment used to define generated node numbers. [ 1 ]

The generated nodes will be at equal interval along a straight line between nodes Nf
and NI

This sequence of lines must be terminated by a line with colon *” in the first column.
K.5.4 TRESTRAINT Information
The sequence of lines which follow the TRESTRAINT separator define the unknown

displacements which exist at the nodes of the structural system of tower. Unless a restraint
is specified at a node, it is assumed that the node has two unknown displacements (one
translation and one rotation). These lines contain the following information:

NI1,N2,Inc R=Ux,Rx.
where
Ni= Node number for first node in a series of nodes which have identical displace-

ment specification. ’

N2= Node number for last node in series. [ N1 ]

Inc= _ Node number increment which is used to define the nodes in the series. [ 1 ]
Ux= Lateral displacement specification = 0 or 1 or -1

Rx= Rotation specification = O or 1 or -1

A specification of 0 allows the unknown displacement to exist. If the specification Ux
and Rx is set to "l" the displacement and rotation is restrained to zero. The restraint
specification "-1" for translation or rotation for any node, say Nth node, will specify the
equation number of (N-1)th node to that of node N. This option is used to specify two
nodes at the same location of the tower having discontinuity in the geometry at that loca-

tion.
This data group must be terminated by a line having colon ’:’ in the first column.
K.5.5 TMATERIALS Information
The sequence of lines which follow the TMATERIALS separator define the material

properties of the tower concrete. For each material type, one data line is required. The
number of lines, so specified under this data group must be equal to the number of material
types specified earlier under TOWER separator. These lines contain the following informa-
tion:

Nid E=? G="? W=?

where
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Nid= Material identification number. This must be less than or equal to the total
number of material types specified earlier under TOWER separator.

E= Elastic modulus of tower concrete.
G= Shear modulus of tower concrete. [E/2.34]
W= Mass density of tower concrete, i.e. unit weight divided by the acceleration

due to gravity.

This sequence of data lines must be terminated by a line having colon ™’ in the first

column.
K.5.6 TELEMENTS Information
The sequence of lines which follow TELEMENTS separator define the connectivity of

three-node, quadrilateral Timoshenko beam elements used to idealize the tower. The
material type of the element is also specified under this data group. These lines contain the

following information:
Nid,J1,]2,J3 M=? N
where

Nid= Identification (ID) number for the element. Must be less than or equal to the
total number of elements specified under TOWER separator.

J1,J2,J3= Node numbers defining the connectivity of the element
M= Material property identification number.

The option to automatically generate element connectivity data is activated by the
addition of the following information on any line:

G=Nad,Nidinc,Jlin¢,J2inc,J 3inc,Minc

where

Nad= Number of additional elements to be generated.

Nidinc= Increment of ID number in generated elements.[ | ]

Jlinc= Increment of J1 in generated elements. [ 2 ]

J2inc= _ Increment of J2 in generated elements. [ 2 ]

J3inc= Increment of J3 in generated elements. [ 2 ]

Minc= Increment of material ID number in generated elements. [ 0 ]

This group of data lines must be terminated by a line having colon * in the first

column.
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K.5.7 TEXTRA MASS Information

For actual towers, it may be necessary to specify concentrated lumped masses at the
nodes, or distributed mass along the height of the tower, in addition to the element mass
which is automatically calculated by the program. This data is specified after the TEXTRA
MASS separator. This group of data 1s required only if the number of nodes with extra mass

¥

specified by identifier "A=" under TOWER separator is non-zero. If for a node, this data is
not specified, zero is assumed for both concentrated and distributed mass. Each line of this

~ sequence contains the following information:
NI1,N2,Inc C=? D=?
where

Nl= Node number for first node in a series of nodes which have identical concen-
trated and distributed extra mass.

N2= Node number for last node in series. [ N1 ]

Inc= Node number increment which is used to define the nodes in the series. [ 1 ]
C= Concentrated (Lumped) mass at that node. [ 0.0 ]

D= Distributed mass at that node. [ 0.0 ]

This data group must be terminated by a line having colon " in the first column.
K.5.8 OUTSIDE WATER DOMAIN Information
‘The line of data which follows the OUTSIDE WATER DOMAIN separator is used to

supply general data about surrounding (outside} water domain. If this separator is missing,
the program will not include the intercation effects due to surrounding water. Any information

for the surrounding water domain, if provided, will be disregarded in that case.
This line ¢ontains the following information:

N=? E=?7 T=7 H=? M=? R=? W=7

where :

N= Number of nodes required in the idealization of water domain surrounding
the tower. No dummy nodes are allowed.

E= Number of elements in the idealization of the fluid domain su‘rrounding the
tower. Eight-node isoparan;etric, axisymmetric elements are used for the finite
clement idealization of the surrounding water.

T= Number of three-node segments defining the tower-water interface.

H= Number of three-node segments defining the hypothetical cylindrical surface

for boundary integral procedure.
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M= Number of trial functions to be used in the boundary integral procedure. [ 12
]

R= Radius of the hypothetical cylindrical surface. This may be the smallest
radius such that the cylindrical surface contains the tower (Figure 4.5).

W= Mass density of water, i.e. unit weight divided by the acceleration due to grav-
1ty.

This data group must be terminated by a line with a colon *" in the first column.
K.5.9 ONODES Information
The lines which follow the ONODES separator define the location of the nodes of the

idealized fluid domain surrounding the tower. These lines contain the following informa-

tion;
Nid R=? Z=" I=? G=----

where

Nid= Node identification number to be selected by the user. The node number Nid
must be less than or equal to the total number of nodes specified after the
OUTSIDE separator.

R= r-ordinate

Z= z-ordinate

I= 1 for node on tower-water interface. Need not be specified for other nodes. [ 0

]
The data may be automatically generated using the lingar generation option, which can
be activated by the addition of the following information on any line which contains the

information about a nodal point:

G=Nf,Nl,Inc
where
Nf= The first node number in the sequence
Nl= The last node number in the sequence
Inc= Increment used to define generated node numbers. [ 1 ]

The generated nodes will be at equal interval albng a straight line between nodes Nf
and NI.

This sequence of lines must be terminated by a line with colon *:” in the first column.
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K.5.10 OELEMENTS Information

The sequence of lines which follow OELEMENTS separator define the connectivity of
eight-node isoparametric elements used to idealize surrounding water domain in r-z plane.

These lines contain the following information:
Nid,J1,12,J3,]4,15,16,J7,J8 Gz
where

Nid= Identification (ID) number for the element. Must be less than or equal to the
total number of elements specified under OUTSIDE separator.

J1 to J8= Node numbers defining the connectivity of the element

The option to automatically generate element connectivity data is activated by the
addition of the following information on any line: ’

G=Nad,Nidinc,J linc,J2inc,J 3in¢,J4inc,J 5inc,J61inc,J 7inc,J 8inc

where

Nad= Number of additional elements to be generated.
Nidin¢= Increment of ID number in generatéd elements.[ 1 ]
Jline= - Increment of J1 in generated elements. [ 2 ]
J2inc= Increment of J2 in generated elements. [ 2 ]
J3inc= Increment of J3 in generated elements. [ 2 ]
Jdinc= Increment of J4 in generated elements. [ 2 |
JSinc= Increment of J5 in generated elements. [ 1 ]
Jéinc= Increment of J6 in generated elements. [ 2 ]
J7inc= Increment of J7 in generated elements. [ 1 ]
J8inc= Increment of J8 in generated elements. [ 2 ]

This group of data lines must be terminated by a line having colon ' in the first

column.
K 5.11 OTOWER-WATER INTERFACE Information
The sequence of lines which follow OTOWER-WATER separator define the connec-

tivity of three-node segments of the fluid elements in the surrounding water domain on the

tower-water interface. These lines contain the following information:
Nid,J1,J2,J3 (G T—

where
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Nid= Identification (ID} number for the segment on the tower-outside water inter-
face. Must be less than or equal to the total number of segments specified
under QOUTSIDE separator.

J1,J2,J3 = Node numbers defining the connectivity of the segment on the tower-outside
water interface.

The option to automatically generate segment connectivity data is activated by the

addition of the following information on any line:

G=Nad,Nidinc,J linc,J2inc,J3inc

where

Nad= Number of additional segments to be generated.
Nidinc= Increment of ID number in generated segments.[ 1 ]
Jlinc= Increment of J1 in generated segments. [ 2 ]

J2in¢= Increment of J2 in generated segments. [ 2 ]

J3inc= Increment of J3 in generated segments. [ 2 ]

This group of data lines must be terminated by a line having colon *’ in the first
column.
K 5.12 OHYPOTHETICAL CYLINDER Information

The sequence of lines which follow OHYPOTHETICAL separator define the connec- -
tivity of three-node segments of fluid elements in the outside water domain on the hypothet-
ical cylindrical surface. These lines contain the following information:

Nid,J1,J2.J3 G=-mme-
where

Nid= Identification (ID) number for the segment on the hypothetical cylindrical sur-
face. Must be less than or equal to the total number of segments specified
under OUTSIDE separator.

J1,J2,J3= Node numbers defining the connectivity of the segment on hypothetical
cylindrical surface

The option to automatically generate segment connectivity data is activated by the
addition of the following information on any line:

G=Nad, Nidinc,Jlinc,J2ing,J3inc

where
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Nad= Number of additional segments to be generated.
Nidinc= Increment of ID number in generated segments.[ 1 ]
Jlinc= Increment of J1 in generated segments. [ 2 ]

- J2ine= Increment of J2 in generatéd segments. [ 2 ]
J3inc= Increment of J3 in generated segments. [ 2 ]

This group of data lines must be terminated by a line having colon ’’ in the first

column.
K.5.13 INSIDE WATER DOMAIN Information
The line of data which follows the INSIDE WATER DOMAIN separator is used to

supply general data about inside water domain. If this separator is missing, the program will
not include the intercation effects due to water contained inside the tower, Any information for

the inside water domain, if provided, will be disregarded in that case.
This line contains the following information:

N=? E=? T=? W=7

where

N= Number of nodes required in the finite element idealization of water domain
contained inside the hollow tower. No dummy nodes are allowed.

E= Number of elements iﬁ the idealization of the fluid domain contained inside
the tower. Eight-node 'isoparametric, axisymmetric elements are used for the
finite element idealization of the inside water.

T= Number of three-node segments defining the tower-water interface.

W= Mass density of water, i.e. unit weight divided by the acceleration due to grav-

ity.
This data group must be terminated by a line with a colon *:’ in the first column.
K 5.14 INODES Information
The lines which foll'ow the INODES separator define the location of the nodes of the

idealized fluid domain contained inside the tower. These lines contain the following infor-

mation:
Nid R=? Z=? [=? G=-----
where
Nid= Node identification number to be selected by the user. The node number Nid

must be less than or equal to the total number of nodes specified after the
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INSIDE separator.

R= r-ordinate
Z= z-ordinate
I= 1 for node on tower-water interface. Need not be specified for other nodes. [ 0

] |
The data may be automatically generated using the linear generation option, which can
be activated by the addition of the following information on any line which contains the

information about a nodal point:

G=Nf,Nl,Inc
where
Nf= . The first node number in the sequence
Nl= The last node number in the sequence
Inc= Increment used to deﬁne generated node numbers. [.1 ]

The generated nodes will be at equal interval along a straight line between nodes Nf
and NI

This sequence of lines must be terminated by a line with colon ™’ in the first column.
K.5.15 IELEMENTS Information
The sequence of lines which follow IELEMENTS separator define the connectivity of

eight-node isoparametric elements used to idealize inside water domain in r-z plane. These

lines contain the following information:
Nid,J1,J2,03,04.15,16,17,18 G=omeree
where

Nid= [dentification (ID) number for the element. Must be less than or equal to the
total number of elements specified under INSIDE separator.

J1 to JB= Node numbers defining the connectivity of the element

The option to automatically generate element connectivity data is activated by the

addition of the following information on any line;
G=Nad,Nidine,J linc,J2inc,J 3inc,J4inc,J Sinc,J6inc,J 7inc,J8inc

where

Nad= Number of additional elements to be generated.

Nidinc= Increment of ID number in generated elements.[ | ]



Jlinc=
J2inc=
J3inc=
Jdinc=
JSinc=
J6inc=
J7inc=

J8inc=
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Increment of J1 in generated elements. [ 2 ]
Increment of J2 in generated elements. [ 2 ]
Increment of J3 in generated elemeflts. [2]
Increment of J4 in generated elements. [ 2 ]
Increment of J5 1n generated elements. [ 1]
Increfnent of Jé in generated elements. [ 2 ]
Increment of J7 in generated elements. [ 1 ]

Increment of J8 in generated elements. [ 2 ]

This group of data lines must be terminated by a line having colon ’ in the first

column.

K.5.16 ITOWER-WATER INTERFACE Information

The sequence of lines which follow ITOWER-WATER separator define the connectivity
of three-node segments of the fluid elements in the inside water domain on the tower-water

interface. These lines contain the following information:

Nid,J1,J2,]3 G=--
where
Nid= Identification (ID) number for the segment on the tower-outside water inter-
face. Must be less than or equal to the total number of segments specified
under INSIDE separator. '
J1,J2,J3 = Node numbers defining the connectivity of the segment on the tower-inside

water interface.

The option to automatically generate segment connectivity data is activated by the

addition of the following information on any line:

G=Nad,Nidinc,Jlin¢,J2inc,J 3inc

where
Nad-=
Nidinc=
Jlinc=
J2inc=

J3inc=

Number of additional segments to be generated.
Increment of ID number in generated segments.[ | ]
Increment of J1 in generated segments. [ 2 }
Increment of J2 in generated segments. [ 2-]

Increment of J3 in generated segments. [ 2 ]

This group of data lines must be terminated by a line having colon " in the first

column.
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K. 5.17 FOUNDATION-SOIL SYSTEM Information
The ling of data which follows the FOUNDATION-SOIL SYSTEM separator is used to

supply the information about the foundation soil system. If this separator is missing,
foundation-soil interaction effects will not be considered in the analysis. This line contains the

following information:

M=? I=? R=? C=? - P=? W=7 D=?

where

M= Mass of the foundation footing below the ground level. [0.0]

1= Mass moment of inertia of the foundation footing below ground level. [ 0.0 ]
R= Radius of the footing. |

If the radius of the footing is set to 0.0, user must provide the impedance func-
tions for the foundation-soil system. The program reads the foundation
| impedance functions from the file FOUNDIMP.DAT. If "N’ points are used to
define the acceleration time history, including the "quiet zong", then the
impedance functions should be available at the interval of Aw=2x/NAt, in
which At is the time interval between consecutive data points in acceleration
time history. A total (N/2+1) lines of data, corresponding to 0, Aw, 2Aw, ...... ,
frequencies are required in the file FOUNDIMP.DAT. Each line of data con-

tains the following four values separated by a °,” (comma) or a blank space:

KVVR KVVI KMMR,KMMI
where |
KVVR= Real part of impedance function K.
KVVI Imaginary part of impedance function Ky
KMMR Real part of impedance function K.
KMMI Imaginary part of impedance function Kj;,.
C= Shear wave veloaity of foundation-soil.
P= Poisson’s ratio of foundation soil. [0.33]
W= ~~ Mass density of foundation soil, i.c. unit weight divided by the
acceleration due to gravity.,
D= Hysteretic damping factor for foundation soil. [ 0.10 ]
This data group must be terminated by a line with colon ' in the first

column.
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K.5.18 GROUND MOTION Information
The sequence of lines which follow the GROUND MOTION separator provide infor-

mation about the earthquake acceleration data. The first line contains the following informa-

tion:

N=Nx,Ny T=? §=7? M=?

where

Nx= The number of data points in the ground motion along x-axis. This number
must be a multiple of 8§.

Ny= The number of data points in the ground motion along y-axis. This number
must be a multiple of 8. If only one component of ground motion is used, Ny
should be set to zero.

T= The umiform time interval between consecutive data points in the ground

' motion records. Both the ground motion components must be digitized at the
same time interval.

S= Scale factor for the ground motion. acceleration units.

M= The control parameter to select the number of points (=2¥) to be used in the

discrete Fast Fourier Transform (DFFT) computations. The selected value of
M should be large enough to provide sufficient ’quiet zone’ to ensure accurate
DFFT computations.*

After this line, the ground motion data is provided. EIGHT data points are provided in
each line in FORMAT 8F9.5, standard FORTRAN formats. First Nx/8 lines are for the
ground motion along x-axis. Next Ny/8 lines are for the ground motion along y-axis. Com-
ment lines however can be provided between the two sets of data to distinguish them‘from each

other.
This data group must be terminated by a line with colon " in the first column.
K.5.19 OUTPUT CONTROL Information

The FOUR lines which follow the OUTPUT CONTROL separator identify the nodes
where displacement, shear force and bending moment response is recjuired. The FIRST line
of this data group contains the information about the nodes where the maximum displace-
ment over the duration of the earthquake is to be determined. This data is presented in the

:following form:

*(G. Fenves and A. K. Chopra, EAGD-84, "A Computer Program for Eaﬁhquake Analysis of Concrete Gravity
Dams", Report No. UCB/EERC-84/11, University of California; Berkeley, Calif., August 1984, 92pp.
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D=Nt L=L1,L2,.... , LNt N=Nf,Ninc
where
Nt= Total number of nodes where maximum lateral displacement should be com-
puted.
The list of nodes can be specified either by N= or by L=. If the response is required at

less than twenty nodes, and they are not regularly distributed in numbers, option L= can be
used to just list those nodes. The option N= should be used if the nodes are regularly distri-
buted, or the response at all the nodes is required. The program looks for the L= option
only if it does not find the N= option. So, both the options can not be used simultaneously.

In option N=, the terms have the following meaning;
Nf= The first node number where information is requested.

Ning¢= The increment in the sequence of nodes. The last node number is automati-
cally determined by the program using Nt, the total number of nodes where

information is requested.

The SECOND line of this data group contains the information about the nodes where

the maximum shear force 1s to be determined. This data is presented in the following form:

S=Nt  L=L1,L2,....INt  N=NfNinc
where
Nt= Total numbef of nodes where maximum shear force should be computed.

All other parameters carry the same meaning as in the FIRST line.

The THIRD line of this data group contains the information about the nodes where the
maximum bending moment is to be determined. This data is presented in the following
form:

M=Nt L=LI1,L2,....... LNt N=Nf,Ninc
where
Nt= Total number of nodes where maximum bending moment should be com-

| puted.

All other parameters carry the same meaning as in the FIRST line.

The FOURTH line of this data group contains the information about the nodes where
the lateral displacement history 1s to be included in the output. This data is presented in the

following form:

H=Nt L=L1,L2,...... LNt N=Nf,Ninc
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where
Nt= Total number of nodes where displacement history need be computed.
All other parameters carry the same meaning as in the FIRST line.

This data group must be terminated by a line with colon .’ in the first column.

K.6 Numerical Example

For the convenience of the user, the input data file TOWERRZ.DAT used for analysis
of the SANBERNADINO TOWER is presented. Figures K.3 to K.5 provide the informa-
tion about the mathematical model and the numbering schemes used in the earthquake
response analysis of this tower. The output files, mentioned in Figure K.1, for thsi numerical

example are also provided on the diskette with the source codes.
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CONTROL
v=2 D=0.10

M=20 T=0.0

TOWER STRUCTURE

N=38& E=15 M=1 A=0
GEOMETRY
R=0.,29.5 2=0.
Z=8.5 G=

R=10.,25.25 2=8.5
R=10.,25.25 Z=17. G=4,6,1

T
1
3 R=0.,29.5
4
6
7

R=10.,21.0
9  R=l10,,21.0

Z=17.
2=25.5

10 R=10.,16.75% Z=25.5
12 R=10.,16.75 Z2=34.

13 R=10.,12.5 =34,
31 R=10.,12.5 Z=166.25
32 R=11.3,12.5 Z=166.25

36 R=11.5,12.

TRESTRAINTS
1 R=1,1

5 2=161.10

4,13,3 R=-1,-1
32 R=-1, -1

. TELEMENTS
1,1,2,3 M=1

5,13,14,15 M=1 G=8,1,2,
14,32,33,34 M-1 G=1,1,2
TMATERIALS

1 E=648000. G=276923.
QUTSIDE WATER DOMAIN
N=185 E=50 T=16 H=12
ONODES

1  R=12.5 Z=34,0

17 R=12.5 z=134.25
18 R-14.625 2=34.0

26 R=14.625 2=134.25
27 R-16.75 2=25.5

29 R=16.75 Z-34.0

45 R=16.75 Z-134.25
46 R=1B.B75 2=25.5

47 R=18.875 2=34.0

55 R-18.875 2=134.25
56 R=21.0 z=17.0

58 R=21.0 2=25.5

60 R=21.0 7=34.0

76 R=21.0 2=134.25
77 R=23,125 2=17.0

79 R=23.125 2=34.0

87 R=23.125 2=134.25
88 R=25.25 Z=8.5

90 R=25.25 2=17.0

94 R=25.25 Z=34.0

110 R=25.25 2=134.25
111 R=27.375 2=8.5

8=3,1,3,3

114 R=27,375 12=34.0
122 R=27.37% 1I=134.25
123 R=29.5 z=0.0
123 R=23.3 2=8.5

C......EXAMPLE DATA FOR TOWERRZ SERIES, SAN BERNARDINO TOWER

1

1,3,1

G=17,9,1
G=10,12,1
G=13,31,1

G=32,36,1

3,0
2,2,0
,2,2,0
W=.004617

M=12 R-34.0 W=0.001939

I=1
I=1 6=1,17,1
'[g
G=18,26,1
-1
6=27,29,1
G=29,45,1
1-1
6=41,55,1
1=l
1=1 G=56,58,1
6=58,60,1
G=60,76,1
1=1
6=177,79,1
G=79,87,1
1=l
1=1 G=88,90,1
G=30,94,1
©-94,110,1
1=1
G-111,114,1
G=114,122,1
-1

I=1 6=123,125,1

131 R=29.5 Z2=34.0

G=125,131,1
6=131,147,1

147 R=29.5 2=134,25

148 R=31.75 2=0.0 I=1
152 R=31.73 2=34.0

160 R=31.75 2=134.25

161 R=34.0 2=0, I1=1
169 R=34.0 Z=34.0

185 R=34.0 2=134,25

G=-148,152,1
G=152,160,1

G=161,169,1
G=163,185,1

OELEMENTS

1,1,29,31,3,18,30,19,2 6=7,1,2,2,2,2,1,2,1,2
9,27,58,60,29,46,59,47, 28 G-8,1,2,2,2,2,1,2,1,2
18, 56,90, 92,58, 77,91, 78,57 G=9,1,2,2,2,2,1,2,1,2
28,88,125,127,90,111,126,112, 89 G=10,1,2,2,2,2,1,2,1,2
39,123,161,163,125,148,162,149,124 G=-11,1,2,2,2,2,1,2,1,2
OTOWER-WATER INTERFACE
1,17,16,15 G=7,1,-2,-2,-2
9,1,18,29
10, 29,28, 27
11,27,46,58
12,58,57,56
13, 56,77, 90
14,90,89,88
15,88,111,125
16,125,124,123
OHYPOTHETICAL CYLINDRICAL SURFACE
1,161,162,163 c-11,1,2,2,2
INSIDE WATER DOMAIN
M=93 E=22 T=13 W=0.001939
INODES
1 R=10, 2=8.5 I=1
73 R=10. 2-134.25 T-1 G=1,23,1
24 R=8. 2=8.5 =1
35 R=8. 2=134.25 G=24,135,1
36 R=6. z=8.5 I=1
58 R~6. 2=134.25 £-16,58,1
59 R=3. 72-8.5 I=1
70 R=3. 2=134,25 6=59,70,1
71 R=0. 72-8.5 I=1
93 R=0. z=134,25 G=71, 93,1
IELEMENTS
1,36,1,3,38,24,2,25,37 6=10,1,2,2,2,2,1,2,1,2
12,71,36,38,73,59,37,60,72 ©=10,1,2,2,2,2,1,2,1,2

TTOWER-WATER INTERFACE
1,71,59,36

2,36,24,1

3,1,2,3 6=10,1,2,2,2

FOUNDATION-SOIL SYSTEM

M=0. TI=0. R=29.5 C=1000. P=1./3. W=0.005127 D=0.10
GROUND MOTICN

N=1000,0 M=11 T=0.02 5-32.18
Ciesaans. .GROUND MOTION COMPONENET ALONG X-AXIS; TAFT S69E

-.00632 =-.00194 -00408 .01010 .00530 -.00031 =-.00428
.00122 .00541 .003%8 -.00306 -,00867 -.00867 -_.00612
-.00031 =.00020 -00408 01071 .01163 .00663 .00449
.00214 .00194 -.00398 -.00755 -.00112 -00592 .00286

-.00286
-.00082

.00235
-.01040

w2
O
<



-.01153
-.00663
.00459
-.00133
-.00010
-.00031
.o00867
.01714
.00632
~-.02652
.00428
.01153
.02295
-.01459
-.00500
-.02223
-.07221
-.0490¢
-.04406
.14932
-.06232
-.01652
.01367
.06650
-.04498
-.03774
06958
-.05100
-.01877
-.05753
.11423
-.04192
00714
.09057
.04192
.02937
.07323
-.14616
-.00530
-.00877
-.03672
.07619
00092
-.03886
.10138
-.09067
-.03713
-.07782
-.01397
-.03723
.06364
.03182
-.01459
.00928
01275
.00571
-.02162
.04243
-.04631
00000
,03488
-.00122
L01622
.03131

-.00479
-.01091
-.00286
—.00BE7
-.00224
.0082¢
.00755
.01989
-.00694
-.00918
-.01061
.00724
.01989
-.02081
-.00530
-.03631
-.06640
-.03539
-.02407
.17941
-.05640
.00469
.05079
.07639
-.01663
-.05406
.04651
-.00979
~.04049
-.06823
.10475
-.03743
.04314
.06405
.03682
.03294
.06324
-.14116
.03029
.00887
-.05997
.10057
~-.015@81
-.01387
.09853
-.09700
-.02060
-.08027
-.02234
-.05345
.0543¢6
.05508
.00265
-.0310
.04926
-.00204
-.02733
.03182
-.02876
-.01000
.00eB3
01489
.02458
.Q2458

.00500
.00326
.00357
-.00683
-.00867
.00428
.00898
01377
-.01142
.01632
-.02387
-.008B06
.02591
-.01999
-.00408
-.03264
-.05457
-.02601
.00337
.163901
-.04600
.00469
.0B506
.07068
.03570
-.05651
.02142
03141
-.05263
-.04641
.089%6S
-.04814
.03050
.02988
.02336
.01652
03243
=-.13657
.06823
.028486
-.05202
.10301
-.03957
.01193
10342
-.04172
.02234
-.04388
-.,00755
-.07313
.04223
L06324
02927
-.07191
.09241
-.01550
-.01561
.00265
-.02529
-.03519%
~.02172
.01000
.03519
.00836

.00102
.01724
.01459

-.00479

-.01132

-.00785
.00979
.00510

-.00867
.02234

-.00898

-.01346
.02366

-.01693

~-.00928

-.02448

-.05263

-.01724
.03274
.11954

-.04773

-.00877
.06885
.06303
.08394

-.D03733
. 00051
.03998

-.049263

-.01530
.06324

-.06273
.00194

-.01193
.00806

-.00694

-.0079%6

-.13878
.08476
.04916

-.03325
07078

~.05926
.04223
.10414

-.01581
.06783

-.00745
.01734

-.08945
.03060
.0439¢6
.06354

-.11148
10301

-.02988
.01499

-.02958

-.04029

-.05120

-.01693
.0gog2
.04875
.00663

-.00408
.01010
.02325
.00408

-.01530

-.01B36
-00163
.00316

-.00388
.01703
.01418

-.01275
.01204

-.01856

-.00796

-.03284

-.04977

-.01473
.05569
.06946

-.05640

-.02274
.03733
.03417
.12352

-,01459

-.03182
.028158

-.02907
.01929
.02774

-.07854

-,01520

-.02172

-.00673

-.00214

-.05253

~.13698
.05875
.05620

-.01163
.03509

-.03866
06915
.07425

-.03692
.0B496

-.00357
.04437

-.08976
.03019
.02152
.10658

-.10495
.07956

-.04559
.04906

-.0489%¢

-.06028

-.02703

-.00479

-.00938
.05406
.02580

-.00255
-.00490
-.01816
.00561
-.01877
-.01163
-.00530
.01193
.00224
.02142
03692
-.00775
-.00102
-.01785
-.00214
-.04926
-.05079
-.02611
.07588
.01877
-.065493
-.04029
-.,00153
.00326
.00364
L01112
-.0B639
.01122
~.01826
.05314
-.00B47
-.09302
.00755
.00459
-.01540
03427
-.09669
-.11117
.02937
.03692
.01071
-.00683
-.01¢83
.100086
.03641
-.06946
.05671
-.01499
.03866
-.06028
.02376
~.00418
.11423
-.06568
.05161
-.05742
.07721
-.06609
—-.06772
.00377
-.01163
-.00347
.04192
.04518

.00663
.01867
-.00143
-.01601
.00092
-.00082
.02387
.00235
.02478
_03090
.00683
-.00867
-.00898
.00347
-.05783
-.05283
-.04029
.09424
-.03509
-,05742
-.04671
-.00153
-.03233
.03417
.03488
.11342
.00510
-,02764
.08843
-.04396
-.07405
.03682
.02438
~-.01499
.07619
-.13963
-.07762

-.00949 -

.01438
.03243
.03264
-.02254
.11250
-.00581
-.08353
.01377
-.01397
.00938
.01469
.01387
-.02886
.0849¢
-.0339¢6
02570
-.04835
_06762
-.07160
-.04784
.04284
-.029%8
.00653
02693
.04110

.00592

.00734
.00367
.01255

-.00408

-.00806
L0167
.00683
02417

-.01612
.01877
.01601
.02264

-.01142

-.00153

-.00510

-.06211

-.05722

-.04590
.12056

-.06528

-.03774

-.02142
.03060

-.04569

-.02203
06211

-.08853
. 00061

-.04110
.11097

~.05069

-.03560
.07313
.03284
.00092
09577

-.14932

-.04172

-.02254

-.01173
05508

-.01285

-.03%88
.10873

-.04559

-.04549

-.03060

-.01010

~.01846
.03784
.01408

-.03274
.05008

-.01795
.01469

-.03254
.05253

-.05936

-.02438
.05691

-.02295
.01540
.02744
.02489

.02264
-.06364
.03458
.02285
-.02132
.03478
-.05528
.02682
.01295
-.00826
.04284
.01642
.02652
-.03417
.03009
-,08292
05477
.02203
.00520
.01091
.02835
-.04141
-.00306
-.03386
.04e31
.00357
-.01071
.01938
-.02050
.04100
.00418
.03917
.01938
—.04896
.01193
.00949
-.01071
-.01397
-.01581
.00959
.00428
.01316
-.02560
,03927
-.0041B
.01652
—-.01234
.02223
-.01928
.05202
.00173
-.03315
-.00653
.03427
.bD479
~.01336
-.00296

QUTPUT

-.08598
-.00337
.04335
-.00979
.01510
-. 04845
.02091
-.01306
-.01112
.00934
.02336
.00714
-.01979
.02438
-.09333
.04345
.02621
.00949
-.01112
.03080
-.03600
.00745
-.03213
.03998
-.02274
.01234
.00877
—.01336
-03998
.02550
.01856
011533
-.03029
.01550
.00133
-.00643
-.01724
-.02285
.00714
.02285
~-.01968
-.02805
.04212
-.01204
.02193
-.01703
-.022514
-.01142
.04294
.01795
-.03651
-.02295
.03988
.00796
-.00826
-.01091

.03060

.03447

-.08302
-.05120
.05375
.00153
—.00714
-.02693
01408
-.02846
01765
-.03009
.01897
-.01520
-.00357
.03478
-.10546
.02856
.01714
.01357
-.01948
.00275
~.01499
.00357
-_.02754
.03539
-.05171
03611
00275
-.02030
.02387
.04957
-.00163
.00785
-.01244
.02172
-.00938
.00255
-.02223
-.02009
.01000
.04223
-.01775
02733
.03488
-.00796
.02682
.01877
-.01469
.00173
.02438
.01295
.02234
.02693
03172
.00806
-.00500
-.01724

.02060

-.05151
-.06987
.05987
~.00082
-.03029
-.00510
.01081
-.03876
-.02591
-.04590
.02580
-.02774
.01285
.04835
-.09955
.00908
-00643
.01224
-.01408
-.02886
.00439
-.01214
~-.01040
.04223
-.07374
.05814
.00122
-.033656
.00775
.06477
-.02009
.ooos2
-.00694
.02591
-.02009
,01377
-.03182
-.01510
.01169
.06222
-.01805
-.02744
.01958
.00173
03203
.01642
.00643
.01091
.00418
.00265
-.00235
-.02764
.02570
.00510
.00296
-.01418

.00337
-.01601
~.06650

.c4019

.00000
-.05273

.02050

.02376
-.048235
-.01673
-.03651

.03641
-.02672

.02917

.02784
-.06966
-.008e7
-.0057M

.01581
-.00826
-.06640

.01632
-.01805

.00979

.05447
-.07109

.05916
-.00867
-.05090
-.00367

.07109

-.01448

-.01561
-.00061
.02815
-.02948
.02132
—.02937
-.00867
.02070
.05895
-.02213
-.03162
.00357
.01244
.03437
-.01387
.00224
.01958
-.01703
-.01030
.01805
-.02295
.02244
.00255
.00224
-.00765

-.01693
.02101
-_05875
01244
.01288
-.05661
.03315
04223
-.05151
.00694
-.02682
.04549
-.02591
03886
-.00245
-.03662
-.02540
-.00745
.03264
-.00571
-.07762
.01030
-.02529
.03162
.05559
-.06069
05080
~.01734
-.04121
-.01234
.07721
~.00265
-.03284
.00418
.02693
-.03315
.01275
-.01795%
-.00275
L01765
.04314
-.023¢¢
-.01724
-.00306
.01244
.02356
-.01c10
.00031
.03192
-.03662
~.01754
.03957
-.01459
.01836
-.C0041
,01122
-.00643

.03176
-06099
.03396
-01428
.02540
.05059
.03580
05314
-0386E
.03111
.01581
.04518
-03274
.04080
.03713
.00163
-01499
.00245
.04243
.00031
.06589
.00602
.03345
.04314
.04641
-04896
-04070
-02489
.01540
.02183
.07476
-01265
.05273
-00612
.01989
.02642
.00020
L00632
.00388
.00683

.02468

.02081
.00204
.00082
.00755
.00918
.01102

.00581.

.04580
-03274
.01989
-03682
.00051
.01193
-00500
L0106l
.01754

--04926

.07099
-.00734
-.02478

.04049
-.05100

03243

.03570
-.02264

. 05651
-.00133

.04202
-.04161

.03651
-.06701

.034S8

.00153

. 00061

.02856

.01295
-.05090
-.00979
-.03631

. 04559

.03009
-.03284
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.01632

. 00581
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-.02642

16t



APPENDIX L
TOWER3D SERIES OF PROGRAMS : USERS MANUAL

L.1 Introduction

The TOWER3D series of programs were specifically developed for the earthquake
response analysis of intake-outlet towers, with arbitrary cross-section but having two axes of
symmetry, subjected to one component of ground motion. The effects of tower-water
interaction, due to water surrounding the tower and contained inside the tower, and tower-

foundation—soil interaction can be included independently or simultaneously.

| The output of the computer program consists of the maximum responées -- lateral dis-
placement, shear force, and bending moment -- at selected locations along the height of the
tower. The time variation of each response quantity due to one ground motion component is
computed from which the maximum value is determined. These response quantities are
computed by the computer program using the analytical procedure developed in Chapters 3
and 4.

L.2 Organization of TOWER3D Series of Programs

The TOWER3D series of programs are divided into six modules. The major advantage
of the modular organization is that the modules can be restarted at certain points after data
changes without starting other modules. The separate program segments interact by com-
munication with a common file data base. So, the user has to prepare only one input data
file TOWER3D.DAT. The TOWER3D series of programs contain the following six modules:

1. TOWER3D This program reads the information about the mathematical model
from the input file TOWER3D.DAT in free-field type of input and

create a data base for various modules.

2. OUTPUT3D This program writes the information about the mathematical model in
a file TOWER3D.OUT and is used to check the correctness of the
input data.

3. EIGEN3D This program computes the frequencies and mode shapes of the tower

without water, generates generalized mass and excitation matrices and
computes modal shear and moment transformation vectors. The gen-
erated section properties of the tower, its natural frequencies and mode
shapes are written on a file TOWER3D.VEC .

4. OUTW3D This module computes the generalized added mass matrix and excita-

tion vector due to water surrounding the tower. This module consists
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of three programs, OUTW3D, OMAT3D and OMASS3D which must

be executed in order.

5. INW3D This program computes the generalized added mass matrix and excita-
tion vector due to water inside the tower. This module consists of
three programs, INW3D, IMAT3D and IMASS3D which must be exe-

cuted in order.

6. RESP3D This program evaluates the impedance functions of the foundation
footing, computes the frequency response functions of modal coordi-
nates; the maximum displacement, shear force and bending moment at
specified locations, and displacement time history at specified loca-
tions. The amplitudes of the frequency response functions for the first
two modal coordinates only are written on a file TOWER3D.FRF, the
maximum responses are written on a file TOWER3D.MAX, and
response history on a file named TOWER3D.HIS.

The source listings of all these modules are available in FORTRAN-77 programming

language.

L..3 Execution of Programs

All the program segments can be compiled and linked independently using commonly
available FORTRAN compilers. The sequence in which the programs should be executed is
summarized in Figure L.1. TOWER3D should be executed first. EIGEN3D comes next.
RESP3D should be executed in the end. Programs OUTW3D, OMAT3D, and OMASS3D
should be executed after EIGEN3D only when interaction effects due to surrounding water
need be included. Similarly, programs INW3D, IMAT3D, and IMASS3D should be executed
after EIGEN3D but before RESP3D if the effects of inside water need be included. The
modules (set of three programs) OUTW3D and INW3D can be executed in any order. The
program QUTPUT3D can be executed any time after TOWER3D has been executed. It is
recommended that the user should check the file TOWER3D.OUT for possible errors in

input data file before executing the subsequent program segments.

Whenever the data file TOWER3D.DAT is modified, it is necessary ito execute
TOWER3D and then run the module for which data has been changed. The other modules

need not be executed if input data for them is not changed.
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TOWER3D

(TOWER;D.DAT)I
OUTPUT3D
(TOWER3D.OUT)?
EIGEN3D
OUTW3D INW3D
OMAT3D IMAT3D
OMASS3D IMASS3D
RESP3D
(TOWER3D.MAX)2
(TOWER3D.FRF)?
(TOWER3D.HIS)?

( )! INPUT FILES
( )> OUTPUT FILES

Figure L.1 Order of Execution for TOWER3D Series of Programs
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L.4 Idealization of Tower-Water-Foundation Soil System

The tower, the surrounding water domain, the inside water domain, and the
foundation-soil system are idealized independently as substructures. Only one quarter of the
system with two axes of plan symmetry is analyzed. The user should follow these instruc-

tions carefully in idealizing each substructure:
L.4.1 Tower Substructure

1. The numbering of the nodes should always start from the base to the top. Each node

has two degrees of freedom, translational and rotational displacements.

2.  The program uses a three-node Timoshenko beam element for which the connectivity
should be provided from bottom to top in the order shown in Figure L.2a.

3. At any locatibn above the base where the cross-section is discontinuous, two nodes
need be specified with consecutive numbers and different section properties. The lower
numbered node should define the section just below the node and the higher numbered
node should define the section just above the node. The equation numbers for the
degrees of freedom of the higher numbered node should be equal to that of lower num-
bered node. This is obtained by setting restraint code for higher numbered node to ’-1°
{see under TRESTRAINT separator). The two nodes defining a discontinuous sections
must belong to different elements, i.e. the lower numbered node will be the third node

. of one element and the higher numbered node will be the first node of a different ele-

ment.
L.4.2 Outside Water Domain Substructure

The boundary value problem associated with surrounding water domain is solved using
finite elements coupled with boundary. integral procedure. The fluid domain between the
outside surface of tower and a hypothetical cylindrical surface is discretized by finite ele-
ments and the effects of the fluid domain exterior to this surface are treated by boundary
integral procedures. The user should follow the instructions listed below:

1. - The radius r, of the hypothetical cylindrical surface should be selected as the smallest
- value sufficient to contain the tower (Figure 4.5), ‘and the nodes and the elements on

this surface should be numbered in the sequence as shown in Figure L.7.
2.  The connectivity of twenty-node elements should be provided in the order shown in
Figure L.2c.

3. The connectivity of the eight-node segments on the interface of the tower and the out-
side water should be provided in the order shown in Figure L.2b.



(a) 3-NODE ELEMENT
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(b) 8-NODE SEGMENT

(C) 20-NODE ELEMENT

Figure L.2 Order of Node Numbering for Elements and Segments in the Finite Ele-
ment Idealization
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The connectivity of the eight-node segments on the hypothetical cylindrical surface
should be provided in the order shown in Figure L.2b.

No node should be common to the tower-outside water interface and the hypothetical

cylindrical surface.

[.4.3 Inside Water Domain Substructure

1.

The connectivity of twenty-node elements should be in the same order as shown in Fig-
ure L.2¢ for the elements of surrounding water domain.

The connectivity of eight-node segments on the interface between the tower and the
inside water should be in the same order as shown in Figure L.2b for the segments of

the surrounding water domain.

L.4.4 Foundation-Soil Substructure

1.

The program uses analytical functions to compute the frequency-dependent foundation
impedances for surface-supported circular foundation (Chapter 4). The program selects
the necessary constants, already provided in the program, based on the selected
Poisson’s ratio for foundation rock or soil. These constants are provided only for
Poisson’s ratio 0.0, 0.33, 0.45 and 0.5. For intermediate values, it interpolates the con-
stants linearly. However, it is recommended to use one of these four values, as the
tower response is not sensitive to the Poisson’s ratio values within a practical range.

The location of the footing must be at z=0.

The program will use user’s defined impedance functions if the radius of the footing is
set equal to 0.0. The details are given in Section L.5,17 under FOUNDATION separa-

tor.

L.5 Input Data File (TOWER3D.DAT)

The free-field input data format is similar to that introduced by Wilson, E.L. and Hoit,

M. at University of California, Berkeley for SAP-80 series of programs.

In this system, "separator lines" are used to subdivide the data into logical groups. The

data group can be in any order with each group being terminated with a line having colon '’
in “column |". The name on the separator line must be in CAPITAL LETTERS and must
start in "column 17, The program identifies the separator only by its first four characters.

Rest of the characters are optional and used only for user's own understanding.

All lines of numerical data are entered in the following free field form:

NI1,N2,N3,-- R=R1,R2,R3,--- L=721,72,---
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where the input data is designated by Ni, Ri or Zi. Numerical data lists must be separated
by a single comma or by one blank. A numerical data list without identification, such as
NI,N2,N3,---, must be the first information on the line. A data list of the form
R=R1,R2,R3,--- can be in any order or location on the line. The data list is identified by
"R=" only; therefore additional symbolic data must be entered between data lists.

A colon ";", which is optional, indicates the end of information on a line. Information
entered to the right of the colon is ignored by the program; therefore, it can b;: used to pro-
vide additional information or comments within the input file.

A "C" in column 1 of any line will cause the line to be ignored by the program. Such

lines can be used as comment lines to identify the data.

Simple arithmetic statements are possible when entering floating point real numbers.
For example, the following type of data can be entered:

D=200+12/3.5-2,4.5*34
The statement 200+ 12/3.5-2 1s evaluated as (((200+12)/3.5)-2).

In this manual, the values given in [?] are the default values of the parameters, i.e. the

values adopted by the program if they are not provided or if the required identifier is missing.

The following sections provide the user with the necessary information to generate the
TOWERI3D.DAT input file.

L.5.1 CONTROL Information

The line of data which follows the CONTROL separator is used to supply general data
required by the program and contains the following information:

V=? D="? M=? T=?

where
V= Number of natural vibration modes to be included. In most cases, 5 modes
are sufficient. _

D= Hysteretic damping coeflicient for tower concrete. A value of 0.10 implies 5%
modal dampfng in all vibration modes of the tower without water on rigid
foundation soil.

M= Number of iterations in computing the natural frequencies and mode shapes.
[20]

T= Tolerance in frequency. [0.001]

This data group must be terminated by a line with colon 7 in the first column.
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L.5.2 TOWER STRUCTURE Information

The line of data which follows the TOWER STRUCTURE separator is used to supply
general data about tower substructure and contains the following information:

N=? E=? M=? A=?
where

N= Number of nodes in the idealization of tower. This must be equal to the max-
imum node number. Extra nodes without any unknown degrees of freedom
attached can be used. However, they should be properly identified.

E= The number of elements in the idealization of tower. The program uses three-

node quadrilateral Timoshenko-beam clement.
M= Number of material types used in tower structure.

A= Number of nodes where extra concentrated or lumped mass is specified. From
the mass density of tower materials, program itself computes the mass of
tower structure. This option is useful in considering the mass of machinery
etc.[ 0]

This data group must be terminated by a line with colon :’ in the first column.
L.5.3 TGEOMETRY Information

The sequence of lines which follow the TGEOMETRY separator define the tower
geometry, and the location of nodes in the finite element idealization of the tower. These

lines contain the following information:

Nid Z=? A=? 1=? K=?

where

Nid= Node identification number to be selected by the user. The node number Nid
must be less than or equal to the total number of nodes specified after the
TOWER scparator.

Z= z-ordinate.

A= Cross-sectional area of the tower at node Nid

[= Moment of inertia of the tower cross-section at node Nid

K= Shape factor for the cross-section to account for shear stress distribution. For

some cross-sections, these factors are given in Table 9.1.

For some special cross-sections (Figure L.3), program can generate the cross-sectional
properties. This option is activated by providing the following information on a line instead

of "A=? 1=? K=7", as mentioned above:
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$=X0,Y0,Xi,Yi,Xc,Yc
For special cross-sections, the section parameters Xo, Yo, Xi, Yi, Xc, and Yc are defined in
Figure L.3.

This sequence of lines must be terminated by a line with colon *:’ in the first column.
L.5.4 TRESTRAINT Information

The sequence of lines which follow the TRESTRAINT separator define the unknown

displacements which exist at the nodes of the structural system of tower. Unless a restraint
is specified at a node, it is assumed that the node has two unknown displacements (one

translation and one rotation). These lines contain the following information:

NI1,N2,Inc R=Ux,Rx

where
Nl= Node number for first node in a series of nodes which have identical displace-
ment specification. |
N2= - Node number for last node in series. [ N1 ]
Inc= Node number increment which is used to define the nodes in the series. [ 1 ]
Ux= Lateral displacement specification = O or 1 or -1
" Rx= Rotation specification = 0 or 1 or -1

A specification of 0 allows the unknown displacement to exist. If the specification Ux
and Rx is set to "1" the displacement and rotation is restrained to zero. The restraint
specification "-1" for translation or rotation for any node, say N-th node, will specify the
equation number of (N-1)th node to that of node N. This option is used to specify two
nodes at the same location of the tower having discontinuity in the geometry at that loca-
tion. '

This data group must be terminated by a line having colon *:’ in the first column.

L.5.5 TMATERIALS Information -

The sequence of lines which follow the TMATERIALS separator define the material
properties of the tower concrete. For each material type, one data line is required. The
number of lines, so specified under this data group must be equal to the number of material
types specified earlier under TOWER separator. These lines contain the following informa-
tion:

Nid E=? G=? w="?

where
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- Nid= Material identification number. This must be less than or equal to the total
number of material types specified earlier under TOWER separator.

E= Elastic modulus of tower concrete.
G= Shear modulus of tower concrete. [E/2.34]
W= Mass density of tower concrete, i.e. unit weight divided by the acceleration

due to gravity.

This sequence of data lines must be terminated by a line having colon ' in the first

colummn.
L.5.6 TELEMENTS Information
‘The sequence of lines which follow TELEMENTS: separator define the connectivity of

three-node, quadrilateral Timoshenko beam elements used to idealize the tower. The
materia]’type of the element is also spectfied under this data group. These lines contain the

following information:
Nid,J1,32,J3 M=? (¢ Tap——
where

Nid= Identification (ID) number for the element. Must be less than or equal to the
total number of clements specified under TOWER separator.

J1,J2,)3= Node numbers defining the connectivity of the element
M= - Material property identification number.

The option to automatically generate element connectivity data is activated by the

addition of the following information on any line:

G=Nad,Nidinc,J linc,J2in¢,] 3inc,Min¢

where

Nad= Number of additional elements to be generated.

Nidinc= Increment of ID number in generated elements.[ 1 ]

Jlinc= Increment of J1 in generated elements. [ 2 ]

J2ine= Increment of J2 in generated elements. [ 2 ]

J3inc= Increment of J3 in generated elements. [ 2 ]

Minc= Increment of material ID number in generated elements. [ 0 ]

This group of data lines must be terminated by a line having colon *’ in the first

column.
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L.5.7 TEXTRA MASS Information

For actual towers, it may be necessary to specify concentrated lumped masses at the
nodes, or distributed mass along the height of the tower, in addition to the element mass
which is automatically calculated by the program. This data is specified after the TEXTRA
MASS separator. This group of data is required only if the number of nodes with extra mass
specified by iidentifier "A=" under TOWER separator is non-zero. If for a node, this data is
not specified, zero is assumed for both concentrated and distributed mass. Each line of this

sequence contains the following information:
NI1,N2,Inc C=? D=7
where

Ni= Node number for first node in a series of nodes which have identical concen-
trated and distributed extra mass.

N2= Node number for last node in series. [ N1 ]

Inc= Node number increment which 18 used to define the nodes in the series. [ 1 ]
C= Concentrated (Lumped) mass at that node. [ 0.0 ]

D= Distributed mass at that node. [ 0.0 ]

This data group must be terminated by a line having colon *:” in the first column.
L.5.8 OUTSIDE WATER DOMAIN Information
The line of data which follows the QUTSIDE WATER DOMAIN separator is used to

supply general data about surrounding (outside) water domain. If this separator is missing,
the program will not include the intercation effects due to surrounding water. Any information

for the surrounding water domain, if provided, will be disregarded in that case.
This line contains the following information:

N=? E=? T=? H=? M=MzNt R=? W=7 B=?

where

N= Number of nodes required in the idealization of water domain surrounding
the tower. No dummy nodes are allowed.

E= Number of elements in the idealization of the fluid domain surrounding the
tower. 20-node isoparametric elements are used for the finite element idealiza-
tion of the surrounding water. i

T= Number of 8-node segments defining the tower-water interface.

H= Number of 8-node segments defining the hypothetical cylindrical surface for

boundary integral procedure.
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Mz= Number of trial functions along the height to be used in the boundary integral
procedure. [ 12 ]

Nt= Number of trial functions along the circumference to be used in the boundary

integral procedure. [ 5]

R= Radius of the hypothetical cylindrical surface. This may be the smallest
radius such that the cylindrical surface contains the tower (Figure 4.5).

W= Mass density of water, i.e. unit weight divided by the acceleration due to grav-
ity.

B= Number of segments in the circumferential direction at the base of hypotheti-

cal cylindrical surface (Figure L.2).
This data group must be terminated by a line with a colon " in the first column.
L.5.9 ONODES Information

The lines which follow the ONQDES separator define the location of the nodes of the
idealized fluid domain surrounding the tower. These lines contain the following informa-

tion:
Nid X=? 'Y=? Z=? I=? G=- R=- C=--

where

Nid= Node identification number to be sclected by the user. The node number Nid
must be less than or equal to the total number of nodes specified after the
OUTSIDE separator. |

X= x-ordinate

Y= y-ordinate

Z= z-ordinate

I= 1 for node on tower-water interface. Need not be specified for other nodes. [ 0

|

The data may be automatically generated using the linear generation option, which can
be activated by the addition of the following information on any line which contains the

information about a nodal point:
G=N{,NLInc
where
Nf= The first node number in the sequence

Nl= The last node number in the sequence
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Inc= Increment used to define generated node numbers. [ 1]
The generated nodes will be at equal interval along a straight line between nodes Nf
and NL

The data may be automatically generated using the radial generation option, which can
be activated by the addition of the following information on any line which contains the

information about a nodal point:

R=Nf Nl Inc,Nc

where

Nf= The first node number in the sequence

Nl= The last node number in the sequence

Inc= Increment used to define generated node numbers. | 1 ]

Nc= The node number for the center of the radial arc. If Ne¢=0, the center of the
radial arc can be specified by adding the following information on the same
line where radial generation is requested:

C=Cx,Cy,Cz
where
Cx= x-ordinate of the center of the radial arc
Cy= y-ordinate of the center of the radial arc
Cz= . z-ordinate of the center of the radial arc

The generated nodes will be at equal interval along a radial arc with the specified center
between nodes Nf and NI. The nodes generated by the radial generation option will be in x-y
plane and will be assigned the value of z-ordinate same as that of the center of the radial arc.

Alternatively, the location of a node not on the tower-water interface may be specified
in terms of two nodes alreédy defined. The program will place this node in the middle of
the specified nodes. This information can be provided in a separate line in the following
form:

Nid M=MI| M2 L=Nad,Nidinc,Mlinc,M2inc I=?

where
Nid= Node identification number to be selected by the user.
Ml= First node number to be used in generation.

M2= Second node number to be used in generation,
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Nad= Number of additional nodes to be generated using similar option.

Nidinc Increment of Nid in generated nodes.

Mlinc= Increment of M1 in generated nodes.

M2inc= Increment of M2 in generated nodes.

I= 1 for node on tower-water interface. Need not be specified for other nodes. [ 0

]

This sequence of lines must be terminated by a line with colon ’:” in the first column.
L.5.10 OELEMENTS Information
The sequence of lines which follow OELEMENTS separator define the connectivity of

twenty-node isoparametric elements used to idealize surrounding water domain. The con-
nectivity data is provided in FORMAT 2014, standard FORTRAN formats. Each element
requires one line of data in terms of twenty node numbers defining the connectivity of the ele-
ment. Since element numbering is not important, the program will assign the element
identification number in the same order in which data is provided. The number of lines for
element connectivity data should be equal to the number of elements specified after OUTSIDE

separator with E= identifier.

This group of data lines must be terminated by a line having colon * in the first

column.
L.5.11 OTOWER-WATER INTERFACE Information

The sequence of lines which follow OTOWER-WATER separator define the connec-
tivity of eight-node segments of the fluid elements in the surrounding water domain on the

tower-water interface. These lines contain the following information:
Nid,J1,J2,J3,)4,75,06,17,18 e I
where

Nid= Identification (ID) number for the segment. Must be less than or equal to the
total number of segments on the tower-water interface specified under QUT-

SIDE separator.
J1 to J8= Node numbers defining the connectivity of the segment.

The option to automatically generate segment connectivity data is activated by the

addition of the following information on any line:
G=Nad,Nidinc,J linc,J2in¢,J 3inc,J4inc,J 5inc,J6inc,J 7inc, ] 8inc

where
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Nad= Number of additional segments to be generated.
Nidinc= Increment of ID number in generated segments.[ 1 ]
Ilinc= Increment of J1 in generated segments. [ 2 ]

J2inc= Increment of J2 in generated segments. [ 2 ]

I3inc= Increment of J3 in generated segments. [ 2 ]

Jdinc= Increment of J4 in generated segments. [ 2 ]

JSinc= Increment of J5 in generated segments, | 1 ]

J6inc= Increment of J6 in generaied segments. [ 2 ]

J7inc= Increment of J7 in generated segments. [ 1]

J8inc= Increment of J8 in generated segments. [ 2 ]

This group of data lines must be terminated by a line having colon ™’ in the first
column.

£.5.12 OHYPOTHETICAL CYLINDER Information
The sequence of lines which follow OHYPOTHETICAL separator define the connec-
tivity of eight-node segments of fluid elements in the outside water domain on the hypothet-
ical cylindrical surface. These lines contain the following infarmation:
Nid,J1,J2,33,J4,15,J6,17,18 G=----
where

Nid= Identification (ID) number for the segment. Must be less than or equal to the
total number of segments on the hypothetical cylindrical surface specified
. under OUTSIDE separator.

J1 10 J8= Node numbers defining the connectivity of the segment.

The option to automatically generate segment connectivity data is activated by the

addition of the following information on any line:

G=Nad,Nidinc,J | inc,JZinc,J3inc,J4inc,j5inc,J6inc,J7inc,18inc

where

Nad= Number of additional segments to be generated.
Niding= Increment of ID number in generated segments.[ | ]
Jlinc= Increment of J1 in generated segments. [ 2 ]

J2inc= Increment of J2 in generated segments. [ 2 ]

I3inc= Increment of I3 in generated segments. [ 2 |
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J4inc= Increment of J4 in generated segments. [ 2 ]
JSinc= Increment of J35 in generated segments. [ 1 ]
Jéinc= Increment of J6 in generated segments. [ 2 ]
Jhne= Increment of J7 in generated segments. [ | ]
J8inc= Increment of J8 in generated segments. [ 2 ]

This group of data lines must be terminated by a line having colon .’ in the first

column.
L.5.13 INSIDE WATER DOMAIN /nformation
The line of data which follows the INSIDE WATER DOMAIN separator is used to

supply general data about inside water domain. If this separator is missing, the program will
not include the intercation effects due to water contained inside the tower. Any information for

the inside water ’dumain, if provided, will be disregarded in that case.
This line contains the following information:

N=? E=? T=" W=?

where

N= Number of nodes required in the idealization of water domain contained
inside the hollow tower. No dummy nodes are allowed.

E= Number of elements in the idealization of the flutd domain contained inside

 the tower. Twenty-node isoparametric elements are used for the finite element

idealization of the inside water.

T= Number of eight-node segmenté defining the tower-water interface.

W= Mass density of water, i.e. unit weight divided by the acceleration due to grav-

ity.
This data group must be terminated by a line with a colon ’." in the first column.
L.5.14 INODES Information
The lines which follow the INODES separator define the location of the nodes of the

idealized fluid domain contained inside the tower. These lines contain the following infor-

mation:
Nid X=? Y=? Z=? I1=? G=-- R=--- (C=-—
“where
Nid= Node 1dentification number to be selected by the user. The node number Nid

must be less than or equal to the total number of nodes specified after the




409

INSIDE separator.

X= x-ordinate
Y= y-ordinate
Z= z-ordinate
I= 1 for node on tower-water interface. Need not be specified for other nodes. [ 0

]
The data may be automatically generated using the linear generation option, which can
be activated by the addition of the following information on any line which contains the

information about a nodal point:

G=NfNlInc
where
Nf= The first node number in the sequence
Nl= The last node number in the sequence
Inc= Increment used to define generated node numbers. | 1 ]

The generated nodes will be at equal interval along a straight line between nodes Nf
and NI

The data may be automatically generated using the radial generation option, which can
be activated by the addition of the following information on any line which contains the

information about a nodal point:

R=Nf,NLInc,N¢

where

Nf= The first node number in the sequence

Nl= The last node number in the sequence

Inc= Increment used to define generated node numbers. [ 1 ]

Nc= The node number for the center of the radial arc. If Nc=0, the center of the

- radial arc can be specified by adding the following information on the same

line where radial generation is requested:
C=Cx,Cy,Cz

where

Cx= x-ordinate of the center of the radial arc

Cy= y-ordinate of the center of the radial arc
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Cz= z-ordinate of the center of the radial arc

The generated nodes will be at equal interval along a radial arc with the specified center
between nodes Nf and NI. The nodes generated by the radial generation option will be in x-y

plane and will be assigned the value of z-ordinate same as that of the center of the radial arc.

Alternatively, the location of a node not on the tower-water interface may be specified
in terms of two nodes already defined. The program will place this node in the middle of

the specified nodes. This information can be provided in a separate line in the following

form:
Nid M=MI[,M2 L=Néd,Nidinc,M linc,M2inc I=?
where
Nid= Node identification number to be selected by the user.
MIl= First node number to be used in generation.
M2= Second node number to be used in generation.
Nad= Number of additional nodes to be generated using similar option.
Nidinc Increment of Nid in generated nodes.
Mlinc= Increment of M1 in generated nodes.
M2inc= Increment of M2 in generated nodes.
I= 1 for node on tower-water interface. Need not be specified for other nodes. [ 0

]

This sequence of lines must be terminated by a line with colon *:” in the first column.
L.5.15 IELEMENTS /nformation

The sequence of lines which follow IELEMENTS separator define the connectivity of
twenty-node isoparametric elements used to idealize inside water domain. The connectivity
data is provided in FORMAT 2014, standard FORTRAN formats. Each element requires one
line of data in terms of twenty node numbers defining the connectivity of the element. Since
element numbering is not important, the program will assign the element identification number
in the same order in which data is provided. The number of lines for element connectivity data
should be equal to the number of elements specified after INSIDE separator with E=
identifier.

This group of data lines must be terminated by a line _having colon ' in the first

column.

L.5.16 ITOWER-WATER INTERFACE [nformation
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The sequence of lines which follow ITOWER-WATER separator define the connectivity
of eight-node segments of the fluid elements in the inside water domain on the tower-water
interface. These lines contain the following information:

Nid,J1,J2,J3,J4,J5,6,J7,J8 G=-e-
where
Nid= Identification (ID) number for the segment. Must be less than or equal to the

total number of segments on the tower-water interface specified under
INSIDE separator.
J1to J8= Node numbers defining the connectivity of the segment.
The option to automatically generate segment connectivity data is activated by the

addition of the following information on any line:

G=Nad,Nidinc,J linc,J2inc,J 3inc,J4inc,J5inc,J6inc,J 7inc,J8inc

where

Nad= Number of additional segments to be generated.
Nidinc= Incremeﬁt of ID number in generated segments.[ 1 ]
Jlinc= Increment of J1 in generated segments. [ 2 ]
J2inc= Increment of J2 in generated segments. [ 2 ]
J3inc= Increment of J3 in generated segments. [ 2 ]
J4inc= Increment of J4 in generated segments. [ 2 ]
J5inc= Increment of J5 in generated segments. [ 1 ]
J6inc= Increment of J6 in generated segments. [ 2 ]
J7inc= Increment of J7 in generated segments. [ 1 ]
J8inc= Increment of J8 in generated segments. [ 2 ]

This group of data lines must be terminated by a line having colon " in the first
column.
L.5.17 FOUNDATION-SOIL SYSTEM Information

The line of data which follows the FOUNDATION-SOIL SYSTEM separator is used to
supply the information about the foundation scil system. If this separator is missing,
foundation-soil interaction effects will not be considered in the analysis. This line contains the
following information:

M=? 1=? R=R1,R2 C=? P=? w=1? D=?

ol
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Mass of the foundation footing below the ground level. [0.0]

Mass moment of inertia of the foundation footing below ground level. [ 0.0 ]
Equivalent radius of the footing in translation.

Equivalent radius of the footing in rocking. [R1]

If the equivalent radius of the footing in translation, R1, is set to 0.0, user must
provide the impedance functions for the foundation-soil system. The program
reads the foundation impedance functions from the file FOUNDIMP.DAT. If
"N’ points are used to define the acceleration time history, including the "quiet
zone", then the impedance functions should be available at the interval of
Aw=27/NA¢f, in which At is the time interval between consecutive data points
1n acceleration time history. A total (N/2+1) lines of data, corresponding to
0, Aw, 24w, ...... , frequencies are required in the file FOUNDIMP.DAT. Each
line of data contains the following four values separated be a ’,” (comma) or a
blank spéce:

KVVR KVVLKMMR,KMMI

where
KVVR= Real part of impedance function K.
KVVI Imaginary part of impedance function K.
KMMR Real part of impedance function K.
KMMI Imaginary part of impedance function Kjy,.
C= Shear wave velocity of foundation-soil.
P= Poisson’s ratio of foundation soil. [0.33]
W= Mass density of foundation soil, i.e. unit weight divided by the
‘acceleration due to gravity.
D= Hysteretic damping factor for foundation soil. [ 0.10 ]
This data group must be terminated by a line with colon ’ in the first
column.

L.5.18 GROUND MOTION I[nformation

The sequence of lines which follow the GROUND MOTION separator pro-

vide information about the earthquake acceleration data. The first line contains the

following information:
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where

Nx= The number of data points in the ground motion along x-axis. This
number must be a multiple of 8.

T= The uniform time interval between consecutive data points in the
ground motion record.

S= Scale factor for the ground motion. The record may be normalized
by g, the acceleration due to gravity, so S= can be specified to bring
ground motion to acceleration units. o

M= The control parameter to select the number of points (=2#) to be

used in the discrete Fast Fourier Transform (DFFT) computations.
The selected value of M should be large enough to provide sufficient
’quiet zone’ to ensure accurate DFFT computations.

After this line, the ground motion data is provided. EIGHT data points are pro-
vided in each line in FORMAT 8F9.5, standard FORTRAN formats. Nx/8 lines are
required for the ground motion along x-axis.

This data group must be terminated by a line with colon " in the first
column.
L.5.19 OUTPUT CONTROL Information

The FOUR lines which follow the OQUTPUT CONTROL separator identify
the nodes where displacement, shear force and bending moment response is
required. The FIRST line of this data group contains the information about the
nodes where the maximum displacement over the duration of the earthquake is to
be determined. This data is presented in the following form:

D=Nt L=L1,L2,....... ,LNt N=Nf,Ninc
where

Nt= Total number of nodes where maximum lateral displacement should

be computed.

The list of nodes can be specified either by N= or by L=. If the response is
required at less than twenty nodes, and they are not regularly distributed in
numbers, option L= can be used to just list those nodes. The option N= should be
used if the nodes are regularly distributed, or the response at all the nodes is
required. The program looks for the L= option only if it does not find the N=
option. So, both the options can not be used simultaneously. In option N=, the
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terms have the following meaning:
Nf= The first node number where information is requested.

Ninc= The increment in the sequence of nodes. The last node number is
automatically determined by the program using Nt, the total number
of nodes where information is requested.

The SECOND line of this data group contains the information about the
nodes where the maximum shear force is to be determined. This data 1s presented
in the following form:

S=Nt L=1L112,..... LNt N=Nf Ninc
where

Nt= Total number of nodes where maximum shear force should be com-

puted.
All other parameters carry the same meaning as in the FIRST line.

The THIRD line of this data group contains the information about the nodes
where the maximum bending moment is to be determined. This data is presented
in the following form:

M=Nt L=L1,L2........ LNt N=Nf,Ninc
where

Nt= Total number of nodes where maximum bending moment.should be

computed.
All other parameters carry the same meaning as in the FIRST line.

The FOURTH line of this data group contains the information about the
nodes where the lateral displacement history is to be included in the output. This
data is presented in the following form:

H=Nt L=L1,L2, ... LNt N=Nf,Ninc
where

Nt= Total number of nodes where displacement history need be com-
puted.

All other parameters carry the same meaning as in the FIRST line.

This data group must be terminated by a line with colon ' in the first
column.
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L.6 Numerical Example

For the convenience of the user, the input data file TOWER3D.DAT used for
analysis of a non-circular tapered tower is presented. Figures L.4 to L.9 provide
the information about the mathematical model and the numbering schemes used in
the earthquake response analysis of this tower. The output files, mentioned in Fig-
ure L.1, for this numerical example are also provided on the diskette with the

source codes.
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Figure L.6 Finite Element System on Tower-Outside Water Interface
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Figure L.9 Finite Element System on Tower-Inside Water Interface
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C......EXAMPLE DATA FOR TOWER3D SERIES

CONTROL
v=53 D=0.10"

M=20 T=0.001 :

TOWER STRUCTURE
N=17 E=8 M=1 A=0 :

TGEOMETRY
1 2=0,
2 2= 5.00
3 Z2=10.00
4 2=15.00
5 - 2=20.00
6
7
8

2=25.00

2=30.00
2=35.00
9 2=40.00
10 2=45.00
11 2=50.00
12 -2=55.00
13 2=60.00
14  2-65.00
15  2=70.00
16 Z=75.00
17 2-80.00
TRESTRAINTS
1 m-=l,1
TELEMENTS
1,1,2,3 m=1

TMATERIALS
1 E=648000.

QUTSIDE WATER

$=22.5,12.5,20,0,10.0,10.0,0.0

A=259.6902 T=2B470.3672 K=0.7340

A=243.2062 I=24970.7344 K=0.7340

A=227.2627 .I=21804,1055 K=0.7340

A=211.8596 [=18948.6563 K=0.7340

RA=196.9970 I-16383.2988 K=0.7340

A=162.6749 TI-=14087,6B65 K=0.7340 .

A-168.8932 I=12042.2139 K=0.7340

A=155.6520 1I=10228.0127 K=0.7340

A=142,9512 I=8626.9570 K=0,7340

A=130.7909 I=7221.6602 K=0.7340

A=119.1710 I=5995.4727 K=0.7340

A=108.0916 TI-4932.4907 K=0,7340

A=97.5527 TI=4017.5444 K=0.7340

A=87.5542 I=3236.2073 K=0.7340

A=78.0962 TI=2574.7910 X=0.7340
5=11.25,6.25,10.0,5.0,5.0,0.0

G=1,1,2,2,2,0

G=276923. W=.004817

DOMAIN

N=645 FE-9& T=48 H=48 M=12,5 R=30.0 W=0.001933 B=6

CONODES

1 X=22.5
9 X=1Q.0
13 X=0.0
21 X=26.25
31 ¥=5.0
33 Xx=0.0
41 X=30.0
23 X=0.0

14 M=1,21 1I=€,1,2,2

¥=0. 2=, Ial

¥=12.5 2=0, TI-1 R-1,9,1 €=10.0,0.0,0.0
¥=12.5 2=0.0 I=1 G=9,13,1

¥=0.0 2=0,0

Y-21.25 2=0.0 R=21,31,1 €=0.0,0.0,0.0
Y=21.25 2z=0.0 G=31,33,1

Y=0.0 2=0.0

Y=30.0 2Z=0.0 R=41,53,1 ¢€=0,0,0.0,0.0

34 M-21,11 1-6,1,2,2

593 X=11.25

601 X=5.0
205 X=0.0
613 X=20.625
623 X=2.5
625 X=0.0
633 X=30.0
645 X=0.0

606 M=593,61
626  M=613,63

1 X=22.5
1 X=22.5
1 X=22.5
1 X=22.5
1 X=22.9

Y¥=0. 2=80. I=1
Y=6.25 2=80. -1
Y=6.25 Z2=80.0 I=1
¥=0.0 Z=80.0
Y=18.125 Z=80.0 R=613,623,1 C=0.0,0.0,80.0
¥=18.125 2=50.0 G=623,625,1
¥=0.0 Z=80.0
Y=30.0 2=80.0 R=633,649,1 c=0.0,0.0,80.0
3 L=6,1,2,2
3 L=6,1,2,2
¥=0.0 Z2=0.0 I
Y=0.0 Z2=0.0 T
¥Y=0.0 Z2=0.0 I
I
I

R=593,601,1 C€=5.0,0.0,80.0
G=601, 605,1

1 6=1,593,74
1 G-2,59%4,74
=1 G=3,595,74
Y=0.0 2=0.0 I-1
¥=0.0 2=0.0 1

G=4,596, 74
G=5,597, 74

424

X=22.3
X=22.5
X=22.5
X=22.5
X=22.5
X=22.5

X=22.5

X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
%=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=3G.0
X=30.0
X=30.0
X=30.0
X=30,0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
X=30.0
%x=30,0
M=1,75
M=21, 95
M=41,115
M=75,149
M=95,169
M=115,189
M=149,223
M=169, 243
M=189, 263
M=223,297
M=243,317
M=263,337
M=297,371
M=317,391
M=337,411
M=371, 445
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I=1
I=1
I=1
I=1
I=1
I=1
I=1
I=1

G=14,

6=6,598,74

¢=7, 599,74
=8, 600, 74
G=9, 601, 74
G=10, 602,74
G-11,603,74
G=12,604,74
G=13, 605,74
606, 74

G=15, 607, T4
G=16,608, 74
G=17, 609,74
G-18, 610, 1
G=19, 611,74

G=20,
G=21,

612,74
613,74

G=22,614,74
G=23, 615, 74

G=24,
G=25,

616, 74
617,74

G=26, 618, T4
G=27, 619, 74
G=28,620, 74
G=29, 621, 74
G=30,622, 74

G=31,

623,74

G=32,624,74
G=33, 625, 74

G=34,

626,74

-G=35,627,74
G=36, 628, 74
G=37,629, 74
G=38, 630, 74
c=39, 631, 74
G=40, 632, 74

c=41,

633,74

G=42,634,74
G=43, 635,74

G=44,

636, 74

G=4%,637,74
G=46, 638, 74
G=47, 639, 74
G=-48, 640, 74
G=49, 641, 74
G=50, 642, 74

G=51,

€43, 74

G=52, 644, 74
G=53, 645, 74

I=1

I=1

44
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M=391, 465
M=411, 485
M=445,519
M=465,539
M=485, 559
M=519, 593
M=539, 613
M=559, 633

OELEMENT

307

21
23
25

267
269
271
273
317
319
321
323
325
327

23
25

247
249
251
253
235
265
267
269
27
273
275
319
321
323
325
327
320
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247
249
251
253
297
299
nl
303
305
307
317
319
321
323
325
327
37
373
3758
an
379
381
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.~ e N o ww

MNNNNMNRDRNN
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267
269
271
273
317
319
321
323
325
327
337
339
341
343
345

347,

391
393
395
397
399
401

MR MNN NN N

97

101
103

107
117
119
121
123
125
127
171
173
175
177
179
isl
191
193
1a5
197
199
201
245
247
249
251
253
255
265
267
269
271
273
275
319
321
323
325
327
329
339
341
343
345
347
349
393
395
397
349
401
403

ek
305
307
3109
319
321
323
325
327
329
373
a7s
77
379
381
383

241
256
257
258
259
260
261
310
311
312
313
314
als

172
174
176
178
180
120
192
194
196
198
200
244
246
248
250
252
254
264
266
268
270
272
274
318
320
322
324
326
328

239
240
241
242
257
258
259
260
261
262
311
312
313
314
315
316

308

332
333
334
335
384
385
3ge
387
388
389

96

o8
100
102
104
106
116
118
120
122
124
126
170
172
174
17e
178
180
190
192
194
196
198
200
244
246
248
250
252
254
264
266
268
270
272
274
318
320
322
324
326
328
338
349
342
344
346
3qe
392
394
396
398
400
402

188
237
238
239
240
241
242
257
258
259
260
261
262
311
312
313
314
315
316
331
332
333
334
335
336
ELE)
386
387
k-1
89
390

322
324
326
328
372
374
376
378
380
a2

281
283
284
285
286
287
288
330
351
352
353
354
355

147
209
210
211
212
213
214
21¢
217
218
219
220
221
283
284
285
286
287
288
290
291
292
293
234
295
3357
58
339
360
361
382

293
294
295
296
3se
as9
3ec
361
3e2
363

282
284
283
286
287
288
289
51
352
353
354
355
356

317 337 339 319 391 411 413 393 330
319 339 341 321 393 413 415 395 1331
321 341 343 323 395 415 417 397 332
323 343 345 325 397 417 419 399 333
325 345 347 327 399 419 421 401 334
327 347 349 329 401 421 423 403 335
371 391 393 373 445 465 467 447 384
373 393 395 375 447 467 469 449 385
375 395 397 377 449 469 471 451 386
377 397 399 379 451 471 473 453 387
3179 399 401 381 453 473 475 455 288
381 401 403 383 455 475 477 457 389
391 411 413 393 465 485 487 467 404
393 413 415 395 467 4B7 489 469 405
395 415 417 397 469 489 491 471 406
397 417 419 399 471 491 493 473 407
399 419 421 401 473 493 495 475 408
401 421 423 403 475 495 497 477 409
445 465 467 447 519 539 541 521 458
447 467 469 449 521 541 543 523 459
449 469 471 451 523 543 545 525 460
451 471 473 453 525 545 547 527 461
453 473 475 455 527 547 549 529 462
455 475 477 457 529 549 551 531 463
465 485 487 467 539 559 551 541 478
467 487 489 469 541 561 563 543 479
469 489 491 471 543 563 565 545 480
471 491 493 473 545 565 567 547 481
473 493 495 475 547 567 569 549 482
475 495 497 477 549 369 571 551 483
519 539 S41 521 593 613 615 595 532
521 541 543 523 595 615 617 597 533
523 543 545 525 597 617 619 599 534
525 545 547 527 599 619 621 601 535
527 547 549 529 601 621 623 603 536
529 549 551 531 603 623 625 605 537
539 559 561 541 613 633 635 615 552
S41 561 563 543 615 635 637 617 553
543 563 565 545 617 637 63% 619 554
545 565 S67 547 619 639 641 621 555
547 567 569 549 621 641 643 623 556
549 569 571 551 623 643 645 625 557
OTOWER-WATER INTERFACE
1,1,3,77,75,2,55,76,54 6=5,1,2,2,
7,75,77,151,149,76,129,150,128
13,149,151, 225,223,150, 203, 224, 202
19, 223,225, 299, 297, 224,277, 298, 276
25,297,299,373,371,298, 351,372, 350
31,371,373, 447, 445,372,425, 446, 424
37,445,447,521,519, 446, 199,520, 498
43,519,521,5%5,593,520, 573, 594, 572
OHYPOTHETICAL CYLINDRICAL SURFACE
1,41,43,117,115,42, 69,116, 68
7,115,117,191,189,116,143,190,142
13,189,191, 265,263,190, 217,264, 216
19, 263, 265,339, 337, 264, 291, 338, 290
25,337,339,413, 411,338, 365, 412, 364
31,411,413,487,485,412, 439, 486, 438
37, 485,487,561, 559, 486,513, 560, 512
43,559,561, 635, 633, 560,587, 634, 586

INSIDE WATER DOMAIN

338
340
342
344
346
348
392
394
396
398
400
402
q12
414
116
4189
420
422
466
468
470
472
474
176
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408
450
492
494
196
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260
362
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211
513
514
515
516
217
518
o280
581
582
83
584
385
587
588
289
530
591
592

358
359
360
361
362
3Jeld
425
426
427
428
429
430
432
433
434
435
436
437
499
500
201
502
503
204
506
507
508

509 -

510
511
273
574
575
576
577
578
580
581
o082
583
584
585

1X44



N=689 E=112

INGDES !

53  X=10.
1 X=20.0
9 X=10.
13 x=0.
21 X=17.%
25 X=16.0
23 X=10.
33 Xs=0,
14 M=21,1
42  X=13.5
40  X=14.0
44 X=10.
48  Xx=0,0

4 M=40,21
36 M=42,27
57  X=0.

4% M=53,40
50 M=53,44

€85 X=5.
633 X=10.0
641 X=5.
645 X=0.
653 X=8.75
657 X=8.0
661 X=5.
665 X=0,

T=48 W=0.001939

Y=0. Z=0.
Y=0. 2=0.
¥Y=10. Z2=0.
¥=10. 2=0.
¥=0. 2=0.

Y=6.0 2=0,
Y=7.5 2=0.
Y=7.5 2=0,

L=6,1,2,2
Y=31.5 2=0.

- Y=0, 2=0,
Y=4.0  2=0.

Y=4.0- 2=0.

1-1,1,2,2

L=3,1,2,2

¥=0, 2=0.

L=2,1,2,2

Y=0. z=80,
Y=0, z=80.
Y-5, 2=80.
¥=5,  Z=80.
¥=0. 2=80.

¥=3.0 Z=80,.
¥=3.75 2=80.

¥=3.75 Z=80.

646  M=653,633 L=6,1,2,2

674 X=6,75

672 X=7.0
€676 X=5.0
680 X=0.0

Y=1.75% 2=80.

¥=0. Z=80.
Y=2.0 2=80,
Y=2.0 2=80.

666 M=672,653 L=1,1,2,2
668 M~674,659 1-3,1,2,2

689 Xx=0,

¥=0. Z=80.

681  M=685,672
682 M=68B5,676. L=2,1,2,2

1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
1 X=20.0
21 X=17.3
21 X=17.5
21 X=17.5
21 X=17.5%
21 X=17.5
21 X=17.5
21 X=17.5
21 X=17.5
21 X=17.5
21 X=17.5
21 X=17.5
21 X=17.5

Y=0. =0,
Y=0, Z2=0.
¥=0. Z=0.
Y=0. Z=0.
¥=0. 2=0,
Y=0. 2=0,
Y=0. 2=0.
Y=0, 2=0.
Y=0. Z=0.
¥=0. 2=0.
Y=0. 2=0,
Y=0. Z=0.
Y=0. 2=0,
Y=0. Z=0 .
Y=0. 2=0.
Y=0. 2=0,
Y=0. 2=0.
Y=0. Z2=0,
Y=0. 2=0,
Y=0. z=0,
¥=0. 2=0.
Y=0. 2=0.
Y=0. 2=0.
Y=0. 2=0.
¥=0, =0,

1=1
I=1 R=1,9,1,53
I=1 G=9,13,1

G=21,25,1
G=25,29,1
G=29,33,1

6=40,42,1
G=42,44,1
G=44, 48,1

6=53,57,1

I=1

I=1 R-633,641,1, 685
I=1 G=641, 645,1

G=653,657,1
G=657, 661,1
G-661, 665,1

G=672,674,1
G=674,676,1
G=676,680,1

G=685, 689, 1

6=1,633,79
G-2,634,79
G=3,635,79
C=4,636,79
6=5,637,79
G=6,638,79
G=7,639,79
G=8,640,79
G=9,641,79
G=10, 642,79
6-11, 643,79
G=12, 644,79
6-13, 645,79
G=14,646,79
G=15,647,79
C-~16,648,79
G=17,649,79

G-18, 650,79
G=19,651,79
6=20,652,79
G=21,653,79
G-22,654,79
G=23,655,79
C-24,656,79
G=25,657,79

I T |
P e e

HoiH HHHH HH HHH A
[

H
]
[y

3983
453
460
467
472
532
539
546
551
611
618
625
630

M=21,100
M=40,119

M=53,132

M=80,159

M=100,179
M=119,198
M=132, 211
M=159, 238
M=179, 258
M=198, 277
M=211, 290
M=238,317
M=258, 337
M=277, 356
M=290,369
M=317, 396
M=337, 416
M=356,435
M=3639, 448
M=396, 475
M=416,435
M=435, 514
M=448,527
M=475, 554
M=495, 574
M=514,593
M=527,606
M~554, 633
M=574, 653
M=593, 672
M=606, 685

Y=0. z=0.
¥=0. z=0.
¥=0. 2=0.
Y=0. 2=0.
¥=0. z=0.
Y=0. 2=0,
¥=0. z=0,
¥=0. z=0.
¥=0. 2=0,
Y=0. 2=0.
Y=0. z=0.
Y-0. 2=0.
Y=0. z=0.
¥=0. z=0,
Y=0. 2=0,
¥=0. z=0,
¥-0. 2=0.
¥=0. Z=0.
Y=0. 2=0,
Y=0. 2=0,
Y=0, z=0,
Y-0. 2=0.
¥=0. 2=0.
Y=0. . 2=0,
¥=0. 2=0.
Y=0. z=0.
Y=0. 2=0.
Y=0. z=0.
¥=0. 2=0,
Y=0. 2=0,
¥=0. 2=0.
Y=0. 2=0.
L=6,1,2,2
L=6,1,2,2
L=-4,1,2,2
L=2,1,2,2
L=6,1,2,2
L=6,1,2,2
L-4,1,2,2
L=2,1,2,2
L=6,1,2,2
1=6,1,2,2
1-4,1,2,2
L=2,1,2,2
1=6,1,2,2
L=6,1,2,2
L=4,1,2,2
1=2,1,2,2
-6,1,2,2
1=6,1,2,2
L=4,1,2,2
1-2,1,2,2
L-6,1,2,2
L=6,1,2,2
L=4,1,2,2
L=2,1,2,2
1=6,1,2,2
L=6,1,2,2
1L-4,1,2,2
1=2,1,2,2
L=6,1,2,2
L=6,1,2,2
L=4,1,2,2
L=2,1,2,2

6=26,658,79
G=27,659,19
G=28,660,79
G=29,661,79
G=30,662,79
G=31,663,79
6=132,664,79
G=33,665,79
G=34,666,79
G=35,667,79
G=36,668,79
€-37,669,79
G=38,670,79
G=39,671,79
G=40,672,79
G=41,673,79
G=42,674,79
G=43,675,79
G=44,676,79
G=45,677,79
G=46,678,79
G=47,679,79
G=48, 680,79
G=49,681,79
G=50, 682,79
G=51,683,79
6=52,684,79
G=53,685,79
G=54,686,79
G=55,687,79
G=56,668,79
6=57, 689,79
I=1

I=1

I=1

I=1

I=1

1444




248
258
260
264
266
268
279
281
283
317
319
321
323
325
327

198
200
200
202
204
198
211
213
258
260
262
264
266
268
277
279
279
281
283
2717
290
292
337
339
341
343
345
347

204
206
211
213
215
260
262
2614
266
268
270
279
264
281
283
285
290
292
294
339
341
343
345
347
349

163
165
167
169
171
181
183
187
189
191
202
204
206
240
242
244
246
248
250
260
262
266
268
270
281
283
285
319
321
23
325
327
329

281
283
317
319
321
323
325
327
337
339
343
345
347
358
360
362
396
39
400
402
404
406

104
i06
108
110
119
121
121
123
125
119
132
134
179
lal
183
185
187
189
198
200
2Q0
202
204
198
211
213
258
260
262
264
266
268
277
279
279
281
283
277
290
292
337
339
341
343
345
347
56
358
ELT:
360
3e2
356
369
371
416
414
420
422
424
426

106
108
110
112
121
106
123
125
127
132
134
136
181
183
185
187
189
191
200
185
202
204
206
211
213
215
260
262
264
266
268
270
279
2614
281
283
285
290
292
294
339
341
343
345
347
349
358
343
360
362
364
kI
371
373
418
120
422
424
426
128

240
242
244
246
248
250
260
262
266

268

270
281
283
285
319
321
323
325
327
329
339
341
345
347
349
380
362
364
398
400
402
404
406
408

177
192
193
194
195
19¢
199
208
208
231
252
253
254
255
236
271
272
273
274
2732
274
287
288
330
331
a3z
333
334
335

180
182
184
186
le8
190
199
194
201
203
205
207
212
214
259
261
263
265
267
269
278
273
280
282
284
286
291
293
338
3410
342
344
3%
348

256
257
272
263
274
275
276
287
288
289
331
332
333
334
335
336

247
249
259
261
265
267
269
280
282
284
318
320
322
324
26
328

251
252
253
254
255
256
271
272
273
274
275
274
287
288
330
331
132
333
334
335
350
351
352
353
354
357
166
367
409
410
411
412
413
414

105
107
109
111
120
115
122
124
126
128
133
135
i80
1g2
184
186
les
190
199
194
201
203
205
207
212
214
259
261
263
265
267
269
278
273
280
282
284
286
291
293
338
340
342
344
346
348
337
352
359
3ol
363
3635
370
372
417
419
421
423
425
427

239
241
243
245
247

259
261
265
207
269
280
282
284
3lis
320
322
324
326
328
338
340
344
346
348
359
sl
363
397
399
401
403
405
407

216
217
218

.219

220
221
223
224
228
227
228
231
232
233
295
29¢
297
299
299
300
302
03
303
306
307
310
311
3lz2
374
375
37¢
377
378
379

306
307
309
310
310
a1l
312
309
314
315
381
382
383
384

8o

307
aos
310
305
311
312
313
314
318
3le
382
383
384
385
386
g7

217
218
219
220
221
222
224
225
227
228
229
232
233
234
296
297
298
299
300
301
303
104
306
307
308
311
312
L3
175
316
177
178
379
380

347

5935
597
299

441
435
448
450
495
497
499
501
503
5035
514
316
516
518
=220
514
527
529
574
276
578
B2:14]
582
584
293
598
295
597
599
593
606
608

448
130
452
497
499
501
203
505
507
516
501
518
520
S22
527
529
531
576
578
S80
582
584
586
295
580
597
599
601
606
€08
610

ITOWER-WATER
1,1,3,82,80,2,59,681,58
7,80,862,161,159,861,138,160,137
13,159,161, 240, 238, 160, 217, 2383, 216
19,238, 240,319,317, 239, 296, 318, 295
25,317,319, 398,396, 318, 375, 397, 374
31,396,398,477,475,397, 454, 476, 453
31,475,477,556,554, 476,533,555, 532
43,554,556, 635, 633, 555, 612, 634, 611

339
341
345
347
349
360
362
364
398
400
402
404
106
408
418
420
424
426
428
439
441
443
477
479
4181
483
485
187
497
499
503
505
207
518
520
522
556
228
560
562
564
566
376
578
582
584
586
297
599
601

116
418
422
424
126
437
439
441
475
477
479
481
183
485
485
497
501
203
505
516
518
520
954
556
558
560
562
264
574
576
S80
582
Sed
58S
597
599
633
€35
637
639
641
643
653
655
659
661
663
674
€76
678

435
437
437
439
441
435
448
420
495
497
499
501
203
505
514
516
516
o118
520
514
527
529
574
576
574
580
582
o84
593
595
595
597
599
593
606
608
653
655
657
659
661
663
672
674
674
676
678
672
685
687

INTERFACE

FOUNDATION-50TL SYSTEM
R=29.5,29.9

M=0.

I=

i

0.

437

422
438
441
443
448
450
452
497
499
501
503
505
507
516
S01
51e
520
522
527
529
531
576
576
580
SB2
584
SB6
595
580
597
599
001
€06
608
610
655
657
659
661
663
665
674
659
676
678
660
685
€87
689

C=1000.

418

420
424
426
428
439
441
443
477
479
481
483
485
487
497
499
503
509
507
518
520
522
556
558
560
562
564
566
576
578
582
584
586
597
599
601
635
837
639
641
643
645
6835
637
661
663
665
676
678
680

350
351
352
353
354
357
366
67
409
410
4111
412
413
414
429
430
431
432
433
436
445
446
488
489
490
491
492
493
508
509
510
511
ol2
515
524
525
567
568
569
570
571
572
587
Ses
589
590
591
594
603
604

P=1./3.

357
352
358
36l
363

370
372
417
419
421
423

425

427
436
431
438
440
442
444
449
451
496
498
500
302
504
506
215
510
o217
519
521
323
528
230
575
577
579
581
583
5895
594
289
596
598
600
602
607
609

351
342
353
354
355

367
368
410
411
412
413
414
415
430
421
432
433
434
445
446
447
489
490
491
492
493
494
509
500
511
512
513
524
528
526
568
569
570
571
372
573
588
579
590
591
582
603
604
605

417
419
423
425
427
438
440
442
176
178
480
482
4984
186
496
498
202
504
506
o517
519
521
555
557
559
561
563
565
375
377
581
583
2835
596

600

W=0.005127

429 43¢
430 431
431 438
432 440
433 a42
436 444
445 449
446 451
488 496
489 498
490 500
491 502
492 504
1493 506
508 515
509 510
510 517
511 519
512 521
515 523
524 528
525 530
567 575
568 577
569 579
570 581
571 583
572 585
587 594
588 589
589 596
590 598
391 600
594 602
603 607
604 609
646 654
647 €56
648 658
649 660
650 662
651- 664
666 673
667 668
668 675
663 677
670 €79
671 681
682 686
683 688

430
421
432
433
434
445
146

650
631
€32
€67
658
669
670
671
€82
683
684

679

D=0.10

381
382
384
385
386
389
390
391
453
454
455
456
457
158
460
161
163
464
465
168
169
170
532
533
534
535
536
537
539
540
542
543
544
547
548
549
611
612
613
614
615
616
618
619
621
622
623
626
627
628

388
389
389
390
391

389
384
390
351
392
353
394

382
383
385
386
387
390
391
392
454
455
456
457
458
459
46l
462
464
465
466
469
470
171
533
534
535
536
537
538
540
541
543
244
545
548
549
550
6l2
613
614
615
616
617
619
620
622
623
624
627
628
629

Scr



GROUND MOTION

.00530
-.00867
.01163
-.00112
-.00408
.01010
.02325
.00408
-.01530
-.01836
.00163
.00316
-.00388
.01703
.01418
=-.01275
.01204
-.01856
-.00796
-.03284
-.04977
-.01479
.03569
.06946
-.05640
-.02274
.03733
.03417
.12352
-.0145%
-.03182
.02815
-.02907
.01928
.02774
-.0785%4
-.01520
=-.02172
-.00673
-.00214
~.05253
-.13698
.05875
.05620
-.01163
.03509
-.03866
.06915
.07425
-.03692
.08496
=-.00357
.04437
~.08976
.03019
.02152
-10658
-.10495
.07956
-.04559

N=1000 M=11 T=0.02 S=32.18
C...ve....GROUND MOTION COMPONENET ALONG X-AXIS;
-.00632 -,00194 ,00408  ,01010
.00122 00541  .00398 -.00306
-.00031 =-,00020 .00408 .01071
.00214  ,00194 -.00398 -,00755
—.01153 -.00479  _00500 .00102
-.00663 =-.01091 .00326 .01724
,00459 -_00286  .00357  .01459
-.00133 -.00867 ~-.00683 -.00479
-.00010 -.00224 -.00867 -.01132
-.00031  .00826  .00428 -.00785
.00867  .00755  .0089%8  .00979
.01714  ,01989  ,01377  .00510
.00632 -.00694 -.01142 -.00B&7
-.02652 -.00918 .01632 .02234
.00428 -.01061 -,02387 -,008398
.01153  .00734 ~-.00806 -.01346
.02295  ,01989  .02591  .02366
-.01459 ~.02081 -.0199%9 -.01693
-.00500 -.00530 -.00408 -.00928
-.02223 -_03631 -.03264 -, 02448
-.07221 -,06640 =-.05457 -.05263
-.04906 -,03539 -,02601 -.01724
-.04406 -.02407 .00337  .03274
.14932 (17941 .16391  .11954
-.06232 -.05640 ~-.04600 -.04773
-.01652 .00469 .00469 -.00877
.01367  _0507% 08506 .06885
.06650  .07639 .07068  .06303
~.04498 -.01663  .03570  .09%394
~.03774 -_.05406 -.05651 -.03733
.06956  .04651  .02142  .00051
-.05100 -,00979 .03141  .03998
-.01877 =-.04049 =~.05263 -.04263
-.05753 ~,06823 -.04641 -.015320
.11423  .10475  _0B965  .06324
-.04192 -.03743 -.04814 -.06273
_00714  .04314  .03050 .00194
.09057  .06405  .02988 -.01193
.04192  ,03682  ,02336  ,00806
.02937  .03294 .01652 -.00694
.07323  .06324  ,03243 -.0079¢
-.14616 -.14116 =-.13657 -.13678
-.00530  .03029 .06823  .0847¢
-.00877 .00887  ,02846 04916
-.03672 -.05997 -.05202 -.03325
.07619  ,10057  ,10301 .07078
.00092 -.01581 ~-.03957 ~_05926
-.03886 -.01387 .01193  .04223
.10138  .09853  .10342  _10414
-.09067 =~.09700 -.04172 -.01581
-.03713 -.02060 .02234 .06783
~.07782 -.0B02Z7 -.04386 =-.00745
-.01397 -.02234 -.00755 .01734
-.03723 -.05345 -.07313 -.08945
.06364  ,05436  .04223  .03060
.03182  .05508  .06324  .0439%6
-.01459  .00265 .02927  .06354
.00928 -.03131 -.07191 ~-.11148
.01275  .04926  .09241  .10301
.00571 =-.00204 -.01550 =-.02988
-.02162 -,02733 -,01561  ,01439

.04306

TRFT S569E
.00031 -.00428
.00867 -.00612
00663 .00449
.00592 .00286
.00255 .00592
.00490 -.00663
.01816 .01867
.00561 =~.00143
-.01877 -.01601
.01163 .000832
.00530 =-.0Q0082
.01193 .02387
.00224 .00235
.02142 .02478
.03692 .03090
.00775 .00683
.00102 -.00867
.01785 ~-.00B898
-.00214 -00347
.04926 -.05783
.05079 =~-.05283
.02611 -.04029
.Q07588 .09424
.01877 -.,03509
.06593 -_.05742
.04029 =~-.04671
.00153 -.00153
.00326 =-.03233
.08384 .03417
.01112 .03488
.09639 -.,11342
.01122 .00510
.01826 -.02764
.05314 .06843
-00847 -.04396
.09302 -.07405
.00755 .03€682
.00459 .02438
.01540 -,01499
.03427 07619
.09665 -~.13963
.11117 -.07762
.02937 -.00949
.03692 .01438
.01071 .03243
.00683 -,03264
.01683 -.02254
.10006 .11250
.03641 -—_.00581
.06946 -.08353
.05671 .01377
.01499 -.,01397
.03066 .00938
.06028 -.01469
.02376 .01387
.00418 - .02886
.11423  .08496
.06568 -.03396
.05161 .02570
.05742 -.04835
.07721 .06762

-.00286
-.00082
.00235
.01040
.00734
.00367
.01255
-.00408
-.00806
.01071
.00683
.02417
-.01612
.01877
.01601
.02264
-.01142
-.00153
-.00510
-.06211
-.05722
~-.04590
.12056
-.06528
-.03774
-.02142
.03060
-.04569
-.02203
.06211
-.08853
.00061
-.04110
.11087
-.05069
-.03560
-07313
.03284
.00052
*.09577
-.14932
-.04172
-.02254
-.01173
.05508
-.01285
-.03088
.10873
-.04559
-.04549
-.03060
-.01010
-.0l846
-03784
.0l400
-.03274
.05008

-.01795-

.0l469
~.03254
.05253

.04243
.04631
.00000
.03488
.ool22
.D1622
.03131
.02264
06364
.03458
.02285
.02132
.03478
.05528
.02682
.01295
.00826
04294
.D1642
.02652
.03417
.03009

-.08292

.05477
02203
.00520
.01091
.02835
.04141
.00306
.03386
-04631
.00357
01071
.01938
.D2050
.04100
.00418
.03917
.01938
.D4B96
.01193
.DD949
.01071
.01397
.01581
.00953
.00428
.01316
.02560
03927
.00418
.01652
.01234
.02223
.01928
.05202
00173
.03315
00633
.03427
.00479
-01336

-.00296

.03182
-.02876
-.01000

. 00683

.01469

.02458

.02458

.03060
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.0151¢
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-.01703
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.01795
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-.03519
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.00836

.03447
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.95375
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.03478
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-.00938

.0023595
-.02223
-.02009
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-.06987
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.01081
-.0387¢
-.02591
-.04590
.02580
-.02774
.01285
.04835
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.009C8
.00643
.01224
-.014c8
-.02886¢
.00439
-.01214
-.0104¢
.04223
-.07374
.05814
.00122
-.03366
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.06477
-.02009
.00082
-.00694
.02591
-.02009
.01377
-.03182
-.01510
-01469
.06222
-.01805
-.02744
.01958
.00173
.03201
-.0le42
-.00643
.01091
.00418
.00265
-.00235
-.02764
.02570
.00510
-.00286
-.01418
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-.06028
-.02703
-.00479
-.00938
.054086
.02580
.00337
-.D1601
-.06650
.04019
-D0000
-.05273
.02050
.02376
-.04835
-.01673
-.038651
03641
-.02672
.02917
.02784
-.06966
-.00867
=-.00571
.01501
-.00826
-.06640
01632
-.01805
.00979
.05447
~.07109
.05916
-.00867
-.05050
-.00367
07109
-.01448
-.01561
-.00061
.02815
-.029438
.02132
-.02937
-.00887
.02070
.05895
-.02213
-.03162
.00357
.01244
.03437
-.01387
.00224
.01958
-.01703
-.01030
.01805
-.02295
.02244
.00255
.00224
-.00763
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.04518
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-.05875
01244
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-.02682
.04549
-.02591
03886
-.00245
-.03662
-.02540
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.03264
-.00571
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.01030
-.02529
.03162
.05559
-.06069
.05090
-.01734
~.04121
-.01234
.07721
-.00265
-.03284
.00418
.02693
-.03315
01275
-.01795
-.00275
.01765
.04314
-.02366
-.01724
-.00306
01244
.02356
-.01010
00031
.03192
-.03662
-.01754
.03957
-.01455
.01836
-.00041
.01122
-.00643
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-.04784
.04284
-.02958
.00653
.02693
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-.03396
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.02540
-.05059
.03580
.05314
-.03866
.03111
-.01581
04518
-.03274
.04080
-.03713
-.00163
-.01499
-.00245
.04243
.00031
-.06589
-.00602
-.03345
.04314
.04641
-.04896
.04070
-.02489
-.01540
-.02183
.07476
.01265
-.05273
.00612
.01989
-.02642
.00020
~-.00632
00388
.00683
.02468
-.02081
.00204
-.00082

00755

.00918
-.01102
.00581
.04580
-.03274
.01989
.03e82
00051
.01193
—-.00500

01061
-.01754

-.05936
~.02438
.05691
-.02295
.01540
.02744
.02489
-.04926
.07099
-.00734
-.02478
.04049
=.05100
.03243
.03570
-.02264
.05651
-.00133
.04202
-.041€1
.03651
-.06701
.03458
.00153
.00061
.02856
.01295
-.05090
~.009735
-.03631
.04559
.03009
-.03284
.02999
-.02733
.01295
-.01642
02793
.02305
-.06242
.00826
.01326
-.01795
-.01071
-.00877
.00918
=-.00347
.00561
-.02019
.02540
.00092
.01102
-.00571
-.01591
-,01316
.05528
-.01663
-.02417
-01633
.01632
.00581
-.01153
.00449
-.02642
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