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IMPLICATIONS OF SITE EFFECTS IN THE MEXICO CITY EARTHQUAKE
OF SEPT. 19, 1985 FOR FARTHQUAKE-RESISTANT DESIGN CRITERTA
IN THE SAN FRANCISCO BAY ARFA OF CALIFORNTIA

by

H. Bolton Seedl and Joseph I. Sun?

I. INTRODUCTION

One of the most dramatic aspects of the earthquake effects in the
Mexico City earthquake of September 19, 1985 was the enormous differences in
intensities of shaking and associated building damage in different parts of
the city. In the south-west part of the city ground motions were moderate
and building damage was minor. However in the north-west part of the city,
catastrophic damages occurred and a record of the earthquake motions near
the southern end of this heavy damage area showed a very high intensity of
shaking. Similar patterns of building damage intensities have been observed
in previous earthquakes and the differences attributed to the differences in
soil conditions in different parts of the city. In the 1985 Mexico
earthquake these differences seem to be‘somewhat more accentuated than in
other earthquakes in the past 40 years, and the availability of-recordings
of ground motions in different parts of Mexico City makes it possible to
explore, in greater detail than heretofore, the relationships between soil
conditions, intensities of shaking, and the asscociated extent of structural
damage.

Analyses of ground response for five sites in Mexicoc City in relation

to the soil conditions at the recording stations (Seed et al., 1987) have

lcahill Professor of Civil Engineering, University of California, Berkeley,
California.

_ 2Graduate Research Assistant, Department of Civil Engineering, University of
California, Berkeley, California.



shown that if allowance is made for possible small deviations from the best
average deterministic ground response analysis parameteré, and ground
response is considered on a probabilistic basis, ground response analyses
can provide very useful data for assessing the influence of local scil
conditions on the characteristics of the ground motions likely to develop at
sites in the old lake-bed area of Mexico City where motions varied widely
depending on the depth and stiffness of the clay deposits. Furthermore,
because of the generally good results obtained in using ground response
analyses to predict ground motions for the five sites at which motions and
soil characteristics are known in Mexico City, the same procedures can be
expected to provide a good basis for predicting motions at sites where
motions were not recorded in the September 19, 1985 earthquake. Thus it has
been possible to make analyses for a number of different so0il depths
existing in the heavy-damage area of Mexico City and to develop a
representative spectrum for the average ground motions occurring in this
area in the 1985 earthquake (Seed et al., 1987).

Within the heavy damage area itself, the intensity of structural
damage was found to be differenf for structures of different heights,
presumably reflecting the influence of the soil conditions, the intensity
and frequency characteristics of the ground motions, the characteristics of
the structures and the criteria controlling the design of the structures,

It is the purpose of this report to examine the factors which are

*likely to have influenced the response and degree of damage to structures in
the heavy damage area of Mexico City in the earthquake of 1985, to attempt
to relate these factors to the intensity of damage which occurred, to use
the results of the studies to examine the possible extent of damage to

structures constructed on sites underlain by clay in other seismic regions,



such as the San Francisco Bay area, which like Mexico City, is located near
the edge of a deep deposit of clay so0il, to examine the implications of
structural performance in Mexico City for buildings in San Francisco in the
light of the seismicity of the region, and to examine the effects of
possible modifications in building codes which might seem desirable in the

light of the Mexico City disaster in 1985.



ITI. RELATIONSHTP BETWEEN DAMAGE INTENSITY, GROUND MOTIONS
AND DESIGN LATERAL FORCE COEFFICIENTS FOR BUILDINGS
IN THE HEAVY DAMAGE ZONE OF MEXICC CITY

Damage Intensity in the Heavy Damage Area of Mexico City

The location of the heavy damage area in Mexico City in the 1985
earthquake is éhown in Fig. 1. Following the earthquake, a detailed survey
was made of the intensity of damage to different classes of structures in
different parts of the city (Borja-Navarrete, et al., 1986). The damage
statistics for the heavy damage zone of the city are summarized in Table 1,
which shows, for buildings with different story height ranges, the damage
intensity, defined as the ratio of the number of structures in any.given
category which suffered major damage divided by the total number of
structures in that category existing in the heavy damage zone.

It is readily apparent that it was the mid-height buildings, with
about & to 20 stories, which suffered the highest damage intensities. This
trend is also clearly evidenced by the plot of these data shown in Fig. 2.

Since most seismic design procedures for buildings are based on
structural period rather than building height, it is useful to examine the
natural periods of the structures in Mexico City in relation to the number
of stories of the buildings. Emphasis will be placed on large-deformation
periods since it is these periods which are most indicative of building
behavior during major earthquakes (Bertero et al., 1988).

For North American practice, the fundamental period (in seconds) for
’typical buildings is typically about N/10, where N is the number of stories.
However, in Mexico City, bulldings are somewhat less stiff as compared to
United States practice, the foundation soils are much more compressible, in-

fill walls tend to crack early in an earthquake and buildings hecome less
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TABLE 1 DAMAGE STATISTICS FOR THE HEAVY DAMAGE AREA OF

MEXICO CITY IN THE SEPT. 19, 1985 EARTHQUAKE

{modified after Borja-Navarrete et al., 1986)

Number of | Number of Bldgs. with Total Number Damage

Stories Serious Damage of Buildings Intensity
L

1 -2 = 297 =~ 15,000 = 2%

3 -5 ~ 154 =z 5,400 z 3%

6 -8 = 117 1 650 = 18 %

g - 12 =z 62 £ 215 = 29 %

> 12 = 21 = g2 = 23 %
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stiff, while periods also lengthen if the structﬁres go beyond the elastic
range. Thus the “effective" building periods for structures in Mexico City
can be expected to be significantly longer than those normally estimated for
U.S. structures. Quantitative estimates of these effects are shown in
Table 2, and it seems reasonable to expect that the effective building
periods for many structures in the heavy damage area of Mexico/City is more
likely to have been of the order of N/6 (seconds) where N again represents
the number of stories. Taking this into account, the data in Fig. 2 are
replotted in Fig. 3 to show the damage intensity as a function of effective
building periods. It is evident that structures suffering the highest
damage intensities were those with fundamental periods in the range of 1.5

to 2.5 seconds.

Evaluation of Potential for Building Damage Due to Earthquake Shaking

In previous studies of earthquake damage intensity in relation to
ground motions it has been suggested that a wuseful index of the
vulnerability of a structure to damage caused by earthquaké shaking can be
evaluated in terms of a simple ratio establishing a Damage Potential Index
(Seed et al., 1970): This index, which incorporates the idea of capacity
(the forces that a building is designed to withstand) and demand {(the forces
induced on the building by the earthquake shaking), was found to be
extremely useful in examining damage in Caracas, Venezuela (Seed et al.,
1970) and it will therefore be used, with minor modifications in the present
‘study.

In the approach proposed by Seed et al., 1970 for ductile buildings,
of the type which suffered major damage in Mexico City, the Damage Potential

Index (DPI) is evaluated as follows:



TABLE 2 ESTIMATION OF BUILDING PERIODS IN HEAVY DAMAGE AREA OF
MEXICO CITY WITH RESPECT TO NUMBER OF STORIES IN THE

SEPT. 19, 1985 EARTHQUAKE

For U.S. structures, T~ N / 10, where N = no. of stories

Conditions in Mexico City

Effect on Building Period

1. Soil more compressible
2. Infill walls crack easily

3. Building go beyond elastic range

Increase by about 50%
Increase by about 30%

Increase by about 30%

Thus for conditions in the heavy damapge area of Mexico City:

Effective building period = N/5 to N/6 seconds
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Force induced on building by earthquake « W §é
g

Damaging Potential of ground motion « (Induced Force) x (Duration of force)

« W §é x T X No. of cycles

g

where the duration of the force is considered to be proportional to the
period of the building and the number of load cycles induced by the
earthquake. The number of cycles will be determined primarily by the
duration of shaking during the earthquake and this in turn will depend on
the Magnitude of the earthquake (Bolt, 1973). The damaging potential of the
ground motion, as expressed above, can be considered an approximate
expression of the Demand imposed on a structure by the earthquake shaking.

The design resistance of a structure (Capacity) is usually determined
by the building code requirements and for most codes, including the Mexico

City code, it is expressed as follows:
Design Lateral Force = k *+ W

where k is the design lateral force coefficient. Generally speaking, the
higher the design lateral force coefficient, the greater is the capacity of
a structure to withstand the effects of earthquake shaking.

The capacity will also depend, however, on the load combinations and
the allowable stresses prescribed by the Building Code. In any one city
these will be the same for all structures, but in comparing structures in
different cities, the relative values of these factors, which alsce affect
design resistance, will have to be taken into account. On a comparative
basis they can be expressed by a factor termed the building resistance
factor, Rg, which expresses the relative design resistances as they are

affected by allowable stresses and load combinations, all other £factors
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being equal. Thus the capacity of a building to withstand earthquake damage

can be expressed by:

Design Resistance « k < W+ R¢

and the vulnerability of a structure to earthquake damage can be expressed
in an approximate way by the ratio of Demand/Capacity, leading to the
development of a Damage Potential Index as follows:

Induced Force x Duration of Force
Design Resistance

2

Damage Potential Index

W+ S;/g x T x No. of cycles

k'W‘Rf

S

x v . Duration Weighting Factor
k Rg

where the Duration Weighting Factor reflects the influence of the duration
of shaking and is a function of the earthquake magnitude. Since the intent
of this index is only to compare the relative wvulnerabilities of different
structures, the Duration Weighting Factor can be assigned relative values,
based on judgment, which are determined by the Magnitude of the earthquake
involved.  Suggested values of the Duration Weighting Factor (DWF) are
listed in Table 3. It is reéognized that other engineers may make different
estimates of the effects of duration of shaking on potential damage, but the
'values shown in Table 3 will be used in the present study as a first
approximation, and the results obtained with this approach will be compared
with the actual damage statistics for the heavy damage area of Mexico City

in the 1985 earthquake.



TABLE 3 SUGGESTED VALUES OF DURATION WEIGHTING
FACTOR (DWF) FOR STRONG GROUND MOTIONS
WITH DIFFERENT DURATIONS

Duration DWF
15 sec 0.6
40 sec 1.0
65 sec 1.35
120 sec 2.0
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In addition, since the term Rf¢ is intended to express relative values
of design resistance in different cities or areas, it is most convenient to
asgign this factor a value of unity for Mexico City; values for other cities
and areas would then be somewhat higher or lower than unity depending on
their individual Code requirements. Thus, for example, based on the Code
requirements for California (SEAOC, 1980), the value of Ry applicable for
reinforced concrete structures in California might be estimated to be about
1.3 (Bertero, 1988). For other areas appropriate values could be assessed
by knowledgeable structural engineers familiar with Code requirements in

Mexico City and local design codes,

Seismic Code Provisions for Mexico City

The first seismic design provisions adopted for use in Mexico City
were developed in 1942, and they have been under constant revision since
that time (1957, 1966 and 1976). The 1976 code microzoned the Federal
District of Mexico into three parts: (1) the hilly and hard soil or rocky
zone; (2) the transition zone and (3) the lake bed zone, in recognition of
past experience which indicated that different intensities of shaking
developed in the city depending on the subsoil conditions. Table 4 shows
the required lateral force coefficients (the ratio of design lateral force
to total building weight) for buildings located in the lake-bed zone. For
all multi-story buildings having periods longer than 1 second, the required
design lateral force is equivalent to 67 of the building's weight. Lower

design requirements were used for the hilly zone and the transition zone.

Ground Response in the Heavy Damage Area of Mexico City

In a previous report (Seed et al., 1987), ground response analyses

were performed to study the ground motions developed in the lakebed areas of
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Mexico City and for the heavy damage area of Mexico City during the 1985
earthquake. Fig. 4 shows, in terms of acceleration regponse spectra, the
recorded motions at the SCT recording station, located within the heavy
damage zone, together with the spectra for computed motions likely to have
been developed for clay depths ranging from 25 to 45 meters. Based on these
results a vrepresentative average response spectrum was determined which
could be considered to represent the general characteristics of the earth-
quake motions in the heavy damage zone, as shown in Fig. 4. These spectral
accelerations can readily be converted to spectral velocities to evaluate

Damage Potential Index values for buildings in this zone.

Damage Potential Index for Heavy Damage Zone in Mexico City

The Damage Potential Index (DPI) has been defined previously as (see

page 12) as:

DPI = - Duration Weighting Factor

and DPI thus has the units of wvelocity.

For Mexico City, Rs¢ has been assigned a value of 1 in this study.
Thus with the aid of spectral velocities determined from the results shown
in Fig. 4 and lateral force coefficients determined from Table 4, values of
the Damage Potential Index for buildings with different periods can readily
be determined for buildings in the heavy damage zone of Mexico City as shown
in Table 5. The results shown in Table 5 are plotted in Fig. 5 to show the
computed Damage Potential Index values for buildings with a wide range of
periods. It can be seen that buildings which have large-deformation natural
periods in the neighborhood of 2 seconds exhibit the highest damage poten-

tials, which corresponds well with the damage observed in Mexico City. The
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TABLE 4 DESIGN LATERAL FORCE COEFFICIENTS FOR
MEXICO CITY LAKEBED ZONE (1976-1985)

Building Period Design Lateral Force
(seconds) Coefficient
0.0 0.030
0.5 0.045
1.0 0,060
1.5 0.060
2.0 0.0860
2.5 0.080
3.0 0.060
3.5 | 0.060




TABLE 5 CALCULATED DAMAGE POTENTIAL INDEX VALUES FOR HEAVY DAMAGE
AREA OF MEXICO CITY IN THE 1985 EARTHQUAKE

MEXICO CITY - 1985
For Representative Spectrum in Heavy Damage Part of the City
Building Spectral Spectral |Lateral Force Damage
Period Accelera—| Velocity Coefficient Potential
tion (K = 0.8) Index
T Sa Sv k (Sv/k«R ).DWF|
(sec) (g) {fps) (fps)
c.0 0.15 0.00 0.030 0
0.5 0.23 0.5%9 0.045 26
1.0 0.31 1.61 0.060 54
1.5 0.50 3.84 0.060 128
2.0 0.65 6.66 0.060 222
2.5 0.80 7.69 0.060 256
3.0 0.30 4.61 0.060 154

Notes:

I. The Duration Weighting Factor (DWF) used is 2.0 for the

duration of strong ground motions in the 1985 earthquake,
which lasted over 2 minutes,

2. The building resistance factor (Rf) is assigned a value of 1.0
for typical reinforced concrete structures in Mexico City.
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general trend of the relationship shown in Fig. 5 i1s also in good accord
with the relationship based on observed damage intensity previously shown in
Fig. 3. The relationships between observed dam#ge intensity and computed
Damage Potential Index in the heavy damage area of Mexico City can be more
easily compared in Fig. 6, which superimposes the results presented in
Fig. 3 and Fig. 5. Again it can be seen that buildings which had natural
periods close to about 2 seconds suffered the most severe damage in
Mexico City in the September, 1985 earthquake and also that a calculated
Damage Potential Index of about 200 fps corresponds roughly to an observed
damage intensity of about 307 for the damage developed in Mexico City in

this earthquake.
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III. EVALUATION OF POTENTIAL FOR BUILDING DAMAGE DUE TO
EARTHQUAKE SHAKING IN THE SAN FRANCISCO BAY AREA

Seismic Environment of the San Francisce Bay Area

In view of the good relationship observed between Damage Potential
Index values and actual damage intensities for the heavy-damage zone of
Mexice City, it is of interest to examine the significance of these results
to other areas of North America where structures are constructed on deep
layers of clay. Areas of major interest in this respect would certainly
include 8an Francisco, California, Salt Lake City, Utah, and Anchorage,
Alaska. The San Francisco Bay area was selected for special study in this
investigation. The Bay area has experienced 12 damaging earthquakes during
the past 150 years (Goldman, 1969), including the major San Francisco
earthquake of 1906 {Magnitude = 8.2), and can be expected to be subjected to
similar events in the future. In its latest evaluation the U.S. Geologic
Survey predicts a 507 probability of a Magnitude 7 earthquake in the
San Francisco Bay area in the next 30 years (Fig. 7). However a trepetition
of the 1906 Magnitude 8 earthquake, although assigned a relatively low
probability of about 107 in the next 30 years,. is also an important
consideration in the next 100 years.

Most of thé major earthquakes that have occurred in the San Francisco
Bay area have been closely related to the active faults in the area, shown
in Fig. 8. These include the ©San Andreas fault which transects the
‘San Francisco and Marin Peninsulas, the Hayward fault which runs along the
base of the Berkeley Hills in the East Bay, and the Calaveras fault located
south of the Hayward fault. These faults and their branches are closely
related and together comprise an important part of the major fault system

which governs the seismicity of the San Francisco Bay area.
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Soil Conditions in the San Francisco Bay Area

San Francisco Bay is located in a northwest-trending valley. The bay

is bounded mostly by marshlands, alluvial plains and beyond, by the Coast

Ranges.

The major geological units of the San Francisco Bay area, shown in

Fig. 9 can be categorized broadly as bedrock, alluvium, and Bay mud, as

follows (Borcherdt, et. al, 1975):

(1)

(2)

(3)

Bed rock in the area is composed mainly of sandstone, siltstone,
chert and greenstone of the Franciscan formation.

Alluvium. This unit contains late Quaternary floodplain deposits
of silt and clay, inter-layered with alluvial fan and stream-bed
deposits of sand and gravel, derived from weathering and erosion
of the wuplands surrounding the San Francisco Bay, Some older
alluvial deposits (early Quaternary) may be more consolidated
and/or partially cemented.

Bay Mud. These sediments are Holocene age, soft, water-
saturated, organic-rich silts and clays,occasionally interlayered
with sand deposits; They .generally are derived from the
suspeﬁded materials brought into San Francisco Bay by the rivers
draining the antral Valley of California, as well as streams
from the southern Bay area. Table 6 shows some of the physical
and engineering properties of San Francisco Bay mud. It is the
behavior of this soft clay under seismic loading that concerns
many seismologists and engineers (after Goldman, 1969; Borcherdt,
1970; Borcherdt and Gibbs, 1976; Wilson, Warrick and Bennett,

1978).

As clearly illustrated in Mexico City, local geological conditions can

substantially change the characteristics of seismic waves and the intensity
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of earthquake shaking. This was also made abundéntly evident in the 1906
San Francisco earthquake. Fig. 10 shows the geological conditions in San
Francisco and Fig. 11 shows the intensity of shaking for San Francisco
during the 1906 earthquake (Borcherdt, 1975). Except for the south-western
part of the city where the San Andreas fault passes directly through the
city, most of the parts of the city showing high values of "apparent shaking
intensity" were those underlain by thick layers of Bay mud. This was
especially true for the downtown area of San Francisco. The need to re-
evaluate seismic damage potentials for the San Francisco Bay area in the
light of the Mexico City earthquake experience seems therefore especially

appropriate.

Dynamic Soil Properties of San Francisco Bayv Mud

It is well-recognized that the appropriate forms of the modulus
reduction and damping ratic relationships with shear strain play a key'role
in performing successful ground response analyses. A number of studies have
been performed to evaluate these dynamic properties for San Francisco Bay
mud. Bay mud samples tested in these ijinvestigations were taken from:
Suisun marsh in the north Ray (ERTEC, 1981), Hamilton Air Force Base in the
west-central part of the Bay (Isenhower, 1979; Isenhower and Stokoe, 1981)
and from Ravenswood, Dumbarton West and Apnew, three sites located in the
south Bay (Stokoe and Lodde, 1978; Lodde, 1982),

The dynamic properties of young Bay mud, summarized from these
investigations, are shown in Fig. 12. The upper part of the figure shows
how the shear modulus reduces with increasing shear strain while the lowef
part of the figure shows the increase in damping ratio with shear strain.

The rate of reduction in modulus with increasing strain for young Bay mud is



37°42° —

Ad REDUCTION OF EARTHQUAKE HAZARDS, SAN FRANCISCO BAY REGION
122730 12222
I |
Pyt
* a0
. e J . WA s Yerba
3748’ |- : o, Buena 1.
S
3
-
=
> &
2
a &
4 3
= Shy 1l
= g
- M
3
(=] R
A
o]
=
'z
Alluvium {3>30m (100 ft) thick)
0 t H 3 MILES
— } T L T 11 L J
| Allavium (< 30m {100 ft) thick) [ 1 2 3 KILOMETRES
m Bedrock

FIG. 10 GENERALIZED GEOLOGICAL MAP OF SAN FRANCISCO

(compiled by K. R, Lajoie from data of
Schlocker et al., 1958)

29



30

122730 122022
I i
Y
37°48 L~ Buena |. -
o W
k]
=
o 7
~
= g
-
o =
Q
!
=
S
2
3742
B T
EXPLANATION
B ey viotent Very strong
Weak
Violent Strong
0 1 2 3 MILES
| — 2 1 1
) T ¥ L
] 1 z 3 KILOMETRES
b |

FIG. 11 DISTRIBUTION OF APPARENT SHAKING INTENSITY IN
SAN FRANCISCO IN THE 1906 EARTHQUAKE

(compiled by Borcherdt, 1975 after data from
Wood,

1908)



1.0
Average G/Go for
08 L young Bay mud i
306 .
£ Range of test results for
o 5 oung Boy mud A
~ flsen ower,Lodde & ERTEC)
o 04 .
= \ _
\
0.2 AN -
0.0 b1 rppl r_tpppqpd o toprrnd Lt trsyi L1 1 01eyt
10~ 10~ 10 10 1 10
Shear Stroin, percent
60 T IR BLERARLIE 1 L ITTH[ 14 LA | T T — 1T Vit
5 4
S0 E
et - T
®
o 40 N
3 Typical damping raotie for clays i
e i (’s’,eed & driss 1970)—\ ]
S 30 ' _,,»’"”’:j:
o Relationship used - ,:><;
o - in this study P P
on e e v
£ 20 F s
Q. Test results for young Bay mud s
E - {lsenhawer, Lodde s .
[} 2
© 1wt - 4
o WY ul:"--'-':.[‘T'n“T‘quI'"'—'l—'T.T‘u.uxl [N ESY 1 NS SRR
10~ 107 10 10~ 1 10

Shear Strgin, percent

FIG. 12 VARIATION OF SHEAR MODULUS AND DAMPING RATIO WITH
SHEAR STRAIN FOR YOUNG SAN FRANCISCO BAY MuD

31



32

significantly less than that for typical sands, but it.is in generally good
accord with values determined for other clays (see Sun et al., 1988). The
damping characteristics fall well within the range proposed by Seed and
Idriss (1970) for typical clays. Lodde (1982) has also tested some older
Bay s_ediments near Dumbarton West site. The average modulus reduction
relationship for these older Bay sediments, which consisted mainly of
gravelly sands and silts having a void ratio of about 0.63, was more like

that for sands than for Bay mud.

Shear Wave Velocity Profiles for Young San Francisco Bay Mud

Values of shear wave velocity for young San Francisco Bay mud have
been measured in studies by Warrick, 1974; Gibbs et al., 1975; Gibbs et al.,
1976; Gibbs et al., 1977; Wilson et al., 1978; Pyke, 1987; -and Liu et al.,
1988, The results provided by these investigations are summarized in
Fig. 13. The figure indicates that shear wave velocities for young Bay mud
are essentially constant for the top 30 feet, with a value of 250 fps, but
the wvelocity then gradually increases to about 500 fps at a depth of

60 feet.

Site Conditions for Three Bavshore Sites

Three Bayshore sites underlain by soft Bay mud were chosen for the
purpose of studying the ground motions that are likely to develop on such
sites in the event of earthquakes with Magnitudes 7i and 8+ occurring on the
‘San Andreas fault. The soft Bay mud at these three sites appears to have
£he same general characteristics as for other San Francisco Bavshore sites.
Two of these sites, the Southern Pacific Building site and the Embarcadero

Center Four site are in the city of San Francisco, and the Ravenswood site

is in the south Bay area.
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Southern Pacific Building Site

The Southern Pacific Building Site has been the subject of several
studies in the past several decades (Idriss and Seed, 1968; Singh et al.,
1981). The soil conditions at the Southern Pacific Building site are shown
in Fig. 14. A sandy fill extends to a depth of about 20 ft and is underlain
by a 35 ft layer of soft clay followed by a 50 ft layer of medium stiff
clay. Below this is a 120 ft layer of stiff clay interbedded with a 10 ft
layer of dense sand at a depth of 125 ft., The stiff clay is underlain by a
layer of very dense sand and gravel which extends to bed rock at a depth of
about 285 ft.

Initial estimates of the shear wave velocity for each soil layer in
the soil profile were based on the shear strength and the stiffness of the
materials, as reported by Idriss and Seed {1968) and Rinne and Stobbe
(1979), together with the representative data for Bay mud shown in Fig. 13.
The shear wave velocity profile was then further calibrated by computing its
response to the 1957 Daly City, San Francisco earthquake as explained below.

An earthquake of Magnitude 5.3 located along the San Andreas Fault was
recorded in the basement of the 1ll-story high Southern Pacific Building on
March 22, 1957. The earthquake was simultaneously recorded on rock in
Golden Gate Park, located roughly 7 miles from the Southern Pacific Building
site as shown in Fig. 15. The Golden Gate Park record was used as a rock
outcrop motion in dynamic response analyses of the Southern Pacific Building
site, but the acceleration values were scaled down by a factor of 0.65 té
account for the different distances of the two sites from the source of

energy release, as recommended by Idriss and Seed (1968) and Singh et al.
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(1981). The peak rock acceleration used in the analyses was thus reduced to
0.06 g. Values of shear wave velocity for the different layers were first
selected based on those used in previous studies, and on the available data
for soft Bay mud, and they were then modified slightly to give a velocity
profile for which the computed response spectrum, for motions at the
basement level, was in best agreement with the spectrum for the recorded
motion. The shear wave velocity profile determined in this way is shown in
Fig. 14 and the results of the ground response analysis in Fig. 16. Fig. 17
shows a comparison of the response spectra for the computed and recorded
motions. It can be seen from the results presented in Fig. 14 that the
shear wave velocity profile for soft Bay mud used for this site agrees well
with the average shear wave velocity data for soft Bay Mud discussed
previously (see Fig. 13) and that the computed motions are in excellent

accord with those recorded in the 1957 earthquake.

Embarcadere Center Site

The Embarcadero Center Four site is located east of Drum Street, south
of Clay Street and north of Sacramento Street near the waterfront of
downtown San Francisco. The subseil conditions, shown in Fig. 18, consist
of 5 lavers: about 20 ft of f£ill overlying roughly 90 ft of Bay mud,
followed by 20 ft of sand, 30 ft of silty clay and 50 ft of silty sand. The
bedrock, mainly shale and sandstone, is located at a depth of 210 ft below
the ground surface. Down hole seismic surveys were performed (Harding-
Lawson, 1977) to measure the shear wave velocity profile for the site. A
representative shear wave velocity profile interpreted from these data, is

plotted in Fig. 18.
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Ravenswoed Site

This site was chosen as typical of large areas near the edge of the
southern end of San Francisco Bay. The generalized geological section at
the site consists of a surface layer of young Bay mud covering the older Bay
sediments which extend to bedrock at a depth of about 600 ft, as shown in
Fig. 19, |

The vounger Bay mud, about 33 ft thick at this site, is a soft, low
shear-strength clay. Some sand and silt layers are interspersed within the
Bay mud ' where stream channels crossed the mud flats. The older bay
sediments, beneath the younger Bay mud, are of late Pliocene to Holocene age
and were formed by alluvial processes. The older Bay sediments vary greatly
in compeosition but in general, they are much stiffer thanh the younger Bay
mud. The depth to bedrock, mainly sandstone and greywacke, is about 600 ft.
The shear wave velocity profile adopted for this site was based on a
downhole seismic survey (Warrick, 1974) together with some minor

modifications to the profile recommended by Joyner et al., (1976),

Characteristics of Rock Outcrop Motions in San Francisco

Two levels of ground motion were used to evaluate the possible effects
of earthquakes that may be generated on the San Andreas Fault. The lower
level was a Magnitude 74 earthquake with an estimated duration of shaking of
about 30 to 40 seconds and the higher level earthquake was a Magnitude 8+
earthquake with shaking lasting for about 70 to 380 seconds. The latter is
compatible with the duration of shaking reported for the 1906 earthquake.
Since no reliable near-field rock records are available for Magnitude 7% and
8+ earthquakes at the present time, artificial records were used to provide

rock outcrop motions for use in the analyses. The sites were considered to
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be located about 6 miles from the major fault systems, and an appropriate
attenuation relationship for rock motions in Western U.8. earthquakes was
adopted, as shown in Fig. 20 (Seed and ldriss, 1983), to estimate the peak
ground accelerations on rock outcrops. It has been shown (Bolt, 1973) that
the duration of strong ground motions generally depends on the earthquake
magnitude. Table 7, which 1lists the duration of strong shaking for
earthquakes with different magnitudes, was also used as a pguideline 1in
generating the rock records considered representative for these two
earthquake magnitudes.

Table 8 lists the main characteristics of the rock motions used in the
analyses and Figs. 21 and 22 show the acceleration time histories for
Magnitudes 7; and 8+ earthquakes respectively. In addition to assigning
appropriate values of acceleration amplitudes and durations, it has been
shown that different magnitudes of western U.S. earthquakes also produce
typical frequency characteristics (McGuire, 1974; Joyner and Boore, 1982,
1988; Sadigh, 1983; Sadigh et al., 1986; Idriss, 1985). TFig. 23 and Fig. 24
compare the response spectra for the two selected rock motions with the
normalized magnifude—depemdent spectra proposed by Sadigh et al., (1986).
It can be seen that the acceleration response spectra for the two motions
used are in good agreement with the spectra based on empirical experience.
Thus it was considered that the synthetic motions employed in this study
have the appropriate characteristics of natural earthquakes (of comparable
magnitudes and distances to faults), both in amplitude and £requency

characteristics.

Ground Response Analyses for San Francisco Bayshore Sites

Ground response analyses were performed for the three sites described

previously to study the site responses for the two selected levels of ground
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TABLE 8 CHARACTERISTICS OF ROCK QUTCROP MOTIONS USED IN

THIS STUDY
Magnitude Distance to Peak Ground Duration
Fault Acceleration
T: 6 miles 0.45 ¢ 32 seconds
8+ 6 miles 0.55 ¢ 75 seconds
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shaking. Computed surface motions were expressed in terms of the
corresponding acceleration response spectra. Uncertainties in the measured
shear wave velocity profiles, which played an important role in the ground
response studies of the Mexico City sites (Seed, et al., 1987) were also
taken into account in the analyses.

Ground Response Analyses for Magnitude 7% Earthquake
Near San Francisco Bay Area

(1) Southern Pacific Building Site

© Fig. 25 shows the soil profile for the Southern Pacific Building
site together with the response spectra for both the rock outcrop
motion and the computed surface motion for a hypothetical Magnitude 7%
earthquake. The ground response analysis was made using the computer
program SHAKE-86 (after Schnabel et al., 1971). For a peak
acceleration of 0.45 g at a rock outcrop, the peak ground acceleration
was computed to be about 0.26 g. The maximum strain induced in the
soil profile was about 0.627 at a depth of 52 feet, while the site
period lengthened from 1.68 seconds to 1.66 seconds due to the non-
linear behaﬁior of the soils.

As a result of the study for the Mexico City earthquake
(Seed et al., 1987), which indicated that a 10 per cent uncertainty in
the in-situ measured shear wave velocities can have significant effects
on the computed ground surface motjions, the effects of a similar
variation in shear wave velocity on the computed surface motions were
also evaluated for this site. The results of this study are shown in
Fig. 26. It may be seen that the effect of a 10 per cent variation in
shear wave velocities does not produce as significant an effect for the
Southern Pacific Building site (shown in Fig. 26) as for the

Mexico City sites.
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Embarcaderc Center Site

Figure 27 shows the response spectrum for the computed surface
motions at the Embarcadero Center site together with that for the rock
outcrop motions used in the analyses. The computed peak ground
acceleration was 0.3 g, the maximum induced strain was about 0.537 at a
depth of 25 feet and the site period lengthened from 1.01 seconds to
1.36 seconds due to the non-linear behavior of scils resulting from
seismic straining. A 10 per cent deviation from the measured shear
wave velocities showed only a small effect on the response spectrum for
the computed surface motions as shown in Fig. 28.

Ravenswood Site

The results of the ground response analyses fo£ the Ravenswood
site in the south Bay are presented in Fig. 29 in the same format as
before. The computed peak ground acceleration was 0.30 g, the maximum
strain along the profile was about 0.48%7 at a depth of 30 feet and the
site period was 2.54 seconds as computed from the strain-compatible
soil properties. The initial small-strain site period was 1.81 seconds
before seismic straining. The effect of a 10 per cent wvariation in
measured shear wave velocities on the computed surface motions is
relatively small, as shown in Fig. 30. It is interesting to observe,
however, that the effects of this small vériation in the shear wave
velocities used in the soil profiles has a more noticeable influence on
spectral accelerations in the lower period range, say below one second,
than for the higher period range for all three sites included in this

study (see Fig. 4-20, Fig. 4-22 and Fig. 4-24).
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Summary of Ground Response Analyses for Magnitude 74 Earthquake

The acceleration response spectra for the computed surface motions at
the three sites are summarized in Fig. 31. The peaks of the response
spectra for all three sites reached values of about 1.0 g. A representative
average spectrum is also shown in Fig. 31.

In the Applied Te;hnology Conference study (ATGC-3, 1978) three sets of
site conditions were established and recommended for use in seismic building
codes., The site éonditions, which were later adopted by the Seismology
Committee of the Structural Engineers Association of California (SEAOC) in
their "Tentative Lateral Force Requirements' blue book, ranged from rock-
like material and shallow stiff sites (S1), deep stiff and dense soil
conditions (82), to clay and loose sand site conditions (83). TFollowing a
study of the damage in Mexico City during the Mexico earthquake of 1985, an
additional site condition S4 was added to these categories,as shown in Table
9, to represent the anticipated response on deeper deposits of soft clays.
Soft clays are described as clays with shear wave velocities generally in
the range of 200 to 500 fps Iand a tentative spectrum for S4 soils was
indicated. It ié interesting to note that this response spectrum for a soil
profile containing more than 40 feet of clay (the S4 site condition) is in
excellent general agreement with the representative spectrum for Bayshore
sites computed in this study for a Magnitude 7% earthquake, as indicated in
Fig. 32.

| The representative spectrum for bay-shore sites underlain by clay for
a Magnitude 7; earthquake near the San Francisco Bay area shows signifi-
cantly higher spectral acceleration values at periods less thgn about 2
seconds than the representative spectrum for the heavy damage area of

Mexico City in the 1985 Mexico earthquake, as shown in Fig. 33.



60

SITIW 9 LNOGY 40 FONVLISIA L1V HNIYUNII0 INVNDHLYV3
¥/T-L =W NI S3LIS JYOHS-AVE Y04 V¥LI3dS FAILVINISIYIIY 1€ IE

SpU028s — polad

(s = onoy buidwo()

wnujoads aAljojussasday

9}IS POOMSUBADY ==—r—-=
L. 9)is oJepooJDqUIT —------ -
oys buiping oyond ulaynog

. L 1 1 1 1 J 1 1

¥'0

9’0

9l

0'c

6 — uonpusjeooy [pijoadg



TABLE 9 SITE COEFFICIENTS RECOMMENDED BY SEAOC (1988)

Type Description $ Factor

Si . A soil profile with either: 1.0

(a) A rock-like material characterized
by a shear-wave velocity greater thanm
2,500 feet per second or by other suit-~
able means of classification, or

(b) stiff or dense soil condition where
the soil depth is less than 200 feet.

52 A so0il profile with dense or stiff seil 1.2
conditions, where the soil thickness
exceeds 200 feet, or a profile conmsist-
ing of & thin layer of soft clay up to
20 feet thick overlying rocklike material.

S3 ‘ A so0il profile 40 feet or more in depth 1.5
containing more than 20 feet of soft to
medium stiff clay but not more than
40 feet of soft clay.

S4 A soil profile containing more than 2.0
40 feet of soft clay. Alternatively
soils falling into this category may
have a design spectrum determined by
special geotechnical study reflecting
the soil specifiec conditions,

The site factor shall be established from properly substantiated geotechnical
data. In locations where the soil properties are not known in sufficient
detail to determine the soil profile type, soil profile S shall be used
unless the building official determines that S4 type soil may exist at the

site in which case S4 shall be used,
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Ground Response Analyses for Magnitude 8+ Rarthquake
Near San Francisco Bay Area

Analyses were also made to compute the response of the same three
sites to the rock motions corresponding to a Magnitude 8+ earthquake on the
San Andreas fault located at a distance of about 6 miles, and producing a
peak acceleration in rock of about 0.55 g. The rock motion record used in
these analyses was that shown in Fig. 22. Analyses were made using the
SHAKE-86 computer program.

(1) Southern Pacific Building Site

Fig. 34 shows the response spectra for the computed surface
motions and the rock outcrop motions used in the analysis for the
magnitude 8+ earthquake. The computed peak ground acceleration was
about 0.34 g, the maximum shear strain developed in the soil profile
was about 17 at a depth of 52 feet and the strain-compatible site
period was 1.88 seconds as compared to the low strain-level site period
of 1.08 seconds. The surface acceleration response spectrum for the
Magnitude 8+ earthquake (Fig. 34) is significantly higher than that for
the Magnitude 7% earthquake (Fig. 25). This is especially evident at
longer periods. The higher acceleration level, the longer duration of
the shaking, the more abundant long period motions in the 8+ rock
outcrop motion used in the analyses, and the larger strain-softening
effects of the soil, which reduce the ability of the scil to transmit
high frequency motions effectively, are some of the factors that
contribute to this higher response for the magnitude 8+ earthquake.
The effects of small (%10%) variations in the shear wave velocities of
the soils on the computed surface motions for the Southern Pacific

Building site (Fig. 35), although more evident than for the Magnitude
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7% earthquake (Fig. 26) for the same site, are still less significant
than for Mexico City sites underlain by clay.

Embarcadero Center Site

The results of the analyses for the Embarcadero Center site are
shown in Figs. 36 and 37. The computed peak ground acceleration for
this site was  0.45 g, the maximum shear strain developed in the soil
profile was close to 1% at a depth of 25 feet, and the strain-
compatible site period was computed to be 1.57 seconds compared with
the initial value of 1.01 seconds determined from the in-situ measured
shear wave velocities, Fig. 36 shows the response spectra for the
computed surface motions and the rock outcrop motions used in the
analyses. By comparing these two spectra, it may be seen that the high
frequency motionsg are generally attenuated and the long period motions
are amplified, with the boundary 1lying at a period of about 0.7
seconds. This phenomenon was also observed for the other two sites
analyzed. It can be seen in Fig. 37 that the effects of small
variations in shear wave velocities have only a limited influence on
the computed ground motions for the Embarcadero Center Site.

Ravenswood Site

Figure 38 shows the analytical results for the Ravenswood site,
together with the soil profile for the site. The computed peak ground
acceleration was 0.36 g, the maximum shear strain developed along the
soil preofile was about 17 at a depth of 30 feet, and the period
computed from the strain compatible soil properties was 3.24 seconds as
compared with the low strain-level site period of 1.81 seconds. The
limited effects on the computed surface response of a 107 variation in

shear wave velocities for the analytical model are shown in Fig. 39.
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Summary of Ground Response Analyses for Magnitude 8+ Earthquake

The surface response spectra for the three sites subjected to a
Magnitude 8+ earthquake are summarized 1in Fig. 40 together with a
representative spectrum drawn for these three sites. Fig. 41 compares this
spectrum, which represents the expected response for San Francisco Bayshore
sites underlain by clay and subjected to a Magnitude 8+ earthquake on
San Andreas fault, with the representative spectrum for the heavy-damage
area in Mexico City in the 1985 Mexico earthquake. Based on this study, it
can be seen that the San Francisco Bayshore sites will respond much more
strongly than did the heavy-damage areas in Mexico City in the 1985
earthquake. The ordinates on the acceleration response spectrum for the
Bayshore sites for a Magnitude 8+ earthquake on the nearby San Andreas fault
are on the average about 1007 greater than those for the héavy damage area
of Mexico City, as shown in Fig. 41. This result does not seem unreasonable
when it 1is considered that the Magnitude 8.3 earthquake, which caused so
much damage in Mexico City in 1985, had its source about 350 kms from the
city, whereas the potential source of the strong shaking for San Francisco
sites, is located at a distance of only about 10 kms from the Bayshore sites

underlain by soft clay.

Ground Motions in Central Parts of San Francisco

As can be seen from Fig. 11, by far the greater part of the city of
San Francisco is underlain either directly by bedrock or by shallow alluvial
‘deposits of 150 feet or 1less 1in thickness. A significant amount of
earthquake data has been gathered for sites having similar geological
conditions in recent years, and the availability of this information makes

it possible to make reasonable assessments of probable ground motion spectra
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for such conditions on the bhasis of available empirical data. Thus, for
example, the shape of the normalized average response spectral curves for
such site conditions can be expected to be generally similar to those shown
in Fig. 42 (after ATC-3 report). Other data provides a basis for estimating
probable 1levels of peak accelerations for such sites for different
combinations of earthquake magnitude and distance of earthquake energy
sources. On this basis, estimates of mean spectral shapes for the stiff
s0il conditions in the main parts of San Francisco were determined for
earthquakes with Magnitudes of 7; and 8+, occurring on the San Andreas fault
system. The maximum surface accelerations at stiff soil sites for these two
earthquake magnitudes were determined to be about 0.45 g and 0.55 g
respectively. These values are very similar to the peak accelerations
likely to be developed in rock outcrops, as used in the analyses for San
Francisco Bayshore sites.

Répresentative surface acceleration response spectra for stiff soil
sites in San Francisco (rock and stiff soil conditions) are shown in Fig. 43
for earthquakes with Magnitudes>of 74 and. 8+. For comparison purposes, the
representative ground motion spectrum for the heavy damage =zone of
Mexico City (1985) 1is also shown. It can be seen that the spectral
accelerations in San Francisco for buildings with periods up to about 1.25
seconds are significantly higher than those for the heavy-damage area of

Mexico City in the 19835 earthquake.
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IV. EARTHQUAKE-RESISTANT DESIGN PROVISIONS FOR CALIFORNIA

Earthquake-resistant design provisions first came into practice in
California in the early 1900's. Shortly after the 1906 earthquake, the City
of San Francisco was rebuilt under provisions requiring the use of a uniform
30 psf lateral pressure to represent the potential effects of wind and
earthquake loadings.

The concept of using lateral earthquake forces which are proportional
to structural masses seems to have been first introduced in the 1927 Uniform
Building Code, with the proportionality constant ranging from about 7.53% to
107 and being dependent on the bearing capacity of the foundation soil.

Shortly after the invention of the strong motion seismograph, and as a
consequence of the 1933 Long Beach earthquake, the Building Code for the
City of Los Angeles was revised and in this revision the importance of
different structural systems was recognized; masonry bdbuildings without
frames were assigned the highest lateral force coefficient of 10%, while for
other structural systems the coefficient was assigned values of 27 to 5Z.

in 1943, the importance of building flexibility on design lateral
forces was recognized and the lateral force coefficient was expressed as a
function of the number of stories in the structure, with higher values for
low-rise stiffer structures than for higher more flexible buildings.

In 1952, a joint committee on Lateral Forces of the San Francisco
Section, ASCE and the Structural Engineers Association of Northern
‘California recommended a code in which design lateral force coefficients
were related to the natural periods of structures through a coefficient C =
f(T). Thus the lateral force coefficients were determined in terms of the

type of structure (K) and the natural period of the structure (T). After a
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further revision of the factors K and C in 1957, values of the lateral force
coefficient ranged from about 3.57 to 7.57%. In 1959, the first SEAQC
Recommendation on Lateral Forces was published. Although the basic concepts
for determining the lateral force coefficient remained the same, the
influence of building periods was changed so that more conservatism was
incorporated in values reguired for the design of taller buildings.

The SEAOC Code has been constantly under revision since 1959; however,
it was not until a fe—evaluation of the Code in the light of damage caused
by the f97l San Fernando earthguake that further major modifications were
introduced. The new recommendations at that time introduced several new
ideas into the design provisions for California, including the concept of
soil/strﬁcture response interaction and a categorization of the importance
of structures, A detailed description of this code, which has been applied
for the past twelve years, will be given in the following section.

In 1978, a comprehensive document on earthquake-resistant design,
entitled "Tentative Provisions for Development of Seismic Regulations for

t

Buildings," was published by the Applied Technology Council. This document,
commonly referred to as ATIC-3, was intended to serve as the basis of a
nationally-recognized model code for earthquake-resistant design. The 1988
SEAOC report on "Recommended Lateral Force Requirements and Tentative
Commentary" has adopted some of the concepts of the ATC-3 approach. One of
the major changes in the 1988 'Recommendations' is that the Soil/Structure
Resonance Factor, S, approach is replaced by site-dependent ground motion

spectra and lateral force coefficients. A detailed description of the new

tentative code will be presented in a later section of this report.
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Current Seismic Design Provisions for Structures in California

The current seismic design provisions for California (UBC Code, 1976)
were originally rec;mmended by the Seismology Committee of the Structural
Engineers Association of California (SEAQOC) in 1974 in recognition of the
extensive damage in the 1971 San Fernando earthquake. Under these
provisions, which represent current practice, the design lateral force for a

structure is determined by the expresgsion:

V=ZIKCSW (1)

where 7 = a seismic zoning factor whose value depends on the seismic zone
in which the structure is located, ranging from 0.25 to 1. For
the San Francisco Bay area, and many other areas that are close
to (15 to 25 miles) from major fault systems in California, Z is
assigned the highest value of its four categories, i.e., Z = 1.

I = an occupancy importance coefficient to provide for the assignment
of higher force levels to structures housing certain critical
facilities.

K = a factor determined by the type of structural system used. This
factor is intended to account for difference in the available
ductilities or energy-dissipation capacities of various
structural systems. The values of X assigned to each structural
system have been influenced to a large extent by observations of
the performance of these systems in actual earthquakes.

C = a factor related to the building period and equal to 1/154T.

T = building peried in seconds

S = a soil/structure interaction factor which is a function of the

ratio of the building period T to the site period Tg. This
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factor was introduced as a result of several major earthquakes
that occurred in the 1960's, e.g., the 1963 Skopje earthquake,
the 1967 Caracas earthgquake, the 1970 Gediz earthquake and the
1971 San Fernando earthquake, which indicated that structural
damage intensity is related to, among other factors, the natural
period of the structure and the fundamental period of the
underlying soil deposits.

and W = weight of the building.

TaBle 10 lists typical ranges of values for the factors used in the
expression for the determination of the lateral force coefficient. For
typical buildings of nermal importance constructed in the San Francisco Bay
area, thé coefficients Z, I, K used for calculating the design lateral force
coefficient are 1.0, 1.0 and 0.8 to 1.0 respectively. Site periods are
determined from ground response analyses or by means of a recommended
procedure specified in Appendix B of "Recommended Lateral Force Requirements
and Commentary' (1980) by the Seismology Committee of SEAOC., The site-
structure resonance factor, S, shown in Fig. 44, is a direct function of the
ratio of building period to site pericd (T/TS). The curve defining the -
S factor reaches a peak value of 1.5 when the building period coincides with
the site period, i.e., T/Ty = 1.0,

With all parameters involved in the determination of the design
lateral force thus established, the lateral force coefficient (expressed as
a fraction of the building weight) can readily be obtained as the product of
the parameters Z, I, K, C and S, while at the same time satisfying certain
imposed constraints (e.g. that C should be less than 0.12 and that the
product of C and S should not exceed 0.14). This caleculation can be

repeated for buildings with different periods to obtain a spectrum of



TABLE 10 PARAMETERS USED IN THE DETERMINATION OF LATERAL

FORCE COEFFICIENT AND THEIR VALUES

Coefficients Typical Range of Values
Z 1/8, 3/16, 3/8, 1
I 1.9 - 1.5
K 0.65 - 1.33 (for buildings)
C 1/ (15T} < 0.12
] 1.0 - 1.5 (see Fig. 44)
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IN U.S. UNIFORM BUILDING CODE, 1976

83



84

lateral force coefficients for a wide range of building periods. Figure 45
shows values of design lateral force coefficients determined in this way for
San Francisco Bayshore sites underlain by soft clay and for stiff soil sites
in the main parts of San Francisco. Values of the required design Jateral
force coefficient vary with the natural periods of structures (and
correspondingly with the building heights and numbers of stories). It can
be seen that the design requirements for Bayshore sites are generally more
stringent than those for stiff soil or rock sites in the main part of
San Francisco, especially for taller buildings with natural periods longer
than about 1 second. The design lateral force requirements for Mexico City,
enforced prior to the 1985 earthguake, are also shown on the same plot for
comparison purposes., For buildings with periods between 1.5 and 2 seconds
the lateral force coefficients required by the 1976 Mexi;o City Building
code and the building code for San Francisco Bayshore sites are not
significantly different. However, for longer period structures, the pre-1985
Mexico City code requirements for sites underlain by clay are higher than

those for San Francisco Bayshore sites.
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V. EVALUATION OF DAMAGE POTENTIAL INDEX VALUES
FOR STRUCTURES IN SAN FRANCISCO

Some indication of the potential wvulnerability of structures in the
San Francisco area to damage resulting from major earthquakes on the
San Andreas fault can be obtained by comparing the ground motion spectra and
design lateral force requirements for different site conditions in
Mexico City in 1985 and in San Francisco for earthquakes which may affect
the area. Such comparisons are shown in Fig. 46 and Fig. 47.

Figure 46(a) shows a comparison of the expected ground response
spectra for sites underlain by clay deposits in the San Francisco Bay area
for Magnitude 7; and 8+ earthquakes and a representative ground response
spectrum for the heavy damage area of Mexico City in 1985; Fig. 46(b) shows
the design lateral force coefficients required by the Mexico and SEAOC codes
for these site conditions. Figures 47(a) and (b) show similar comparisons
for clay sites in the heavy damage area of Mexico City and stiff soil sites
in the San Francisco Bay area. These comparisons are extremely enlightening
in view of the heavy damage suffered in Mexico City and in themselves

suggest the desirability of a careful review of U.,S., Code requirements.

Computation of Damage Potential Index Values for San Francisco Bay Area

While comparisons such as those shown in Figs. 46 and 47 suggest
the possible need for re-evaluation of Code requirements for lateral force
coefficients in the BSan Francisco Bay area, the combined effects of
differences in earthquake shaking intensity and code requirements for
lateral force coefficients and allowable stresses is best illustrated by
comparisons of Damage Potential Index values for the different regions.

Accordingly calculations of Damage Potential Index values, as defined
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previously, for sites underlain by substantial thicknesses of San Francisco
Bay mud and for earthquakes with Magnitudes of 7% and 8+ earthquakes are
shown in Tables 11 and 12 respectively. The duration weighting factors
(defined in Table 3) used in the calculation of these Damage Potential Index
values were 1.0 and 1.35 for 7% and 8+ earthquakes respectively to reflect
the potential significance of the different durations of shaking on damage
intensities for the two earthquakes, and the term Ry was assigned a values
of 1.3 (Bertero, 1988), based on a judgmental assessment of the different
Code reguirements, Similarly Damage Potential Index values for stiff soil
sites in San Francisco for the same two earthquake magnitudes are presented
in Tables 13 and 14 respectively.

The computed values of Damage Potential Index for San Francisco
Bayshore sites and stiff site conditions for ground motions likely to be
produced by a nearby Magnitude 7% earthquake are summarized and plotted in
Fig. 48; together with the values determined for the heavy damage area of
Mexico City in the earthquake of 1985. The cross-hatched band illustrate
the variations in the calculéted damage potentials due tc the use of
different structﬁral systems corresponding to K = 0.8 and K = 1.0, It is
apparent that for the anticipated shaking produced by a Magnitude 7i
earthquake, probably lasting about 40 seconds, the calculated Damage
Potential Index values for Bayshore sites underlain by soft clay and for
stiff soil sites in San Francisco are both significantly lower than those
developed in the heavy damage zone of Mexico City in 1985. These results
are extremely encouraging and are clearly indicative of a much lower
intensity of damage for buildings in San Francisco than that which occurred
in Mexico City in 1985. It may also be noted, however, that for structures

with more than about 6 stories, the calculated Damage Potential Index for



TABLE 11 CALCULATED DAMAGE POTENTIAL INDICES FOR SAN FRANCISCO
BAYSHORE SITES FOR MAGNITUDE 7% EARTHQUAKE BASED ON
1980 SEACC RECOMMENDATION

SAN FRANCISCO BAYSHORE SITES
Magnitude 7} earthquake occurring at a distance of 6 miles
Building Spectral Spectral Lateral Force Damage
Period Accelera-| Velocity Coefficient Potential
tion (K = 0.8) Index
T Sa Sv k (Sv/k-Rf)-DWF
(sec) () (fps) (fps)
0.0 0.40 0.00 0.112 0
0.5 0.60 2.31 0.097 18
1.0 3.90 4.61 0.078 45
1.5 0.90 6.92 0.066 81
2.0 .71 T.27 0.0356 100
2.5 0.51 6.47 0.048 103
3.0 .30 4.61 0.042 84
3.5 0.19 3.41 0.034 77
Notes:

1., The Duration Weighting Factor (DWF) used is 1.0 for the
expected duration of strong ground motion for a M= 7}
earthquake.

2. The building resistance factor (Rg) is assigned a value of
1.3 for typical reinforced concrete structures in California.



TABLE 12 CALCULATED DAMAGE POTENTIAL INDICES FOR SAN FRANCISCO

BAYSHORE SITES FOR MAGNITUDE 8+ EARTHQUAKE BASED ON
1980 SEAGC RECOMMENDATION

SAN FRANCISCO BAYSHORE SITES
Magnitude 8+ earthquake occurring at a distance of 6 miles
Building Spectral Spectral Lateral Force Damage
Period Accelera-! Velocity Coefficient Potential
tion (K = 0.8) Index
T Sa Sv k (Sv/k-Rf)-DWF
(sec) (g) (fps) (fps)
0.0 0.40 0.00 0.112 4]
0.5 1.08 2.77 0.097 30
1.0 1.40 7.17 0.078 95
1.5 1.40 10.76 0.066 169
2.0 1.20 12.30 0.056 228
2.5 0.75 9.61 0.048 208
3.0 0.52 7.99 0.042 198
3.5 0.30 5.38 0.034 164
Notes:

1. The Duration Weighting Factor (DWF) used is 1.35 for the
expected duration of strong ground motion for a M= 8+ earthquake.

2. The building resistance factor (Rf) is assigned a value of 1.3

for typical reinforced concrete structures in California,
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TABLE 13 CALCULATED DAMAGE POTENTIAL INDICES FOR SAN FRANCISCO

STIFF SOIL SITES FOR MAGNITUDE 7% EARTHQUAKE BASED ON
1980 SEAOC RECOMMENDATION

STIFF SOIL SITES IN SAN FRANCISCO

Magnitude 7} earthquake occurring at a distance of 6 miles

Building Spectral Sbectral Lateral Force Damage
Period Accelera- Velocity Coefficient Potential
tion {K = 0.8) Index
T Sa Sv k (Sv/koRf).DWF
{sec) (g) (fps) (fps)
6.0 6.45 0.00 0.112 0
g.58 0.90 2.31 0.112 16
1.0 0.48 2.38 0.073 25
1.5 0.32 2.41 0.044 42
2.0 0.23 2.31 0.038 47
2.5 0.18 2.27 0.034 51
3.¢ 0.15 2.38 0.031 58
3.5 0.13 2.36 0.029 63
L

L.

The Duration Weighting Factor (DWF) used is 1.0 for the
expected duration of strong ground motion for a M = 7}
earthquake.

The building resistance factor (Rf) is assigned a value of

1.3 for typical reinforced concrete structures in Californis.
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TABLE 14 CALCULATED DAMAGE POTENTIAL INDICES FOR SAN FRANCISCO
STIFF SOIL SITES FOR MAGNITUDE 8+ EARTHQUAKE BASED ON

1980 SEAOC RECOMMENDATION

STIFF SOIL SITES IN SAN FRANCISCO
Magnitude 8+ earthquake occurring at a distance of 6 miles
Building Spectral Spectral Lateral Force Damage
Period Accelera- Velocity Coefficient Potential
tion (K = 0.8) Index
T Sa Sv k (Sv/k-Rf)~DWF
(sec) (g) (fps) (fps)
0.0 0.55 0.00 0.112 0
0.5 1.10 2.82 0.112 26
1.0 0.57 2.90 0.073 41
1.5 0.38 2.92 0.044 69
2.0 0.28 2.82 0.038 77
2.5 0.22 2.82 0.034 8§
3.0 g.19 2.88 0.031 96
3.5 0.186 2.88 0.029 103
Notes:

1. The Duration Weighting Factor (DWF) used is 1.35 for the
expected duration of strong ground motion for a M = 8+
earthquake,

2. The building resistance factor (R¢) is assigned a value of 1.3

for typical reinforced concrete structures in California.
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Bayshore sites underlain by soft Bay mud typically 35 to 40 ft in thickness,
is significantly higher than that for similar structures supported on the
stiff soil sites in the main part of San Francisco, indicating the greater
vulnerability of multi-story buildings constructed on Bayshore clay deposits
in comparison with those on the stiffer alluvium underlying the greater part
of the city.

Figure 49 shows the computed Damage Potential Index values correspond-
ing to a Magnitude 8+ earthquake, with a shaking duration of about
70 seconds, in the San Francisco Bay area. Also shown for comparison are
the Damage Potentlal Index values for the heavy damage area of Mexico City
in 1985. The significant increase in calculated values of Damage Potential
Index for San Francisco Bayshore sites on clay for this Magnitude 8+ earth-
quake over those for a Magnitude 74 event results from the combined effects
of the increase in acceleration level of the input motion, the increase in
duration of significant shaking and the increase in low-frequency content of
the rock outcrop motions. It is readily apparent that the computed values
of Damage Potential Index for Bayshore sites underlain by clay in such an
earthquake are comparable to those developed in the heavy damage area of
Mexico City in 1985.

For the three Bayshore sites that have been analyzed, buildings which
have natural periods in the range of 1.5 to 2.5 seconds exhibit the hiphest
damage potentials. The peak Damage Potential Index within this range for
Bayshore sites underlain by clay is about 250 fps for buildings designed
with structural systems corresponding to X = 0.8 or K = 1.0. These values
are somewhat higher than those corresponding to the heavy damage area of
Mexico City in 1985. In the case of Mexico City, Damage Potential Index

values reached levels of about 250 fps and nearly 307 of the mid-rise 9- to
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12-story buildings (typically with periods between about 1.5 to 2.5 seconds)
located inside the heavy-damage zone either collapsed or suffered major
damage. Fortunately only a relatively small section of San Trancisco is
underlain by soil conditions of this type. For buildings constructed in
San Francisco on stiff soil sites, the damage potentials are significantly
lower than for Bayshore sites underlain by soft clay and they are also
significantly lower than the Damage Potential Index values calculated for
the heavy damage area of Mexico City, indicating a significantly lower

degree of vulnerability than that exhibited by buildings in Mexico City.

Lateral Force Requirements Recommended by SEAQC (1988)

The new '"Recommended Lateral Force Regquirements and Tentative
Commentary' proposed by the Seismology Committee of SEAOC in 1988,
recommends that the soil factor S in the present code be replaced by a
series  of site-specific spectra and corresponding lateral force
coefficients. The recommended spectral shapes for three site conditions,
designated S1, 52, and S3 are shown in Fig. 50.

At the same time, it was suggested (Donovan et al., 1978) that the
site specific spectra shown in Fig. 50 could be effectively converted into

design lateral force coefficients by means of the eguation:

ZICGC
V=1.25
R, T2/3
where 7 = a seismic zone factor ranging from 0 (non-seismic) to 0.4, (see

Seismic Zoning map for California shown in Fig. 51,
I = an importance coefficient having wvalues 1.0 for standard

occupancy and 1,25 for hazardous or essential facilities,
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Zone* Sl 2 3 4

* The Zone shall be determined from the Seismic Zone Map in Figure
T 1-a,

** Not used in California.

FIG. 51 SEISMIC ZONING OF CALIFORNIA AND THE SEISMIC ZONE
FACTOR
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&

A numerical coefficient, ranging from 4 to 12, depending on the

structural system as shown in Table 15,

T = Fundamental period of the structure in seconds,
W = The total dead load and the applicable portions of other loads,
and S = A site coefficient, determined by the soil characteristies at

the site, as shown in Table 16, and ranging in value from 1.0
for rock or stiff sites (81) to 2.0 for sites containing thick
layers of soft clay (S4). The last soil category, S4, was added
in recognition of the effects observed in Mexico City in the
earthquake of 1985 where the soft Mexico City clay greatly
amplified the rock motions in some areas and caused severe
damage to the city.

Thus with these new provisions there will be four soil conditions
recognized for each of the four different seismic zones, and the design
spectra for the highest intensity Zone 4 will have the general forms shown
in Fig. 52.

For typical structures of normal importance constructed in
San Francisco, under the new SEAOC code provisions, appropriate parameters
for use in pseudo-static analyses would be as follows: Z = 1.0, I = 1.0,
and Ry = 10 (Bertero, 1988). Values of S would vary with the soil
conditions at the proposed building site.

Figure 53 shows a comparison of the design lateral force coefficient
.requirements for the present code (1974 to 1988) and the new SEAOC
recommendations for stiff soil conditions, Although the expression for
determining wvalues of the lateral Fforce ccefficient has been modified
significantly in the new Code, values of the coefficient itself are fairly

consistent with those required by the present code, especially in the long
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TABLE 15 SEAOC RECOMMENDATION (1988} FOR STRUCTURAL SYSTEM
PARAMETER R

W
Basic Structural Lateral Load Resisting System — Description R, H®
System(D)
A, Bearing Wall 1. Light Framed Walls With Shear Panels
System a. Plywood Walls for Structures 3-stories or Less 8 65
b. All Other Light Framed Walls 6 65
2. Shear Walls
a. Concrete 6 160
b. Masonry 6 120
3. Light Steei Framed Bearing Walls With
Tension-Only Bracing
4, Braced Frames Where Bracing Carries
Gravity Loads
a. Steel 6 160
b. Concretet3) 4 -
¢. Heavy Timber 4 65
B. Building Frame 1. Steel Eccentric Braced Frame (EBF) 10 240
Systern 2. Light Framed Walls With Shear Panels
a. Plywood Walis for Structures 3-stories or Less 9 65
b. All Other Light Framed Walls 7 65
3. Shear Walls
a. Concrete 8 240
b. Masonry 8 160
4, Concentric Braced Frames
a. Steel 8 160
b. Concretel®) 8 -
¢. Heavy Timber 8 65
C. Moment Resisting 1. Special Moment Resisting Space Frames
Frame System {SMRSF)
a. Steel 12 NL®
b. Concrete 12 N.L.
2. Concrete Intermediate Moment Resisting Space 7 -
Frames (IMRSF)(6)
3. Ordinary Moment Resisting Space Frames
a. Steel 12 160
b. Concrete? 5 -
D. Dual System I. Shear Walls
a. Concrete With SMRSF 12 N.L.
b. Concrete With Concrete IMRSF 9 160
¢. Masonry With SMRSF 8 160
d. Masonry With Concrete IMRSF? 7 -
2. Steet EBF With Stecl SMRSF 12 N.L
3. Concentric Braced Frames
2. Steel With Stect SMRSF i0 N.L.
b. Concrete With Concrete SMRSF(3) 9 -
¢. Concrete With Concrete IMRSF(3) 6 -
E. Undefined See Section 1D%b - -

Systems




TABLE 16 SITE COEFFICIENTS RECOMMENDED BY SEAOC (1988)

Type Description S Pactor

51

52

S3

Sq

A s0il profile with either: 1.0

{a) A rock-like material characterized
by a shear-vave velocity greater than
2,500 feet per second or by other

suitable weans of classification, or

(b) stiff or dense soil condition where
the soil depth is less than 200 feet.

A soil profile with dense or stiff soil 1.2
conditions, vhere the soil depth exceeds
200 feeb or more,

A soil profile 40 feet or more in depth 1.5
and containing more than 20 feet of soft

to medium stiff clay but not more than

40 feet of soft clay.

A soil profile containing more than 2.0
40 feet of soft clay.

()]

The site factor shall be established from properly substantiated
geotechnical data. In locations where the soil proverties are
not known in sufficient detail to determine the soil profile
type, soil profile S5 will be vsed unless the Building Officiatl
determines that soil profile S; may be present at the site, in
which case soil profile 5; will be used.

102
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FIG. 52 DESIGN SPECTRA FCR STRUCTURES LOCATED IN ZONE 4
(after Seed, 1986)
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period range. It does appear, however, that the new design criteria impose
less stringent requirements for low- to mid-vise buildings with natural
periods between about 0.5 to 1.2 seconds on stiff soil sites. The
requirement for extremely stiff buildings on stiff soil sites, however, is
almost unchanged.

The new SEAOC recommendations for lateral force coefficients for soft
clay sites (type S4), on the other hand, are now somewhat more conservative
than those required by the present code, This 1s illustrated by the
comparative values presented on Fig. 54, which show an increase in design
requirements of roughly 107 to 207, over nearly the entire period range.

Calculated Damage Totential Index Values for San Francisco Stiff Soil and
San Francisco Bayshore Sites Based on 1988 SEAQC Recommendations

Damage Potential Indices for San Francisco and the San Francisco Bay
area have been recalculated based on the expected ground motions as derived
previouély (Figs. 41 and 43) together with the new Code provisions (Fig. 53
and 54).

For a Magnitude 7% eafthquake, . Table 17 and Table 18 show the
calculation of ﬁamage Potential Index values for stiff soil sites in San
Francisco and San Francisco Bayshore sites underlain by clay respectively;
the results of these computations are plotted in Fig. 55. Compared with the
damage potentials for San Francisco under the present code requirements
(Fig. 48), the damage potentials are slightly lower for Bayshore sites and
about the same for stiff soil sites. The damage potentials for both site
conditions are significantly lower than those for Mexico City in the 1985
earthquake.

Table 19 and Table 20 show the calculation of Damage Potential Indices

for San Francisco stiff soil sites and Bayshore sites underlain by clay in
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TABLE 17 CALCULATED DAMAGE POTENTIAL INDICES FOR SAN FRANCISCO

STIFF SOIL SITES FOR MAGNITUDE 7% EARTHQUAKE BASED ON
1988 SEAOC RECOMMENDATION

STIFF SOIL SITES IN SAN FRANCISCO
Magnitude 71 earthquake occurring at a distance of 6 miles
Building Spectral Spectral Lateral Force Damage
- Period Accelera- Velocity Coefficient Potential
tion (K = 0.8) Index
T Sa Sv k (Sv/keRg )+ DWF
(sec) (g) (fps) (fps)
0.0 0.45 0.00 0.110 0
0.5 0.90 2.31 0.079 22
1.0 0.46 2.38 0.050 37
1.5 0.32 2.41 0.038 49
2.0 0.23 2.31 0.032 56
2.5 0.18 2.27 0.030 58
3.0 0.15 2.35 0.030 80
3.5 0.138 2.36 0.030 60
Notes:

1. The Duration Weighting Factor (DWF) used is 1.0 for the
expected duration of strong ground motion for a M = 7%
earthquake.

2. The building resistance factor (Rf) is assigned a value of

1.3 for typical reinforced concrete structures in California.
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TABLE 18 CALCULATED DAMAGE POTENTIAL INDICES FOR SAN FRANCISCO
BAYSHORE SITES FOR MAGNITUDE 73 EARTHQUAKE BASED ON

1988 SEAOC RECOMMENDATION

SAN FRANCISCO BAYSHORE SITES
Magnitude 7} earthquake occurring at a distance of 6 miles
Building Spectral Spectral Lateral Force Damage
Period Accelera- Velocity Coefficient Potential
tion (K = 0.8) Index
B T Sa Sv k (8v/KeRy)« DWF
(sec) {g) (fps) (fps}
0.0 0.40 0.00 0.11¢0 0
0.5 0.90 2.31 0.110 16
1.0 0.90 4.61 0.100 35
1.5 0.90 6.92 0.077 69
2.0 0.71 7.27 0.063 a9
2.5 0.51 6.47 0.054 92
3.0 0.30 4.61 0.048 74
3.5 0.19 3.41 0.043 61
Notes:

1. The Duration Weighting Factor (DWF) used is 1.0 for the
expected duration of strong ground motion for a M = 7§

earthquake.

2. The building resistance factor (Rf) is assigned a value of
1.3 for typical reinforced concrete structures in California.
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TABLE 19 CALCULATED DAMAGE POTENTIAL INDICES FOR SAN FRANCISCO

STIFF SOIL SITES FOR MAGNITUDE 8+ EARTHQUAKE BASED ON
1988 SEAOC RECOMMENDATION

=
STIFF SOIL SITES IN SAN FRANCISCO
Magnitude 8+ earthquake occurring at a distance of & miles
Building Spectral Spectral Lateral Force Damage
Period Accelera- Velocity Coefficient Potential
tion (K = 0.8} Index
T Sa Sv k (Sv/keR¢)+ DWF
(see) (g} (fps) (fps)
0.0 0.55 0.00 0.110 o
0.5 1.10 2.82 0.079 37
1.0 g.57 2.90 0.050 60
1.5 0.38 2.92 0.038 80
2.0 0.28 2.82 0.032 92
2.5 .22 2.82 0.030 98
3.0 0.19 2.88 0.030 100
3.5 0.16 2.88 0.030 100
B
Notes:

1. The Duration Weighting Factor (DWF) used is 1.0 for the
expected duration of strong ground motion for a M = 7%
earthquake.

2. The building resistance factor (R¢) is assigned a value of
1.3 for typical reinforced concrete structures in California.

110
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TABLE 20 CALCULATED DAMAGE POTENTIAL INDICES FOR SAN FRANCISCO
BAYSHORE SITES FOR MAGNITUDE 8+ EARTHQUAKE BASED ON
1988 SEAOC RECOMMENDATION

SAN FRANCISCO BAYSHORE SITES
Magnitude 8+ earthquake occurring at a distance of 6 miles
Building Spectral Spectral Lateral Force Damage
"Period Accelera- Velocity Coefficient Potential
tion (K = 0.8) Index
T Sa Sv k (Sv/k-Rf)-DWF
(sec) (g) (fps) (fps)
0.0 0.40 0.00 0.110 0
0.5 1.08 2.77 0.110 26
1.0 1.40 7.17 0.010 74
1.5 1.40 10.76 0.077 145
2.0 1.20 " 12.30 . 0.063 203
2.5 0.75 g.681 0.054 185
3.0 0.52 7.99 (0.048 173
3.5 .30 5.38 0.043 130
§

1. The Duration Weighting Factor (DWF) used is 1.0 for the
expected duration of stromg ground motion for a M = 7%
earthquake.

2. The building resistance factor (Rf) is assigned a value of
1.3 for typical reinforced concrete structures in California.
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the event of a Magnitude 8+ earthquake. TFig. 56 shows a plot of these
results together with data for Mexico City in 1985. It is clear that a
Magnitude 8+ earthquake (say about 60 to 90 seconds in duration) on the
San Andreas fault at a close distance from San Francisco, will generate
computed values of Damage Potential Index for Bayshore sites underlain by
thick layers of soft Bay mud comparable to those computed for the heavy
damage area of Mexico City in the 1985 earthquake, even with the new
regulations. Compared with Fig. 49, the new provisions have lowered values
of the Damage Potential Index values for buildings with periods in the range
of 1.5 to 2.5 seconds by about 127. However the increase 1in code
requirements 1is apparently not sufficient to reduce significantly the
computed damage potentials for mid-rise (10 to 20 stories) buildings. This
is especially significant in view of the fact that the em;rgency building
code for Mexico City, enforced shortly after the 1985 earthquake, increased
the code requirements for the elastic design spectrum for buildings on clay
sites by about 677 over the entire period range (see Fig. 57) and imposed a
more stringent requirement on the Ductility Factor {(Q) with which to bring
the elastic spectrum down to values of design lateral coefficient. Thus for
a typical semi-ductile building constructed on clay, the new Mexico City
code requires lateral force coefficients almost 2 times (actual 20/9 times)
higher than the pre-1985 code.
Comparison of computed values of Damage Potential Index for
1. The heavy damage area of Mexico City as conditions existed at the
time of the 1985 earthquake,
2. The heavy damage area of Mexico City under the conditions
resulting from the code revisions in Mexico City following the

1685 earthquake,
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and 3.

are shown

1.
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San Francisco sites underlain by étiff alluvium and by soft clay
under the provisions of the newly-revised 1988 SEAQC Code for
ground motions representative of those produced by Magnitude 7%
and 8+ earthquakes on the 8an Andreas fault,

in Figs. 58, 59 and 60. It may be seen from these results that:
For a Magnitude 74 earthquake on the San Andreas fault in close
proximity to San Francisco, the values of Damage Potentials Index
provided for structures on stiff alluvial sites by the new (1988)
code are significantly lower than those provided by the interim
Mexico City code for buildings in the heavy damage area of Mexico
City; and for structures constructed on sites underlain by soft
San Francisco Bay mud, Damage Potential Index values are quite
comparable to those provided by the interim Mexico City code for
buildings in the heavy damage area of Mexico City (see Fig. 58).
For a Magnitude 8+ earthquake on the San Andreas fault in close
proximity to San Francisco, similar to the 1906 earthquake, the
values of Damage Potential Index provided by the new (1988) code
tor sifes underlain by stiff alluvium are significantly lower than
those for the heavy damage area of Mexico City in 1985 and they
are generally about the same as those provided by the new Mexico
City code for the heavy damage area in Mexico City.

For a Magnitude 8+ earthquake on the San Andreas fault in close
proximity to San Francisco, similar to the 13906 earthquake, the
values of Damage Potential Index provided by the new (1988) code
for sites underlain by deposits of soft clay are generally similar
to those existing in the heavy damage zone of Mexico City in 1985

and very much higher (by about 100%) than those now provided by
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the new interim code for clay sites in the heavy damagefarea of
Mexico City.

This apparently high vulnerability of San Francisco Bayshore sites
underlain by significant depths of clay would seem to indicate the need for
a careful re-evaluation of the new SEAOC Code recommendations if it is de-
sired to provide acceptable levels of safety for such sites in a possible
repetition of the 1906 earthquake. Fortunately the area affected in
San Francisco itself is relatively smali and the probability of a Magnitude
8+ earthquake in the San Francisco Bay area in the next 30 years is rated
relatively low (less than about 10%) in a recent study by the U.S.
Geological Survey. However over a longer time period the probability of
such an K earthquake increases significantly and the implications of this
study would seem to merit careful consideration in the light of this fact,
not only for sites in San Francisco itself but alse for areas around the
‘Bayshore which are currently under development.

It is not the purpose of this report to suggest necessary actions for
implementation in building codes; this can only be done by professional
organizations like the Structural Engineers Association of California. It
would seem desirable however that code requirements for sites underlain by
San Francisco Bay mud in the San Francisco area be re-evaluated to ensure
that they are compatible with their intended goals in the 1light of all of
the facters involved, some of which (e.g. quality of construction) are not
taken into account by such simple parameters as Damage Potential Index. At
the same time, it is helieved that comparisons based on Damage Potential
Index values or similar parameters provide a reasonable basis for assessing
in a quantitative way the combined effects of a number of considerations

including ground motion characteristics, soil c¢onditions, design lateral
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force coefficients and observed damage intensities in Mexico City in
comparing design criteria in different countries and for different regions.
It is hoped that the studies described in this réport may serve as a guide
in the continuing studies of site effects and design criteria for
earthquake-resistant design undertaken by SEAOC and other agencies, and that
similar evaluations may also be considered appropriate and useful for other

cities underlain by clay deposits.
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