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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER's research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

• Existing and New Structures
• Secondary and Protective Systems
• Lifeline Systems
• Disaster Research and Planning

This technical report pertains to Program 3, Lifeline Systems, and more specifically to the study
of dams, bridges and infrastructures.

The safe and serviceable operation of lifeline systems such as gas, electricity, oil, water, com­
munication and transportation networks, immediately after a severe earthquake, is of crucial
importance to the welfare of the general public, and to the mitigation of seismic hazards upon
society at large. The long-term goals of the lifeline study are to evaluate the seismic performance
of lifeline systems in general, and to recommend measures for mitigating the societal risk arising
from their failures.

In addition to the study of specific lifeline systems, such as water delivery and crude oil transmis­
sion systems, effort is directed toward the study of the behavior of dams, bridges and infrastruc­
tures under seismic conditions. Seismological and geotechnical issues, such as variation in
seismic intensity from attenuation effects, faulting, liquefaction and spatial variability of soil
properties are topics under investigation. These topics are shown in the figure below.

Program Elements and Tasks

Dams

• Fragility Curves
• Computer Codes
• Risk Assessment

and Management

Bridges
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Recommend Response
Modification Factor
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iii
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• Inspection, Maintenance

and Repair
• Non-destructive Tests

(NOT) and Inspection
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Identification Techniques
(INTELAB)
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In this report, the authors investigate whether the assumption of synchronous wave emission
from an oscillating pile is a reasonable engineering approximation. A second, broader objective
of the report is to obtain a more comprehensive physical insight into the nature of wave propaga­
tion in a single, harmonically-oscillating pile, embedded in a homogeneous soil.
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ABSTRACT

Analytical solutions are developed for the harmonic wave propagation in an axially or

laterally oscillating pile embedded in homogeneous soil and excited at the top. Both

fixed-head and free-head piles are considered. Pile-soil interaction is realistically

represented through a dynamic Winkler model, the "springs" and "dashpots" of which

are given values based on results of finite-element analyses with the soil treated as a

linear hysteretic continuum. Closed-form expressions are derived for the phase

velocities of the generated waves; these are compared with characteristic phase wave

velocities in rods and beams subjected to compression-extension (axial) and flexural

(lateral) vibrations. The role of radiation and material damping is elucidated; itis

shown that the presence of such damping changes radically the very nature of the wave

propagation, especially in lateral oscillations where an upwardpropagating ("reflected")

wave is generated even in a semi-infinite head loaded pile. Solutions are also developed

for the phase differences between pile displacements at various depths. It is shown that

for most piles, such differences would not be significant and, therefore, waves would

emanate nearly simultaneously from the periphery of an oscillating pile --- a conclusion

useful in analyzing dynamic pile-to-pile interaction, the concequences of which are

illustrated in the report.
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SECTION 1

INTRODUCTION

The work to be presented was prompted by the need to develop a deeper understanding of some

of the wave-propagation phenomena associated with the dynamic response of piles and pile groups.

For instance, it is well known (Kaynia and Kause11982, Nogami 1983, Roesset 1984) that two

neighboring piles in a group may affect each other so substantially that the overall dynamic behavior

of the group could be vastly different from that ofeach individual pile. This pile-to-pile interaction

is frequency-dependent and is a consequence of waves that are emitted from the periphery of each

pile and propagate until they "strike" the other pile.

As an example, for a square group of2 X 2 rigidly-capped piles embedded in a deep homogeneous

stratum, Fig. 1-1 portrays the variation with frequency of the vertical and horizontal dynamic

group stiffness and damping factors, defined as the ratios of the group dynamic stiffness and

dashpot coefficients, respectively, to the sum of the static stiffnesses of the individual solitary piles.

At zero frequency, the stiffness group factors reduce to the respective static group factors (also

called "efficiency" factors) which are invariably smaller than unity.

The continuous curves in Fig. 1-1, adopted from the rigorous solution of Kaynia and Kausel

(1982) , reveal that, as a result of dynamic pile-to-pile interaction, the dynamic stiffness group

factors achieve values that may far exceed the static efficiency factors, and may even surpass unity.

Both stiffness and damping factors exhibit undulations associated with wave interferences, which

are not observed in the single-pile response. Specifically, the peaks of the curves occur whenever

waves originating with a certain phase from one pile arrive at the adjacent pile in exactly

opposite phase, thereby inducing an upward displacement at a moment that the displacement due

to this pile's own load is downward. Thus, a larger force must be applied onto this pile to enforce

a certain displacement amplitude, resulting in a larger overall stiffness of the group, compared to

the sum of the individual pile stiffnesses.

I-I



V E R TIC A L H 0 R I Z 0 N TAL

5 2.0

Sld= 5

~
oo 0

o

o

Sid = 10

o-------------- ------------------------

o 0

o
000

1.5

0.0

1.0
-(4)
K",
4K~I)

0.5

a

Sld=lO
3

o

4

2

Sld= 5

-1

-2

1.:0.80.60.40.2
-0.5 -+--...,.---.---..------"1r---..----,---,--....,.-_-,----.;o

0.0
4.0

1.00.80.60.40.2
-3-+--,.--.---..------r---,.----,----,-----.---,---,

0.0
10

8

6

2

Sld- 10 Sld- 5

3.0

2.0

1.0

o Sld- 10
o 0 0 0

o

.
.

A \

,
,
"­

.......- ..._-----------
o

o

1.00.80.4 0.6

wd
a o-­V •

0.2
0.0 +--r--,--.--r----,-.....---,----r-....,.----,

0.01.00.80.4 0.6
wd

ao-V-
•

0.2
o+---r--,.--,------,r----r----.---r-~-~---,
0.0

Figure. 1-1 Normalized vertical and lateral impedances of a 2X2 pile group. (Ep/Es = 1000,

Lid = 15, v =0.4, /3 = 0.05). Solid curves: rigorous solution of Kaynia & Kausel (1982) Points:

simplified solution of Dobry & Gazetas (1988) left and Makris & Gazetas (1989) right.

Impedances are expressed as K + iaoQ. Subscripts z or x refer to vertical or horizontal mode.

K(4) and Q(4) are the total dynamic stiffness and damping of the 4-pile group; and K(l) is the

static stiffness of the single (solitary) pile.
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Also depicted in Fig. 1-1 as points are the results of a very simple analytical method of solution

proposed by Dobry & Gazetas (1988) and further developed by Makris & Gazetas (1989). The

method introduces a number of physically-motivated approximations and, in fact, it was originally

intended merely to provide an explanation of the causes of the numerically-observed peaks

and troughs in the dynamic impedences of pile groups. Yet, as is evident from the comparison of

Fig. 1-1, the results of the method are remarkably close to the rigorous curves for the three considered

pile separation distances of two, five and ten pile diameters. Even some detailed trends in the group

response seem to be adequately captured by the simple solution.

The fundamental idea of this method is that the displacement field created along the sidewall

of an oscillating pile (in any mode of vibration) propagates and affects the response of neighboring

piles. The most crucial ofthe simplifying assumptions is that the waves created by an oscillating

pile emanate simultaneously from all perimetric points along the pile length, and hence, for a

homogeneous stratum, they form cylindrically-expanding waves that would "strike" an adjacent

pile simultaneously at various points along its length. (That is, the arriving waves are all in phase,

although their amplitudes decrease with depth.)

The question that arises is whether the satisfactory performance of such a simple method is

merely a coincidence (e.g due to cancelation of errors), or is it rather a consequence of

fundamentally-sound physical approximations. Answering this question was one of the motives

for the work reported herein. Bence, the first objective of this paper is to investigate whether the

aforementioned key assumption of synchronous wave emission from an oscillating pile is indeed

a reasonable engineering approximation, and for what ranges of problem parameters.

A second broader objective of the paper is to obtain a deeper physical insight into the nature

of wave propagation in a single harmonically-oscillating pile, embedded in homogeneous soil. To

this end, realistic dynamic Winkler-type models for vertically and horizontally oscillating single

piles are developed, from which analytical solutions are derived for the (a) apparent phase velocities

of the waves propagating along the pile and (b) for the variation with depth of pile displacements

1-3



and phase-angle differences. A limited number of rigorous finite-element results are also obtained

to substantiate the findings of the Winkler model. It is shown that, indeed, the apparent phase

velocities are for typical piles quite large and the displacement phase differences correspondingly

small, especially within the upper, most active part of the pile. It is also found that at very high

frequencies the phase velocities in a pile embedded in homogeneous soil become assymptotically

equal to the wave velocities of an unsupported bar or beam in longitudinal and flexural oscillations.
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SECTION 2

PROBLEM DEFINITION

\

The problem studied in this report refers to a single floating pile embedded in a uniform halfspace

and subjected at its head to a harmonic loading ofcircular frequency w. The pile is a linearly-elastic

flexural beam with Young's modulus Ep , diameter d, cross section area A, bending moment of

inertia I, and mass per unit length m. The soil is modeled as dynamic Winkler medium, resisting

pile displacements through continuously-distributed linear "springs" (kx or ~) and "dashpots" (cx

or cz), as sketched in Fig. 2-1 for horizontal (x) and vertical (z) motion. The force to displacemeut

ratio of the Winkler medium at every depth defines the complex-valued impedances kx + iwcx

(horizontal motion) or kz + iwcz (vertical motion), i = -v=T, where Cx and Cz would, in general,

reflect both radiation and material damping in the soiL

Frequency-dependent values are assigned to these "spring" and "dashpot" coefficients, using

the following algebraic expressions developed by fitting parametric results from dynamic

finite-element analyses, for a Poisson's ratio of 0.40 (Roesset & Angelides, 1979; Blaney, Kausel

& Roesset, 1976; Gazetas & Dobry, 1984)

For the problem of axial vibration we use:

(2.1a)

cz "" (cz ) .. + (CZ)h .
radiatlon ystereSIS

(2.1h)

For the problem of lateral vibration the spring coefficient depend on the boundary condition of the

pile head. Accordingly we use:
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fixed head

free head

(2.2a)

(2.2b)

(2.2c)

in which: J3, Ps, Es and Vs =hysteretic damping, mass density, Young's modulus and S-wave

velocity of the soil, respectively; and

rod
ao=­

Vs

(2.3)

The Cx values obtained from Eq. 2.2-c apply in reality only for frequencies ro above the stratum

cutoff frequency ws , which is essentially identical to the natural frequency, (rr./2)V/H, in

horizontal (shear) vibrations of the soil stratum; for w < Ws radiation damping is vanishingly small,

in function ofthe material damping; one may then state: Cx "" (cx)h I " Similarly, the czexpression. ys ereSlS

in Eq. 2.1-b applies only for w> we , i.e for frequencies beyond the stratum cut-off frequency in

vertical compression-extension vibration; for ro < we , Cz "" (cz)hYSleresis'

It is emphasized that the above expressions have been determined so that the horizontal and

vertical stiffness at the head of the pile embedded in the Winkler soil model would be essentially

identical to the respective of the pile head stiffnesses in the continuum (finite-element) soil model.

Thus, the pile-soil models used in this study (Fig. 2-1 and Eqns. 2.1, 2.2) constitute reasonably

accurate representations of a pile in a deep homogeneous soil stratum (see also: Liou & Penzien

1979).
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SECTION 3

AXIAL VmRATION

3.1 Governing equations and solution

For relatively very short (LId < 10) and stiff ( Ep I Es > 8000) piles, the basic validity of the

simplifying assumption of synchronous wave emission is self-evident, since such piles respond

essentially as rigid bodies to axial loading (static or dynamic). For the other extreme case, of long

and flexible piles, the pile is considered herein as an infinite elastic "thin" rod (i.e., lateral-inertia

effects are ignored-- in accordance with classical rod theory). The deflected state of such a pile

and the forces acting on an element are sketched in Fig. 2-1. For harmonic steady-state oscillations,

the vertical displacement v(z , t) of a point on a cross section of the pile at depth z and time t can

be written as

v(Z,t) =v(z)e irot

and dynamic equilibrium yields

(3.1)

(3.2)

Solutions are obtained separately for each of the two possible cases: w< O)z and 0) ~ Wz where

Wz is the characteristic frequency:

(3.3)

First: 0) < O)z. In view ofEq. 2.3, this inequality translates approximately to ao< 1.5 , which

is the usual range of practical interest in foundation problems. Eq. 3.2 can be written as

(3.4)
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where ').} is a complex number with

2 k.-mol
Re{A. } = E A > 0

p

By applying De Moivre's formula A. takes the form

in which

(3.5a)

(3.5b)

(3.6)

(3.7)

(
OOC. Je=Arctan 2 '

k. - mOO

The solution to Eq. 3.4 is

(3.8)

(3.9)

For the displacement to remain finite as z tends to infinity Al must vanish. Calling Vo the

displacement amplitude at the pile head (z =0) leads to

(3.10)

This equation represents a traveling wave of amplitude decreasing exponentially with depth

and of phase velocity
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ffic=--ct • e
RSllli

dispersion relation (3.11)

in which both Rand eare functions of the frequency (OJ) and damping (cz ).

Second: ffi ~ OJ•• This inequality translates to approximately ao> 1.5, a frequency range of

lesser interest, but which is nevertheless examined herein as providing insight into the asymptotic

behavior at high frequencies. The solution now takes the form

Rsin~. {ffit-RCOS~')
v(z,t) = Voe 2 e 2

where

and

(3.12)

(3.13)

(
-ffie Je= Arctan 2"

mOJ -k.
(3.14)

Equation 3.12 represents a traveling wave with amplitude decreasing exponentially with depth and

phase velocity

ffica,= e
Rcosi

3.2 Characteristics of the results

dispersion relation (3.15)

From the dispersion relation of Eq. 3.11, the ratio of the pile phase velocity to the soil S-wave

velocity is obtained (see Appendix A) :
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(3.16)

where

(3.17)

11 = 0.6(1 +0.5~), (3.18)

This ratio, CJVs ' is plotted versus ao in Fig. 3-1 for two different characteristic values of

relative pile stiffness Sz = EplEs =1000 and 5000, and for a low (004) and a high (0.6) value of the

product SIS3' Note that in the frequency range of greatest practical interest, i.e for 0.2< ao < 0.8,

the ratio CJVs attains relatively high values, of the order of 40 for EplEs = 1000 and 85 for EiEs

=5000. As a result, phase differences introduced by waves travelling down the pile would be

negligible compared with the phase differences due to S-waves travelling in the soil from one pile

to another. Thus, for example, with a pile of L=20d and Pp = lAps the error committed by

assuming "synchronous" wave emission would be of the order of 8% (for E/Es = 1000) and

3% (for EiEs = 5000).

To see this more clearly, the phase angle from Eq. 3.10 is

~(z)=rot-Rzsin~

where e and R can be rewritten in dimensionless fonn as

3-4
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(3.21)

Fig. 3-2 plots the phase differences ~<I> = ~<I>(z) between the displacement of a section at depth z

and that at the head of the pile, for the two considered values of E/Es (1000 and 5000) and two

values of ao (0.2 and 0.5). Evidently, even in the case of a relatively flexible pile, the pile at a

depth z=20d has a phase difference with the head of only about 150
• For the stiffer pile : ~<I> s 80

These differences are indeed insignificant (within engineering accuracy) and therefore the

assumption of synchronous emission is a reasonable approximation.

Since the above results were derived on the basis of an infinitely-long

Bar-on-Dynamic-Winkler-Foundation, it is of interest to show their general validity for piles of

finite-length supported by a visco-elastic continuum. To this end, a rigorous finite-element study

(Blaney et aI, 1976) is conducted for a pile of slenderness ratio Lid =20 embedded in a deep

homogeneous stratum and having E/Es =1000 or 5000. Fig. 3-3 plots the distribution along the

length of the pile of the real and imaginary parts of the vertical pile displacement, v = v(z), for

the same two values (0.2 and 0.5) of the frequency factor ao• Evidently, the imaginary and real

components of the displacement as well as the resulting phase angle remain nearly constant with

depth; hence, the phase differences between various points along the pile and its head (also plotted

in the figure) are indeed very small, similar to those predicted with the analytical method (Fig.

3-2). Thus, the analytical results and the hypothesis of synchronous wave emission are largely

substantiated. However, in much stiffer soils, for which the moduli ratio E/ Es may perhaps attain

values as low as 400 or less, the apparent phase velocity Cn becomes a smaller multiple of Vs ,

and then for very slender piles (L>40) phase differences along the pile may at higher frequencies

reach 50°. In such cases the assumption of synchronous emission might not be applicable.

An additional observation on the dispersion relation of Eq. 3.11 deserves a note. While Fig.

3-1 plots Ca for a homogeneous halfspace, in reality, bedrock or at least a stiff rock-like soil layer
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Figure 3-3 Distribution with depth of nonnalized vertical pile displacements (Imaginary part

and Real part) and pile-displacement phase differences for an Lid =20 pile in a deep

homogeneous soil with (a) E/Es = 1000 and (b) E/Es =5000. Displacements of soil below the

pile are also plotted. Results were obtained with a dynamic finite element formulation (Blaney et

al 1976) for the two shown values of the frequency factor.
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is likely to exist at some depth below the ground surface. Then the soil deposit is a stratum rather

than a halfspace. Below the stratum cutoff frequency, roc, the pile-soil system radiates very little

energy, and Cz essentially reflects only the hysteretic material damping in the soil. Without material

damping Cz = 0, and the solution reduces to the case discussed by Wolf (1985, 1988), in which the

phase velocity is indeed infinite (since e=0). Therefore, as a first approximation, for

(3.22)

In general, however, the phase velocity is finite as long as there exist a mechanism of energy

dissipation along the pile (radiation or material damping).

It is also of interest to study the complete evolution of the phase wave velocity over an extreme

range of frequencies (0 < ao< 10) . This is done in Fig. 3-4 for a pile with E/E. =5000 and two

different pile mass densities: PP = lAps and 0.7ps' The solid curve represents the developed

dispersion relation; it is obvious that Eq. 3.11 and Eq. 3.21 give the same value for both Ca and

dCa/daoat the characteristic frequency, roz • Also plotted in Fig. 3-4 are the dispersion relations

of two other simpler associated systems:

- a semi-infinite rod on Elastic-Winkler foundation, and

- a semi-infinite unsupported rod

These two systems have been studied extensively in the wave-propagation literature (e.g. Graff

1975, Achenbach, 1976), and are obviously particular cases of the pile system studied herein (Fig.

2-1). The phase velocity, CE for the rod on elastic foundation is recovered from Eqs. 3.11 and 3.21

by setting Cz =0, at all frequencies. As discussed by Wolf (1985) and mentioned earlier herein,

CE becomes infinite at and below the characteristic frequency roz • Therefore:

(3.23a)

3-9



P
p

=
0

.7
P

s

E
p

iE
s

=
5

0
0

0

C
E

I , , , , , , , , , ,
, , , , \ \ \ \ \

\

\
1

'"
J

"

...
...

._
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--

0
0
1

C
~
l

_
--

-

3
0

0

tJ

1
0

0

2
0

0

'"
~ '-

W I o

0
6

I
~
T

I
~

I
~

I
b

I
1'0

w
z
d

V
s

w
d

Q
o

=
V

s

F
ig

ur
e

3-
4

C
om

pa
ri

so
n

o
fd

is
pe

rs
io

n
re

la
ti

on
s

fo
r

th
re

e
lo

ng
it

ud
in

al
ph

as
e

w
av

e
ve

lo
ci

ti
es

:
C

o.
'

fo
r

a
pi

le
su

pp
or

te
d

on
ax

ia
l

"s
pr

in
gs

"
an

d
"d

as
hp

ot
s"

(m
od

el
in

g
em

be
dm

en
ti

n
ha

lf
sp

ac
e)

;
C

E
,

fo
r

a
ba

ro
n

ax
ia

l
"s

pr
in

gs
";

an
d

C
L

fo
r

an
un

su
pp

or
te

d
ba

r.
T

w
o

di
ff

er
en

t
pi

le
m

as
s

de
ns

it
ie

s.



W I

II
I

~ .....
... lJ

3
0

0

2
0

0

1
0

0

00
1\

I I I I I I I 1 1 1 I 1 1 I I 1 "
C

E

\) \ \ \
\

\'
, .....

.. .....
.~~

~~
~~
~-
--
--
--
--
--
--
-

\
- C

L

E
p

iE
s

=
5

0
0

0

P
p

=
1

.4
Ps

0
6

t
:2

4
6

8
1

0
w

d
w

z
d

a
=

-

-
o

V
V

s
s

F
ig

ur
e

3-
4

C
om

pa
ri

so
n

o
fd

is
pe

rs
io

n
re

la
ti

on
s

fo
r

th
re

e
lo

ng
it

ud
in

al
ph

as
e

w
av

e
ve

lo
ci

ti
es

:
C

a.
'

fo
r

a
pi

le
su

pp
or

te
d

on
ax

ia
l

"s
pr

in
gs

"
an

d
"d

as
hp

ot
s"

(m
od

el
in

g
em

be
dm

en
ti

n
ha

lf
sp

ac
e)

;
C

E
,

fo
r

a
ba

ro
n

ax
ia

l
"s

pr
in

gs
";

an
d

C
L

fo
r

an
un

su
pp

or
te

d
ba

r.
T

w
o

di
ff

er
en

tp
il

e
m

as
s

de
ns

it
ie

s.



(3.23b)

The phase velocity CL for longitudinal waves in an unsupported rod ( called "bar" or "rod"

wave velocity) is equal to ...jE/pp only when lateral-inertia effects are ignored. However, for the

frequency range studied, ao < 10, the decline of CL with frequency ("Pochhammer" effect) is

indistinguishable in the scale of the figure.

Fig. 3-4 reveals an interesting feature: all three phase wave velocities, Co.' CE and CL , reach

identical asymptotic values at high frequencies. It appears that at such high frequencies pile

inertia effects dominate, while the resistance of the supporting "springs" and "dashpots" becomes

negligibly small, in comparison.
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SECTION 4

LATERAL VIBRATION

4.1 Active Length of Vibrating Pile

For lateral excitation the assumption of an infmitely-Iong pile is quite appropriate even for stiff

piles, since their "active" length is usually smaller than the total pile length. Indeed, for a fixed head

pile on Winkler foundation, the" active" length below which the pile deformations are negligible

is given by Randolph (1981):

(
E 1)1/4

l = 4 -p-
c k",

(4.1)

where the expressions for kx for fixed head pile is given from Eq. 2.2a. For the typical values of

E/Es = 1000 and 5000 the "active" length from the above expression is only about 10d and lSd,

respectively. For a free head pile the active length is even smaller and therefore in most cases, piles

respond as infinitely long beams.

4.2 Fixed-Head Pile

4.2.1 Governing equation and solution

The pile is modeled as an Euler-Bernoulli beam (i.e the effects of rotatory inertia and shear

distortion are ignored). The deflected state of the pile and the forces acting on an element are

sketched in Fig. 2-1, with u(z, t) denoting the horizontal displacement at depth z and time t.

Zero slope is imposed at pile head to account for the shape of deformation induced by a

horizontally-translating rigid pile cap ("fixed-head" pile, in geotechnical terminology). For a

harmonic steady-state excitation

U(z,t) = u(z)e irot

and dynamic equilibrium gives

4-1
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(4.3)

The solution to Eq. 4.3 is sought separately for the two cases of (0 < (Ox and (0 ~ (Ox, where (Ox

the characteristic frequency is now:

(4.4)

First: (0 < (Ox' This is again the usual range of greatest interest in foundation dynamics ,

corresponding approximately to ao < 1. Eq. 4.3 reduces to

(4.5)

with

(4.6)

It is convenient to apply the Laplace transform in order to directly accommodate the boundary

conditions:

(4.7)

Denoting by u(s) =L{u(z)} the Laplace transform of u(z) and using standard Laplace-transform

properties, Eq. 4.5 becomes an algebraic equation in the transformed space:

1 S S3
u(s)=ull/(O) 4 4+ UI/(O) 4 4+ U (O) 4 4

S +4A: s +4A: s +4A:

where u'(O) = 0 and

4-2
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(4.9a)

(4.9b)

By applying the inverse Laplace transform leads to the following solution, with the boundary

conditions at z=O incorporated as unknowns:

u(z) = ul/t(O)~(sinAz. COShAZ - COSAZ. sinhAz)
4A

+u(O) (cos AZ. COShAZ) +ul/{O) 2~2 (sin Az. sinh AZ) (4.10)

Alternatively, using Euler's complex notation, the expression of the pile displacement becomes

() • Az( iAz -iAz) (u
lII

(0) ul/(0)J . -Az( iAz -iAz) (utI/(0) ul/(0) )
U Z =-ze e -e --+-- -ze e -e -----

16A3 8A2 16A3 8A2

U( iu -iU) ( utI/(0) U (0)) -U( iu -iU) (Ul/
f
(0) U(0))+e e +e ---+-- +e e +e --+--

16A3 4 16A3 4

Expressing A in polar coordinates in the complex plane,

with

(4.11)

(4.12)

(4.13)

(
cocx J8 = Arctan 2 '

kx-mco
(4.14)
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introducingthe positive real quantities

e . e
a =cos-+sm-

4 4
b

e. e
=cos--sm­

4 4
(4.15)

and carrying out the algebra, leads to

() .( iRaz Rbz -iRbz Raz)(UIll(O)+UIl(O)]
U Z = -l e e - e e ----

16A,3 8A?

.( iRbz -Raz -iRaz -RbZ)(UIlI(O) UII(O)]
-l e e -e e -----

16A,3 8A?

(
iRaz Rbz -iRbz Raz) ( Ull!(0) U(0)]+e e +e e ---+--

16A,3 4

( iRbz -Raz -iRaz -Rbz) ( U
lll

(0) U(0) ]+e e -e e --+--
16A,3 4

To ensure a finite displacement amplitude as z tends to infinity:

Ull!(0) U!I(0)
--+--=0
16A,3 8A?

UIIl(O) u(O)
---+-=0

1611,3 4

Substituting Eqs. 4.17 into Eq. 4.16 and re-introducing e iOll yields:

where Uo= u (0) is the displacement amplitude at the pile head.

4-4
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The fIrst term in the bracket corresponds to a downward propagating wave and the second term

to an upward propagating wave, both with amplitude dacaying exponentially at large z. The two

waves have different phase velocities, given by the following dual "dispersion" relation:

(4.20a)

(4.20b)

Second: ffi ~ ffix ' which translates approximately to ao> 1, a frequency range of lesser

practical interest, which is examined herein as providing insight into the asymptotic behavior at

high frequencies. Dynamic equilibrium gives

(4.21)

where now

(4.22)

Following a similar procedure as the one outlined above, we finally obtain the following solution:

(4.23)

where

(4.24)

e
P = cos­4'

. e
q =-sm­

4
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are real and positive, and

(
-(Oc Je= Arctan mof':'k

x
'

(4.26)

Again two different waves emerge, one propagating downward and one propagating upward, with

respective phase velocities

CJ.= (0
a 9

Rcos'4

Ci = (0
a 9

-Rsin­
4

(4.27a)

(4.27b)

(

2 k )114
In the completely hypothetical case of cx=O, e= 0, p=l , q=O, R = moo - x = A and Eq. 4.24

E/

reduces to

u (z, t) =~o ={(I - i)e -'J...zeiOlt + (l + i)ei(Olt-'J...z)} (4.28)

In this case indeed only down-going waves exist, as the term corresponding to incoming waves

reduces to a decaying exponential.

4.2.2 Characteristics of the results

Using Eqs 4.20 and 4.27, the phase velocities C; and C! of the direct (down-going) and

"reflected" (up-coming) waves are portrayed as solid lines in Fig. 4-1, over a very wide range of

the frequency factor 0 < ao < 10. Also plotted in this figure are the frequency-dependent phase

velocities of:

- a semi-infinite beam on Elastic-Winkler foundation (Cw )
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- a semi-infinite unsupported flexural beam (CF )

These two cases are recovered from the developed fonnulation for Cx =°and kx =Cx = 0,

respectively. The corresponding phase velocities are:

Cw=OO , (4.29a)

and

where now

(4.29b)

(4.30)

it = 1.2

f 1 = 2.1

fixed -head

free -head

(4.31)

The following trends are worthy of note in Fig. 4-1 :

1. The presence of material and geometric damping in the pile-soil system has a very significant

effect on the nature ofpropagating waves and the respective phase velocities. As already mentioned,

an upward propagating ("reflected") wave is generated only in the damped system. Moreover, at

the low frequency range of usual interest ( ao< 1 ), while the phase velocity becomes infinite in the

undamped case ( Cw ), both C~ and C~ achieve very small values and, in fact, tend to zero

with decreasing frequency. Hence the presence of a rigid soil layer or rock at a shallow depth that
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Figure 4-1 Phase wave velocities of beams in lateral harmonic oscillations. The two solid lines

are for the up- and down-going waves in a pile on lateral "springs" and "dashpots" (modeling

embedment in Halfspace). Cw is for a flexural beam on lateral "springs", and Cp is for an

unsupported flexural beam.
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would create a cutoff frequency, ws ' below which radiation damping diminishes deserves attention.

In such a case, if soil and pile material damping were ignored, then cx=O, e = 0, a=b=1,

R =(k%_mm
2

)1/4 =A(real number), and Eq. 41 simplifies to
4Ep I

(4.32)

which describes a standing wave and which is identical in form with the static solution (Scott,

1981). Hence, in this case there are no propagating waves (infinite apparent phase velocity) and

all points move in phase, although with an amplitude decreasing exponentially with depth, in accord

with the aforesaid behavior of the elastically restrained beam (Eq. 4.29a )

2. The phase velocity C~ of the downward propagating wave in the pile remains very close to

the velocity CF of the ( unsupported ) flexural beam for all, but the very low, frequencies.

Nevertheless, it is perhaps surprising that C~ is much closer to CF than Cwo Hence, neglecting

radiation and material damping might affect adversely the nature of the solution

3. The phase velocities of the three downward propagating waves, namely, C; in the pile, Cw

in the elastically-restrained beam, and CF in the flexural beam, converge to a single curve at high

frequencies (say ao> 3 ), and tend to infinity by growing in proportion to ...JO). On the other hand,

the velocity C~ of the "reflected" wave in the pile emerges at low frequencies being equal to the

velocity C; of the "direct" wave, but then it soon diverges significantly and tends to infinity as

a power of w. That the phase velocities grow without limit with increasing frequency is an

inaccuracy attributed to neglecting rotatory-inertia and shear-distortion effects. Such effects must

be included in the formulation if more correct values are to be obtained for phase velocities at very

high frequencies.

4. No clear conclusions can be drawn from Fig. 4-1 regarding the assumption of "synchronous"

wave emission from a laterally oscillating pile. Both C~ and C~ attain relatively small values,

4-9



of about 2Vs to 5Vs ' in the frequency range of greatest interest --- even for a relatively stiff pile

( Ep/Es = 5000). It seems that the only way to assess the significance of such wave velocities is

by examining the phase differences among lateral displacements along the pile.

To this end, the phase of the motion at a particular depth z in time t is computed from

(
Im(U(Z,t»)

<j>(z,t) =Arctan Re(u(z,t»

and for z equal to zero the phase becomes

(
Im(U(O,t))

¢(O,t) = Arctan Re(u(O,t» = rot

The phase difference between the motion at depth z and the motion at the head of the pile

L\¢ = rot - ¢(z , t)

(4.33)

(4.34)

(4.35)

is plotted in Figs. 4.2 and 4.3 as a function of z/d for two values of the dimensionless frequency

ao (0.2 and 0.5) for E/Es = 1000 and 5000. It is clear that phase differences remain quite small

up to a certain depth, beyond which they increase rapidly, especially at higher frequencies. The

same figures also show the normalized amplitude of pile displacements versus z/d. It is evident

that strictly speaking the assumption of simultaneous emission is not valid. Nevertheless, it is also

clear that phase differences become substantial only at relatively great depths where the

displacement amplitude has decreased significantly; thus waves emitted from such depths would

have a negligible amplitude and their phase differences would be of little, if any, consequence to

adjacent piles. Hence, the error introduced by assuming "synchronous" wave emission along the

pile would in most cases be acceptable. This may explain the successful performance of the method

developed by Dobry and Gazetas (1988) and Makris & Gazetas (1989), as already illustrated with

Fig. 1.1
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Figure 4-2 Variarion with depth of phase differences and nonnalized lateral deflection
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4.3 Free-Head Pile

4.3.1 Governing equation and solution

The only difference in this case from the previous is the boundary conditions at the pile head.

For a free head pile the moment at the pile head is zero.

First: w < wx '

The Laplace transform of Eq. 4.7 gives

1 2 3
- III ISS
U(s) = U (0) 4 4 +U (0) 4 4 +U(0) 4 4

S + 4A S + 4A S + 4A

where now ul/(O) =0

(4.36)

Applying the inverse Laplace transform leads to the following solution, with the boundary

conditions at z==O incorporated as unknowns:

u (z) =U
lll

(0) 4~3 (sin AZ. cosh AZ - cos AZ. sinh AZ)

+u(O) (COSAZ" coshAz) + ul(O) 2~ (sinAz.coshAz +COSAz. sinhAz) (4.37)

Expressing A in polar coordinates in the complex plane with R, 8, a, and b given by Eqs 4.13, 4.14

and 4.15 and carrying out the algebra one obtains

( ) _ Rbz iRoz(U(O) (1 ")ul(O) (1 .)U111(0)]u Z -e e --+ -l --- +l--
4 8A 16A3

-Raz iRbZ(U(O) (1 .)ul(O) (1 ")UIII(O)]+e e --- +l --+ -l--
4 8A 16~

Raz -iRbZ( U(0) (1 .) u
l
(0) (1 .) u

lII
(0) ]+e e --+ +l --- -l--

4 8A 16~
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-Rbz -iRaz( U(0) (1 .) u
l
(0) (1 .) U

lll
(0))+e e --- -l --+ +l--

4 8A 16A3

To ensure a finite displacement amplitude as z tends to infinity

u(O) +(1- i) ul(O) _ (1 + i) ul//(O) = 0
4 8A 16A3

u(O) + (1 + i) ul(O) _ (1- i) ul//(O)
4 8A 16A3

The solution of the above system gives

u l(0) = AU (0)

Substituting Eq. 4.40 into Eq. 4.38 and re-introducing eirol yields:

( t) Uo{ -Rbz i(rol-Raz)+ -Raz i(rol+Rbz)}U Z =- e e e e, 2

(4.38)

(4.39a)

(4.39b)

(4.40a)

(4.40b)

(4.41)

Note that the only difference between the solution for the free head pile (Eq. 4.41) and the solution

for the fixed head pile (Eq. 4.19) is that the coefficients of the down going and up-coming waves

are equal to one instead of 1-i and 1+i. Accordingly the dispersion relation is identical for the cases

given by Eqs. 4.20. The phase differences though would not be the same since they depend on the

ratio of the imaginary to the real part of the total displacement.

For the particular case where ex =0, we have a=b=O, and R =Aand the solution reduces to

u(z,t) = u(O)e-Az cos Aze iffil

which is again a standing wave similar to the solution given by Eq. 4.32.

Second: W ~ Wx

4-14
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The solution of Eq. 4.21 for this case is

( t) Uo { -Rqz i(ffit-Rpz)+ -Rpz i(ffit+Rqz)}
U z, =2 e e e e (4.43)

where R, p, q and eare given by Eqs 4.24, 4,25, and 4.26. Again, the only difference between the

solutions for the free and fixed-head pile is that the coefficients of the down-going and up-coming

waves are equal to one instead of 1+i and l-i.

For the particular case where ex = 0, we have p=l, q=O, and R =Aand the solution reduces to

(4.44)

As in the fixed head case, only the down-going wave is a propagating one while the term

corresponding to up-coming wave reduces to a decaying exponential.
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Figure 4-4 Variation with depth of phase differences and normalized lateral deflection

amplitudes for a free-head pile E/Es = 1000, at two frequency factors.
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SECTION 5

CONCLUSIONS

5.1 Regarding Axial Vibrations

1. When an infinitely-long pile, embedded in a realistic Dynamic-Winkler model of a

homogeneous halfspace, is subjected to axial harmonic head loading, it undergoes steady-state

oscillations due to a compression-extension wave that propagates downward with amplitude

exponentially decaying with depth, and a frequency-dependent phase velocity, Ca. (dispersive

system).

2. In the frequency range of greatest interest in foundation dynamics (0.2:S; ao :s; 0.8), Ca.

increases monotonically with frequency and for typical real-life piles achieves quite large values

compared to the S-wave velocity in soil, Vs ' As a result, phase differences between displacements

along the oscillating pile are very small and can be neglected in approximate studies of through-soil

interaction between two adjacent piles -- a conclusion for which additional (direct and indirect)

supporting evidence is provided in the paper.

3. In the aforementioned frequency range of interest, the wave velocity CE' of a bar elastically

restrained solely by Winlker springs, is infinite. On the other hand, Ca. could only approach infinity

at frequencies below a possible stratum cutoff frequency (when radiation damping vanishes) if all

material hysteretic damping were ignored.

4. At high frequencies ( ao z 5 -10 ), Ca., CE, and the (unsupported) "bar" wave velocity CL,

reach the same asymptotic value, equal to, about {E;/Pp (lateral inertia -- Pochhammer -- effects

are not as yet distinguishable).

5.2 Regarding Lateral Vibrations

1. During lateral steady-state oscillation under harmonic "fixed-head" horizontal leading, two
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waves develop in the pile: a downward propagating ("direct") wave with phase velocity C~' and

an upward propagating ("reflected") wave with a different phase velocity C~ -- both with amplitude

decaying exponentially with depth.

2. The two phase velocities, C~ and C~, increase monotonically with frequency, the latter at

a much faster rate. In the frequency range of greatest interest they both attain very low values, only

a few times larger than Vs in the soil, but smaller that CF , i.e. the phase velocity of an unsupported

flexural beam.

3. By contrast to the "spring-and-dashpot" supported pile, only one downward propagating wave

develops in a beam supported solely on springs. Moreover, the phase velocity in the latter, Cw ,

is infinitely large below the characteristic frequency (Ox = -Vk)m -- i.e. in the frequency range of

greatest interest. Therefore, ignoring the material and, especially, the radiation damping generated

by the soil-pile system would change the very nature of the wave propagation in laterally oscillatilng

piles.

4. Despite the relatively low values of C~ and C~ at 0 < ao< 1 , the two waves ("direct" and

"reflected") combine in such a way that phase differences between pile deflections at various depths

remain quite small along the upper, most active part of the pile. Such differences increase

considerably at greater depths, but this has only a minor effect on how wave-energy is radiated from

a pile -- an observation of significance in the behavior of pile groups.

5. The phase velocities of the three downward propagating waves, Ca, Cw and CF , converge

to a single curve at high frequencies (ao> 3), while growing in proportion to --.fW.
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