This report summarizes the development and application of a computer-aided system for the inelastic analysis, evaluation, and design of three-dimensional steel frames with semi-rigid connections under static loading. Main components of the work include: 1) development of a model to represent the nonlinear moment-rotation response of partially restrained connections; 2) development of a matrix-based method for incorporating the connection model in a nonlinear finite element program for framed structures; 3) implementation of the connection model in CU-STAND, a workstation based program for interactive analysis and design of steel framed structures; 4) computer implementation of the capacity spectrum method for estimating inelastic seismic response using modal analysis; 5) demonstration of the system for sensitivity studies on the inelastic response of a planar frame with semi-rigid connections. Through a case study, overall frame response is found to be relatively insensitive to variations in the connection response parameters. The case study also includes application of the capacity spectrum method to investigate the inelastic limit state under seismic loading and comparisons are made with results based on equivalent static code-based loading.
Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method

by

G. G. Deierlein, S-H. Hsieh, Y-J. Shen and J. F. Abel

Department of Structural Engineering
School of Civil and Environmental Engineering
Cornell University
Ithaca, New York 14853

July 2, 1991

This research was conducted at Cornell University and was partially supported by the National Science Foundation under Grant No. ECE 86-07591.
NOTICE

This report was prepared by Cornell University as a result of research sponsored by the National Center for Earthquake Engineering Research (NCEER). Neither NCEER, associates of NCEER, its sponsors, Cornell University, or any person acting on their behalf:

a) makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report or that such use may not infringe upon privately owned rights; or

b) assumes any liabilities of whatsoever kind with respect to the use of, or the damage resulting from the use of, any information, apparatus, method or process disclosed in this report.
Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method

by

G.G. Deierlein¹, S-H. Hsieh², Y-J. Shen² and J.F. Abel³

July 2, 1991

Technical Report NCEER-91-0008

NCEER Project Numbers 88-1005A, 89-1201A and 90-1201A

NSF Master Contract Number ECE 86-07591

1 Assistant Professor, School of Civil and Environmental Engineering, Cornell University
2 Graduate Research Assistant, School of Civil and Environmental Engineering, Cornell University
3 Professor, School of Civil and Environmental Engineering, Cornell University

NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH
State University of New York at Buffalo
Red Jacket Quadrangle, Buffalo, NY 14261
The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis is on structures and lifelines that are found in zones of moderate to high seismicity throughout the United States.

NCEER's research is being carried out in an integrated and coordinated manner following a structured program. The current research program comprises four main areas:

- Existing and New Structures
- Secondary and Protective Systems
- Lifeline Systems
- Disaster Research and Planning

This technical report pertains to Program 1, Existing and New Structures, and more specifically to system response investigations.

The long term goal of research in Existing and New Structures is to develop seismic hazard mitigation procedures through rational probabilistic risk assessment for damage or collapse of structures, mainly existing buildings, in regions of moderate to high seismicity. The work relies on improved definitions of seismicity and site response, experimental and analytical evaluations of systems response, and more accurate assessment of risk factors. This technology will be incorporated in expert systems tools and improved code formats for existing and new structures. Methods of retrofit will also be developed. When this work is completed, it should be possible to characterize and quantify societal impact of seismic risk in various geographical regions and large municipalities. Toward this goal, the program has been divided into five components, as shown in the figure below:
System response investigations constitute one of the important areas of research in Existing and New Structures. Current research activities include the following:

1. Testing and analysis of lightly reinforced concrete structures, and other structural components common in the eastern United States such as semi-rigid connections and flexible diaphragms.
2. Development of modern, dynamic analysis tools.
3. Investigation of innovative computing techniques that include the use of interactive computer graphics, advanced engineering workstations and supercomputing.

The ultimate goal of projects in this area is to provide an estimate of the seismic hazard of existing buildings which were not designed for earthquakes and to provide information on typical weak structural systems, such as lightly reinforced concrete elements and steel frames with semi-rigid connections. An additional goal of these projects is the development of modern analytical tools for the nonlinear dynamic analysis of complex structures.

This report addresses one of the key questions in the analysis of structures for earthquake loads: how to estimate nonlinear response for design purposes without performing numerous nonlinear time-history analyses for a series of ground motions. The capacity spectrum method was employed to predict the nonlinear load and deformation levels of steel frames for given response spectra using static analyses. Typical steel frames were analyzed using a recently developed semirigid zero-length connection model. Both material and geometric nonlinearities are incorporated in the program. The results demonstrate the importance of the effects of nonlinear geometric effects on the inelastic limit state behavior. The model and the capacity spectrum method form a useful tool for estimating the nonlinear response of partially restrained steel structures.
Abstract

This report summarizes the development and application of a computer-aided system for the inelastic analysis, evaluation, and design of three-dimensional steel frames with semi-rigid connections under static loading. Main components of the work include: (1) development of a model to represent the nonlinear moment-rotation response of partially restrained connections, (2) development of a matrix-based method for incorporating the connection model in a nonlinear finite element program for framed structures, (3) implementation of the connection model in CU-STAND, a workstation based program for interactive analysis and design of steel framed structures, (4) computer implementation of the capacity spectrum method for estimating inelastic seismic response using modal analysis, and (5) demonstration of the system for sensitivity studies on the inelastic response of a planar frame with semi-rigid connections.

The connection model is based on a four parameter power equation. Based on calibration to existing experimental data, sets of normalized parameters are proposed for use where more exact values based on test data are not available. Through a case study, overall frame response is found to be relatively insensitive to variations in the connection response parameters. The case study also includes application of the capacity spectrum method to investigate the inelastic limit state under seismic loading and comparisons are made with results based on equivalent static code-based loading.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1-1</td>
</tr>
<tr>
<td>1.1</td>
<td>Nonlinear Analysis System for Frames with Semi-Rigid Connections</td>
<td>1-1</td>
</tr>
<tr>
<td>1.2</td>
<td>Capacity Spectrum Method</td>
<td>1-2</td>
</tr>
<tr>
<td>1.3</td>
<td>Scope and Organization of Report</td>
<td>1-3</td>
</tr>
<tr>
<td>2</td>
<td>NONLINEAR CONNECTION MODEL</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1</td>
<td>Moment-Rotation Model</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2</td>
<td>Determination of Parameters</td>
<td>2-3</td>
</tr>
<tr>
<td>2.3</td>
<td>Design References Curve</td>
<td>2-10</td>
</tr>
<tr>
<td>3</td>
<td>FINITE ELEMENT ANALYSIS OF SEMI-RIGID FRAMES</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1</td>
<td>Modeling of the Beam-Column Element</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2</td>
<td>Modeling of Semi-rigid Connections</td>
<td>3-2</td>
</tr>
<tr>
<td>3.3</td>
<td>Computer Implementation</td>
<td>3-11</td>
</tr>
<tr>
<td>4</td>
<td>CAPACITY SPECTRUM METHOD</td>
<td>4-1</td>
</tr>
<tr>
<td>5</td>
<td>EXAMPLE CASE STUDY</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1</td>
<td>2-D Frame: Inelastic Behavior and Connection Sensitivity Study</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Design of PR Frame</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Inelastic Response</td>
<td>5-3</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Sensitivity to Connection Parameters</td>
<td>5-10</td>
</tr>
<tr>
<td>5.2</td>
<td>2D Frame: Inelastic Seismic Response</td>
<td>5-17</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Frame Designs</td>
<td>5-17</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Capacity Spectrum Analysis</td>
<td>5-18</td>
</tr>
<tr>
<td>6</td>
<td>SUMMARY AND CONCLUSIONS</td>
<td>6-1</td>
</tr>
<tr>
<td>7</td>
<td>REFERENCES</td>
<td>7-1</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Semi-rigid Connection Data</td>
<td>A-1</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Capacity and Demand Spectra</td>
<td>1-4</td>
</tr>
<tr>
<td>2-1</td>
<td>Moment-rotation Model for Inelastic Connection Response</td>
<td>2-2</td>
</tr>
<tr>
<td>2-2</td>
<td>Calculation of Distance Between Test Data and Eq. 2-1.</td>
<td>2-6</td>
</tr>
<tr>
<td>2-3</td>
<td>Comparison Between Curve-fitting Results and Experimental Results for TSAW Connections</td>
<td>2-7</td>
</tr>
<tr>
<td>2-4</td>
<td>Normalized and Standardized Moment-rotation Connection Curves for TSAW Connections</td>
<td>2-9</td>
</tr>
<tr>
<td>2-5</td>
<td>The AVE. Curves for all Types of Connections</td>
<td>2-12</td>
</tr>
<tr>
<td>2-6</td>
<td>Standard DESIGN Reference Curve</td>
<td>2-14</td>
</tr>
<tr>
<td>3-1</td>
<td>Structural Discretization for a Beam-column with Zero Length Connections</td>
<td>3-4</td>
</tr>
<tr>
<td>3-2</td>
<td>Menu Page for Defining Connection Properties</td>
<td>3-12</td>
</tr>
<tr>
<td>5-1</td>
<td>Two Dimensional Building Frame</td>
<td>5-2</td>
</tr>
<tr>
<td>5-2</td>
<td>Response Under Gravity Loading (1.2D + 1.6LF + 0.5 LR)</td>
<td>5-6</td>
</tr>
<tr>
<td>5-3</td>
<td>Response Under Gravity Plus Earthquake Loading (1.2D + 0.5L + 1.5E)</td>
<td>5-8</td>
</tr>
<tr>
<td>5-4</td>
<td>Response Under Gravity Plus Wind Loading (1.2D + 0.5L + 1.3W)</td>
<td>5-9</td>
</tr>
<tr>
<td>5-5</td>
<td>Comparison of Response Under Proportional and Nonproportional Loading for Gravity and Lateral Loads</td>
<td>5-11</td>
</tr>
<tr>
<td>5-6</td>
<td>Effect of Connection Strength on Response</td>
<td>5-15</td>
</tr>
<tr>
<td>5-7</td>
<td>Applied Load Versus Drift Inelastic Response Under Nonproportional Gravity Plus Earthquake Loading ((1.2D + 0.5L) + ALR (1.5E))</td>
<td>5-20</td>
</tr>
<tr>
<td>5-8</td>
<td>Capacity Spectra Versus NBK Design Spectra</td>
<td>5-22</td>
</tr>
<tr>
<td>5-9</td>
<td>Comparison of Drift Under Factored Earthquake Loading</td>
<td>5-24</td>
</tr>
<tr>
<td>A-1</td>
<td>Comparison Between Curve-fitting and Experimental Results for SWA Connections</td>
<td>A-1</td>
</tr>
<tr>
<td>A-2</td>
<td>Comparison Between Curve-fitting and Experimental Results for DWA Connections</td>
<td>A-2</td>
</tr>
<tr>
<td>FIGURE</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>A-3</td>
<td>Comparison Between Curve-fitting and Experimental Results for TSAW Connections</td>
<td>A-3</td>
</tr>
<tr>
<td>A-4</td>
<td>Comparison Between Curve-fitting and Experimental Results for TSA Connections</td>
<td>A-4</td>
</tr>
<tr>
<td>A-5</td>
<td>Comparison Between Curve-fitting and Experimental Results for EEP Connections</td>
<td>A-5</td>
</tr>
<tr>
<td>A-6</td>
<td>Comparison Between Curve-fitting and Experimental Results for EEPS Connections</td>
<td>A-6</td>
</tr>
<tr>
<td>A-7</td>
<td>Comparison Between Curve-fitting and Experimental Results for FEP Connections</td>
<td>A-7</td>
</tr>
<tr>
<td>A-8</td>
<td>Comparison Between Curve-fitting and Experimental Results for FEPS Connections</td>
<td>A-8</td>
</tr>
<tr>
<td>A-9</td>
<td>Comparison Between Curve-fitting and Experimental Results for HP Connections</td>
<td>A-9</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Connection Nomenclature</td>
<td>2-4</td>
</tr>
<tr>
<td>2-2</td>
<td>Parameters for Normalized Connection Curves</td>
<td>2-11</td>
</tr>
<tr>
<td>5-1</td>
<td>Roof Drift Under Service Loads</td>
<td>5-3</td>
</tr>
<tr>
<td>5-2</td>
<td>Applied Load Ratios for Frames with TSAW Connections (M_en = 0.4 M_pb)</td>
<td>5-13</td>
</tr>
<tr>
<td>5-3</td>
<td>Maximum Connection Rotations for Frames with TSAW Connections (M_en = 0.4 M_pb)</td>
<td>5-13</td>
</tr>
<tr>
<td>5-4</td>
<td>Maximum Floor Beam Deflections for Frames with TSAW Connections (M_en = 0.4 M_pb)</td>
<td>5-13</td>
</tr>
<tr>
<td>5-5</td>
<td>Roof Drift for Frames with TSAW Connections (M_en = 0.4 M_pb)</td>
<td>5-14</td>
</tr>
<tr>
<td>5-6</td>
<td>Applied Load Ratios for Frames with TSAW Connections: Effects of Connection Strength</td>
<td>5-14</td>
</tr>
<tr>
<td>5-7</td>
<td>Maximum Connection Rotations for Frames with TSAW Connections: Effect of Connection Strength</td>
<td>5-16</td>
</tr>
<tr>
<td>5-8</td>
<td>Maximum Floor Beam Deflection for Frames with TSAW Connections: Effect of Connection Strength</td>
<td>5-16</td>
</tr>
<tr>
<td>5-9</td>
<td>Roof Drift for Frames with TSAW Connections: Effect of Connection Strength</td>
<td>5-16</td>
</tr>
<tr>
<td>5-10</td>
<td>Member Sizes and Total Weight of Structural Steel for Seismic Response Study</td>
<td>5-17</td>
</tr>
<tr>
<td>5-11</td>
<td>Applied Load Ratios for Frames Designed with TSA, TSAW, EEPS, and Rigid Connections</td>
<td>5-19</td>
</tr>
<tr>
<td>5-12</td>
<td>Maximum Connection Rotations for Frames Designed with TSA, TSAW, EEPS, and Rigid Connections</td>
<td>5-19</td>
</tr>
<tr>
<td>5-13</td>
<td>Maximum Floor Beam Deflections for Frames Designed with TSA, TSAW, EEPS, and Rigid Connections</td>
<td>5-19</td>
</tr>
<tr>
<td>5-14</td>
<td>Roof Drift for Frames Designed with TSA, TSAW, EEPS, and Rigid Connections</td>
<td>5-21</td>
</tr>
<tr>
<td>5-15</td>
<td>Comparison of Response Measures for Frames with Different Connection Strengths</td>
<td>5-23</td>
</tr>
</tbody>
</table>
SECTION 1
INTRODUCTION

The influence of semi-rigid connection behavior on the overall response of structures has long been recognized, but it has been common practice to treat connections in steel structures as either perfectly rigid or pinned. One reason for this is the lack of accurate and convenient methods to include semi-rigid connection effects directly in analysis and design. The need for including the effects of connection flexibility in the analysis of building systems is particularly important for use in limit state design methods and in evaluating the seismic risk for new and existing structures.

This report summarizes the development and application of a computer-aided analysis and design system to evaluate the nonlinear response of steel structures with partially restrained connections to static loads. Included is an application of the capacity spectrum method for evaluating the inelastic response of structures to earthquake forces. The inelastic response is calculated using a 2nd-order inelastic analysis program which includes the effect of nonlinear connection flexibility.

1.1 Nonlinear Analysis System for Frames with Semi-Rigid Connections

The nonlinear analysis formulation for 3D frames with semi-rigid connections is implemented in a computer-aided system called CU-STAND (Static Analysis and Design). CU-STAND is one of three interactive-graphics workstation based programs developed at Cornell University for the nonlinear analysis and design of two- and three-dimensional steel framed structures. The other two programs are CU-PREPF (a Preprocessor for Framed Structures) and CU-QUAND (Earthquake Analysis and Design). Further information regarding the three programs is included in References 1-4.

The analysis methods in CU-STAND are based on a finite element discretization of the structure into beam-column line elements. The analysis includes provisions for modeling nonlinear response due to large displacements (geometric effects), member plastification (inelastic effects), and connection flexibility. The analysis also includes options for modeling rigid floor diaphragms and can handle both proportional and nonproportional loading. Finally, as described below, the program includes features
for generating the capacity spectrum response curve for an equivalent static earthquake loading.

1.2 Capacity Spectrum Method

Currently, structural design for earthquake forces is usually based on an elastic analysis where some approximation is used to account for the inelastic response of the structure. The loading used in the elastic analyses may be based on equivalent static forces obtained from design codes such as the Uniform Building Code, or they may be obtained from a modal analysis using a design spectrum. The advantage of these methods is that they are relatively straightforward and convenient for design. The disadvantage, however, is that most elastic design methods offer little information regarding the inelastic response of the structure. Hence, the rationale for such methods lies largely in the reliability obtained through a track record of reasonable performance for standard building configurations with adequate ductility. As such, elastic design methods are not well suited for structures of irregular configuration or for evaluating the damage susceptibility of existing buildings to various levels of seismic forces.

Sophisticated transient dynamic inelastic analysis methods are available which represent the best available technology for simulating the response of structures subjected to strong earthquake loadings. However, a drawback of such methods is the time and expense required to perform the analysis and interpret the results for design. Therefore, while advanced dynamic analyses are useful for investigations under a specific set of circumstances, they are currently still considered too cumbersome for most routine applications.

Freeman [5] has developed a method, called the capacity spectrum method, which uses a static inelastic analysis to estimate the seismic performance of a structure. The advantage of this method over other equivalent static analyses is that it provides more information on the degree of inelastic deformation (damage) which is expected to occur. Recently, Chrysostomou et al. [6] implemented a modified version of this method to study the effects of degrading infill walls on the nonlinear seismic response of steel frames.
The **capacity spectrum** is a structural property which provides a relationship between the period (or frequency) and acceleration levels of the structure corresponding to various stages of loading. The **demand spectrum** (response or design spectrum) represents the demand of the ground motion in terms of the induced elastic response of a single degree-of-freedom oscillator to a particular earthquake. As shown in Fig. 1.1 through superposition of the capacity spectrum and the demand spectrum, the maximum response and the inelastic period of vibration can be approximated. The response predicted using the capacity spectrum can be related to other information obtained in the analysis to estimate the deformations and level of damage in the structure.

1.3 Scope and Organization of Report

The scope of this report is to describe the theoretical basis and analytical formulations of the analysis techniques used to evaluate the inelastic response of steel structures with partially restrained connections and to present a case study which demonstrates application of the method. This work is part of an ongoing NCEER project to develop and use workstation based computer-aided analysis methods for the design and evaluation of new and existing structures. Included in the description of the analysis system is: a) development of the nonlinear connection model and calibration to test data, b) formulation of the nonlinear beam-column element stiffness with semi-rigid connections, and c) theoretical development and computer implementation of the capacity spectrum method.

A case study of a low rise steel frame is presented which includes: a) a systematic investigation of the sensitivity of overall structural response to variations in the assumed semi-rigid connection properties, and b) application of the capacity spectrum method to evaluate the inelastic response of frames with partially restrained connections using design spectrum curves.
FIGURE 1-1 Capacity and Demand Spectra.
Many investigations into the behavior and modeling of semi-rigid connections have been reported [7]. Although most of them have only considered in-plane behavior of connections, they still form the essential basis of accounting for connection flexibility in the analysis and design of structures. In this work, the connection behavior is modeled by a nonlinear equation for moment-rotation response which is calibrated to test data and normalized for use in design.

2.1 Moment-Rotation Model

Many techniques have been proposed for representing the moment-rotation behavior of semi-rigid connections, some based on simple linear approximations and others on more sophisticated nonlinear functions. The model used in this work is based on a nonlinear equation first presented by Richard and Abbott [8], and later by Kishi et al. [9]. Using this model, the moment-rotation relationship of the connection is given by the following equation:

\[M = \frac{(K_e - K_p)\theta}{\left(1 + \frac{(K_e - K_p)\theta}{M_o}\right)^{1/n} + K_p\theta} \]

(2.1)

In Eq. 2.1, \(M \) is the moment corresponding to the connection rotation, \(\theta \). The parameters, \(K_e, K_p, \) and \(M_o \), are independent variables which are related to the moment-rotation behavior as shown in Fig. 2-1, and \(n \) controls the shape of the curve. This model was chosen because it represents observed experimental data well, it is convenient to implement in the computer program described below, and the four parameters are derived from a rational interpretation of the connection response. Another advantage of this model is that it encompasses more simple models. For example, Eq. 2.1 becomes a simple linear model if \(K_e = K_p \), an elastic-plastic model if \(K_p = 0 \), and a bilinear model if \(n \) is large.
FIGURE 2-1 Moment-rotation Model for Inelastic Connection Response
To allow for unloading of the connections associated with nonproportional loading and inelastic force redistribution, the unloading curve shown in Fig. 2-1 was developed by Hsieh [10]. This portion of the moment-rotation curve is given by the following equation, where the peak moments and rotations reached during the initial loading are \(M_a \) and \(\theta_a \):

\[
M = M_a \cdot \frac{(K_c \cdot K_p(\theta_a \cdot \theta))}{\left(1 + \frac{K_c \cdot K_p(\theta_a \cdot \theta)^{1/n}}{2M_o}\right)} - K_p(\theta_a \cdot \theta) \tag{2.2}
\]

For use in an incremental finite element analysis, the tangent stiffness of the connection is obtained by differentiating Eq. 2.1 with respect to \(\theta \), resulting in the following expression:

\[
K_t = \frac{dM}{d\theta} = \frac{(K_c \cdot K_p)}{\left(1 + \frac{K_c \cdot K_p(\theta_a \cdot \theta)^{1/n}}{2M_o}\right)^{n+1/n}} + K_p \tag{2.3}
\]

2.2 Determination of Parameters. The four parameters of the model may be determined by several means according to the specific needs in analysis and design. If experimental data are available, the most precise representation is obtained through curve-fitting the model directly to the data. Where test data are not available, as is typically the case in practice, the parameters may be determined using analytic formulations for the connection strength and stiffness if the connection details are known. In design practice, however, it is usually the case that the connection details may not be known until after the structural members have been sized. As described below, a third method proposed for determining the parameters is based on using standardized curves to provide the general shape of the response curve and analytic (design) methods to calculate the nominal connection strength. The standardized curves are obtained from statistical analysis of normalized curves which were curve-fit to experimental data previously collected by Kishi & Chen [11] and Goverdhan [12]. A summary of the
connection types and abbreviations for the connections considered is given in Table 2-1

TABLE 2-1 Connection Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Connection Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWA</td>
<td>Single Web-Angle Connections (All bolted)</td>
</tr>
<tr>
<td>DWA</td>
<td>Double Web-Angle Connections (All bolted)</td>
</tr>
<tr>
<td>TSAW</td>
<td>Top- and Seat-Angle Connections with Double Web-Angles (All bolted)</td>
</tr>
<tr>
<td>TSA</td>
<td>Top- and Seat-Angle Connections (All bolted)</td>
</tr>
<tr>
<td>EEP</td>
<td>Extended End-Plate Connections (All bolted without column stiffeners)</td>
</tr>
<tr>
<td>EEPS</td>
<td>Extended End-Plate Connections (All bolted with column stiffeners)</td>
</tr>
<tr>
<td>FEP</td>
<td>Flush End-Plate Connections (All bolted without column stiffeners)</td>
</tr>
<tr>
<td>FEPS</td>
<td>Flush End-Plate Connections (All bolted with column stiffeners)</td>
</tr>
<tr>
<td>HP</td>
<td>Header Plate Connections (All bolted)</td>
</tr>
</tbody>
</table>

Curve-fitting from experimental data. An optimization approach utilizing the conjugate-gradient method is used to find a set of parameters (M_o, K_e, K_p, and n) which gives the best curve-fit to experimental response data. In this method, the conjugate directions are used to search for the minimum of the objective function in a N-dimensional problem space. Using a method analogous to the Gram-Schmidt orthogonalization procedure, each conjugate direction used for a new search is set up by a linear combination of all the previous search directions and the newly determined gradient of the objective function. This method converges quadratically.

The optimization searches are performed in a four-dimensional space to obtain the parameters, M_o, K_e, K_p, and n, from Eq. 2.1. This is an unconstrained optimization problem and the objective (error) function is expressed by the following:

$$W = \sum_{i=1}^{X} \left(\frac{(m_i - M_i)}{\sqrt{1 + K_i^2}} \right)^2$$ \hspace{1cm} (2.4)
in which

\[X = \text{number of experimental test data}, \]
\[m_i = \text{moment value of i-th test data}, \]
\[M_i = \text{moment value calculated from Eq. 2.1 at the rotation value of the i-th test data, and} \]
\[K_{ti} = \text{the tangent stiffness calculated from Eq. 2.3 at the rotation of the i-th test data.} \]

As shown in Fig. 2-2, the error term in Eq. 2.4 is simply the orthogonal distance between a test data point and the moment-rotation curve. It has been found that the curve-fitting results are sensitive to the initial value of the parameter \(n \) assumed in the calculation. Therefore, ten different initial values of \(n \) from 0.1 to 5.0 are tried for each set of test data and the resulting values of \(W \) are compared to obtain the "best" curve-fit. In addition, the maximum moment reported in the test, the initial stiffness, and the final stiffness calculated directly from test data are used for initial values of \(M_0, K_e, \) and \(K_p, \) respectively. An example of the curve-fitting results for top-and seat-angle connections with double web angles (TSAW) is shown in Fig. 2-3. Comparisons between the experimental data and curve-fitting results for other connections are included in Appendix A. In general, the curve-fitting results produce good agreement with the experimental data.

Standardized connection reference curves. In structural design practice, it is unlikely that specific information regarding the connection details will be known during preliminary design, and even during final design, this information may not be available until after the structural members have been sized. Since connection flexibility will affect the structural response and therefore the required member sizes, there is a need to develop some means of accounting for connection behavior in the analysis during the design process before final member sizes are selected. One solution is to use standardized connection reference curves which are based on test data and normalized for use in design.

2-5
FIGURE 2-2 Calculation of Distance Between Test Data and Eq. 2.1
FIGURE 2.3 Comparison Between Curve-fitting Results and Experimental Results for TSAW Connections
To generalize Eqs. 2.1, 2.2, and 2.3 for design, the moment-rotation expressions are first normalized with respect to a reference value of moment which is defined herein as the nominal connection capacity, M_{cn}. The normalized expressions are identical to Eqs. 2.1, 2.2, and 2.3 except that M, M_o, M_a, K_e, and K_p are replaced by $M' = M/M_{cn}$, $M_o' = M_o/M_{cn}$, $M_a' = M_a/M_{cn}$, $K_e' = K_e/M_{cn}$ and $K_p' = K_p/M_{cn}$, respectively. The resulting normalized expression for Eq. 2.1 is the following:

$$M' = \frac{(K_e' - K_p')\theta}{1 + \left(\frac{K_e' - K_p'}{M_o'}\right)^{1/n}} + K_p'\theta \quad (2.5)$$

An example is presented below to illustrate how the normalized parameters (K_e', K_p', M_o', and n) are determined for top- and seat-angle connections with double web angles (TSAW connections).

Using the curve-fitting results presented previously in Fig. 2-3, each of the curves were normalized by a value of M_{cn} equal to the moment resisted at an applied rotation of 0.02 radian. This value was chosen after considering several alternate normalization schemes, further details of which are reported by Hsieh [10]. The normalization procedure results in the set of curves shown in Fig. 2-4a. For a given type of connection, this procedure provides a convenient means of condensing the data from a large number of tests by eliminating variations due to scale (strength) effects.

From the normalized curves shown in Fig. 2-4a, the three standard reference curves shown in Fig. 2-4b were developed for each connection type. The AVE curve is obtained by curve-fitting the normalized model (Eq. 2.4) to a set of points equal to the average values of M' determined from sets of curves such as shown in Fig. 2-4a. The averages were evaluated for values of rotation between 0.002 and 0.05 radian. In this case, the error function used in the curve fitting was equal to the sum of the squares of the value of moment between the average value points and the calculated values:
FIGURE 2-4 Normalized and Standardized Moment-rotation Connection Curves for TSAW connections
As described by Shen [13], a weighting function was applied to the objective function which improved the accuracy of the curve-fitting over the region where connection rotations are less than .02 radians.

The upper and lower curves in Fig. 2-4b reflect a variation from the average curve of plus or minus two standard deviations. The UPPER curve is generated by fitting Eq. 2-4 to the set of points equal to m_i (average) plus two standard deviations for rotations less than 0.02 radian and m_i (average) minus two standard deviations for rotations greater than 0.02 radian. The LOWER curve is fit to the average value minus two standard deviations for connection rotations less than 0.02 radian and the average plus two standard deviations for rotations greater than 0.02 radian. Assuming the variation in connection response is random and normally distributed (which as shown by Shen [13] is a reasonable assumption), the region between the upper and lower curves in Fig. 2-4b encompasses roughly 95% of the sampled data. Standardized curves were developed for other connection types, and parameters for the AVE, UPPER, and LOWER curves for all the connection types considered are shown in Table 2-2. Plots of the AVE curve for each connection type are shown in Fig. 2-5.

2.3 Design Reference Curve

For design purposes, one reference curve which represents the average response for all connection types was developed. This curve was developed using the same procedure as described above for calculating the average curves, except that in this case, the family of curves which was used to generate the final curve consisted of the AVE curves for each connection
Table 2-2. Parameters for Normalized Connection Curves

<table>
<thead>
<tr>
<th>Type of Connection Curve</th>
<th>M_0</th>
<th>K_c</th>
<th>K_p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWA-UPPER</td>
<td>1.05</td>
<td>167.83</td>
<td>3.33</td>
<td>1.47</td>
</tr>
<tr>
<td>SWA-AVE</td>
<td>1.08</td>
<td>113.34</td>
<td>9.13</td>
<td>1.26</td>
</tr>
<tr>
<td>SWA-LOWER</td>
<td>0.74</td>
<td>65.46</td>
<td>19.52</td>
<td>2.43</td>
</tr>
<tr>
<td>DWA-UPPER(A441)</td>
<td>0.85</td>
<td>464.40</td>
<td>8.62</td>
<td>1.37</td>
</tr>
<tr>
<td>DWA-AVE(A441)</td>
<td>0.71</td>
<td>231.03</td>
<td>17.96</td>
<td>1.16</td>
</tr>
<tr>
<td>DWA-LOWER(A441)</td>
<td>1.79</td>
<td>42.20</td>
<td>10.34</td>
<td>2.45</td>
</tr>
<tr>
<td>DWA-UPPER(A36)</td>
<td>0.98</td>
<td>439.20</td>
<td>1.57</td>
<td>2.28</td>
</tr>
<tr>
<td>DWA-AVE(A36)</td>
<td>0.93</td>
<td>253.29</td>
<td>6.32</td>
<td>1.41</td>
</tr>
<tr>
<td>DWA-LOWER(A36)</td>
<td>0.90</td>
<td>85.75</td>
<td>10.04</td>
<td>2.23</td>
</tr>
<tr>
<td>TSAW-UPPER</td>
<td>0.93</td>
<td>435.91</td>
<td>4.06</td>
<td>1.62</td>
</tr>
<tr>
<td>TSAW-AVE</td>
<td>0.90</td>
<td>266.47</td>
<td>7.53</td>
<td>1.40</td>
</tr>
<tr>
<td>TSAW-LOWER</td>
<td>0.80</td>
<td>132.31</td>
<td>12.02</td>
<td>2.00</td>
</tr>
<tr>
<td>TSA-UPPER</td>
<td>1.02</td>
<td>399.10</td>
<td>1.88</td>
<td>1.27</td>
</tr>
<tr>
<td>TSA-AVE</td>
<td>0.96</td>
<td>226.16</td>
<td>8.23</td>
<td>1.16</td>
</tr>
<tr>
<td>TSA-LOWER</td>
<td>0.69</td>
<td>91.60</td>
<td>17.48</td>
<td>2.40</td>
</tr>
<tr>
<td>EEP-UPPER</td>
<td>0.88</td>
<td>502.63</td>
<td>6.60</td>
<td>1.98</td>
</tr>
<tr>
<td>EEP-AVE</td>
<td>0.94</td>
<td>229.73</td>
<td>8.45</td>
<td>1.19</td>
</tr>
<tr>
<td>EEP-LOWER</td>
<td>0.74</td>
<td>73.71</td>
<td>14.16</td>
<td>3.72</td>
</tr>
<tr>
<td>EEPS-UPPER</td>
<td>1.00</td>
<td>338.68</td>
<td>0.01</td>
<td>1.80</td>
</tr>
<tr>
<td>EEPS-AVE</td>
<td>1.05</td>
<td>184.68</td>
<td>1.59</td>
<td>1.54</td>
</tr>
<tr>
<td>EEPS-LOWER</td>
<td>0.93</td>
<td>88.36</td>
<td>6.28</td>
<td>2.99</td>
</tr>
<tr>
<td>FEP-UPPER</td>
<td>1.02</td>
<td>275.91</td>
<td>1.46</td>
<td>1.56</td>
</tr>
<tr>
<td>FEP-AVE</td>
<td>0.99</td>
<td>200.76</td>
<td>4.63</td>
<td>1.43</td>
</tr>
<tr>
<td>FEP-LOWER</td>
<td>0.90</td>
<td>119.21</td>
<td>8.12</td>
<td>1.93</td>
</tr>
<tr>
<td>FEPS-UPPER</td>
<td>1.00</td>
<td>367.50</td>
<td>2.43</td>
<td>1.44</td>
</tr>
<tr>
<td>FEPS-AVE</td>
<td>0.98</td>
<td>238.25</td>
<td>5.35</td>
<td>1.33</td>
</tr>
<tr>
<td>FEPS-LOWER</td>
<td>0.89</td>
<td>121.44</td>
<td>8.86</td>
<td>2.03</td>
</tr>
<tr>
<td>HP-UPPER</td>
<td>0.92</td>
<td>226.75</td>
<td>0.00</td>
<td>2.77</td>
</tr>
<tr>
<td>HP-AVE</td>
<td>0.81</td>
<td>143.83</td>
<td>13.82</td>
<td>1.45</td>
</tr>
<tr>
<td>HP-LOWER</td>
<td>2.74</td>
<td>74.13</td>
<td>22.33</td>
<td>0.67</td>
</tr>
</tbody>
</table>
FIGURE 2-5 The AVE. Curves for all Types of Connections
type (Fig. 2-5). The model parameters obtained based on all nine types of connections are $K_e' = 191$, $K_p' = 8.5$, $M_o' = 0.91$ and $n = 1.4$. Because the single web angle (SWA), double web angle (DWA), and header plate (HP) connections are usually not used where a significant moment resistant is desired, the parameters for the design curve were recalculated excluding these connections. The parameters based on the remaining five types of connections are: $K_e' = 222$, $K_p' = K_e' / 50 = 4.0$, $M_o' = 0.98$ and $n = 1.35$. For design, these values are rounded off to the following: $K_e' = 200$, $K_p' = 4$, $M_o' = 1.0$ and $n = 1.4$.

The resulting design reference curve is compared to the average curves for the five types of connections in Fig. 2-6. When $\theta < 0.02$ radian, there is not much variation between the various connection curves and the design curve is very close to the average. However, for $\theta > 0.02$, there are greater differences between the different connection types and the design curve (specifically K_p') was purposely chosen to be near the lower bound of response.
FIGURE 2-6 Standard Design Reference Curve
SECTION 3
FINITE ELEMENT ANALYSIS OF SEMI-RIGID FRAMES

As noted previously, the connection model was incorporated into the program, CU-STAND for the nonlinear analysis of three-dimensional steel frames with semi-rigid connections subjected to static loading. An important aspect of the model implementation is that it did not require fundamental changes to the existing geometric and material nonlinear model for the elastic-plastic beam-column elements in CU-STAND. The following is a summary of the finite element formulation and computer implementation in CU-STAND.

3.1 Modeling of the Beam-Column Element

The beam-column element in CU-STAND includes both geometric and material nonlinearities. A brief review of the formulation is given in this section; more details are contained in Reference [2].

Beam-columns are modeled as line elements with twelve degrees-of-freedom, consisting of three translations and three rotations, at each end of the element. Common beam theory assumptions, such as homogeneous and isotropic material, plane sections remain plane, doubly symmetric prismatic sections with no cross section distortion, and small strain theory, are employed in the formulation of the element stiffness. In linear elastic analyses, the element stiffness is the conventional linear elastic stiffness matrix, \([k_e]\) (see, for example, Chapter 4 in [14]). For second order analyses, geometric nonlinearities are handled through the use of element geometric stiffness matrices \([k_g]\) and an updated Lagrangian formulation. The nodal coordinates and the terms in \([k_g]\) are updated at the end of each incremental/iterative load step. For inelastic analyses, material nonlinearities are included through the use of element plastic reduction matrices \([k_p]\) which are based on a three parameter yield surface for modeling cross-section plastification due to axial load and major- and minor-axis bending. This is a concentrated plasticity model approach where it is assumed that zero-length plastic hinges form at the end of each element. Details of the stiffness matrices \([k_e]\), \([k_g]\), and \([k_p]\) are provided in Reference [2].
Using this approach, the incremental element equilibrium equations can be written in the following form:

\[
\{ds\} = \left[[k_e] + [k_g] + [k_p] \right] \{du\} = [k_t] \{du\}
\]

(3.1)

In Eq. 3.1, \(\{ds\}\) is the vector of incremental element end forces; \(\{du\}\) is the vector of incremental element displacements; \([k_e]\), \([k_g]\), and \([k_p]\) are elastic, geometric, and plastic reduction matrices, respectively; and \([k_t]\) is the resulting element tangent stiffness matrix. Depending on the type of analysis (e.g., 1st-order or 2nd-order, elastic or inelastic), \([k_g]\) and/or \([k_p]\) may not be included in the analysis.

The global incremental equilibrium equations are written as the following:

\[
\{dP\} = [K_t] \{dU\}
\]

(3.2)

In Eq. 3.2, \(\{dP\}\) is the incremental load vector applied on the entire structure, \(\{dU\}\) is the global incremental displacement vector, and \([K_t]\) is the global stiffness matrix obtained by assembling the transformed element tangent stiffness matrices, \([k_t]\). As described in Reference [2], CU-STAND has several solution method options for Eq. 3.2 and force recovery procedures which include provisions to limit cumulative errors during inelastic loading.

3.2 Modeling of Semi-rigid Connections

Zero-length connection elements are used to permit relative flexural rotations between connected members; the connections do not allow for relative torsional rotation or translational displacements. When a semi-rigid connection is specified at one end of a member, the global rotational degrees-of-freedom at the corresponding structural node are associated with the connection element. The corresponding local rotational degrees-of-freedom between the member end and connection are treated as additional global unknowns of the structural system and are included in the global equilibrium equations (i.e., Eq. 3.2). Condensation is not used here because it is not as efficient for nonlinear analyses in which stiffness matrices are
updated many times. In the formulation, the additional rotational degrees-of-freedom described above are always measured with respect to the local member coordinates even though they are treated as global unknowns in Eq. 3.2.

To introduce the local degrees-of-freedom into the global solution system, the conventional element transformation matrices are modified for the elements with semi-rigid connections. The modified matrices are used to transform the element stiffness matrices from the local to the global coordinate system with some of the unknowns retaining their local coordinate reference axes.

A key advantage of this approach is that the existing nonlinear formulation for the beam-column elements is unaffected. This avoids the difficulty (particularly for three-dimensional problems) of directly formulating the connection flexibility into the nonlinear element stiffness matrices, $[k_g]$ and $[k_p]$. The use of separate connection elements also facilitates further modifications to the connection model (for example, to account for the finite size of the connection or for including additional connection degrees-of-freedom). On the other hand, a disadvantage of this approach is that it increases the total number of degrees-of-freedom in the global system of equations. However, this disadvantage is becoming less significant with the continuing improvement of computer hardware.

Example Formulation. An example is presented to demonstrate the formulation and transformation of the beam-column element stiffnesses with nonlinear connection flexibility. A portion of a three-dimensional structure discretized in a global coordinate system with orthogonal axes X, Y, and Z is shown in Fig. 3-1. The connection elements Aa and Bb connect the beam ab to the nodes A and B. For clarity, the connection elements are shown "exploded" to a finite length but are actually zero-length. The local (or element) coordinate system of the beam ab with orthogonal axes x, y, and z is also shown. In general, the local coordinate axes (x, y, z) are arbitrarily oriented with respect to the global coordinate axes (X, Y, Z).
FIGURE 3-1 Structural Discretization for a Beam-Column With Zero Length Connections
In Fig. 3-1, the degrees-of-freedom (DOF's) at nodes A and B are represented using the displacement components in the global coordinates, and the DOF's of beam ab are shown in terms of local coordinates at both ends of the beam. In the displacement components, \(\Delta_{ij} \) and \(\theta_{ij} \), the first subscript \(i \) refers to the global or local component axes and the second subscript \(j \) refers to the global or member node designation. These subscripts are also used in developing the expressions for the forces and moments, \(F_{ij} \) and \(M_{ij} \), respectively.

In the example considered, it is assumed that the connection element Aa includes both major-axis and minor-axis rotational flexibility while the connection Bb is rigid. Aside from major- and minor-axis flexure, no other deformations are allowed in the connection Aa.

Matrix Notations: The following matrix notations are used in the formulation:

- \([y]_{3x3} \) = the conventional rotation matrix of beam ab
- \([I]_{2x2} \) = identity matrix
- \([G]_{6x6} = \begin{bmatrix} [y]_{3x3} & 0 \\ 0 & [y]_{3x3} \end{bmatrix} \)
- \([T_1]_{4x6} \) = the first four rows of \([G] \)
- \([T_2]_{2x6} \) = the last two rows of \([G] \)

Member Transformation Matrix. At end a of beam ab, relative major- and minor-axis rotations between the beam end and the node to which it is connected (\(\theta_{ya} \) and \(\theta_{za} \)) are allowed. Transfer of the global DOF's at node A into the local coordinate system is done by the following equation:
Adding \(\theta_{ya} \) and \(\theta_{za} \) to Eq. 6, results in the following equation which relates the local beam DOF's to the mixed (local and global) DOF's considered in the global system of equations:

\[
\begin{bmatrix}
\Delta x_a \\
\Delta y_a \\
\Delta z_a \\
\theta_{xa} \\
\theta_{ya} \\
\theta_{za}
\end{bmatrix} =
\begin{bmatrix}
T_1 & 0 \\
0 & [I]_{2x2}
\end{bmatrix}
\begin{bmatrix}
\Delta X_A \\
\Delta Y_A \\
\Delta Z_A \\
\theta_{XA} \\
\theta_{YA} \\
\theta_{ZA}
\end{bmatrix}
\]

(3.3)

Similarly, equilibrium gives the following transformation of forces from the local to the mixed global system:

\[
\begin{bmatrix}
\Delta x_a \\
\Delta y_a \\
\Delta z_a \\
\theta_{xa} \\
\theta_{ya} \\
\theta_{za}
\end{bmatrix} = [G1]_{6x6}[D1]_{8x1}
\]

(3.4)
\[
\begin{bmatrix}
F_{xa} \\
F_{ya} \\
F_{za} \\
M_{xa} \\
M_{ya} \\
M_{za}
\end{bmatrix} =
\begin{bmatrix}
T_1 & \mathbf{0} \\
\mathbf{0} & \mathbf{I}_{2x2}
\end{bmatrix}
\begin{bmatrix}
F_{XA} \\
F_{YA} \\
F_{ZA} \\
M_{XA} \\
M_{YA} \\
M_{ZA}
\end{bmatrix} = [G1]_{6x8} \{F1\}_{8x1}
\]

\begin{align*}
\begin{bmatrix}
\Delta x_b \\
\Delta y_b \\
\Delta z_b \\
\theta x_b \\
\theta y_b \\
\theta z_b
\end{bmatrix}
&= G
\begin{bmatrix}
\Delta x_B \\
\Delta y_B \\
\Delta z_B \\
\theta x_B \\
\theta y_B \\
\theta z_B
\end{bmatrix} \\
&= [G2]_{6x6} \{D2\}_{6x1}
\end{align*}

Since, in this particular case, no connection flexibility is considered at end b of the beam, the displacement and force transformations are given in the following standard forms:
Using Eqs. 3.4 to 3.7, the transformation matrix of beam ab can be written as the following:

$$
\begin{bmatrix}
F_{xb} \\
F_{yb} \\
F_{zb} \\
M_{xb} \\
M_{yb} \\
M_{zb}
\end{bmatrix} = \begin{bmatrix}
G
\end{bmatrix}
\begin{bmatrix}
F_{XB} \\
F_{YB} \\
F_{ZB} \\
M_{XB} \\
M_{YB} \\
M_{ZB}
\end{bmatrix}
= [G2]_{6x6} [F2]_{6x1}
$$

(3.7)

This matrix is then used to transform the element stiffness matrix from the local to the global system, where the equilibrium equations for beam ab in the global system are given as follows:

$$
[\Gamma b]_{12x14} =
\begin{bmatrix}
[G1]_{6x8} & 0 \\
0 & [G2]_{6x6}
\end{bmatrix}
$$

(3.8)

In Eq. 3.9, $[Kb] = [\Gamma b]^T [k_t] [\Gamma b]$, $[k_t]$ = element tangent stiffness matrix of the beam ab (Eq. 3.1), and $\{F1\}$, $\{F2\}$, $\{D1\}$, and $\{D2\}$ are defined in Eqs. 3.4 - 3.7. Note that θ_{ya} and θ_{za} in $\{D1\}$ are local rotations at end a of the beam and M_{ya} and M_{za} in $\{F1\}$ are the corresponding member end moments measured in local coordinates.

Stiffness Matrix of Connection Aa: Given K_z = the tangent stiffness of connection Aa for major-axis (z-axis) bending, K_y = the tangent stiffness for minor-axis (y-axis) bending, and the relative connection rotations are ($\theta_{2A} - \theta_{za}$) and ($\theta_{yA} - \theta_{ya}$), respectively, the equilibrium equations for connection element Aa are given as the following:

3-8
\[
\begin{bmatrix}
M_{yA} \\
M_{zA} \\
M_{ya} \\
M_{za}
\end{bmatrix}
= \begin{bmatrix}
K_y & 0 & -K_y & 0 \\
0 & K_z & 0 & -K_z \\
-K_y & 0 & K_y & 0 \\
0 & -K_z & 0 & K_z
\end{bmatrix}
\begin{bmatrix}
\theta_{yA} \\
\theta_{zA} \\
\theta_{ya} \\
\theta_{za}
\end{bmatrix}
= [k_c]_{4 \times 4}
\begin{bmatrix}
\theta_{yA} \\
\theta_{zA} \\
\theta_{ya} \\
\theta_{za}
\end{bmatrix}
\] (3.10)

In Eq. 3.10, \([k_c]\) is the tangent stiffness of connection \(Aa\) measured in local coordinates.

Transformation of Connection Stiffness: From compatibility at node \(A\), the internal (local) displacements are related to the global displacements by the following equation in which \([T_2]\) was defined previously:

\[
\begin{bmatrix}
\theta_{yA} \\
\theta_{zA}
\end{bmatrix}
= \begin{bmatrix}
\Delta_{XA} \\
\Delta_{YA} \\
\Delta_{ZA} \\
\theta_{XA} \\
\theta_{YA} \\
\theta_{ZA}
\end{bmatrix}
\begin{bmatrix}
\Delta_{X} \\
\Delta_{Y} \\
\Delta_{Z}
\end{bmatrix}
\] (3.11)

Note that the first three columns of \([T_2]\) are null for the present case of infinitesimal joint size and non-eccentric member ends.

Adding \(\theta_{ya}\) and \(\theta_{za}\) to Eq. 3.11, and using a similar transformation for forces, the displacement and force transformations at the connection are given by Eqs. 3.12 and 3.13:
Using the transformation matrix \([\Gamma_c]\) from Eqs. 3.12 and 3.13, the equilibrium equations for connection \(A_a\) in the global system are given as the following, where \([K_c]_{8x8} = [\Gamma_c]_{4x4}^T \cdot [k_c]_{4x4} \cdot [\Gamma_c]_{4x8}\) and \([k_c]\) = element stiffness matrix of connection \(A_a\) per Eq. 3.10:
Extensions for Other Situations: The transformation procedure demonstrated above in Eqs. 3.3-3.14 can be modified to cover connections with only major- or minor-axis rotational flexibility and for beam-column elements with connections at both ends. All of these cases are included in the computer implementation in CU-STAND.

3.3 Computer Implementation

In addition to implementing the connection model described above, control menus were added in CU-STAND for definition of the connection parameters and to assign connections by graphically attaching them to specific members. One of the connection editor menus is shown in Fig. 3-2 through which the user can interactively assign the four parameters which define the shape of the connection model and the nominal connection strength, \(M_{cn} \). Based on the user input, a plot of the moment rotation curve for the connection is shown in the viewports in the upper left portion of the screen. In the program, the four connection parameters can be either specified directly by the user, chosen from a library of values for standard connection types, or generated from moment-rotation data using the built-in curve-fitting routine described previously. The nominal connection strength, \(M_{cn} \), can be specified either as an absolute value or as some fraction of the plastic moment of the member, \(M_{pb} \), to which the connection is attached. The latter option is particularly suited to an iterative design process where connection and member properties are unknown at the outset and updated in the course of design.
FIGURE 3-2 Menu Page for Defining Connection Properties

Reproduced from best available copy
SECTION 4
CAPACITY SPECTRUM METHOD

The capacity spectrum method provides a means for incorporating inelastic structural response into a seismic response spectrum procedure which is amenable to engineering practice. This method was first presented by Freeman [5] for the design and evaluation of reinforced structures and was recently applied to steel framed structures with concrete infill walls by Chrysostomou et al., [6]. The essence of this method entails calculation of the capacity spectrum which relates the natural period of vibration of the structure to the level of induced response. As will be described below, the capacity spectrum is used together with elastic demand (response) spectra to obtain an approximation of the actual response.

The capacity spectrum is calculated using an incremental inelastic static analysis in which the structure is loaded with equivalent static earthquake forces. The load vector may be obtained from procedures based on a code such as the Uniform Building Code or from a modal analysis. The magnitude of the vector is not important, but the distribution of forces should reflect the inertial earthquake loading corresponding to the dominant mode(s) of vibration. In the analysis, the equivalent static load is applied incrementally, and at each step, the fundamental period of vibration is calculated to reflect the decreasing stiffness associated with the inelastic deformation of the structure. Also, the total applied load at each step is used to calculate an equivalent spectral acceleration.

The spectral acceleration (S_a) is related to the vector of maximum structural accelerations (\ddot{x}) in the direction of earthquake motion by the following equation:

$$\{\ddot{x}\} = \Gamma S_a \{\phi\} \quad (4.1)$$

In this equation, $\{\phi\}$ is the eigenvector corresponding to the fundamental mode of vibration, and Γ is the modal participation factor for this mode, given as the following:
In Eq. 4.2, \([M]\) is the matrix of lumped masses, \(m_i\), and \([d]\) is a unit vector. Note that the matrix multiplication is reduced to a summation by taking advantage of the diagonal mass matrix. The vector of inertial loads \([P]\) is calculated by multiplying the nodal accelerations \([\ddot{x}]\) by the masses as given by the following equation:

\[
[P] = [M][\ddot{x}] = \frac{\Sigma m_i \phi_i}{\Sigma m_i \phi_i^2} [M] [\phi] \tag{4.3}
\]

The total base shear, \(V\), which is equal to the summation of the inertial loads can then be related to the spectral acceleration by the following equation:

\[
V = \Sigma P_i = \left(\frac{(\Sigma m_i \phi_i)^2}{(\Sigma m_i \phi_i^2)}\right) S_a \tag{4.4}
\]

Rearranging Eq. 4.4, and expressing the spectral acceleration as a fraction of gravity, (i.e., \(S_a' = S_a/g\)) the following expression is obtained:

\[
S_a' = \left[\frac{(\Sigma m_i \phi_i^2)}{(\Sigma m_i \phi_i^2)^2}\right] V / g \tag{4.5}
\]

For the implementation used in this research, the fundamental period and mode shape were calculated directly using the mass and stiffness matrices and a standard eigensolution routine. Alternatively, assuming that the displaced shape of the structure under the equivalent static load vector approximates the first mode shape, Eq. 4.5 can be approximated by the following equation in which \(\Delta_i\) is an approximate displacement corresponding to \(\phi_i\):

\[
S_a' = \left[\frac{(\Sigma m_i \Delta_i^2)}{(\Sigma m_i \Delta_i)^2}\right] V / g \tag{4.6}
\]

Similarly, the fundamental period, \(T\), can be calculated using the following equation which can be derived using a Raleigh-Ritz type procedure:
\[T = 2\pi \sqrt{\frac{\sum m_i \Delta_i^2}{\sum P_i \Delta_i}} \]

(4.7)

As will be shown in the case study, the resulting capacity spectrum is plotted as a graph of the period, T, versus spectral acceleration, Sa'. Since higher modes of vibration are neglected in the analysis, an inherent assumption in the capacity spectrum method is that the fundamental mode of vibration dominates in the actual dynamic response.
SECTION 5
EXAMPLE CASE STUDY

5.1 2-D Frame: Inelastic Behavior and Connection Sensitivity Study

5.1.1 Design of PR Frame

The two story frame shown in Fig. 5-1 was designed based on the AISC-LRFD Specification [15] for gravity, wind, and earthquake loading. The wind load is based on a uniform pressure of 15 psf with a frame spacing of 25.0", and the equivalent static earthquake forces are based on the UBC-88 [16] provisions for zone 2a. All members are assumed to be fully braced against out-of-plane displacements. The beam-column connections are modeled as top and seat angle with double web angle (TSAW) connections whose behavior is defined by the average curve (TSAW-AVE) using the parameters previously given in Table 2-2. In the initial analysis and design, the nominal connection strength, M_{cn}, was assumed to be 40% of the plastic moment, M_{pl}, of the adjacent beam. Once the member sizes were chosen, the connection angles were sized to provide a moment capacity of 0.4 M_{pl} using a design procedure described by Shen [13].

Design member forces were calculated based on a second-order analysis using CU-STAND. As shown in Fig. 5-1, beams and columns were discretized into 4 and 2 elements, respectively, and loads were applied at the nodes. Gravity and lateral loads were applied proportionally up to the full factored loads per the load combinations given by the Specification (LRFD Eqs. A4.2 to A4.5). In general, the gravity load combination controlled the beam sizes and the gravity/earthquake load combination controlled the column sizes. In the beam-column interaction equation design checks, the effective buckling length factors were calculated using the elastic eigenvalue buckling routine in CU-STAND. In this routine, the connection stiffness is taken as the initial tangent stiffness, K_e (see Fig. 2-1). The resulting effective length factors in the lower story were 1.65 and 0.85 for the exterior and interior columns, respectively.
W = 2.81 k
EQ = 9.0 k
Wind = 5.63 k
EQ = 11.5 k

Wind = 625 plf, W = 1125 plf
W14X34 (Typ.)
W21X44 (Typ.)
W3X31 (Typ. int.)
TSAW (Typ.)
W12X26 (Typ. Est.)

All Steel is A36
Loads Shown are Unfactored
TSAW Connections:
Top and Seat Angles: 4x4x3/4x6-1/2
Web Angles: 4x3-1/2x5/16x5-1/2

FIGURE 5-1 Two Dimensional Building Frame
As a serviceability check, the wind drift was calculated using the four load combinations with wind and earthquake load listed in Table 5-1. The load combination for checking the service drift includes the unfactored wind load \((1.0 \, W) \) in combination with various amounts of gravity load. An additional service load combination, \(1.0 \, DL + 0.4 \, LL + 0.5 \, W \), which has been suggested by Ellingwood [17] is also included. According to Ellingwood, the combinations with full wind load are based on a 50 year recurrence interval, while that with 0.5 \(W \) is based on a 10 year recurrence interval. The calculated drifts are listed in Table 5-1, and in all cases the wind drift was less than \(H/400 = 0.9 \) inches. It is interesting to note that due to the nonlinear connection response, the calculated drift varied considerably (from 0.43 to 0.71 inches) depending on the amount of gravity load applied. Drift under a gravity load and earthquake load combination was equal to 1.34 inches corresponding to an index of \(H/270 \) which is less than the limit of \(H/200 \) specified in the UBC code for seismic loading.

<table>
<thead>
<tr>
<th>Load Combination</th>
<th>Drift (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0D + 1.0L + 1.0W</td>
<td>0.71</td>
</tr>
<tr>
<td>1.0D + 0.2L + 1.0W</td>
<td>0.53</td>
</tr>
<tr>
<td>1.0W</td>
<td>0.43</td>
</tr>
<tr>
<td>1.0D + 0.4L + 0.5W</td>
<td>0.29</td>
</tr>
<tr>
<td>1.0D + 0.2L + 1.0E</td>
<td>1.34</td>
</tr>
</tbody>
</table>

5.1.2 Inelastic Response

Using the member and connection sizes presented in the previous section, the limit state response of the frame was further evaluated using the second-order inelastic analysis feature of CU-STAND. The analyses were conducted for static loading and include geometric nonlinearities, semi-rigid connection response, and member plastification. In principle, this inelastic analysis can be used to satisfy the basic strength limit state design.
philosophy embodied in the following equation from the AISC LRFD Specification:

\[\gamma Q_i \leq \phi R_n \]

The left side of Eq. 5.1 represents the applied factored load effects and the right side is equal to the factored member resistances. Using a nonlinear inelastic analysis where most significant system and element destabilizing effects are included directly in the load effects (i.e., \(\gamma Q_i \)), the right side of Eq. 5-1 reduces to an expression for the factored (reduced) cross section capacity. In CU-STAND, the member resistance is given by a three-dimensional yield surface which models elastic-plastic section response under axial load and biaxial bending [2]. In the analyses described below, the nominal yield surface in CU-STAND was reduced by the AISC-LRFD resistance factors for axial compression \(\phi = 0.85 \), tension \(\phi = 0.9 \), and bending \(\phi = 0.9 \) following a procedure suggested by Ziemian, et. al. [18].

Gravity Loading: For the inelastic gravity load analysis, the applied load was based on the following factored load combination (AISC-LRFD Eq. A4.2): \(1.2 D + 1.6 L_F + 0.5 L_R \). \(D \) is the total dead load, \(L_F \) is the live load on the floor beams, and \(L_R \) is the live load on the roof.

The overall response of the frame is described in Fig. 5-2. The moment diagram at the inelastic limit point is shown in Fig. 5-2a. Noted in this figure is the sequence of formation of the plastic hinges and the Applied Load Ratio (ALR) at which the hinges formed. (Note, throughout this report the magnitude of the applied load will be referred to as the Applied Load Ratio - ALR - which is the fraction of the factored load combination which has been applied to the structure.) As shown, the first hinges formed in the midspan of the beams in the end bents at a load equal to 1.06 times the full factored load. Subsequent hinges soon formed in the interior spans and then the columns until the structure failed at 1.38 times the factored load (ALR = 1.38) through a beam type collapse mechanism. The maximum connection rotation under the full factored load (ALR = 1.0) was 0.008 radian and this increased to 0.106 radian at the limit point (ALR = 1.38). Generally speaking, rotations greater than 0.050 radian are beyond the limit of most
experimental data. Therefore, if the maximum connection rotations were limited in the analysis to 0.05 radian, the load ratio at the limit point would reduce from 1.38 to 1.14 which happens to be below the load at which hinges formed in the columns.

The inelastic redistribution of forces in the columns is evident through the force point traces in Fig. 5-2b where the normalized major axis bending and axial loads are plotted for the locations indicated. The dashed line shows the factored yield surface corresponding to the design (reduced full plastification) strength of the cross-section. As shown, the interior columns (sections C and D) pick up almost pure axial load until hinges (#1 and #2) form at the midspan of the floor beams. At this point the interior column begins to pick up moment and the exterior column picks up moment more rapidly. As the loading continues and the third hinge forms (Fig. 5-2a), the moment reverses at the base of the exterior column as the frame tends to collapse inwards. The fourth hinge forms at the top of the exterior columns (A) and under subsequent loading the member forces at section A are constrained to follow the yield surface. Thus, to pick up additional axial load, the moment at section A is redistributed elsewhere in the frame. Soon after hinge 4 forms, hinge 5 forms at section D followed in quick succession by hinges 6 and 7 whereupon the limit load is reached.

A plot of the Applied Load Ratio (ALR) versus the roof drift is shown in Fig. 5-2c. Since the frame is symmetric and does not tend to sidesway under symmetric loading, a second analysis was made in which an initial out-of-plumb of H/500 was introduced prior to application of the load. As shown, the initial imperfection results in a large increase in the lateral drift, but the overall strength, as measured by the applied load ratios at formation of the first hinge and limit point, does not change significantly. In fact, the inelastic limit point increased slightly for the case with imperfections (from 1.38 to 1.42), but this was associated with a 60% increase in the peak connection rotation (from 0.106 radian to 0.166 radian).

Earthquake Loading: The strength limit state for earthquake loading was evaluated based on the following factored load combination with gravity loads: \(1.2D + 0.5L + 1.5E\). Live loads are applied at both the floor and roof.
a) Bending Moments and Hinge Locations

b) Force Point Traces

c) Applied Load Versus Roof Drift

FIGURE 5-2 Response Under Gravity Loading ($1.2D + 1.6L_F + 0.5L_R$)
levels and E is the UBC equivalent static load. The overall response of the frame is described in Fig. 5-3. As shown in Fig. 5-3a, the relatively large lateral load caused hinges to form in the columns which resulted in the sidesway mechanism in the lower story. The first hinge formed in the leeward column at an applied load ratio of 1.02 and the limit point coincided with formation of the last hinge (#7) at an applied load ratio of 1.19. The maximum connection rotation at the full factored load (ALR = 1.0) was 0.010 radian and at the limit point (ALR = 1.19) was 0.017 radian. The maximum connection rotation at the limit point was considerably smaller than in the gravity load case, and below the expected rotation capacity of 0.030 to 0.50 radians.

Force point traces for two of the lower story columns are shown in Fig. 5-3b and the overall load-deformation response of the frame is shown in Fig. 5-3c. For both columns shown in Fig. 5-3b, the yielding first occurs at the base of the columns (sections A and C). For loading beyond this point, the lower end of the columns redistribute bending moment to the top of the columns and adjacent columns to pick up additional axial loads. As indicated in Fig. 5-3c, the softening of the overall lateral stiffness due to the hinge formation occurs gradually until hinges (#1 to #4) form at the bases of all the columns where there is a noticeable kink in the load-deflection curve. Finally, at the limit point reached at 1.19 times the full factored load, the roof drift is 4.7 inches which corresponds to drift index of H/77.

Wind Loading: The strength limit state for wind loading was evaluated for the following load combination: 1.2 $D + 0.5 \ L + 1.3 \ W$. As noted previously, W is based on the equivalent static wind pressure. As shown in Fig. 5-4a, in this case the limit point was reached through a combination of hinges in the columns and beams. The first hinge formed at an applied load ratio of 1.50 and the limit load was reached at 1.67 times the full factored load. Unlike the previous case where the higher lateral loading dominated the response, in this case the limit load response was due to a combination of gravity and lateral effects. This is evident from the force point traces in Fig. 5-4b where, unlike the traces under earthquake load (Fig. 5-3b), the moments of the top of the columns (sections B and D) did not increase dramatically after the hinges (#5 to 9) formed at the base of the columns.
a) Bending Moments and Hinge Locations

b) Force Point Traces

c) Applied Load Versus Roof Drift

FIGURE 5-3 Response Under Gravity Plus Earthquake Loading

$(1.2D + 0.5L + 1.5E)$
a) Bending Moments and Hinge Locations

b) Force Point Traces

c) Applied Load Versus Roof Drift

FIGURE 5-4 Response Under Gravity Plus Wind Loading

(1.2D + 0.5L + 1.3W)
Non-proportional Loading: The inelastic response of the frame under non-proportional gravity and lateral loading was also investigated and the resulting load-deformation plots are shown in Fig. 5-5. In the two non-proportional analyses, gravity loads were applied up to the full factored load (1.2 D + 0.5 L), and then the factored lateral loads (1.5 E and 1.3W, respectively) were increased until the inelastic limit point was reached. In both cases, the nonproportional loading resulted in a higher limit point than in the proportional loading case. For the earthquake loading, the increase was 15% (from 1.19 to 1.37) and for the wind loading, the increase was 125% (from 1.67 to 3.76). Note that a direct comparison between the proportional and non-proportional load case beyond an applied load ratio of 1.0 is somewhat misleading because in the nonproportional case the applied load ratio for the gravity load is held constant at 1.0. However, the nonproportional load case gives a better indication of the limit state associated with increasing intensity of lateral loads. As will be discussed, the capacity spectrum analysis is based on nonproportional gravity and earthquake loading.

5.1.3 Sensitivity to Connection Parameters

To evaluate the sensitivity of the overall frame response to the variation in connection response parameters (see Section 2) several analyses were run using different connection parameters. In the first set of analyses, the effect of varying the assumed shape of the connection curve is evaluated by modifying the parameters M_o', K_e', K_p', and n (see Eq. 2.5). In the second set of analyses, the effect of varying the assumed strength of the connection, M_{cn}, is investigated.

Effect of Connection Model Shape: As discussed in Section 2, the variability of the shape of the assumed connection response model for TSFW connections is bounded by the curves TSFW-UPPER and TSFW-LOWER which represent a variation of two standard deviations from the mean curve.
FIGURE 5-5 Comparison of Response Under Proportional and Nonproportional Loading for Gravity and Lateral Loads
TSAW-AVE (see Fig. 2-4b). Also, the shape of the TSAW-AVE curve can be approximated by the DESIGN curve which is an average model representative of all connection types (see Fig. 2-6). The curve parameters for the TSAW-AVE, TSAW-LOWER, and TSAW-UPPER models are given in Table 2-2 and values for the DESIGN curve are given in Section 2.3. In the following discussion, the effect of the assumed shape of the response curve is assessed by comparing results from four sets of inelastic analyses in which the curve parameters \(M_o', K_e', K_p', \) and \(n \) were varied. For all cases, the assumed connection strength was kept constant with \(M_{cn} = 0.4 \) \(M_{pb} \).

A summary of the applied load ratio at the occurrence of the first plastic hinge and at the limit point is presented in Table 5-2. The results indicate practically no differences in the calculated load ratios between the different cases. Results for the TSAW-AVE and DESIGN curve are within 1%, and results for all of the curves are within 5%. Comparisons between calculated maximum connection rotations and deformations are summarized in Tables 5-3 to 5-5 where again there is no significant difference in the response.

Effect of Connection Strength. Since the connection response curve is normalized by the nominal connection strength, the assumed connection strength has an effect on both the stiffness and strength of the moment-rotation behavior of the connection model. To investigate the effect of varying the strength, three sets of analyses are compared where in each case, \(M_{cn} \) is set to 0.3 \(M_{pb} \), 0.4 \(M_{pb} \), and 0.5 \(M_{pb} \), respectively. The assumed variation in strength of 25% from 0.4 \(M_{pb} \) is approximately equal to one standard deviation between calculated and measured values of connection strengths for TSAW connections based on data from 17 tests [13].

As shown in Table 5-6, an increase in connection strength generally increased the applied load ratio at the first hinge and limit point, although the relative change in applied load ratio was less than the change in connection strength. For example, while the variation in connection strength was \(\pm 25\% \) compared to the case with \(M_{cn} = 0.4 \) \(M_{pb} \), the variation in load ratios was within -8% to +6%. Also, there tended to be a larger variation in
TABLE 5-2 Applied Load Ratios for Frames with TSAW Connections ($M_{cn} = 0.4 \ M_{pb}$)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Applied Load Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper Ave Lower Design</td>
<td></td>
</tr>
<tr>
<td>1st Hinge</td>
<td>$1.2D + 1.6 LF + 0.5 LR$</td>
<td>1.09 1.06 1.03 1.05</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 0.5L + 1.3W$</td>
<td>1.52 1.50 1.47 1.49</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 0.5L + 1.5E$</td>
<td>1.02 1.02 1.03 1.02</td>
</tr>
<tr>
<td>Limit Point</td>
<td>$1.2D + 1.6LF + 0.5LR$</td>
<td>1.31 1.38 1.44 1.33</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 0.5L + 1.3W$</td>
<td>1.62 1.67 1.70 1.64</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 0.5L + 1.5E$</td>
<td>1.20 1.19 1.19 1.19</td>
</tr>
</tbody>
</table>

TABLE 5-3 Maximum Connection Rotations for Frames With TSAW Connections ($M_{cn} = 0.4 \ M_{pb}$)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Maximum Rotation (10^{-3} radian)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper Ave Lower Design</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>$1.0D + 1.0L$</td>
<td>5.6 6.6 7.5 7.0</td>
</tr>
<tr>
<td></td>
<td>$1.0D + 0.2L + 1.0W$</td>
<td>3.1 3.9 4.8 4.3</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 1.6LF + 0.5LR$</td>
<td>7.6 8.3 9.0 8.6</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 0.5L + 1.3W$</td>
<td>5.5 6.2 7.0 6.5</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 0.5L + 1.5E$</td>
<td>9.4 9.9 10.4 10.0</td>
</tr>
<tr>
<td>Full Factored</td>
<td>$1.2D + 1.6LF + 0.5LR$</td>
<td>114 106 105 112</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 0.5L + 1.3W$</td>
<td>36 42 41 40</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 0.5L + 1.5E$</td>
<td>17 17 17 17</td>
</tr>
<tr>
<td>Limit Point</td>
<td>$1.2D + 1.6LF + 0.5LR$</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5-4 Maximum Floor Beam Deflections for Frames with TSAW Connections ($M_{cn} = 0.4 \ M_{pb}$)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Deflection (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper Ave Lower Design</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>$1.0D + 1.0L$</td>
<td>0.66 0.72 0.77 0.74</td>
</tr>
<tr>
<td></td>
<td>$1.2D + 1.6LF + 0.5LR$</td>
<td>0.97 1.03 1.08 1.05</td>
</tr>
<tr>
<td>Full Factored</td>
<td>$1.2D + 1.6LF + 0.5LR$</td>
<td>17.20 16.47 16.80 16.88</td>
</tr>
<tr>
<td>Limit Point</td>
<td>$1.2D + 1.6LF + 0.5LR$</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5-5. Roof Drift for Frames with TSAW Connections

(M\text{cn} = 0.4 \text{ Mpb})

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Drift (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper</td>
<td>Ave</td>
</tr>
<tr>
<td>Service</td>
<td>1.0D + 0.2L + 1.0W</td>
<td>0.49</td>
</tr>
<tr>
<td>Full Factored</td>
<td>1.2D + 0.5L + 1.3W</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>2.37</td>
</tr>
<tr>
<td>Limit Point</td>
<td>1.2D + 0.5L + 1.3W</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>4.76</td>
</tr>
</tbody>
</table>

TABLE 5-6. Applied Load Ratios for Frames with TSAW Connections: Effect of Connection Strength

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Applied Load Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M\text{cn}=0.3M\text{pb}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.99</td>
</tr>
<tr>
<td>1st Hinge</td>
<td>1.2D + 1.6L + 0.5L\text{L}</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.3W</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>1.22</td>
</tr>
<tr>
<td>Limit Point</td>
<td>1.2D + 1.6L + 0.5L\text{L}</td>
<td>1.54</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.3W</td>
<td>1.17</td>
</tr>
</tbody>
</table>

applied load ratios for the gravity load only and gravity plus wind load combinations where hinges formed in the beams. The variation for the gravity plus earthquake load case was not as large. This trend is also apparent in the load-deflection response curves for the two lateral load cases which are shown in Figs. 5-6a and 5-6b. In both cases there were differences in calculated deflections, but significant differences in the strength limit point did not occur under the earthquake loading.

Comparisons of the maximum connection rotations and deflections for the three assumed connection strengths are shown in Tables 5-7 to 5-9. In general, the connection rotations and deflections decreased with increasing connection strength, and the percentage change was greater between the cases with M\text{cn} = 0.3 to 0.4 M\text{pb} than between the cases with M\text{cn} = 0.4 to 0.5 M\text{pb}. For the cases with M\text{cn} = 0.3 M\text{pb}, the connection deformations varied up to +35% and the deflections varied up to +31% compared to those for M\text{cn}
a) Gravity Plus Earthquake Loading $(1.2D + 0.5L + 1.5E)$

b) Gravity Plus Wind Loading $(1.2D + 0.5L + 1.3W)$

FIGURE 5.6 Effect of Connection Strength on Response
TABLE 5-7. Maximum Connection Rotations for Frames With TSAW Connections: Effect of Connection Strength

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Maximum Rotations (10^-3 radian)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$M_{cn}=0.3M_{pb}$</td>
<td>$M_{cn}=0.4M_{pb}$</td>
<td>$M_{cn}=0.5M_{pb}$</td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>1.0D + 1.0L</td>
<td>8.5</td>
<td>7.0</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0D + 0.2L + 1.0W</td>
<td>5.3</td>
<td>4.3</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Full Factored</td>
<td>1.2D + 1.6L + 0.5L_R</td>
<td>11.1</td>
<td>8.6</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2D + 0.5L + 1.3W</td>
<td>8.1</td>
<td>6.5</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>13.5</td>
<td>10.0</td>
<td>7.4</td>
</tr>
</tbody>
</table>

TABLE 5-8. Maximum Floor Beam Deflection for Frames with TSAW Connections: Effect of Connection Strength

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Deflection (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$M_{cn}=0.3M_{pb}$</td>
</tr>
<tr>
<td>Service</td>
<td>1.0D + 1.0L</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>Full Factored</td>
<td>1.2D + 1.6L + 0.5L_R</td>
</tr>
</tbody>
</table>

TABLE 5-9. Roof Drift for Frames with TSAW Connections: Effect of Connection Strength

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Drift (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$M_{cn}=0.3M_{pb}$</td>
</tr>
<tr>
<td>Service</td>
<td>1.0D + 1.2L + 1.0W</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>Full Factored</td>
<td>1.2D + 0.5L + 1.3W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
</tr>
</tbody>
</table>

For the cases with $M_{cn} = 0.5 \text{ M}_{pb}$, the connection deformations varied up to 25% and the deflections varied up to 13% compared to those for $M_{cn} = 0.4 \text{ M}_{pb}$. Presumably, there were smaller variations between the case with higher connection strength because, as the connection becomes stiffer, the overall structural flexibility becomes less a function of the connection.
stiffness and more a function of the overall frame geometry and member properties.

5.2 2-D Frame: Inelastic Seismic Response

5.2.1 Frame Designs

The two story frame described in Section 5.1 is used in this section to demonstrate the capacity spectrum method for evaluating inelastic response under earthquake loading. To investigate the effect of connection restraint, four separate frame designs are considered. In three designs, the connections were modeled as semi-rigid with strengths of $M_{cn} = 0.1 M_{pb}$, $0.4 M_{pb}$, and $1.2 M_{pb}$, respectively. Generally speaking, connections with:

1. $0.1 M_{pb}$ correspond to details with light weight top and seat angles,
2. $0.4 M_{pb}$ correspond to details with medium weight top and seat angles with web angles, and
3. $1.2 M_{pb}$ correspond to thick stiffened end plate details. In all cases, the DESIGN curve parameters ($K_e' = 200$, $K_p' = 4$, $M_o' = 1.0$, $n = 1.4$) were used to define the shape of the connection response curve. In the fourth frame, the connections were assumed to be rigid.

Each of the four frames was designed to meet the AISC-LRFD provisions as described previously in Section 5.1.1 and the resulting member sizes are given in Table 5-10. The total weight of structural steel is also listed in Table 5-10. All members were designed using A36 ($F_y = 36$ ksi) steel.

<table>
<thead>
<tr>
<th>Member</th>
<th>$M_{cn} = 0.1 M_{pb}$</th>
<th>$M_{cn} = 0.4 M_{pb}$</th>
<th>$M_{cn} = 1.2 M_{pb}$</th>
<th>Rigid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior Columns</td>
<td>W8x35</td>
<td>W8x31</td>
<td>W8x31</td>
<td>W8x31</td>
</tr>
<tr>
<td>Exterior Columns</td>
<td>W12x30</td>
<td>W12x26</td>
<td>W12x30</td>
<td>W12x30</td>
</tr>
<tr>
<td>Floor Girders</td>
<td>W21x57</td>
<td>W21x44</td>
<td>W18x44</td>
<td>W21x44</td>
</tr>
<tr>
<td>Roof Girders</td>
<td>W18x35</td>
<td>W14x34</td>
<td>W16x26</td>
<td>W16x31</td>
</tr>
<tr>
<td>Steel Weight (kips)</td>
<td>14.15</td>
<td>12.15</td>
<td>12.59</td>
<td>12.09</td>
</tr>
</tbody>
</table>
Inelastic analyses under proportioned loading were conducted for all cases under various loading conditions and the results are summarized in Tables 5-11 to 5-14. Variations in the applied load ratios shown in Table 5-11 appear to be due to the fact that various members in the different frames were slightly overdesigned by different amounts. One exception to this is that the frame with rigid connections consistently carried higher loads at the limit point. As indicated in Tables 5-12 to 5-14, the main difference in behavior between the frames was that connection rotations and deformations were larger in the frames with less connection rigidity. For example, under the full factored and earthquake loadings roof drift was roughly 30%, 80%, and 200% greater for the frames with EEPS, TSAW, and TSA connections (respectively) compared to the rigid frame.

5.2.2 Capacity Spectrum Analysis

The capacity spectrum analysis was made using nonproportional loading where the full factored gravity load is first applied to the frame. For combination with earthquake loads, the factored gravity load combination was $1.2D + 0.5L$. Once the gravity load was applied, the factored earthquake loading was increased until the inelastic limit point was reached. The resulting load-deformation response for each of the four frames is shown in Fig. 5-7. Note that, in this case under nonproportional loading, the TSA frame reached a higher load than the TSAW frame. This is due to the fact that the TSA frame was designed with larger columns than the TSAW frame, and as discussed previously, under earthquake loading the frames fail by a story mechanism where hinges form in the columns (see Fig. 5-3a).

The capacity spectrum curves for each of the frames are shown in Fig. 5-8 along with design spectrum (NBK) curves proposed by Newmark, et. al. [19]. The curves are based on a peak ground acceleration of 0.15g to correspond to the UBC code based loading for Zone 2a. The NBK curves with 1% and 10% damping were chosen to give a representative measure of the frame response in the elastic range (1% damping), and at the inelastic limit point (10% damping). For calculating the period and spectral acceleration, the mass was based on the total dead load plus 20% of the live load.

5-18
TABLE 5-11 Applied Load Ratios for Frames Designed with TSA, TSAW, EEPS and Rigid Connections

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Applied Load Ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TSA (.1 M<sub>ph</sub>)</td>
</tr>
<tr>
<td>1st Hinge</td>
<td>1.2D + 1.6LF + 0.5LR</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.3W</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>1.05</td>
</tr>
<tr>
<td>Limit Point</td>
<td>1.2D + 1.6LF + 0.5LR</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.3W</td>
<td>1.68</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>1.17</td>
</tr>
</tbody>
</table>

TABLE 5-12 Maximum Connection Rotations for Frames Designed with TSA, TSAW, EEPS, and Rigid Connections

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Maximum Rotation (10<sup>-3</sup> radian)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TSA (.1 M<sub>ph</sub>)</td>
</tr>
<tr>
<td>Service</td>
<td>1.0D + 1.0L</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>1.0D + 0.2L + 1.0W</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>1.2D + 1.6LF + 0.5L</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.3W</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>18.4</td>
</tr>
<tr>
<td>Full Factored</td>
<td>1.2D + 1.6LF + 0.5L</td>
<td>133.0</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.3W</td>
<td>215.0</td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>36.8</td>
</tr>
<tr>
<td>Limit Point</td>
<td>1.2D + 1.6LF + 0.5L</td>
<td>19.30</td>
</tr>
</tbody>
</table>

TABLE 5-13 Maximum Floor Beam Deflections for Frames Designed with TSA, TSAW, EEPS, and Rigid Connections

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Deflection (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TSA (.1 M<sub>ph</sub>)</td>
</tr>
<tr>
<td>Service</td>
<td>1.0D + 1.0L</td>
<td>0.72</td>
</tr>
<tr>
<td>Full Factored</td>
<td>1.2D + 1.6LF + 0.5L</td>
<td>0.98</td>
</tr>
<tr>
<td>Limit</td>
<td>1.2D + 1.6LF + 0.5L</td>
<td>19.30</td>
</tr>
</tbody>
</table>

5-19
FIGURE 5-7 Applied Load Versus Drift Under Nonproportional Gravity Plus Earthquake Loading \((1.2D + 0.5L) + ALR (1.5E)\)
<table>
<thead>
<tr>
<th>Criteria</th>
<th>Loading</th>
<th>Drift (inch)</th>
<th>TSA (.1 M<sub>ph</sub>)</th>
<th>TSAW (.4 M<sub>ph</sub>)</th>
<th>EEPS (1.2 Mph)</th>
<th>Rigid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service</td>
<td>1.0D + 0.2L + 1.0W</td>
<td>0.87</td>
<td>0.35</td>
<td>0.44</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>Full Factored</td>
<td>1.2D + 0.5L + 1.3W</td>
<td>1.43</td>
<td>0.82</td>
<td>0.60</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>3.90</td>
<td>2.45</td>
<td>1.69</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>Limit</td>
<td>1.2D + 0.5L + 1.3W</td>
<td>4.34</td>
<td>3.58</td>
<td>3.07</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2D + 0.5L + 1.5E</td>
<td>9.95</td>
<td>4.75</td>
<td>2.67</td>
<td>2.17</td>
<td></td>
</tr>
</tbody>
</table>

As expected, the initial period (i.e., when Sa' = 0) was smallest for the RIGID frame and largest for the TSA frame. Also, since the first hinges formed at a higher load ratio, the stiffness of the RIGID and EEPS frame degraded at a larger value of spectral acceleration. However, the fundamental period at the limit point was nearly the same in all cases.

The NBK design spectra can be viewed of as the required strength (or strength demand) on a system with a given fundamental period and level of damping. For the frames considered, the transition curve (shown dashed) between 1% and 10% damping is an approximation for the demand on the system as it undergoes inelastic deformation. Point a is the point on the 1% (elastic) demand curve corresponding to the initial period of the structure. Point b is the point on the 10% (inelastic limit) demand curve corresponding to the period of the structure at its inelastic limit point (the intersection point for pt. b is based on the maximum period on the capacity spectrum curve which relates to the inelastic limit point from Fig. 5-7). Theoretically, the transition curve is different for each structure (since the initial and final periods vary), but in this case the differences are small and a single average transition curve is used.

The intersection of the capacity spectrum and transition demand spectrum curves gives the predicted response of each structure. The point at which the curves intersect can be related back to the load vs. deformation curve as shown in Fig. 5-7. Also included in Fig. 5-7 is an indication of the response range which corresponds to the intersection of the capacity spectrum curve with the 1% and 10% NBK curves.
FIGURE 5-8 Capacity Spectra Versus NBK Design Spectra
A summary of several measures for the predicted response is given in Table 5-15. Insofar as basic strength is concerned, the seismic resistance of all the frames is comparable. Due to their greater stiffness, the EEPS and RIGID frames resisted higher base shears, but as shown in Figs. 5-7 and 5-8, in all cases the predicted response was below the inelastic limit point. The connection rotations were larger for the TSA and TSAW frames, but the maximum rotations were still relatively modest. Assuming the joints are properly detailed to provide a ductile response, most connections of the types considered have rotation capacities of at least 0.030 to 0.050 radians whereas the peak rotation demand was 0.019 radians (for the TSA frame). Finally, the main significant differences in response were in the lateral drifts which was 40% greater in the TSA frame and 10% and 25% less in the EEPS and rigid frame (respectively) compared to the TSAW frame.

<table>
<thead>
<tr>
<th>Response Parameter</th>
<th>TSA</th>
<th>TSAW</th>
<th>EEPS</th>
<th>RIGID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Shear (kips)</td>
<td>38.1</td>
<td>39.0</td>
<td>45.9</td>
<td>47.8</td>
</tr>
<tr>
<td>Max. Conn. Rotation (rad x 10^-3)</td>
<td>19</td>
<td>12</td>
<td>5</td>
<td>--</td>
</tr>
<tr>
<td>1st Floor Drift (in)</td>
<td>1.95</td>
<td>1.67</td>
<td>1.61</td>
<td>1.45</td>
</tr>
<tr>
<td>Roof Drift (in)</td>
<td>4.24</td>
<td>3.02</td>
<td>2.71</td>
<td>2.25</td>
</tr>
</tbody>
</table>

The roof drifts predicted by the capacity spectrum analyses are compared to those calculated using the 2nd-order static analyses at full factored loading in Fig. 5-9. In all cases, the drifts calculated by the capacity spectrum are greater (+ 9% to + 69%) than calculated under the equivalent static earthquake load. In addition, the difference between the two analyses is larger for the frames with greater connection rigidity.
FIGURE 5-9 Comparison of Drifts Under Factored Earthquake Loading
SECTION 6
SUMMARY AND CONCLUSIONS

The main purpose of the reported research is to provide an analysis and design tool for investigating the effect of semi-rigid connections on the behavior and design of steel frames subjected to static or quasidynamic loading. There are four main components included in the current work: (1) adoption and development of a connection model suitable for use in analysis and design; (2) modeling of the connection element in finite element analysis; (3) computer implementation of the semi-rigid connection model and the capacity spectrum method; and (4) use of the system to investigate the limit state response of a low-rise frame with semi-rigid connections.

A four parameter equation is used to model the nonlinear moment-rotation behavior in the overall frame analysis. In the computer implementation, two methods are provided for determining the parameters for the model. The first method uses a built-in curve fitting routine to fit the model to a user-defined set of moment-rotation data. This feature has been demonstrated to provide good results when used to fit the model to experimental data. The second method for assigning parameters is by direct user input. In conjunction with this method, suggested values of normalized parameters are based on calibration to existing test data for several types of connections. A set of normalized parameters based on the average response of several different types of connections is also proposed.

The "zero-length" connection elements are implemented in finite element analysis to model connection flexibility for both major- and minor-axis rotational degrees-of-freedom. In the finite element formulation, additional local degrees-of-freedom associated with the flexibility at connections are introduced into the global solution system. Conventional element transformation matrices are modified for the beam-column elements connected with semi-rigid connections. A key advantage of the approach used is that the existing nonlinear model for the beam-column elements is unaffected. The approach presented simplifies the computer implementation of
connection flexibility for three-dimensional nonlinear analysis and facilitates further modification of the connection model.

The semi-rigid connections are implemented in the existing interactive graphics analysis and design system for three-dimensional structures, CU-STAND. The tool developed is capable of analyses considering both geometric and material nonlinearities, and semi-automated member redesign based on a subset of the AISC LRFD Specification. In addition, the advantages of interactive computer graphics are utilized in controlling the analysis, monitoring the structural response, defining and editing the connection model, and attaching connections to the structure. To provide a means for estimating the seismic performance of steel frames with semi-rigid connections, the Capacity Spectrum method is also implemented in CU-STAND.

A case study for a two-story planar frame with partially restrained connections is used to: (1) investigate the inelastic limit state response, (2) evaluate the sensitivity of overall frame behavior to variations in the connection behavior, and (3) use the capacity spectrum method to predict the inelastic response under seismic loading. The inelastic limit state was investigated for a frame with top and seat and double web angle (TSAW) connections with a moment capacity of 40% of the plastic moment of the connected beams. The frame was designed using the AISC-LRFD code provisions considering gravity, wind, and earthquake (UBC - Zone 2a) loading. Based on the results of a second-order inelastic analysis, the inelastic limit point was reached at load ratios roughly 20% to 30% greater than the full factored loads for the controlling load cases. In general, the connection rotations were not excessive; under full factored load they were less than 0.01 radians and at the limit point they were usually less than 0.05 radians. One exception to this was under pure gravity loading where the peak rotations increase up to 0.10 radians where beam mechanisms formed. Based on test data reported in the literature, connection rotation capacities of 0.03 to 0.05 radians seem to be quite common. Under service loads the drift indices were less than H/500 for wind loading and H/270 for earthquake loading. Under full factored loads the drift increases to H/430 for wind and H/130 for earthquake and at the limit point increased further to H/95 and H/75,
respectively. The large drifts at the limit point demonstrate the importance (even for low-rise structures) of nonlinear geometric effects on the inelastic limit state behavior. Finally, based on the nonlinear analysis, information on the inelastic force redistribution at the limit point is provided.

Comparison of the overall response for frames with varying connection properties indicates that (1) there is no significant effect due to statistical variations in the normalized connection model parameters, but (2) there is a significant effect due to variations in the assumed connection strength. In the sensitivity study, comparisons of inelastic limit points, deformations, and hinge formations were made for frames with top and seat angle with double web angle connections. In the first comparison, the normalized parameters \(K_c', K_p', M_o' \) and \(n \) were varied to reflect a statistical variation of \(\pm 2 \) standard deviations from the average connection response curve. In the second comparison, the connection strengths were varied between 0.3, 0.4, and 0.5 times the plastic moments of the connected beams; this reflected a variation in strength of \(\pm 25\% \) from the case with \(M_{cn} = 0.4 \) \(M_{pb} \). Changes in the inelastic limit points were less than \(\pm 8\% \) which indicates that the overall strength was not very sensitive to the connection strength. On the other hand, changes in the deformations ranged up to \(\pm 30\% \) which reflects a strong correlation with the connection strength, \(M_{cn} \), used in the moment-rotation model.

The inelastic response under equivalent static seismic loads was evaluated for several frames with varying connection rigidity based on code specified forces and a capacity spectrum analysis. In general, the capacity spectrum analysis indicated more severe loading than the code based equivalent static forces in terms of maximum base shear and deformations. Also, the difference in predicted response was larger for the frames with greater connection rigidity. In all cases, however, the frames which were designed for code forces exhibited adequate strength based on the inelastic capacity spectrum analysis.

The results of the low-rise case study provide information on a certain geometry and frame configuration which may or may not be applicable to other frames with partially restrained connections. As noted previously,
however, the main purpose of this report is not to present behavior information which covers a wide variety of structures. Rather, the purpose herein is to describe and demonstrate a computer-aided system which can be used to investigate the inelastic response of most steel building frames with partially restrained connections under static or equivalent static earthquake loading.
SECTION 7
REFERENCES

APPENDIX A

SEMI-RIGID CONNECTION DATA
FIGURE A-1 Comparison Between Curve-fitting and Experimental Results for SWA Connections
FIGURE A-2 Comparison Between Curve-fitting and Experimental Results for DWA Connections
FIGURE A-3 Comparison Between Curve-fitting and Experimental Results for TSAW Connections
FIGURE A-4 Comparison Between Curve-fitting and Experimental for TSA Connections
FIGURE A-5 Comparison Between Curve-fitting and Experimental Results for EEP Connections
FIGURE A-6 Comparison Between Curve-fitting and Experimental Results for EEPS Connections
FIGURE A-7 Comparison Between Curve-fitting and Experimental Results for FEP Connections
FIGURE A-8 Comparison Between Curve-fitting and Experimental Results for FEPS Connections
FIGURE A-9 Comparison Between Curve-fitting and Experimental Results for HP Connections
The National Center for Earthquake Engineering Research (NCEER) publishes technical reports on a variety of subjects related to earthquake engineering written by authors funded through NCEER. These reports are available from both NCEER’s Publications Department and the National Technical Information Service (NTIS). Requests for reports should be directed to the Publications Department, National Center for Earthquake Engineering Research, State University of New York at Buffalo, Red Jacket Quadrangle, Buffalo, New York 14261. Reports can also be requested through NTIS, 5285 Port Royal Road, Springfield, Virginia 22161. NTIS accession numbers are shown in parenthesis, if available.

NCEER-87-0003 "Experimentation Using the Earthquake Simulation Facilities at University at Buffalo," by A.M. Reinhorn and R.L. Ketter, to be published.

NCEER-87-0004 "The System Characteristics and Performance of a Shaking Table," by J.S. Hwang, K.C. Chung and G.C. Lee, 6/1/87, (PB88-134259/AS). This report is available only through NTIS (see address given above).

NCEER-87-0009 "Liquefaction Potential for New York State: A Preliminary Report on Sites in Manhattan and Buffalo," by M. Budhu, V. Vijayakumar, R.F. Giese and L. Baumgras, 8/31/87, (PB88-163704/AS). This report is available only through NTIS (see address given above).

NCEER-87-0016 "Pipeline Experiment at Parkfield, California," by J. Isenberg and E. Richardson, 9/15/87, (PB88-163720/AS). This report is available only through NTIS (see address given above).
"Digital Simulation of Seismic Ground Motion," by M. Shinzukua, G. Bodart and T. Harada, 8/31/87, (PB88-155197/AS). This report is available only through NTIS (see address given above).

"Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M. Shinzuka, 10/9/87, (PB88-150607/AS). This report is available only through NTIS (see address given above).

"Seismic Damage Assessment of Reinforced Concrete Members," by Y.S. Chung, C. Meyer and M. Shinzuka, 10/9/87, (PB88-150607/AS). This report is available only through NTIS (see address given above).

NCEER-89-0007 "Liquefaction Hazards and Their Effects on Buried Pipelines," by T.D. O'Rourke and P.A. Lane, 2/1/89, (PB89-218481).

NCEER 89-P017 "Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our Schools," Edited by K.E.K. Ross, 6/23/89.

NCEER-89-0019 "Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D BASIS)," by S. Nagarak damping, A.M. Reinhold and M.C. Constantinou, 8/5/89, (PB90-161936/AS).

"Study of Site Response at a Selected Memphis Site," by H. Desai, S. Ahmad, E.S. Galelas and M.R. Oh, 10/11/90.

