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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

» Existing and New Structures

+ Secondary and Protective Systems
Lifeline Systems

+» Disaster Research and Planning

L]

This technical report pertains to Program 2, Secondary and Protective Systems, and more specifi-
cally, to protective systems. Protective Systems are devices or systems which, when incorpo-
rated into a structure, help to improve the structure’s ability to withstand seismic or other en-
vironmental loads. These systems can be passive, such as base isolators or viscoclastic dampers;
or active, such as active tendons or active mass dampers; or combined passive-active systems,

Passive protective systems constitute one of the important areas of research. Current research
activities, as shown schematically in the figure below, include the following:

1. Compilation and evaluation of available data.
2, Development of comprehensive analytical models.
3. Development of performance criteria and standardized testing procedures.
4. Development of simplified, code-type methods for analysis and design.

Base Isolation Systems

. . o 1 Program 1
Analytical Modeling and Data Compilation I

I
. . ) - 1
Experimental Verification and Evaluation I - Seismicity and

i

\ / ! Ground Motion
Lm e e -

Performance Criteria and
Testing Procedures

H
‘ 1 Program 2 )
)
- - 1
- Secondary 1
Methods for Analysis I Systems I
and Design | QR -
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This report addresses a recently published SEAOC document entitled Tentative General Re-
quirements for the Design and Construction of Seismic Isolated Structures, in which static and
dynamic analysis procedures are specified for seismically isolated structures. Specifically,
analysis procedures for sliding systems are evaluared based on either test results or dynamic
nonlinear time history analysis. The main conclusion reached is that a degree of conservatism
exists in the SEAQC static analysis procedures. Specific cases are studied and the differences
quantified.
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ABSTRACT

The Structural Engineers Association of California (SEAOC) developed a document
in 1990 entitled "Tentative General Requirements for the Design and Construction of Seismic
Isolated Structures'. 'The document specifies analysis procedures for seismically isolated
structures, including a static and a dynamic analysis procedure.

This study concentrates on verifiying these procedures for sliding seismically isolated
structures. The study involves the following:

(1)  Evaluation of the response of sliding seismically isolated structures with stiff and
flexible superstructure, and
(2)  Comparison of dynamic analysis results to results of the static analysis procedure of

SEAOC.
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SECTION 1

INTRODUCTION

The seismic isolation concept is based on the premise that a structure can be sub-
stantially decoupled from potentially damaging earthquake motions. By decoupling the
structure from ground vibration, a reduction occurs in the level of response of a structure,
from the level that would otherwise occur in a conventional fixed-base building.

It is intended that decoupling will be accomplished using an isolation scheme which
makes the fundamental period of the isolated structure several times greater than the period
of the elastic fixed-base structure above the isolation system. In this way, the fundamental
period of the isolated structure shifts to a period range, where the response accelerations are
much less than those at the fixed-base period.

A reduction of the acceleration response is associated, however, with an increase in
the displacement of the isolation system. Control of this displacement within acceptable limits
is achieved by the introduction of an energy dissipating mechanism. In this respect, isolation
systems consisting primarily of elastomeric bearings have been developed.

Alternatively, isolation systems have been proposed which do not shift the fundamental
period of the system but rather limit the transmission of force to the superstructure by utilizing
only sliding supports. However, the lack of recentering capability in such systems may result
in excessively large permanent displacements. Accordingly, sliding isolation systems with
various forms of recentering devices have been developed.

Fixed-base (conventional) buildings absorb earthquake forces by inelastic response of
the strutural system which lengthens the period of the system and increases its energy dissi-

pation capacity. Inelastic response may cause building damage, both to the structural system



and nonstructural components. Earthquake damage can have significant cost impacts such as
repair and post earthquake disruption costs, increased earthquake insurance premiums and
potential liability for losses and injuries.

The base isolation alternative reduces the forces transmitted to the structure, limiting
inelastic response of the structural system and damage to the building and its contents.
Isolation can provide a level of performance well beyond that of conventional buildings with
potential for substantial life-cycle cost reduction.

The benefits offered by the new technology of seismic isolation, have become evident
énd widely accepted. Currently, several buildings and bridges in California and other countries
such as Japan, New Zealand, Ttaly, U.S.S.R., and others have been constructed by applying
the seismic isolation technology.

The familiarity and general recognition of the appealing seismic isolation advantages
from the professional community and the public has led to the need to extend the imple-
mentation of this concept into a wider area of construction. Accordingly, the Seismology
Committee of the Structural Engineers Association of California (SEAOC) felt that the
existing provisions for the design of conventional buildings should be supplemented with
design requirements developed especially for seismically isolated structures. This effort was
considered necessary for the following reasons:

(1)  Conventional building code were not adequate for isolated building design, and
(2)  Design engineers and building officials needed special code provisions for preparing,
reviewing and regulating isolated building design.

On the basis of the above, the seismic isolation concept and the criteria that would be
appropriate for design and construction of seismically isolated structures have been considered
by various Structural Engineers Associations of California (SEAOC) groups, since the early
1980’s. Specifically, in the mid-1980’s, members of the southern section of SEAQOC published
several papers that provide guidelines for the design of buildings with seismic isolators. In

1986, the northern section of SEAOC published "Tentative Seismic Isolation Design Require-



ments” (SEAONC, 1986), the first collection of design provisions for seismic isolated struc-
tures. In 1990, SEAOC recognized the need for a document that would represent a consensus
opinionof allits sections. The Seismology Committee of SEAOC developed "Tentative General
Requirements for the Design and Construction of Seismic Isolated Structures" (SEAOC, 1990a)
as an appendix to supplement the 1990 "SEAOC Recommended Lateral Force Requirements”,
also known as Blue Book (SEAOC,1990b). This appendix has been adopted by the Inter-
national Conference of Building Officials and has been incorporated in the 1991 Edition of
the Uniform Building Code (UBC, 1991).

It is implied that these successive efforts had a common motive, arising from the fact
that seismic isolation is a relative new technology. As experience with many design-related
issues increases and the results of related research become available, the design requirements
for seismic isolated structures can be refined accordingly, Based on this thought, the 1990
appendixof SEAOCis considered to be prepared in keeping with the most current information
and the present state of the practice of seismic isolation.

However, a lack of precise knowledge of the behavior of structures supported by all of
the existing types of seismic isolation systems still exists. In anticipating the arising uncer-
tainties, the SEAOC document, rather than addressing a specific method, provides require-
ments that are generally applicable to a wide range of possible isolation systems. It requires
rigorous dynamic analysis for all, or virtually all the isolated buildings, but also, by providing
simple formulae, it accomplishes the anticipation of the uncertainties by defining lower bound
limits for the predicted response values.

In this study, an attempt is made to create a set of nonlinear dynamic analysis results
which examine the behavior of structures supported by a certain type of sliding isolation
system. Those results are further compared to the key design requirements provided by
SEAOC and in this way, provide a basis for judging the validity and applicability of those

requirements.



A certain type of isolation system, the Friction Pendulum System (Zayas ¢t al, 1987,
Mokha et al, 1990b and 1991) was used in the analyses. By introducing a highly nonlinear
isolation system, the comparison is of peculiar interest, since the formulas that confine the
design values provided by SEAQOC are based on the assumption of a linear isolation system.
The selection of the Friction Pendulum System for this study is based on the belief that it
represents the best sliding isolation system, Shake table tests performed at SUNY/Buffalo
have provided evidence for this (Mokha et al, 1990b and 1991, Constantinou et al 1990a and
1991). However, the obtained results are representative of the behavior of other isolation

systems with similar characteristics.



SECTION 2

SEAOC DESIGN PROCEDURE FOR ISOLATED STRUCTURES

The seismic isolation concept and the criteria that would be appropriate for design and
construction of isolated buildings has been considered by various Structural Engineers
Association of California (SEAOC) groups, since the early 1980%s. These successive efforts
arise from the fact that seismic isolation is a relative new technology and as experience with
many design-related issues increases and the results of related research become available, the
design requirements for seismically isolated structures can be refined accordingly.

On this basis, SEAOC developed a document entitled "Tentative General Requirements
for the Design and Construction of Seismic Isolated Structures" (SEAOC, 1990a). This document

specifies design procedures for seismically isolated structures.

2.1 General Requirements

Rather than addressing a specific method on seismic isolation, the SEAOC document
providesrequirements that are applicable to a wide range of possible seismic isolation systems.
In general, it requires that an isolation system has the following basic properties: (1) remain
stable for the design displacement, (2) provides increasing resistance with increasing dis-
placement, (3) does not degrade under repeated cyclic loading, and (4) has quantifiable
engineering parameters.

Furthermore, the design requirements permit the use of either one of two different
procedures for determining the design-basis seismic loads. The first procedure is intended for
use on stiff buildings of regular configuration located on rock or stiff soil sites, away from
active faults. This procedure uses asimple formula (similar to the seismic coefficient formula

now used in conventional building design) to describe peak lateral displacement and force as



a function of seismic zone, soil profile, proximity to active faults and isolated building period
and damping. The second approach, which is required for all the other situations, relies on
dynamic analysis procedures to determine maximum force and displacement response of the
isolated building. Dynamic analysis procedures include both response spectrum (linear)
analysis and time history (nonlinear) analysis. The latter is required for the design of buildings
with significantly nonlinear isolation systems and/or superstructure elements.

Both the static and dynamic analysis procedures are based on the same level of seismic
input and require the same level of performance from the building. The Design-Basis
Earthquake load corresponds to a level of ground motion that has a 10% probability of being
exceeded in a 50 year time period. For buildings not requiring a site-specific hazard analysis,
the Design-Basis Earthquake spectra are defined by the ground motion spectrarecommended
by ATC 3-06 (ATC, 1978) and are essentially the same as those specified by the Blue Book
(SEAOC, 1990b) for dynamic analysis of conventional fixed-base buildings. Those design
spectra are shown in Figure 2-1. As an additional requirement, the isolation system stability
must be verified by test of the maximum level of the earthquake motion that can be expected
at the site. This earthquake intensity is defined as the level of ground niotion that has a 10
percent probability of being exceeded in a 250 year time period.

When the first procedure is implemented according to SEAOC, limits arise which are
associated with certain existing conditions, such as the soil profile type, the proximity of the
structure to active faults, the seismic zone, the complexity of the configuration of the structure,
etc. In those cases, a dynamic analysis approach is required by using the second procedure. If
dynamic analysis is to be made, the response values must be subjected to limitations for the
design. The lower bound limits are determined by applying the equations prescribed in the

first procedure, where the static analysis approach exists.
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Therefore, we can observe that current SEAOC thinking requires rigorous dynamic
analysis for all, or virtually all, isolated buildings, but to also prescribes , by introducing a
formula, a minimum design displacement of the isolation system. This approach ensures that
complex or nonlinear structures will be evaluated using the appropriate dynamic analysis
method and also provides a simple formula for validating the final design. The concept for
using simple formula to define a lower-bound limit for isolation system displacement is
analogous to the UBC’s (Uniform Building Code, 1991) use of a prescriptive formula to define
a minimum base shear for design of conventional fixed-base hbuildings. It is a process which
ensures a measure of uniformity in buildings of common construction and guards against gross

underdesign of key elements.
2.2 Design Methods

According to SEAQOC, a seismically isolated structure may be analyzed either by the
static analysis method or by a dynamic analysis method. The latter may be e¢ither a response
spectrum or a time-history analysis. The conditions for use of these analysis methods are
presented in the sequel,

2.2.1 Equivalent Static Method
2.2.1.1 Conditions for Use
According to SEAOC, a static lateral response procedure may be used for design

provided:

(1) The structure is located at least 15 km from all active faults.

(2) The structure is located on a soil profile with a site factor of S1 or S2.

(3) The structure is located in Seismic Zone 3 or 4,

(4)The structure above the isolation interface is equal or less than four stories, or 65 feet, in

height.

(5)The isolated period of the structure, T, is equal or less than 3.0 seconds.
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(6)The isolated period of the structure, T, is greater than 3 times the elastic, fixed-base period
of the structure above the Isolation Interface, as determined by the Blue Book (SEAOC,
1990b).

(7) The structure above the isolation interface is of regular configuration.

(8)The isolation system does not limit the Total Maximum Displacement to less than 1.5
times the Total Design Displacement.

(9) The isolation system is defined by all of the following attributes:

(a) The effective stiffness of the isolation system at the Design Displacement is
greater than one-third of the Effective Stiffness at 20% of the Design Dis-
placement.

(b) The isolation system is capable of producing a restoring force, such that the
lateral force at the Total Design Displacement is at least 0.025W greater than
the lateral force at SO percent of the Total Design Displacement.

(c) The isolation system has force deflection properties which are independent of
the rate of loading.
(d) The isolation system has force deflection properties which are independent of

vertical load and bilateral load.

2.2.1.2 Design Formulae

The isolation system shall be designed and constructed to withstand minimum lateral
displacements which act in the direction of each of the main horizontal axes of the structure
in accordance with the formula:

_10ZNST

— (2.1)

where,
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D =Design Displacement of the isolation system at the center of the building in the direction
under consideration.

Z = Seismic Zone coefficient (Table 2.1).

N =Near field coefficient related to the proximity of the structure to active faults. (Table
2.2)

S = Soil type coefficient (Table 2.3).

T = Isolated building period, provided by equation 2.4.

B =Coefficient related to the effective damping of the isolation system (Table 2.4).

The above mentioned formula is based directly on the shape of the ATC-3 spectra for
periods greater than 1.0 second, with two additional factors: (1) the near-field coefficient, N,
to account for the possibility of increased displacement at sites near faults and (2) the damping
coefficient, B, to account for damping in the isolation system other than 5% of critical. The
relationship between this formula and the ATC-3 spectra may be seen by first setting both
the damping and the near-field terms to 1.0 (i.e. 5% damped response for sites not near an
active fault). Equation 2.1 becomes:

D=10ZST (2.2)

Design displacement, D, may then be converted to spectral acceleration, SA, by multiplying

o
by

T
g

, where g is the gravity constant (386.22 in./sec2):

27) ~Z3 (2.3)

SA=10Z25T
386.22 T

At periods greater than 1.0 second, the above expression of spectral acceleration is
seen to be consistent with the 5% design spectra recommended by the ATC-3 study for use
in building codes (Figure 2-1). To use the design displacement formula (equation 2.1), an

effective period of the isolated building is defined as follows:
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TABLE 2.1 Seistnic Zone CoefTicient Z

Zome | 0 | 1 | 2a |20 | 3| 4 |
zZ 005] 01 [015s] 02 [ 03] 04 |
TABLE 2.2 Near-Field Response Coefficient N
Closest Distance, dp, toan | dg> 15km | dp=10km | dg<5km
Active Fault
|| N 10 1.2 1.5 I
TABLE 2.3 Site Coefficient S
Soil Profile Type St S2 | 83 S4
S 1.0 | 1.5 ] 20 | 27
TABLE 2.4 Damping Coefficient B
Effective Damping § | <2% | 5% | 10% | 20% | 30% | 40% | > 50%
(Percent of Critic
| B 08 | 1012 f15]17{19] 20|
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W

T=2n
Kming

(2.4)

where,

W = building weight,

g = acceleration of gravity, and

K =effective stiffness of the isolation system, determined by cyclic-load test as the slope
of a line between the origin and the minimum test value of force at the design dis-
placement.

By basing the effective period, T, on the minimum effective stiffness of the isolation
system, determined by test, the above formula approximates the longest period of the isolated
building at peak response. In this manner the design displacement, which is proportional to
the period, is intended to prescribe the maximum excursion of the isolated structure due to
the design-basis event.

The relationship between the damping coefficient, B, and the value of effective
damping, 3, is given in Table 2.4. The effective damping, [3, is prescribed on the basis of the
hysteretic behavior of the isolation system, as follows:

A

B oK. D7

(2.5)

where,
A = area of the hysterisis loop determined from test results at an amplitude
equal to the design displacement,
Knax =the maximum effective stiffness of the isolation system, determined by cyclic-load
tests.
By basing the damping coefficient, B, on the force-deflection behavior of the isolation system,
the above formula estimates the reduction in displacement response for systems which have

damping values greater than 5% of critical.



'The provisions also prescribe Total Design Displacement, Dt (Design Displacement

including torsional effects), on the basis of structure configuration and eccentricity as follows:

12vye

Dr=DU~ e

] (2.6)

where,

Dt =Total Design Displacement of the isolation system, including both the translational
displacement D, at the center of rigidity and the component of torsional displacement
in the direction under consideration.

y = distance between the center of isolation system rigidity and the point of interest, measured

perpendicular to the direction under consideration.

e = actual eccentricity between the center of mass of the structure and the center of rigidity
of the isolation system, plus accidental eccentricity taken as 5% of d.
d = longest plan dimension of the structure.

b = shortest plan dimension of the structure, measured perpendicular to d.

The additional component of displacement due to torsion, as pfescribed by equation 2.6,
increases the Design Displacement at the corner of the structure by about 15% (for a perfectly
square building in plan) to about 30% ( for a very long rectangular building for an eccentricity
of 5 percent). Values less than those of equation 2.6 can be used with justification, but Dp
cannot be less than 1.1 D.

The Total Maximum Displacement, Dy required for verification of the isolation
system stability in the most critical direction of horizontal response is calculated as follows:

D;y=1.5D, (2.7)

The Total Maximum Displacement, according to SEAQC, is used to verify adequate

clearances and separations, verification of isolator stability and load testing of the isolator

prototypes.



The peak force below and at the isolation system, Vy, corresponding to the peak dis-

placement D, is given by the following expression:

KmaxD
1.5

v, (2.8a)

In defining this equation, SEAOC introduces a reduction factor of the order of 1.5, as
to adjust the peak shear to a level compatible with the working-stress allowables specified in

other sections of the Blue Book (SEAOC, 1990b).

'The value of Vi, shall not be taken as less than the following:
(1) The lateral seismic force required for a fixed-base structure of the same
weight and a period equal to the isolated period, T.
(2) The lateral seismic force required to fully activate the isolation system (e.g.
the yield level of a softening system, the ultimate capacity of a sacrificial
Wind-Restraint System or the static friction level of a sliding system).
Furthermore, SEAOC specifies a minimum design force for the structure above the
isolation system which is in the same form as equation 2.8a but with a reduction factor Ry,

other than 1.5

m KmaxD

S
Rlv’l

(2.8b)

This reduction factor depends on the lateral force resisting system of the superstructure
and is about four times less than the Ry factor used in the calculation of the lateral force for
the design of conventional non-isolated structures (SEAQC, 1990b). In this respect, it is
required by SEAOC that base isolated structures remain essentially elastic for the Design
Basis Earthquake.

The distribution of force Vg with height is based on an assumed uniform distribution

of seismic acceleration over the height of the structure above the isolation interface.



2.2.2 Dynamic Lateral Response Procedure
2.2,2.1 Conditions for Use
According to SEAOC, a dynamic analysis, interpreted either as a response spectrum
analysis or a time history analysis, is required for design of the following isclated structures:
(1) Structures with a seismic isolated period T, which is less than 3 times the
elastic, fixed-base period of the structure above the isolation interface.
(2)Structures (above the isolation interface) having a stiffness, weight or
geometrical vertical irregularity or other irregularity, for which the 1990
Blue Book requires dynamic analysis.
(3)Structures located within 15 km of an active fault.
(4)Structures located at a soil profile with a site factor of S3 or §4 (soft and
very soft soil types).
(5) The structure is located in Seismic Zone 0,1,2A or 2B.
(6)The structure above the isolation system is greater than 4 stories or greater
than 65 feet in height.
(7)The isolated period of the structure, T, is greater than 3.0 seconds.
Additionally, time history analysis is required to determine the design displacement of
the isolation system and the peak floor displacements of the structure above the isolation
system for the following isolated structures:
(1) The structure is located on a soil profile with a site factor S4.
(2)The isolation system limits the Maximum Credible Earthquake displace-
ment to less than 1.5 times the Design-Basis Earthquake displacement.
(3)The isolation system has one or more of the following attributes:
(a)The Effective Stiffness at the Design Displacement is less than
one-third of the Effective Stiffness at 20% of the Design Dis-
placement.

(b)The isolation system is not capable of producing a restoring force



specified in the detailed requirements.
(¢)The isolation system has force deflection properties which are
dependent of the rate of loading.
(d)The isolation system has force deflection properties which are
dependent of vertical load and bilateral load.
2.2.2.2 Ground Motion Design Spectra

Properly substantiated, site specific spectra are required for design of all structures with
an isolated period, T, greater than 3.0 seconds, or located on a soil type profile of S3, or 54,
or located within 15 km of an active fault or located in Seismic Zones 1, 2A or 2B. Structures
not requiring site-specific spectra shall be designed by using the spectra of Figure 2-1.

A design spectrum shall be constructed for the Design-Basis Earthquake. This design
spectrum shall not be taken as less than the normalized response spectrum given in Figure
2-1 for the appropriate soil type, scaled by the seismic zone coefficient.

xception: If a site-specific spectrum is calculated for the Design-Basis Earthquake, then the
spectrum may be taken as less than 100 percent, but not less than 80 percent of the normalized
response spectrum given in Figure 2-1 for the appropriate soil type, scaled by the seismic zone
coefficient.
Also, a design spectrum shall be constructed for the Maximum Credible Earthquake. This
design spectrum shall not be taken as less than 1.25 times the Design-Basis Earthquake
spectrum. This design spectrum shall be used to determine the Total Maximum Displacement

for testing of the stability of the base-isolation system.

2.2.2.3 Time Histories

Pairs of horizontal ground motion time history components shall be selected from not
less than three recorded events. Each pair of time histories shall be applied simultaneously
to the structure, considering the least advantageous location of the mass center, These

motions shall be scaled such that the square root of the sum of the squares (SRSS) of the 5%



damped-spectrum of the scaled horizontal components does not fall below 1.3 times the
5%-damped spectrum of the Design-Basis Earthquake by more than 10% in the period range
T, as described by formula 2.1, for periods from T, minus 1.0 seconds to T plus 2.0 seconds.
The maximum response of the parameter of interest as calculated by the three time history
analyses shall be used for design.

The duration of the time histories shall be consistent with the magnitude and source
characteristics of the Design-Basis Earthquake. Time histories developed for sites 15 km of

a major active fault shall incorporate near fault phenomena.

2.2.2.4 Response Spectrum Analysis.

Response spectrum analysis shall be performed using a damping value equal to the effective
damping of the isolation system or 30 percent of critical, whichever is less. Response spectrum
analysis used to determine the Total Design Displacement and the Total Maximum Dis-
placement shall include simultaneous excitation of the model by 100 percent of the most
critical excitation of ground motion and 30 percent of the ground motion on the orthogonal

axis.

2.2.3 Lower Bound Limits on Applying the Results of a Dynamic Analysis Procedure
As previously stated, certain limits confine the implementation of response values for
design, if they are predicted according to a dynamic analysis procedure. These limits are

described below.,

2.2.3.1 Isolation System and Structural Elements Below the Isolation Interface
(1)The Total Design Displacement of the isolation system shall not be taken

as less than 90 percent of D, as specified in the equation 2.6,
(2)The Total Maximum Displacement of the isolation system shall not be taken

as less than 80% of Dy, prescribed by equation 2.7.



(3)The design lateral shear force on the isolation system and structural ele-
ments below the isolation interface shall not be taken as less than 90 percent

of Vy,, prescribed by equation 2.8a.

2.2.3.2 Structural Elements Above the Isolation Interface

(1)The design lateral shear force on the structure above the isolation interface, if
regular in configuration, shall not be taken as less than 80 percent of Vg(equation
2.8b), nor less than the limits imposed to Vg asprescribed in the Equivalent Static
Method.

Exception : The design lateral shear force on the structure above the isolation

interface, if regular in configuration, may be taken as less than 80 percent of Vg,

but not less than 60% of Vg, provided time history analysis is used for design of the

structure.

(2)The design lateral shear force on the structure above the isolation interface, if

irregular in configuration, shall not be taken as less than Vg (equation 2.8b).

2.3 Application to Sliding Systems

The design methods of SEAQC, as described in Section 2.2, refer generally to all iso-
lation systems. In interpreting the design formulae for a certain isolation system, one has to
account for those parameters that configure the relation between the displacement and the
developed force, for the specific isolation system.

In the case of sliding isolation systems, complications occur between the displacement
of the system and the developed forces. They are attributed to the variation of the coefficient
of friction with respect to the velacity of sliding. For the Friction Pendulum System (FPS),
the force developed is equal to the combination of the mobilized frictional force and the

restoring force which develops as a result of the induced rising of the structure along the



spherical surface. (For further details on the FPS, see Section 4.1.) Figure 2-2 shows the ideal
force-displacementloop for the Friction Pendulum System. The dotted extended lines describe
the behavior of the FPS when the cocfficient of friction has a constant value, fmax, independent
of the velocity of sliding. The effective stiffness of the isolation system is then defined as

follows:

STRN

|14
Keffzfmax +E (2'9)

where,

finax =maximum value of the coefficient of friction at high velocity of sliding.
W = weight of the structure.

D = maximum displacement of the isolation system.

R = radius of curvature of the FPS bearings.

The effective damping, 3, is evaluated from equation 2.5 with the area A being:
A=4DFf, W (2.10)

By substituting equation 2.10 to 2.5 and setting the value of K g equal to K, ,,, we have:

B S (2.11)
]-L f max + % '
The period T of the isolation system is provided by equation 2.4, which for Kegrequal to Kpyip

and after using equation 2.9 yields:

T=2n (2.12)

-

g g
fmaxB+E

The design displacement for the Friction Pendulum System is then calculated by equation
2.1, where the terms B and T are estimated by an iteration procedure through equations 2.11
and 2.12 and Table 2.4. The base shear is finally estimated by combining equations 2.8a and

2.9 (1.5 reduction factor is omitted):



FIGURE 2-2 Ideal force-displacement loop for the Friction Pendulum System.
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The structure shear, 1" s is again given by equation 2.13 (without the Ry factor). It

should be noted that in developing the above equations, it has been assumed that the effective
stiffness, K¢, does not change between a minimum, K;;;;, and a maximum, Ky, value. In
fact, this behavior has been observed in tests (Mokha et al, 1990b and 1991), in which the

stiffness properties of FPS bearings remained unchanged under repeated testing.






SECTION 3

TECHNICAL APPROACH - OYERVIEW

In the previous section, the requirements specified by SEAOC to estimate the design
values for an isolation system were introduced. According to SEAOC, a rigorous dynamic
analysis is required for all, or virtually all the isolated buildings, but the predicted response
values should be subjected to certain limitations, also specified by SEAOC.

The lack of response data have prompted analyses to verify the SEAOC design
requirements. Specifically, the work by Kircher and Lashkari, 1989, has been reported. In
their report, an evaluation of SEAOC requirements was attempted through a series of non-
linear dynamic analyses of isolated structures. These analyses examined the behavior of a
rigid structure supported by bearings which exhibited bilinear hysteretic behavior and was
excited by various earthquake motions. Statistical quantities, such as the mean and the
standard deviation values, provided a measure of the level and inherent variation of response
parameters as a function of the variation in the ground motion. In this way, a basis for judging
the validity and applicability of SEAOC design requirements was provided.

A similar approach is attempted in this report, By concentrating on a class of sliding
scismically isolated structures, and performing dynamic analyses under various considerations,
aset of nonlinear response data was obtained. This data enabled comparisons and conclusions
to be developed for the SEAOC procedures.

The adopted isolation system for this study is the Friction Pendulum System (Zayas et
al, 1987, Mokha et al, 1990b and 1991). This is a sliding isolation system where nonlinearity
between the displacements and the developed forces exists. The performed analyses accounted
for the nonlinear behavior of this isolation system. The dependence of the coefficient of friction

at the frictional interface to the velocity of sliding and the bi-directional interaction of the



forces at each isolation bearing, all properties of sliding isolation systems, were also taken
into account. In this way, it was indicated that the performed analyses were accurate enough
for the prediction of response of the examined cases.

In this study, two isolated structure models were used, which were considered to rep-
resent buildings exhibiting stiff and flexible superstructure behavior. Two structures were
selected: 1-storyand an 8- story. A mass eccentricity of the order of 5% was decided. These
also provide the investigation of the potential of torsional response of the base of the isolated
structure, as a function of the floors that the structure carries. Further, the increased values
of the displacements due to torsional effects are compared to equation 2.6 that SEAOC
introduces for defining the Total Design Displacement, accounting for torsion.

A total of three different designs of the isolation system was examined in this study
and the differentiation between them is based on their properties such as the maximum
coefficient of friction, fy,,, and the radius of curvature, R, of the concave sliding surface. An
analytical description of the FPS system and the values for the above properties selected for
this study is made in Section 4. The combining of different values for i, and R (see Section
4.2.2) was done to create a group of designs (a total of three) with combined strong or weak
frictional force and restoring force. In this way, two different FPS systems always had acommon
value, which could be either their maximum coefficient of friction or their radius of curvature.
This provides the reader with the ability to further compare the dynamic analysis results with
the SEAOC procedures, and also the dynamic analysis results between them.

Four different approaches were adopted in this study for the evaluation of SEACC
design code requirements, The first one, which is developed in Section 5, proceeds to the
comparison of SEAQOC static procedure to response values recorded during shake table tests
{extrapolated to prototype scale). In this way, the basis for judging SEAOC requirements is
provided through directly recorded response values of structures as if they were excited with

real earthquake motions.



All the following approaches rely on a dynamic analysis procedure, which accounts for
the properties of the FPS, as described above. The earthquake motions were all generated or
scaled (from real records) to correspond to Seismic Zone 4, This zone was selected since it
is the zone of highest seismicity and is where most isolated structures have been or will be
constructed.

The second approach (see Section 6) utilizes artificially generated earthquake motions
and examines the behavior of the structures under this excitation. The records were generated
to be compatible with the design spectra specified in SEAOC. In this way, earthquake motions
were also obtained to correspond to soil type S3 (soft soil sites), since no real records for those
sites were currently available. For every one of the site conditions under interest (S1, S2, S3
soil types), three corresponding earthquake motions were generated. In this way, for every
combination of isolation system, superstructure and soil site, three identical analyses were
performed which examine the behavior of the structure under excitation.

The third approach is based on the work done by Kircher and Lashkari, 1989 described
in the beginning of this section. The basis for providing a statistical evaluation analysis was
to examine the same structure - isolation system model under excitation with different
earthquake motions that all corresponded to the same soil site, Under these conditions, sta-
tistical quantities like the mean and the standard deviation values were calculated and
reported. The scaling of the records was initially based on both Peak Ground Acceleration
(PGA) and Peak Ground Velocity (PGV). As explained in Section 7, the study showed that
scaling according to PGA was not appropriate and reliable for use in the analyses. Accordingly,
the effort was concentrated only in the case of scaling based on PGV.

The fourth approach (Section 8) implements SEAOC procedures when dynamic
analysis is to be made. The earthquake motions are selected and scaled among those used in
the statistical evaluation approach. A total of six pairs of scaled earthquake motions was

applied and examined.
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The intent of this study s to create a set of data from which comparisons and evaluations
can be made for SEAOC requirements for sliding isolated structures. By sclecting four dif-
ferent, and all acceptable approaches to the problem, the predicted results, comparisons and

conclusions contain a desirable and sufficient level of reliability and validity.
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SECTION 4

STRUCTURE AND ISOLATION SYSTEM MODELS

The major intent of this study is to create, using a series of nonlinear analyses, a col-
lection of results upon which comparisons and evaluations can be made on the response of
sliding isolated structures with rigid and flexible superstructure. In this work, a certain type
of sliding isolation system, the Friction Pendulum System (FPS) is examined in correlation
with two different types of superstructure models. These models were configured appropri-
ately, and represent isolated buildings that exhibit a relatively rigid and flexible superstructure
behavior.

The nonlinear analyses were performed using the 3D-BASIS program (Nagarajaiah
et al, 1989). This program utilizes special modeling options that account for the behavior of

sliding isolation systems.

4.1 Superstructure Configuration

The structure - isolation system models used in this study were representative of one
and eight story moment resisting frames of rectangular configuration. In both cases, the
superstructure consisted in plan of four bays by eight bays with each bay measuring 20 feet
by 20 feet. One FPS isolator was placed at the intersection of the bays, for a total of 45 isolators.
Floor height was 12 feet.

The one - story superstructure had a fundamental period of 0.2 seconds, whereas the
eight - story superstructure had a period of 1.14 seconds. These values are representative of
moment resisting frames. The weight of each floor was 1280 kips (based on a combined dead
and seismic live load of 100 psf). The distribution of mass on each floor was assumed to be

asymmetric so that an eccentricity of the order of 5% of the longest plan dimension was created



in the longitudinal direction. Each story had identical stiffnesses in the two orthogonal
directions. In the eight - story building, the first three stories had the same stiffness, the next
three had 0.75 times the stiffness of the first three stories, and the last two had half the stiffness
of the first three stories. The distribution of stiffnesses to the various story elements was
selected in such way as to result in a torsional period in the absence of eccentricities of 0.58
times the translational period. The superstructure stiffness matrix was constructed in a shear
type representation with a diagonal mass matrix.

The properties of each structural system are summarized in Tables 4.1 and 4.2. The
dynamic characteristics, frequencies and mode shapes of the two systems are presented in
Tables 4.3 and 4.4. It should be noted that the fundamental period of the two structures is
slightly different than 0.2 and 1.14 secs, respectively. This is caused by the mass eccentricity.
In the dynamic analysis of the 8 - story structure, twelve out of twenty four modes were
accounted for. The other twelve modes corresponded to periods less than 0.16 seconds and

their contribution was assumed insignificant.

4.2 Isolation System

4.2.1 Description

Stiding isolation systems utilize sliding interfaces (usually Teflon - steel interfaces) to
support the weight of the structure. These interfaces provide little resistance to lateral loading
by virtue of their low friction. Recentering capability is provided by a separate mechanism.

In the case of the FPS, the isolated structure is supported by bearings, each one con-
sisting of an articulated slider on a spherical concave surface. A typical section of an FPS
bearing is shown in Figure 4-1. The slider is faced with a bearing material which, when in
contact with the polished metal spherical surface results in a maximum coefficient on friction
on the order of 0.1 or less at high velocity of sliding and a minimum friction coefficient of the

order of 0.05 or less at very slow velocity of sliding. This dependency of the coefficient of



TABLE 4.1 Properties for 1 - story isolated structure.
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F _I.“; R — =
Story § Weight | Rotational Stiffness Rotational Eccentricity
/ (kips) Inertia (kips/in) Stiffness (fr)
Floor (kips-in-sec?) (kips-inch)
| x1000 Longitudinal | Transverse
1 1280 1272642.5 3270958 § 3733792.62 8 0
Base § 1280 1272642.5 8 0
TABLE 4.2 Properties for 8 - story isolated structure.
Story | Weight] Rotational Stiffness Rotational Eccentricity
/ (kips) Inertia (kips/in) Stiffness (ft)
Floor (kips-in-sec”) (kips-inch) §
x1000 Longitudinal || Transverse
P e _ . - L
8 1280 1272642.5 1700.898 |} 1997933.76 8 0
7 1280 1272642.5 1700.898 { 1997933.76 8 0
6 1280 1272642.5 2551.347 § 2996500.64 8 0
5 1280 1272642.5 2551.347 | 2996900.64 8 0
4 1280 1272642.5 2551.347 || 2996900.64 '8 0
3 1280 1272642.5 3401.796 | 3995867.52 8 0
2 1280 1272642.5 3401.796 | 3995867.52 8 0
1 1280 1272642.5 3401.796 | 3995867.52 8 0
Base | 1280 1272642.5 8 0




TABLE 4.3 Dynamic characteristics of 1 - story superstructure (including 5% mass eccen-
tricity).

Mode

Floor 1 2 3
L T Rotational L T Rotational L T Rotational

Component | Component{| Component || Component | Component | Component §| Component | Component | Component

I

-

0.000 0.547 | 6.898E-05f 0.549 0.000 0.000 0.000 | -0.0427 | 8.837E-04

|

t Period (secs) ,
0201 0.200 [ 0.116
Frequency (Hz)
4970 | 4998 | 8.637
o Modal damping ratio assumed in analyses _
0.03 | 0.03 | 003 |




TABLE 4.4 Dynamic characteristics of 8 - story superstructure (including 5% mass
eccentricity). Modes higher than the 9th are not presented.

Mode

Floor 1 2 3
L T Rotational L T Rotational L T Rotational

Component | Component | Component || Component | Component § Component || Component | Component | Component

8 || 0000 | 0285 [3440E05| 0286 | 0000 | 0000 | 0000 | -0.0213 | 4.598 E-04

7 0.000 0.268 [3.237E05}f 0.269 0.000 0.000 0.000 { -0.0200 { 4.326E-04
il

6 0.000 0.235 |2.842E-05|| 0236 0.000 0.000 0.000 | -0.0176 | 3.798 E-04

5 0.000 0.204 |2466E-05|| 0.205 0.000 0.000 0.000 | -0.0153 | 3.296 E-(4

4 0.000 0.165 |1993E-05) 0.166 0.000 0.000 0.000 | -0.0124 | 2.664 E-04

3 0.000 0.119 |1442E-05| 0.120 0.000 0.000 0.000 | -0.0089 | 1.927E-04

2 0.000 0.082 |09B6E0S{ 0.082 0.000 0.000 0.000 | -0.0061 | 1.317E-04

1 0.000 0.041 JOSO0EQOS| 0.042 0.000 0.000 0.000 | -0.0031 | 0.668 E-04

-

e e —— o
Period (secs)
1.147 f 1.140 || - 0651
' Frequency (Hz)
0.872 0.877 1.537
Modal damping ratio assurned in analyses
0.03 0.03 0.03
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TABLE 4.4 Continued.

f Mode v ]
Floor 4 | 6
L T L T Rotational
Component | Component Component | Component | Component
8 | 0000 | 0290 |-3505E05] -0291 | 0000 | 0000 | 0000 | 0236 | 2.850E-05
7 0000 | -0.165 |-1989E-05]| -0.166 | 0000 | 0.000 0000 | -0.023 {-0.279E-05
6 || 0000 | 0032 |[038E05| 0032 | 0000 [ 0.000 0000 | -0257 |-3.101E-05
5 || 0000 | 0154 | 1858E-05 | 0154 | 0000 | 0000 [ 0000 | -0225 [-2.713E-05
4 || 0000 | 0231 [2795E05] 0232 | 0000 | 0.000 0000 | -0.028 |-0.034E-05
3 | 0000 | 0242 |2926E05| 0243 | 0000 | 0000 0000 | 0189 | 2283E-05
2 |{ 0000 | 0198 |2392E05 ) 0199 | 0000 | 0.000 0000 | 0248 | 2.996 E05
1 0000 | 0.111 | 1341E05 | 0.111 | 0000 | 0000 | 0000 | 0.171 | 2,065 E05
— T
Period (secs)
0424 | 0.422 0.266
. Frequency (Hz)
2.357 2371 3.756
Modal damping ratio assumed in analyses
0.03 || 0.03 0.03
— - - = —
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TABLE 4.4 Continued.

r=======

m
H Mode
Te —
Floor 7 8
L T Rotational L T Rotational
Component | Component Compméu Component | Component Component
8 0.237 0.000 0.000 0.000 0022 | 4.684E-04] 0.000 -0,223 | -2.692 E-05
7 -0.023 0.000 0.000 0.000 0.012 |-2.659E-044 0.000 0254 | 3.063E05
6 -0.258 0.000 0.000 0.000 0.002 |-0.516E-04| 0.000 0.188 | 2.270 E05
0.225 0.000 0.000 0.000 -0.012 | 2483 E-04 || 0.000 -0.124 |-1493E-05
4 -0.028 0.000 0.000 0.000 0.017 | 3.735E-04 || 0.000 -0.259 |-3.129 E-05
3 0,189 0.000 0.000 0.000 0018 | 3911 E-04 || 0.000 -0.025 | -0.305E-05
2 0.249 0.000 0.000 0.000 -0.015 | 3.197E-04 || 0.000 0.177 | 2.13BE5
1 H 0.171 0.000 0.000 0.000 0008 | 1.792E04 }| 0.000 0.190 | 2297 E-05
[ — - ——
P Period (secs)
0.265 0.241 |] 0.191

Frequency (Hz)

3.778 ! 4.154

5.241

Modal damping ratio assumed in analyses

——— —

0.03

0.03

0.03
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friction on velocity is a characteristic of Teflon based materials as described by Mokha et al,
1988 and 1990a. The FPS bearing acts like a fuse which is activated only when the earthquake
forces overcome the minimum valie of friction. When set in motion, the bearing develops a
lateral force equal to the combination of the mobilized frictional force and the restoring force
which develops as a result of the induced rising of the structure along the spherical surface.
-This restoring force is proportional to the displacement and the weight carried by the bearing
and is inversely proportional to the radius of curvature of the spherical surface. Accordingly,
the system has the following important properties:
(DRigidity for forces up to 0.05 times the weight.
(2)Lateral force which is proportional to the weight carried by the bearing. As
a result of this significant property, the lateral force develops at the center
of the mass, thus eliminating eccentricities at the isolation system level.
(3)Period of vibration in the sliding mode which is independent of the mass of
the structure and related only to the radius of curvature of the spherical
surface.

In addition to these properties, the Friction Pendulum System has other properties
common to sliding isolation systems, such as low sensitivity to the frequency content of
excitation and high degree of stability (Mokha et al 1988, Constantinou et al 1990b).

The lateral force that develops at an FPS bearing follows with excellent accuracy the

following relationship:
W . .
Fb=(E)Ub+u(Ub)WSgn(Ub) (4.1)

in which W is the weight carried by the bearing, R is the radius of curvature of the bearing, L

is the coefficient of friction mobilized during sliding and Uy, is the bearing displacement. The

first term in equation 4.1 corresponds to the stabilizing tendency of pendulum action of the



FPS bearing with the quantity W/R representing the slope of the force-displacement rela-
tionship (see also Fig. 2-2). Accordingly, the period of vibration of the structure in its rigid
body condition and with friction neglected is:
R 1/2
Tb=2n(§) (4.2)

From experimental measurements, it was found that the coefficient of friction follows the
relation below, which was proposed by Constantinou et al, 1990b:

R )= Frmax— D exp(-a U, ) (4.3)
in which f;,,x and (f, ;- Df) are the maximum and minimum mobilized coefficients of friction
respectively, and a is a parameter that controls the variation of the coefficient with the velocity
of sliding.

It should be noted that Ty, represents the period of free vibration of an isolated rigid

structure. This is not the same as period T, equations 2.4 and 2.12 which is a ficticious quantity.

4.2.2 Isolation System Properties.

Each of the 45 isolators had identical properties of coefficient of friction and radius of
curvature. The combinations used in this study are summarized in Table 4.5.

The axial load on each bearing was different due to the 5% mass eccentricity. Table
4.6 presents the portion of total weight W carried by each of the 45 bearings: For numbering
of the bearings, refer to Figure 4-2, W equals 2560 kips for the 1 - story structure and 11520
kips for the 8 - story structure.

Each of the 45 FPS bearings was modeled by a bi-directional sliding element which
conforms to the law of equation 4.3 and by a spring element of stiffness equal to W/R where

W is the axial load carried by the bearing (see Table 4.6).

4~10



TABLE 4.5 Isolation System Properties.

Frictional properties ] Geometrical
Isolation Properties
System No# fmax | fmin=fmax-Df a R Ty
(sec/in) (in) (sec)
0.10 0.05 0.9 35.132 2
0.05 0.025 0.9 88.048 3
3 0.10 0.05 0.9 88.048 3

TABLE 4.6 Axial load carried by each one of the bearings, for 1 - story and 8 - story isolated
structure, as a proportion of the total weight W of the structure,

Bearing @ " Bearing | Load/W, | |[ Bearing | Load/W, |
No# No# No# ]
1 0.00625 18 0.01875 ]| 35 [ 00375
2 0.0125 19 0.0125 36 0.01875
3 0.0125 20 0.025 37 0.00625
4 0.0125 21 0.025 38 0.0125
5 0.015625 22 0.025 39 0.0125
6 0.01875 23 0.03125 40 0.0125
7 0.01875 24 0.0375 41 0.015625
8 0.01875 25 0.0375 42 0.01875
9 0.009375 26 0.0375 43 0.01875
10 0.0125 27 0.01875 44 0.01875
11 0.025 28 0.0125 45 0.009375
12 0.025 29 0.025
13 0.025 30 0.025
14 0.03125 31 0.025
15 0.0375 32 0.03125
16. 0.0375 33 0.0375
17 0.0375 34 0.0375
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FIGURE 4-2 Plan view of the base of the building models used in the analyses and

numbering of the bearings.
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4.2.3 SEAOC Design Values for the Isolation System Properties

The intent of this study s to perform a series of nonlinear dynamic analyses and evaluate
the response of isolated structures located in Seismic Zone 4 (Z=0.4), 15km or greater from
an active fault (N=1), with various seil types (coefficient S) and supported by the Friction
Pendulum System. These response values are compared with the design values that SEAOC
specifies through a static analysis procedure. For this comparison, the SEAOC static analysis
procedure was applied and the calculated isolation system displacements and base shear force
values are listed in Table 4.7. The response quantities are presented as function of the soil
type and isolation system properties (radius of curvature, R, and maximum coefficient of

friction, f,4y)-
4.3 Program 3D-BASIS

The nonlinear analysis program 3D-BASIS (Nagarajaiah et al, 1989) was used in all
the analyses made in this study. This program was developed as an efficient tool for analysis
of base-isolated structures, in which the superstructure remains elastic during the earthquake
and any nonlinear behavior is restricted to the isolation system. This program offers special
options for the mathematical modeling of isolation systems, such as linear elastic, viscous,
hysteretic and frictional elements with uni-directional and bi-directional behavior, All these
elements are located at the base of the structure. The analysis methodology is based on the
following assumptions:

(1) Superstructure remains elastic.

(2)Each floor has three degrees of freedom, X and Y translations and rotation
about the center of mass of the floor,

(3)There exists arigid slab at the base level that connects all isolation elements.
The three degrees of freedom at the base are attached to the center of mass

of the base.



TABLE 4.7 Displacement and base shear over weight ratio values according to SEAOC static
~ analysis procedure for use in comparison with the results of nonlinear dynamic analyses
performed in this study.

—_Sliding Isolation System Properties
Soil
R=39.132in R=88.048 in R=88.048 in
(T,=2sec.) (Ty= 3 sec.) (T,= 3 sec.) Type
fmax=0.10 fmax=(.05 fmax=0.10
| D (in) V,/W D (in) VJ/W D (in) V/W
S1

2.809 0.172 5277 0.110 3.113 0.135 Rock/Stiff Soil Types
Coefficient § = 1.0

S2
5717 0.246 10.189 0.166 6.320 0.172 Medium Soil Sites

Coefficient S =1.5

S3
9.057 0.331 16.307 0.235 10.553 0.220 Soft Soil Sites
Coefficient § =2,0

= — e ———— ___ L_"_
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(4)Since three degrees of freedom per floor are required in the three-
dimensional representation of the superstructure, the number of modes
required for modal reduction is always a multiple of three. The minimum
number of modes required is three.

(5)The isolation system is rigid in the vertical direction and torque resistance

of individual isolation pads is neglected.

4.4 Comparison of Results Obtained by 3D-BASIS to Other Computer Programs.

Verifications were performed to compare the results from the 3D-BASIS program to
a rigorous mathematical solution and to the DRAIN-2D program (Powell, 1973), to ensure
the accuracy of the predicted results. For this reason, the response of the structural systems
developed in Section 4.1 is evaluated for three different earthquake components by the three
procedures. It should be noted that in order to comply to the limitations imposed by the
program DRAIN-2D (2-Dimensional consideration only), the selected isolated buildings were
subjected to only one horizontal earthquake component. By applying this component in the
longitudinal direction (L-Direction) only, no mass-eccentricity effects could be considered.
Accordingly, the accidental eccentricity in the longitudinal (L) direction was set equal to zero
(see Section 4.1). Therefore, the verification analyses were confined to only a 2-Dimensional
consideration. A total of 18 analyses were performed. The motions used in the comparison

study are scaled records of earthquakes, as explained in Section 7.1

4.4,1 Comparison with Rigorous Mathematical Solution
4.4.1.1 Presentation of the Analytical Method
The response of the structures is analyzed using a lumped mass model. The equations

of motion of the superstructure are:



MUY +[CH{UY+KWHUy = ~IMI{1Y(Ug+U}) (4.4)
in which {U} is the vector of floor displacements with respect to the base, Uy, is the base
displacement with respect to the ground, and Uy is the ground displacement. A dot denotes
differentiation with respect to time. Furthermore, [M], [C), and [K] are the mass, damping
and stiffness matrices of the superstructure, respectively.

The equation of dynamic equilibrium of the entire system in the horizontal direction

is:
N
S mU U+ U )+ my(Uy+ U )+ F,=0 (4.5)
=]

in which m;, i=1,...,N are the floor masses, my, is the base mass and Fy, is the force mobilized

at the isolation interface. This force is given by:
|74 .
Fb:(E)Ub+p‘(Ub)WZ (4.6)

in which p is described by equation 4.3, W is the weight of the structure and Z is a variable

governed by the following differential equation (Constantinou et al, 1990b):

YZ+y|U, | ZVZ | +pU,Z°-U,=0 (4.7)
in which Y is the "yield" displacement (0.01 inches) and{3 + v = 1. Z replaces the signum
function in equation 4.1 and is used to account for the conditions of separation and reat-
tachment. Equations 4.4 to 4.7 are reduced to a system of first order differential equations
and numerically integrated using an adaptive integration technique with truncation error

control which is appropriate for stiff differential equations (Gear, 1971). This approach has
been described by Mokha et al 1990b.



4.4.1.2 Comparison

As shown in Figures 4-3 to 4-8, there is virtually no difference in the response that was
computed from the two methods. Program 3D-BASIS is capable of reproducing thoroughly
and capturing every detail of the response of the base displacement of the models used, as it

was predicted by the rigorous mathematical solution.

4.4.2 Comparison with the DRAIN-2D Program

Program DRAIN-2D represents a standard nonlinear dynamic analysis computer
program used by many structural engineers. It has been extensively tested and verified. The
behavior of the FPS bearings could not be accurately modeled by DRAIN-2D, however, it
was compared to 3D-BASIS because of its wide acceptance.

In modeling the frictional behavior with program DRAIN-2D, the bilinear hysteretic
element was used. In this respect, the velocity dependence of the coefficient of friction was
not accounted for. In the bilinear hysteretic element, the yield force was selected to be equal
to £« W and the yield displacement to be 0.01 inches. The post yielding stiffness was selected
to be equal to W/R. All bearings were lumped into a single element. The extremely small
yield displacement required an accordingly very small time step of integration. Stable solutions
were achieved with a time step of 0.002 seconds.

Figures 4-3 to 4-8 compare the base displacement time histories calculated from the
two programs, The results demonstrate that 3D-BASIS and DRAIN-2D yield the same or
almost the same displacement time histories. Some small differences in the details of the
time histories are attributed to the velocity dependence of the coefficient of friction which
was not accounted for in the DRAIN-2D solution.

Based on the above observation it may be concluded that:

(1)The velocity-dependent behavior of Teflon-based sliders is of secondary importance
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to the calculation of peak isolator displacements, and
(2)Bilinear (non-velocity dependent) elements can be used to accurately calculate the

displacement response of sliding isolation systems.
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SECTION 5

COMPARISON OF SEAOC STATIC PROCEDURE TO SHAKE TABLE TESTS

Experimental data are essential for the verification of simplified design procedures
like the SEAOC static procedure, In this regard, the experimental results from shake table
testing of sliding isolation systems are utilized (Mokha et al, 1990b and 1991). Similar attempts
for elastomeric and combined elastomeric - sliding systems have been reported by Chalhoub

and Kelly, 1990 and Griffith et al, 1988.

5.1 Experimental Setup

3.1.1 Superstructure

The main purpose of the shake table tests carried by Mokha et al 1990b, was to
investigate the feasibility of the Friction Pendulum System in isolating taller buildings with a
large aspect ratio. Shake table tests were performed on a 1/4-scale artificial mass simulation
model of a six-story steel moment resisting frame. In this model, the ratio of height to maximum
distance between bearings was 2.25. The three bay model (Figure 5-1) had a weight of 51.4
kips. The fundamental frequency of the scaled model was 2.34 Hz or 1.17 Hz in prototype
scale. This value is consistent with the behavior of a typical 6 - story moment resisting frame.
The columns of the model were bolted to two heavy W14X90 sections and four bearings were

placed between these beams and the shake table.
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5.1.2 Isolation System

The isolation system consisted of four FPS bearings which were placed under the base
of the model at 8 feet distance as shown in Figure 5-1. In this configuration, the aspect ratio
of the height of the model to distance between bearings is 2.25. The radius of curvature R,
was equal to 9.75 inches (39 in. in prototype scale). This radius resulted in a period of 1 seconds
( 2 seconds in the prototype scale). Two different bearing materials were used:

(DA form of woven Teflon under bearing pressure of about 20 ksi. The
frictional properties of this material, when in contact with the polished
metal surface, followed the law of equation 4.3 with f,,, = 0.075, Df =
0.035 and a = 1.1 sec/inch.

(2)A material which carries the trade name Techmet B (product of Oiles
Industry Co., Japan). Average pressure at the sliding interface was about
7 ksi. Under these conditions, this material exhibited a higher coefficient
of friction than the other bearing material. The frictional properties of this

material were f,, = 0.095, Df = 0.045 and a = 0.9 sec/inch.

5.1.3 Test Program

The isolated model was tested with six different earthquake motions. The character-
istics of these earthquake motions are listed in Table 5.1. The records have significantly dif-
ferent frequency content, with Hachinohe and Mexico City being long period motions. The
records were time scaled by a factor of two to satisfy similitude requirements of the quarter
scale model. The time scaled Mexico City motion has a frequency content almost entirely at
1 Hz, which coincides with the rigid body mode frequency of the isolated model. )

The earthquake tests were performed at varying peak acceleration levels for each of

the signals. Each earthquake signal was run at increasing levels of peak table acceleration
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TABLE 5.1 Earthquake records used in test program.

— PREDOMINANT |
NOTATION PEAK ACCEL.| FREQ.RANGE | MAGNITUDE
e e (8 (Hz) |
El Centro Imperial Valley 0.34 1-4 6.7
SO0E May 18, 1940
Component SO0E
Taft Kern County 0.16 05-5 7.2
N21E July 21, 1952
Component N21E
Pacoima San Fernando 1.08 0.25-2 6.4
S74W February 9, 1971
Component S74W
Pacoima San Fernando 1.17 025-6 6.4
S16E February 9, 1971
Component S16E
| Miyagi- Tohoku Univ. 0.16 05-5 7.4
Ken-Oki Sendai, Japan
EW June 12, 1978
Component EW
Hachinohe Tokachi-Oki 023 025-1.5 79
NS Earthq., Japan
May 16 1968
Component NS
Mexico SCT Building 0.17 05 8.1
City Seppt. 19, 1985
Component N9OW
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until the peak interstory drift reached approximately the value of 0.18 inches or 0.005 times
the story height. This value has been analytically determined to be the limit of the elastic

behavior of the structure.
5.2 SEAOC Static Analysis Procedure

As stated in Section 2, the design displacement formula prescribed by SEAOC is:

10ZNST
D=ONS

B (5.1)

where T is the effective period of the system and B is a damping related term. Both depend
on the isolation system propertics and the displacement of the system. Parameters Z, N and
S are dependent on the earthquake motion. For comparison of the predictions of equation
5.1 to the experimental results, parameters Z, N and S must be properly selected.

In the studies of Chalhoub and Kelly, 1990 and Griffith et al, 1988, parameter S was
selected according to the frequency content of the motion. Product ZN was interpreted as the
velocity related coefficient Av in accordance to ATC 3-06 (ATC, 1978).

The interpretation of product ZNS is different in this study. It is based on equation 5.1
and the 5% spectra of the earthquake motions. For 5% damping, parameter B= 1. Accordingly,
the term 10ZNS is the ratio between D and T. Thus, in the displacement spectrum of an
earthquake motion, this ratio is expressed as the tangent of a straight line starting from the
origin of the axes and trying to approximate an ideal spectrum, where proportionality between
the period (T) and the displacement (D) exists.

Accordingly, for the evaluation of the displacements of the model used in the shake
table tests according to the SEAOC equivalent static method, an estimation of the factor ZNS
for the respective earthquake excitations was preceded by applying the above mentioned
concept. Figure 5-2 shows the 5% damping elastic displacement spectra of the earthquake

motions (not scaled in time) that were used in the experiments and the proposed linear ones.
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The spectra were constructed from the recorded table motions. The percentage figure in
Figure 5-2 represents the acceleration scaling of the original earthquake record. For example,
the figure 200% implies an increase of the peak ground acceleration of the actual record by
approximately a factor of 2,

The linear spectra were selected so that they give equivalent or conservative results
when compared to the actual spectra in the period range from 1.0 to 2.0 seconds. This range
contains the effective period of the tested sliding isloated structure. One should note, however,
that the selection of the ZNS values is rather arbitrary and that several different values could
fit the jagged shape of the test spectra at long periods. In some cases, the ZNS values in this
study compare well with the ZNS values used by Chalhoub and Kelly, 1990 and Griffith et al,
1988. Table 5.2 compares ZNS values used in those studies and in this study.

The greatest uncertainty in the selected ZNS values occurs in the cases of long period
motions like the Hachinohe and Mexico City motions. The spectra of these motions have a
predominant peak which resembles the spectra of harmonic motions. An appropriate value
of ZNS in these cases could be the one corresponding to a linear spectrum which matches the

actual spectral displacement at the effective period of the isolation system.

5.3 Comparison of Experimen'tzil Results and Design Values According to SEAOC Static

Analysis Procedure

Tables 5.3 and 5.4 provide information on the experimental results (extrapolated to
prototype) of the displacement and the base shear coefficient of the tested model. The
respective values according to SEAOC design formulae are also listed. For the calenlation of
the SEAQC design values, the procedure described in Section 2.3 was employed. The base
shear over weight ratio was calculated without the 1.5 reduction factor to be consistent with

the experimental value.



A direct observation can be made on the fact that SEAOC formulae consistently
overestimate the displacement of the isolation system and the base shear coefficient, as they
were recorded during the experiments. This observation is more intent in the case were the
model was excited with long period motions. The ratio of SEAOC displacement to the
experimental value for various earthquakes appears to be larger than those reported by
Chalhoub and Kelly, 1990 and Griffith et al, 1988 for elastomeric and combined elastomer-
ic/sliding isolation systems.

In the case of long period motions, like the Mexico City earthquake, the calculated
SEAOC displacements are considerably larger than the experimental ones. Concentrating
on the case of Mexico City 70.% motion (Figure 5-2g), we repeat the calculations with a
different interpretation of the ZNS value. We interpret this value as the one which results in
a linear spectrum. that intersects the actnal displacement spectrum at the effective period of
the isolation system. For the case of the system with ., = 0.075 and R = 39 in., several
iterations were needed before arriving at the modified ZNS value of 0.6, effective period T
= 1.67 secs and displacement D = 6.89 in. The linear spectrum for ZNS = 0.6 is shown with
dashed line in Figure 5-2g. The calculated displacement is considerably less than the one
calculated with ZNS equal to 1.162 (Table 5.4). It is still, however, about 1.86 times the
experimental one.

In the case of the base shear coefficient, SEAOC design values are also consistently
conservative to the ones during the experiments. The ratio between the two values is lower
than the ratio of the displacement values and this is attributed to the fact that the displacement
and the base shear coefficient are not straight proportional, but they are rather related through
equation 2.13, where the constant value of f,,, mediates. It should be noted, however, that
equation 2.13 (SEAQOC formula for base shear in sliding isolation systems) predicts accurately
the experimental results, provided that the experimental value of displacement is used. For
example, if the experimental displacement of 4.92 in. for the El Centro 200% motion (see |

Table 5.3) is used in equation 2.13, the result is Vy, = 0.22W which is almost exact (0.218W).



TABLE 5.2 Comparison of the peak acceleration and ZNS values used by Chalhoub and
Kelly, 1990 and Griffith et al, 1988 with the ones used in this study.

This study Other studies
Moticn Peak ZNS Peak ZNS
Acceleration Acceleration
(8) (g)
e

El Centro 0.68 0.804 0.65 0.971
SOCE

Pacoima Dam 0.56 0.613 0.50 0.578
S16E

Taft N21E 0.53 0.465 0.74 0.825

(Lo SLm —
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TABLE 5.3 Shake table testing results {extrapolated to prototype) for the higher friction
material (f,.. = 0.095) and comparison to SEAOC design values.

Ratio between
Peak SEAQOC design § Experimental SEAQC
Excitation Ground ZNS values (extrapolated to {ldesign values and
Acceleration prototype) experimental
results
() D |Vb/W*I D Vb/W D Vb/W
(inch) (inch)
El Centro 0.34 0.402 1 301 | 0172 § 1.58 | 0.126 || 191 1.37
SOOE 100%
El Centro 0.51 0603 | 600 | 0249 § 3.05 | 0.157 § 1.97 1.59
SOOE 150%
El Centro 0.68 0.804 § 946 | 0338 |} 492 | 0.218 §| 1.92 1.55
SQOE 200%
Taft 0.17 0.155 0.63 | 0.111 045 | 0.101 1.40 1.10
N21E 100%
Taft 0.53 0.465 )| 3.92 | 0.196 § 357 | 0.173 {| 1.10 1.13
N21E 300%
Miyagiken 0.19 0.155 § 060 | 0.110 § 030 | 0.09 | 2.00 1.15
Oki EW 100%
Miyagiken 0.57 0464 1 385 | 0.194 § 2.10 j 0.138 || 1.83 1.41
Oki EW 300%
Hachinohe 0.22 0601 || 589 | 0246 § 227 | 0.152 | 2.59 1.62
NS 100%
Hachinohe 0.36 0900 § 11.40 | 0387 | 448 | 0.199 | 2.54 1.54
NS 150%
Pacoima 0.92 0687 § 725 { 0.281 § 5.60 | 0.203 || 1.29 1.38
S74W 100%
Pacoima 0.57 0613 }| 612 | 0252 § 444 | 0.198 | 1.38 1.27
S16E 50%

* Without 1.5 reduction factor.
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TABLE 5.4 Shake table testing results (extrapolated to prototype) for the lower friction
material (f,,. = 0.075) and comparison to SEAOC design values.

Ratio between
Peak SEAOC design § Experimental SEAOC
Excitation Ground ZNS values (extrapolated to [[design values and
Acceleration prototype) experimental
results
(2 D |[Vuy/W*t D | Vb/W § D | VB/W
. (inch) (inch)
El Centro 0.34 0402 I 356 | 0.167 § 173 | 0.114 § 2.06 1.46
SOOE 100%
El Centro 0.68 0.804 § 1094 | 0356 § 7.04 | 0.243 | 1.55 1.47
SOOE 200% .
Taft 0.17 0.155 )| 079 | 0095 | 054 | 0.090 || 1.46 1.06
N21E 100%
Taft 0.55 0.465 § 448 | 0.190 | 416 | 0.173 | 108 1.10
N21E 300% ‘
Miyagiken 0.19 0.155 | 079 | 0095 || 036 | 0.088 | 2.19 1.08
Olkd EW 100%
Miyagiken 0.56 0464 || 448 | 0.190 | 224 | 0.123 || 2.00 1.54
Oki EW 300%
Hachinohe 0.22 0.601 ) 6.74 | 0248 | 235 | 0.126 || 2.87 1.97
NS 100% .
Hachinohe 0.35 0.901 §| 12.84 | 0.404 | 544 | 0201 || 2.36 2.01
NS 150% ‘
Pacoima 092 0.687 § 850 | 0293 § 608 | 0.198 | 1.40 1.48
S74W 100% ‘
Pacoima 0.56 0.613 | 7.00 | 0.254 § 512 | 0.195 | 1.37 1.30
S16E 50%
Mexico N9OW 0.07 0664 | 808 | 0282 || 0.18 | 0087 | 4489 | 3.24
40% ,
Mexico NSOW 0.11 0596 || 1506 | 0461 § 1.05 | 0.116 f 1434 | 3.97
60%
Mexico NSOW/ 0.12 1.162 } 1856 | 0.561 | 3.70 | 0.176 | 5.12 3.19
70%

* Without 1.5 reduction factor.




In this respect, the SEAOC formula for the base shear in sliding isolation systems
(equation 2.13) is exact provided that the design displacement, D, is accurately estimated.
Accordingly, for the evaluation of SEAOC design procedure, we shall concentrate only on
comparisons of the design displacement (equation 2.1) to the dynamic analysis results.

Concluding this section, we note that the SEAOC static procedure overpredicts uni-
directional test displacements. The amount of overprediction is difficult to quantify because

of the difficulty in selecting ZNS values to represent a single earthquake motion history.






SECTION 6

EVALUATION OF RESPONSE FOR ARTIFICIAL EARTHQUAKES COMPATIBLE TO
DESIGN SPECTRA

An alternate approach for the evaluation of the response of sliding seismically isolated
structures under earthquake excitations is examined in this section. Specifically, a series of
analyses was made where the two building models discused in Section 4 were subjected to
artificially generated earthquake motions. The intent of this methodology is to create
appropriate simulated time histories, which are compatible with specified response spectra,
and, using these simulated motions, to perform nonlinear dynamic analyses. With this concept
in mind, a collection of response data was created from structures that are subjected to
earthquake excitations, whose response spectra closely match the shape of the recommended
spectra for use in building codes, according to the ATC 3-06.

The two building models were subjected to excitation only in their transverse (T)
direction. This way, the effects of mass eccentricity were taken into full account, since in both
models a 5% mass eccentricity existed only in the transverse direction. This assumption
allowed investigation of the potential for rotation of the isolation system and the calculation
of corner bearing displacements.

Recognizing that the above approach is limited to one - directional excitation, analyses
were also performed for the case of thE 8 - story structure with bi-directional simulated
excitation. This excitation consisted of 100% of the simulated motion in the transverse (T)
direction and a portion (83%) of the same simulated motion in the longitudinal (L) direction,
acting simultaneously. The 100%-83% combination is consistent with thé dynamic time history

analysis approach of SEAOC as described in Section 2.2.2.3 (L2 + T2)/2= (1 +A0.832) 1/2=13).



A total of 9 earthquake motions was generated. Grouped by three, their spectra suf-
ficiently approximated the spectra prescribed by ATC 3-06 for soil types S1,52 and 53, All of
the records had a peak ground acceleration of 0.4g, which is the effective PGA for Seismic
Zone 4. This zone, as referred to the introduction of this study, was the zone of interest for
all the series of analyses that were made within this work, since it is both the zone of highest
seismicity, and the zone where most isolated structures have been and will be constructed.
The duration of the generated accelerograms was 20 seconds for those that corresponded to
soil types S1 and S2, and 30 seconds for the ones that were created according to the S3 design
spectrum. This selection was made with the assumption that those values of time intervals
could be considered representative of the duration of main intensity intervals of real earth-
quakes, as recorded in soil types S1, S2 and S3.

The time histories of acceleration of the simulated motions and their 5% damping
elastic spectra are presented in Figures 6-1 to 6-9. The target spectra are also included in
these figures. It may be seen that the response spectra of the simulated motions closely match
the target spectra over the entire range of periods of interest in this study. The simulation of

the earthquake motions was based on the approach of Gasparini and Vanmarke, 1976.

6.1 Comparison of Time History Analysis Results for One-directional Excitation to SEAOC

Design Formulae

In the analyses that were performed, the two building models discussed in Section 4
were combined with the three different isolation system models and excited by 9 artificial
earthquake motions, grouped by three to represent site conditions S1, S2 and S3. A total of
54 analyses was performed.

Tables 6.1 and 6.2 summarize the results of the maximum displacements for the 1-story
and the 8-story structure, respectively, Tables 6.3 to 6.8 present results of the analyses in more

detail. It should be noted that for every combination of isolation system, superstructure and
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TABLE 6.1 Summary of results of maximum base displacement at geometric center of 1 -
story isolated structure excited in the transverse (T) direction by artificial records compatible

to design spectra and comparison of these displacememts with the design displacements
according to SEAOC static analysis procedure.

Sliding Isolation System Properties.

R=39.132 in R=88.048 in R=88.048 in ’,
Soil (T,=2 sec.) (Ty=3 sec.) (T, =3 sec.)
Type
fmax=0.10 fmax=0.05 fmax=0.10
Analysis| SEAOC | Ratio * || Analysis| SEAQC | Ratio *{|Analysis| SEAOC| Rato *
(inch) ¢ (inch) i i (inch) } (inch)
e
S1 143 2.81 1.96 3.11 1.59
52 3.85 5.72 1.49 8.31 10.19 | 1.23 | 4.14 6.32 1.53
S3 6.92 9.06 1.31 9.73 16.31 1.68 6.53 10.55 1.62
* SEAOC/Analysis
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TABLE 6.2 Summary of results of maximum base displacement at geometric center of 8 -
story isolated structure excited in the transverse (T) direction by artificial records
compatible to design spectra and comparison of these displacememts with the design
displacements according to SEAOC static analysis procedure.

Sliding Isolation System Properties. "
— T

R=39.132 in R=88.048 in R=88.048 in
Soil (T,=2 sec.) (T,= 3 sec.) (T, =3 sec.)
Type
fmax=0.10 fmax=0.05 fmax=0.10

SEAOC {Ratio *{{Analysis| SE Analysis| SEAOQC | Ratio *

* SEAOC/Analysis
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soil site, three identical analyses were performed corresponding to the three artificial records
whose spectra match the design spectrum. The maximum value of the displacement of the
isolation system calculated by those three analyses was the one of interest and is shown in
Tables 6.1 and 6.2. Also listed in these tables are the corresponding design displacements
according to SEAOC static analysis procedure, and the ratio between them and those esti-
mated from the time history analyses of this study.

The SEAOC design formulae consistently overestimate the time history analysis results
by an average factor of about 1.5. There is no special trend for a magnification or a reduction
of the ratios of the displacements evaluated from the two approaches as a function of the soil
type or isolation system properties. Rather, a random distribution of the ratio values is
observed with respect to the soil type and the isolation system properties. It is interesting to
note (see Tables 6.3 to 6.8) that the isolation system displacements in the 8 - story structure
are either larger or smaller than the corresponding displacements of the 1 - story structure.
Clearly, the flexibility of the superstructure has important effects on the response of the
isolation system, particularly in the case of sliding isolation systems in which higher mode
response occurs {Constantinou et al, 1990a and Mokha et al, 1990b).

Another important observation is that, essentially, the rotation of the base of the 1-story
structure due to mass eccentricity is negligible. Tables 6.3 through 6.5 provide supplementary
information for the 1-story structure where it can be seen that the ratio of the displacement
between the corner bhearing and the displacement at the center of mass of the base did not
exceed the value of 1.02. At this point, it is interesting to refer to the results of the work done
by Kircher and Lashkari, 1989, where for bilinear hysteretic behavior in the isolation system
and for a 5% mass eccentricity and a rigid superstructure, corner bearing displacements up
t0 1.66 times the displacement at the center of mass were calculated. For the Friction Pendulum
System, this behavior (which will also be discussed in other comparison approaches in Sections
7 and 8) indicates that, essentially, the resultant lateral force of the FPS bearings develops at

the center of mass of the structure, thus no rotation occurs during an earthquake excitation,
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This significant property is attributed to the fact that for each individual bearing, the developed
lateral force is proportional to the weight carried by the bearing. (See equations 2.9, 4.6).
Zayas et al 1987, has confirmed this behavior in shake table tests. The ratio of the corner
bearing displacement to the displacement at the center of mass of the base is, according to
SEAOC, given by equation 2.6. For the analyzed structure, this ratio is 1.24. When a more
rational analysis is used, SEAOC allows the use of a smaller ratio which is not less than 1.1.

The property of the Friction Pendulum System to resist torsion becomes less apparent
in the case of the 8-story structure (see Tables 6.6 through 6.8). A maximum ratio between
the corner bearing displacement and the displacement at the center of mass of the base of
1.22 is observed. In the 1 - story structure, this ratio was only 1.02. An explanation for this
difference is provided by the statement that in the 8 - story structure, an eccentricity between
the mass center and the rigidity center existed in eight out of nine levels of the structure {at
the isolation level there was no eccentricity since the lateral force developed at the FPS
bearings was proportional to the axial load on the bearing). In the 1 - story structure, this
eccentricity existed for the one out of two levels of the structure. In general, the eccentric
inertia forces in the flexible superstructure result in torsional motion of the superstructure
which "drives” the isolation system in similar motion. The SEAOC static design procedure
does not account for the property of sliding isolation systems, and in particular the Friction
Pendulum System, to reduce torsional effects due to mass eccentricity, especially for rigid or
very stiff superstructures.

Finally, it is evident by observing Tables 6.3 through 6.8 that the excitation of both the
structures in the transverse (T) direction resulted in the development of forces only in that
direction. The occurrence of small values of displacements of the corner bearings in the
longitudinal (L) direction (up to 0.04 inches for the 1-story structure and 0.39 inches for the
8-story structure) is due to the rotation of the base of the structure, whereas the displacement
in the L direction at the center of mass of the two models and the respective developed shear

forces were found in all cases to be zero.
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Appendix A provides supplementary information for the results of the maximum
calculated story shear force and interstory drift of all the floors, in the case of the 8 - story
structure excited by the artificial earthquake motions. The interstory drift is divided by the
story height (12ft). These results are particularly useful in studying the distribution of story
shear with height of the structure, which is not attempted in this study. However, one could
not avoid observing that the maximum story shear remains essentially the same in all stories
except for the top two stories. This indicates higher mode response, a characteristic of sliding
isolation systems which has been confirmed in experiments (Constantinou et al, 1990a and
Mokha et al, 1990b). Furthermore, the interstory drift ratio is restricted to values less than

0.006, which satisfies the limits imposed by SEAOC.

6.2 Comparison of Time History Analysis to Bi-directional Excitation to SEAOC Design

Formulae

To study the effect of bi-directional excitation on the response of isolated structures,
the analyses reported in Section 6.1 are repeated with an additional excitation component in
the longitudinal direction. The full simulated motion is applied in the transverse (T) direction
and 83% of the same motion is applied in the longitudinal (L) direction. Detailed results are
presented in Tables 6.9 to 6.11. Analyses were performed only for the 8-story structure.

As expected, the bi-directional excitation results in larger bearing displacements in
both directions except in a single case, in which the opposite occurs. For comparison to the
SEAOQOC design displacement, Table 6.12 was prepared. In this table, the maximum dis-
placement among the three artificial records for each soil type is presented together with the
SEAOC displacement and the ratio of this displacement to the calculated one. Evidently, for
the considered bi-directional excitation, the time history results on the displacement are very
close to the SEAOC values, which are on the conservative side within 25% of overestimation

on the average.
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The above results indicate that the SEAOC design formula can predict displacements
within an acceptable range of overestimation provided that the earthquake excitation is
interpreted as having bi-directional components. The two orthogonal components have the
square root of the sum of the squares (SRSS) of their $%-damped spectra matching the 1.3
times the 5% damped design spectrum (/ 1*+ 0.83% = 1.3). This is consistent with the
dynamic time history analysis approach of SEAOC.

It is interesting to note that under the bi-directional artificial excitation, the ratio of
corner bearing displacement to center point displacement is less than in the case of the
one-directional excitation. In the considered bi-directional excitation, the two components
are in phase, resulting in ground motion in a single direction at a 40 degree angle with respect
to the longitudinal axis. With respect to this axis of excitation, the mass eccentricity is less
than 8ft and equal to 6.13ft. This amounts to 3.8% rather than 5% mass eccentricity. This
explains the reduction in torsion.

Concluding this section we note the following:

(1)The SEAOC displacement values are about L5 larger than those calculated in

uni-directional artificial time history analyses.

(2)The SEAOC displacement values are about 1.25 larger than those calculated in
bi-directional artificial time history analyses.

(3)The effect of bi-directional excitation appears to be significant. On the average,
bi-directional excitation results in 20% larger response than uni-directional exci-
tation. This difference is larger than the one observed in the study of Kircher and
Lashkari, 1989. Responsible for this difference is the modeling of the isolation
elements. In the Kircher and Lashkari, 1989 study, each isolator was modeled by
two bilinear hysteretic elements placed at right angle. The interaction curve in this

model is effectively square. In contrast, the model used in the present study has
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TABLE 6.12 Summary of results of maximum base displacement at geometric
center of 8-story isolated structure excited by bi-directional artificial records com-
patible to design spectra (100% of artificial records in transverse (T) and 83% of
artificial records in Iongitudinal (L) direction) and comparison of these

displacements with the design displacements according to SEAOC static analysis
procedure.

Sliding Isolation System Properties.
o

R=396.132in R=88.048 in R=88.048 in
Soail (T,=2sec.) (T, =3 sec.) (T,= 3 sec.)
Type

fmax=0.10 fmax=0.05 fmax=0.10

rr—a

Analysis} SEAOC | Ratio * || Analysis| SEAOC | Ratio * | Analysis| SEAOC | Ratio *
| (inch) | (inch) (inch) | (inch) (inch) | (inch)

I

1

S1 2.54 2.81 L11 4.44 5.28 1.19 286 311 1.09

S2 294 | 572 1 195 854 | 1019 | 119} 416 | 632 | 1.5

S3 7.50 .06 1.21 § 1735 | 1631 § 0594 } 10.00 } 1055 | 1.06

ﬂ

* SEAOC/Analysis
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circular interaction curve which closely resembles reality (Constantinou et al,
1990b). For bi-directional excitation the circular interaction curve results in larger

displacement response than the square interaction curve.,
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SECTION 7

STATISTICAL EVALUATION OF RESPONSE FOR A SET OF RECORDED PAIRS OF
HORIZONTAL EARTHQUAKE COMPONENTS,

In this section, a statistical approach for the evaluation of the nonlinear response of
the structure-isolation models described in Section 4 is developed. This approach uses sets of
time histories that are consistent in amplitude and frequency content with the design spectra
currently required by the seismic codes, and calculates statistical quantities like mean values
and standard deviations of the response parameters which are under consideration. In this
way, a measure of the level of the inherent variation of the response parameters as a function
of the variation in the ground motion is provided.

The idea of a statistical consideration and estimation of the results of a performed
series of nonlinear analyses, for the prediction of response of sliding seismic isolated systems,
is, as stated in Section 3, based on the work done by Kircher and Lashkari, 1989. In this work,
a collection of nonlinear response data was created from where a basis for judging the validity
and applicability of SEAOC design requirements was provided through a statistical processing.
In the study examined in this section, all the major principles and assumptions that were

included in the work of Kircher and Lashkari, 1989 are adopted.

7.1 Earthquake Time Histories.

The ground motions that were selected for this work are the same as those used by
Kircher and Lashkari, 1989. According to them, appropriate earthquake time histories should
be the ones that are consistent in amplitude and frequency content with the design spectra,

currently required by seismic codes, i.e. the ATC-3 spectra. For this reason, the time histories



were selected from the records that were used by Seed et al, 1974 to develop those site-
depended spectra. It is interesting to note that Seed’s study yielded results that have been
used as the primary basis for the ATC-3 design spectra, and also for the seismic criterta of
the Blue Book (SEAOC 1990b) and the Uniform Building Code (UBC, 1991).

‘The Seed study developed site-dependent spectra by calculating mean and mean-
plus-one-standard-deviation spectra of normalized acceleration time history records. The
earthquake records were grouped by one of four different site conditions, listed below with
the corresponding ATC-3 soil type:

(1) Rock sites - Soil type S1.

(2)Stiff soils with depths less than about 150 ft. - Soil type S1.

(3)Deep cohesionless soils with depths greater than about 250 ft. - soil type
S2.

{4)Soil deposits consisting of soft to medium stiff clays with associated strata
of sands or gravels, - Soil type S3.

Horizontal earthquake records with peak ground acceleration (PGA) values of 0.05g
or greater were sclected by the Seed study from available data up to and including the San
Fernando earthquake of 1971. The Seed study treated the two horizontal components as
independent records and collected about 30 records each for rock, stiff soil and medium soil
sites, and 15 records for soft soil sites.

In this study, only records with both horizontal components exéeeding 0.10g PGA were
considered appropriate for the nonlinear analyses. After elimination of the less significant
records, the following number of records remained in each group:

(D Rock sites - 10 pairs (20 records), representative of soil type S1.
(2) Stiff soil sites - 10 pairs ( 20 records), representative of soil type S1.

(3) Medium soil sites - 9 pairs (18 records), representative of soil type S2.
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Since there were no records greater than 0.10g PGA for soft soil sites, thissite condition
was not evaluated during the series of the statistical evaluation analyses. Pertinent information
for each pair of horizontal earthquake time histories is provided in Table 7.1 for records at
rock sites, in Table 7.2 for records at stiff soil sites and in Table 7.3 for records at medium
soil sites.

Values of the PGA and the peak ground velocity (PGV) given in these tables were
taken directly from the California Institute of Technology data (CIT, 1974). In certain cases,
it was noted that the PGA values reported in the Seed study differed from the CIT data. No
explanation for these discrepancies could be found, except that some values reported in the
Seed study may have been for "uncorrected" records. Each set of earthquake records has a
large proportion from the San Fernando earthquake of 1971, The Seed study investigated the
potential biasing of results that can occur if the spectra are dominated by the San Fernando
earthquake, and concluded that the results were not unduly influenced. On the basis of the
findings of Seed’s study, Kircher and Lashkari, 1989 treated those earthquake records as
representative of the ATC-3 design spectra for soil types S1 (rock and stiff soil types) and for

soil types S2 (medium soil sites), respectively.

7.2 Scaling Factors

As referred in Section 2, for this study, Seismic Zone 4 was the only zone considered.
The effective PGA for Seismic Zone 4 is 0.4 g, the value of acceleration specified by the ATC-3
study for scaling of the normalized response spectra. As summarized in Tables 7.1 through
7.3, the unscaled records have a variety of PGA values, most of which are considerably less
than 0.4 g. Thus, scaling the records was required to insure that the response spectra be

~ consistent with Seismic Zone 4 design spectra.
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Two methods were used to scale time histories: scaling by peak ground acceleration
(PGA) and scaling by peak ground velocity (PGV). The first method, which parallels the
approach taken by the Seed study, scaled each pair of earthquake components by a common
factor such that the average PGA of the two components is equal to 0.4g. This method is
consistent with the approach used by the Seed study except that the Seed study scaled (i.e.
normalized) each component individually, rather than in pairs.

The advantage of using PGA to scale the records is that it is the same method used
implicitly in the Seed study to develop site-dependent design spectra. The shortcoming of
scaling the time histories by PGA is that the response of an isolated structure is primarily
influenced by the amplitude and frequency content of the velocity domain of the design
spectrum. As a secoﬁd method for scaling, each pair of earthquake components was scaled
by a common factor such that the average PGV of the two components was equal to either
12 in./sec for rock site, 18 in./sec for stiff soil sites or 22.5 in./sec for medium soil sites. The
same values were adopted in the work done by Kircher and Lashkari, 1989. Scaling the records
by PGV, rather than by PGA was considered a more appropriate method of representing the
amplitude and frequency content of ground motion at periods greater than 1.0 second. The
scaling factors used in the series of the statistical evaluation analyses are listed in Table 7.4.

Figures 7-1 to 7-3, show, grouped by the three soil types, the average spectra of
PGV-scaled and PGA-scaled time histories in the longitudinal (L), transverse (T) directions
and the spectra that are created by averaging the square root of the sum of the squares of the
spectra of the two horizontal components of every earthquake, individually ((L2+T2)1/2),
Also, each figure shows (with solid line) the respective design spectrum, which is one of the
three ATC-3 Design Spectra (see Figure 2-1). An observation can be made to the fact that
the average spectra of the time histories match the design spectra reasonably well for stiff soil
and medium soil sites. For rock sites, however, the average acceleration spectra are lower
than the ATC-3 design criteria for long periods. The reason for this large discrepancy between

the design criteria of the ATC-3 study and the average spectrum for rock sites is not known.
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TABLE 7.4 Scaling factors of the earthquake components.

No# EARTHQUAKE PGA PGV
STATION No# SCALED SCALED
1 HELENA (323) 2.749 2952
2 KERN COUNTY (095) 2.388 1.825
3 LYTLE CREEK (290) 2.353 3.297
4 PARKFIELD (097) 1.299 1.646
5 SAN FERNANDO (284) 1.909 3,780
6 SAN FERNANDO (126) 2.524 4.255
7 SAN FERNANDO (279) 0.356 0.357
8 SAN FERNANDO (104) 2.589 5.106
9 SAN FERNANDO (128) 1.258 2216
10 SAN FERNANDO (220) 2.524 2.224
11 LOWER CA (117) 2332 2.821
12 |IMP. VALLEY EL CENTRO (117) 1.423 1.300
13 PARKFIELD (014) 1.014 1.881
14 SAN FERNANDO (110) 1.368 2.034
15 SAN FERNANDO (135) 2.100 2.429
16 SAN FERNANDO (208) 2.857 2.237
17 SAN FERNANDO (211) 2.768 2.345
18 SAN FERNANDO (466) 2.139 1.769
19 SAN FERNANDO (253) 1.782 1.852
20 SAN FERNANDO (199) 2.454 2.612
21 WESTERN WASH (325) 1.798 2.970
22 EUREKA (022) 1.878 1.875
23 EUREKA (023) 2.222 1.854
24 FERNDALE (023) 2.339 4.813
25 SAN FERNANDO (241) 2.057 2.120
26 SAN FERNANDO (458) 3.620 1.892
27 SAN FERNANDO (264) 2.073 4352
28 SAN FERNANDO (267) 2.260 4.945
29 PUGET SOUND (325) 2.388 5.389
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FIGURE 7-1 5% average spectra of components T,L and square root of sum of square of
components T and L of PGV and PGA scaled motions used in dynamic analyses and
comparison with the Design Spectrum. Earthquake records recorded at Rock Sites.
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components T and L of PGV and PGA scaled motions used in dynamic analyses and
comparison with the Design Spectrum. Earthquake records recorded at Stiff Soil Sites.
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Apparently, the ATC-3 study felt that the time histories used by the Seed study to develop
rock spectra do not contain a level of ground motion appropriate for design of long-period
structures. Regardless of the motive, the ATC-3 study defined rock and stiff soil as a single
site condition (soil type S1) and based the design criteria for this site condition of the average
spectrum of stiff soil time histories.

Note that in Figures 7-1 to 7-3, the mean of the square root of the sum of the squares
of the spectra values of the two horizontal components ((L2+T2)1/2) of the casés of stiff soil
and medium soil sites is substantially larger than the design spectrum. Even when the mean
of (L2+T2)1/2 spectra is compared to 1.3 times the design spectrum (doted line), still the
(L2+T2)1/2 spectra indicate a stronger motion particularly for stiff soil (Figure 7-2). The
response spectra for each of the components of the PGV scaled motions are presented in
Appendix B. It may be observed that the response spectra of some of these motions exhibit
strong distinct peaks in the range of periods of 1.4 to 1.7 seconds (motions No. 15,18,19,23
and 25). One would expect that such peaks are characteristics of motions recorded on soil
types other than S1 or S2. Actually, these motions resulted in bearing displacements which
are considerably larger than those for other motions within each soil group. When these
motions are removed from the sample, their mean (L2+ T2)1/2 spectra appear to be consistent

with the 1.3 times the design spectrum for stiff and medium soil sites.
7.3 Comparison of Time History Analysis Results to SEAQC Design Formulae

In the previous section, two methods were used in this study to scale time histories:
scaling by peak ground acceleration (PGA) and scaling by peak ground. velocity (PGV). The
~ analysisresults have shown that the estimated meanvalues for the displacement of the isolation
system according to the two methods were predicted to be almost the same whereas the

standard deviation values differed thoroughly. When scaling by PGA, the standard deviations



were as much as two times greater than the standard deviations estimated through the PGV
scaling. It was concluded that the results based on PGA scaling were less representative of
the behavior of isolated structures. Accordingly, they are not reported in this study.

Tables 7.5 to 7.22 present the results of analyses of the six structure /isolation systems
(1-story and 8 - story with three different isolation system properties) to the 29 pairs of PGV
scaled motions. The tables include the peak displacement in the longitudinal (L) and trans-
verse (T) directions at the base center and at the corner bearing, the peak base shear and first
story shear (normalized by the total weight of the structure) and the peak first story drift ratio
(for story height of 12 ft). Results on the story shear and the interstory drift ratio for the other
stories of the § - story structure are presented in Appendix C. Furthermore, the tables present
values of the ratio of peak corner displacement to peak base center displacement, as well as
means and standard deviations (0) of the calculated response quantities. For the comparison
to the SEAOC design procedure for the displacement of the isolation system, the quantities
of interest are the mean and standard deviation of the maximum displacement between
components L and T for each of the three groups of the soil conditions. These values are listed
in the last two lines of each table. For soil conditions of stiff and medium soils, certain motions
have been excludedin the calculation of the mean and standard deviation (value in parenthesis
and identified by an asterisk). These motions were those having in their spectra distinct peaks
at high values of period, As discussed earlier, these motions may not be representative of
stiff and medium soil conditions, but rather representative of soils with deeper profiles.

The first o.bservation to be made in the results of Tables 7.5 to 7.22 is that the corner
to center displacement ratio is equal to unity for the 1 - story structure, (mean = 1,0 = 0).
This is significantly different than the value of 1.24 (by use of equation 2.6) required by the
SEAQOCstaticprocedure or the minimum 1.1value allowed when proper analysis is performed.

In the case of the 8 - story structure, the corner displacement is larger than in the case of the
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1 - story structure. Evidently, the torsional response is affected more by the flexibility of the
superstructure and the properties of the isolation system than by the plan dimensions of the
building,

An other observation to be made is the fact that the peak displacements of the isolated
structure are significantly influenced by local site conditions. In general, peak response differs
between rock, stiff soil and medium soil sites in a manner consistent with the differences in
the mean spectra of the time histories of the different sites ( see Figures 7-1 through 7-3).

For comparison of the calculated values of the isolation system displacement to the
SEAOC static procedure, Tables 7.23 and 7.24 are presented. They include the mean and
the mean plus one standard deviation values of the maximum displacement which occur in
either the longitudinal (L) or transverse (T) direction. The tables also include the SEAOC
minimum design values. Furthermore, Tables 7.25 and 7.26 present the same information but
with certain records removed from the sample as not being representative of the assumed soil
conditions. The reported values in Tables 7.25 and 7.26 are those in Tables 7.5 to 7.22 which
are included in parenthesis and identified by an asterisk.

From the results of Tables 7.23 and 7.24, it may be observed that the SEAOC formula
for the design displacement can predict well or accurately well the mean estimated values
when the excitation is referring to stiff or medium soil sites, In general, the design values for
those site conditions are between the mean and the mean plus one standard deviation of the
estimated values or slightly lower than the mean values. However, for rock sites, the design
displacements of SEAOC are consistently higher than the ones predicted through the dynamic
analyses. Of course, this is primarily attributed to the fact that SEAOC specifies the same
design displacement for rock and stiff soil sites since both of them are corresponding to soil
type S1.

From the results of Tables 7.25 and 7.26 it may be observed that the mean values are

slightly lower than the ones described in Tables 7.23 and 7.24. However, the standard deviation



values are significantly lower than the originally estimated. Both sets of results are presented
because together they provide a better picture of the variation in response due to the inherent
variability of ground motion.

Based on the results of Tables 7.23 to 7.26 it may concluded that the SEAOC dis-
placements are in good agreement with the mean of the peak displacements as calculated in
the nonlinear dynamic analysis. A key point to be made is that the above conclusion is based
on the results of analyses with bi-directional excitation and with circular interaction curve for
the isolation bearing model. As explained in Section 6, the combination of these two factors
results in larger bearing displacements than when a square interaction curve model is used.

To quantify the effect of the isolation bearing model, the analysis of the 1-story isolated
structure with R =39.132 in (T, = 2 sec), f,,x = 0.10 and excited by PGV scaled earthquake
motions recorded on medium soil sites was repeated. Each isolation bearing was modeled
by two bilinear hysteretic elements placed along the T and L directions of the structure. Each
element had force-displacement characteristics described by equations 4.6 and 4.7, Effec-
tively, the interaction curve between the forces in the two orthogonal directions was square.
A comparison of this model to the previously used circular intefaction model is presented in
Figure 7-4. As seen in this figure the square interaction model results in force-displacement
relation which is dependent on the direction of motion. The force is always larger than that
in the circular interaction model. |

The results of the analysis of the 1-story structure are summarized in Table 7.27. This
table should be compared to Table 7.7 which contains results for the same structure but with
circular interaction model for the bearings. The results clearly demonstrate that the square
interaction model predicts bearing displacements which are about 17% less than those pre-
dicted by the circular interaction model.

When comparing to the SEAOC static procedure, SEAOC predicts 5.72 in. displace-
ment (see Table 7.23) as compared tothe mean of 4.95 in. of the analysiswith square interaction .

model.
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TABLE 7.23 Summary of results of the mean and the mean plus one standard deviation values
of the base displacement for 1 - story isolated structure excited by PGV scaled earthquake
time histories and comparison of these results with design values according to SEAQOC static
analysis procedure. Units are inches.

Sliding Isolation System Proper_ti.e:s
=39.132in R=88.048 in R=88.048 in
Soil (T, =2 sec) (T, =3 sec.) (T, = 3 sec.)
Type
fimax=0.10 fmax=0.05 fmax=0.10
Mean of] Mean Mean of] Mean Mean of|] Mean
max |plus 16 |SEAOC]} max |plus 16 |SEAOC| max |plus 16 |SEAOC
{L,T) | of max (L, T) | of max (L,T) | of max
L.,T) L,T) ' (L,T)
S1
Rock 1.77 223 | 281 272 3.54 5.28 1.84 2.38 3.11
Sites —
St ]
Sdff Soil § 2.52 3.59 2.81 6.90 10.10 | 5.28 291 4.14 311
L=$—=itei= ==l=—_'; N — —
52
Medium | 5.94 8.53 5.72 11.14 | 16.10 | 10.19 {§ 5.78 8.08 6.32
Sail
Sites




TABLE 7.24 Summary of results of the mean and the mean plus one standard deviation values
of base displacement for 8 - story isolated structure excited by PGV scaled earthquake time

histories and comparison of these results with the design values according to SEAOC static
analysis procedure. Units are inches.

Sliding Isolation System Properties

R=39.132in R=88.048 in R=88.048 in
Soil (T, =2 sec.) (T, = 3 sec.) (T, =3 sec.)
Type
fmax=0.10 fmax=0.05 fmax=0.10
Mean of M—é;n Mean of|] Mean Mean of] Mean
max | plus 16 |SEAOC]| max |plus 16 |SEAOC|| max |plus 16 |SEAOC
(L,T) | of max L. T) | of max (L,T) | of max
_ @7 @) | LD
S1
Rock 1.59 2.51 2.81 2.34 3.25 5.28 1.69 2.70 3.11
Sites

S1

Stff Soil | 2.88 3.86 2.81 7.38 11.06 | 5.28 3.32 4.53 3.11
Sites

S2

Mesdi'llxm 5.81 8.28 572 || 1050 | 1533 | 10.19 | 6.29 8.93 6.32
oi

Sites
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TABLE 7.25 Summary of results of the mean and the mean plus one standard deviation values
of the base displacement for 1 - story isolated structure excited by PGV scaled earthquake
time histories considered in this study representative of the soil sites they were recorded and
comparison of these results with the design values according to SEAOC static analysis pro-
cedure. Units are inches. Certain records were removed as indicated in Tables (7.5) to (7.22),

| l[ Sliding Isolation Systen;rﬂ)erties
R=39.132 in R=88.048 in R=88.048 in
Soil (T, =2sec.) (T, =3 sec.) (T, = 3 sec.)
Type
fmax=0.10 fmax=0.05 fmax=0.10
Mean of| Mean | Mean of| Mean Mean of| Mean
ﬁ max |plus 16 {SEAOC| max |plus 16|SEAOC|| max |plus 1o [SEAOC
(L,T) | of max (L,T) | of max (L,T) | of max
L (L,T) L.T) " (L,T)
S1
Rock 1.77 223 2.81 272 3.54 5.28 1.84 238 3.11
Sites —_—
81
Sdff Soil | 2.52 3.59 2.81 498 6.52 5.28 291 4.14 3.11
Sites
s2 o
Medium | 5.25 7.07 572 8.11 | 1031 | 10,19 | 5.04 6.01 632
Soil
Sites
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TABLE 7.26 Summary of results of the mean and the mean plus one standard deviation values
of the base displacement for 8 - story isolated structure excited by PGV scaled earthquake
time histories considered in this study representative of the soil sites they were recorded and
comparison of these results with the design values according to SEAOC static analysis pro-
cedure, Units are inches. Certain records were removed as indicated in Tables (7.5) to (7.22),

— — : : =
Sliding Isolation System Properties
R=39.132in R=88.048 in R=88.048 in
Soil (T, =2 sec.) (T, =3 sec.) (T, =3 sec.)
Type
fmax=0.10 fmax=0.05 fmax=0.10
Mean of| Mean Mean of| Mean Mean of] Mean
max |plus 16 {SEAOC} max |plus 16 |SEAOC max |plus lo|SEAOC
(L, T) | of max {L.T) | of max 1L, T) ] of max
LT LD I (L.T)
Si
Rock 1.59 2.51 2.81 2.34 3.25 5.28 1.69 2.70 311
Sites
S1
Stiff Soil | 2.88 3.86 2.81 5.18 6.99 528 332 453 3.11
Sites |
S2
Medium }| 5.22 7.16 572 752 | 10.02 | 10.19 | 554 7.19 6.32
Soil
Sites
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SECTION 8

TIME HISTORY ANALYSES ON THE BASIS OF SEAOC DYNAMIC ANALYSIS
REQUIREMENTS

In this section, a different approach is used for the evaluation of the code requirements
related to seismic isolation. The methodology that follows is based on the SEAOC specifi-
cations for time history analysis. Thus, comparisons can be made between the results of the
dynamic analysis approach according to the SEAOC specifications and the static analysis
procedure, as prescribed by the design formula of SEAOC,

According to SEAOC requirements, referring to time history analysis, pairs of hori-
zontal ground motion time history components shall be selected from at least three recorded
events, These motions shall be scaled appropriately, so that the square root of the sum of the
squares (SRSS) of the 5% damped spectrum of the horizontal scaled components does not
fall below 1.3 times the 5% damped spectrum of the Design-Basis Earthquake by more than
10% in the period range of T minus 1.0 seconds to T plus 2.0 seconds, where T is the period
as determined by equation 2.4.

In order to comply with the above requirements, 6 pairs of earthquake records were
selected from the total of 29 that were used in the series of statistical evaluation analyses, as
discussed in Section 7. Three of those records were recorded on rock or stiff soil sites (soit
type S1) and three of them on medium soil sites (soil type S2). The horizontal components of
each record were scaled in amplitude separately, by contrast with the methodology followed
in the series of the statistical cvaluation analyses, (i.e. scaling both components by a common
factor). The scaling factors were estimated appropriately after performing trials, so that the
square root of the sum of the squares of the 5% damped spectrum of the scaled horizontal
components will be as consistent as possible with the desired one, according to the SEAOC

specifications. No time scaling of the records was employed.



This scaling approach was followed by an effort to make the SRSS spectrum of the
scaled horizontal components have a lower bound not more than 10% less of the 1.3 times
of the 5% damped spectrum of the Design-Basis Earthquake, as specified by SEAOC, and
also be smooth and comparable in shape with the one of the Design-Basis Earthquake.

In fact, almost all of the 5% damping spectra of the horizontal components of the
selected earthquake records included certain peaks in the period range under consideration,
and they were not attenuating smoothly as the period increased the way that the design
spectrum does. Thus, an effort was made as to predict the best éombination of scaling factors,
so that the shape of the SRSS spectra approximated the Design-Basis spectra. The lower
bound limit criteria for the SRSS 5% damped spectra of the selected motions were satisfied
almost everywhere in the period range under consideration (0.5 seconds to 3.5 seconds).
Furthermore, the average of the three SRSS spectra in each case of soil type was above the
1.3 times the Design-Basis spectrum.

'The 5% damping spectra of the selected earthquake motions and their respective SRSS
spectra are shown in Figures 8-1 to 8-2. Table 8.1 is a list of the motions selected, the factors
that scaled their components and the resulting PGA and PGV values of those components,
One can observe that the resulted peak ground accelerations are generally higher than 0.4g,
having a maximum value of 1.313g, Likewise, the peak ground velocity values had a maximum
0f23.66 in/sec for S1soil types and 27.37 in/sec for S2 soil types. Those values can be compared
to the values that were determined to be the basis for scaling according to PGA (PGA =0.4g)
or PGV (PGV =12in/sec for rock sites, 18in/sec for stiff soil sites and 22.5 in/sec for medium
soil sites) applied in the series of the statistical evaluation analyses.

Finally, it should be noted that in all the selected motions, the component that yielded
the most intense 5% damping spectrum was the one applied in the transverse (T) direction
of the structure. In this way, the strongest earthquake component was coupled with the mass

eccentricity to create torsional motion,



(a)

5% DAMPING SPECTRA

MOTION 1 (SAN FERNANDC 284)
~ — — 1.3 TIMES 0.4g St
b T

Bl

o

L
@iy

SPECTRAL ACCELERATION (g)

(=]
(&
TS T T W SN W T W N VU S S N A 1

o
o

™rTT

LIE [N B S T S B S BN B S

00 05 1.0 15 20 25 30 35 40
PERIOD (SECS
(b)
1.0 -
1 \ 5m DAMPING SPECTRA
\ MOTION 2 (SAN FERNANDO 208)
] \ ~ ~ — 1.3 TIMES O.4g S1

*r——s T

—

SPECTRAL ACCELERATION (g)
o
(4.

o
=]
1

Ty T T YT T T

"o s 28 25
PERIOD (SECS)

ot
o
o
w

(©

5% DAMPING SPECTRA
MOTION 3 (EL CENTRO 117)
— = — 1.3 TMES 0.4g S1
Alp——fia—— T

—a—n

-
[=]

L
&1H'2

PUNTIUC SN N T NN SO PR A S N U U T Y

SPECTRAL ACCELERATION (g)
et
3.3

o
o

T T Ty

00 ' bs 10

YT T T T TYTY

15 20 25
PERIOD (SECS)

FIGURE 8-1 5% damping spectra of components T,L and square root of sum of squares of
components T and L of scaled earthquake motions selected for dynamic analyses according

to SEAOC time history analysis procedure and comparison with 1.3 times 0.4g S1 Design
Spectrum,
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8.1 Comparison of Time History Analysis Results to SEAOC Design Formulae.

The analysis results are presented in Tables 8.2 to 8.7. Additional results for the story
shear and the interstory drift ratios are presented in Appendix D. These results show that the
corner to center ratio of the isolation system displacement is equal to unity in the case of the
1- story structure. Furthermore, this ratio is larger than unity in the 8 - story structure. These
results are consistent with those obtained in the dynamic analyses of Section 7.

Tables 8.8 and 8.9 compare the SEAOC design procedure to the results of the time
history analysis. The tables include the maximum displacement at the geometric center of
the base {maximum among T and L. components of all three records) and the value of the
displacement according to the SEAOC static procedure. It méy be observed that for soil type
S2, the analysis results are in good agreement with the SEAOC displacement. The SEAOC
formula predicts displacements with error of less than 10% of the calculated value. In the
case of soil type S1, the SEAOC formula underestimates the calculated displacement (by as
much as 25%) for the system with T}, = 3 seconds. For this system, the effective period T
(equation 2.4) is about 2.5 seconds. From the spectra of Figure 8-1, it can be observed that at
this period, the spectra for motions of soil type S1 overestimate the target spectrum by as
much as 30%. This should explain the difference.

It may be concluded that the procedure employed in this section produces results that
are in agreement with those obtained in Section 7. Both procedures (the one based on statistical
evaluation of the response and the one based on scaled records according to the dynamic
analysis procedure of SEAOC) are consistent with the results of SEAOC static analysis

procedure.
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TABLE 8.8 Summary of analysis results of maximum base displacement at geometric
center of 1 - story isolated structure excited by scaled pairs of real records according to the
Dynamic Analysis Procedure of SEAOC and comparison of these displacements with the
design displacements according to SEAOC static analysis procedure,

Sliding Isolation System Pyroperties.

|

R=39.132 in R=88.048 in R=88.048 in

Sail (T,=2 sec.) (T,=3 sec.) (T,= 3 sec.)
Type

fmax=0.10 fmax=0.05 fmax=0.10

Analysis| SEAOC | Ratio * || Analysis]| SEAOC | Ratio *||Analysis| SEAOC Ratio *]
(inch) | (inch) (inch) {1 (inch) (inch) | (inch)

S1 2.16 2.81 1.30 5.88 5.28 0.90 2.68 3.11 1.16

S2 5.69 5.72 1.01 || 11.17 | 10.19 | 091 6.23 6.32 1.01

* SEAOC/Analysis
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TABLE 89 Summary of analysis results of maximum base displacement at geometric
center of 8 - story isolated structure excited by scaled pairs of real records according to the
Dynamic Analysis Procedure of SEAOC and comparison of these displacements with the
design displacements according to SEAOC static analysis procedure.

- —

Slhiding Isolation System Properties.

|

R=29.132 in R=88.048 in R=88.048 in
Soil (T,=2sec.) (T,= 3 sec.) (T,= 3 sec.)
Type
fmax=0.10 frnax=0.05 fmax=0.10

Analysis| SEAOC | Ratio * AnalystEAOC Ratio *{{ Analysis| SEAQC | Ratio *

{(inch) | (inch) (inch) (in;h) (inch) | (inch)

51 2.61 2.81 1.08 6.84 5.28 0.77 3.68 3.11 0.85

S2 5.52 3.72 1.04 | 11.17 | 1019 | 091 6.32 6.32

1.00

* SEAOC/Analysis
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SECTION 9

CONCLUSIONS AND DISCUSSION

In this study, a comparison has been made between SEAOC design requirements and
sliding isolated structure results obtained either by tests or by dynamic nonlinear time history
analysis. In the dynamic analysis, six different combinations of structural systems and prop-
erties of isolation system were considered. The structural systems consisted of either a 1 -
story stiff structure or an 8 - story flexible structure. The isolation system consisted of 45
Friction Pendulum System (FPS) isolators with stiffness and frictional properties covering a
wide range of values. The isolators were modeled as elements having linear stiffness and
friction with circular interaction. In this way, the force-displacement relation of each isolator
was identical in all directions.

Each isolated structure was analyzed by three different procedures. In the first, a small
set of artificial motions was used. These motions were comparable with design spectra for
Seismic Zone 4. In the second, another small set of actual but scaled records was used. These
records were also compatible with design spectra for Seismic Zone 4. The scaling of these
records followed the procedure required by the SEAOC for time history analysis. In the third,
a large set of actual earthquake records was used. The records were scaled so that the peak
ground velocity (PGV) of each record had a value compatible with spectra for Seismic Zone
4, In this case, the variation in the response due to the variability of ground motion was
evaluated by calculating mean and standard deviation values.

This study concentrated on the evaluation of the SEAOC static analysis formula that

prescribes peak displacements of the isolation system. However, additional results like base



shear force, story shear forces and interstory drifts are presented for all analyzed structures.
This collection of nonlinear response data could be further used to evaluate design require-
ments for sliding isolated structures.

The conclusions of this study are:

(1)Friction pendulum bearings can be accurately modeled with bilinear (non-velocity
dependent) hysteretic elements. In this respect, standard computer programs like
DRAIN-2D may be used provided that care is exercised in selecting the proper "yield
displacement" and time step for integration.

(2)The SEAOC formula for the design displacement (equation 2.1) overpredicts uni-
directional test displacements. However, the amount of overprediction is difficult
to quantify because of the difficulty in establishing ZNS values which are
representative of a single earthquake motion history.

(3)The SEAOC formula (equation 2.1) overpredicts uni-directional artificial time his-
tory displacements by an average of about 50%. For the calculation of the time
history displacements, three artificial (spectrum compatible) earthquake motions
were used for each set of analyses. Furthermore, the SEAOC formula overpredicts
bi-directional artificial time history displacements by an average of 25%. The bi-
directional excitation consisted of one artificial, spectrum compatible earthquake
motion applied in one building direction and 83% of the same motion applied in the
other direction. In this way, the square root of the sum of squares of the spectra of
the two artificial components was compatible with 1.3 times the Design-Basis spectra.

(4)The SEAOC formula (equation 2.1) predicts accurately the mean peak displacement
response of several bi-directional real earthquakes scaled to have a common PGV
and whose average spectrum equals the SEAOC design spectrum. Furthermore, the
scaled earthquakes have the average of their SRSS combined spectra (square root
of sum of squares of the L and T spectra) above the 1.3 times the SEAOC design

spectrum (Design-Basis spectrum).
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(5)The SEAOC formula (equation 2.1) predicts accurately the peak displacement
response as calculated by the time history analysis method specified by SEAOC for
dynamic analysis.

(6)The additional displacement due to torsion is significantly lower in sliding isolation
systems than in other isolation systems. In particular, a 5% mass eccentricity in a
stiff 1 - story structure was found to generate, in all analyzed cases, an insignificant
additional displacement in sliding isolation systems. The maximum calculated ratio
of corner bearing displacement to geometric center displacement was only 1.02,
whereas the SEAOC static procedure prescribes a value of 1.24 for the analyzed plan
configuration. In the case of a flexible 8 - story structure, the additional displacement
due to torsion is considerably larger than that in the stiff 1 - story structure. In general,
torsion in sliding isolation systems is primarily affected by the combination of mass
eccentricity and superstructure flexibility and not by the mass eccentricity alone. In
this respect, the minimum factor of 1.1 specified in SEAOC for the amplification of
the design displacement (D) to account for torsion should be modified so that it
reflects the effect of the superstructure flexibility.

The main conclusion of this study is that the SEAQOC static analysis procedure predicts
displacements of the isolation system which compare well with displacements calculated in
time history dynamic analysis. In this analysis, the earthquake motions consisted of two ort-
hogonal components whose spectra, when combined by the SRSS rule, matched or were above
the 1.3 times the SEAOC design spectra (Design-Basis spectra).

In the cases in which the earthquake motions matched the 1.3 times the Design-Basis
spectra (artificial records), the SEAOC formula overpredicted the time history displacements
by about 25%.

In the cases in which the earthquake motions had combined spectra above the 1.3 times
the Design-Basis spectra (PGV scaled, Figures 7-2 and 7-3), the SEAOC formula predicted

well the mean peak displacement of these earthquake motions. When a square interaction
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model was used for the isolation bearings (as done in the study of Kircher and Lashkari, 1989),
the SEAOC formula overpredicted the mean peak displacement by less than 20%. In this
respect, the degree of conservatism in the SEAQC static analysis procedure appears to be
about the same for the studied sliding isolation systems and the bilinear isolation systems

studied by Kircher and Lashkari, 1989.
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APPENDIX A

RESULTS OF MAXIMUM STORY SHEAR AND INTERSTORY DRIFT FOR 8- STORY
ISOLATED STRUCTURE. EXCITATION REPRESENTED BY ARTIFICIAL RECORDS

COMPATIBLE WITH DESIGN SPECTRA. EXCITATION ONLY IN THE TRANSVERSE
(T) DIRECTION.
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APPENDIX B

RESPONSE SPECTRA FOR 5% DAMPING OF COMPONENTS OF PGV SCALED
MOTIONS USED IN DYNAMIC ANALYSES AND COMPARISON TO DESIGN SPEC-
TRA.
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FIGURE B-1 Response spectra for 5% damping of components of PGY scaled motions used
in dynamic analyses and comparison to Design Spectra.
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APPENDIX C

RESULTS OF MAXIMUM STORY SHEAR AND INTERSTORY DRIFT FOR 8 - STORY
ISOLATED STRUCTURE. EXCITATION REPRESENTED BY A SET OF PAIRS OF
SCALED EARTHQUAKE MOTIONS (SCALING BASED ON PGV).
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APPENDIX D

RESULTS OF MAXIMUM STORY SHEAR AND INTERSTORY DRIFT FOR 8 - STORY
ISOLATED STRUCTURE. EXCITATION REPRESENTED BY SCALED PAIRS OF

REAL RECORDS ACCORDING TO THE DYNAMIC ANALYSIS PROCEDURE OF
SEAOC.
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APPENDIX E

CONVERSION TO SI UNITS



To convert To Multiply by
in. mm 254
fr mm 304.8
kip kN 4,459
psf Pa 47.88
ksi MPa 6.895
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