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PREFACE

The National Center for Earthquake Engineering Research (NCEER) is devoted to the expansion
and dissemination of knowledge about earthquakes, the improvement of earthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifelines that are found in zones of moderate to
high seismicity throughout the United States.

NCEER'’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

*

Existing and New Structures
Secondary and Protective Systems
Lifeline Systems

Disaster Research and Planning

*

*

*

This technical report pertains to Program 2, Secondary and Protective Systems, and more specifi-
cally, to protective systems. Protective Systems are devices or systems which, when incorpo-
rated into a structure, help to improve the structure’s ability to withstand seismic or other en-
vironmental loads. These systems can be passive, such as base isolators or viscoelastic dampers;
or active, such as active tendons or active mass dampers; or combined passive-active systems,

In the arca of active systems, resecarch has progressed from the conceptual phase to the im-
plementation phase with emphasis on experimental verification. As the accompanying figure
shows, the experimental verification process began with a small single-degree-of-freedom
structure model, moving to larger and more complex models, and finally, to full-scale models.
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The theory of hybrid control, a combined activelpassive control mechanism, is further developed
in this report, which includes a refined version of the instantaneous optimal control algorithm.
The potential applicability of such a control strategy is illustrated through several examples
involving a combination of sliding isolators or lead-core rubber bearings with active devices
such as actuators or active mass dampers.
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ABSTRACT

It has been shown recently that a combined use of active and passive control
systems, referred to as the hybrid control system, 1s more effective, beneficial and
practical, in some cases, for reducing the building response under strong earthquakes.
However, the use of hybrid control systems involves active control of nonlinear or
inelastic structural systems. In Part I, a refined version of the instantancous optimal
control algorithms for nonlinear or inelastic structural systems is proposed. The main
advantage of the proposed control algorithms is that the control vector is determined
directly from the measured response state vector without a necessity of tracking a time-
dependent system matrix as proposed previously [30-31]. The optimal algorithm is
simplified considerably for the time-variant linear system, which is a special case of the
nonlinear system. A method of simulating the controlled response of the hysteretic
system using the present control algorithm is presented. Likewise, a variation of the
proposed conirol algorithms, utilizing the measured acceleration and velocity responses
as feedbacks for the determination of the optimal control vector, is also presented.
Applications of the proposed algorithm to various types of aseismic hybrid control
systems are demonstrated. These include a combination of sliding isolators or lead-core
rubber bearing isolators and active devices, such as actuators, active mass dampers, etc.
The performances of various control systems are evaluated and compared numerically
and the advantages of the aseismic hybrid control systems are demonstrated. It is shown
that the proposed optimal control algorithm is simple and reliable for on-line operations
and 1t is effective for practical applications.

In Part II, instantaneous optimal control for nonlinear and inelastic systems is
formulated incorporating the specific hysteretic model of the system. The resulting
optimal control vector is obtained as a function of the total deformation, velocity and the
hysteretic component of the structural response. The hysteretic component of the
structural response can be estimated from the measured structural response and the
hysteretic model used. 1t is shown that the optimal control vector satisfies not only the

necessary conditions but also the sufficient condition of optimality. Specific applications
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of the optimal algorithm to two types of hybrid control systems are demonstrated. These
include (i) active control of base-isolated buildings using frictional-type sliding base
isolators, and (ii) active control of base-isolated buildings using lead-core rubber
bearings. Numerical examples are worked out to demonstrate the applications of the
proposed control algorithm, It is shown that the performance of such an optimal
algorithm improves over that of the algorithm without considering the hysteretic

components in the determination of the control vector.
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SECTION 1
INTRODUCTION

In recent years, intensive research efforts have been made in the application of
passive and/or active control systems to reduce the response and damage of civil
engineering structures caused by earthquakes and strong winds [e.g., 3-14, 16-18, 20-24,
26-41]. The active control system differs from the passive one in that it requires the
supply of external energy. In the area of passive control systems, much progress has
been accomplished in base isolation systems [e.g., 5-8, 11, 17-18, 24], such as
elastomeric bearings, sliding systems, etc., and different types of mechanical energy
dissipators, such as viscoelastic dampers, friction dampers and other devices. In the area
of active control systems, active mass dampers, active tendon systems, variable stiffness
bracings and others have been developed and tested in the laboratory [e.g., 3, 9, 20, 23,
29] and in a few cases installed in prototype full-scale buildings [e.g., 9,12-14].

More recently, it has been shown that a combined use of active and passive control
systems, referred to as the hybrid control system, is more effective, beneficial and
practical in some cases [e.g., 3, 9, 10, 21-22, 34-36, 39-41]. The idea of hybrid control
systems is to utilize the advantages of both the passive and active control systems to
extend the range of applicability of both control systems to protect the integrity of the
structure. In particular, under extreme environments, such as strong earthquakes, hybrid
control systems are superior.

It is well known that most passive control systems behave either nonlinearly, such
as sliding isolation systems, or inelastically (hysteretically), such as lead-core rubber
bearing isolation systems. As a result, active control of nonlinear or inelastic (hysteretic)
structural systems is the major issue of hybrid control. Unfortunately, control theories
for nonlinear or hysteretic systems are very limited [e.g., 10, 16, 21, 30, 31]. Recently,
instantaneous optimal control algorithms proposed by Yang, et al for linear structures
[26-28] have been extended to nonlinear and hysteretic structures [30-31]. In the
development of the optimal algorithms for nonlinear structures, the Wilson-8 numerical

procedures were used in Refs. 30-31, and the resulting optimal control vector U(t)
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depends on the feedback response and the estimation or tracking of a system matrix. For
elastic nonlinear structures, this does not present any problem. For hysteretic systems
whose responses are history-dependent, however, the tracking of the system matrix A,
may be subjected to limitations.

The purpose of this report is to propose a refined version of instantaneous optimal
control algorithms, which is simple and reliable for on-line operations, for nonlinear or
hysteretic structural systems. Emphasis is placed on applications to aseismic hybrid
control systems. In the present approach, the Fourth-Order Runge-Kutta numerical
method is used to obtain the transition matrix equation, i.e., the system response at time
t is expressed in terms of the system response at the previous times t-At and t-2At. The
resulting optimal control vector, U(t), at time t depends only on the measured response
at time t, thus eliminating the necessity of tracking a history-dependent system matrix.
The optimal algorithm is simplified considerably for a time-variant linear system, that
is a special case of hysteretic systems. A method of simulating the controlled response
of the hysteretic structural system using the proposed control algorithm is also presented.

Recent laboratory experiments indicated some difficulties in measuring the
displacement response of the structure subjected to earthquake ground motions. This is
because both the ground and the structure are moving during earthquakes, so that there
is no absolute reference for the determination of the displacement response. Further, the
displacement response obtained by numerically integrating the measured velocity response
is not satisfactory due to serious error accumulations and noise pollution. On the other
hand, however, the acceleration response can e¢asily be measured by installing
acceleration sensors. In this report, an alternate version of the instantaneous optimal
control algorithms for nonlinear or inelastic structures, utilizing the acceleration response
rather than the displacement response, is proposed following the approach presented by
Yang, et al [37-38] for linear structures.

Finally, applications of the proposed algorithms to various types of aseismic hybrid
control systems are demonstrated. These include various combinations of active control
systems, such as actuators, active mass dampers, etc., and passive base isolation systems,

such as sliding isolators and lead-core rubber bearing isolators. The performances of
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various hybrid control systems are evaluated and compared numerically, and the
advantages of aseismic hybrid control systems are demonstrated. It is shown that the

proposed optimal control algorithm is effective and simple for practical applications.






SECTION 2
FORMULATION

2.1 General Nonlinear or Hysteretic Structures

For simplicity of presentation, consider a shear-beam lumped-mass nonlinear or
hysteretic building structure implemented by an active control system as shown in
Fig. 2.1. The structure is idealized by an n-degree-of-freedom system and subjected to
a one-dimensional earthquake ground acceleration X,(t). The matrix equation of motion

of the entire structural system can be expressed as
MX() + F [X(D] + E[X(D)] = -MEX, (1) + HU(1) 2.1

in which X(t) = [x{,X,,...,X;]’ = an n vector denoting the deformation of each story
unit, M = an (nxn) mass matrix, § = [1,1,...,1]’ = an n vector, U(t) = a r-dimensional
control vector and H = an (nxr) location matrix denoting the location of r controllers.
For the notations above, an under bar denotes a vector or matrix and a prime indicates
the transpose of a vector or matrix. In Eq. (2.1), Fp[X(t)] is an n vector denoting the
nonlinear damping force that is assumed to be a function of X(t) and F[X(t)] is an n
vector denoting the nonlinear (or hysteretic) stiffness restoring force that is assumed to
be a function of X(t).

Introducing the 2n state vector Z(t),

2.2)

(1) = | =
X()

one can convert the second-order nonlinear matrix equation, Eq. (2.1), into a first order

nonlinear matrix equation as follows:
Z( = glZ(H] + BU() + W X (D) 2.3)

where g[Z(t)] is a 2n vector which is a nonlinear function of the state vector Z(t)



(a) (b)

FIGURE 2.1  Structural Model of a Multi-Story Building with Active Control Systems:

(a) Active Tendon Control System; (b} Active Mass Damper
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glz®) = |-~ --=------~- @4
-MME [X(0] + E [X(5)]

and B and W, are 2n vectors

2.5

The first-order nonlinear matrix equation, Eq. (2.3), can be solved step-by-step

numerically using the Fourth-Order Runge-Kutta method as follows (see Appendix I):
1
Z(t) = Z(t - 241 + E[,10 +24 + 24, + A] (2.6)

in which At is the integration time step, and A, A, Ay, and A; are 2n vectors

A, = 28t {g[Z(t-240)] + B U(¢t-2At) + W X, (¢ -241))

4, =24t {g[Z(z-241) + 054 1 + B U(z-At) + W, X,(¢-At))
4, = 2Ar {g[Z(z-2At) = 054 1+ BU(1-Ar) + W X, (z- Az)}
A, =28t {g[Z(1-24r) + A1 + BUQ@) + W X, (1)}

2.7)

As observed from Eq. (2.7), Ag, A, A,, and A, are functions of t-2At, t-At and t. For
simplicity of presentation, the arguments, t-2At, t-At and t, have been omitted.
To simplify the mathematical operation, all the vectors in Eq. (2.6) which are

functions of 7 < t are grouped info one term, denoted by D(t-2At, t-At), as follows:

D(t-24¢, t-At) = Z(¢-2A0) + %At (g[Z(t-241)] + BU(t - 24t)
+ W X, (t-2A1) + 2g[Z(1-2A1) + 054 1 + 4BU(r - A?) @8
+ 4E1X0(I-At) +2g[Z(t-281) + 054 1+ glZ(t-2A1) + 41}

Then, Eq. (2.6) can be expressed as
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Z() = D(t-2A¢, t-Ap) + % [B U@ + ¥, X"O(t)] 2.9

It should be mentioned that for the regular Fourth-Order Runge-Kutta method, the
integration time step is Ar that is twice of At used in Egs. (2.6)-(2.9), i.e., Ar = 2At
or At = Ar/2. In other words, the integration step size At used in the current numerical
scheme is one-half of that used in the regular Fourth-Order Runge-Kutta method
[Appendix I]. Because the required control vector U(t) is computed from the
measurement of the response vector, a smaller time step At is used for the numerical
solution.

As observed from Eqs. (2.2) and (2.4), the 2n vector g(Z) is a function of X and
X which are elements of the vector Z. Thus, the g vector can be expressed as a
function of the response state vector Z, i.e., g = g(Z). To evaluate g(Z), the argument
vector Z = [ X', X']’, Eq. (2.2), is computed first and then its components, X and X,
are substituted into the right hand side of Eq. (2.4). For the g[Z(t-2At) + 0.5 A,] vector

appearing in Eq. (2.8), the argument vector (2n-dimensional), denoted by S,

S = Z(t-2Ar) + O.SA1 (2.10)

is computed first from Eq. (2.10). Then, S is partitioned in the same form as the vector
Z,ie,S =18, 87, where §; and S, are n-dimensional vectors. Finally, the g[Z(t-
2At) + 0.5 A4] vector is obtained from Eq. (2.4) by replacing X and X, respectively,
by S, and S,. Likewise, the other two vectors g[Z(t-2At) + 0.5 Ay] and g[Z(t-2At) +
A,] appearing in Eq. (2.8) are similarily defined,

2.2 Instantaneous Optimal Control

The instantaneous optimal control algorithms proposed by Yang, et al for linear
structures [26-28] was extended later to nonlinear structures [30-31]. Instantaneous
optimal control is formulated as follows.

The time dependent quadratic objective function J(t) proposed in Refs. 26-28 is
given by



J()y =Z'(HQZ() + U(HRU®) (2.11)

in which Q is a (2nx2n) positive semi-definite matrix and R is a (rxr) positive definite
matrix, respectively, representing the relative importance of the response vector Z(t) and
the control vector U(t). The implication of minimizing the objective function given by
Eq. (2.11) is that the performance index J(t) is minimized at every time instant t [26-28].
The optimal control vector obtained by minimizing J(t), subjected to the constraint of the
equations of motion, is called the instantaneous optimal control algorithm by Yang, et
al [Refs. 26-28, 30-31].

To minimize the objective function, J(t), the Hamiltonian H is obtained by

introducing a 2n-dimensional Lagrangian multiplier vector A(t)

H=Z(HQZ1@) + URU() + A(0){Z(1)

Ar ) (2.12)
- D(z-244 ¢~ A0 - S [BUG) +~ B %,(0])

The necessary conditions for minimizing J(t), subjected to the constraint of Eq. (2.9), are

OH _o OH _, OH _, 2.13)
oZ ou
Substituting Eq. (2.12) into Eq. (2.13), one obtains the optimal control vector U(t) in the
following manner (see Appendix II): (i) when the control vector U(t) is assumed to be
regulated by the response state vector Z(t), the instantaneous optimal closed-loop

(feedback) control algorithm is obtained as

u@) - —%B“ B QZ(r) 2.14)

(ii)) when the control vector U(t) is regulated by the measurement of the earthquake
ground acceleration )"(O(t) without a feedback response state vector Z(t), the instantaneous
optimal open-loop (feedforward) control algorithm is obtained, and (iii) the instantaneous
optimal closed-open-loop (feedforward and feedback) control algorithm is obtained by

assuming that the control vector U(t) is regulated by the measurements of both the
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response state vector Z(t) and the earthquake ground acceleration Xo(t) (see Appendix B).
Although the control operations for the three optimal algorithms are different, the
resulting state vector Z{t) and control vector U(t) remain identical under ideal control
environments.

With the optimal control vector given by Eq. (2.14), the response state vector Z(t)
is obtained by substituting Eq. (2.14) into Eq. (2.9) as follows

Z(1) =

2 -1
I+ (%) BR“B’Q} [Q(t -2At, t - At) + %E’l X, (1) 2.15

in which I is a (2nx2n) identity matrix.
Although the optimal control vector U(t), Eq. (14), is derived from the necessary
conditions, it was shown in Ref, 41 that Eq. (14) also satisfies the sufficient condition

of optimality.

2.3 Time-Variant Linear Systems

The instantaneous optimal control algorithm developed previously for the general
nonlinear or hysteretic structural systems is directly applicable to time-variant linear
systems. In fact, the time-variant linear system is a special case of the general nonlinear
system presented above and the instantaneous optimal control algorithm for such a system
is presented in this section.

The matrix equation of motion for a time-variant structural system can be written

as
M) + C(OX (@) + K(OX(t) = - MEX (1) + HU(?) (2.16)

in which C(t) and K(t) are time dependent (nxn) damping and stiffness matrices. With
the introduction of the state vector Z(t) given by Eq. (2.2), the second order matrix
equation of motion given by Eq. (2.16) can be converted into a first order matrix

equation of motion as follows
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Z(1) = A Z(1) + BUW) + W X,(1) (2.17)

in which B and W, are given by Eq. (2.5) and

(2.18)
-M7K(t) -MTC()
Again, using the Fourth-Order Runge-Kutta method, Eq. (2.17) can be solved

numerically as follows;

1
Z(r) = Z(r-280) + <[4, + 24, + 24, * 4] (2.19)

in which

4, = 2At {A(DZ(t-2A1) + B U(t-2A¢) + W X (1-241))

A =201 {A([Z(1-2A1) + 054 ] + BU(t-At) + ﬂfl):(},(t—m)} 2.20)
4, =28t {A(D[Z(1-24t) + 054 1+ BUGt-At) + W X, (r- A}

Ay =24t {A(M[Z(1-241) + 4] + BU®) + W X, (D)}

A comparison between Eqgs. (2.6)-(2.7) and Egs. (2.19)-(2.20) indicates that Eqgs.
(2.19)-(2.20) can be obtained from Eqgs. (2.6)-(2.7) by replacing g[Z(t)] by A(t) Z(t).
Thus, the instantaneous optimal control vector U(t) is identical to Eq. (2.14).

U(n = - %R“ B'QZ(1) (2.21)

and the response state vector Z(t) with instantaneous optimal control is given by Eq.

(2.15) in which D(t-2At, t-At) is as follows

- - = - +1 — + +
D(1-2At, £-AD) =Z(1-2A7) + 2 At {64(DZ(1-280) + A1) 4, + 4, + 4] 2.22)
+BU(1-241)+ 4B U(t-At) + W, X, (1-2A1) +4 W X (¢1-AD) }
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2.4 Instantanecus Optimal Control with Acceleration and Velocity Feedback

The optimal control vector derived above depends on the feedback response state
vector Z(t) that consists of the displacement response X(t) and the velocity response X(1).
For seismic-excited structural systems, the displacement response may not be easy to
measure. This is because during strong earthquakes, both the ground and the structure
are moving so that there is no absolute reference to measure the displacement.
Consequently, it may not be desirable to measure the displacement vector X(t). On the
other hand, the acceleration responses can easily be measured by installing acceleration
SEensors.

In this section, an optimal control algorithm is presented so that the control vector
U(t) is computed from the measurements of the acceleration and velocity responses. We
follow the approach proposed by Yang, et al [37-39] for linear structures. In this

approach, an alternate time-dependent performance index is given by

I = ZQ Z(r) + U'(H RU() (2.23)

in which Q" is a (2nx2n) positive semi-definite matrix and R is a (rxr) positive definite
matrix. It is mentioned that although the displacement response vector X(t) does not
appear in the performance index I"(t), Eq. (2.23), it is expected that a minimization of
T¥(t) will also reduce X(t).

To solve the general nonlinear equation of motion given by Eq. (2.3), the state
vector Z(t) is expressed by a backward finite difference form, i.e., Z(t) = Z(t-At) +
AtZ(t-At). Then, Eq. (2.3) can be written as

Z(t) = g[Z(z-At) + AtZ(t-A1)] + BU®p) + W, X, () (2.24)

with zero initial conditions, i.e., Z(0) = Z(0) = 0.
The Hamiltonian H"(t) is obtained from Eqgs. (2.23) and (2.24) as
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H'(D) = Z(QZ() + UMRU) + M {Z(1) - gIZ(z-AD) + 5 5o
AtZ(t-AD] ~ B U(1) - W X (1))
The necessary conditions for minimizing the objective function, J*(t), subjected to

the constraint of Eq. (2.24) are as follows

OH'() _, . °H'(D) _
az ’ o

OH™ () _

0o
oA

0 (2.26)

The optimal closed-loop control vector U(t) is obtained by substituting Eq. (2.25) into
Eq. (2.26); with the result

U(t) = -R'B'Q" Z(z) 2.27)

Substituting Eq. (2.27) into Eq. (2.3), one obtains the nonlinear equation of motion with
the instantaneous optimal control vector given by Eq. (2.27)

Z(1) =(I+ BR'B'Q)" glz] + (I + BR'B Q)" WX (1) 229

The response state vector Z(t) can be simulated numerically from Eq. (2.28) using the
Fourth-Order Runge-Kutta method described previously.

2.5 Simulation of Controlled Response for Hysteretic Structural System

One objective of this report is to propose control algorithms suitable for
applications to aseismic hybrid control systems. In order to evaluate the effectiveness
of the proposed optimal algorithm and to compare the performance of various hybrid
control systems, it is necessary to simulate the controlled response of the structure. To
facilitate the simulation of the controlled structural response, the hysteretic component
of the total deformation will be separated. With the instantaneous optimal control
algorithm developed in the previous section, a method of simulation for the controlled

response of the hysteretic structural system is presented in this section.
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Various hysteretic models for the restoring force of an inelastic system have been
developed in recent years [e.g., 25]. In this study, the differential equation model
available in the literature [e.g., 1,2,15,19,25] will be used. The stiffness restoring force

for a structural member or a story unit, F(x), is expressed as

F(x) = akx + (1-2)kD,v (2.29)

in which x = interstory deformation, k = elastic stiffness, o = ratio of post-yiclding to
pre-yielding stiffness, D, = yield deformation = constant, and v is a non-dimensional
variable introduced to describe the hysteretic component of the deformation, with |v| <

1, where
Dyv=Ax - B x| v v - yi|v] 2.30)

In Eq. (2.30), parameters A, 8 and v govern the scale and general shape of the
hysteresis loop, whereas the smoothness of the force-deformation curve is determined by
the parameter n.

The hysteretic model given by Eq. (2.29) and (2.30) provides an explicit
mathematical expression with many parameters flexible enough to reflect various
hysteretic behaviors of inelastic systems. Likewise, Eq. (2.30) appears to be capable of
describing the hysteretic behaviors of different base isolation systems, such as rubber
bearings and sliding systems, which are the main concern of this study.

It follows from Eq. (2.29) that the stiffness of the ith story unit of the structure,
denoted by F(x), can be separated into an elastic component o; k; x; and a hysteretic
component (1-o;) k; Dy; v;, i.e., Fy()=okx; + (1-a)kD

yiVir The non-dimensional

hysteretic variable v; follows from Eq. (2.30) as

v, = Dy (A% - B |5 v " v - v v M) - £GLy)  @3D

Consequently, the matrix equation of motion for a hysteretic structural system with

a linear viscous damping model can be expressed as
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MX(2) + CX(2) + F [X(2)] = ~MEX (1) + HU(2) 2.32)
in which
E[X(n) = K X() + K V(1) (2.33)

where V(t) = [ vi(D),v,(D),...,v ()]’ = an n vector denoting the hysteretic variable, v;,
of each story unit given by Eq. (2.31). In Eq. (2.33), K, is an (nxn) band-limited elastic
stiffness matrix with all elements equal to zero, i.e., K (i,j)=0, except K (i,i)) =ok; for
i=1,2,...,nand K (i,i+1)=-0; |k fori=1,2,...,n-1. Similarly, K is an (nxn) band-
limited hysteretic stiffness matrix with all elements equal to zero, i.e., K;(i,j)=0, except
Ki(i,1) =(1-apkDy,; fori=1,2,...,nand Ky(i,i+ 1) =-(1-0; . 1)k 4 1 Dy; 4 g fori=1,2,... ,n-1.
Matrices M, K, and K; should be modified appropriately when an active mass damper
is installed.
By introducing a 3n state vector Z(t),

X
7 = |V (2.39)

X
the second order nonlinear matrix equation of motion, Egs. (2.32) and (2.33), can be _

converted into a first order matrix equation as follows

21y = gIZW)] + BUK) + HX,(0) 2.39

in which B and W, are 3n vectors

0 0
B = 0 : W - 0 (2.36)
M'H -£

and g[Z(t)] is a 3n vector consisting of nonlinear functions of components of the vector

(1),
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glZ(n] = |£X ©) 2.37)

M'(CX+ KX+ KY)
L € /1
where f(X,v)=[f;(X;,v{), ,(X4,v5),....,T (%,, v,)]' = an n vector with the ith element,

f;(%;, v;), given by Eq. (2.31).
The optimal control vector U(t) is given by Eq. (2.14), which can be expressed as

uw = S EBQ - - G,X() + G Xy @3

Substitution of Eq. (2.38) into Eq. (2.35) leads to the 3n matrix equation of motion

for a hysteretic system under optimal control as follows

() = gIZ(0] + GZ() + W X, (1) 2.39)
in which
0 0 0
G- 0 0 0 2.40)
M'HG, 0 M'HG,

With optimal control given by Eq. (2.14) or Eq. (2.38), the response for the
hysteretic structural system can be simulated by solving Eq. (2.39) numerically using the
Fourth-Order Runge-Kutta method.
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SECTION 3
NUMERICAL EXAMPLE

To illustrate the application of the instantaneous optimal algorithm' developed in
this report to nonlinear and inelastic structural systems, several examples are presented
in this section. Emphasis is placed on aseismic hybrid control systems. These aseismic
hybrid control systems consist of active control devices, such as actuators or active mass
dampers and base isolation systems, such as elastomeric bearings or sliding systems.
The hysteretic behavior of elastomeric bearings is quite different from that of the sliding
systems as will be described later.

An eight-story building that exhibits bilinear elasto-plastic behavior as shown in
Fig, 3.1(a) is considered. The stiffness of each story unit is designed such that yielding
occurs simultaneously for each story unit. The properties of the structure are as follows:
(i) the mass of each floor is identical with m; = m = 345.6 metric tons; (ii) the
preyielding stiffnesses of the eight-story units are k., (i=1.2,...,8) = 3.4x10°, 3.26x10°,
2.85x10°, 2.69x10°, 2.43x10°, 2.07x10°, 1.69x10° and 1.37x10° kN/m, respectively,
and the postyielding stiffnesses are k;, = 0.1 k;; for i=1,2,....,8; and (iii) the viscous
damping coefficients for each story unit are c; = 490, 467, 410, 386, 348, 298, 243 and
196 kN.sec/m, respectively. The damping coefficients given above result in a classically
damped structure with a damping ratio of 0.38% for the first vibrational mode. The
natural frequencies of the unyielded structure are 5.24, 14.0, 22.55, 30.22, 36.89, 43.06,
49.54 and 55.96 rad./sec. The yielding level for each story unit varies with respect to
the stiffness; with the results, Dy = 2.4,2.3,2.2,2.1,2.0,1.9, 1.7,and 1.5 cm. The
bilinear elasto-plastic behavior can be described by the hysteretic model, Eqgs. (2.29) and
(2.31), with A;=1.0, 8,=0.5, n;=95 and v,=0.5 for i=1.2,...,8. A simulated
earthquake with a maximum ground acceleration of 0.3g as shown in Fig. 3.2 is used as
the input excitation.

With the eight-story building structure described above and the earthquake ground
acceleration shown in Fig. 3.2, time histories of all response quantities have been

computed. Within 30 seconds of the earthquake episode, the maximum interstory
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(a) (b)

FIGURE 3.1 Structural Model of a Multi-Story Building with Active Control Systems:

(a) Active Tendon Control System; (b) Active Mass Damper
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deformation, x_;, and the maximum absolute acceleration of each floor, a;, are shown

mi»
in Table 3.1. The time history of the first floor deformation, x,(t), is presented in Fig.
3.3(a). Further, the hysteresis loops of the shear force-deformation relation for the first,
fourth, and eighth story units are displayed in Fig. 3.4(a) in which "i" signifies the ith
story unit. As observed from Fig. 3.4(a) and Table 3.1, the deformation of the
unprotected building is excessive and that yielding takes place in each story unit. These

results also correspond to that obtained by Yang, et al {30-31].

Example 1: Building Equipped with Active Mass Damper on Top Floor

Consider that the building is equippped with an active mass damper on the top
floor as shown in Fig. 3.1(b). The mass, stiffness and damping coefficient of the active
mass damper are as follows: my=36.3 metric tons; k;=957.5 kN/m; ¢;=27.97
kN.sec./m. Hence, the mass ratio of the damper with respect to the first generalized
mass is 10.5%, the damping ratio of the damper is 7.5% and the frequency of the
damper is 98% of the fundamental frequency of the unyielded building.

With the active mass damper, the building response depends on the active control
force that is determined by the weighting matrices Q and R. The weighting matrix R
consists of only one element, denoted by R, since only one controller is installed on the

top floor. The weighting matrix Q is (18x18) and it is partitioned as follows

Q=aj------ - --=--- 3.1

in which Q,, and Q,, are (2x9) matrices and 0 is a (16x9) matrix with all elements equal
to zero.

It is mentioned that the Q matrix is symmetric. Since the active control forces
from the actuator are acting on the mass damper and the top floor, only elements in two
rows of the Q matrix are relevant to the control vector U(t), Eq. (2.21). In the present
case, only elements in the first two rows of Q,; and Q,, matrices are related to the

control vector U(t). As a result, all elements of the Q matrix which have no effect on
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the control vector U(t) are set to be zero for convenience.

For illustrative purposes, Ry=10" and Q,; and Q,, are given as follows

_[-1, -1, -1, -1, -1, -1, -1.59, -2.68, 0.0125
Q=11 -1, -1, -1, -1, -1, -1.59, -2.68, 0.0107

[ 20, 20, 20, 20, 20, 20, 20, 20, 0.107
Q= 173, 173, 173, 1.73, 1.73, 1.73, 1.73, 1.73, 0.107

(3.2
x 107!

Time histories of all the response quantities were computed for an /Ry ratio of
4.05x108. The deformation of the first story unit, x(t), is plotted in Fig. 3.3(b) and the
hysteresis loops for the first, fourth and eighth story unit are displayed in Fig. 3.4(b).
Within 30 seconds of the earthquake episode, the following quantities are summarized
in Table 3.1: (1) the maximum interstory deformation, x,_;, (ii) the maximum
acceleration, a;, of each floor, (iii) the maximum relative displacement of the mass
damper with respect to the top floor, X, and (iv) the maximum active control force U,,.
A valye of At=0.15x103sec was used in the numerical computation. The time history
of the required active control force is shown in Fig. 3.5.

For comparison, the response quantities for an /R, of 4.05x10° are also shown
in Table 3.1. It is observed from Table 3.1 that the active mass damper is capable of
reducing the building response and that the response quantitics reduce as the active
control force increases. All the response quantities are within the elastic range for the
case of a/Ry=4.05x10°. A further comparison of the results in Table 3.1 with that in

Ref. 30 indicates that the present formulation may be more efficient.

Example 2: Building Equipped With Rubber-Bearing Base Isolation System
To reduce the structural response, a lead-core rubber-bearing isolation system is
implemented as shown in Fig. 3.6(a). The restoring force of the lead-core rubber-

bearing system is modeled as

F, = akx, + (1 —ocb)kaybvb 3.3
in which »y, is given by Eq. (2.31) with i=b. The mass of the base isolation system is
m, =450 metric tons and the viscous damping coefficient is assumed to be linear with
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FIGURE 3.6  Structure Model of a Multi-Story Building: (a) With
Base lIsolation System; (b) With Base lIsolation System

and Actuator
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¢, =26.17 kN.sec/m. The restoring force of the base isolation system given by Eq. (3.3)
is not bilinear elasto-plastic and the parameter values are given as follows: k,=18050.0
kN/m, o, =0.6 and Dy =4cm. The parameters governing the scale and general shape
of the hysteresis loop of the isolation system, Eq. (2.31), were assumed to be Ay =1.0,
B,=0.5, n,=3 and v,=0.5. The hysteretic characteristics of such a base isolation
system, i.e., the hysteretic component v, versus the displacement x,;, is shown in Fig.
3.8(a). With the base isolation system, the 9 natural frequencies of the preyielding
structure are 2.21, 9.31, 17.29, 25.18, 32.19, 38.29, 44.12, 50.37, and 56.74 rad/sec.
The damping ratio for the first vibrational mode is 0.15%. It is observed that the
fundamental frequency is reduced significantly by the implementation of the base
isolation system. The response vector X(t) is given by X=[xy,x;,...,Xg]".

Time histories of all the response quantities were computed. The time history,
X,(t), of the deformation of the first story unit is depicted in Fig. 3.3(c) and that of the
base isolation system, x,(t), is presented in Fig. 3.9(a). Further, the hysteresis loop for
the shear force of the base isolation system is shown in Fig. 3,10(a). The maximum
response quantities of the structure in 30 seconds of the earthquake episode are shown
in Table 3.2, in which the row designated by "B" indicates the response of the base
isolation system. As observed from Table 3.2 and Fig. 3.3(c), the interstory deformation
and the floor acceleration are drastically reduced. The advantage of using a base
isolation system to protect the building is clearly demonstrated. However, the

deformation of the base isolation system shown in row B of Table 3.2 may be excessive.

Example 3: Building Equipped With Passive Hybrid Control System

To protect the safety and integrity of the base isolation system, a passive mass
damper was proposed [Refs. 34-36] to be connected to the base isolation system as
shown in Fig. 3.7(a). This is referred to as the passive hybrid control system [Refs. 35-
36]. The properties of the mass damper are as follows. The mass of the mass damper,
my, is expressed in terms of the ¢ percentage of the floor mass m;, i.e. my=¢m;, and
it will be varied to examine the effect of the mass ratio ¢. The natural frequency of the

mass damper is the same as the first natural frequency of the base isolated building, i.e.
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FIGURE 3.8

Deformation of Rubber Bearing Base lIsolation System:
(a) Without Control; (b) With Passive Mass Damper
(mgq = 50%my), (c) With Actuator; (d) With Actuator
(Limited No. of Sensors); (e) With Active Mass Damper
(fy With Active Mass Damper (Limited No. of Sensors)
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2.21 rad/sec. The damping ratio of the mass damper is 10%. With such a passive

hybrid control system, the maximum deformation of each story unit, x_., and the

mi»
maximum acceleration of each floor, a;, within 30 seconds of the earthquake episode are
presented in Table 3.2 for different mass ratio, ¢, of the mass damper. Also shown in
row B of Table 3.2 is the maximum deformation of the base isolation system. The
maximum deformations for the base isolation system and the first story unit are plotted
in Fig. 3.11 as function of the mass ratio ¢=my/m;, The maximum relative
displacement of the mass damper, denoted by X, is also shown in Table 3.2. Time
histories of the deformation of both the first story unit and the base isolation system are
shown in Figs. 3.3(d) and 3.9(b), respectively, for ¢=0.5. It is observed from Table
3.2 and Figs. 3.3 and 3.9 that the passive mass damper is capable of reducing not only
the deformation of the base isolation system but also the response of the building; the
bigger the passive mass damper, the better the performance of the passive hybrid control

system.

Example 4: Building Equipped With Rubber-Bearing Isolation System and Active
Devices

Instead of using a passive mass damper, an active mass damper has been proposed
in Refs. 34-36 for protecting the base isolation system. It is referred to as the active
hybrid control system in Refs 34-36. For the active mass damper, a mass ratio of 50%
is considered, i.e., my=0.5m;. With the active mass damper, the structural response
depends on the weighting matrices R and Q. For this example, the weighting matrix R
consists of only one element, denoted by Ry, whereas the dimension of the Q matrix is
(20x20). R is chosen to be 10 for simplicity and the Q matrix is partitioned as shown
in Eq. (3.1), in which Q,; and Q,, are (10x10) matrices.

Note that the weighting matrix Q is symmetric. Because there is only one actuator
installed on the basement floor, see Fig. 3.6(b), only elements in one row of the Q
matrix are relevant to the control vector U(t), Eq. (2.21). For the present hybrid control

system, only elements in the first row of the Q,; and Q,, matrices are related to the
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control vector U(t). As a result, all elements of the Q matrix which have no effect on
the control vector U(t) are set to be zero for convenience.

First, we consider the case in which displacement and velocity sensors are installed
on all the degrees of freedom of the structure. For illustrative purposes, the following

values are assigned for Q,; (1,j) and Q,,(1,j) for j=1,2,...,10.

Q, (L)) = [102 -2362 -11 -840 -1397 -1649 -1645 -1433 -1057 —561](3.4)
Q,(1,7) =[67 731 646 621 584 529 457 366 257 133]
and Q,1(1,j)=0Q5,(1,j)=0 for i=2,3,...,10 and j=1,2,...,10.

Time histories of all the response quantities have been computed. In particular,
the time histories of the deformation of the base isolation system and the first story unit
are shown in Fig. 3.9(¢) and 3.12(b), respectively, for o/Ry=50000 and
At = 0.375 x 1072, The hysteresis loop for the shear force of the base isolation system
is plotted in Fig. 3.10(c) and the required active control force is displayed in Fig. 3.13.

Within 30 seconds of the earthquake episode, the maximum interstory
deformations, x.; (i=B,1,2,...,8), the maximum acceleration of each floor, a;, the
maximum active control force U,, and force rate U_, as well as the maximum relative
displacement of the mass damper, Xy, ar¢ summarized in the columns designated as
"BIS&AMD!" of Table 3.3.

The building equipped with a base isolation system tends to behave like a rigid
body since the interstory deformation is small compared to that of the base isolation
system. As a result, sensors may not be needed for the building. Consider the second
case in which displacement and velocity sensors are installed on the active mass damper
and the base isolation system only, i.e. no sensor is installed on the building. In this
case, all the elements of Q,; and Q,, matrices are zero except Q,; (1,1), Q,;(1,2),
Q,,(1,1), and Q,5(1,2).  For simplicity, the following values are assigned:
Q,;(1,1)=102, Q,;(1,2)=-2363, Q,,(1,1)=67, and Q,,(1,2)=731. The maximum
response quantities for a/Ry=60000 and At=0.375x10"2 have been computed and
summarized in the columns designated as " BIS&AMD?" of Table 3.3. Time histories
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for the deformation of the base isolation system and the first story unit are shown in Fig.
3.9(f) and 3.12(c), respectively. The hysteresis loop for the shear force of the base
isolation system is plotted in Fig. 3.10(d). A comparison of the results in this case with
those of the first case in which sensors are installed on all floors of the building indicates
that installations of displacement and velocity sensors on the building are not necessary.
This conclusion is very important because it is expensive to install sensors. It is further
observed from Table 3.3 that a significant reduction of the building response, in
particular the response of the base isolation system, can be achieved using an active mass
damper with a small active control force and force rate.

Instead of using an active mass damper described above, the base isolation system
can be connected directly to an actuator. Such an active hybrid control system will be
considered. Consider the first case in which displacement and velocity sensors are
installed on every degree of freedom. The (18x18) Q matrix is partitioned as shown in
Eg. (3.1) in which Q,, and Q,, are (9x%) matrices. For the isolation system connected
to an actuator, the control force U(t) depends on the difference between the first two
rows of the Q,; and Q,, matrices, i.e., Qy1(1,))-Q,(2,)) and Qy5(1,1)-Qy,(2,j). For
simplicity, elements of Q,,(2,j) and Q,,(2,j) rows will be assigned to be zero. The
following values are assigned to the elements of Q,(1,j) and Q,,(1,j) rows for

illustrative purposes:

sz(l’j) =[025 55 45 34 24 14 13 13 13]

3.5
Q,(Lj) =[ 35 05 05 05 05 04 04 03 03] (3.5

and Q,;(1,))=0Qy,(1,j)=0 for i=2,...,9. The weighting matrix R consists of only one
element denoted by R,y. R, is chosen to be 10, Time histories of all the structural
response quantities have been computed. In particular, the time histories of the
deformation of the base isolation system and the first story unit are shown in Fig. 3.9(c)
and 3.12(d), respectively, for a/Ry=1 .55x10% and At=0.357x10"2. The hysteresis loop
for the shear force of the base isolation system is plotted in Fig. 3.10(e) and the required

active control force is displayed in Fig. 3.14.
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Within 30 seconds of the carthquake episode, the maximum interstory
deformations, x ., the maximum acceleration, a;, of each floor, the maximum active
control force, U, and force rate, Um, are summarized in the columns designated as
"BIS&AF>" of Table 3.3.

Again, for convenience of instrumentation, we consider the second case in which
displacement and velocity sensors are installed on the base isolation system only, i.e.,
no sensor is installed on the building. In this case, all the elements of Q,; and Q,,
matrices are zero except Q,4(1,1) and Q,4(1,1). For simplicity, the following values are
assigned: Q,;(1,1)=0.9 and Q,5(1,1)=3.4. The maximum response quantities for
a/Ry=1.5x10% have been computed and summarized in the columns designated as
"BIS&AF*" of Table 3.3. Time histories of the deformation of the base isolation system
and the first story unit are shown in Fig. 3.9(d) and 3.12(e), respectively. The hysteresis
loop for the shear force of the base isolation is plotted in Fig. 3.10(f). A comparison of
these results with those of Case 1 using 18 sensors indicates that installing only the
displacement and velocity sensors on the base isolation system is as good as installing
displacement and velocity sensors on all degrees of freedom of the structural system.

It is observed from the results presented in Table 3.3 that the performance of the
actuator is about the same as that of an active mass damper. However, the required
active control force, U, and the force rate, Um, are much bigger using an actuator
alone. This has been expected because the idea of using a mass damper is to absorb
energies from the base isolation system, thus reducing the capacity of the actuator, The
passive hybrid control system considered in the previous example demonstrates very well

such a conclusion.

Example 5: Building Equipped With Sliding-Type Base Isolator and Actuator

Instead of using a rubber-bearing base isolation system, a frictional-type sliding
base isolation system, as shown schematically in Fig. 3.15(a), is considered herein. This
type of isolators allows greater resistance to damage by permitting the building to slide

on its foundation during severe earthquakes. This isolation system decouples the building

1-40



101eNn}oy

pue weisAg Buipys eseq yum (q) ‘weisAs buipls eseq | i}
ynm () :Buipiing AI01S-HNIN B JO [8PON ainjoniis  GLE 3HND

(e)

(a)

YUY I,
3

10222 777000,
c

' % ) '




from its foundation with nearly frictionless teflon on stainless steel sliding plates that
have very low frictional resistance [e.g., 5-8, 17-18].

When the sliding system slides, the frictional force developed in the sliding system,
Fg,, is given by

F, = pmg sgn(x,) (3.6)

in which mg=w is the weight of the building system above the sliding bearings and p
is the coefficient of friction. When the sliding system sticks to the structure, the
frictional force F, is smaller than the one given by Eq. (3.6). In the dynamic analysis
of the sliding system for computing the time history of the structural response, a
judgement is needed at every time instant t to determine whether the system is sticking
or sliding. This is because the nonlinear frictional force varies from time to time. As
a result, such an approach is quite tedious in the numerical computation of the structural
response and it does not provide a systematic approach for the control problem,

To overcome the problem described above, the highly nonlinear frictional force is

represented by the following analytical function
F,=pumgv, 3.7

in which v, is a nondimensional hysteretic quantity described by Eq. (2.30) for i=b. It
is mentioned that during the sliding phase (yielding), v, takes a value of either 1 or -1.
During the sticking phase (elastic behavior), the absolute value of vy, is less than unity,
i.e., |vy| < 1. The conditions of sticking and sliding are accounted for by Eq. (2.30)
automatically., The parameters governing the scale and general shape of the hysteresis
loop of the sliding system are A, =1.0, §,=0.5, n,=2, v;,=0.5 and D;,=0.012cm. A
hysteresis loop for this set of parameters, i.e., v, vs. X, tepresenting the hysteretic
behavior of the sliding system is schematically shown in Fig. 3.8(b). The mass of the
sliding system is m, =450 metric tons and the coefficient of friction is u=10%. The
response vector is given by X=[x;,X,,...,Xgl". The integration time step At is 0.03x102

sec.
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Time histories of all the response quantities have been computed for the building
equipped with the sliding base isolation alone. The time history, x,(t), of the first story
deformation is depicted in Fig. 3.3(e) and that of the sliding system, x,(t), is presented
in Fig. 3.16(a), where x,(t) denotes the relative displacement of the teflon and the
stainless steel plate. Further, the hysetersis loops for the frictional force of the sliding
system and the shear force of the first, fourth, and eighth story units are shown in Figs.
3.17(a) and 3.4(c), respectively. The maximum response quantities of the structure
within 30 seconds of the earthquake episode are shown in the columns designated as
"With SIS" of Table 3.4. As observed from Table 3.4 and Figs. 3.3(e) and 3.4(c), the
interstory deformations and floor accelerations are significantly reduced. The advantage
of using a sliding type base isolation system to protect the building is clearly
demonstrated. However, the deformation of the eighth story unit is still in the inelastic
range.

To further reduce the structural response and to bring the deformation of the 8th
story unit into the elastic range, an actuator is connected to the sliding system as shown
in Fig. 3.15(b). The actuator will apply the active control force directly on the sliding
system. The basic idea of the active force, in this case, is to counteract the frictional
force in order to maintain the system in the sliding condition as much as possible, so that
the transmission of the earthquake ground motion to the building can be kept to a
minimum.

With the active control force, the structural response depends on the weighting
matrices R and Q. Again, the weighting matrix R consists of only one element, denoted
by Ry, whereas the dimension of the Q matrix is (18x18). Ry is chosen to be 107 for
simplicity and the Q matrix is partitioned as shown in Eq. (3.1).

It is noticed that the deformation of the building is in-phase with the frictional
force and the velocity of the building is out of phase of the frictional force. As a result,
Q,; = 0 and only the elements in the Q,; matrix which correspond to the deformation

of the building are needed. These elements are assigned in the following for illustrative

purposes:
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Q,,(1,5) = [0, -30000, -3000, -300, -30, -3, 0.3, -0.03, -0.003] (3.8)

All other elements of the Q,; matrix are set to be zero.

Time histories of all the structural response quantities have been computed. In
particular, the time histories of the deformation of the sliding system and the first story
unit are shown in Fig. 3.16(b) and 3.12(f}, respectively, for a/R0=2.25x108. The
hysteresis loop for the sliding system is plotted in Fig. 3.17(b). The required active
control force is displayed in Fig. 3.18. Within 30 seconds of the earthquake episode,
the maximum interstory deformations, x;,(i=b,1,2,...,8), the maximum floor
acceleration, a;, and the maximum active control force, U, , are summarized in the
columns designated as "SIS&AF" of Table 3.4.

It is observed from Table 3.4 and Figs. 3.16(b) and 3.12(f) that the actuator
connected to the sliding system is capable of reducing the response of the building

significantly.

Example 6: Hybrid Control System Consisting of a Base Isolation System and
an Actuator With Velocity and Acceleration Feedbacks

The instantaneous optimal control algorithm using velocity and acceleration
feedbacks has been developed, Eq. (2.27). The application of such an algorithm and its
performance will be demonstrated using an eight-story bilinear elasto-plastic building
implemented by a hybrid control system. The hybrid control system consists of a rubber-
bearing isolation system connected to an actuator, see Fig. 3.6(b), identical to that
presented in Example 4. In the present case, however, instead of using the displacement
and velocity feedbacks, i.e., Z(t), the velocity and acceleration feedbacks, Z(t), will be
used, Eq. (2.27).

The structural response X(t) =[x,X;,...,xg]’ depends on the weighting matrices (o))
and R”™. Since there is only one actuator, the R” matrix consists of only one element,

denoted by R,". The dimension of the Q" matrix is 18x18 and it is partitioned as follows
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Q=al|l------ = =--=--- ‘ 3.9

in which Q",; and Q*), are (9x9) matrices.

Again, the Q" matrix is symmetric. Since there is only one actuator installed on
the basement floor, see Fig. 3.6(b), the control vector U(t) depends only on the
difference between the first two rows of the Q*,, and Q*,, matrices, Eq. (2.27). For
convenience, only elements in the first row of the Q" and Q», are assigned with values
and all other elements are set to be zero.

With a base isolation system, the building usually behaves like a rigid body, since
its deformation is relatively small compared to that of the base isolation system. As a
result, the performance of the control system will not be affected adversely if sensors are
not installed on the building as demonstrated in Example 4. Since the installation of
sensors is quite expensive, only a velocity sensor and an acceleration sensor will be
installed on the base isolation system and the foundation. Consequently, all the elements
in —Q*Zl and Q*zz matrices are zero except Q*21(1,1) and Q*22(1,1). For illustrative
purpose, the following values are assigned to these two elements: Q*21(1,1)=35 and
Q'n(1,1)=0.5.

Within 30 seconds of the earthquake episode, the following quantities are presented
in the last two columns designated as "BIS&AF?" of Table 3.5 for «=18,750 and
R*(,: 1: (i) the maximum interstory deformations, x,;, (i) the maximum floor
accelerations a; and (iit) the maximum active control force U,,. Also presented in the
columns designated as "BIS&AF!" of Table 3.5 for comparison are the corresponding
results using Z(t) feedback taken from Table 3.3. The structural response quantitites
without active control are also shown in Table 3.5, which are taken from Tables 3.1 and
3.2.

It is observed from Table 3.5 that the performance of the instantaneous optimal

control algorithm using velocity and acceleration feedbacks is as good as that using the
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displacement and velocity feedbacks. Further, the active control system using the
instantaneous optimal algorithms presented herein is capable of significantly reducing

both the responses of the building and the base isolation system.

Example 7: Hybrid Control System Consisting of A Base Isolation System and An
Active Mass Damper With Velocity and Acceleration Feedbacks

The control algorithm using velocity and acceleration feedbacks, Eq. (2.27), will
be used for a hybrid control system consisting of a base isolation system and an active
mass damper presented in Example 4. In this case the structural response vector is
X(t) =[x4:XpsX1,...,Xgl’. The weighting matrix R" consists of only one element, denoted
by RO*, and the (20x20) weighting matrix Q" is partitioned as shown in Eq. (3.9), where
QZI* and sz* are (10x10) matrices. For illustrative purposes, velocity and acceleration
sensors are installed on every degree of freedom of the structural system, i.e., a total of
20 velocity and acceleration sensors are installed. The elements of Qzl*(l,j) and

sz*(l,j) are assigned in the following for illustrative purpose

Q;,(1,j) = [ 102, -1353, 11, 840, 1397, 1649, 1645, 1433, 1057, 561 |
Q5,(1,j) = [ 67, 731, 646, 621, 584, 529, 457, 366, 257, 133]

3.10)

where Q,,"(1,))=Qy, " (1,))=0 for i=2,3,...,10,

With R0*=1 and =300, Eq. (3.9), the following maximum response quantitites
in 30 seconds of the earthquake episode are presented in the columns designated as
"I{B)" of Table 3.6: (i) the maximum interstory deformation x; , (ii) the maximum floor
acceleration a&;, and (iii) the maximum active control force U . Also presented in the
columns designated as "I(A)" of Table 3.6 for comparison are the corresponding results
using the displacement and velocity feedbacks, Z(t), taken from Table 3.3.

We now consider the case in which sensors are not installed on the building, i.e.,
sensors are installed only on the base isolation system and on the mass damper. In this
case all the elements of the Q*21(I ,j) and Q*zz( 1,j) matrices are zero, except Q*Zl(l 1,

Q*21(1,2), Q*zz(l, 1) and Q*22(1,2). For illustrative purpose, the following values are
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assigned: Q*5;(1,1)=102, Q",1(1,2)=-1353, Q%,5(1,1)=67 and Q",,(1,2)=731.

Within 30 seconds of the earthquake episode, the maximum response quantities are
presented in the last two columns of Table 3.6 designated as "TI(B)", For comparison,
the corresponding results using the response state vector Z(t) as feedback are shown in
the columns designated as "II{A)" of Table 3.6. These results were taken from
Table 3.3.

Although the control algorithm using the Z feedback is capable of reducing the
structural response quantities, the required active control force is about one order of
magnitude bigger than that using the Z feedback as observed from Table 3.6. With the
same order of magnitude of the control force, i.e., U, =225.5 kN, and the Z feedback
algorithm, the response quantities are much larger than those obtained using the control
algorithm with the Z feedback, Case (A) of Table 3.6.

Consequently, it is concluded that the control algorithm using the Z feedback is not
suitable for the base-isolated building connected to an active mass damper. The
applicability and limitation of the control algorithm using the velocity and acceleration
feedbacks for different types of aseismic protective systems will be presented in a

different report.
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SECTION 4
CONCLUSION

A refined version of the instantaneous optimal control algorithm for nonlinear or
inelastic structural systems is presented. The optimal algorithm is simple and reliable
for on-line operations without tracking any system characteristics. Applications of the
optimal algorithm to various types of hybrid control systems have been demonstrated.
These include (i) an active mass damper installed on the top floor of the building, (ii)
active control of base-isolated buildings using lead-core elastomeric bearings, and (iii)
active control of base-isolated buildings using sliding type isolation systems. The
building itself considered is bilinear elasto-plastic.

A method of simulating the seismic response of inelastic (hysteretic) systems using
the proposed optimal algorithm is presented. This method has been used to ¢valuate and
compare numerically the performance of various control systems. The advantages of
aseismic hybrid control systems are clearly demonstrated. It is shown that the optimal
algorithm proposed is effective for practical applications.

Because of possible difficulties involved in measuring the displacement response
of the building during an earthquake, it is desirable not to use the displacement response
as feedbacks. A variation of the instantaneous optimal algorithm utilizing the
acceleration response rather than the displacement response as feedback is also presented.
Numerical examples demonstrate that the performance of the control algorithm using the
velocity and acceleration feedbacks is at least as good as that of the optimal algorithm
using the displacement and velocity feedbacks for the hybrid control systems considered.

Another contribution of this report is the analysis methodology presented for
evaluating the performance of aseismic hybrid control systems using frictional-type
sliding isolation systems., The highly nonlinear frictional force is described by an
analytical function of the equivalent hysteretic component, thus facilitating the analysis

of controlled response of the entire structural system.
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APPENDIX A
FOURTH-ORDER RUNGE-KUTTA METHOD

The Runge-Kutta method has been used extensively to solve the first order
nonlinear differential equation numerically. In this method, the solution at time t + A7
is approximated by a truncated Taylor’s series around the solution at the previous time

t. Let
y(®) = fly(2),1] (A-1)

be a first order nonlinear differential equation. Given the solution y(t,) at time t , the

solution y(t, + A7) att, + A7 is obtained using the Runge-Kutta method as

y(r, + At) = y(t) + %Ar(Ao + 24, 4 24, + A) (A-2)
where
Ao =f[)’(t,.)st,,}
A, =f[y(tn) + 0.34,,t, + 05 Ar]
{A-3)
A, = fy(e) + 054t + 05A7]
Ay = Fy(t) + Ayt + Ar]
The matrix equation of motion given by Eq. (2.3) can be written as
Z(t) = f[Z(0),1] (A-4)
in which
f1Z(e),t] = g [Z(D)] + BU(1) + W, X, (0 (A-5)

Equation (A-4) is analogy to Eq. (A-1). Hence, using Eqs. (A-2) and (A-3) with t, +
A7 = t and A7 = 2At, the solution for Z(t) can be expressed as
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20 = Z(t - 281) + 2(4, + 24, + 24, + 4) (4-6)

in which Ay, A;, A, and A, are defined as Eq. (2.7).
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APPENDIX B
INSTANTANEOUS OPTIMAL CONTROL ALGORITHMS

Substituting Eq. (2.12) and Eq. (2.13), one obtains the following three matrix

equations

20Z() + A1) = 0 ®-1)
At _
2RU) - 5L BA®) - 0 (B-2)
Z(t) = Dt-281, t-81) + 5F [RU) + KX ()] (B-3)

(1)  Instantaneous Optimal Open-L.oop Control (Feedforward)
Let the control vector U(t) be regulated by the earthquake excitation alone, i.e,

A(r) = g(0) (B-4)

Then equations (B-1), (B-2) and (B-3) become

2QZ(t) + g(t) = 0 (B-5)
2RUG) - S Ba() - 0 (B-6)
Z(t) = D(t-2At, 1-80) + SF [BUG) + B K (1) (B-7)

The unknown vectors U(t), g(t), and Z(t) can be solved from Eqs. (B-5)-(B-7) as
follows. The vector Z(t) is eliminated be substituting Eq. (B-7) into Eq. (B-5) resulting

in
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2Q = D(:-281, -0 + 2L [BU) + BE W] a0 =0 B

Premultiplying Eq. (B-8) by At/3 B’ and adding to Eq. (B-6), one obtains the

control vector U(t) in the following
U@ = LG(1) (B-9)

in which

(E )2 B/QB + E} (B-IO)
3

- At prop- At Y piow 3 B-11
G - & Bope-aan -an - [ AT powRm 1D

It is observed from Eqs. (B-9)-(B-11) that the control vector U(t) at time ¢t is
regulated by the earthquake excitation )"(O(t) at time t and D(t-2At, t-At), that consists of
quantities at t-At and t-2At. The response state vector Z(t) is obtained by substituting

Eq. (B-9) into Eq. (B-7).

Z() = DU-28r, 1-A0) + SL[BLG) + B X)) @1

(i) Instantancous Optimal Closed-Loop Control (Feedback)
Let the control vector U(t) be regulated by the feedback response state vector Z(t)

alone, i.c.

A@) = A Z(¥) (B-13)

Then, substitution of Eq. (B-13) into Eq. (B-1) yields
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(2Q + A) Z(1) = 0 (B-14)

The unknown matrix A is obtained, for Z(t}) # 0, as

A=2Q (B-15)

The control vector U(t) is obtained by substituting Eq. (B-15) into Eq. (B-13) and
then into Eq. (B-2) as follows

U - - % E1BQZ(t) (B-16)

Substituting Eq. (B-16) into Eq. (B-3) and simplifying the resulting expression, one

obtains the response vector Z(t) under instantaneous optimal closed-loop control

é_{ 2

-1
Z(1) ={1 ( : ) BR"‘B’Q] (D[(+-4n, (t-240] + 5 wE @) (B-17)

(iii)  Instantaneous Optimal Ciosed-Open-Loop Control (Feedforward-Feedback)

Let the control vector U(t) or A(t) be regulated by both the feedback response state

vector Z(t) and the measured earthquake ground acceleration Xo(t), i.e.
A =AZ@D + g (B-18)
The control vector U(t) can be eliminated by substituting Eq. (B-2) into (B-3)

Z(t) = D(t-2At, t-Ap) + % _Aﬁ_t BR'BA() + Exﬁo(t) (B-19)

Equation (B-1) can be rewritten as
QZ(M) + Z) ] + 4(r) = 0 (B-20)
Substituting Eq. (B-19) for the second term of Z(t) in Eq. (B-20) and simplifying

the resulting expression, one obtains
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{Q + (_A_‘lz BR'B + I | A }YZ() + Q{ D(¢t-2A¢, t-At
Q T Q A L Z(2) + Q1 D( )(B-21)

" 2
02 AOREREC):) o N SF TN

For Z(t) # 0 and g(t) # 0, the solution of unknown matrix, A, and vector, g(t),

are obtained as follows

A = -

1

-1
B oprrip + 1} 0 (8-22)

q(n) = A1 [ D(t-2At,t-At) + .‘% K1Xo(t)} (B-23)

Thus, the control vector U(t) and the response state vector Z(t) with instantaneous

optimal closed-open-loop control are determined in the following:

() = 2 BB [ AZ() + ()] (B-24)

-1

_ (AD)® oo p
Z(t) =1 -~—= BR'BA { D(t-2At, t-A?)
18 ! (B-25)

(At At ;
+ g BREe + T BX ™))

in which A, and ¢(t) are given in Eqgs. (B-22) and (B-23).
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HYBRID CONTROIL OF SEISMIC-EXCITED STRUCTURAL SYSTEMS

PART 11






SECTION 1
INTRODUCTION

It has been shown recently that a combined use of active and passive control
systems, referred to as the hybrid control system, is more effective, beneficial and
practical, in some cases, for reducing the building response under strong earthquakes
[e.g., 3,9,23,24,28,29]. However, the use of hybrid control systems involves active
control of nonlinear or inelastic structural systems, since passive control systems, such
as base isolation systems, usually behave nonlinearly or inelastically under dynamic
loads. Instantaneous optimal control algorithms for linear, nonlinear or inelastic
structures were proposed in Refs. 19-22. Recently, a refined version of such optimal
control algorithms was presented in Refs. 28-29, with emphasis placed on applications
to aseismic hybrid control systems. An aseismic hybrid control system consists of active
control devices, such as an active mass damper, and passive base isolation systems. In
Refs. 28-29, the optimal control vector U(t) was obtained from the measured 2n state
vector Z(t).

For inelastic structural systems, such as base-isolated buildings using either lead-
core rubber bearing isolators or sliding-type isolations [e.g.,4-8,10,12-14], the total
deformation consists of an elastic component and a hysteretic component. Various
mathematical models to describe the behavior of the hysteretic component have been
proposed in the literature [e.g.,1,2,4-8,11-15,17-18]. To-date, the hysteretic component
of the structural response has not been incorporated in the formulation of the optimal
control problem, aithough the hysteretic model has been used in the simulation of the
controlled response of buildings equipped with aseismic hybrid control systems [28-29].

Based on the concept of instantaneous optimal control [19-22,28-29], the optimal
control problem is formulated incorporating the specific hysteretic model in this report.
This is accomplished by including the hysteretic component explicitly in the equations
of motion, which are used as the constraints for the determination of the optimal control
vector. For an n-degree-of-freedom system, the dimension of the state vector Z(t) used

in Refs. 28-29 is 2n. Including the hysteretic component explicitly in the present
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formulation, the dimension of the new state vector Z(t) becomes 3n. The optimal control
vector U(t) is obtained by minimizing a time dependent quadratic performance index
[16,19-21] exactly in the same manner as that described in Refs. 19-22 and 28-29. In
this report, we also prove that the optimal control vector satisfies not only the necessary
conditions but also the sufficient condition of optimality. Since the control vector U(t)
is obtained as a linear function of the 3n state vector Z(t), it depends not only on the
measured deformation and velocity but also on the hysteretic component of the structural
response. The hysteretic component of the structural response can be estimated from an
observer using the measured structural response and the specific hysteretic model used.
A simple method of constructing the observer for the estimation of the hysteretic
component is also presented.

Specific applications of the present control algorithm to two important types of
aseismic hybrid control systems are demonstrated. These include (i) a frictional-type
sliding isolation system connected to an actuator, and (ii) a lead-core rubber bearing
isolation system connected to either an actuator or an active mass damper. These two
types of aseismic hybrid systems are highly nonlinear and hysteretic in nature.
Theoretically, the performance of the present optimal algorithm should be better than that
proposed in Refs. 28-29, because more information is used in the determination of the
control vector. Several examples have been worked out and the performance of the
present optimal algorithm has been investigated, evaluated and compared numerically
with that of the previous algorithm [Ref. 28-29]. 1t is shown numerically that the
performance of the present optimal algorithm is indeed better than that of the previous

one for the two types of aseismic hybrid control systems investigated herein.
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SECTION 2
OPTIMAL CONTROL OF INELASTIC STRUCTURAL SYSTEMS

2.1 Nonlinear Hysteretric Model for Inelastic Systems

Various hysteretic models for the restoring force of an inelastic system have been
developed in recent years [e.g. 1,2,4-8,11-15,17-18]. In this study, the differential
equation model available in the literature [e.g., 1,2,11,15,18] will be used for both
structures and passive protective systems. The stiffness restoring force for a structural

member or a story unit, F(x,t), is expressed as

F(x,t) = akx + (1-a)kD v 2.1

in which x=deformation, k=elastic stiffness, o= ratio of post-yielding to pre-yielding
stiffness, D, =yield deformation =constant, and v is a nondimensional variable introduced

to describe the hysteretic component of the deformation, with |v| < 1, where
Dyv = A% - Blx| jvi*t v - yx|v|® (2.2)

In Eq. (2.2), parameters A, § and y govern the scale and general shape of the hysteresis
loop, whereas the smoothness of the force-deformation curve is determined by the
parameter n. It is noticed that Dy is the measure of the yielding level if the hysteresis
loop is not bilinear. In this case, however, D, can be chosen as a large number such that
vl < 1 as will be described later.

The hysteretic model given by Eqs. (2.1) and (2.2) is phenomenological in nature;
however, it does provide an explicit mathematical expression with many parameters
flexible enough to reflect various hysteretic behaviors of inelastic systems. Likewise,
Eq. (2.2) appears to be capable of describing the hysteretic behaviors of different base
isolation systems, such as rubber bearings and sliding systems, which are the main

concern of this study.

2.2 Equations of Motion

For simplicity, consider a base-isolated one-dimensional inelastic building
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implemented by a hybrid control system as shown in Fig. 2.1(a). The structure system
is idealized by an n-degree-of-freedom system and subjected to a one-dimensional
earthquake ground acceleration X,(t). Let x,(t) be the relative displacement between the
ith floor and the i-1th floor, i.e., the deformation of the ith story unit. The stiffness

restoring force, F(t), of the ith story unit is given by
FS!(t) = a,kx + (1 - &) kD, v, 2.3)
in which the subscript i represents the quantity associated with the ith story unit and

. . . -1 . n
D, v, = A% = B %] v [ vi-v 4 v " 2.4)

The matrix equation of motion of the entire building system can be expressed as

follows
MX(r) + CX(2) + K X(1) + K V(1) = HU(2) + FXy ()  @.9)

in which a linear viscous damping model has been assumed, X(t)=[X;,X,,...,X;]" = an
n vector denoting the deformation of each story unit, and V(t)=[v,v,,...,v,]" = ann
vector denoting the hysteretic variable of each story unit. For the notations above, an
under bar denotes a vector or a matrix and a prime indicates the transpose of a vector
or a matrix.

In Eq. (2.5), M is an (nxn) mass matrix with the i-jth element M(i,j)=m; for
1=1,2,...,nand j=1,2,...,iand M(i,j)=0 for j>1, where m;, is the mass of the ith floor,
C is an (nxn) band-limited damping matrix with all elements equal to zero except
C(@,i)=c;fori=1,2,...,nand C(i,i+1)=-c;, for i=1,2,...,n-1, where ¢; is the damping
coefficient of the ith story unit. K, and Kj are (nxn) band-limited elastic stiffness matrix
and hysteretic stiffness matrix, respectively. All elements of K, and K; are zero except
K, (1) =05k, Ki(i,0) =(I-apkDy; fori=1,2,...,nand K (1,i+ 1) =-; , 1K 4, Ky(i,i+ 1) =-
(I-a; Pk 1 Dyjyq for i=1,2,...,n-1. H is an (nxr) matrix denoting the location of r
controllers and F is an n vector denoting the influence of the earthquake ground

acceleration. The matrices M, C, K, and K; described above hold when the base-isolated
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building is connected to an actuator as shown in Fig. 2.1(b). These matrices should be
modified appropriately when the base-isolated building is connected to an active mass
damper.

From Eq. (2.4), the vector V appearing in Eq. (2.5) is given by
¥ - LD 2.6)
in which the ith element of V or (X, V), denoted by v, or fi(x;, v;), is given by
v = fil&,v) = D (A = By 1% 1w v- v v ™ ] 2.7

By introducing a 3n state vector Z),

Z(t) - 2.8)

P I P

the second-order nonlinear matrix equation of motion, Eq. (2.5), can be converted into

a first order matrix equation as follows:
Z(1) = g[Z(D)] + BU(s) + W X, (1) 2.9

in which B and W, are 3n vectors

0 Q
B=|0 . W - 0 2.10)
M'H M'E

and g[Z(1)] is a 3n vector consisting of nonlinear functions of components of the vector
Z(),

glZ(n] = | XD @.11)

The first-order nonlinear matrix equation, Eq. (2.9), can be solved step-by-step
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numerically using the Fourth-Order Runge-Kutta method as follows [Ref.29]:
SN _ e 1
(0 = 2t -240 + E[A0 +24, + 24, + 4,] (2.12)

in which At is the integration time step, and Ay, A;, A,, and A, are 3n vectors

4, = 24t {g[Z(t-2At)] + B U(t-2At) + lzlio(r—zm)}

A =24t {g[Z(t-2At) + 0541 + BU(t-At) + _mlio(t—m)}
4, =2Ar (g[Z(1-2A1) + 0541 + BU@t- A1) + B X, (2~ Ar))
A, =24t {glZ(t-2at) + A1 +BU®) + ¥ X, (1)

2.13)

As observed from Eq. (2.13), Ag, Ay, Ay, A; are functions of t-2At, t-At and t.
For simplicity of presentation, the arguments, t-24At, t-At and t, have been omitted.

To simplify the mathematical operation, it is desirable to group all vectors in Eq.
(2.12), which are functions of 7 < t, into one term, denoted by D(t-2At, t-At), as

follows:

D(t-2A¢ t-Af) = Z(¢-2A¢) + —31-At (@[ Z(z-2A1)] + BU(: - 2A1)

+ W X, (t-2A1) + 2g[Z(t-2A1) + 054 ] + 4BU(1 - Ar) 2.14)
+ 4E120(t—At) +2g[Z(t-2A1) + 0.5A1] + glZ(t-2A1) +Az]}

Then, Eq. (2.12) can be expressed as

26) - D285 1-40) + SHBUG « W EG] @19

It is mentioned that for the regular Fourth-Order Runge-Kutta method, the
integration time step is A7 that is twice of At used in Eqgs. (2.12)-(2.15), i.e., A7 = 2At
or At = Ar/2. In other words, the integration step size At used in the current numerical
scheme is one-half of that used in the regular Fourth-Order Runge-Kutta method.

As observed from Eqgs. (2.6), (2.7) and (2.11), the g vector is a function of X, V

and X which are elements of the vector Z. Thus, the g vector can be expressed as a
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function of the response state vector Z, i.e., g = g(Z). To evaluate g(Z), the argument
vector Z = [ X’, V/, X']’ is computed first and then its components, X, V and X, are
substituted into the right hand side of Eq. (2.11). For the g[Z(t—ZAt) + 0.5 A;] vector
appearing in Eq. (2.14), the argument vector (3n-dimensional), denoted by S,

S =Z(t-2A1) + 054, 2.16)

is computed first from Eq. (2.16). Then, § is partitioned in the same form as the vector
Z,ie., S = [S;', S,', 85’1, where §;, S, and S; are n-dimensional vectors. Finally,
the g[Z(t-2At) + 0.5 A,] vector is obtained from Eq. (2.11) by replacing X, V and X,
respectively, by §;, S, and §;. Likewise, the other two vectors glZ(t-2At) + 0.5 Aol
and g[Z(t-2At) + A,] appearing in Eq. (2.14) are similarily defined.

2.3 Instantaneous Optimal Control

The instantaneous optimal control algorithm proposed by Yang, et al for linear
structures [19-20] was extended later to nonlinear structures [21,28-291. Itis used herein
for applications to control of in¢lastic systems.

The time dependent quadratic objective function J(t) is given as follows

J(0) = Z()QZw) + U()RU(L) 2.17)

in which Q and R are (3nx3n) and (rxr) weighting matrices, respectively, representing
the relative importance of the response vector Z(t) and the control vector U(t). The
optimal control vector obtained by minimizing the time-dependent objective function, J(t),
is referred to as the instantaneous optimal control algorithm [e.g., 16,19-22].

To minimize the objective function, Eq. (2.17), subjected to the constraint given
by Eq. (2.15), the Hamiltonian H is constructed by introducing a 3n-dimensional

Lagrangian multiplier vector A(t}
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H=Z0QZw) + UMRUQ) + MOIZ()

A? ) (2.18)
- D(z-2A1, 1~ Ar) - =S [BUG) + W X(0])

The necessary conditions for minimizing J(t), subjected to the constraint of Eq.
(2.15), are

oH oH
L)) -0 .
oU @19

= Q,
dA

|§])l|%

Substituting Eq. (2.18) into Eq. (2.19), one obtains the optimal control vector U(t)
in the following manner: (i) when the control vector U(t) is assumed to be regulated by
the response state vector Z(v), the instantaneous optimal closed-loop (feedback) control
algorithm is obtained

ue) - —%R‘l B QZ(1) (2.20)

(i) when the control vector U(t) is regulated by the measurement of the earthquake
ground acceleration Xo(t) without a feedback response state vector Z(t), the instantaneous
optimal open-loop (feedforward) control algorithm is obtained, and (iii) the instantaneous
optimal closed-open-loop (feedback and feedforward) control algorithm is obtained by
assuming that the control vector U(t) is regulated by the measurements of both the
response state vector Z(t) and the earthquake ground acceleration X(t) [see Ref. 29].
Although the control operations for the three optimal algorithms are different, the
resulting state vector Z(t) and control vector U(t) remain the same under ideal control
environments.

With the control vector given by Eq. (2.20), the response state vector Z(t) is
obtained by substituting Eq. (2.20) into Eq. (2.15) as follows

-1
Z(t) - {l + [_As_t)zgx-l,zgfg} [D(z—zm, t-At) + _4313_;1 X,(0) (2.21)

in which [ is a {3nx3n) identity matrix.
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2.4 Sufficient Condition For Optimal Control

In the original derivations for the instantaneous optimal control algorithms, such
as Refs. 19-21,28 and 29, the optimal control vector U(t) was obtained from the
necessary conditions, such as Eq. (2.19), i.e., dH/d Z=0, 0H/dU=0 and dH/dA=0. In
fact, the derived optimal control vector U(t) also satisfies the sufficient condition of
optimality as will be proved in the following.

The sufficient condition for the optimal solution is given by [Ref. 31]

| PH *H
s o ]| & OPU || oz (2.22)
| o2, o] *H en ||ou|”
| yaz  f
Taking derivatives of H in Eq. (2.18), one obtains
O 20z -a; gy - Al
% u ’ 2.23)
TH _sp, TH _,p, FH _FH _, .
Az Car T spu vz

Substitution of Eq. (2.23) into the left hand side of Eq. (2.22) leads to the

following expression

2[62’,@’]{3 gHgf!]=2(az’Q62+au’Eag)>o (2.24)

Since Q is a positive semi-definite matrix and R is a positive definite matrix, Eq.
(2.24) is greater than zero. Thus, the sufficient condition for the optimal solution, Eq.
(2.22), is satisfied.

2.5 Estimation of Hysteretic Component Vector V
The optimal control vector U(t) given by Eq. (2.20) is regulated by the 3n response
state vector Z(t)=[X'(t), V'(t), X'(t)]'. The displacement and velocity response vectors,

X(t) and X(t), are available from measurements using sensors. However, the hysteretic
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component vector V(t)=[v(1),v,(1),...,v,(1)]’ is not measurable and hence it should be
estimated. An approach to estimate v;(t) for i=1,2,...,n is by use of a reduced order
nonlinear state observer. In the present case, the observer can be constructed easily,
since v;(t) is only a function of the interstory velocity X;(t) as shown in Eq. (2.7). As
a result, the estimate of the hysteretic component v;(t), denoted by ¥;(t), follows from Eq.
(2.7) as

‘éi(t) =ﬁ(iivﬁi) = Dy_i1 [Aiji - ﬁ.‘ 1 x: l l ‘7;' ]"rl‘;‘ - Yiii l ‘A)i Ini] (225

in which the argument t for x;(t) and ¥,(t) has been omitted for simplicity and %;(t) is
obtained from measurements.

Given the measured x(t), Eq. (2.25) can be integrated on-line to obtain the
estimate V;(t) for v;(t) without any difficulty. Itis mentioned that when the response level
is within the elastic limit, the hysteretic component v; is very closed to the interstory
deformation x;, Eq. (2.1). Asin the case of any observer, the accuracy of the estimates
V(1) for i=1,2,...,n, depends on the accuracy of the hysteretic model representing the
behavior of the system as well as the corresponding parameters, such as A;, §8;, y; and

n,. This subject, however, is beyond the scope of this report.

II-11






SECTION 3
NUMERICAL EXAMPLE

To illustrate the application of the optimal control algorithm developed in this
report for inelastic structural systems, several examples are presented in this section.
Emphasis is placed on aseismic hybrid control systems. The same eight-story building
that exhibits binlinear ¢lasto-plastic behavior used in Refs, 28 and 29 is considered. The
stiffness of each story unit is designed such that yielding occurs simultaneously for each
story unit. The properties of the structure are as follows: (i) the mass of each floor is
identical with m; = m = 345.6 metric tons; (ii) the preyielding stiffnesses of the eight-
story units are k; (i=1.2,...,8) = 3.4x10°, 3.26x10°, 2.85x10°, 2.69x10°, 2.43x10°,
2.07x10°, 1.69x10° and 1.37x10° kN/m, respectively, and the postyielding stiffnesses
are kp, = 0.1 k;; for i=1,2,....,8; and (iii) the viscous damping coefficients for each
story unit are ¢; = 490, 467, 410, 386, 348, 298, 243 and 196 kN.sec/m, respectively.
The damping coefficients given above result in a classically damped structure with a
damping ratio of 0.38% for the first vibrational mode. The natural frequencies of the
unyiclded structure are 5.24, 14.0, 22.55, 30.22, 36.89, 43.06, 49.54 and 55.96
rad./sec. The yielding level for each story unit varies with respect to the stiffness; with
the results, Dyi =24,2.3,2.2,2.1,2.0, 1.9, 1.7, and 1.5 cm. The bilinear elasto-
plastic behavior can be described by the hysteretic model, Eqs, (2.3) and (2.4), with
A;=1.0, §;=0.5, n;=95 and v;=0.5 for i=1.2,...,8. A simulated earthquake with a
maximum ground acceleration of 0.3g as shown in Fig. 3.1 is used as the input
excitation.

With the eight-story bilinear elasto-plastic building structure described above and
the earthquake ground acceleration shown in Fig. 3.1, time histories of all the response
quantities have beeri computed. Within 30 seconds of the earthquake episode, the

maximum interstory deformation, x_;, and the maximum absolute acceleration of each

mi?
floor, a;, are shown in Table 3.1, Other response quantities have been presented in
Ref. 29. As observed from Table 3.1, the deformation of the unprotected building is

excessive and that yielding takes place in each story unit.
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Example 1: Building Equipped With Rubber-Bearing Base Isolation System
and Active Mass Damper

To reduce the structural response, a lead-core rubber-bearing isolation system
connected to an active mass damper is implemented as shown in Fig. 3.2(a). The

restoring force of the lead-core rubber-bearing system is modeled as

F, = ajx, + (1-a,)k,D v, 3.1

in which », is given by Eq. (2.4) with i=b. The mass of the base isolation system is
my, =450 metric tons and the viscous damping coefficient is assumed to be linear with
¢, =26.17 kN.sec/m. The restoring force of the base isolation system given by Eq. (3.1)
is not bilinear elasto-plastic and the parameter values are given as follows: k, =18050
kN/m, oy, =0.6 and Dyb=4cm. The parameters governing the scale and general shape
of the hysteresis loop of the isolation system, Eq. (2.4), were assumed to be A =1.0,
B,=0.5, ny=3 and v,=0.5. The hysteretic characteristics of such a base isolation
system, i.e., X, Versus vy, are shown in Fig. 3.3(a). For the building with the base
isolation system without an active mass damper, the 9 natural frequencies of the
preyielding structure are 2.21, 9.31, 17.29, 25.18, 32.19, 38.29, 44.12, 50.37, and
56.74 rad/sec. The damping ratio for the first vibrational mode is 0.15%. It is observed
that the fundamental frequency is reduced significantly by the implementation of the base
isolation system. The response vector X(t) is given by X=[xy,xy,...,Xg]".

Without an active mass damper, time histories of all the response quantities were
computed and presented in Ref, 29. The maximum response quantities of the structure
in 30 seconds of the earthquake episode are shown in the column of Table 3.1 designated
as "With BIS". As observed from Table 3.1, the interstory deformation and the floor
acceleration are drastically reduced. However, the deformation of the base isolation
system shown in row B of Table 3.1 may be excessive.

To protect the safety and integrity of the base isolation system, an active mass
damper was proposed in Refs. 23-24 to be connected to the base isolation system as

shown in Fig. 3.1(a). The properties of the mass damper are as follows. The mass of
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the mass damper, my, is equal to 50% of the floor mass, i.e., my=0.5m, and the natural
frequency of the mass damper is the same as the first natural frequency of the base
isolated building, i.e. 2.21 rad/sec. The damping ratio of the mass damper is 10%.
With the active mass damper, the response vector is given by X(t)=[x4,Xy,X;,...,Xg]’ and
the structural response depends on the weighting matrices R and Q. For this example,

the weighting matrix R consists of only one element, denoted by R,, whereas the
dimension of the Q matrix is (30x30). R, is chosen to be 10 for simplicity. The Q

matrix is partitioned as follows
Q=q¢l-=-=--=---- (3.2)

in which 0 is a (20x10) matrix with all elements equal to zero, and Q,, Q,, and Q,; are
(10x10) matrices.

Note that Q is a symmetric matrix. Because of the fact that there is only one
actuator installed on the basement floor as shown in Fig. 3.2(a), only the elements in one
row of the Q matrix are relevant to the control vector U(t), see Eq. (2.20). In the
present case, only the elements in the first row of Q,¢, Q,, and Q,; matrices are related
to the control vector U(t). As a result, all elements of the Q matrix which have no effect
on the control vector U(t) are set to be zero for convenience.

It is mentioned that matrices Q,;, Q and Q,; are associated with the feedbacks
of X(t), V(t) and X(t), respectively. For instance, setting all the elements of Q5 equal
to zero, the control vector U(t) given by Eq. (2.20) is no longer a function of X(t).
Hence, the main difference between the current control algorithm and that presented in
Refs. 28 and 29 lies in the matrix Q,,. If all elements of Q,, are zero, there is no
feedback of V(t) and the results will be identical to those presented in Refs. 28 and 29.

Consider the case in which there is no feedback of V(t), i.e., all elements of Q,,
are zero. Since there is only one actuator, all the elements of Q,, and Q,; are set to be
zero, except Q(1,j) and Q,4(1,j) for j=1,2,...,10. For illustrative purpose, the

following values are assigned.
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Q, (L)) =[102 -2362 -11 -840 -1397 1649 -1645 -1433 -1057 -561]
Q,.(Lj)=[67 731 646 621 584 529 457 366 257 133]

3.3)
and Q,;(1,j)=0Q55(,j)=0 for i=2,3,...,10and j=1,2,...,10.

Time histories of all the structural response quantities have been computed for
a/Ry=50000 and At=0.375x10"2. Within 30 seconds of the earthquake episode, the
maximum interstory deformations, x; (i=B,1,2,...,8), the maximum acceleration of
each floor, a;, the maximum active control force, U , and the maximum relative
displacement of the mass damper, X4, are summarized in column (A) of Table 3.1
designated as "Full sensors". Time histories of many response quantities were plotted
and presented in Ref, 29,

We consider now the case in which the hysteretic component V(t) is also a
feedback to the control vector U(t). In this case, elements of Q,(1,j), Qq5(i,j) and

Q,5(1,j) are assigned in the following for illustrative purposes

Q,,(1,/) =[102 -3363 -11 B840 1397 1649 1645 1433 1057 561]
Qn(L,p={0 -0, o0 O0 O0 o0 O 0 0 0] (3.4)
Q, (L) =[ 67 931 646 621 584 529 457 366 257 133]

and all other elements are zero. Eq. (3.4) indicates that only the hysteretic component
of the base isolation system is used as a feedback.

Within 30 seconds of the earthquake episode, all the maximum response quantities
are summarized in column (B) of Table 3.1 designated as "Full sensors" for comparison.
It is observed from Table 3.1 that (i) the performance of the present optimal algorithm
with an additional feedback of the hysteretic component is slightly better than that of the
optimal algorithm without a feedback of the hysteretic component, and (ii) the aseismic
hybrid control system using a lead-core rubber bearing isolation system and an active
mass damper is very effective in protecting building structures against strong
earthquakes.

The base-isolated building tends to behave like a rigid body and the interstory

deformation is small compared with that of the base isolation system. As a result,
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sensors may not be needed for the building. Consider the case in which displacement
and velocity sensors are installed on the active mass damper and the base isolation system
only, i.e., no sensor is installed on the building. For the first case in which the
hysteretic component V(t) is not accounted for in the determination of U(t), one has
Q,,=0. Further, all elemenis of Q,, and Q,,; are zero, except Q,,(1,1), Q,(1,2),
Qy3(1,1) and Q,5(1,2). For simplicity, the following values are assigned; Q,;(1,1)=102,
Q,1(1,2)=-2363, Qy3(1,1)=67 and Q,3(1,2)=731. The maximum response quantities
for a/Ry=50000 and At=0.375x1072 sec. were computed and summarized in column (A)
of Table 3.1 under the heading of limited number of sensors.

We next consider the case in which the hysteretic component V(t) is used for the
determination of U(t). In this case, the following elements are assigned: Q,((1,1)=102,
Q,4(1,2)=-3363, Qp,(1,1)=0, Q,,(1,2)=-100, Qy5(1,1)=67, and Q,53(1,2)=931. All
other elements of the Q matrix are zero. The maximum response quantities for
a/Ry=50,000 and At=0.375x1072 sec. are summarized in the last two columns of Table
3.1 designated as "limited number of sensors."

A comparison of the results for the case using a limited number of sensors with
those of the case in which sensors are installed on all floors of the building indicates that
installations of displacement and velocity sensors on the building are not necessary. This
conclusion is very important because it is expensive to install sensors. It is further
observed from the last four columns of Table 3.1 that the performance of the present
control algorithm is slightly better than that of the previous algorithm without considering

the hysteretic component V(1) as a feedback.

Example 2: Building Equipped with Rubber Bearing Isolation System and Actuator
Instead of using an active mass damper described above, the base isolation system
can be connected directly to an actuator. With such a hybrid control system, the (27x27)
Q matrix is partitioned as shown in Eq. (3.1), where Q,;, Oy and Q,; are (9x9)
matrices. From the conclusions above, it is not necessary to install sensors on the base-
isolated building. Hence, we consider only the case in which displacement and velocity

sensors are installed on the base isolation system only, i.¢., no sensor is installed on the
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building. When V(1) is not considered as a feedback for the determination of U(t), all
elements of Q,;, Q,, and Q,, are zero, except Q,;(1,1) and Qy5(1,1). For simplicity,
the following values are assigned: Q,;(1,1)=0.9 and Qy3(1,1)=3.4. The maximum
response quantities for a/Ry= 1.55x10®% and At=0.375x10"2 sec. are summarized in the
columns designated as "BIS&AF!" of Table 3.2 [Ref. 29].

When ¥(t) is used in the determination of U(t), one additional non-zero element
from the Q,, matrix is assigned. For illustrative purposes, the following values are
assigned: Q,;(1,1)=0.1, Qy,(1,1)=0.5 and Qy,;(1,1)=3.5, and all other elements of the
Q matrix are zero. The maximum response quantities in 30 seconds of the earthquake
episode are presented in the columns designated as "BIS&AF?" of Table 3.2 for
comparison. 1t 15 observed from Table 3.2 that the performance of the present control
algorithm is slightly better than that of the previous algorithm without considering the
feedback of V(t).

Example 3: Building Equipped With Sliding Base Isolation System and Actuator

Instead of using a rubber-bearing base isolation system, a frictional-type sliding
base isolation system, as shown schematically in Fig. 3.2(b), is considered for the same
eight-story bilinear elasto-plastic building described in Example 1. This type of isolators
allows greater resistance to damage by permitting the structure to slide on its foundation
during severe earthquakes. This isolation system decouples the structure from its
foundation with nearly frictionless teflon on stainless steel sliding plates that have very
low frictional resistance.

When the sliding system slides, the frictional force, F,, developed in the sliding

system is given by

F, = pmg sgn(x) 3.5

in which mg=w is the weight of the siructural system above the sliding bearings and u
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is the coefficient of friction. When the sliding system sticks, the frictional force F is
smaller than the one given by Eq. (3.5). In the dynamic analysis and active control of
the sliding system, the highly nonlinear frictional force is represented in this report by

the following analytical function
F,=umgv, (3.6)

in which vy, is a nondimensional hysteretic quantity described by Eq. (2.4) with i=b.
It is mentioned that during the sliding phase, vy, takes a value of either 1 or -1. During
the sticking phase, the absolute value of v, is less than unity, i.e., |v,| < 1. The
conditions of sticking and sliding are accounted for by Eq. (2.4) automatically. The
parameters governing the scale and general shape of the hysteresis loop of the sliding
system are A,=1.0, 8,=0.5, n,=2, v,=0.5 and Dy;,=0.012cm. The hysteresis loop
of the hysteretic component of such a sliding system is schematically shown in Fig.
3.3(b). The mass of the sliding system is m,=450 metric tons and the coefficient of
friction is u=10%. The response vector is given by X=[x,,X1,...,Xg]".

Time histories of all the response quantities were computed., The time history,
x1(t), of the first story deformation and that of the sliding system, x,(t), were presented
in Ref. 29, where x,(t) denotes the relative displacement of the teflon and the stainless
steel plate. Further, the hysetersis loops for the shear force of the sliding system, the
first, fourth, and eighth story units were also given in Ref. 29. The maximum response
quantitics of the structure within 30 seconds of the earthquake episode are shown in
Table 3.3 in the columns designated as "With SIS"., As observed from Table 3.3, the
interstory deformations and floor accelerations are drastically reduced using a sliding type
base isolation system. However, the deformation of the eighth story unit is still in the
inelastic range. The time history of the deformation of the first story unit, x;(t), without
the base sliding system is shown in Fig. 3.4(a). The corresponding result when the

building is equipped with a base sliding system alone is presented in Fig. 3.4(b).
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To further reduce the structural response and to bring the deformation of the 8th
story unit into the elastic range, an actuator is connected to the sliding system as shown
in Fig. 3.2(b). The actuator will apply the active control force directly on the sliding
system. The basic idea of the active force, in this case, is to counteract the frictional
force in order to maintain the system in the sliding condition as much as possible, so that
the transmission of the earthquake ground motion to the building can be kept to a
minimum.

With the active control force, the structural response depends on the weighting
matrices R and Q. Again, the weighting matrix R consists of only one ¢lement, denoted
by R, whereas the dimension of the Q matrix is (27x27). R, is chosen to be 103 for
simplicity and the Q matrix is partitioned as shown in Eq. (3.2), where Q,{, Q,, and Q4
are (9x9) matrices and 0 is a (18x9) zero matrix.

First, consider the case in which the hysteretic component vector V is not a
feedback quantity for the determination of the control vector U(t). In this case, all the
clements of the Q,, matrix are zero, i.e., Q,5=0. Note that the deformation of the
building is in-phase with the frictional force and the velocity of the building is out of
phase of the frictional force. As a result, we set Q,5 = 0. As described in Part I, for
the base-isolated building connected to an actuator, the control force U(t) depends on the
difference between the first two rows of the Q,; and Q,, matrices, i.e., Q>1(1,))-Q51(2,)
and Qy5(1,j)-Qy5(2,j). For simplicity, elements of Q,;(2,j) and Q,,(2,j) rows will be
assigned to be zero. The clements of Q,,(1,j) are assigned in the following for

illustrative purposes:

Qﬂ(l, /) = [ 0,-30000, -3000, -300, -30, -3, -0.3, -0.03, -0.003 ] 3.7

All other elements of the Q,, matrix are set to be zero,

Time histories of all the structural response quantities were computed for
a/Ry=2.25x10% and At=0.03x10"2 sec. Time histories of the deformations of the sliding
system and the first story unit as well as that of the required active control force were
shown in Ref, 29, Hysteresis loops for the sliding system were also plotted in Ref, 29,

Within 30 seconds of the earthquake episode, the maximum interstory deformations,
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Within 30 seconds of the earthquake episode, the maximum interstory deformations,
Xpi(i=b,1,2,...,8), the maximum floor acceleration, a;, and the maximum active control
force, U, are summarized in the column (A) of Table 3.3. The time history of the
deformation of the first story unit, x;(t), is shown in Fig. 3.4(c).

Secondly, the hysteretic component vector V. is used for the feedback to determine
the control vector U(t) and hence Q,, # 0. Recall that the basic idea of installing an
actuator is to overcome the frictional force in the sliding system in order to minimize the
sticking phase of the motion during earthquakes. In other words, the active control force
is intended to keep the sliding phase of the motion as much as possible. It is observed
from Eq. (3.6) that the frictional force is proportional to vy, of the sliding system.
Hence, a feedback of v, will be sufficient to reduce the frictional force. Consequently,
all elements of the Q,; and Q,3 matrices are set to be zero. Further, since v, of the
sliding system 1is reflected only by the element Q,,(1,1), all elements of the Q,, matrix
are also set to be zero except Qy,(1,1) that is chosen to be -10.258, i.e. Qyy(1,1) = -
10.258.

Within 30 seconds of the earthquake episode, the maximum response quantities for
a/Ry=3.39x10” and At=0.03x102 sec. are summarized in the columns (B) of Table 3.3
for comparison. The time history of the deformation of the first story unit, x,(t), is
presented in Fig. 3.4(d). It is observed from Table 3.3 and Fig. 3.4 that (i) the
performance of the present optimal algorithm with V feedback is superior to that of the
optimal algorithm without considering V feedback, and (ii) the hybrid control system
consisting of a frictional-type sliding system and actuators is quite effective, although the

required maximum active control force is large.
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SECTION 4
CONCLUSIONS

Optimal control for nonlinear and inelastic structural systems has been formulated
incorporating the specific hysteretic model of the system. This is accomplished by
including the hysteretic components of the structural system in the equations of motion
which serve as constraints in the optimization process. The resulting control vector is
obtained as a function of the deformations, velocities and hysteretic components of the
structural system. The hysteretic components of the structural response can be estimated
easily from a simple observer using the measured structural response quantities,

In this report, the optimal control vector has been shown to satisfy not only the
necessary conditions but also the sufficient condition of optimality. Specific applications
of the optimal algorithm to two types of aseismic hybrid control systems have been
demonstrated. These include (i) a lead-core rubber bearing isolation system connected
to either an actuator or an active mass damper, and (ii) a frictional-type base sliding
isolation system connected to an actuator. Numerical results indicate that (i) the
performance of the present optimal algorithm is better than that of the algorithm without
considering the feedback of hysteretic components of the structural response, (ii) the
present optimal algorithm is simple for on-line operations and practical applications, (iii)
the two types of aseismic hybrid control systems considered are effective for practical
applications, and (iv) for active control of base-isolated buildings, the installation of

sensors on the building is not necessary.
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Bergman and P.D. Spanos, 5/1/88, (PB89-102875/A8).

"A New Solution Technique for Randomly Excited Hysteretic Structures,” by G.Q. Cai and Y K. Lin,
5/16/88, (PB89-102883/AS).

"A Study of Radiation Damping and Soil-Structure Interaction Effects in the Centrifuge,” by K.
Weissman, supervised by J.H. Prevost, 5/24/88, (PB89-144703/AS).

"Parameter Identification and Implementation of a Kinematic Plasticity Model for Frictional Soils,” by
J.H. Prevost and D.V. Griffiths, to be published.

"Two- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam," by D.V,
Griffiths and J.H. Prevost, 6/17/88, (PB89-144711/AS).

"Damage Assessment of Reinforced Concrete Structures in Eastern United States,” by A.M. Reinhorn,
M.J. Seidel, S.K. Kunnath and Y.1. Park, 6/15/88, (PB89-122220/AS).

"Dynamic Compliance of Vertically Loaded Swrip Foundations in Multilayered Viscoelastic Soils,” by
S. Ahmad and A.8.M. Israil, 6/17/88, (PB89-102891/A8).

"An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers,” by R.C.
Lin, Z. Liang, T.T. Scong and R.H. Zhang, 6/30/88, (PB89-122212/AS).

"Experimental Investigation of Primary - Secondary System Interaction,” by G.D. Manolis, G. Juhn and
A.M. Reinhom, 5/27/88, (PB89-122204/A8S).

"A Response Spectrum Approach For Analysis of Nonclassically Damped Structures," by I.N. Yang, S.
Sarkani and F.X. Long, 4/22/88, (PB89-102009/AS).

"Seismic Interaction of Structures and Soils: Stochastic Approach,” by A.S. Veletsos and A.M. Prasad,
7/21/88, (PB89-122196/A8).

"Identification of the Serviceability Limit State and Detection of Seismic Structural Damage," by E.
DiPasquale and A.S. Cakmak, 6/15/88, (PB89-122188/AS).

"Multi-Hazard Risk Analysis: Case of a Simple Offshore Structure,” by B.K. Bhartia and E.H.
Vanmarcke, 7/21/88, (PB89-145213/AS).

"Automated Seismic Design of Reinforced Concrete Buildings,” by Y.S. Chung, C. Meyer and M.
Shinozuka, 7/5/88, (PB89-122170/AS).

"Experimental Study of Active Control of MDOF Structures Under Seismic Excitations,” by L.L.
Chung, R.C. Lin, T.T. Soeng and A.M. Reinhom, 7/10/88, (PB89-122600/A8).

"Earthquake Simulation Tests of a Low-Rise Metal Structure,” by 1.8. Hwang, K.C. Chang, G.C. Lee
and R.L. Ketter, 8/1/88, (PB89-102917/AS).

"Systems Study of Urban Response and Reconstruction Due to Catastrophic Earthquakes,” by F. Kozin
and H.K. Zhou, 9/22/88, (PB90-162348/AS).
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NCEER-88-0040

NCEER-88-0041

NCEER-88-0042

NCEER-88-0043

NCEER-88-0044

NCEER-88-0045

NCEER-88-0046

"Seismic Fragility Analysis of Plane Frame Structures,” by HH-M. Hwang and Y.K. Low, 7/31/88,
(PB89-131445/AS}.

"Response Analysis of Stochastic Structures,” by A. Kardara, C. Bucher and M. Shinozuka, 9/22/88,
(PB89-174429/AS).

"Nonnormal Accelerations Due to Yielding in a Primary Structure,” by D.CK. Chen and L.D. Lutes,
9/19/88, (PB89-131437/AS).

"Design Approaches for Soil-Structure Interaction,” by A.S. Veletsos, AM. Prasad and Y. Tang,
12/30/88, (PB89-174437/AS).

"A Re-evaluation of Design Spectra for Seismic Damage Control,” by C.J. Turkstra and A.G. Tallin,
11/7/88, (PB89-145221/AS).

*The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Inelastic Tensile Loading,"
by V.E. Sagan, P. Gergely and R.N. White, 12/8/88, (PB89-163737/AS).

"Seismic Response of Pile Foundations," by $.M. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/88,
(PB89-145239/A5).

"Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC?2)," by A.M. Reinhorn,
S K. Kunnath and N, Panahshahi, 9/7/88, (PB89-207153/A8).

“Solution of the Dam-Reservoir Interaction Problem Using a Combinatien of FEM, BEM with
Particular Integrals, Modatl Analysis, and Substructuring,” by C-S. Tsai, G.C. Lec and R.L. Ketter,
12/31/88, (PB89-207146/AS).

“Optimal Placement of Actuators for Structural Control,” by F.Y. Cheng and C.P. Pantelides, 8/15/88,
(PB89-162846/A8).

"Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling,” by A.
Mokha, M.C. Constantinou and A.M. Reinhom, 12/5/88, (PB89-218457/AS).

"Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P, Weidlinger and
M. Ettouney, 10/15/88, (PB90-145681/A8).

"Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger
and M. Ettouney, 10/15/88, to be published.

"Small-Scale Modeling Techniques for Reinforced Concrete Structures Subjected to Seismic Loads,” by
W. Kim, A. El-Attar and R.N. White, 11/22/88, (PB89-189625/AS).

"Modeling Strong Ground Motion from Multiple Event Earthquakes,” by G.W. Ellis and A.S. Cakmak,
10/15/88, (PB89-174445/AS).

"Nonstationary Models of Seismic Ground Acceleration," by M. Grigoriu, S.E. Ruiz and E.
Rosenblueth, 7/15/88, (PBRI-189617/AS).

“SARCF User's Guide: Seismic Analysis of Reinforced Concrete Frames," by Y.S. Chung, C. Meyer
and M. Shinozuka, 11/9/88, (PB89-174452/AS).

"First Expert Panel Meeting on Disaster Research and Planning,” edited by J. Pantelic and J. Stoyle,
9/15/88, (PB89-174460/AS).

"Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel
Frames,” by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB89-208383/AS).
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NCEER-89-0017

"Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and
Operation,” by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R.N. White, 12/16/88,
(PB89-174478/A8).

"Effects of Protective Cushion and Soil Compliancy on the Response of Equipment Within a Seismi-
cally Excited Building,” by I.A. HoLung, 2/16/89, (PB89-207179/A8).

"Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures,” by
H.H-M. Hwang and J-W. Jaw, 2/17/89, (PB89-207187/AS).

"Hysteretic Columns Under Random Excitation,” by G-Q. Cai and Y.K. Lin, 1/9/89, (PB$9-196513/
AS).

"Experimental Study of ‘Elephant Foot Bulge’ Instability of Thin-Walled Metal Tanks," by Z-H. Jia and
R.L. Ketter, 2/22/89, (PB89-207195/AS).

"Experiment on Performance of Buried Pipelines Across San Andreas Fault,” by J. Isenberg, E.
Richardson and T.D. O’Rourke, 3/10/89, (PB89-218440/AS).

"A Knowledge-Based Approach io Structural Design of Earthquake-Resistant Buildings," by M.
Subramani, P. Gergely, C.H. Conley, }.F. Abel and A.H. Zaghw, 1/15/89, (PB83-218465/AS).

"Liquefaction Hazards and Their Effects on Buried Pipelines,” by T.D. O'Rourke and P.A. Lane,
2/1/89, (PB89-218481).

"Fundamentals of System Identification in Structural Dynamics," by H. Imai, C-B. Yun, O. Maruyama
and M. Shinozuka, 1/26/89, (PB89-207211/AS).

“Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico,”
by A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229/AS).

"NCEER Bibliography of Earthquake Education Materials,” by K.E.K. Ross, Second Revision, 9/1/89,
(PB90-125352/AS).

"Inelastic Three-Dimensional Response Analysis of Reinforced Concrete Building Siructures (IDARC-
3D), Part I - Modeling,” by S.K. Kunnath and A.M. Reinhorn, 4/17/89, (PB%0-114612/AS).

"Recommended Modifications to ATC-14," by C.D. Poland and J.O0. Malley, 4/12/89,
{(PB90-108648/A8).

"Repair and Strengthening of Beam-to-Column Connections Subjected to Barthquake Loading,” by M.
Corazao and A.J. Durrani, 2/28/89, (PB90-109885/AS).

"Program EXKAL?2 for Identification of Structural Dynamic Systems,” by O. Maruyama, C-B. Yun, M.,
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877/AS).

"Response of Frames With Bolted Semi-Rigid Connections, Part T - Experimental Study and Analytical
Predictions,” by P.J. DiCorso, A.M. Reinhom, J.R. Dickerson, I.B. Radziminski and W.L. Harper,
6/1/89, to be published.

"ARMA Monte Carlo Simulation in Probabilistic Structural Amnalysis,” by P.D. Spanos and M.P.
Mignolet, 7/10/89, (PB90-109893/AS).

"Preliminary Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake
Education in Our Schools,” Ediled by K.E.K. Ross, 6/23/89.

“Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in
Qur Schools,” Edited by K.E.K. Ross, 12/31/89, (PBR90-207895).
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"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory
Energy Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146/AS).

“Nonlinear Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S.
Nagarajaiah, A.M. Reinhom and M.C. Constantinou, 8/3/89, (PB90-161936/A8).

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints," by F.Y.
Cheng and C.P. Pantelides, 8/3/89, (PB90-120445/AS).

"Subsurface Conditions of Memphis and Shelby County,” by K.W. Ng, T-S5. Chang and H-HM.
Hwang, 7/26/89, (PB90-120437/AS).

"Seismic Wave Propagation Effects on Straight Jointed Buried Pipelines," by K. Elhmadi and M.J.
O’Rourke, 8/24/89, (PB90-162322/A8).

"Workshop on Serviceability Analysis of Water Delivery Systems,” edited by M. Grigoriu, 3/6/89,
(PB90-127424/A8).

“Shaking Table Study of a 1/5 Scale Steel Frame Composed of Tapered Members," by K.C, Chang, I.S.
Hwang and G.C. Lee, 9/18/89, (PB90-160169/AS).

"DYNAI1D: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical Documen-
tation," by Jean H. Prevost, 9/14/89, (PB90-161944/AS).

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protec-
tion," by A.M. Reinhorn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abe and M. Nakai, 9/15/89,
(PB90-173246/A8).

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary
Element Methods,” by P.K. Hadley, A. Askar and A.S. Cakmak, 6/15/89, (PB%0-145699/AS).

"Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by
H.H.M. Hwang, }-W. Jaw and A.L. Ch’ng, 8/31/89, (PB90-164633/AS).

"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes,” by H-H.M. Hwang,
C.H.S. Chen and G. Yu, 11/7/89, (PB90-162330/AS).

"Seismic Behavior and Response Sensitivity of Secondary Structural Systems,” by Y.Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658/A8).

"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems,” by Y. Ibrahim,
M. Grigoriu and T.T. Soong, 11/10/89, (PB90-161951/AS).

"Proceedings from the Second U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. O'Rourke and M. Hamada, 12/1/89,
(PB90-2090388/AS).

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures,” by J.M.
Bracci, AM. Reinhom, Y.B. Mander and S.K. Kunnath, 9/27/89.

"On the Relation Between Local and Global Damage Indices," by E. DiPasquale and A.S. Cakmak,
8/15/89, (PR90-173865).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Siits," by A.J. Walker and H.E. Stewart,
7/26/89, (PB90-183518/AS).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York," by M. Budhu, R. Giese
and L. Baumgrass, 1/17/89, (PB90-208455/AS).
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"A Determinstic Assessment of Effects of Ground Motion Incoherence,” by A.S. Veletsos and Y. Tang,
7/15/89, (PB20-164294/A8).

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by
R.V. Whitman, 12/1/89, (PB90-173923/AS).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority,” by C.J. Cos-
tantino, C.A. Miller and E. Heymsfield, 12/26/89, (PB90-207887/AS).

"Centrifugal Modeling of Dynamic Soil-Structure Interaction,” by K. Weissman, Supervised by JH.
Prevost, 5/10/89, (PB90-207879/A8).

"Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment,” by I-K. Ho
and AE. Akran, 11/1/89, (PB90-251943/AS).

"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco,"
by T.D. O’Rourke, H.E. Stewart, F.T. Blackburn and T.8. Dickerman, 1/90, (PB90-208596/AS).

"Nonnermal Secondary Response Due to Yielding in a Primary Structure,” by D.C.K. Chen and L.D.
Lutes, 2/28/90, (PB90-251976/AS).

"Barthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/16/90, (PB91-113415/A8).

"Catalog of Strong Motion Stations in Eastern North America,” by R.W. Busby, 4/3/90,
(PB90-251984)/AS,

"NCEER Strong-Motion Data Base: A User Manuel for the GeoBase Release (Version 1.0 for the
Sun3),” by P. Friberg and K. Jacob, 3/31/90 (PB90-258062/AS).

"Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid
Earthquake,” by H.H.M. Hwang and C-H.S. Chen, 4/16/90(PB90-258054).

"Site-Specific Response Spectra for Memphis Sheahan Pumping Station,” by H.HM. Hwang and C.S.
Lee, 5/15/90, (PB91-108811/AS).

"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems,” by T. Ariman, R. Dobry, M.
Grigoriu, F. Kozin, M. O’Rourke, T. O'Rourke and M. Shinozuka, 5/25/90, (PB91-108837/A8).

"A Program to Generate Site Dependent Time Histories: EQGEN," by G.W. Ellis, M. Srinivasan and
A.S. Cakmak, 1/30/90, (PB91-108829/A8).

"Active Isolation for Seismic Protection of Operating Rooms,” by ML.E. Talbott, Supervised by M.
Shinozuka, 6/8/9, (PB91-110205/A8S).

"Program LINEARID for Identification of Linear Structural Dynamic Systems,” by C-B. Yun and M.
Shinozuka, 6/25/50, (PB91-110312/AS).

"Two-Dimensionat Two-Phase Elasto-Plastic Seismic Response of Earth Dams,” by A.N. Yiagos,
Supervised by J.H. Prevost, 6/20/90, (PB21-110197/AS).

"Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response and
Stochastic Sensitivity,” by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reinhorn, 7/1/90,
(PB91-110320/A8).

“Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details,” by S.P.
Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795/A8S).

“Two Hybrid Control Systems for Building Structures Under Strong Earthquakes,” by J.N. Yang and A.
Danielians, 6/29/90, (PB91-125393/A8S).
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"Instantaneous Optimal Control with Acceleration and Velocity Feedback,” by IN. Yang and Z. Lj,
6/29/30, (PB91-125401/A8).

"Reconnaissance Report on the Northemn Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90,
(PB91-125377/AS).

“Evaluation of Liquefaction Potential in Memphis and Shelby County," by T.S. Chang, P.S. Tang, C.S.
Lee and H. Hwang, 8/10/90, (PB91-125427/AS).

"Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring
Isolation System,” by M.C. Constantinou, A.S. Mokha and AM. Reinhom, 10/4/90,
(PB91-125385/A8).

"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System
with a Spherical Surface,” by A.S. Mokha, M.C. Constantinou and A.M. Reinhom, 10/11/90,
(PB91-125419/AS).

"Dynamic Interaction Factors for Floating Pile Groups," by G. Gazetas, K. Fan, A. Kaynia and E.
Kausel, 9/10/90, (PB91-170381/AS).

"Evaluation of Seismic Damage Indices for Reinforced Concrete Structures,” by S. Rodriguez-Gomez
and A_S. Cakmak, 9/30/90, PR91-171322/AS).

“Study of Site Response at a Selected Memphis Site,” by H. Desai, 5. Ahmad, E.S. Gazetas and M.R.
Oh, 10/11/90, (PB91-196857/AS).

"A User's Guide to Strongmo: Version 1.0 of NCEER's Strong-Motion Data Access Tool for PCs and
Terminals,” by P.A. Friberg and C.A.T. Susch, 11/15090, (PB91-171272/AS).

"A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions,” by L-L.
Hong and A.H.-S. Ang, 10/30/90, (PB91-170399/AS).

"MUMOID User’s Guide - A Program for the Identification of Modal Parameters,” by S.
Rodriguez-Gamez and E. DiPasquale, 9/30/90, (PB91-171298/AS).

"SARCEF-II User’s Guide - Seismic Analysis of Reinforced Concrete Frames," by §. Rodr!, guez—Gc’mez,
Y.S. Chung and C. Meyer, 9/30/90, (PB91-171280/AS).

"Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation,” by N.
Makris and M.C. Constantinou, 12/20/90 (PB91-190561/AS8).

"Soil Effects on Earthquake Ground Motions in the Memphis Area,” by H. Hwang, C.§. Lee, KW, Ng
and T.S. Chang, 8/2/90, (PB91-190751/AS).

"Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline
Facilities and Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. O’Rourke
and M, Hamada, 2/191, (PB91-179259/AS).

"Physical Space Solutions of Non-Proportionally Damped Systems,” by M. Tong, Z. Liang and G.C.
Lee, 1/15/91, (PB91-179242/AS).

"Kinematic Seismic Response of Single Piles and Pile Groups," by K. Fan, G. Gazetas, A. Kaynia, E.
Kausel and $. Ahmad, 1/10/91, to be published.

"Theory of Complex Damping," by Z. Liang and G. Lee, to be published.

"3D-BASIS - Nonlinear Dynamic Analysis of Three Dimensional Base Isolated Structures: Part IL," by
S. Nagarajaiah, A.M. Reinhom and M.C. Constantinou, 2/28/91, (PB91-190553/AS).
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"A Muliidimensional Hysteretic Model for Plasticity Deforming Metals in Energy Absorbing Devices,"
by E.J. Graesser and F. A, Cozzarelli, 4/3/91.

"A Framework for Customizable Knowledge-Based Expert Systems with an Application to 2 KBES for
Evaluating the Seismic Resistance of Existing Buildings," by E.G. Ibarra-Anaya and S.J. Fenves,
4/9091, (PB91-210930/A5).

"Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum
Method," by G.G. Deierlein, S-H. Hsich, Y-J. Shen and J.F. Abel, 7/2/91.

"Earthquake Education Materials for Grades K-12," by K.E.K. Ross, 4/30/91, (PB91-212142/AS8).

"Phase Wave Velocities and Displacement Phase Differences in 2 Harmonically Oscillating Pile," by N.
Makris and G. Gazetas, 7/8/91, (PB92-108356/AS).

“Dynamic Characteristics of a Full-Sized Five-Story Steel Structure and a 2/5 Model," by K.C. Chang,
G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh," to be published.

"Seismic Response of a 2/5 Scale Steel Structure with Added Viscoelastic Dampers,” by K.C. Chang,
T.T. Scong, S-T. Oh and M.L. Lai, 5/17/91.

"Earthquake Response of Remining Walls; Full-Scale Testing and Computational Modeling,” by S.
Alampalli and A-W .M. Elgamal, 6/20/91, to be published.

"3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures,” by P.C.
Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhorn, 5/28/91.

"Evaluation of SEAQC Design Requirements for Sliding Isolated Structures,” by D. Theodossiou and
M.C. Constantinow, 6/10/91.

"Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building," by H.R.
Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91.
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