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PREFACE

The National Center for Earthquake Engincering Research (NCEER) is devoted 1o the expansion
and dissemination of knowledge about earthquakes, the improvement of carthquake-resistant
design, and the implementation of seismic hazard mitigation procedures to minimize loss of lives
and property. The emphasis is on structures and lifeiines that are found in zones of moderate to
high seismicity throughout the United States,

NCEER’s research is being carried out in an integrated and coordinated manner following a
structured program. The current research program comprises four main areas:

+ Existing and New Structures

» Secondary and Protective Systenms
Lifeline Systems

+ Disaster Research and Planning

*

This technical report pertains to Program 2, Secondary and Protective Systems, and more specifi-
cally, to protective systems. Protective Systems arc devices or sys.:ms which, when incorpo-
rated into a structure, help to improve the structure’s ability to withstind seismic or other en-
vironmental loads. These systems can be passive, such as base isolaters or viscoelastic dampers;
or active, such as active tendons or active mass dampers; or combined passive-active systems.

Passive protective systems constitute one of the important areas of research. Current research
activities, as shown schematically in the figure below, include the following:

1. Compilation and evaluation of availuble data.
2. Development of comprehensive analytical models.
3. Development of performance criteria and standardized testing procedures.
4. Development of simplified, code-type methods for analysis and design.

Base Isolation Systems
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Presented in this report are the results of an analytical and experimental study of a seismic
isolation system for bridges. The system, consisting of Teflon disc bearings and displacement
control devices, provides restoring force for re-centering, added erergy dissipation capaciry and
rigidity for service Ioads. The 1ests were conducted on a shaking table using a quarter-scale 51
kip model. The effects of pier flexibilite and strength, deck flexibilite and distribution of isolation
elements on the dvnamic response of sliding iselared bridges were studied analytically,
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ABSTRACT

A seismic isolation system for bridges has been tested on a
shake table. The system consisted of Teflon disc bridge bearings
and displacement control devices. These devices provided restoring
force for re-centering the bridge during earthquake excitation,
additional energy dissipation capacity and rigidity for service
loading. The tests were carried out with a S1-kip (227 kN) model
which was subjected to strong recorded earthquake motions with a
wide range of frequency content and to simulated motions compatible
with CALTRANS 0.6g design spectra. 1In all tests the isclated deck
responded with peak acceleration 1less than the peak table
acceleration and peak displacement 1less than the peak table
displacement. Analytical techniques are presented that provide
interpretation of the experimental results.

Furthermore, results are presented on a parametric study of
the response of bridges supported by this isolation system. The
isolated bridges are subjected to simulated earthgquake motions
which are compatible with CALTRANS design spectra. The effects of
isolation system properties, deck flexibility, pier flexibility,
pier strength, distribution of isolation elements and earthquake
type are investigated. Results are presented in a form that is
useful in the design of sliding isolation systems for two-span
continuous deck bridges. Comparisons with the response of
conventionally built bridges demonstrate the significant benefits

of seismic isolation.



Finally, simplified, code-type analysis metheds for sliding

isclated bridges are presented and evaluated.
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SECTION 1
INTRCDUCTION

Seismic isclation systems are typified by use of either
elastomeric or sliding bearings. Elastomeric systems reduce the
fundamental frequency of the 1isolated structure sc that the
isclation effect is produced by primarily deflecting rather than
absorbing the earthquake enerqgy (Kelly 199%1). This results in-
phase response with 1low accelerations and large bearing
displacements. Reduction of bearing displacements is accomplished
by use of either damping-enhanced rubber cor by use of additional
energy dissipating elements like mild steel dampers, lead plugs in
the bearings (Buckle 1990) or frictional elements (Chalhcub 1989}.
The intreduction of significant hysteretic type of damping may
create cut-of-phase response and larger response acceleration in
flexible, tall structures (Chalhoub 1989). However, the story
shear forces and drifts are maintained at values comparable to
those of purely elastomeric isclation systems because of the out-
of-phase response (Constantinou 199la; Mokha 199%1b).

In bridges, which have squatty and stiff superstructures, this
behavior does not occur and a significant isclation effect may be
produced with both low acceleraticn and displacement response.
This has been demonstrated by Kelly et al. (1986b) in shake table
tests of an isclated bridge deck supported by elastomeric bearings
with and without lead plugs. Hence, elastomeric bearings/mild

steel devices and lead-rubber bearings found application in bridge



isolation in New Zealand, United States and elsewhere (Buckle
1950) .

8liding isoclation systemgs produce the isolation effect by
limiting the transfer of force across the isolation interface and
by absorbing earthquake energy. They are characterized by
insensitivity to the frequency content of earthquake excitation,
stability, and low bearing displacements. The insensitivity to the
frequency content of input motion results from the tendency of
sliding isolaticn systems to reduce and spread the earthquake
energy over a wide range of frequencies. Sliding isolation systems
have found several applications in buildings and bridges. Most
notably, Italian engineers designed several bridges on sliding
isolation bearings with restoring force devices. Section 2 of this
report presents a review of applications of sliding isclation
systems.

Sliding seismic isolation systems for bridges consist of
multi-directional sliding bridge bearings and restoring force
devices. These devices are useful in re-centering the bridge
during earthquakes, in absorbing further earthquake energy and in
providing rigidity to service loads. Recently, Constantinou et al.
(1991b) described a seismic isolation system for bridges which
utilizes bridge Teflon bearings and displacement control devices.
The system relies on the combination of strong frictional force and
weak restoring force to produce significant isoclation effect with
low bearing displacements. The advantages that are realized from

this result are:



(a) Significant reduction of the seismic forces that are
transferred to the bridge substructure,

{(b) Ability of the designer to direct the seismic loads to those
elements of the substructure that are most capable of resisting
them,

(c) Ability to accommodate multi-directional non-seismic movement
as that of horizontally curved bridges, and

(d) Use of shert modular expansion joints.

The implications of the reduction of the seismic forces that
are transferred to the substructure become evident in an
examination of the recently developed AASHTO Seismic Isolation
Design Requirements (AASHTO 1991; Mayes 1991). In non-essential
bridges, the same Response Modification Factors (R-Factors) as in
non-isolated bridges may be used. This option provides the same
level of seismic safety in the two types of construction. 1In this
case the advantage of the seismic isoclation design is to realize
substantial cost savings, provided that seismic forces govern the
bridge design (Mayes 1951},

In essential bridges, in which significant damage and
disruption of traffic are unacceptable, an R-Factor cof 1.5 is
recommended for the seismic isolation design. In this case the
substructure of the isolated bridge is designed for the same order
of magnitude of seismic forces as a conventional bridge. However,
the isolation design ensures essentially elastic behavior in the
substructure with potential for substantial life-cycle cost savings

for the bridge.



The distribution of the seismic forces to the elements of the
substructure is accomplished by proper positioning of the restoring
force devices and by use of low friction sliding bearings at the
elements with low strength and ductility capacity. This ability is
particularly useful in the retrofit of bridges with inadequate
strength and ductility capacity.

The sliding isolation system described by Constantinou et al.
{1991b) is the subject of the experimental and analytical study
reported herein. The experimental study consisted of shake table
testing of a guarter~scale, 51 kip (227.4kN) bridge deck supported
by this isolation system. The model was subjected toc a large
number of real and artificial earthgquake motions. The tests
demonstrated good isolation effectiveness with both the deck peak
acceleration and displacement being less than the table peak
acceleration and displacement, respectively. Aralytical techniques
are presented which reproduce the recorded response with good
accuracy.

The experiments were conducted with a rigid bridge deck model
with the isclation system supported by rigid supports. The
possible significant erffects of pier flexibility, pier strength,
deck flexibility and distribution of isolation elements could not
be studied in the experimental program. A study of these effects
was attempted by resorting to analytical methods. These methods
utilized the experimentally calibrated model of the isoclation

system.



The analytical study primarily concentrated on the dynamic
response of a two-span continucus deck bridge with a pier at its
center. The bridge was excited in its longitudinal and transverse
directions by motions compatible with the california Department of
Transportation ({CALTRANS) bridge design spectra (Gates 1979).
Results on bearing displacements, acceleraticns above and below the
isolation interface and pier displacement ductility demand were
obtained. Comparison of these results to corresponding results of
conventional non-isolated bridges demonstrated the significant
benefits of isolation. These benefits are significant reduction or
elimination of ductility demand in the pier and reduction of the
deck displacement With respect to the ground.

While isolation systems for bridges found wide application
with more than 200 bridges alveady on sliding systems (see Section
2}, large scale testing of bridge sliding isolation systems has not
been conducted. The tests reported herein represent the first such
attempt. Earlier large scele shake table testing of isolated
bridge structures has been restricted to elastomeric systems. The
earliest of these tests were conducted with a 96 kip (427 kN) rigid
deck model at U.C. Berkeley (Kelly 1986b). Very recently, shake
table tests of a 88 kip (392.4 kN} rigid deck model on elastcmeric
bearings were conducted at the Public Works Research Institute

(PWRI) in Japan.



SBECTION 2

APPLICATIONS OF BLIDING SBEISMIC ISOLATION BYSTEMS

Historical reviews of seismic isolation clearly indicate that
sliding systems represent a conceptually simple method of seismic
isolation (Kelly 1986a; Buckle 19%0). Purely sliding systems
impose a limit to the transfer of force across the sliding
interface and, thus, they provide an isclation mechanism which is
completely insensitive to the characteristics of the earthquake
excitation. However, purely sliding systems lack resteoring force
capability (are not self-centering) and large permanent
displacements following an earthquake are possible (Constantinou
1991a}). Modern sliding isolation systems combine sliding bearings
of quantifiable and controlled frictional properties and restoring
force devices. Applications of sliding isolation systems are
numerous.

Some important applications of sliding isclation systems are
presented in the sequel in chronological order of construction:
1. Twelve Buildings in Savastepol, U.B.B.R.

Built since 1972 these 5-story to 9-story large panel
buildings have a total area of 75000m?. They are supported by
ellipsoidal bearings which utilize the weight of the structure to
provide restoring force. Three of these buildings were constructed
prior to the March 4, 1977 Sevastopol earthquake. All three

performed well during the earthquake (Eisenberg 1590).



2. Bridges for shinkansen, Japan

Since the late 1970's over 100 prestressed concrete railway
bridges for the Shinkansen (bullet train) were built on sliding
isolation systems. The bridges consist of long continuous deck on
top of several piers which are strong in their transverse
direction. Isclation in the transverse direction could not provide
any benefits so that only the longitudinal direction was isolated.
The isolation system consists of sliding bearings and shear keys
embedded in viscous fluid. This device, called the KP-stopper,
restricts displacements within certain limits {Buckle 1990).
3. Koeberg Nuclear Power Plant, 8. Africa

Built in the late 1970's, this structure represents the
world's largest isolated structure. Two thousand sliding bearings
on top of 600 pedestals support the 100m by 150m raft of two 900
MWe nuclear power units. The weight of the isolated structure is
364000 metric tons. The sliding bearings which consists of an
elastomeric and a sliding leaded bronze-stainless steel part were
developed by Electricite de France (EDF). This isolation system
lacks self-centering capability (Gueraud 1985).
4. Bridges in Italy

Italian engineers employed seismic isolation for the first
time in 1974. Following the devastating earthquakes of 1976 at
Fruili and 1981 at Irpinia the application of the concept in
bridges accelerated. Today about 150 bridges with total length
exceeding 150 Km are isolated by systems which utilize sliding

bearings and energy dissipating-restoring force devices in the form
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of either liquid spring-dampers or elastoplastic devices made of
steel (Medeot 1991). A large number of these bridges are isclated
only in their longitudinal direction because the piers have
adequate transverse force capacity so that isolation in the
transverse direction is not necessary.

One of the most recent applications of sliding isolation
systems in Italy is in the Mortaiolo double viaduct on the Livorno-
Civitavecchia highway. It is 9.6 Km long and is divided into
continuous sections of 10 spans each with each span having 30 to
50m length. Each section is supported by several multi-directional
sliding bearings with hysteretic steel energy dissipators
integrated in most of the bearings. Construction of the viaduct
was completed in 1990 (Marioni 1991).

5. Buildings in Frunze, Middle Asia, U.B8.8.R.
Eighteen S5-story to B-story brick-masonry and large panel

buildings of total floor area of 90000m? were constructed in the

late 1980's. All are supported by sliding stainless steel-Teflon
bearings with restoring force devices (Eisenberg 1990).
6. Buildings in Japan

Three buildings in Japan are isolated by the so-called TASS
system which was developed by TAISEI Corporation (Kawamura 1988).
The isclation system consists of TFE-elastomeric sliding bearings
and rubber springs for providing the restoring force. The first
building was constructed in 1988 and it is a 4-story office
building in Yokchama. 1In 1989 and 1590 two more buildings were

constructed in Kamo-qun and Yokkaichi-shi.
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7. Applications of Friction FPendulum (FPS) Bearings, U.S.A.

A water tank of Dow Chemicals and an apartment building in San
Francisco are isolated by FPS bearings (Zayas 1987: Mokha 1991b).
In these bearings the sliding surface is spherically shaped so that
restoring force is produced during rising of the structure along
the spherical surface. Construction of the apartment building was
completed in early 1991.

The 1large number of isolated bridges by sliding systems
demonstrates the popularity of sliding seismic isolation for
bridges for a number of years. The reason for this popularity may
be found in the fact that bridges are typically constructed on
sl ding bearings for accommodating thermal movements and creep and
shrinkage of concrete. Seismic isolation is easily achieved by
replacing the fixed and guided bearings used in conventional bridge
construction with multidirectional sliding bearings and with the
addition of restoring force devices. If the restoring force
devices are capable of providing rigidity under service loads, the
function of the isolated bridge under loading other than seismic
remains essentially the same as that of the conventional non-

isolated bridge (Constantinou 1991b).



BECTION 3

DISPLACEMENT CONTROL DEVICE FOR ISOLATED BRIDGES

Restoring force devices for sliding isolated bridges are
useful in re-centering the bridge during earthgquakes, in absorbing
further earthquake energy and in providing rigidity to service
loads. One implemented form of such devices relies on the reliable
yielding properties of mild steel to produce these functions
(Medeot 1991, Marioni 1991).

The restoring force device used in the work described in this
report carries the name displacement control device (or DCD) and
its design and function has been described by Constantinou et al.
{1991b). 1Its behavior is bilinear hysteretic and it is produced by
purely mechanical means so that its fatique life is unlimited. A
brief description of this device is presented herein.

Figure 3-la shows a possible configuration of a single span
conventionally built bridge. Uni-directional disc sliding bearings
are used on one side to allow for thermal expansion and fixed
bearings are used on the other side. Seismic and service
horizontal loads are transferred to the abutments by the shear
restriction mechanism of the bearings. In providing a seismic
isolation system to this bridge deck, multidirectional sliding
bearings may be used together with displacement control devices as
illustrated in Figure 3-1b. The displacement contrcl devices act
only in their longitudinal direction and are connected to the deck

and abutments by universal joints. They exhibit a behavior which
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is bilinear hysteretic with high initial and unloading stiffnesses

and characteristic strength F_. An idealized force-displacement

relation of the displacement control device is shown in Figure 3-2.
The isoclated bridge behaves in a manner identical to the
conventional bridge for forces less than the combined
characteristic strength of the displacement control devices.

Another configuration of an isolated two-span continuous deck
bridge is shown in Figure 3-3. The displacement control devices in
this bridge are intentionally placed at the abutments so that the
torce transmitted to the presumably weak pier is minimized. This,
together with proper selection of the frictional properties of
sliding bearings, enables a designer to direct the seismic loads to
the strongest elements of the bridge substructure.

Each displacement control device consists of the spring and
frictional assemblies which are connected in series as shown in
Figure 3-4. On loading of the device no motion occurs as long as
the force is less than the characteristic strength of the device

which is equal to the fricticnal force, F_., that may be mcbilized
in the frictional assembly. When the force exceeds the limit F_,

sliding at the frictional assembly occurs and the spring assembly
is compressed. on unloading the frictional force reverses
direction and the spring is decompressed resulting in the force-
displacement loop shown in Figure 3-2. The slope of the curve, K,
is equal +to the spring constant of the spring assembly.

Accordingly, the device provides rigidity for forces up to the



limit of its characteristic strenqth and flexibility and energy
dissipation capacity for strong forces which exceed this limit.
3.1 Frictional Assembly

The frictional assembly is shown in Figure 3-5, It consists
of a stainless steel shaft machined flat and with a slotted hole.
Two bronze plates are compressed against the stainless steel part
by a high strength bolt which runs through the assembly. The
bronze plates are recessed in backing plates which are supported by
two steel plates (parts 4F7 in Figure 3-4!. A load cell is used to
measure the normal load (bolt tension or preload) on the sliding
interface and belleville washers are used to control the bolt
tension.

The bronze plates are impregnated with graphite along lines at
45* angle with the 1longitudinal axis. The graphite provides
continuous lubrication of the rubbing parts which results in
extremely low wear rate, stable frictional properties and silent
operation.
3.2 Bpring Assembly

Figure 3-6 shows the spring assembly. A helical steel spring
is bounded on top by a spring hook. Guide bars (parts 2M1 and 2P3)
are used to support the sides and bottom of the spring. When the
bottom plate (part 2Pl) moves downwards, load is transferred to the
hook by the central bolt (part 4B4) and the spring is compressed
between the hook and plates 2P3 which are supported by the guide
bars. On return the spring is decompressed until the hook reaches

the top plate (part 2P2). At that time the central bolt
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disconnects from the hook, it moves in the open space provided by
the hook and the bottom plate (part 2P1) compresses the spring. It
should be noted that the guide bars and the spring hook are placed
at right angle so that there is no interference.

The spring is always in compression. There are two important
advantages when the spring is subjected to only compression., First
the stiffness of the assembly is the same when the bottom plate
moves up or down as shown in Fiqure 3-6. It should be noted that
helical steel springs exhibit different stiffness when they are in
tension than when ¢they are in compression. The compression
stiffness of the spring is practically constant to displacements of
about 0.3 times the free length of the spring. Beyond this limit
the stiffness increases rapidly to a very large value when solid
height is reached. This represents the second advantage.
Stiffness increases at large displacements so that fail-safe action
is provided. It should be noted that helical springs which are
subjected to tension become scfter at large displacements, a
behavior which is undesirable.

Alternatively, a rubber spring may be used in place of the
helical steel spring. The rubber spring has the advantages of low
weight, large displacement capacity in comparison to size and wide
range of stiffnesses for constant spring volume. Furthermore, a
rubber spring exhibits gradual increase of its stiffness during

compression due to bulging.



3.3 Operation of Displacemsnt Control Device

The spring and frictional assemblies are connected in series
as shown in Figure 23-4. The backing plates housing the graphite
impregnated bronze plates of the frictional assembly are press
fitted between two steel plates (parts 4P7) and compressed by the
tension bolt of the frictional assembly. The steel plates (parts
4P7) transfer the mobilized frictional force to the skin of the
device (part 4M3) which in turn transfers the force to the end
plate ({part 2P2). When the outer shaft moves to the right the
spring is compressed by the spring hook and the spring force is
transferred to the end plate (part 2P2) by the guide bars (part
2M1) ., When the outer shaft moves to the left the spring is
compressed by plate 2Pl and the spring force is transferred to
plate 2P2 by the spring hock as illustrated in Figure 3-6.

The force-displacement relation produced by the displacement
control device is illustrated in Figure 3-2. Upon loading the
force increases without any movement in the device until the
characteristic strength of the frictional assemkly is reached. The
characteristic strength is the mobilized frictional force at the
graphite-bronze-stainless-steel interface when sliding occurs. It

is given by:

F. = 24N (3-1)

in which g is the coefficient of friction at the sliding interface

of bronze and steel and N is the tensicon force in the bolt of the
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frictional assembly. When slidinhg occurs the spring is compressed

and the force increases beyond the value F_ by the product of the

spring stiffness, K, and displacement. Upon unloading the
frictional feorce changes direction and the total force drops by an

amount equal to 2F_, resulting in the lcop shown in Figure 3-2.
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SECTION B-B

Spring Assembly in Displacement Control Device.
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SECTION 4

EXPERIMENTAL MODEL AND ISOLATION BYSTEM

The model of the bridge deck consisted of two twenty foot (6.1
m) iong, 24 in. by 10 in. (610 mm by 305 mm) reinforced concrete
girders spaced 9.4 feet (2.85 m) apart and transversely connected
by a 6 in. (152.4 mm) reinforced concrete slab and cross beans.
Steel weights were added to bring the total deck weight to 51 kip
(227.4 kKN). Figure 4-1 shows an elevation of the model.

The isolation system consisted for four Teflon disc sliding
bearings which supported the weight of the model with a clear span
of 8.4 feet (2.56 m) with overhangs of 5.8 feet (1.77 m) on each
end. One displacement control device(DCD) was placed in the
longitudinal (testing) direction of the model. The device was
connected to the deck at its center and to the shake table at a
point aleng its center line.

The construction of the Teflon disc bearing is shown in Figure
4-2,. It consisted of an Adiprene (urethane rubber) disc which
allowed for limited rotation about a horizontal axis, a shear
restriction mechanism to prevent shear deformation of the disc and
the Teflon-stainless steel sliding interface. This interface
consisted of a Teflon sheet recessed in its backing plate and a
highly polished stainless steel plate. The plate was commercially
polished to degree 8 which corresponds to a measured surface
roughness of 1.6 p-in (0.04 g m) in the arithmetic average scale

(Mokha 1988). Two bearing materials were used:
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(a) Unfilled Teflon at pressure of 2000 psi (13.8 MPa} which gave
a coefficient of friction at high velocity of sliding equal to
0.12, and

(b) A Teflon-based plastic (called Techmet-B} at pressure of ,000
psi (48.3 MPa) which gave a coefficient of friction at high
velocity of sliding equal to 0.07.

The displacement control device was a replica of the prototype
device described by Constantinou et al. (1991b) and in Section 3
herein. It consisted of frictional and spring assembklies connected
in series as shown in Figure 4-3. The frictional assembly was
identical to the prototype one (Constantinou 1991b). Two small
size helical steel springs comprised the spring assembly. The
springs operated only in compression with a combined stiffness of
3.85 Kip/in (675.9 N/mm). Their free length of 4.5 in. (114.3 mm)
allowed for a displacement of 1.12 in. (28.5 mm) at initiation of
stiffening and a displacement of 1.26 in. (32 mm) at solid height.
After solid height in the springs was reached the device was
designed to initiate yielding at about 30% of the deck weight,
dissipate further energy and prevent the deck from further motion.
In case of failure of the displacement control device, an ultimate
displacement restraint could be provided by the connecting bolts of
the top bearing plate which allowed for a maximum of 2.8 in. (71.1
mm) displacement in each direction. This represented the fail-safe
mechanism of the isolation system.

Figure 4-4 shows the force-displacement characteristics of the

displacement control device. 1In the first test, five cycles of
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sinuscoidal motion of 1 in. (25.4 mw) amplitude and 0.5 Hz fregquency
were imposed. The load in the frictional assembly was set at 10.4

kips (46.4 kN) and the resulting characteristic strength, F., was

3.7 kips (16.5 kN). The device exhibited the desired bilinear
hysteretic behavior with very high initial stiffness and stiffness
after sliding, K, equal to 3.85 kip/in (675.9 N/mm). The second
test was a slow force-controclled test in which the displacement
amplitude reached the spring solid height limit of 1.26 in. (32
mm). The davice exhibited the desired stiffening characteristics
up to a force of about 17 kips (75.8 kN) where yielding occurred,
The characteristic strength of the device could be adjusted at any
desired level., 1In the shake table tests it was varied between
about 2.5 and 5 kips (11.2 to 22.3 kN).

The frictional characteristics of the sliding bearings were
determined by the test procedure described in Mokha et al. (1991b).
The model deck was rigidly connected to a nearby reaction wall
while the shake table below was driven at harmonic motion of
specified amplitude and frequency. The motion of the table was the
motion experienced by the sliding bearings and the frictional force
mobilized at their sliding interface was measured by the supporting
load cells (Fig. 4-1). Measurements of the frictional force in a
range of velocities of sliding resulted in the coefficient of
sliding friction which could be approximated by the following

equation (Constantinou 1990):



B = Fray = (Lpax = Lpin) €XD (-@3 01) (4-1)
in which U is the velocity of sliding: f,, and f,,, are the maximum

and minimum coefficients of friction, respectively:; and a is a
constant which controls the variation of friction with velocity.

The parameters of the model of eq. 4-1 were £, =0.12, £, =0.06, a

= 0.6 sec/in. (23.62 sec/m) for the interface cof unfilled Teflon-
stainless steel at 2000 psi {13.8 MPa) pressure and

Lax=0.07, £,,=0.035, a = 1.5 sec/in. (59%.1 sec/m) for the Techmet-

B material at 7000 psi (48.3 MPa) pressure,
The peak value of the total frictional force at the isolation

system (from sliding bearings and DCD) is
Fe=EoayW+F, (4-2)
where F_ is the characteristic strength of the displacement control

device and W is the deck weight (51 kip or 227.4 kN). 1In the shake
table tests the peak value of the total frictional force was
between about 6.3 and 9.4 kips (28 and 42 kN). In all tests,
except one in which the displacement restraint mechanism of the
isolation system was activated, the bearing displacement did not
exceed 1 in. (25.4 mm) so that the peak restoring force in the
displacement control device did not exceed 3.8 kips (17 KkN).
Accordingly, all tes:ted configurations had a peak frictional force
that was stronger than the peak restoring force. Earlier
experimental work with building models (Constantinou 1991a)

demonstrated that this isclation coendition is appropriate for
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strong earthquake excitations with wide range of frequency
characteristics.

The configuration of the isoclation system could produce a
lateral force at the design displacement (1.12 in. or 28.5 mm)} at
least 0.04 W greater than the lateral force at 50 percent of the
design displacement. This satisfies the requirements (0.025 W)
inposed by the recently developed guide specifications for seismic

isclation design of bridges (AASHTO 1991).
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S8ECTION 5

TEST PROGRAM

The isolated model bridge deck was tested with seven actual
earthquake motions and six simulated motions which were compatible
with the California Department of Transportation {CALTRANS) bridge
design spectra (Gates 1979). The characteristics, in prototype
scale, of these earthguake motions are listed in Table 5-1I. Of
these records, the Hachinohe, Mexico City and the artificial
Caltrans Alluvium motions are rich in long period components.

The artificial motions were created by the procedure described
by Gasparini and Vanmarke {1976). The generated time histories of
acceleration were 20 secs long for the Caltrans Rock spectrum
compatible motions and 25 secs long for the Caltrans Alluvium
spectrum compatible motions. The characteristics of these motions
which are listed in Table 5-1 were determined by using the analog
integrator of the shake table, specifying as input the acceleration
signal and obtaining the velocity and displacement command signals.
The peak motion parameters of the artificial motions indicate
strong excitations with large ground displacements,

All earthgquake motions were time compressed by a factor 2 to
satisfy the similitude requirements of the quarter scale model.
Furthermore, each earthquake signal was ran at a modified level of
peak table acceleration (either increased or decreased) so that it

resulted in either a severe earthquake excitation or an excitation



with peak displacement within the shake table limitations (5 in. or
127 mm).

In addition to the earthquake motion test program, one test
with sinusoidal table motion was conducted. The sinusoidal wave
had a frequency of 1 Hz. The test was conducted in order to
observe the characteristics ¢of the isolation system over a large

number of cycles (about 100) of motion.
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S8ECTION 6

TEET REBULTS

Table 6-1 lists the input signals of the shake table test
program, the isclation conditions, the peak table motion
parameters, and the response of the model bridge in terms of peak
deck acceleration, peak bearing displacement and permanent bearing
displacement at the end of free vibration response. The table
acceleration and displacement were directly measured, whereas the
table velocity was obtained by differentiation of the recorded
displacement history. Time histories of the recorded response are
presented in Appendix A.

The isolation conditions identified in Table 6-T are T2 and TB
which correspond, respectively, to sliding bearings with unfilled
Teflon at 2000 psi (13.8 MPa) pressure and material Techmet-B at
7000 psi (48.3 MPa) pressure. The maximum value of the sliding

coefficient of friction, £, (eq.4-1), was 0.12 for condition T2

and 0.07 for condition TB. The characteristic strength of the
displacement control device was measured by the load cell shown in
Figure 4-1 and is included in Table 6~I. The tests were conducted
in the order they appear in Table 6-I.

The earthquake excitation is presented with a percentage
figure that applies to the peak ground acceleration of the actual
record. For example, the case El Centrc 200% corresponds to an

increase in acceleration of the actual E1 Centro record (Table 5-1)



by a factor of approximately 2. The velocity and displacement were
also increased by the same factor.

During the entire testing program the shake table was driven
in its acceleration controlled mode without any off-line
compensation for improving the simulation fidelity. Nevertheless,
the table reproduced well the input signal except in certain peak
values. A comparisnn of the recorded peak response of the shake
table (Table 6-I) to the earthquake peak parameters (Table 5-I)
provides evidence for this. For example, the Pacoima S74W record
has peak parameters: acceleration 1.08g, velocity 22.73 in./sec
(577.4 mm/sec) and displacement 4.26 in. (108.2 mm). The table
response when extrapolated to prototype scale was: acceleration
1.07g, velocity 19.42 in./sec {493.3 mm/sec) and displacement 4.64
in. (117.9 mm}. In general, the table peak velocity was less than
that of the actual earthquake motions,

Details of the recorded earthquake (table) motion are
presented in Figures 6-1 to 6-13. Each figure shows time histor.es
of recorded (in the scale of experiment) table acceleration,
displacement and velocity. The velocity history was not directly
measured but rather obtained by differentiation of the displacement
record. Furthermore, each figure shows the 5%-damped acceleration
spectrum of each motion in prototype scale. In the case of
simulated motions, the spectrum is compared to the target spectrum
(Gates 1979). It may be observed that the spectrum of the

simulated motions is in good agreement with the target spectrum.



6.1 Effectiveness of Isolation System

The effectiveness of isolation system, as determined from a
compariscon of the isolated deck response to the motion of the shake
table, is apparent in the experimental results of Table 6-I. In
all tests the peak deck acceleration and bearing displacement are
less than the peak table acceleration and displacement. Excluding
the single test in which the displacement restraint mechanism of
the displacement control device was activated (Pacoima Dam S16E
75%), the isolated deck responded with a peak acceleration of about
or less than 0.22 g regardless of the intensity and content in
fregquency of the earthgquake motion. This good behavior is achieved
with bearing displacements being less than 1 in. (25.4mm) or 4 in.
(101.6 mm) in prototype scale. Such small displacements are of
particular importance in bridges because they require short
expansion joints. Short joints are less costly, produce less noise
and vibration during automobile crossing and are easier to maintain
than long expansion joints.

To illustrate the action of the isclation system with
increasing earthquake intensity Figure 6-14 shows the peak table
displacement and peak model response versus the peak table
acceleration for the Taft and Pacoima S74W inputs. The results
shown are for the T2 system. Evidently, the isolation
effectiveness increases with increasing earthquake intensity.

The demonstrated good behavior of the isolation system in
strong earthquake excitation was a result of its design to deliver

a combination of strong frictional force and weak restoring force.
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This was apparent in the tests with the lower bearing friction TB
system in which the characteristic strength of the displacement
control device was increased so that the total friction force in

the two systems was of the same order.

6.2 Behavior of Displacement Control Device

In the test with Pacoima Dam S16E 75% input the deck
displacement reached the spring solid height limit of 1.26 in. (32
mm) and the displacement restraint mechanism of the displacement
control device was activated. Yielding of the device occurred at
a force of about 40% of the deck's weight. The recorded deck
displacement (bearing) history and loops of force in DCD and base
shear versus displacement are shown in Figure 6-15. The base shear
loop shows that the energy dissipated during yielding of the
displacement control device amounts to about 15% of the energy
dissipated by friction during the main cycle of motion. This was
not sufficient to provide any significant reduction of the
acceleration response. Lower acceleration response could be easily
accomr® ished by simply increasing the characteristic strength of
the displacement control device as it was done in the tests with

the Mexico City motion.

6.3 Behavior at Resonance
In the series of tests with Mexico City motion the isclated
deck was driven at resoconance. The fundamental period of the

isolated deck, in the absence of friction, is determined from the
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spring stiffness in the displacement control device and the deck
weight to be 1.16 secs (or 2.33 secs in prototype scale). This
value coincides with the predominant period in the Mexico City
motion. Despite this the isolated deck responded with small
displacement amplitude without amplifying the table acceleration.
Of particular interest are the tests with Mexico City 120% motion
in the T2 system. A minor increase in the characteristic strength
of the displacement control from 2.60 to 2.91 kips (11.6 to 13 kN),
which amcunts to only 0.6% of the deck's weight, resulted in
reduction of displacements to about half with a simultaneous
decrease in acceleration response. These experimental results
agree very well with analytical predictions of the behavior of
harmonically excited sliding isolation systems at resonance (Den
Hartog 1931; Makris 1989 and 1991).

Makris (1989) has shown that harmonically excited sliding
systems with velocity dependent friction {eg. 4-1) build up
infinite displacement amplitude 1if driven at resonance for
sufficiently long time and providad that the ratio of peak

frictional force, F,, to amplitude of driving force, P,, is less

than n/4:

F, T
e=L<¢X 6-1)
P, 4 ¢

For values of e larger than but close to =/4, the displacement
amplitude is small but very sensitive to changes of either the

value of ¢ or the variation of the friction force with velocity of
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sliding. This would explain the significant changes in the
displacement response of the system in the Mexico City tests when
small changes were made in either the input acceleration or the
characteristic strength of the displacement control device.
Furthermore, the significant differences in the displacement
response between systems T2 and TB in the Mexico City 120% tests
are explained by the differences in the variation of friction with

velocity. For example, system T2 with F. = 2.6 kips (11.6kN) and
system TB with F. = 5.03 kips (22.4 kN) (see table 6-I} have both
peak frictional force F, (eq. 4-2) equal to 0.17W but respond with

significantly different displacements. The TB system, with its
friction derived primarily from the displacement control device,
behaves almost as a Coulomb frictional system for which
displacements at resonance are lower than the velocity dependent

frictional T2 system (Makris 1$89).

6.4 B8ystem Adeguacy
(a) The adequacy of the isolation system was assessed by (a)

repeating tests and observing changes in the response of
isclated deck, and
{b) performing a test with large displacement amplitude response
and with over 100 cycles of motion.
The tests on the T2 system with Caltrans Rock No. 1 100% and
Taft 300% motions were repeated having first conducted a number of

other tests (see Table 6-I). The response of the system in the



repeated tests was almost identical to that in the first tests with
some very small differences explained by the small difference in
the characteristic strength of the displacement control device (see
Table é6=I). Of interest is to note that the second test with Taft
300% motion was conducted after yielding of the displacement
control device. Apparently, this had no effect on the performance
of the device.

A single test was conducted on the T2 system with sinusoidal
input motion of 1 Hz frequency. The system, driven essentially at
resonance, responded with large displacement amplitude which varied
between 0.2 and 0.86 in. (5.1 and 21.8 mm) over 106 cycles. In 72
of these cycles the bearing displacement exceeded 0.5 in. (12.7 mm)
or 45% of the system's displacement limit. The input acceleration
varied only between 0.15 and 0.19g in this test and the large
variability in the displacement response has been a result of
sensitivity at resonance (Makris 1989). The deck (bearing)
displacement history and loops of base shear versus displacement
are shown in Figure 6-16. The lecops demonstrate stable

characteristics over a very large number of cycles.

6.5 Permanent Displacement

Permanent displacements were recorded at the conclusion of
each test and reported in Table é-1. The model bridge deck was not
re-centered prior to conducting each test. This did not have any
adverse effect on the performance of the isoclation system and

permanent displacements were not cumulative,
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The recorded permanent displacements were one order of
ragnitude less than the upper limit calculated on the assumption of

zero inertia forces. This limit is

FrpinW+F
u, = —me—e (6-2)

where K is the stiffness of the displacement control device. For
the tested T2 system this limit is about 1.5 in. (38 mnm).
Apparently the inertial forces play an impertant role in re-

centering the system.
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BECTION 7

ANALYTICAL PREDICTION OF RESPONBE

Reliable analytical techniques for predicting the dynamic
response of sliding isclation systems are available (Mokha 1991b;
Constantinou 199la; Mostaghel 1991). This is demonstrated by
comparing analytical and experimental responses in several cases.

The isolated model deck is idezlized as a rigid block of mass

m. Its equation of motion is

mi+Fy+Fy = -ml, {(7-1)
where U is the deck (bearing) displacement with respect to the

table; (J, is the table acceleration; F, is the frictional force
from the sliding bearings; and F; is the force from the

displacement control device. Force £, is given by

Fy = [n(0) cosd -sgn (N sind]wz, (7-2)
where sgn stands for the signum function: u ({0 is the coefficient
of sliding friction of the sliding bearings, which depends on the
velocity of sliding (eq. 4-1); and 8 is the accidental inclination
of the sliding interfaces, Constantinou et al. (1991a)
demonstrated that the accidental bearing inclination may be
important in predicting bearing displacements of sliding systems
with strong frictional force and weak restoring force.

The force in the displacement control device consists of its

characteristic strengtn, F_. and the spring restoring force, F,
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Fy= F.Z,+ F, {7-3)

The spring restoring force is elastic nonlinear with the

characteristics illustrated in Figure 7-1. Displacement D, is the

limit beyond which stiffening of the spring cf the displacenment

control device occurs. Displacement D, is the spring solid height
limit. Stiffness KX, represent the stiffness of the device when

solid height is reached. An analytical description of force F, is

K iUl < D
K, - K (tui-D,)?
KU, D <UD
F, ={ (D,-D,) 2 sgn{U) + 1 2 (7-4)
- D
(X KZ)2(D1+ 2 egn(th + 1,0, ui>n,

One should note that equations 7-3 and 7-4 do not account for the
finite strength of the displacement control device.

Variables Z, and Z, are used to account for the conditions of
separation and reattachment (Constantinou 1990) and are governed by
the following equation:

Yl-Zj + 'y:‘L'I:Zi!ZIJ + ﬂUZf--—l'J =0, i=b,d (7=5]
where B +y =1 and ¥; is a displacement quantity.

The parameters in equations 7-1 to 7-5 were as follows for the

T2 system: f . = 0.12, f,, = 0.06, a = 0.6 sec/in. (23.62 sec/m),d

= 0.15°, W = 81 kips (227.4 kN), K = 3.85 Kkip/in (675.9 N/mm),
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K,=200 kip/in(35.1 kKN/mm), Y, = Y;=0.005 in., (0.127 mm), D, = 1.12
in. (28.4 mm) and D,=1.26 in. (32mm).

Comparisons of analytical and experimental results are
presented in Figures 7-2 to 7-8 for the T2 system subjected to
Pacoima Dam S74 W 100%, Hachinoche 150%, Caltrans Rock No. 1 100%,
Taft 400%, El Centro 200%, Miyagiken-Oki 500% and Mexico City 120%

(case of F_=2.6 kips) motions. The figures demonstrate that the

analytical maodel predicts well the experimental response.
Finally, Figure 7-9 compares the experimental and analytical
responses in the test with Pacoima Dan S16E 75% motion in which the
displacement restraint mechanism of the displacement control device
was activated. The analytical model, which does not account for
yielding of the displacement control device, overpredicts the force
at the isoclation interface. Despite the rather limited additional
energy dissipated by yielding (see discussion in Section 6.2), the
results of Figure 7-9 demonstrate that yielding had the effect of
reducing the base shear from 0.77W to 0.63W. Thus, yielding
reduced the impact effect and prevented the deck from bouncing as
seen in the analytical time history of deck displacement. Clearly,

vielding was beneficial.
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S8ECTION 8

BRIDGE MODEL IN ANALYTICAL STUDY

The experimental study demonstrated the effectiveness of the
isclation system in reducing the acceleration response of the
isoclated deck while allowing bearing displacements less than those
of the ground. Analytical methods were shown to be capable of
accurately predicting the experimental response.

The experiments were conducted with a rigid deck model with
the isolation system supported by rigid supports. The possible
significant effects of pier flexibility, pier strength, deck
flexibility and distribution of isolation elements could not be
studied in the experimental program. Rather, these effects are
studied by analytical techniques which utilize the experimentally
calibrated model of the isclation system.

The analytical study primarily concentrates on the dynamic
response of two-span continuous deck isolated bridges as the one
shown in Figure 3-3.

8.1 Model in Transverse Direction

A model for dynamic analysis of the two-span bridge in its
transverse direction is shown in Figure 8-1, The abutments are
idealized as rigid elements. The pier is idealized as a single-

degree-of-freedom bilinear hysteretic oscillator with mass m,. The
deck is modelled as a three-mass system with one half cf its mass, m,

concen rated above the pier and the rest of its mass equally
concentrated above the abutments. The three nasses are
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interconnected by spring and viscous elements that represent the
deck flexibility. The deck is connected to the abutments and pier
by sliding and bilinear hysteretic elements which represent the
behavior of the sliding bearings and displacement control devices,
respectively.

Owing to symmetry in the model, the dynamic response is
described by three degrees of freedon. These are the deck

displacement at the abutments, U,,, the deck displacement at the

pier, U,., and the pier top displacement, U,

v+ All displacements

are with respect to the ground. The frictional force in the
sliding bearings at the abutment is described by
Fba = “J(Ud.?) Waza ‘8-1)
whereas the force in the sliding bearings at the pier is described
by
Fop = B Uy - U)W, 2, (8-2)
In (8-1) and (8-2), M, and p, are the coefficients of fricticn of

the sliding bearings at the abutment and pier locations,
respectively. They depend on the velocity at the sliding interface

(Constantinou, 1990) in accordance to

B = fo, = (Fpay~ Lmip) €XD (-2t UV) (8-3)
Parameters [_,,, [, and & depend on the materials which form the

sliding interface and on the bearing pressure (Mockha 1990 and
1991a}. Values of these parameters for the materials and

conditions assumed in this study are presented in Table B-I.
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Furthermore, W, and W, are the weights carried by the sliding
bearings at the abutment and pier locations, respectively.

The force in each displacement contrcl device is given by

(Constantinou et al. 1991b)

F = F .2, + KUy, (8-4)
in which F_. is the characteristic strength of the device and X is
the constant of the spring assembly of the device. Eguation (8-4)
describes bilinear hysteric behavior with very large initial and
unloading stiffness and with yield force egual to F_. It
reproduces well the behavior of displacement control devices
(Constantinou et al. 1991b).

Variables Z,, i = a, p and 4 in (8-1), (8-2) and (8-4) are
used to account for the conditions of separation and reattachment

(Constantinou 1990) and are governed by the following equation:

Y;Z, +yiUiz020 « BUZi-0, =0 (8-5)

1

where P +y =1, ¥Y; = 0.005 in. (0.127 mm). Furthermore, when i1 =

a, U = Uy, wheni=p, U, =Uy-U, and when i =d,U; = U,,.

The pier behavior is described by a smooth bilinear, non-

degrading hysteretic element of initial stiffness X, , yield forceF,
and post-yielding stiffness of «, K|, . Furthermore, a viscous
element of constant C, is used in parallel to the hysteretic

element. The viscous element is needed to account for energy

dissipation in the pier when essentially elastic behavior occurs.
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The dynamic behavior of the model in the transverse direction
is described by the following parameters:

a) Period of free vibration when deck and pier are assumed rigid

m 1/2

- e 8-

T, = 2n(ﬁ) (8-6)
b) Characteristic strength of displacement contrcl devices as
portion of the deck weight

IF

e = —_c (8_7)
m,g

In (8-6) and (8-7) the sum I extends over all devices in the
transverse direction.
c) Pier period of free vibration for elastic behavior and in its

cantilever position

m 1/2
T, = Zﬂ(——g) (8-8)
Kin
d) Damping ratio of pier
c
§, = ——F— (8-9)

2 (K m ) e

e) strength of pier as portion of the weight it carries

F
e = -2 (8~10)
P wp



£) Period of free vibration of deck when assumed pinned at the

abutments

o3
]

1/2
Zﬂ(lﬂi) (8-11)
2K,

g) Damping ratioc of deck

Ca

b3 R S
(2K M2

(8-12)

h) Ratio of pier mass to deck mass

mn
v = FH‘E (3-13)
d

i) Ratio of weight carried by abutment to weight of deck

Wa (8~-14)
myg

The model accounts in a simplified way for the flexibility of
deck and pier and for the limited strength and possible inelastic
behavior of the pier. However, it does not account for the
possible higher mode effects of the pier and the rotational inertia

effects of the deck.



8.2 Model in Longitudinal Direction

The model is further simplified for analysis in the
longitudinal direction by assuming the deck to be rigid in its own
plane. This model is consistent with the bridge models used by
Ghobarah and Al1i(1988) and Turkington et al. (1989a and 1989b) in
seismic analyses of bridges on lead-rubber bearings.

8.3 Earthquake Excitation

The earthquake excitation consists of simulated motions
compatible with the California Department of Transportation bridge
design spectra of 0.6g acceleration for rock and deep alluvium of
80 to 150 ft (24 to 46 m) depth (Gates 1979). Three artificial
records were simulated for each design spectrum with a duration of
20 secs in the case of rock spectrum and 30 secs in the case of
deep alluvium spectrum, Each record was applied in the
longitudinal and transverse directions of the model. The maximum
response of the parameters of interest calculated by the three
time-history analyses in each direction is reported.

The three motions which are compatible to 0.6g rock spectrum
are identical to those used in the experimental program (see
Figures 6-5 to 6-7 and apply scales to displacement and velocity).

As an example of deep alluvium motion, Figure 8-2 shows the ground
motion histories of one of the three artificial records used in the
study. The figure shows also the acceleration spectrum of the
record which closely matches the corresponding CALTRANS spectrum

(Gates 1979).



8.4 Parametric study

The range of values of the parameters in (8-8), (8-11) and (8-
13) has been studied for some bridges. Lam and Martin (1986)
reported detailed information on some conventiocnally built bridges

in the United States. In four of these bridges the pier pericod, T}

(8-8), was calculated by modeling the reinforced concrete piers as
cantilever beams with moment of inertia equal to 0.3 times their

gross moment of inertia. This gave values for period T, in the

range 0.1 to 0.5 secs. In two 2=span bridges the deck was modeled
as simply supported beam with moment of inertia equal to 0.5 times

the gross moment of inertia. Deck transverse period, T, (8-11),

was found to be about 0.4 secs, whereas the mass ratio, v {(8-13),
was found to be about 1/20. Table 8-11I 1lists the calculated
properties of these bridges, Furthermore, typical values of

parameters T,, (8-6) and ¢, (8-7) for sliding isclation systems
are: T, = 1.5 to 3 secs and € = 0 to about 0.1. For example, the
tests were conducted with parameters T, = 2.33 secs (in prototype

scale) and € = 0.04 to 0.1.
Accorcdingly, the values of parameters in the study were

selected to be: T, = 0.2 and 0.4 secs, T, = 0.3 and 0.6 secCs,V

_1_ and_l-

6 T T, = 1.5 to 3 secs and € = 0.05. Furthermore, the

ratio of post-yielding stiffness to initial stiffness, « of the

pl

pier was set at 0.05 and damping ratios §,, (8-9) and §,, (8-12},
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were hoth set at 0.05. The ratio of pier strength to load carried

by the pier, e, (8-10), was assigned values of 0.1, 0.2 and 0.3.

The case e, = 0.1 corresponds to a pier of inadeguate strength.

The results obtained in this case are of interest in the seismic
retrofit of bridges with piers of inadequate strength and ductility
capacity.

The frictional properties of sliding bearings are selected in
such a way as to maximize energy dissipation and to minimize the
transfer of force to the pier which is assumed to be the weakest
element of the bridge substructure. The frictional properties of
sliding bearings used in the study are presented in Table 8~I. The
case of sliding interface consisting of unfilled Teflon and
pelished stainless steel represents a design with commonly used
bridge sliding bearings. The sliding interface of woven Teflon and
stainless steel (referred to as the lower friction case) is used at
the pler location only in the case of pier with inadequate strength

(e, =0.1),



Table 8-1 - Frictional Properties of Sliding Bearings
(1in. = 25.4mm, 1000 psi = 6.9 MPa)

Steel of Ra = 1.6 pin

Sliding Interface Bearing Pressure (psi)| fmin | fmax |a (sec/in.}| Bearing Location
Unfilled Sheet 1000 0.0271 0.120 0.60 Abutment
Teflon-Polished
Stainless Steel

Tof Ra = 1.6 pin 3000 0.015( 0.070 0.80 Pier
Woven Teflon- Pier (case of
Polished Stainless 10000 0.012] 0.045 1.60 lower friction

8-9
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B8ECTION 9

RESULTS OF ANALYTICAL PARAMETRIC BTUDY

Results of the analytical parametric study are presented in
graphical form. These results are the deck (bearing) displacements
at the abutment and pier leccations, deck acceleration, pier top
acceleration, pier displacement ductility, and transverse deck
bending moment.

The pier displacement ductility is the pier top peak
displacement divided by its yield displacement Y

y = 4ﬂ2€p(1'20) gT-; (9_1’
v

The transverse deck bending moment is the maximum bending moment
about a vertical axis due to transverse motion of the deck. It was
computed from the distributed inertia forces and concentrated
bearing and displacement control device forces using standard

methods of statics (Clough and Penzien 1975). The bending is

normalized by the product of deck weight (#,=m,9) and length L

of one span.

The results for longitudinal excitation are presented in
Figures 9-1 to 9-10 and the results for transverse excitation are
presented in Figures 9-11 to 9=-34. All results are for the typical

<1 -2
case Of v= 30 and ¢ T {equal length spans).



9.1 Effectiveness of Isolation Bystem
The effectiveness of the isolation system 1is first

demonstrated by comparison of responses of isolated bridges withT,

= 2 secs (a typical case) to that of comparable non-isclated
bridges. The pier of the conventionally built bridges is assumed
to be connected to the deck above by a fixed bearing, that is a
bearing allowing for rotation but no displacement. The bearings at
the abutment location are guided (allow only longitudinal movement)
sliding bearings having the same frictional properties as those of
the isolated bridge. In this respect the isolation design consists
of replacing the fixed and guided bearings by multidirectional
bearings and with displacement contreol devices added.
The results of the comparison study are presented in Tables

9-I and 9-11 for the cases of rock and deep alluvium input applied
in the longitudinal direction. The results demonstrate a marked
reduction in the displacement ductility demand of the pier of the

isolated bridge. In the case of the severely under-designed pier (¢, = 0.1)

the ductility demand 1is excessive and clearly indicates the
possibility of collapse or severe damage. In contrast, the pier of
the isolated bridge experiences limited ductility demand and in the
case of lower friction at the pier it experiences nearly elastic

behavior. Furthermore, the isolated bridge with pier strength ofe;, = 0.2

remains elastic.
This very good performance is achieved with bearing

displacements being less than 4 in. (101.6 mm) in the case of rock



input and less than 9 in. (228.6 mm) in the case of deep alluvium
input. Even more interestingly, the displacements of the isolated
bridge are less than those of the non-isolated bridge by a factor
as high as 2.
9.2 EBffect of Pier Plexibility

Increases in the pier flexibility (period of cantilever pier

T,) result in increases in the deck displacement with respect to

the abutment (bearing displacement at abutment) which are more
pronounced in the rock type input. Differences in the deck
displacements with respect to abutment between 5 and 20% are noted.
Furthermore, the pier flexibility has an effect on the bearing
displacement at the pier location which is in general less
pronounced than that on the bearing displacement at the abutment
location.

Increases in the pier flexibility have also mixed effects on
the pier displacement ductility and pier top acceleration. In the
case of rock input both quantities are substantially reduced when
the pier flexibility increased. 1In the case of deep alluvium input
the differences are much smaller and for some combinations of
parameters even increases in these quantities are noted.

Furthermore, the pier flexibility has an insignificant effect
on the shear force across the isolation interface. This is
apparent in the figqures showing the deck acceleration for
longitudinal excitation (Figs. 9-3 and 9-8). In this case, the
deck is rigid and the deck acceleration is proportional to the

shear force across the isclation interface. This was expected as
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friction contributes a major portion of the isolation interface
shear force.
9.3 Effect of Deck Flexibility

Deck flexibility has a minor effect on bearing displacements,
pier displacement ductility and pier top acceleration. However, it
has a significant effect on the distribution of transverse
acceleration along the 1length of the bridge. Flexible decks
respond with out-of-phase accelerations in a fashion very similar
to that observed in shake table *tests of flexible buildings on
sliding isolation systems (Constantinou 1991a; Mokha 1991b). For
evidence of this behavior observe Figures 9-3, 9-13 and 9-19. 1In
the transverse direction the deck responds with higher peak
acceleration than it does in the 1longitudinal direction.
Furthermore, the peak deck acceleration, which occurs at the
abutment location, increases with increasing deck flexibility.

While accelerations were larger in the flexible deck, the
internal stresses (as expressed by the bending moment about a
vertical axis of the deck) are only marginally affected.
Comparison of Figures 9-16 to 9-22 reveals even a decrease in
bending moment as flexibility increases. This, of course, is
explained by the out-of-phase acceleration response. This behavior
is illustrated in Figure 9-35 which shows profiles of deck
acceleration (sclid line) and bearing displacement (dashed line) in
the case of one of the rock type motions. The system is

characterized by parameters 7T, = 0.2 secs, T, = 0.3 secs, T, = 2
secs, €, = 0.1, € = 0.05 and v = 1/20. The profiles are shown at
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times at which certain response quantities attain their maximum
values, Similarly, Figure 9-36 shows profiles of the response of
the same system for another of the rock type motions.
9.4 Effect of Pier NMass to Deck Mass Ratio

The results presented so far are for the case of pier mass to
deck mass ratio v = 1/20. The effect this ratio has on the bridge
response is investigated herein. Larger values of ratio v, up to
1/5, are possible in the case of massive piers (e.g. walls) or in
the case low weight decks. 1In both cases a large value of v is
associated with a large value of ratio of pier characteristic

strength to weight carried by the pier, e,. Accordingly, the

effect of the mass ratio is investigated only for the case of

e, 0.2. Results are presented in Figures 9-37 to 9-41 for the

bridge excited by rock type motion in its longitudinal direction.
The results demonstrate that the mass ratio has a minor effect on
the isolated bridge response.
9.5 Pier Behavior

In addition te the previously discussed substantial reduction
in the pier displacement ductility demand, two other aspects of the
pier behavior are worthy of discussion. First we note that an

upper limit to pier shear force over axial load ratio, v;/w;, may

be estimated by the following equation:



.YE- gy + F

W, g(1-20 max

(9-2)

in which &, is the top of pier peak acceleration. Equation (9-2)

was derived by assuming that the peak pier inertia force and the
peak frictional force occur at the same time. Calculations of the
pier shear force by (9-2) give values which are 10 to 20% larger
than those predicted by nonlinear dynamic analysis (e.g. Table

9-1II, case e,=0.1, T, = 0.2 secs). For a yielding pier such

difference in the shear force results in a multifold difference in
displacement ductility. This suggests that nonlinear dynamic
analysis should be used for accurate prediction of the pier
nonlinear behavior.

The criterion used in this report for evaluating the
performance of the isolation system is the degree of reduction of
the pier displacement ductility in comparison to the corresponding
non~isolated bridge. For example, the reduction of pier ductility

of the system with T, = 0.2 secs, €, = 0.1 and 0.3 for deep alluvium

input (Table 9-II) is about 11.5 for both cases. This indicates
excellent performance. Another criterion, which was used in
evaluating base isolated buildings (e.g. Griffith 1988), is based
on the acceleration above the isolator in comparisen to the
acceleration below the isolator. Using this criterion the
aforementioned two systems exhibit different performances with
reduction factors of 2.4 and 3.6, respectively, which are much less

than those achieved for the pier displacement ductility. The
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writers believe that the acceleration above the isolator is not
necessarily the best, and is not the only measure of performance.
In this respect, the direct use without analysis of acceleration
records of instrumented isolated bridges for evaluating performance
in an earthquake may give misleading results. This, of course,

would apply for all isolation systems, not only sliding systems.



Table 9-1 - Comparison of Response of Isolated and Non - Isolated Bridge for CALTRANS
0.6g - Rock Input (1 in. = 25.4mm)

ISOLATED BRIDGE WITH Tb = 2 SECS

Deck Picr Pier Pier

£ Tp Bearing Displacement Accel. Accel. Displ. Shear/
P (sec) {in: ® @ Ductility | Axial Load
At At
Abutment Pier

0.1 0.2 315 2.88 0.21 Q.82 2.15 0.109
0.1 0.4 384 249 0.23 0.43 1.51 0.105
02 0.2 323 318 0.21 1.26 0.88 0.171
0.2 0.4 375 212 0.23 0.83 0.66 0.130
0.3 0.2 3.23 3.15 0.21 1.20 0.52 0.155
0.3 0.4 3.80 3.74 0.23 0.84 0.44 0.132

ISOLATED BRIDGE WITH Tb = 2 SECS AND LOWER FRICTION AT PIER
0.1 0.2 3.56 353 0.21 1.01 1.53 0.105

0.1 0.4 3.97 3.68 0.22 0.87 1.11 0.099

NON-ISOLATED BRIDGE

0.1 0.2 4.87 0 0.15 0.13 9.94 0.174
0.1 0.4 ~ 9.95 0 0.12 0.12 5.07 0.142
0.2 0.2 4.64 0 0.20 0.20 473 0.257
0.2 04 7.54 0 0.13 0.18 192 0232
0.3 02 4.23 ] 0.25 0.25 2.87 0.350
0.3 04 7.02 0 0.22 0.22 1.19 0.307




Table 9-11 - Comparison of Response of Isolated and Non - Isolated Bridge for CALTRANS
0.6g - Deep Alluvium Input (1 in. = 25.4mm)

ISOLATED BRIDGE WITH Tb = 2 SECS

Deck Pier Picr Pier
£ Tp Bearing Displacement Accel. | Accel Displ. Shear/
r (sec) (in) @) () | Ductility | Axial Load
Al At
Abutment Pier

0.1 0.2 7.80 7.21 0.33 0.78 2.81 0.112
0.1 0.4 8.45 7.85 0.35 0.74 229 0.109
02 0.2 1.77 7.62 0.33 1.16 0.79 0.157
02 04 823 1.48 0.34 1.38 0.83 0.163
03 0.2 M 7.64 0.13 1.18 0.53 0.158
03 0.4 8.23 7.70 0.34 1.43 0.55 0.166

ISOLATED BRIDGE WITH Tb =2 SECS AND LOWER FRICTION AT PIER

0.1 0.2 397 8.36 (.35 0.95 1.72 0.103
0.1 0.4 9.15 8.69 0.35 1.06 1.81 0.107
NON-ISOLATED BRIDGE
0.1 0.2 16.20 0 0.22 0.22 33.04 0.293
0.1 0.4 22.17 0 0.15 0.15 11.31 0.178
0.2 0.2 9.83 0 0.23 0.23 10.03 0.322
0.2 04 2340 0 0.20 0.20 597 0.277
0.3 0.2 8.34 0 0.29 0.29 6.01 0.415
0.3 0.4 23.34 0 0.26 0.26 3.97 0.373
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Fig.9-1 -  Deck (Bearing) Displacement at Abutment of Isolated Bridge for

Caltrans 0.6g Rock Motion Applied in Longitudinal Direction.
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Fig.9-2 - Deck (Bearing) Displacement at Pier of Isolated Bridge for Caltrans

0.6¢ Rock Motion Applied in Longitudinal Direction.
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Fig.9-3 -  Deck Acceleration of Isolated Bridge for Caltrans 0.6g Rock Motion
Applied in Longitudinal Direction.
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Fig.9-5 -  PierDisplacement Ductility of Isolated Bridge for Caltrans 0.6g Rock

Motion Applicd in Longitudinal Direction.
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Fig. 9-6 - Deck (Bearing) Displacement at Abutment of Isolated Bridge for
Caltrans 0.6g Decp Alluvium Motion Applied in Longitudinal
Direction.
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Fig. 9-7 -  Deck (Bearing) Displacement at Pier of Isolated Bridge for Caltrans

0.6g Deep Alluvium Modon Applied in Longitudinal Direction.

9-1¢



LONGITUDINAL o, =0.05 ,¢ =0.05

p
1.00
CALTRANS 0.6q 1,=0.20 s
80'-150' ALLUVIUM
0.75 A
0.50 -~
.\

o 0.25 -+
o
= 0.00 , Y
e
o
L
-
&
g 1.00 1,=0.40 s
S 0.75
LJ
(]

0.50 -\\\

0.25 -~

0.00 T 1

1.5 2.0 2.5 3.0
Tb sec
Fig.9-8 - Deck Acceleration of Isolated Bridge for Calmans 0.6g Decp

Alluvium Motion Applied in Longitudinal Direction.
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Fig.9-9 -  Pier Acceleration of Isolated Bridge for Caltrans 0.6g Deep Alluvium
Motion Applied in Longitudinal Directon.
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Fig.9-10 -  PierDisplacement Ductility of Isolated Bridge for Caltrans 0.6g Deep

Alluvium Motion Applied in Longitudinal Direction.
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Fig. 9-11 - Deck (Bearing) Displacement at Abutment of Isolated Bridge with
Td = 0.3 secs for Caltrans 0.6g Rock Motion Applied in Transverse

Direction.
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Fig.9-12 -  Deck (Bearing) Displacement at Pier of Isolated Bridge with Td =0.3

secs for Caltrans 0.6 Rock Motion Applied in Transverse Direction.
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Deck Acceleration of Isolated Bridge with Td = 0.3 secs for Caltrans
0.6g Rock Motion Applied in Transverse Direction.
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0.6g Rock Motion Applied in Transverse Direction.
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Fig.9-15 - Pier Displacement Ductility of Isolated Bridge with Td = 0.3 secs for

Caltrans 0.6g Rock Motion Applied in Transverse Direction.
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Fig.9-16 - Deck Bending Moment of Isolated Bridge with Td = 0.3 secs for

Caltrans 0.6g Rock Motion Applied in Transverse Direction.
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Fig.9-17 - Deck (Bearing) Displacement at Abutment of Isolated Bridge with
Td = 0.6 secs for Caltrans 0.6g Rock Motion Applied in Transverse

Direction,
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Fig.9-18 - Deck (Bearing) Displacement at Pier of Isolated Bridge with Td =

0.6 secs for Caltrans 0.6g Rock Motion Applicd in Transverse

Direction.
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Fig.9-19 - Deck Acceleration of Isolated Bridge with Td = 0.6 secs for Caltrans

0.6g Rock Motion Applied in Transverse Direction.
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Fig. 9-20 -  Pier Acceleration of Isolated Bridge with Td = 0.6 secs for Calrans

0.6g Rock Motion Applicd in Transverse Direction.
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Fig.9-21 - Pier Displacement Ductility of Isolated Bridge with Td = 0.6 secs for

Caltrans 0.6g Rock Motion Applied in Transverse Direction.
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Fig.9-22 - Deck Bending Moment of Isolated Bridge with Td = 0.6 secs for
Caltrans 0.6g Rock Motion Applied in Transverse Direction.
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Fig.9-23 - Deck (Bearing) Displacement at Abutment of Isolated Bridge with

Transverse Direction.
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Td = 0.3 secs for Caltrans 0.6g Deep Alluvium Motion Applied in
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Fig.9-24 -  Deck (Bearing) Displacement at Picr of Isolated Bridge with Td=0.3

secs for Caltrans 0.6g Deep Alluvium Motion Applied in Transverse

Direction.
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Fig.9-25 - Deck Acceleration of Isolated Bridge with Td = 0.3 sccs for Caltrans

0.6g Deep Alluvium Motion Applied in Transverse Direction.
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Fig. 9-26 - Pier Acceleration of Isolated Bridge with Td = 0.3 secs for Caltrans

TRANSVERSE Td=0.3 sec ocp=0.05 , £€=0.05

0.6g Deep Alluvium Motion Applied in Transverse Direction.
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Fig.9-27 -  Pier Displacemeni Ductility of Isolated Bridge with Td =0.3 secs for

Caltrans 0.6g Deep Alluvium Motion Applied in Transverse
Direction.
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Fig. 9-28 -  Deck Bending Moment of Isolated Bridge with Td = 0.3 secs

for Caltrans 0.6g Deep Alluvium Motion Applied in Transverse
Direction.
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Fig.9-29 - Deck (Bearing) Displacement at Abutment of Isolated Bridge with

TRANSVERSE Td=0.6 sec ap=0.05 , £=0.05

Td = 0.6 secs for Caltrans 0.6g Deep Alluvium Motion Applied in

Transverse Direction.
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Fig. 9-30 -  Deck (Bearing) Displacement at Pier of Isolated Bridge with Td =0.6
secs for Caltrans 0.6g Decp Alluvium Motion Applied in Transverse
Direction.
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Fig.9-31 -  Deck Acceleration of Isolated Bridge with Td = 0.6 secs for Caltrans
8 0.6g Deep Alluvium Motion Applied in Transverse Direction.
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Fig. 9-32 - Pier Acceleration of Isolated Bridge with Td = 0.6 secs for Calorans

0.6g Deep Alluvium Motion Applied in Transverse Direction.
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Fig.9-33 - Pier Displacement Ductility of Isolated Bridge with Td = 0.6 secs for

TRANSVERSE Td=C.6 sec a,=0.05 , ¢=0.05

Caltrans 0.6g Decp Alluvium Motion Applied in Transverse
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SECTION 10
BIMPLIFIED ANALYSIS METHODS
Two simplified analysis methods for predicting the bearing
displacement and isclation system ({or base) shear force are
investigated. Both methods represent the seismic response of the
bridge by a single-degree~-of-freedom (SDOF) system with the deck
and piers assumed to be infinitely rigid. The elastic and
frictional properties of the sliding bearings and displacement
control devices are lumped into a single inelastic element in which

the force, F, is given by

F = ZKU + fm,mygZ (10-1)
where U is the bearing displacement, I K is the total stiffness of
spring assemblies of displacement control devices in the direction

of excitation, my is the deck weight and 2, (7-5) takes values
between + 1. The quantity ﬂ;xngg is the maximum value of the total

fricticnal force (bearings and DCD). For example, in the studied

equal length 2-span bridge

FraxMyg = 2 Fupx W, + L W, + €myg (10-2)
in which the superscripts a and p refer to the abutment and pier,
respectively.

Equation (10-1) describes bilinear hysteretic behavior with

very high initial stiffness, characteristic strength or yield force



equal to fﬁ;ngg and stiffness after yielding equal to LK. The

velocity dependence of frictional force is neglected.
10.1 8implified Deck Model

The response of the isolated deck is determined directly from
inelastic spectra which are prcduced by computing the maximum

response of SDOF systems of different periods 7T,, (8-6), and
friction coefficients f.,. Such spectra are presented in Figure

10-1 and 10-2. This procedure is similar to those used for
designing bridges with lead-rubber bearings in New Zealand
(Ministry of Works and Development 1983) and California (Dynamic
Isolation Systems 1984).

As may be seen in Figures 10-1 and 10-2, an advantage of this
procedure is that it gives the designer a direct feel of the
sensitivity of the parameters associated with the seismic response.

A comparison of the displacement predictions of the simplified
deck model to those of the more complicated analytical model is

presented in Figures 10-3 to 10-6. The displacement was obtained

from the spectra of Figure 10-2 for f., = 0.139 and using linear

interpolation. The simplified deck model predicts well the bearing
displacement, though in some cases it underpredicts the response by
as much as 20%. As discussed earlier this error is primarily a
result of neglecting the pier flexibility.

The simplified deck model predicts very well the base shear

force as demonstrated in Figures 10-7 and 10-8. This is true even
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when the deck displacement is underpredicted because the restoring
force contributes only a portion toc the base shear force. Wwhile
the isolation system seismic force can be accurately predicted and
distributed to the substructure, the shear force and displacement
ductility of the pier cannot be accurately predicted because the
pier acceleration is not known.
10.2 AABHTO Procedure

The American Association of State Highway and Transportation
Officials-AASHTO (1991) very recently published guide
specifications for seismic isclation design of highway bridges.
The specifications allow the use of a static analysis procedure
provided that a) the isclation system has self-centering capability
and b) the effective damping of the isolation system is less than
or equal to 30 percent of critical. The procedure describes the
displacement across the isolation bearings (in units of inches)

10AS5; T,

10-
5 (10-3)

in which AS; is the product of acceleration and site coefficients, T,

is the period of vibration and B is the damping coefficient related

to the effective viscous damping ratic, P. Both T, and § are

calculated based on the effective (or secant) stiffness of the
isolation system. For sliding systems with force at the isclation

system described by (10-1), T,and p take the form (see also

Theodossiou et al. 1991 for more details)
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P -1/2
T, « on| f2xd , 422 (10-4)
di 1§

T
p=2| _Tmx
= 4n3d, (10-5)

9Tz

£r, +

Displacement 4; is calculated in iterative process using (10-3)} -

(10-5). The procedure is almost identical to the International
Conference of Building ©Officials-UBC (1991) seismic isolation
regulations.

In applying the AASHTO procedure for a site characterized by

CALTRANS bridge design spectra, the value of AS;, must be

established. As explained in the AASHTQ (1991) Commentary,
equation (10-3) with B=1 represents an analytic expression for the
long period 5%-damped displacement spectra. Based on this

interpretation, values of AS, equal to 0.6 and 1.2 were determined

for the CALTRANS 0.6g rock and deep alluvium spectra, respectively.
The displacement predictions of the AASHTO procedure are
compared to the results of the more complicated analytical model in
Figures 10-2 to 10-6. We note first that the analyzed systens
satisfy the AASHTO requirements on the lateral restoring force.
Furthermore, the value of effective viscous damping ratio, B
(10-5), is more than 30 percent of critical in the rock input with

Tp,:2 secs, but is less than 30 percent in all other cases. In the

cases of B>0.30 the AASHTO procedure was extended by using the
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values of the damping coefficient B in the Internaticnal Conference
of Building Officials-UBC (1991). The results of Figures 10-3 and
10-5 demonstrate that the AASHTO procedure predicts well and with
acceptable degree of conservatism the isclation system displacement
in the rock input. However, the procedure substantially
overpredicts (by 50 to 100 percent) the displacement in the deep
alluvium input. This is attributed to the inability of equivalent
linear and viscous models to predict the behavior of sliding
systems in motions rich in long period components (Makris 1989 and
1991).

The base shear force predictions of the AASHTO procedure are
compared to the results of nonlinear dynamic analysis in Figures
10-7 and 10-8. As expected the AASHTO procedure predicts well the
base shear force in the case of rock type input but overpredicts
the force in the case of deep alluvium input. This, of course, is

a result of the displacement overprediction.
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S8ECTION 11

CONCLUSIONS

A sliding seismic isolation system for bridges consisting of

Teflon disc bearings and displacement control devices has been

tested on a shake table using a quarter scale, 51 kip (227.4 kN)

model. In all tested configurations the conditions at the

isclation interface could be described by a combination of strong

frictional force and weak restoring force. The results show that:

1.

The system performed well for strong earthquake motions having
significantly different intensities and content of frequency.
In all tests the deck acceleration was maintained at about 0.2
g while the bearing displacements did not exceed 4 in. (10l.6
mm) in prototype scale.

The bearing displacements were 1less than the table
displacements.

The displacement restraint mechanism of the displacement
control device was successfully activated in one test and
prevented the deck from undergoing excessive displacement.
The system has stable characteristics. This was demonstrated
in a test in which the bearings were subjected to over 100
cycles of motion with 72 of these cycles at a displacement
exceeding 0.5 in. (12.7 mm) or 45% of the systen's
displacement limit.

The behavior of the system at resonance may be qualitatively

assessed by established principles of mechanics.
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Permanent displacements in sliding isolation systems do not
have adverse effects and are not cumulative.

The response of the system could be reliably predicted by
analytical methods.

The effects of pier flexibility and strength, deck flexibility

and distribution of isolation elements on the dynamic response of

sliding isolated bridges could not be studied in the experimental

program. TRather, these effects were studied analytically. The

conclusions of the analytical study are:

1.

Sliding isclation systems may produce a significant isolation
effect as determined by the reduction in pier displacement
ductility demand in comparison to that of non-isolated
bridges.

Bearing displacements in sliding isolated bridges are in
general less than the bearing displacements of comparable non-
isolated bridges.

Deck flexibility has a minor effect on bearing displacements,
pier displacement ductility and pier top acceleration.

Deck flexibility causes cut-of-phase transverse response with
high accelerations in flexible decks. As in the case of
flexible buildings on sliding isolation systems, the high
accelerations do not lead to increased bending moments in the
deck because of the out-of-phase response.

Pier flexibility has an effect of bearing displacements.

Bearing displacements in systems with flexible piers as much
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as 20 percent larger than those in systems with stiff piers
were noted.

Pier flexibility has a minor effect on the shear force across
the isolation interface.

Sliding bearings of different frictional properties may be
used to effectively direct loads away of elements of the
substructure which are least capable of resisting them. In
this way, low strength piers may remain essentially elastic in
strong earthquake excitation.

A simplified analysis method which uses inelastic spectra
could predict well the isolation system displacement and shear
force. The method assumes rigid pier behavior, and therefore,
could underpredict displacements by as much as 20 percent.
The AASHTO static analysis procedure predicts well and with
acceptable conservatism the displacement and base shear force
of sliding isolation systems in rock type motions but
substantially overpredicts displacements and base shear forces

in motions rich in long period components.
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APPENDIX A

EXPERIMENTAL RESULTS

The recorded time histories of deck (bearing) displacement and
acceleration and loops of force in displacement control device and
base shear force versus deck displacement are presented in this
appendix. One set of four figures is presented for each test.
Fach test is identified by a test code. The first two letters or
numbers in the test code identify the sliding interface: T2 for
unfilled Teflon at 2000 psi (13.8 MPa), TB for material Techmet-B.
The next three letters or numbers identify the force in the
displacement control device: F25 for force approximately equal to
2.5 kips (11.15 kN). The remaining letter and numbers identify the
excitation. The test results are presented in the order they were

conducted (see also Table 6-I).
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NATIONAL CENTER FOR EARTHQUAKE ENGINEERING RESEARCH
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Puhlications Deparunent, National Center for Earthquake Engineering Research, State University of New York at Buffalo, Red
Jacker Quadrangle. Buffalo, New York 14261, Reports can alse be requested through NTIS. 5285 Pont Royal Road. Springfield,

Yizginia 22161, NTIS accession numbers are shown in parenthesis, if available.
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is available only through NTIS (see address given above).
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"Seismic Probabilistic Risk Assessment and Seismic Margins Studies for Nuclesr Power Plants,” by
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Y K. Lin, 7/31/87, (PB88-134317/AS).

"Modelling Earthquake Ground Motions in Seismically Active Regions Using Parametric Time Series
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"Practical Considerations for Stuctural Control: System Uncertamty, System Time Delay and Trunca-
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Reinhorn, 11/87, (PB88-187752/A8). This report is available only through NTIS (sce address given
abuvel,

"Design of 2 Modular Program for Transient Nonlinear Anaslysis of Large 3-D Building Strucwres,” by
S. Srivastav and L. Abel, [230/87, (PBEK-1R795(/AS)

“Second-Yeur Program tn Research, Educaton and Technology Transfer,” 3/8/88, (PB8E.219480/AS).
“Workshop on Seismic Computer Analysis and Design of Buildings With Interactive Graphics,” by W.
McGuire, J.F. Abel and C.H. Conley, 1/18/88, (PB8E.187760/AS).

“Optimal Control of Nonlinear Flexible Structures,” by I.N. Yang, F.X. Long and D. Wong, 1/22/88,
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Manolis and G. Juhn, 2/10/88, (PR88-213780/AS).

“lerative Seismic Analysis of Primary Secondary Systems,” by A. Singhal, L.D. Luies and P.D.
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1/10/88. (PB8R-213814/AS).

"Seismic Performance Assessment of Code-Designed Structures,” by HH-M. Hwang, J-W. Jaw ond
H-J1. Shau, 3/20/88, (PB88-219423/AS).

B-2



NCELER-BE-GO0R

NCEER-8R-0(019

NCEEK-8R-0010

NCEER-X 1011

NCEER-88-{X}12

NCEER -K%-(H113

NCEER-B&-0414

NCEER-8K-0015

NCEER -88-0016

NCEER-EX.(K)]7

NCEER-88-(M1R

NCEER-8R-0019

NCEER-8%-0020

NCEER-88-0021

NCEER-88.0022

NCEER-88.0023

NCEER .X8.(6124

NCEER-88.0025

NCEER.-88-0026

NCEER-88.0027

"Reliatnliy Analysis of Code-Designed Suuctures Under Natural Hazards,” by H.H-M. Hwuang, H.
Ushiba and M. Shinozuka, 2729/88. (PRX8-229471/A8)

"Seismic Fragiliny Analysis of Shear Wall Sructures,” by T-W Juw and HH-M. Hwang, 4/30/88,
(PBEG-TOIRGT/AS),

"Base Isolation of a Mult-Story Building Under a Harmonie Ground Motion - A Comparison of
Performances of Various Systems,” by F-G Fan, G. Ahmadi and 1.G. Tadjbakhsk, $5/18/88,
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