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A Study of Seismic Response of Rotating Machines Subjected to Multi-Component

Base Excitation
by

Tsu-Sheng Chang
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Engineering Science and Mechanics

(ABSTRACT)

Rotating machines such as motors, generators, turbines, etc. are crucial mechan-
ical (I:omponents of modern industrial and power generation facilities. For proper
functioning of these facilities during and after an earthquake, it is essential that the
rotating machines in these facilities also function as desired. The dynamics of a rotat-
ing machine is quite complex. It is further complicated by the preseﬁce of earthquake
induced base motions. The response spectrum methods, which are now commonly
used for calculating seismic design response of civil structures, can not be used as such
for calculating the design response of rotating machines. In this thesis, a response

spectrum method which can be applied to the rotating machines is develpoed.

To develop the response spectrum approach, a generalized modal superposition

method is utilized. The random vibration analysis 1s applied to incorporate the
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stqchastic characteristics of the seismic inputs. The applicability of the proposed re-
sponse spectrum approach is verified by a simulation study where fifty sets of accelera-
tion time histories are used. The proposed method considers the fact that earthquake
induced base motions have several components, including rotational inputs. To define
the correlation between the rotational and translational input components of the exci-
tation, the correlation matrix and a travelling seismic wave approaches are used. The
numerical results are obtained to evaluate the effect of rotational inppt components
on the response of a rotating machine. It is observed that the rotational comi)o-
nents are important only when they are very strong. In actual practice, such stfong
rotational inputs are not expected to excite rotors which are either directly placed
on ground or are placed in common buildings. In the proposed spectrum approach,
nevertheless, the effect of rotational input components can be easily incorporated if

the correlation between various excitation components is specified.
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Chapter 1

Introduction

Rotating machines such as pumps, generators, motors and turbines are crucial
components frequently encountered in modern industrial and péwler generation facil-
ities, and their operaticnal performance has long been of major concern to engineers.
Since quite often the failures of these equipments can have damaging consequences,
esﬁecially in the nuclear power plants, chemical plants and emergency installations
like hospitals, it is essential that they maintain proper functioning during and af-
ter the occurrence of an earthquake. The investigations of adéqua.te designs are,
therefore, necessary to ensure that these rotating machines in the structures located
in seismically active areas can withstana earthquake induced excitations and meet

critical demands.

The dynamic behavior of rotating systems has been a topic of interest to me-
chanical engineers for a long tilme, but it 1s only recently that increasing research
effort has been deyoted to their analysis for seismic loads. The dynamic characteris-
tics of rotating machines under seismic loadings are quite different from those of the

buildings, dams, pipings, etc. The seismic behavior of these latter systems has been
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investigated qﬁite exhaustively in the last two decades. For these systems, analytical
methods utilizing design response spectra as seismic inputs have been devéloped to
calculate the seismic design response under multi-component earthquakes. However,
similar methods are not available currently for calculating the seismic design response
of rotating machines. The primary objective of this work, therefore,‘ is to develop a
response spectrum approach for calculating the design response of rotating systems

subjected. to multi-component seismic excitations.

The rotating mlachines are quite complex dynamic systems to analyze. The equa-
tions of motion of these systems become especially more complicated when earthquake
motions are involfed. ‘The foremost complexities in the dynamic analysis of these
machines for earthquake motions arise from the presence of the (1) gyroscopic terms
caused by the rotation ofé rotor about its shaft, and (2) parametric terms caused by
the rotational excitations at the base, in both the damping and stiffness matrices of
the eqﬂatiéns of motion. The fofcling function terms in the equations of IIIIOtiOIl. are
also quite involved; they not only contain all six ground acceleration felated inp-uts,
but also contain terms which depend on the rotational velocity components of the
base motion. In additi.onito all the above terms, there are also non].inea:Lr terms in the
form of products of the base velocities, which intfoduce further mathematical diffi-
culties in the analysis. Fortunately, a previous study by Suarez et al. (1991) on the
seismic response of rotor-bearing systems has observed that for earthquake induced
ground motions the palrametric terms in the system matrices of the equations of mo-
tion as well as the nonlinear terms in the inputs can be all neglected without causing
any appreciable error in the calculated response of the system. This observation leads
to significant simplifications in the development of an analytical method to calculate

the seismic response of rotating machines.
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The equations of motion for a rotating system are quite difficult to solve in their
general form. In early studies, time history analyses which employed step-b}-r step nu-
merical techniques carried out in the time domain were used to compute the response.
These kiﬁd of approaches, however, are quite cumbersome, expensive, and time con-
suming. A more efficient and reliable method is required. Here a response spectrum
approach is presented to obtain the design response of rotating machines for seismic
design inputs defined in terms of base motion response spectra. To utilize the base
motion spectra in the analysis, it is necessary to characterize the dynamic properties
of the rotating machines in terms of modal frequencies and damping ratios. Since the
system matrices for rotating machines are not necessarily symmetrical, here a gen-
eralized modal approach is used to define the modal frequencies and damping ratios
to be used in the response spectrum approach, In the development of the response
spectrum approach, the stochastic characteristics of earthquake induced motions are

incorporated through random vibration analysis.

The method includes the multiple components of the seismic inputs applied at
the base of the machine. The input components considered in the study are: three.
translational accelerations, three rotational accelerations and three rotational veloci-
ties. They all can be correlated. Two methods of specifying the correlation between
the excitation input components are considered. One- method considers a travelling
seismic wave model for machines sitting on the ground. The .other utilizes a corre-
lated floor spectra method, which is suitable for machines sitting on raised pedestals
or for machines installed on building floors. In the travelling seismic wave model,
the rotational components are expressed in terms of the translational accelerations.
In the correlated floor spectra method, on the other hand, the correlation between

vatious excitation components is directly defined through the correlation matrix. A
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methodology is developed for each model to calculate the ma)dmurh‘response of the

system.

Numerical results are obtained for a rotating system to demonstraté the applica-
tions of the proposed approach. The response spectrum method is verified by a time
history simulation study. The contribution associated with.the real éigenproperties
of the system to the total response is also evaluéted, Responses of the rotor under
the rotational excitations of different intensities are presented to examine the effect
of rotational inputs on the system response. Conéluding remarks are provided in the

end of this thesis along with some suggested future studies.
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Chapter 2

Characteristics of Rotating Machines

2.1 Introduction

The subject of dynamics of rotating machines has been of continued research
interest to mechanical engineers and there is abundance of literature devoted to the
stability ahalysis of these machines. The research on the seismic response analysis
of the rotating machines, however, is rela.tiveljf more recent, and in the engineering
literature there are some publications dealing with this subject now. See, for example,

Asmis and Duff (1978), Iwatsubo et al. (1979), Srinivasan and Soni (1984), and

Hori {1988).

A review of the early studies on seismic analysis of rotating machines is given by
Srinivasan and Soni (1982). The first paper which considered the flexibility of the
rotating éhaft and the effect of the fluid film bearings on the response of rotating
systems was by Srinivasan and Soni (1984). The seismic excitation inputs at the base
included rotational as well as translational components. They déveloped the equations
of motion by applying Newton’s law combined with finite element discretization of the

shaft. The linear interpolation functions were used to describe the displacement field

'CHARACTERISTICS OF ROTATING MACHINES , 5



over a finite element. The equations of motion identified the presence of gyroscopic
and parametric terms in the system matrices. Some numerical results obtained by a
step-by-step numerical integration technique for the seismic input defined by a time

history were also presented.

A more comprehensive study on the seismic behavior of rotating machines has
been recently conducted by Suarez, Singh, and Rohanimanesh (1992). iThe flexibility
of the shaft was consvidered‘by utilizing a Timoshenko beam model with shear de-
formation and rotatory inertia terms. The displacement field over a finite element
was represented by cubic beam interpolation funcfions; the formulation was, however,
geﬁeral enough to enable the use of any other suitable interpolation functions. The
stiffness and damping contributions of the supporting bearings were also included
in the analysis.. The variétidnal approach with Hamilton’s principle and Lagrange’s
equations was adopted to develop the equations ‘of motion. In this research, we have
used the equations of motion derived by Suarez et al (1992). Since these equations
and the conclusions of their study are very relevant to this work, they .are briefly -

described and reviewed in this chapter.

2.2 Equations of Motion

The equations of motion of a shaft-disk-bearing system in a fimite element model

can be written in the following standard form:

M@} + O+ (K} = (S} (21)

where [M], [C], and [K] are the mass, damping, and stiffness matrices respectively,
{f(t)} is the excitation vector, and {u} is the vector of generalized nodal displace-

ments measured relative to the base. All these system matrices and vectors are
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assembled by the regular finite element analysis procedures over the rotor elements
along the shaft. In the equations of motion, the stiffness and damping contributions
from thé bearing are imposed only at those nodes where the bearings are located.
At each node; there are two translational (g¢;.4;) and two rotational degrees of free-
dom (g3,q4), as shown in Figure 2.1. Thus the total number of degrees of freedom of
the system is four times the number of nodes. The axial &isplacements (u,,f.) are
not considered. The input base motion has three translational (zs,ys,25) and three
rotational components {8,4,0,5.0.), and all six appear in the forcing function {f}.
Explicit expressions for [M], [C] and [K] matrices and the excitation vector {f} of a
typical rotor element, as developed by Suarez et al (1992), are given in Appendix A

of this thesis.

The mass matrix [M] of the rotor system is symmetric, similar to the mass matrices
usually encountered in common structural vibration problems. The damping and
stiffness matrices [C] and [K], on the other hand, are quite different from those of the
conventional structures. The damping matrix has.a skew symmetric part consisting of
the gyroscopic terms due to Coriolis effect from the shaft spinning and the parametric
terms which depend on the rotational ;relocity inputs at the base. The other part
of the damping matrix is symmetric and contains the damping coefficients coming
from the fluid film bearings. These terms aze similar to the viscous damping terms
normally encountered in mechanical vibrations. These bearing terms are functions of
physical parameters of the bearing as well as the spinning speed of the shaft. They
provide desirable stability to the motion of the system. The stiffness matrix [K]
1s as involved as the damping matrix. It has a constant symmetric part provided
by the stifiness of the shaft and another symmetric but parametric terms involving

the product of base rotational velocities. The asymmetric portion of the [K] matrix
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" Figure 2.1: A schematic rotor with nodal coordinates and system of axes
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has parametﬁc terms from rotational accelerations and bearing-introduced stiffness
coefficients. The spring forces in the z and y directions supplied by the bearings are
coupled with each other and depend on the physical properties of the bearing and
rotor spinning spéed. However, the stiffness entries due to bearings in the system
matrices are not symmetrical. This asymmetry causes instability in the shaft motion.

It also complicates the solution of the equations of motion.

The forcing function term {f} is interesting in its own way. It is quite different
from the simple force vector appearing in the right hand side of the equation of regular
structural and mechanical systems. Here, it is divided into four parts to get a closer
inspection. The first part represents the commonly encountered terms associated with
the translational accelerations. The second one depends on the rotational acceleration
inputs at the base. The £hird part involves the base rotational velocity components.
combined with the spinning speed of the rotor, and the remaining one is a function of
nonlinear input terms associated with both the translational and rotational velocity
excitations at the foundation. The last part particularly is problematic from the point
of view of using the response spectrum approacﬁ due to its nonlinearity. All these

terms are identified in Appendix A.

2.3 Response'Charactéristics |

The solution of the equations of motion given in equation (2.1) is quite involved
primarily because of the presence of the parametric terms in the damping and stiff-
ness matrices. Moreover, the complexities of the forcing function vector compound

the mathematical operations. To compute the rotor response from the equations of
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motion in their most general form, one will have to resort to a step-by-step numer-
ical method. This kind of approach 1s, obviouély, quite cumbersome for the design
purposes since one has to carry out the procedures for several groups of possible de-
sign level grdund motions. To obtain the design response, an analytical technique
which will not require expensive and time consuming time history analysis would be
preferred; nevertheless, this does not seem feasible as long as the parametric terms

exist.

Suarez et al. (1992) performed a series of time history calculations by using the
Newmark-/ step-by-step integration method. The time Ihistories of the seismic input
motions at the base were generated by simulation for a'Kanaj-Ta,jimi type of ground
spectral density function which is commonly used to represent seismic ground motions
in the stochastic form. It was observed that there ;,vas essentially no Change n -the
response when the parametric terms wére eliminated from the damping and stiffness
matrices. Even at quite strong levels of rotational excitations the magnitude and
pattern of the response time histories showed little difference. This result leads to
the following very in}portan£ conclusion: the parametric terms in the formulation can
be deleted from the system matrices without affectingfhe outcome. This assertion
enables one to adopt the linear modal analysis to compute the seismic response of a

rotor system and makes it possible to develop a response spectrum approach.

In their research on the response characteristics of the rotating machines Suarez et -
al. {1992) also investigated the effects of the nonlinear terms in the forcing function
and base rotational inputs. They concluded that the contribution to' the response
from the nonlinear part in the excitations, which is due to the products of rotational

velocities or rotational and translational velocities, is insignificant. These product
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terms can be ignored in the analysis wifhout noticeably influencing the response.
This observation also greatly simplifies the random vibration analysis which is used
in the derivation of the spectrum approach formulations. On the other hand, the ro-
tational motions at the base might cause considerable differences in the rotor response
depending on the intensity of these excitation components. Therefore, they should
not be arbitrarily removed without an appropnate evaluation. However, the existence
of the rotational accelerations and velocities does not pose any additional problems
in the response spectrum approach. The studies on both the cases of including aﬁd

excluding the rotational base motions are presented later in this thesis.

2.4 Rotor Stability

The prere(juisite condition for performing any response analysis for a rotor system
is that it has to be stable all the time. A dynamically unstable rotating machine when
~ excited by earthquake induced motions will have sustainingly increasing response if
the applied excitation persists (see Figure 2.2). Such a situation will definitely result
in mechanical failures of the system. To ascertain the proper implementation of the

analysis model one has to pay attention to the stability characteristics of the rotating

machinery.

The stability of a rotating system is directly related to its spinning speed. Here
the instability speed is defined as the spinning speed beyond which the respon;se be-
comes unbounded. To obtain this instability speed we need to perform the eigenvalue
analysis for the system at various spinning speeds. The comple# eigenvalues of the
system can be used to calculate the modal -frequencies (w;) and modal damping ratios

(3;) as follows:
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Figure 2.2: Unstable rotor response-
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wi = I\ | (22)

8, = _ Real(},) (23)

Wy

where A; 1s the eigenvalue of the jth mode. For a stable rotor system all the eigenvalues
must have negative real parts, which also means that all modes should have positive
damping ratios. A positive real part or negative damping ratio implies instability in
the system. Thus to identify the instability speed one plots the algebraically largest
real part of the eigenvalue against the spinning speed, as 1s done in Figure 2.3 for the
example problem studied in this research. The point at which the curve intersects
the zero axis provides the instability speed. As long as a rotor is Opera.ting. below the

instability speed, the response under seismic loads will be bounded.

In a finite element analysis of a rotor it has been indicated by Suarez et al. (1992)
that the instability in a system can be masked by inapproprniate use of interpolation
functions with a finite element discretization scheme. It was shown that when the
linear interpolation functions were used to model the deformation of a finite element,
the instability did not show up until a large number of finite elements were considered.
The cubic functions, on the other hand, showed the unstable behavior even with a
few finite elements. Because the use of linear interpolation functions is misleading
and inefficient, their use is not recommendéd for the analysis of rotating systems. In

the numerical work here, therefore, the cubic interpolation functions have been used.
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Chapter 3

Stochastic Formulation and Response

Spectrum Analysis

3.1 Introduction

As indicated in the preceding discussions, the equations of motion of a rotating
system, which are rather complicated to solvein their general form, c.a.n be sumplified a
great deal by deleting the problematic parametric and nonlinear terms without affect-
ing the accuracy of the calculated response. Since these modified equations are linear,
it is possible fo develop a response spectrum approach to obtain the design response
for rotating machines. In this chapter, the derivation of such response spectrum

methods is presented for their use with mulfi-corﬂponent seismic base excitations.

To use the seismic inputs defined in terms of base spectra, 1t 18 necessary that the
modal frequencies and damping ratios of the system be identifiable. To accomplish
this, here a generalized modal analysis approach, applicable to systems which have
general asymmetric matrices in the equations of motion, is adopted. To include the

correlation between the components of the base motion in the development of the
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response spectrum approach, here two models have been considered. In the first
method, the correlation between rotational and translational inputs is defined by
using a travelling seismic wave model, earlier used by Ghafory-Ashtiany and Singh
(1986). This correlation depends upon the direction of the upcoming seismic wave. '
Since this direction will not be kr;own a priori,l a procedure to calculate the worst-
case response is presented. In the secohd model, the correlation matrix between the
input excitations is defined directly either in terms of cross spectra.l density functions
oI in terms of cross response spectra of the confponents. In both models the effects
of translational and rotational components have been seperated out. It is possible
to include or .ignore any of these input base motions in the calculation of the rotor

response.

3.2 General Modal Analysis

The modified equations of motion for a rotor system subjected to seismic base

excitations in a finite element model are rewritten in the fo].lowihg form:

(31143} + (Cl{i} + [R{ud = SSUFOL (3.1)

The mass matrix [M] is the same as that given in equation (2.1), but [C‘] and [K] are
the system damping and stiffness matrices without parametric terms. The vectors
{f}: on the right hand side comprise of only the linear input terms. In equation (3.1)
the force vector is expressed as a sum of n. terms representing inputs with different
characteristics. The motivation behind this seperation Qf terms in the forcing function
was to identify the effect of these different types of inputs in the resbonse and evaluate

their individual contributions.
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Since [C] and [K] in equation (3.1) are general matrices without any symmetry,
a generalized modal analysis approach is adopted to solve the vibration problem. In

this approach equation (3.1) is rearranged in the state vector form as follows:

Allg) + Blw) = (F} | (3.2)
where
M [C
o |
I 0 [M]
Rr
5| 0 W
1) o
w o=
| ()

e fAt
|
=

Note that the total degrees of freedom in the state space is 2n, where n, is the system

{F} =

degrees of freedom for the finite element rotor model. Also notice that neither of the

matrices [A] and [B] is symmetric.

To decouple the equations of motion in (3.2), we need the solution of the following
adjoint eigenvalue problems associated with the free vibra.t_ion‘ of the dynamic system

defined:

[Bl{¥r}; = —A[A{¥r}; |
(B} {¥L}; — AT (o} (3.3)

where {¢¥r}, and {wL};- represent the right and left eigenvectofs and A; the corre-

sponding eigenvalue for the jth mode. The modal frequency and damping ratio can
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be calculated from the eigenvalue by-using equations (2.2) and (2.3). The right and

left eigenvectors satisfy the following biorthonormality relationships with respect to

matrices [A] and [B]:

[@L)T[A)2R] = [1]
(0] [B)[TR] = —[A] - | (3.4)

in which

[Fr] = [{¥r} {Yrler s {¥n}on]

W) = ek ke f)an)
Al = diag(,)
[¥g] and [¥;] are called right and left eigenvector matrices and [A] is the diagonal ma-
trix of eigenvalues. ’fhe first of equation (3.4) is used for normalizing the eigenvectors,

" one set or both, for mathematical convenience.

The state vector {y} in equation (3.2) can be expressed as a linear combination

of the right eigenvectors as:

()} = [Tr){a(t)) (3.5)

where {g()} is the vector of principal coordinates. By the substitution of equation

(3.5) into equation (3.2), premultiplication of the resulting equation by [¥;]?, and

finally imposition of the biorthonormality condition given in equation (3.4), we obtain

the following uncoupled set of equations for the principal coordinates:

{4} - [Al{a} = [Z)7(F) | (356)

The jth equation of (3.6), which can be written as:

b~ hjgy = WY G =120, 20 BNCE)
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can be solved to define the principal coordinate g; as follows:
i ‘t ) ‘
a(t) = [ T (F()}dr | (3.8)
In this solution, it is assumed that the system starts from rest.

Any response quantity S(¢) which is a linear function of the nodal displacements

and velocities can always be defined as:
S(t) = {TH {y()} (3.9)

where {T'} is the transformation vector of size (2n; x 1). Generally speaking, almost
all the fundamental response quantities that designers are interested in, such as the
disk displacements, bearing forces, moments or dynamic stresses in the rotor shaft, are
linearly related to the state vector {y}. The elements of the transformation vector
{T} depend upon the response quantity sought. They are defined in tenﬁs of the
physical and mechanical properties of the system. Combining equations (3.5) and

(3.9), we obtain:

2re

S(t) = 3 AT {¢r}iai(t) (3.10)

=1
The final form of the dynamic response by modal analysis-thus can be written as

follows: -

2y -

S(t) = Z{T}T{wR}j{%DL}ffot eAj(t-r){p(T)}dT (3.11)

To thoroughly explore the effect of various terms in the base inputs {F(¢)}, the

force vector 1s rearranged in the following way:

ne | {F)
5 {f}
=

{F()} =
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= SSUhE) = FB) (3.12)

where [r] = [{r}, {r}2, -+, {r}n.], is the influence coefficient matrix of'size (2n; x n.)
formed by rotor comstants; {E} = {El,Eg,-“,EnC}T 1s the vector of excitation
compon'ents at the base. For the following three cases, this vector is defined as

follows:

1. n, = 3, when only the translational acceleration inputs are considered.
{E} = {%1, 45, %5}" (3.13)

2. n. = 6, when both the translational and rotational acceleration components are

considered.

{E} :‘{i‘lyi}2) i}.355115239‘3}:[1 I (314)
3. n. = 9, when the complete set with three translational a.cceleratié)n, three rota-

tional acceleration, and three rotational velocity excitation terms is considered.
{E} = {‘i‘l’i?)il}a91)92783791;62)83}T (315)

Substituting equation (3.12) into equation {3.11) produces an expression connecting

the rotor modal response with the input motions at the base as:

S = SonT [ NI B(r)ar . (3.16)

=1

where

{n}; = {TY {wn};lr) (e}
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3.3 Random Vibration Formulations

In the response spectrum approach, the earthquake induced ground motion com-
ponents at the base of the machines are modeled as correlated stationary random
processes, For such excitations, we first obtain the root mean square response which
is calculated for stochastic inputs characterized by their. spectral density functions.
This response value is then amplified by a peak factor to obtain the maximum re-
sponse, or the design response, of the system. This design response can finally b.e

expressed in terms of the spectra of the base motion components.

To define the correlation between the components of the base motion, here the
travelling seismic wave model is used for machines sitting on the ground. In this
model, the rotational components are expressed as the spatial derivatives of the
translational components as originally proposéd by Newmark (1969). For the ma-
chines located in a building, the corelation between the input components at the base
of the machine is determined by the responsé analysis of the building. The auto and
cross floor response spectra are then used to define the correlation matrix for the
calculation of the design response of the rotating system. Both cases are considered

in the following sections.

3.3.1 Travelling Seismic Wave Model

Earthquake motions felt by a structure with respect to an arbitrary set of axes
are generally statistically correlated. One way to study the effect of this correlation
is to model the ground motions as a travelling wave. It has been observed that -
a set of axes exist along which three ground motion components are uncorrelated.

These orthogonal axes are called as the principal axes and the three corresponding
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independent excitations are called as the principal exciation components. The input
components acting along the axes of the structure can be expressed in terms of the
principal components through certain transformations. The response of the structure
will depend on the relative orientatiqn of the structure with respect to the impinging
wave. As this orientation will never be known in advance, it is of interest to obtain
the maximum response irrespective of the structural orientation. This maximum
response is also referred to as the worst-case response. To compute this maximum
response_for a rotatiﬁg machine, we will adopt an approach similar to the one used

by Ghafory—Ashtia.ny and Singh (1986) for stationary civil structures.

Let (z1, 23, z3) represent the structural coordinate system and (z}, z5, =) be the
principal coordinate system. There is a geometric transformation matnx relating

these two system of axes as:

. I / 27'1 01'11. d1a d13
z, ¢ =D} gy (o (Dl= | dy dan das _ (3.17)
3 ~ 3 H ds1 day das ]

where d,. =the direction cosine of the mth principal axis with respect to the nth
structural axis. The translational acceleration components Z; Z; and I3 along the
structural axes can be expressed in terms of the principal excitati‘ons 7'y 7’2 and 7’3
using the matrix of direction cosines as:

1

i, ¢ = [DI'{E'} (3.18)

T3
where {E'} = {2/, 2%3, 2/a}7 is a {3 x 1) vector of principal excitation components. To
obtain the base rotational input components, Ghafory-Ashtiany and Singh (1986) fol-

lowed the method described by Newmark (1969) with some simplifying assumptions.
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A rotational component of excitation was defined as:

. 14, . . ' S
9[; = —%E(IJ - I,’) (319)

where ¢ is the apparent wave velocity and ¢ 7 k are in 1 2 3 permutations denoting
the axes. In this research, we will also adopt equation {3.19) to develop a methodical

procedure for including the rotational effects in the calculation of the rotor response.

Consistent with equation (3.19), the rotational accelerations and velocities with

respect to the structural axes can then be written as follows:

0 -1 1 )

4, :
. 1d '
A, = To.n i 0 -1 I (3.20)
0, -1 1 0 | {4
0 -1 1
_ _14d (D|T{E'} 3.21
= —5m| 1 0 -1 (3.21)
“1 1 0
and
ol o -1 1 ]{a
. 1
bpp = —5;| 1 0 1|4 - (3.22)
B4 -1 1 0 T3 |
0 -1 1 |
1 T 1
= -5 1 0 -1 |[D{E} | (3.23)
-1 1 0

By consolidating the above equations, we can write for the complete base motion

inputs to the rotor in terms of the principal excitations as follows:

(B0} = (&) + & S{eDDTE®) - (3.24)
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in which the auxiliary transformation matrices [G1] and [G;] are different for each

case of the excitation vector {E}. These are defined as follows:

1. For three-component input, {E} = {#;, Z,, #3}%

1 0
[G]

H
=
—

Gl = loo.

0 0

0

0

43x3

J3)(3

2. For six-component input, { E} = {&,, &5, &3, 6,, 67, 63}

[Gl]l = 01

[Ga] = 0 0o

100

L

0
0

00 0]
000
000J3x6
g -1 1
1 0 -1
“1 1 0

Ix6

3. For nine-component input, {E} = {Z1, &, T3, 61,85, 85,0,,6,,0;)7

[

100000 0 =1/2 1/2

G].= |01 0000 1/22 0 ~1/2
(001000 —1/2 1/20 0
(000 0 <1 1 00 0]

G = 000 1 0 <1000
‘_»‘000—1‘ 1o 0007
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(3.25)

(3.26)

(3.27)
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In order to get the worst-case response of a rotor under stochastic loadings one
has to first evaluate the mean square response. For this we obtain the autocorrelation

function for the response quantity S(t) using equation (3.16)as follows:

2n; Zng

Bels()S)l = L [ [ tnH Eel{ BB Hnh

I=1k=1

eXilti=r) Multa=m) g g (3.28)

where Ez[ | stands for the expected value. Ez[{FE{(m)}{E(m)}?] in the eqﬁation
above is the correlation matrix of the structural excitations. It can be expanded in

the following form for the model given by equation (3.24):

2|T) (DI Ex[{ E' () { E'(2)}]

Be{EHE] = (G + 5
+ [Gq)]) (3.29)

20

1
DI(IG) +
where Ez[{E'(m;)}{ E'(72)}T] now denotes the correlation matrix for principal exci-

tations. This correlation matrix is a diagonal matrix of size (3 x 3) because the three

principal components are uncorrelated.

Although the earthquake motions are not stationary in nature, the assumption
that the principal inputs are stationary random processeé has been found useful in
earlier studies. This assumption is now widely employed for developing response
spectrum methods used in seismic analysis of structures. In this work also we make

-this assumption to develop a spectrum approach for rotating machines.

For stationary principal excitation components, the correlation matrix can be

expressed in terms of the spectral density function matrix as follows:

Ea[{E ()M E (m)}] = [ [@plen ) (3.30)

where [®p] = diag(®;) for { = 1,2,3 with &;(w) being the spectral density function of

the /th principal excitation. Combining equation (3.29) and equation (3.30) we then
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obtain

Eal{E(m)}{E(r)}" /ZKHT+———WﬂMD]@ﬂW]
(1G:]+ 5o 7Gae i (3:31)

By making use of the following identity:
3
(D) [2p)(D] = D _{d}:2i(w){d}
i=1
in which {d}7 is the /th row of the direction cosine matrix [D], equation (3.31) yields
+ Z_E_[GZ] Hdh{d}if

(G dy(w)e ™ do (3.32)

Ea{{E(n)}{E(r))") Z/

GiJt
1 d
G,

(G + 5o

Expanding the previous equation and taking the proper time derivatives, the corre-

lation matrix of the excitations with respect to the rotor coordinates can be written

as follows:

Bs[{E(r)}{E())T 2/¢n[a{@wm@]

G (@Gl + (Gl (an @y (G
-GG Pde  (3.33)

From equation (3.33) it can be clearly recognized that the first two terms indicate the
autocorrelation effects of the translational and rotational inputs, respectively, while
the remaining part describes the associated cross correlation between the translational

and rotational components.

By substituting the correlation matnx given by equation (3. 33) into equation

(3.28) the autocorrelation function of Tesponse S(t) becomes

3 2n¢ 2ne

eSS = L33 [ de)nt]

I=1 7=1k=1
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(G (iG] + (G a6
+5- (G (L (A} 1G] ~ Gl {dhi () [Gal)) ()
/“ /” M=) Awlta=m2) gielm=r2) g g o (3.34)

In the equation shown above, the part involving the double integral over 7, and =
can be carried out seperately. For a stationary process with relatively large ¢; and #,

the integral can be obtained as follows:

eiw(tl —t2)

(iw —_ /\j)(—iw - /\k)

st .
lim / ef\i(iL-Tt)+Ah(t2—f2)+”-'-’(fl—T2)d7-1d7-2 -
t1tz—o0 Jo

Equation (3.34) hence can be written as

E S 3 Zne 2ng :w(tl—tz) .
z ‘IJ -
[5(t) ;;kzl/ Hw ~ A ) (=tw = Ae)

({n}f[GdT{d}z{d}z [Gll{n}k

A ARTR T AN

+5 (G () 6] ()

— () TIGAT () (D [Gal{m))k) oo (3.35)

The stationary mean square value of the rotor response at any time ¢ can be calculated

by setting ¢; = #; = ¢ in the expression for the antocorrelation function to render:

3 2n 2ny ) ‘
Eaz| Z;;Lz:l/ (1w — A ( zw—/\k)

<{'01 }f{d}f{d}l {P'L}k + E{pg}f{d}i{d}?{pz}k
+%({P2}Z{d}f{d}?{m}k - {Pl}f{d}!{d}}r{ﬂz}k))dw ' (3.36)

in which {p1}; and {p;}; are (3 x 1) vectors defined as:

{P1}J"= [GIHU}J

{pa)s = (G}, o | @
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Equation (3.36) can be further modiﬁedl by utilizing the transpose property of scalar
quantities, such as {p1}] {d}; = {d}] {p:};- The mean square response can then be

presented in a condensed form by matrix notations as:
3 ‘
Ez{S*(t)] = Y {d}([Rii + (Rl + [Ral){d}s

=1

= ;{d}}"[R]i{d}, | (3.38)

[R]: appearing in the equation above is a {3 x 3) Hermitian matrix with typical
elements expressed in terms of the entries of matrices [Ry];, [Rz]; and [R3);. They are

defined as:

i

Ropt =Ry + Ropy + Bsy oy, 1=1,2,3

R =/ %g Piym Plkn dw
ma iy (iw = Ap)(—iw — Ag)
Rip = | * a0y QZ untiin__y,
™ e 4c? oo (= ) (- — Ax)
| R TIN T & pajmPiin — Plim Prkn
Rip= [ Sobiw) 33 e (3.39)

where p1;m and pain, are the mth and nth elements of vectors {p1}; and {p2}r respec-

tively.

To calculate the response by a spectrum approach, the elements of the matrices in
equation (3.38) have to be expressed in terms of the modal frequencies and damping
ratios obtained from the eigenvalue analysis. It is necessary here to point out that in
a rotating machine with fluid film bearings, there are usually some real eigenvalues
and corresponding‘ real e;genvectors in addition to the paired complex and conjugate

eigenvalues and eigenvectors. These real eigenproperties require a somewhat different
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treatment in the derivations. In the following formulation, the effect of the real eigen-
properties on the response is seperated out from those of the complex eigenproperties.
Let n. be the number of real eigenvalues and n, be the number of pairs of complex

and conjugate ones, with n, + 2n, = 2n,. We divide the real and complex eigenvalues

A; and their corresponding modal coefficients py;m and p2jm as follows:
¢ Real eigenproperties: for j =1 to n,,

/\; =—aj;, o; >0

B = Ctim (3.40)
ngm = €ym
e Complex eigenproperties: for 7 =1 to n.,
/\j = —fjw; + tw; /1 — ﬁ?
Pijm = Q1ym + thijm (3.41)
Pojm = Q2jm T 2bjm
¢ Complex conjugate eigenproperties: for 3 = 1 to n.,
/\jc = —ﬁjwj - iLUj 1 - ,BJZ
P = G1jm — 11jim (3.42)

PSim = G2jm — thajm
where the superscripts r, ¢, and cc denote real, complex, and complex conjugate.

The subsequent derivations are focused on [R,]; alone and the formulations for
[R,); and [R3); can be constructed in the same way. Consider a summation term over
index j appearing in R, shown in equation (3.39). We split this sumnmation term

into its real and complex modes as follows:

2y Tip ne

. T, c | CcC
Z P1jm . — Z pI]m +Z( pljm + pljm )

o — o — A w— AS o — A
iSiiw = A S — A S W AT — A
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Nr

_ Zﬁiﬂz z”m-{-iwaum)H'(u) (3.43)

W + o =1

where equations (3.40), (3.41) and (3.42) have been used to define terms in (3.43) as

- 2
Zijm = aymBw; — bymwiy 1l = 5

1
H, = : (3.44)

w? — wy + 2w,

J

Similarly, we can write for the other summation term over index £ as:
S5 _pun__ 3Gk g Z 1k — iwaygn ) H (@) | (3.45)
oy —w = A Tt oy " k ‘

In these two expressions H; is the classical frequency response function of a second

order differential equation of a single degree of freedom oscillator with frequency w;

and damping ratio §; and the asterisk (%) as superscript means complex conjugate.

Substituting equations (3.43) and (3.45) into equation (3.39) provides:

Ri., = / $(w) Ty, + Ty +Ta Jdw | (3.46)
where
e €1jm €lkn
r = -
Lmn 12:1 kz_: w4+ ozJ —zw + ay

fir nN¢

81Jm - *
Lo = 22 ( N (z1kn — twaien) Hy
1=1k=1 ZL;J-}- .

ne  Ar

elkn | .
2 m m ]
+ ;g:l Zu+a Z1jm + twarjm) H,
Tapn = 423 (21jm + iwaijm)(21kn — twaien) H; Hy ' (3.47)
j=1 k=1 .

Through extensive algebraic manipulations 'y, Iz, and T'5,,, can be reduced to

the following more useful form:

r,. = Zeljnleljn Z Z eljmelkn+eljnelkm)( ¥ " Qy )

2 ‘ 2 2 2 2

oW +a P21 kmgt1 a; + oy w-}-afj; w® + af
e Nr | |'2
Fgmn,: 222 L0+L2w +L4w) z 7
j=1k=1 +Qk
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Ne
T = 43 (25m71n + arjmaynw® )| Hl

=1
n.~1 nc
+4 >0 3 (No+ Naw? + Nyw* + Now®) | H;|* | Hi|? (3.48)
1=1 k=341

where (Lo,L,L4) and (N, No,Ny,Ng) are all constants and the explicit expressions
of these quantities which also are functions of indices j, k, m and n are listed in

Appendix B. In order to present R,

mni

in terms of the frequency integrals which are
associated with the input spectra required in the spectrum approach, terms in I'y_

and ['; . need to be further expanded into partial fractions as:

2
(Lo + L2w2 + L4w4) |HJ, = U

w+ol  w?4

o+ VIE + WelB

(No + Now? + Nyw' + Now®) | H; " [ He? = X;|Hj|* + Yol | H, [P
-{-Xk|Hk|2 -+ Y}cw2|Hk|2 ‘ (3.49)

in which (U,V,W) and {X,,Y;,X,,Ys) are defined as follows:

W = [La(w) — atg;) + Leaj — Lo|/ (e +wj — ofg;)
V= [Lo+wi(W - Ly)/a} | (3.50)
U = Ly—-W
and
{
Xk = ALJ;,[(W: - wé)(N4 - gst - w,:4N0)

— (g5 — gr) (N2 — Wi Ns — wi g Vo))

(1= Q5) (N2 — wiNe — wi *grNo) (3.51)
— (g5 — Qhae)(Na — g Ne — wi * No))

X; = (M- wiXe)

Yj = Ns-—Yk

=
I
D‘_
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where

9 = w487 - 2)
a = wil46i-2)
"
Qp = 2
Ik Wi
A = (W w1 -Q%) — (g5 — gx)(g; — Vhegr)

' - Based on equations (3.46), (3.48) and (3.49), the final form of R,__, is written as:

nr nr=1 n
7 < ~ €15m€ikn + E1inf1km A N
Ry = Z €1 jme1 ndoy, + Z Z ( Slies — Woydoyy; + axdon)
‘ i=1 j=1 k=j+1 Q; =+ Qg .
+230 > (Vo + Vidu; + Wi l)
1=1k=1
+4 Z(lemzljnjolj + aljmaljnjzlj)
=1
ne=1 nc . . . X .
+4 Z Z (lefolj + le Izlj + XkIICllk + }/ic]jzik) (3.52)
j=1 k=j+1 .
where
« " oo ‘I)I(UJ)
oy = / d
T o w? al

fglj = /_ |Hj[2w2¢1(w)dw ) ‘ (353)

Note that the supplementary subscripts 1 for (U,V,W') and (X;,Y;,Xk,Y:) appearing
in equationl (3.52) indicate that these computed coefficients correspond to the part
[Ri]: to distinguish from those obtained for [R;]; and [R3);. It can be recognized from
the expressionfor R,_, that the terms under single summation designate the contri-
butions from the individual modes whereas those under double summation indicate

the effect from the interaction between the modes, real as well as complex ones.
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The frequency integrals jotj and lej defined in equation (3.53) are the mean square
values of the relative displacement and relative velocity responses, respectively, of an
oscillator with dynamic parameters w; and 3; subjected to the principal excitation in
the /th direction. Likewise, jo;] represents the mean square response for the relative
velocity of a massless oscillator with frquency o; under the [th principal excitation.

The governing differential equations of these two systems are:
G+ 2Bjwit + wiu = z(t)
¢+ v = 74(F) (3.54)

where u and v are the displacement and velocity responses and z; is the seismic
motion along {th principal direction. If only the translational inputs are considered

in the analysis then from equation (3.39), R = Ri Equation (3.52) itself can,

mni’

therefore, be used to obtain the response matrix [R]; because the modal coefficient
vector {p;}, involved in calculating [H;); and [R3); is equal to zero for this case, as

shown in equation (3.25).

The preceding procedure can also be applied to derive the expressions for [Ry);
and [R3);. These expressions in their final form are presented in the following without

repeated elaboration:

1 & 5
Ry, = 40_2{2 €25m€25nJat;
j=1

ny—1 (¢

- €2jm€2kn T €25n€2km 2 -
+ ( WajJa; + ondo)
+23° S (Uadoan + Vol + Waly;)

1=1k=1

Ne

+4 Z(Z2J'm32_;n-[2lj + a2jma2jn]4lj)
7=1
ne—=1 ng

+4 Y Y (Xjodoy + Yielu; + Xea bk + Yia L)} (3.55)

7=1 k=341
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and

=1 s '
R 1 {ﬂ i: (eljme'lkn + €1ynC2km €1km€jn + elknei’jm)
3mnt o : - '
2¢ pariar a; + o o, + ag
27 27
(a,Jotj — agpJo)
n. ne .
+2 37 3 (Usdow + Valoty + Walyy)
j=1lk=1
ne .
+4 Z(aljmz'.!jn + A1nZ2jm — Z1ymQA2jn — zljna2jm)-[21j
1=1
ne=1 ng R . . )
+4 ) Y (Xjadoy + Yisloy + Xaadow + Yaa L)} (3.56)
j:l k:]-l—]_
where

o fore] ) N !
fu; = / | H; ]P0 &y (w) do | | (3.57)

Two additioﬁal frequency integrals j4lj and jﬂj are introduced in the above e(jua,-
tions. These are the mean square values of the relative acceleration respomnse for a
single-degree-of-freedom oscillator (wj, 3;) and a massless oscillator («;) respectively.
However, they can be expressed in terms of the previously defined freqﬁency integrals

as follows:

fm‘ = fl - gjjzzj - wfjo:j

Juj =1 - Ofﬁjozj | . (3.58)
where

I = /oo ‘i)l(u)ﬂw

The integral [; is the area under the spectral density function. It represents the

mean square value of the ground acceleration when subjected to the /th principal
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excitation. The subscripted constants (U;,V;,W;), and (X;,Y5i,Xxi,Yki) are calculated
through the process of partial fraction expansions described in equations (3.49), (3.50)
and (3.51) in which the coefficients of polynomials L(w) = Lo + Low? + Lyw* and
N(w) = Np + Now? + Nyw* + Ngw® are frovided in Appendix B for [R,];, [R2]:, and
[R3)s individually.

Through the foregoing approach, the 3 x 3 response matrix [R]; can finally be
written in terms of the dynamic properties of the rotor system and random response

characteristics of the excitation inputs as follows:

€2;m€2n - €25m€ 'naz =
Rmnf = Z{ 2J 21 Il + (eljmeljn - _‘z%_‘l)-]ﬂl]}
n--=1 n
i T E2imE2kn T+ €2in€2km
+ Z Z { e 4c? Bn 72k Il+,u1 JOIJ+H2 Jolk}
=1 k=j+1
+y Z{HCTII + U doe + Vig; + szlj}
=lk=1
) Tie a ma oA 3 c ~
+Z{ﬁcziﬂ+ uidory + pilas}
J=1
ne=1 ng . . . ’
+ >0 > e+ Xl + Y Ly + Xidow + Yelon} {3.59)

7=1 k=j+1
in which the expressions for coefficients (pf" 5" p1 ué 15,4, (U,V,W) and (X,
¥;, X,Ys) are tabulated in Appendix B.

With R... defined as above, equation (3.38) can be used to vcalcula.te the rotor
response 1if {d}; the direction of the attacking seismic wave is known. Since the ori-
entation of the principal excitations relative to the rotor axis is impossible to predict,
our goal is to obtain the worst-case response, that is, the Iﬁa)drﬁum value of the re-
ponse quantity. irrespective of the direction of the coming wave. The methodology
proposed by Ghafory-Ashtiany and Singh (1986) is adopted in this work to evaluate

this maximum response.
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3.3.2 Correlation Matrix Model

The preceding formulation developed from a seismic wave model can be used for
analyzing rotating machines that are directly excitated by the ground motions. For
the fotpr systems mounted on the higher floors of a building, or placed on raised
pedestals (like turbines in power plants), the base excitations are deﬁned by the
motion of the supports. The components of the support motion can be correlated in
this case, even when the input motions at the base of the supporting structures are

uncorrelated.

For stochastic analysis, the input correlation can be defined in terms of the corre-
lation matrix. In this model, the corre_lﬁtion matrix is directly expressed in terms of
the auto and cross spectral density functions of the base motion components. These
auto and cross spectral density functions depend upon the characteristics of the sup-
porting structure as well as the motion at the base of the structure. To define these
auto and cross spectral density functions, a dynamic analysis of the ‘primary struc-
ture is required. Assuming that the interaction between rotating m'a‘chines aﬁd the
supporting structure can be ignored, the method developed by Singh and Burdisso
(1987) can be used to provide these auto and cross spectral density functions of the

base excitation components.

In this model, the matrix of input correlation Ez[{E(r)}{E(r:)}?] in equation

(3.28) can be expressed as follows:

Ba[{ E(r)HE(m)}T] = | [@em(w)]e ™) du (3.60)
where the épectral density fupction matrix [®gg] is of size (n, x n.). Substituting

the above equation in equation (3.28) and makiﬁg use of the procedure presented in

the previous section to carry out the double integral over 7, and 7, the mean square
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response for S(t) can be written in the following form:

Ez[5%(t)] = }:Z/ L{n} (®esl{nts

o (tw = Aj ) {(—iw — Ag)

Ne n. 2ny 2n.

= YUY Y [ bl (e (36D)

m=ln=1j=1k=1 lw_'AJ' —iw — Ay

in which ®,,, denotes the typical entry in matrix [®gg] and 7, is the mth element

of vector {n};.

The diagonal terms, ®,,(w). appearing in the correlation matrix [Pgg] are the auto
spectral density functions for each individual excitation. The off-diagonal elements
®un{w) represent the cross spectral density functions characterizing the correlation
between the corresponding two input components. For a random process the auto
spectral density function is always a real and even function. The cross spectral .
density function of any two randoxﬁ processes is a complex function consisting of
the coincident and quadrature components. In terms of these components we can

write a cross spectral density function in the following manner:

Ton(w) = Bpalw) +ip,(w)
Spn(w) = @ (w)
= @R (w)-itl, (W) m#n (362)
where the superscript(#) marks for complex conjugate. The coincident ®% (w) are

even functions, whereas the quadrature ®! (w) are odd functions. In the subsequent

derivations, we will also use the following relationship:

D0 + B 2087

Il

Prp — P = 229] | (3.63)

To develop the expressions for the mean square response of S(t), the eigenval-

ues and participation coefficients are divided into the real, complex, and complex
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conjugate parts as follows:

{

\

b

AT

2

r

Mym

e

7

c
7']jm

cc
AJ‘

cC
njm

—a; j=1ton,

!
Im

—Gw; + 1wy /1 — ,Bf j=1ton,

? S L
ajm + lem

—Biw; —iw; /1 =32 j=1ton, S
SO A (3.64)

! b
aJm - Zme

€

Following the procedure presented in the previous section for the development of

equations (3.43) and (3.43), the double summation term over indices j and k in

equation (3.61) can also be rewritten in the following form:

2ﬂe 211;

22

J=

1k=

Men

1

—zw — /\k) =T+ 12, + T, ‘ (3.-65)
Jlklzw+a3 —w 4+ o
2{3211.21 ZLIJ + D.’] an - lwakn)Hk(w)

ne np

43 (k) 4 iwd, ) H(w))

=1 k=1 —tw + oy
42 Z jm + ?wa‘gm (zkn ?‘wakn)H ( )Hk( ) (366)
=1 k=1 .

a;mﬂjw] me V ﬂ'z

wi —w?) + 2wPiuw;}

The expression for the mean square response is also expanded as follows:

Ex[S?(4)]

S [ Gnn(Pip 4 Ta + T )i
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ne—-1

T D S ARG VYRS SN

m=1 n=m+1

-|—<I>m(I‘1nm + Pgnm + I‘anm)}dw . (367)

in which each term has to be evalnated individually. The resulting forms are pre-

sented, without listing the details of the lengthy algebraic operations in the interme-

diate steps, as follows:;

nr—=1 ns ag

_ nr e
T @mm = (I)mm + 2 mm +
f‘me(I)mm = Pnm{2 Z Z Lllo + L] 2“-’ + L14"'-’4)}

: j=lk= 1

T3 @oam = P {4Y_(2),," + &)y w?) | H; 2
j=1
n.—1 ng
+4 Z Z |H,|? |H,c N{O-J;—N{zw +Ni4w +N16w )}

J=1 k=3+1

Flmﬁ(ﬁmn + f‘lnm@nm : ( mn + (I)nm {Z _—L—l—

255 Gt ) T3
'Tmn "Tnm
=1 k=jt1 w2 + al?:

np=1 ny

,'_(""‘— ”"‘{Z Zzu7mﬂ ’)/nm)

=1 k=341 ~
(

1 1 )

w4 ol w4 ol

_ _ Mg Ny H 2
Fzmn (Dmn + F25m®nm = ((I)mn + (I’nm){z Z z ~]—JJ_"_

j=1k= Wi+ af
(L,20+L2°-’ +L24W )}
_( mn‘_ nm {2 W=
. 32:1;’1 2+a

(L3 + Ligw® + Lyw®)}

f‘amn@mn + I_.‘Snm@nm = (@m" + Qnm){4 Z(Z;mz;n + a;m Jh )lHJ!z

i=1
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nc=1 ng

+HY 3 ir‘ﬂ"ll‘hl2
=1 k=3+1

(Néc + Nézwz + N2f4‘“4 + Néews)}

- ((I)mn - (I)nm){4z iw(ﬂ’;mz;n - jﬂ Jm)‘H |2

nc-l

+4 Z Z zw|H| |Hk|2
i=1 k=J=
(Néo + Nézw + N§4w T N3’6“"6)} (3-68)

in which the constant 4., and the coefficients in polynomials L(w) = Li, + L,w* +
L’4u and N/(w) = Ny + NLw? + Nl,w* + N/w® 1 = 1,2, 3 are provided in Appendix
C. These expressions can be further simplified by using the definitions for coincident
and quadrature spectral functions given in equation (3.63). With the expansion of

the terms into partial fractions, similar to those shown in equation (3.49), we obtain:

ny nr,—1 np

Finn®m = {z +zz S A + —"E )} (3.69)

uﬂ—}—a? w4 ol

7=1 k=5+1
2 ®mm = O {QZZ +V’|H * + Ww?|H,{H)} (3.70)
j=lk=1

ng

f‘amm@mm = (I)m{42(z;‘m2|HJ[2+a’ 2 QIHJ‘)
=1

n:.—1 n.

H4 ) D (X HP YW

=1 k=341

+ X4 [ Hel® + Yiw? | Hi )} (3.71)
- ny—1 iy
len@mﬂ + Flnm nm = mn{ Z Jm J”' + Z Z Afrnrl +7n.m

7=1 k=341
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Ct_, C!k
2 2+ 2 2
W +a- w*+ ai

(
n,-—l ne

—I—w@fm{Z Z Z ")/mn "Ynm

J=1 k=j+1
1 1
(

wital Wwitof

)} (3.72)
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ne np

f\2mn Pnn + f2nmq’nm = {42 Z + Vlele + Wéwz’Hﬂz)}
1=1lk=1
+wd! (43 z 7+ Vi H,l?
1=1k=1
+Waw? |, )} (3.73)
f‘3mn¢mn + I—‘snmé,nm = n{sz z_;mzjan |2 +a3m _,711 lej|2)

nc—l ne

+8 Z Z (X;ZIHJ'F + 3"2“’2‘Hj|2
J=1 k=j+1

+ X0 Hi? + Yiw? [ Hi )}

+wq)rlnn{82(a_’jnz;m - Jm Jn)IH ‘2
j=1

ne—1 ne
+8 ) Y (XjlH|* + Y | H?
7=1 k=341
+ X5 He|* + Ykiawz[HkF)} (3.74)

The response in equation (3.67) can be expressed through the six terms in equations
(3.69) to (3.74). The first three terms represent the effect of individual excitation
components, whereas the remaining three indicate the effect of their correlation with

each other.

The mean square response shown in equation (3.67) can now be expressed in terms
of the following frequency integrals defined for the auto, coincident, and quadrature

power spectral density functions:

B = [ 1HPom(w)ds

B = [ B ()

G = [ 1H,2R,(w)do

B = [ |H 2l (w)do

B = [ 1H Pt () |

B = [ H 0], (w)de (3.75)

2;mn
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which are the mean square relative displacement and velocity responses of an oscillator

with parameters w; and j;, and

oo ]_
A = _—
ij /oow?'-{-a Do)

o0 1 ‘
S = | Wt O
Q _ [T _ W g1
I3 /mw”a &7 (w)dw | (3.76)

equivalent to the mean square values for the relative velocity response of a massless
oscillator with frequency «;, under the random floor excitation characterized by the
corresponding spectral functions. The final expression for the mean square response

of a rotating machine can then be written in terms of the frequency integrals as

follows:
nr~1 nr
E$[52(t)] = Z {Z 6Jm ]m + Z Z 2’7"1"1 aJ + akJ;jm‘)
m=1 j5=1 I=1 k=)+1
+ Z Z 2(U1’J1fm + V IDJTTI + W IZ}m)
J 1k=1

+ Z4 ; 2‘[0]111 + a;m.zfim)
nc—l ne

+ Z Z 4 XI IOym Y, Iij + XZ.IIO“}c + Y;\.l'I?Lm)}
=1 k—_‘H-l

ne—1 Tie

+ 3 Y (S 2l

m=1n=m+1 ;=1

n,—1 e

+ Z Z [2(7"1" + Vﬂm)(a}"]ﬁnn + ak‘]Emn)
7=1 k=j+1
+2(7mﬂ - fyﬂm)(JJan Jkan)]

. ne

+ Z 2[4(U'£men +‘V,IC(limn + W Iijn)
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+4(U3’Jl?mn + VIIOJmn + W3I2jmn)]

+ Z S[Zszang_;mn ]m _gnIZJmn

+(a3nz,1m a’;m Jn)IOQjmn]

ne—1 ne .
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+8( .;31(‘3]""”. + jISJ%mﬂ + X::S'[igcmn + }/1:3'[36111")]} (377)

3.4 Response Spectrum Approach

The formulation derived in the previous sections provides a step-by step method-
ology for obtaining the root mean square response of a rotor system. For design
purposes, however, the maximum response or the design response is of primary inter-
est. Here we will extend equation (3.59) and (3.77) to obtain the design response of
a rotating machine by a response spectrum approach where the base inputs defined

in terms of ground response spectra or floor response spectra can be directly used.

To calculate the design response Sy, the root mean square value should be ampli-

fied by an appropriate peak factor as:

Sy = P,\/Ez[52(t)] | (3.78)

where P, is the corresponding peak factor which is usually related to the level of
probability of exceedance. In order to obtain the design response in equation (3.78)
the frequency integrals involving spectral density functions will have to be expreséed
in terms of response spectrum values, since in the response spectrum method the base

motions are described by the response spectra curves.

Let P;; and Vi represent, respectively, the pseudo acceleration and relative veloc-
ity ground response spectra of the l£h input component at frequency w; and damping
ratio 8;, and G; represent the /th maximum ground acceleration; likewise, the relative
velocity response spectrum for a massless oscillator v;rith parameter «; subjected to

‘the lth excitation is denoted by Z;;. Then, the frequency integrals can also be written
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in terms of the above response spectrum quantities as follows:

3 g! 2

I = (=
IO!_) = (P ii)g)z

ai; 7"y

R V.
IZIj = (Flj‘)z

\ Z,
Joi; = (ID_‘%)2 | (3.79)

where Py, Py, P,;, and P are the associated peak factors. From equations (3.78)
and (3.79) the squared maximum response of the rotor based on the seismic wave

model is expressed as:

5¢ = Pzz{d}: Ri{d)
= Z{d}: li{d} | ,I . o (3.80)

where [R]; = P?[R]; is the response matrix of input ground spectra. Each term of

[R]; is obtained through multiplying the corresponding element in [R]; by the response

design peak factor P2, which renders the following expression:

€2;m€ n €2,me€2 a
Romnt Z{ 21 QJ o T (eimersn = %_)Zla zu}
. J=1
o €27m€2kn + 6‘2]n62km 2 rr 2 rr
+ Z Z { 402 gl Qgg + Hq Zl’]Qz“ + Ha ZIsztk}
J=1 k=j+1
e Tip _ 'p12 _
+ z Z{ﬂcrgz , T UZucQz“, + V—jQﬁ,J + WVIZ;'Qg,J-}
,7 1k=1 ] :

: a ma n
+Z{ Shn 9,Q§,+u1 ”QG,J+#2VUQ31}

nc—l Re

+ Z Z {'uccgl 2 +X IJQ011+YVIJ vy

J=1 k=j+1

| =
+X tk Qa“‘ _+- Y VHCQU”g} ‘ (3'81)

in which Qg, Qs,,, Qu,;, and @, are the peak factor ratios defined as:

P,

QQE:P_g‘
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Qaz:’ = Pa;_,-

P,

QUU - .F;;‘j
R d .82
Q“IJ PZU (3 )

In equation (3.81) every term is associated with a peak factor rafio. These peak factor
ratios can be different from one another and they can be analytically determined if
desired. Nevertheless, often such refinements may not be necessary. It is commonly
assumed that the modal peak factors for the base acceleration and for the pseudo
acceleration and relative velocity responses of a single degree of freedom system as
well as for a massless oscillator are the same as P,. This implies that all ratios in
equation (3.82) are equal to one. Under this assumption, equation {3.81) is simplified
to provide the following expression for calculating the design response in terms of the

base motion spectra:

€2im€2n €2 'm62'na2
mnl Z{ 21 2—7 gl + (eljmel_;n - _146—2]4)2123}
“"1 T €2;imE2kn -I- €25n€2km . e
+3 2 { o S Gl + 2L+ uy 2}
=1 k=3+1 )
n. ne - B _ P i _
+ Y S {pTGl+ UZL + V—’; +~ WV}
] 1k=1 J
@92im2in P
+35 (g + i+ V)
=1 J
ne—1 Ti¢ fp P
+2. 2 {ngr+ X3 + ViV + Xy : 1A% (3.83)
J=1 k=3+1

By comparing this equation with equation (3.59), it is evident that the design
response can be directly computed from equation (3.59) if all the frequency integrals
appearing in that expression are replaced by the corresponding input spectrum val-
ues. Making the similar assumption about the équality of the peak factors in the

expressions derived for the correlation matrix model, we can also develop a spectrum
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approach for calculating the design response for this case as follows:
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In this expression, P;, and V7 are the mth auto floor spectra for the pseudo ac-
celeration and relative velocity response, respectively, of a second order oscillator;
PC YC and P2, V@ represent the associated cross floor response spectra

jmn? Jmn? jmn) Jmn

between the mth and nth inputs corresponding to the coincident and quadrature
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components,and Z2, 25 men denote the auto and cross floor spectra for the rel-
ative velocity response of a first order massless system. Using equation (3.84) we can
calculate the design response of a rotating machine sitting on the floor of a building

which is subjected to seismic base motions.

3.5 Summary

Equations (3.59) and (3.77) provide the expressions for calculating -the mean
square response by the stochastic analysis for seismic inputé defined in terms of spec-
tral density functions. In equation (3.59) the spectral density functions are for the
principal excitation components, whereas in equation (3.77) the spectral density func-
tions are for the floor motions. To obtain these floor spectral density functions, one
must analyze the primary structure for seismic excitations applied at its base. These
equations will be used in the following chapter to obtain numerical results for the

mean square response of a rotor system in a parametric study.

Equations (3.83) and (3.84), on thé other hand, provide the expressions for cal-
culatiﬂg the design response by the response spectrum approach. In equation (3.83)
the input spectra of the base excitations are for the prin(;ipal components, whereas
in equation (3.84) the input spectra are for the floor motions. These latter spectra
are defined in terms of the anto and cross response spectra of various components of
the motions of a floor on which the rotating machine is placed. These spectra are
obtained from the analysis of fhe supporting structure, as described by Singh and
Burdisso (1987). These response spectrum expressions have also been used in the

following chapter to compute the design rotor response.
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Chapter 4

Numerical Results

4.1 Introduction

In this chapter, we present some numerical results for an example problem of
a shaft-disk-bearing system using the equations developed in the previous chapter. -
The expressions for calculating rotor responses given in Chapter 3 are quite general.
These.expreésions include both the real and complex eigenproperties of the system
and individually identify their contributions to a Tesponse quantity. Also the effects
of the rotational acceleration and rotational velocity inputs on the total response
have been separated out from those of the translatonal components, Here we will use
t'hesé expressions to nunieric_ally evaluate the contributions of these diﬂerent terms to
a response quantity to-examine if any terms can be deleted to simplify the analysis.
In particular, we will evaluate how important the terms associated with the real
eigenproperties are. We will also investigate under what situations the contribution of
the rotational components is signmificant. In the defrelopment of the response spectrﬁm
approach in the preceding chapter, simplifyiﬁg assumptions such as stationarity of the

earthquake input and system response and equality of the peak factors were made.
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In this chapter we will also verify the applicability of the proposed response spectrum

method developed with such assumptions by a numerical simulation study.

4.2 Example Rotor-Bearing System

To obtain the numerical results, the rotor-bearing system shown in Figure 4.1 has
been considered. This rotor system was also used by Earles et al. (1987) and Suarez
et al. (1992) in their numerical example. The physical and mechanical properties of
this system are given in Table 4.1. The rotor operates at a spinning speed of 880
rpm which isr well below the instability speed of 2295 rpm. To analyze this system,
the shaft was discretized into 14 finite elements. The displacement field over each
‘element was defined by the cubic beam interpolation functions. The total number of

degrees of freedom of this example problem is 60.

This rotating system was analyzed to obtain its eigenvalues and left and right
eigehvectors. A first few frequencies and damping ratios of the system are shown in
Table 4.2. These eigenproperties were used in the calculation of numerical results.
The response values have been obtained for the two displacements D, and D, of
the disk and for two force components F; and Fy at one of the two bearings in the

horizontal and vertical directions.

4.3 Seismic Inputs

Stochastic Inputs
The stochastic models for the principal components of the ground motion were
defined by the three-term Kanai-Tajimi spectral density functions of the following

form:
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Figure 4.1: Configuration of the rotor system considered for study
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Table 4.1: Physical and mechanical properties of the rotor

Disk mass, my . = 5670 kg
Transverse moment of inertia, I, 3550 kg m*?

Polar moment of inertia, I, = 7100 kg-m?

Mass density of shaft, p = 7806 kg/m?
Modulus of elasticity, F = 2.078 x 10! N/m?
Poisson’s ratio, v = 0.3 '
Revolutions per minute, N = 880 rpm
Viscosity, p = (.14839 N-s/m?
Diameter of journal, D = 0229 m

Length of journal, L = 0.229 m
Clearance, C = 38x10%m

Weight of bearing, W = 67120 N
Bearing stiffness coeflicients at opearating speed 880 rpm in N/m
K,z =0.18305 x 10%, K,, = 0.37487 x 10°
K, = —0.72481 x 10°, K, = 0.10977 x 10°
Bearing damping coeflicients at opearating speed 880 rpm in N-s/m
Crr = 0.54139 x 107, Cyy = 0.17090 x 107
Cye = Cry, Cyy = 0.21294 x 108
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Table 4.2: Frequencies and damping rations for the first 10 modes of the example
rotor system '

Mode no. Frequency (cps) Damping ratio (%)

1 10.3965 - 7146
2 10.7882 6912
3 233762 0.53

4 24.0083 1.98
5 79.8363 2.87
6 97.1774 3.01
7 210.9122 0.97
g 211.0740 4.00

9 - 220.1107 1.75
10 229.5606 1.58
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wyi + 485wiw

St s <wSe 121,23 (4.1)
i=1 (wﬂ C.U) +4r6dwlfw

where s;;, wy, and 3, are the ground parameters for the translational acceleration
component in the Ith principal direction and w, is the cutoff frequency. These pa-
rameters are given in Table 4.3. This spectral density function, which represeﬁts a-
broadband seismic input, has also been used in several earlier studies. The first and
third prinaipal directions are assumed to have the same spectral density function pa-
rameters, and the characteristics of the second component are assumed to be different.
In particulaf, the root mean square value of the excitation along the second direction
is 2/3 of the other two components. With these parameter values, the maximum
ground acceleration level is about 0.2¢ for the first and third components, and for the
second principal excitation it is 0.134g, which is 2/3 the magnitude in the other two
directions. Equation ‘(4.1) was‘ directly used to obtain the frequency integrals in the.

stochastic analysis to calculate the rotor response.

Time History Inputs

For verification of the response spectrum approach developed in this work, an
" ensemble of time histories have been used in the simulation study. These ground mo-
tion time histories were generated for the stochastic input motion defined by equation
(4.1). To generate the acceleration time histories the following superposition of har-
monic waves with random phase, as proposed by Rice (1954) and Shinozuka (1987),

has been used here:

Ny " :
Ki(t) = 3 VaD(wn)Aw cos(wmt + ) (4.2)

m=1

where X(t) is the acceleration of the Ith component; ¢, is the random phase angle;
Aw 1s the frequency incrtement and Ny is the number of harmonics which the cutoff

frequency range is divided into. Since the three principal excitations are uncorrelated,
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Table 4.3: Parameters of the spectral density function for three principal components

Ith Sit wiy B
excitation (m?-sfrad x 1073) (rad/s)
1.908 13.500  0.3925
1 0.630 23.500 0.3600
0.477 39.000 0.3350
0.848 16.875 0.3925
2 0.280 29.375 0.3600
0.212 48.750 0:3350
1.908 13.500 0.3925
3 0.630 23.500 0.3600
0.477 39.000 0.3350
we = 30 cps
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here, three different sets of independent random phase numbers, which are uniformly
distributed in the range of (0,2r), generated by the computer along with the pa-
rameter Ny = 600 were used to create the acceleration time histories corresponding
to the given spectral density functions. The ground motion produced according to
equations (4.1) and (42) was then modulated by a deterministic envelope to simu-
la,terthe' build-up, strong motion, and decay stages usually observed in earthquake
records. In this study, an ensemble of 50 sets of accelerograms with duration lasting
24 seconds were synthetically constructed. Each set consisted of two equal intensity
components and one lox.ver intensity component. Figure 4.2 shows a typical sample
groub of translational acceleration records of the three prinapal components. For the
generated time histories, a 2-seconds parabolic build-up phase, a strong motion phase
of 10 seconds with amplification factor equal to one, a.nd an exponentially attenuated

decay phase of 12 seconds have been used to define the envelope function.

Response Spectra Inputs

The synthesized time histories were used to define the pseudo acceleration and
relative velocity ground response spectra for the principal components of excitation.
A step-by-step recursive algorithm developed by Nigam and Jennings (1969) was
employed to process the time histories. The design spectra were defined as the mean
and mean-plus-one-standard-deviation spectra of the time history ensemble. Figures
4.3 and 4.4 show the mean pseudo acceleration and relative velocity response spectra
of the first and third principal components. These mean spectra for the second
principal component are shown in Figures 4.5 and 4.6. They are plotted for oscillator
periods from 0.01 to 50 seconds vﬁth damping ratios of 0.005, 0.01, O,QZ, 0.03, 0.04,
0.05, 0.06, 0.08, 0.1, and 0.2. Figures 4.7 to 4.10 show the similar set of mean-plus-

one-standard-deviation response spectra.
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Figure 4.3: Mean pseudo acceleration response spectra of the major principal excita-
tion component for the ensemble of ground motions considered in the study.
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| Figure 4.4: Mean relative velocity response spectra of the major principal excitation
component for the ensemble of grounf motions considered in the study.
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Figure 4.5: Mean pseudo acceleration response spectra of the minor principal excita-
tion component for the ensemble of ground motions cousidered in the study.
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Figure 4.6: Mean relative velocity response spectra of the minor principal excitation
component for the ensemble of ground motions considered in the study.
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Figure 4.7: Mean-plus-one-standard-deviation pseudo acceleration spectra of the ma-
jor principal excitation component for the ensemble of ground motions.
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Figure 4.8: Mean-plus-one-standard-deviation relative velocity spectra of the major
principal excitation component for the ensemble of ground motions.
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Figure 4.9: Mean-plus-one-standard-deviation pseudo acceleration spectra of the mi-

nor principal excitation component for the ensemble of ground motions.
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Figure 4.10: Mean-plus-one-standard-deviation relative velocity spectra of the minor
principal excitation component for the ensemble of ground motions.
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In the response spectrum analysis with the travelling seismic wave m;)del, these
ground response spectra were used to define tile base inputs. The details of the
verification of the proposed spectrum approach are provided later in Section 4.5. To
study the influence of the rotational base inputs of a rotor sittiﬁg on a building floor,
these ground response spectra were applied at the base of the building as the seismic
inputs to obtain the the correlated floor response spectra. These calculated floor
response spectra were then used as the base inputs to the rotor system to calculate

its design response. This analysis is covered in Section 4.6.

4.4 Contribution of Real Eigenproperties

A rotor-bearing system will usua]ly have some real eigenvalues, For the example
rotor studied here, which is supported on fluid film bearings, there weére exactly
four real eigenproperties. They exist due to the highly damped characteristics of
the journal-bearing system. It was obsereved from the modal analysis results that
the frequencies corresponding to these real eigenvalues were very high. They can be
 considered to represent overdamped olr criticalljr damped modes. Since for earthquake
type ground motions, the integral (Jo;) decreases very fast with inceasing frequency
| (a;), it was suspected that the contribution of the terms associated with the real

modes to a response quantity was not going to be significant.

Because the formulation developed in the previous chapter separated the effect
of the real eigenproperties from that of the complex eigenproperties, it was quite
simple to ascertain their contribution by including or neglecting the terms associ-
ated with these modes in the response calculation. In Table 4.4, we show the root

mean square response values obtained for the stochastic inputs without rotational
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components. These response results were calculated with and without the real eigen-

property associated terms. It is observed that the effect on the total response of -

the real eigenproperties is, indeed, small as the difference in the results is less than

1.5%. Similar results were also observed when the rotational input components were

included. In further analysis, therefore, the contribution of the terms associated with
real eigenvalues is ignored; only the terms associated with the complex modes have

been used to calculate the rotor responses.

4.5 Verification of Response Spectrum approach

To verify the applicability of the response spectrum approach proposed in this
work, here a numerical sirﬁulation study is conducted. In this study, the response
values obtained from the time history analyses used as the benchmark are compared
with the r_ésponse values obtained by the résponse spectrum method. We consider

~ the case in which the rotational inputs are absent.

In th¢ response spectrum approach, the design response values are obtained by
utilizing équa,tioné (3.80) and (3.83) for the input response spectra defined in Section
4.3. Tol obtain the mean values of the design response, the mean spectra shown in
Figures 4.3, 4.4, 4.5 and 4;6 were ‘used as the base inputs. Likewise, to calculate the
mean-plus-one-standard-deviation values of t‘he‘de‘sign response, the response spectra
shown in Figures 4.7, 4.8,4.9 and 4.10 were utilized as the base excitations. The worst-

case design response values were obtained when the principal excitations were applied

along the rotor axes. In pa.rticular, the second principal component was oriented

in the axial direction of the rotor (z axis), while the other two components were

applied, interchangeably, along the transverse axes. In the time history analysis also,
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Table 4.4: Rotor responses including and excluding real modes by stochastic analysis

Response With real modes Without real modes Diff. (%)

D, (mm) 0.0454 0.0454 0.0
D, (mm) 0.0468 0.0468 0.0
F, (kN) 49515 4.8850 | 13
F, (igN) 6.1222 6.0755 -0.8
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the response values were calculated for each set of accelerograms applied along these

~ same directions to ensure that the seismic inputs in both approaches are consistently

applied.

To obtain the response in the time history approach, the generalized modal su-
perposition method was used. The uncoupled modal equations (3.7) were solved by
a step-by-step recursive procedure. For discretized base motion inputs E;(t) which is
assumed to be linear between consecutive time. steps tx_y and ?i, the solution of the

principal coordinate ¢; can be expressed as follows:

0;(tk) = ¥ gt + —%} -~ % | (4.3)
where
G = i{%}f{f}-‘(h-‘ + Ajha)
=1 '

Qs = i{%}f{?‘}i[h-‘ + Xj(hei + hiAL)]

=1

hei = Ei(tiz1)
hi = é[Ei(tk) — Ei(ty1)]

in which At is the time step and other quantities have been defined in chapter 3.
Here the forcing components E;, E;, and Ej are the base inputs along the directions
of rotor axes z, y, and z, which, as mentioned earlier, correspond to the first (or
the third), the third (or the first), and the second principal excitation components.
In terms of the time ﬁistory of the principal coordinates defined above, a response

quantity at time ¢ can be obtained from equation (3.10) as:
2n;
S(te) = 3_{T} {¥r}igi(te) (4.4)
g=1

Using equation (4.4), the time histories of the response quantities of interest were

obtained for the 50 sets of generated accelerograms. Figure 4.11 shows the plot of a
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sample response time history of the a.isk displacement obtained by this approach. For
a response quantity, each of the time histories were scanned to obtain the maximum
value. These maximum response values were then statistically processed to com-
pute the eﬁsemble mean and mean-plus-one-standard-deviation Values of the max-
imum response. The mean and mean-plus-one-standard-deviation response values
obta.ined for the time history ensemble are compared with the mean and mean-plus-

one-standard-deviation response values obtained in the response spectrum approach.

" These response values obtained by both the approaches are shown in Table 4.5.
Considereing the response values by the time history analysis as the benchmark re-
sults, the percentage differences computed for all response quantities obtgined by the
spectrum approach are less than 6%. This variation is well within the range of the
one-standard-deviation error bound. This excellent comparison of the reéults confirms
the validity of the proposed response spectrum ;Lpproa.ch for calculating the design
response of rotating machines, even though the approach is based on the assumptions
of the stationarity of the input and response and the equality of peak factors, as

discussed in Chapter 3.

4.6 Effect of Rotational Inputs

Even though it is a common practice to neglect the rotational components of
the inputs in seismic response analysis of structures, there are some sitnations in
which rotating machines may be exposed to rotational base motions. It is, thus, of
interest to evaluate the relative importance of the rotétiona.l input terms in the forcing
function on the rotor response. Since the effects from different inpﬁt components ‘were

separated in the response expressions developed in the previous chapter, it is quite
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Figure 4.11: Response time history of the disk displacement of the rotor in the z
direction by the modal time history analysis
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Table 4.5: Comparison of the maximum rotor responses obtained by the spectrum and
time history analyses for the mean and mean-plus-one-standard-deviation responses

Mean Response

Response - Spectrum result Time history result C.0.V. Difif. (%)

D, (mm) 0.1425 0.1430 0.0681 -0.35
Dy (mm) 0.1401 0.1440 0.1074 3.54
F, (kN) 15.235 15.646 0.0709 -2.63
F, (kN) 19.343 18.940 0.1004 2.13

Mean-plus-one-standard-deviation Response

Response  Spectrum result Time history result Diff. (%)

D, (mm) 01512 0.1527 -0.98
D, (mm) 0.1685 £ 0.1595 5.64
F; (kN) 16.125 16.755 -3.76

F, (kN) 21:855 20.841 4.86
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simple to evaluate the relative contribution of the rotational input components. In
this section we will examine this for both types of input models—the seismic wave

and cross correlation matrix models.

4.6.1 Seismic Wave Model

In this model, we will evaluate the contribution of the 'rotationai components
qf increasing intensity levél to the rotor response. In the seismic ﬁavé model, the
intensity of the rptationa.l input can be easily changed b:;' varying the apparent wave
velocity, c. As the wave velocity appears in the denominator of equation (3.19), the
lower the wave velocity, the higher the magnitude of the rotational components. Here’
five values of the wave velocity ranging from 10 m/sec to 800 m/sec were arbitrarily
selected. The rotational components corresponding to the wave velocity of 10 m/sec
are very strong. However, it is mentioned that such low wave velocities are not
expected in any engineering foundation of structures. Since it is expected that a
higher pedestal will amplify the rotational effect felt by the machine, the rotor pedestal
height has also been changed to study the effect of the base rotation on the response
bahavior. |

Effect of rotational acceleration terms

The root mean square values of the rotor response calculated with and without the
rotational accelerations (but no rotational velocities) inputs included in the analysis
are given in Ta.bie 4.6. These results were obtained for a rotor at different heights
rsubjected to the seismic wave excitations with different wave velocities. The con-
tribution of the rotational acceleration terms can be evaluated by comparing these
response values with the results calculated without any rotational inputs, which cor-

. respond to ¢ = oo. For A =0 m, the displacements of the disk remained the same
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Table 4.6: Rotor responses by stochastic analysis using the seismic wave model for
different wave velocities and rotor heights with rotational accelerations as rotational
inputs

Response = Rotor ht. Results for wave velocity ¢ (m/ sec).
quantity k(m) ¢=10 ¢=30 ¢=100 ¢c¢=300 c=800 c=oc

- 0~ 0.0454 0.0454 0.0454 ‘0.0454 0.0454 0.0454
D, (mm) 1 0.1974 0.0790 0.0497 0.0460 0.0455 0.0454
3 0.5761 0.1974 0.0739 0.0497 0.0461 0.0454

0 0.0468 0.0468 0.0468 0.0468 0.0468 | 0.0468
0.0737 0.0448 0.0447 0.0460 0.0464 0.0468
J 0.2141 0.0737 0.0444 0.0447 0.0459 0.0468

-

D, (mm)

0 6.8842 5.0107 4.8508 4.8677 4.8779 4.8830
F; (kN) 1 22.523 8.7371 5.3122 4.9225 4.8861 4.8830
3 67.323 22.889 8.2824 5.3618 4.9518 4.8850

0 7.8021 6.1709 6.0483 6.0616 6.0697 6.0755"
F, (kN) 1 - 9.9473 5.6545 5.7244 59395 6.0224 6.0755
‘ 3 26.531 8.8507 5.5116 5.7383 5.9335 6.0735
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regérdless of the wave velocity, whereas the forces at the bearings were observed to
increase about 40% in the z direction and 28% in the y direction for very strong
rotational inputs. In the cases where the rotor base was elevated, the résp.onses 'in
t-h.e horizontal direction grew steadily with the rotational intensity. At the highest
intensitjr of the rotational input, both the displacement and bearing f(lnrce values in-
creased about 3.5 times for A =1 m and almost 12 times for rotor height of 3 m. The
responses along the vertical direction, however, are somewhat different. At first the
response magnitudes are seen to decrease for the wéa.ker intensities of rotational com-
ponents, but then they increase continuously as the base rotations become stronger.
Eventually both the disk displacement and bearing force grow to about 1.6 times for -

h =1 m and 4.5 times for & =3 m of the values obtained without base rotations.

To better illustrate how thé rotor response varies with parameters ¢ a.nd h, these
results are also plotted in Figure 4.12 and 4.13. It is obvious from these figures
that, in general, the response of a rotor increases with the intensity of the base
rota,ti.on. Tt is also noted that the fesp;)nse curves'of h =3 m nise muc};l faster than
the curves for the other two smaller rotor heights. This implies that increasing the
height of the rotor basevenha,nces the effect of the rotational inputs, especially at
high rotational intensities. These results indicate that the contributions of the input
rotational components to the response can bé high if the rotational excitations are
strolng and the rotor is placed on a raised pedestal. Hov.veve# for the apparent wave
velocities of 300 m/sec to 800 m/sec, which are more likely to be encountered in
normal soil stratum for supporting engineering structures, the relative effect of the‘
rotational components is seen to be rather insignificant. Thus for rotors difectly
plaéed on a firm foundation, the contribution of the rotational Componqnts can be

conveniently neglected without affecting the accuracy of the calculated response.
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Effect of rotational velocity terms

As some of the forcing function terms also depend upon the rotational base ve-
locities, a.nd since they complicate the seismic input description in the calculation
of response by the response spectrum approach, it is also of interest to examine the
relative contribution of these terms to see if they can be neglected to simplify the
analysis. To study this, the mean squa.r;e response expression which included all parts
of the forcing function—translational accelerations, rotational accelerations and ro-
tational velocities—was utilized. Here again, since in the final expression the effect of
the velocity dependent terms was separated, it was quite simple to delete these terms
to evaluate their importance. The results obtained with and without these velocity
terms are shown in Table 4.7. The percentage difference shown in the table for various
wave velocities and rotor heights was calculated using the response value obtained
without the rotational velocity inputs as the benchmlaxk. The response results of the
disk displacements for these two sets of seismic inputs are virtually identical. The
bearing force response values show only slight disparity, about 5% at most among all
the cases. Thus it is apparent that the contribution of the rotational velocity terms
to the total response of a rotating machine is not significant. To simplify the anal-

ysis, therefore, these rotational velocity components can also be compleltely ignored

without affecting the accuracy of the calculated response.

4.6.2 Correlation Matrix Model

Another situation in which a rotating machine can expernience rotational excita-
tions at its base is through its supporting structure, even though there may not be
any significant rotational components in the seismic motion which excites the sup-

porting structure. To examine what effect such rotational excitations coming from
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Table 4.7: Rotor responses by stochastic analysis including the rotational velocity as
well as acceleration terms as base rotational inputs

. Response h=1m | h=3m
quantity . ¢=10 ¢=100 ¢=300 c¢=10 c=100 ¢=300
D, result  0.1974 0.0496 0.0460 0.5761 0.0739 ' 0.0496

(mm) d&iff (%) 00 00 00 00 0.0 0.0

D, result  0.0737 0.0447 0.0460 0.2141 0.0444 °0.0447
(mm) diff. (%) 0.0 0.0 0.0 0.0 0.0 0.0

F; result  23.495 53511 4.9269 67.814 83203 5.3681
(kN)  diff. (%) 43 0.7 0.1 0.7 0.5 0.1

F, result 10475 5.7515 59422 27.165 5.5409 5.7412
(kN)  diff. (%) 5.3 0.5 0.1 24 05 0.1 .
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the response of a supporting structure will have on a rotating machine, here we con-
sidered an example of a rotor placed in a three degrees of freedom building which
also responded‘iﬁ torsional mode. This one-floor structure consists of a rigid slab
supported on columns and shear walls. The mass center of the slab is eccentrically
placed with respect to the stiffness center of the system. Thus the floor has two
orthogonal translational components in the horizontal plane and a rotational compo-
nent about the vertical axis in its response. The magnitudes of the eccentricity along
the two horizontal directions are 0.05 and 0.10 multiplied by the radius of gyration
of the slab. The frequencies, damping ratios, participation factors and mode shapes

of this structure are given in Table 4.8.

The response of this supporting structure was ébtajned for the ground response
spectra generated in Section 4.3. The mean spectra were used as ﬁhe'seismic mputs
at the base of the building. The two horizontal excitations have equal intensities of
maximum aceeleration 0.2, while the input in the vertical direction is 2/3 as strong as
the horizontal components with maximum acceleration value of 0.134g. As commonly
assuméd in the regular seismic analysis, the input components for the supporting
structure were all translational and uncorrelated. The floor spectra were calculated
through the dynamic analysis of the primary structure using the approach presented
by Singh and Burdisso (1987). The motion of the slab has four components, two
translations in the horizontal plane and a rotation in the vertical direction correlated
with each other, along with the verticél translation which, assumed to reach the floor
unfiltered, is the same as-the ground vertical input and is uncorrelated with the other
three components. These floor spectra, which comprise of the auto, coincident and

quadrature spectra were then applied to the rotor as the base inputs.
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Table 4.8: Dynamic properties of the supporting structure in which the rotor is placed

Mode Freq. Damping Participation factor Mode shape {x10-%)
‘no. (rad/s) ratio r oy 6. T Yy 8,

1 8.7531 0.05 4448 -2611 0.0 8555 -5.021 69.160

2 15696 005  -338 -720.6 0.0 -0.65 -138.6 -2.495

3 20.031 0.05 7197 -1.769 0.0 1384 -0.340 -4.286
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The maximum response of the machine was calculated for these input floor spectra
by using equation (3.84). The rotor was oriented at different angles with respect
to the axes of the slab. The height of the rotor base above the floor was set at
1 m. The results a.x-:e shown in Figure 4.14 and 4.15. The design responses for
both the displacements and bearing forces in the vertical direction display very little
variation in the plots for different angles. The horizontal responses, vhowever, have

‘largest values when the rotor axis coincides with the structure axis with the lower
eccentricity, and smallest values if the_totor axis is parallel to the structure axis with
the higher eccentricity. It is also noted that the response values in the horizontal
direction are always greater than those along the vertical direction, similar to what
‘was observed in the wave model results. Analyses were also performed for excluding
the rotational inputs. The response results from both cases are very close, with all
differences being less than 1.2%. This shows that the contribution of the rotational
inputs at the base is not significant. Since most buildings in practice are designed with
as little rota,tiona.l_response as possible, the rotational excitation to a machine placed
in such buildings is not likely to be any stronger than the rotational input considered
in the above case. Thus, in such situations the contribution of the rotational base
inputs is not expected to be very significant. These rotational excitation terms can,
thereforé, be ignored from any further design considerations. However, if it is desired
the proposed response spectrum approa;:h still permits us to include the rotational

components in the seismic response analysis 'of rotating machines.

4.7 Summary

The response spectrum approach proposed in this work is verified by a simulation

study. The mean and mean-plus-one-standard-deviation response values calcu]ated-l
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Figure 4.15: Response of the-bearing forces using floor spectra as inputs in the cor-
relation matrix model
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by the response spectrum method are compared with the corresponding values cal-
culated by the time history analysis for an ensemble of generated time histories. The
difference in the two response values is well within the acceptable error range. This
good comparison validates the reasonableness of the assumptions which were made
regarding the peak factorlequa.]ity and the stationarity of the input and response in

the development of the spectrum approach.

The contribution of the real eigenproperties to the response of a rotating machine
is also evaluated. The root mean square values of the respoﬁse are obtained with
and without the terms associated with the real modes. The comparison of the two
response values calculated with and Iwithqut real modes shows that the contribution of
the terms associated with the real eigenpropertiés to the response is not sign.iﬁcalnt.
Thus, the terms associated with the real eigenproperties can be neglected in the
analysis of a rotor-bearing system without affecting the accuracy of the calculated

Iesponse.

The effect of the rotational base inputs on the rotor response is also examined in

this chapter. The mean square response values are obtained for the travelling seis-

mic wave model with rotational components of different intensity levels. Since the
rotational effects may be amplified for a rotor placed high above its base, the rotor
pedestals of diﬂerént heights have also been considered. The effect of the rotational
velocity components in the inputs is found to be unimportant. The rotational ac-
celeration components of high intensities, on the other hand, can affect the response
values noticeably, but such high intensity rotational excitations are rarely encoun-
tered in actual practice. The numerical results indicate that the rotational inputs to

machines coming from the torsional response of the supporting structures are also not
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expected to be strong enough to significantly affect a rotor response. Thus in practice
the effect of the rotational base inputs can be ignored from any further consideration
while -calculating the response of a rotating machine. The proposed response spec-
trum approach, however, permits one to include the rotational components of the

input as well if such components are considered to be strong.
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Chapter 5

Closure

5.1 Concluding Remarks

Seismic response of rotating machines subjected to multi-component base excita-
tions is studied. A rotating machine under earthquake loadings is a complex dynamic
system to analyze. The equations of motion in their general form are c].iﬂicult to
solve. Fortunately, studies have indica_.t'ed that, for seismic type of base motions, the
problematic parametric terms in the system matrices and nonlinear forcing teﬁns can
be neglected. This enables one tp develop an efficient response spectrum method for
calculating the design response of rotating machines for seismic base inputs defined

by input response spectra.

A formulation utilizing a generalized modal superposition approa,chv.with the ran-
dom vibration analysis is presented to study the seismic response characteristics of ro-
tating machines. The formulation is further extended to develdp a response spectrum
approach. The correlation between the excitation components are defined through

two different models. In the first model, the correlation between the base excitation
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components, including the rotational components, is expressed through the consid-
eration of tré.veﬂjng wave effect. In the second model, the correlation is expressed
through a correlation matrix. The expressions for both the tr-a,ve].ling wave model and
correlation matrix model are developed to calculate the response of rotating machines.
In these expressions, the contribution of the real and complex real eigenproperties and
the effects of rotational and translational input terms are sepaxa,teci out to faciliate

the study of their contribution to the total response.

Numerical results are obtained for an example rotating machine. The appliéability
of the response spectrum approach is verified by a time history simulation study. The
relative contributions of different terms to seismic response of the rotor-bearing system
are also evaluated. It is observed that the contribution of the real eigenproperties of
the system to the total response is negligible. It is also noted that the effect of the
rotational excitations can be significant only if the intensities of the rotational input
components at the base are very high. However, for a rotor sitting djrectlyl on the
ground or on the floor of a supporting structure, the rotational inputs have only small
effect on the response since such rotational excitations are usﬁaﬂy not very strong
in actual practice. Thus the rotational inputs can be ignored in the seismic analysis
of such rotating machines. The rotational base inputs, however, can be considered,
if desired, because the inclusion of the rotational components poses no difficulties in

the proposed spectrum approach.
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5.2 Suggested Future Research

In this research, the interaction between the rotating machine and its supporting
structure was ﬁeglected when the auto and cross floor spectrum inputs to the ma-
chine were obtained. However, there is a possibility of a strong dynamic interaction
between .the ma,clﬁne and its supporting strudure, especially if the machine is rela-
tively heavy and tuned. The effect of an unbalnced rotating machine on the response
of its suppdrting structure and the tuning between the machine frequency and the
frequencies of the primary system can be very important. Also the axial loading due
to seismic effects can be quite important in the design of some thrust bearings and
-axial stability analﬁis. Incorporation of the axial force in the aﬁalysis is a challenging
‘problem which has not been explored. This topic can be studied further to achieve a |

better understanding of the behavior of rotating machines in a seismic environment.
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Appendix A

Definition of System Matrices and Input

Vector

The mass, 'da.mping and stiffness matrices and the forcing function of a rotor system

in the finite element model are defined as follows;

(M) = pa [ (MITNds + o [ [NaJTINds
(€1 = 08, [ N7 (e Hea)” — (eaHenNNalTds + 204 [ [N Lol Ml

[Kj = EI /OI[N;]T [V;')ds + kGA /OI[Na]T[Na]ds

oA [ [N Jds + pA [ [ T2][V,1ds

@) = - pA[ [N]7ds) {a)
— pa( [ [T ds)lfe} - pLu( [ VTds) (A}
~ pA([ T ([} e} + ) {un))ds)
L[ NI ds)({erHen™ ~ {eaHer) ) o}
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where [N;], [V2] and [N;] are the matrices of interpolation functions, {ay} = {0} =
vector of base acceleration, {#,} = vector of base rotation, {e;} = {1,0}7, {e;} =

{0,1}7, {e} = {0, k, z; + s}T in which z; is the nodal coordinate, and
0 —8u 6
[w] = 826 0 ’-9.5:6

—b8ps b O

p, A, I, Ip, k, E and G are the physical and mechanical properties of the system,

and {1 is the operating spinning speed of the shaft.
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Appendix B

List of Constants in Seismic Wave Model

The coefficients of polynomials L:(w) = Lig+ Li;w? + Ljjw* and Ni{w) = Nijg+ Npw®+

Niwt + Ngw? for calculating [R;]); and the constants in equa,tion. (3.59) are listed as

follows:

Lo

Ly,
Ly
N1o
Niz
N
Nie

L?D
Lo
L24

w?akCu
(20w; — o)l + (285w 0 — ‘4-’_12')'511
tn

2 2
ijkan

(48, Brwjwy, — w? —wi)o + wfw,fuu + 2(ﬂkwkwf — Biwiwi)en
o + (48 Bkwjwr — wi — wi)vin + 2(Bjw; — Brwr Jerr

1

&-’?ka(zz
(28;w; — aw)lor + (2Bwjon — wP)éa
E?Z
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Nia
Ny
Nag

L3
Ly
N3
N3z
Naq

N3e

where

rr
by

wfwfagg
(48;Brywn — W} — wf)on + wiwivar + 2(Brwnw? — Bjwjwf)pa
022 + (48;8rwwe — wi — Wi )vaz + 2(Bjw; — Brwi )p2e

1 %7]

0

(2ﬂjwjak — wi (G2 = a1) — oww (€ - €21)
(Ciz2 ~ 1) + (ak — 2F;w;)(€12 — En)

0

W_?Wif(‘:olz ~ o) + 2(ﬁkwkw,2- - 5;‘%‘%3)(0'12 —0n)

| (4B;Brwjwi — wj — wi)(p1z — 1) + 2(Bjw; — Brwr)(012 — o)

+2(Brwrw? — Bjwiwi) (i -"‘Vzll)

(P12 — om1) + 2(Bjw; — 51:@:)(1/12 - vn)

ErkmZajn + CriknZsjm
€rkmsjn + Erknsjm
ZrimZskn + ZrjnZskm '
Qrjmlskn "']" Qrjnlskm

Arkn<sjm + Qrkm?sjn — ZrknQajm — zrkmaajn

K30

J
4c2? 2¢

K10y —
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K20} Kol

re

= K10 — -
H2 i 4c2 2c
cr —
p7 = o2+ W)
4
¢ _ 4 Q2;ma2nl;
1 = qZmZin — 2
Z22;mZ2n 2&4
Ha = daimlijn + o~ 9j0mazn + ——

1
b = (Vi + Yaa)

_ 1 ]
U= 2U1 - @(aiUz - 26U3)

1
V=2V - —(W;Wz — 2cV3)

2c2

1
W =2W: + —(‘/2 — ngz -+ 2CW3)

2¢2

- o1
X_,‘ = 4Xj1 — E(W;sz - 2'CXJ'3)

— 1
Y; = 4Yi + 5(Xj2 +2¢Yis — g;Y)
. 1,

Xk = 4Xk1 — g(wkng et 2CX]¢3)

_ 1 ’
Vi = 4V + < (Xk2 + 2¢Vhs — gxYao)

(&

where
K1 = (€1jm61kn + eljnelkm)/(ai + ak)
Ky = (EQjmezkn + 82jn62kﬂ‘l)/(aj + ak)
K3 = (€1jmE2kn + E1jn€2km — €1km€2jn — €14ne2im)/ (@ + )
K4 = G1imZ2jn + G1jnZ2jm — Z1jm32jn — Z1jn02jm
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Appendix C

List of Constants in Correlation Matrix

Model

The coefficients of polynomials L{w) = Liy+ Liyw?+ Liw* and N(w) = N+ N,w?+

Niw* + Nfw® in equation (3.68) and the constant in equation (3.77) are listed as

follows:
Ly = ‘-"_;z'akam
Ly = (28;w; — a)mm + (2Bjw500 — w})emm
L;4 = mm |
Nip = WhoiOmm
Ni; = [@Bifrwiwk — W} — wi)Omm + wWrwilmm

+2(ﬂk“-’kw]? - ﬁjwj‘”lz)‘Pmm }
Ny = Omm + (48;8win — 0F — wWi)mm + 2(Bw; — Brwk) Pmm

, ‘
Nig = Vmm

’ 2
L20 = wjakgmn
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2 = (28jw; — k)lmn + (2Bjwj0k — W)emn

/ —_

24 — gmn

(- 2, .2

0 = ijkamn

+ 2 2 2,2

+2(Brwnw] — Biwiwi)Pmn

Ny = Omn + (48i8cwjwr — w? — wi)vmn + 2(Biw; — Bri )Pmn

t

26 = Ymn
Ly = (2Bwiar — w})iun — arwiésn,
Ly = (on+ (on — 28w,
Ly = 0
e = Wik, + 2B} — Biwwf)a,,

Ny = (48;Brwjwr — wi — Wi )Pmn + 2(Bjw; — Brwk )0 pmn
+2(Bewrw’ — Bwiwi )i,

Niy = Chn + 2Bw; — Brw)Vinn

! —

Nyg = 0

where

Cmn = €kmZjn T €knZjm

gmﬂ = €kmijn + €knljm

Omn = ZjmZkn + ZinZkm

Vmn = QjmGkn + QinCim

Ymn = QknZjm + UkmZjn — Zknljm — Zkmljn
!
mn — T CkmZjn + €knZjm
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’
Em,, = _ekmajn+eknajm

!
Tmn — —Zjmfkn + ZinZkm
f
Vyon = —Gim@kn + Qjnlim
7
Pmn = CknZim — QkmZjn — Zknljm T Zkmdjn
7 4
_ 2e_‘ime'kn
711'"1 - -
aj + ag
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