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ABSTRACT

The inelastic responses of one-story, asymmetric-plan systems to earthquake ground
motions are presented for a wide range of system parameters and analyzed in this investiga-
tion with the objective of: (1) evaluating the effects of plan-wise distribution of stiffness and
strength on the response; {2) investigating how the response is influenced by the system
parameters; (3) identifying how structural response is affected by plan-asymmetry and how
these effects differ between elastic and inelastic systems; and (4) investigating how well the
effects of plan-asymmetry on structural responsc are represented by torsional provisions in

building codes.

Presented first for a wide range of system parameters are the inelastic responses of
several asymmetric-plan systems: with and without resisting elements along the direction
perpendicular to the ground motion, with varying number of resisting elements along the
direction of ground motion, with varying levels of overstrength and relative values of
strength and stiffness eccentricities, and with eccentricity due to uneven distribution of
stiffness and of mass. Plan-wise distribution of stiffness and strength is shown to
significantly affect the inelastic response of asymmetric-plan systems. Based on these resuits,
a simple system with two resisting elements along each of the two principal directions -- a
system that encompasses all the important characteristics of many actual asymmetric-plan

systems -- is selected for further research investigation.

The inelastic responses of this asymmeiric-plan system to two excitations -- a simple
input and an actual earthquake ground motion -- are presented for a wide range of system
parameters: uncoupled lateral vibration period, uncoupled torsional-to-lateral frequency
ratio, stiffness eccentricity, relative values of strength and stiffness eccentricities, and yield
factor. Based on these response results, we identify how various system parameters and
yielding of the system influence the response of asymmetric-plan systems in various spectral
regions of the excitation. In particular, the lateral deformation decreases and the torsional

deformation increases as the system becomes increasingly asymmetric in plan and
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increasingly flexible in torsion. Inelastic behavior influences the lateral deformation of
asymmetric-plan systems in a manner similar to symmetric-plan systems. The torsional
deformations are shown to generally decrease with yielding; however they may increase for
systems with large stiffness eccentricity, small yield strength, and equal values of stiffness

and strength eccentricities.

Subsequently, the dynamic responses of asymmetric-plan and symmetric-plan systems
are comparcd for a wide range of system parameters, Based on these response results, we
identify how the structural response is affected by plan-asymmetry, how these effects depend
on the system parameters and how these effects differ between elastic and inelastic systems.
The response of inelastic systems is affected less by plan-asymmetry compared to elastic sys-
tems. Between the two types of inelastic systems considered, the response of strength-
symmetric systems is affected by plan-asymmetry generally to a smaller degree compared to
systems with equal strength and stiffness eccentricities. In particular, the dynamic
amplification of torsional deformation is smaller, and the increase in element deformation
due to plan-asymmetry is less in strenéth-symmetric systems.

Finally, the responses of asymmetric-plan systems designed by various building codes
are presented and analyzed to determine how well the effects of plan-asymmetry are
represented by the torsional provisions in building codes. Building code provisions do not
ensure that the deformation and ductility demands on an asymmetric-plan system are simi-
lar to those on a similarly-designed symmetric-plan system. This goal can usually be
achieved for stiff-side elements by precluding any reduction in their design forces below
their symmetric-plan value; =0 in the design eccentricity, e,, 1S equivalent to this require-
ment. Similarly, the ductility demand on the flexible-side element can be kept below and
close to its symmetric-plan value by modifying the coefficient « in the design eccentricity, e,.
The optimal value of « depends on the design value of the reduction factor R and may differ
with the ground motion. However, it does not appear possible to reduce the additional ele-

ment deformations due to plan-asymmetry by modifying the design eccentricity; these larger
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deformations should be provided for in building design. Furthermore, the design eccentri-
city should be defined differently for elastic and inelastic systems; in the latter case, it should

vary with the design force level and anticipated degree of inelastic action.
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1. INTRODUCTION

Buildings subjected to lateral ground motion simultaneously undergo lateral as well as
torsional motions if their structural plans do not have two axes of mass and stiffness sym-
metry. As a result of coupled lateral-torsional motions, the lateral forces and deformations
experienced by various resisting elements (frames, shear walls, etc.) in such buildings would
differ from those experienced by the same elements if the building had symmetric plan and

hence responded only in planar vibration.

The effects of coupling between lateral and torsional motions on the earthquake
response of asymmetric-plan buildings has been a subject of numerous studies. Initially,
most studies were concerned with the elastic response of buildings, and the effects of lateral-
torsional coupling for such systems are now well established [2,7,11,12,18,29]. Based on the
elastic response results, the torsional provisions in seismic codes have been evaluated [2-
4,6,13,14,25,26,29,33,34]. Several of these investigations have suggested a larger eccentri-
city, compared to current codes, in order to reflect the dynamic amplification of the tor-
sional response arising from plan-asymmetry. However, the results of these studies may not
be directly applicable to the calculation of carthquake design forces for buildings because
they are usually designed to deform significantly beyond the yield limit during intense

ground motions.

In recent years, the research focus has shifted to the inelastic response of asymmetric-
plan systems in order to obtain results applicable to design of buildings
[1,7,8,17,19,20,24,30,31,35,36]. One of the difficulties in investigating the coupled lateral-
torsional response of asymmetric-plan systems in the inelastic range of behavior is that
many more parameters are required to characterize such systems compared to their elastic
counterparts. In particular, the linear elastic response of a one-story, asymmetric-plan (or
torsionally-coupled) system depends on the lateral and torsional vibration frequencies of the
corresponding symmetric-plan (or torsionally-uncoupled) system, the eccentricity between

the center of stiffness and center of mass, and the damping ratio, but not independently on



the number, location, or stiffness of the individual resisting elements, nor on the plan
geometry. In contrast, the distribution of stiffness and strength in plan influences the
response of the system in the inelastic range. Thus the results and conclusions of each of the
earlier research investigations may be restricted to the particular system analyzed and not
valid in general. This becomes apparent from the following review of previous work on ine-

lastic response of asymmetric-plan systems.

In one of the carlier investigations [19], using a single element model (Figure 1.1a), the
effects of torsional coupling on the earthquake response of a one-story structure in the ine-
lastic range of behavior were investigated for a range of system parameters. It was shown
that the inelastic response is affected by torsional coupling to generally a lesser degree than
elastic response. In particular, the torsionally coupled system, after initial yielding, has a ten-
dency to yield further primarily in translation and behave more like an inelastic single-

degree-of-freedom (SDF) system, responding primarily in translation.

In another study [17], using a two-element mass-eccentric model (Figure 1.1b), it was
shown that ductility demands in the resisting elements are insensitive to the normalized
eccentricity and the uncoupled torsional-to-lateral frequency ratio; in contrast, both of these
parameters are known to be important in elastic response. Furthermore, the ductility
demand on the worst loaded frame was shown to be rarely more than thirty percent greater

than the ductility demand in a similar symmetric-plan structure.

The validity of the findings in both of the above-mentioned studies were re-examined
using a three-element model (Figure 1.1c) in Reference [35] which demonstrated that, in
contrast to earlier work [19], torsionally-coupled systems did not respond primarily in trans-
lation when they were excited well into the inelastic range. On the contrary, significant rota-
tional motion was shown to exist at the instant where peak ductility demand is reached. It
was also shown that an increase by a factor of two in ductility demand is not uncommon for
systems with large eccentricity as compared to a symmetric-plan system, which is much

larger than the increase reported in Reference [17]; however, the ductility demand was not
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Figure 1.1 Systems Considered in Previous Investigations



sensitive to the ratio of uncoupled torsional and lateral frequencies. Using the same struc-
tural model, another study [1] confirmed these observations and concluded that the edge dis-
placement, which is affected more by plan-asymmetry than the ductility demand, can be
more sensitive to the uncoupled torsional-to-lateral frequency ratio, and that the lateral dis-

placement at the center of mass is not sensitive to the normalized eccentricity.

The response of four- and sixteen-clement mass-eccentric models (Figures 1.1d and
1.1e) demonstrated that for small eccentricities the torsionally-coupled sysiem behaves more
and more like an inelastic SDF system responding in translation after initial yielding [7].
Obviously, this investigation supports the conclusion of Reference [19] but contradicts the
results of References [1,35]. Using a four-element model similar to the one shown in Figure
1.1d, a recent study [24] concluded that a marked amplification of ductility demand occurs.
when the uncoupled torsional and lateral frequencies are coincident. Obviously, this investi-

gation contradicts the results of Reference [17].

Most building codes require that the lateral earthquake force at each floor level of an
asymmetric-plan building be applied eccentrically relative to the center of stiffness. Some
codes specify two formulas for the design eccentricity, e;. The design force for a resisting
element is computed as the larger of the two force values corresponding to the values of ¢,.
The resulting element design forces, when compared to their values in the corresponding
symmetric-plan system, are always larger for resisting elements on the flexible side of the
building but may be smaller for ¢lements on the stifl’ side of buildings with large stiffness
eccentricity. Such a reduction of the design forces is not permitted by several building codes.
Because of this restriction, and because for cach element the more unfavorable of two values
of ¢; is used to compute the element design forces, these as well as the total design force for
an asymmetric-plan building are larger than for the corresponding symmetric-plan building.
The resulting overstrength of the building has not been recognized in most earlier studies of
inglastic response of asymmetric-plan systems, where the element yield forces have been

assumed to be the same as in the symmetric-plan system 11,7,17,19,20,24,35]. Thus the



results of these studies may not be directly applicable to code-designed buildings.

The inelastic response of systems with plan-wise strength distribution representative of
code-designed buildings was a subject of two recent investigations which reached different
conclusions [30,36]. In one of these investigations [36], the strength eccentricity of code-
designed systems was determined to be approximately zero even if their stiffness eccentricity
is large, and the ductility demand on the resisting elements of asymmetric-plan systems was
shown to be about the same as if the plan were symmetric. Another study [30] demon-
strated that the largest ductility demand among all the resisting elements may not occur in
flexible-side elements, although they experience the largest deformation, but in stiff-side ele-
ments;, moreover, it was shown, in contrast to Reference [36], that the peak ductility
demand in asymmetric-plan systems may significantly exceed that in symmetric-plan sys-

tems.

Two investigations were concerned with three-element systems with strength eccentri-
city much smaller than the stiffness eccentricity, a situation typical of code-designed build-
ings. Using stiffness-eccentric systems (Figure 1.1c¢), it was concluded that torsional coupling
due to plan-asymmetry leads to little additional ductility demand [36], but mass-eccentric
systems (Figure 1.1f) were shown to experience unusually high ductility demand [8]. In order
to reduce the ductility demand, the Mexico Federal District Code was modified to impose a

minimum value on the strength eccentricity [8].

It is apparent from this brief review of earlier work that different stadies of the inelastic
response of buildings with asymmetric plan have not always arrived at consistent conclu-
sions applicable to code-designed buildings. The differences in the various results indicate
that the conclusions of each of these investigations are not valid in general, but are restricted
to the particular system and underlying modeling assumptions. Obviously there is a need for
a more comprehensive investigation of the inelastic response of asymmetric-plan systems in
order to arrive at consistent, generally applicable conclusions which can provide the basis

for improving torsional provisions in building codes.



Aimed towards this long-term goal, the objectives of this investigation are: (a) to evalu-
ate the effects of plan-wise distribution of stiffness and of strength on the inelastic response
of systems; (b) to investigate how the response of yielding, asymmetric-plan systems is
influenced by the system parameters; (c) to identify how structural response is affected by
plan-asymmetry and how these effects differ between elastic and inelastic systems; and (d) to
investigate how well the effects of plan-asymmetry on structural response are represented by

torsional provisions in building codes.

A general procedure for the earthquake response analysis of one-story, asymmetric-plan
system is presented in Chapter 3. The parameters that control the elastic response of such
systems are identified. Subsequently, a limited number of additional parameters that are
believed to be the most important in characterizing the inelastic response of asymmetric-

plan systems are introduced.

The objective of Chapter 4 is to investigate how the inclastic response of asymmetric-
plan systems is aifected by the plan-wise distribution of stifiness -- as determined by the
number, location, and orientation of resisting elements -- and by the plan-wise distribution
of strength -- as characterized by the overstrength factor and relative values of strength and
stiffness eccentricities. In particular, several systems are investigated with the objective of
establishing how the response is influenced by (1) the presence of resisting elements oriented
perpendicular to the direction of ground motion; (2) the relative contribution of these per-
pendicular resisting elements to the torsional stiffness; (3) the translational stiffness of the
system along the perpendicular direction relative to the stiffness along the direction of
ground motion; (4) the number of resisting elements along the direction of ground motion;
(5) the overstrength factor; (6) the relative values of the strength and stiffness eccentricities;
and (7) whether the asymmetry of the system is due to eccentricity in stiffness or in mass.
Based on these response results, the adequacy of the system parameters, identified in

Chapter 3, in characterizing the inelastic response of asymmetric-plan system is evaluated.



In Chapter 3, the effects of various system parameters -- uncoupied lateral vibration
period, uncoupled torsional-to-lateral frequency ratio, stiffness eccentricity, relative values of
the strength and stiffness eccentricity, and vield factor -- on the response of asymmetric-plan
systems are investigated. Furthermore, the influence of vyielding on the response of
asymmetric-plan systems is examined to determine whether the well known relationship
between the response of yielding and elastic SDF systems is also applicable to asymmetric-
plan systems. Based on the results of Chapter 4, a system that is simple and yet exhibits the
behavior of many asymmetric-plan buildings is selected to ensure wide applicability of

results.

Chapter 6 has the objective of identifying how the structural response is affected by
plan-asymmetry and how these effects differ between elastic and inelastic systems. For this
purpose, the dynamic responses of an asymmetric-plan and the corresponding symmetric-
plan systems are compared for a wide range of system parameters -- uncoupled lateral vibra-
tion period, uncoupled torsional-to-lateral frequency ratio, stiffness eccentricity, and yield
factor. Elastic as well as ineclastic systems are studied; for the latter, two values of the
strength eccentricity are considered: equal 1o the stiffness eccentricity and zero; the latter is

representative of code-designed buildings.

The main objective of Chapter 7 is to investigate the effects of plan-asymmetry on the
earthquake response of code-designed systems and to determine how well these effects are
represented by torsional provisions in building codes. For this purpose, the influence of the
design provisions in various codes on the element design forces, strength eccentricity, and
overstrength factor is investigated first. Subsequently, the deformation and ductility
demands on resisting clements of asymmetric-plan systems are compared with the values if
the system plan were symmeciric. Based on these results, deficiencies in code provisions are

identified and improvements suggested.

Finally, the conclusions of this investigation on the earthquake response of one-story,

asymmetric-plan systems are presented in Chapter 8.



2. SYSTEM AND GROUND MOTIONS
2.1 One-Story System
Consider the idealized one-story building (Figure 2.1), consisting of a rigid deck of
mass m. Resisting elements are frames or walls having strength and stiffness in their planes

only. The force-deformation relationship of each element is assumed to be elastic-perfectly-

plastic (EPP).

Let k;; and kj, represent the initial, elastic lateral stiffnesses of i th and j* resisting ele-

ments oriented along the principal axes X and Y, respectively. Then
Ky =Xk, and K, =3k, (2.1)
i J

are the lateral stiffnesses of the structure in the X- and Y-directions, respectively, With the
origin at the center of mass (CM), let x; and y; define the locations of j th ¢lement oriented

along the Y-direction and i element oriented along the X-direction, respectively (Figure

2.1). Then
Ky = Ekixyiz + ijysz (22)
! J

is the initial, elastic torsional stiffness of the structure about the CM.

The center of rigidity (CR) of the linearly elastic one-story system is the point on the
deck through which application of a static horizontal force in any direction causes no rota-
tion of the deck. For such a system the CR coincides with the center of stiffness (CS), which
is the point in the plane of the deck about which the first moment of the resisting element
stiffnesses becomes zero. For a system with discrete resisting elements, all of which remain
linearly elastic, the coordinates of the CS, ¢, and ¢, measured from the CM along the X-

and Y-axes, respectively, are given as:

1 1
e = _X;Exfkfy and ¢ = fx‘zyikix (2.3)
j !
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Figure 2.1 Idealized one-story system.
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The stiffness eccentricity is defined as the distance between the CM and the CS. Therefore,
¢ and ¢, are the X and Y components of the stiffness eccentricity. Equation (2.3) implies
that the stiffness eccentricity can be zero for many combinations of plan-gcometry and
stiffness distribution. In particular, e, and e,, are zero if resisting elements are located sym-

metrically about the CM and each symmetric element pair has the same stiffness.

In the inelastic range of behavior, the location of the instantaneous CS, which varies
with time, is determined by replacing the element clastic stiffnesses in equations (2.1) and
(2.3) with the element tangent stiffnesses. Note that for EPP force-deformation relationship
of resisting elements, the location of the CS becomes indeterminate when all the elements
are yielding because the numerator and denominator in equation (2.3) become zero. How-
ever, if the elements are assumed to strain harden after reaching their yield deformation, the

CS can still be located uniquely.

Let Vi, and V), represent the strength or vield force of the i and j* resisting ele-

ments oriented along the X- and Y-directions, respectively, Then
Vip = ZVMp = Dkiyin;  and V= Eijp = Ekjy”yj 2.4)
i i j J

are the fully plastic shears for the system. In equation (2.4), uy,; and u,; are the yield defor-
mations of the i and j* elements, respectively.

The plastic center (or center of strength) is defined as the location of the resultant of
yield forces of the resisting elements [31]). For a system with discrete resisting elements, the
coordinates of the center of strength, e,, and e,,, measured from the CM along the X- and

Y-axes, respectively, are found by taking the first moment of the yield forces and are given
by:
_ sy d - Ly, 2.5
€px = 7 ij e and €y = 37 23’1‘ ixp (2.5)
ye Xp i
The strength eccentricity is defined as the distance between the CM and the center of

strength. Therefore, e,, and ¢,, are the X and Y components of the strength eccentricity.
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The strength eccentricity of an asymmetric-plan system can be shown (from equations

(2.5), (2.1) and (2.3)) to equal its stiffness eccentricity, i.e.,

€ =€, and e

px oy = €.

sy (2.6)
if all the resisting elements oriented along each of the principal directions have same yield

deformation, i.e., U, =u,;. Farthermore, if u,;=u

=Wy, Where u,, is the yield deformation of

the corresponding symmetric-plan system, the element yield forces are same in the two sys-
tems. Thus, in particular the strength and stiffness eccentricities of an asymmetric-plan sys-
tem are the same if the element yield forces are the same as in the corresponding

symmetric-plan system,

However, the two eccentricities need not be the same; in particular, stiffness-eccentric
systems, i.e., e,%0, may not be eccentric in strength, i.e., e,=0. Consider a system wi;ch all
the resisting elements having equal yield forces, i.e., V,,,=V;,,. Then equation (2.5) reduces

1o
1 1
ey = —2x; and e, = — Dy, 2.7
n, < Hy &

in which n, and n, are the number of resisting elements along the X- and Y- directions,
respectively. Equation (2.7) implies that the center of strength is located at the centroid of
element locations. For such a system, the strength eccentricity is zero if the clements are
located symmetrically about the CM.

This investigation is restricted to systems with the mass, stiffness, and strength proper-
ties symmetric about the X-axis; i.e., ey,=e,,=0. The translational motions of such a system
in the X-direction may be considered separately as they are not coupled with the torsional
motions. However, the system would undergo coupled lateral-torsional motions when sub-

jected to ground acceleration a,(¢) in the Y-direction.
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2.2 Ground Motions
2.2.1 Simple Input

The first ground motion selected is a half-cycle displacement pulse, having the displace-

ment, velocity, and acceleration histories with peak values of u,,, v, and a

20> Veos 205 respectively

shown in Figure 2.2, The elastic response spectrum of the ground motion is shown in Figure
2.3, plotted against 7/t; and ft;, where 7 and f are the system period and frequency,
respectively and ¢, is the half-duration of the ground motion. The half-cycle displacement
pulse is selected because there is a close relationship between the response of systems to
such a simple ground motion and actual earthquake ground motion [38], and it has the
desirable property of a smooth response spectrum.

Various frequency regions of the spectrum for the half-cycle displacement pulse have
been identified previously [38], and are shown in Figure 2.3, separated by points a, b, ¢, and
d. The region to the right of point b {fi;<0.55) is defined as the low-frequency region of the
spectrum, the region between points b and ¢ (0.55 <fi;< 0.76) as the medium-frequency
région, and the portion to the left of point ¢ (ft;>0.76) as the high-frequency region. It is
sometimes desirable to subdivide the low-frequency region at point a into an extremely-low-
frequency sub-region for which peak displacements S; are equal to or less than the max-
imum ground displacement u,, and a moderately-low-frequency sub-region for which S, are
greater than u,,. The high-frequency region is similarly subdivided at point d into a
moderately-high-frequency sub-region for which the spectral pseudo-accelerations ‘Sa are
greater than the maximum ground acceleration a,,, and an extremely-high-frequency sub-
region for which S, are for all practical purposes equal to ag,.

The extremely-high-frequency sub-region, the medium-frequency region, and the
extremely-low-frequency sub-regions may also be referred to as the acceleration-sensitive,
velocity-sensitive, and displacement-sensitive regions. The moderately-high-frequency sub-

region provides a transition from the acceleration-sensitive to the velocity-sensitive region
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Figure 2.2 Time-histories of deformation, velocity, and acceleration for half-
cycle displacement ground motion.
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and the moderately-low-frequency sub-region is a transition from the velocity-sensitive to
the displacement-sensitive region. The observations of structural response behavior in each
of these spectral regions for the simple input (Figure 2.3) generally carry over to the

corresponding regions for actual earthquake ground motions [37,38].
2.2.2 El Centro Ground Motion

The second ground motion sclected is the first 6.3 seconds of the SOCE component of
the El Centro record obtained during the Imperial Valley earthquake of May 18, 1940. The
displacement, velocity, and acceleration histories of this earthquake with peak values of 8.28
inches, 14 inches/second, and 0.3125 g (g is the acceleration due to gravity), respectively are
shown in Figure 2.4. The elastic response spectrum of the ground motion is shown in Fig-
ure 2.5, plotted against the system period T. Various frequency regions in the response spec-

“trum for this excitation have also been identified previously [38] and are shown in Figure

2.5 separated by points a, b, ¢, and d.
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3. EQUATIONS OF MOTION AND METHOD OF ANALYSIS
3.1 Introduction

The governing equations of motion for an undamped, one-story system, symmetric in
mass, stiffness, and strength about the X-axis, subjected to the ground motion along the Y-
axis are presented in this chapter. Subsequently, the parameters that are believed to be the
most important in characterizing the inelastic response are identified. Finally, the numerical

technique to solve the equations of motion is briefly described.
3.2 Equations of Motion

The equations of motion for an undamped, one-story system governing the lateral dis-

placement u at the CM and torsional displacement u, are:

‘r‘;g&] + F(t) = - [(1)} agt) | (3.1)

where F is the vector of restoring forces corresponding to the degrees of freedom

ul = <u,ruy>.

In the linearly clastic range, equation (3.1) becomes [19,20]

ii(z)] 1 e [u(t)] [1]
. + w = - a.(t) (3.2)
[rug(t) e/r QF+(ey/r)? ritg(t) 0
in which e,;=¢,, is the stiffness eccentricity, r is the radius of gyration of the deck about the
CM,

Qg = 0)9/(.:) (3.3)

where w and w, are the natural vibration frequencies of the corresponding symmetric-plan
(or torsionally uncoupled) elastic system, a system with e,=0 but m, K,,, Kj;, and the element

stiffnesses kj, same as in the coupled system:

18
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w=VK,/m and w; =V K,/ mr? (3.4)

where K, = Ka—eszKy is the torsional stiffness of the structure about the CS. The linearly
elastic response of the system is characterized by the following system parameters: w, Qp, the
normalized stiffness eccentricity e,/r, and the damping ratio ¢ assumed to be same in each

mode of vibration.

However, the inelastic response of the system is affected by the location, stiffness, and
vield deformation of each of the resisting elements as well as their number. Thus, 3N param-
eters are necessary to completely define a system with N resisting elements for the purpose
of characterizing its inelastic response. Obviously it is unmanageable to conduct a
parametric study with 3N parameters and almost impossible to identify in a meaningful
manner the influence of each parameter on the inelastic response. Most of the previous
investigations have avoided this difficulty by restricting to a particular system with a
specified number, location, stiffness, and yield deformation of the resisting elements. Thus,
the results of these investigations are not valid in general, but are restricted to the particular
system and underlying modeling assumptions. In order to develop more generally applicable
results, a limited number of additional parameters that are believed to be the most impor-
tant in characterizing the response are introduced. The inelastic response of various systems
with identical values of these parameters is approximately the same even though the
number, location, stiffness, and yield deformation of the resisting elements are not identical

among the systems.

The first two of the additional parameters depend on the stiffness properties and loca-

tions of the resisting elements oriented perpendicular to the ground motion: (1) w,/w, the

ratio of the uncoupled translational vibration frequencies, where w, = VK, /m, the vibration
frequency in X-translation (note that wy/w = K,/K,); and (2) v,, the relative torsional
stiffness parameter, defined as the torsional stiffness of the system arising from the resisting

clements oriented perpendicular to the ground motion divided by the total torsional stiffness
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of the system. For the systems considered in this investigation, which are symmetric about
the X-axis, v, is given by:

2 kixy i2
i

Yy = K (3.5)

For a system without perpendicular elements, v,=0.

In a system with fixed values of w, @y, and e;/r, the additional parameters, v, and
w,/w, may or may not be independent. If the lateral load resisting elements of the system
are restricted to the edges of the deck, the two parameters are inter-related and only one of
them may be varied independently (Appendix A). However, the two paramecters are indepen-
dent if the resisting elements are not restricted to the plan edges (Appendix A). The latter
type of systems are considered in this investigation, and the parameters, v, and w,/w are
varied independently.

Three additional parameters are introduced that are related to the yield strengths {(or
yield deformations) of resisting elements along the direction of ground motion: (1) the
strength eccentricity e,=¢,, given by equation (2.5); (2) the overstrength factor O, defined as
the ratio of the strengths of the asymmetric-plan and symmetric-plan systems; and (3) the
yield deformation u, of the corresponding symmntetric-plan system. It is convenient to define

uy, through the dimensionless yield factor ¢ as:
Uy = Cit, (3.6)

where u, is the peak deformation of the corresponding symmetric-plan (SDF) system if it
were to remain elastic during the selected ground motion. The yield force then is ¢ times
the peak force in the elastic system.

Thus, the inelastic response of asymmetric-plan systems is characterized in this investi-
gation by the relative torsional stiffness parameter, v,, the ratio of the uncoupled vibration

frequencies, w,/w, the strength eccentricity, e,, the overstrength factor, O;, and the yield
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factor, ¢, in addition to all the parameters -- w, @, ¢,/r, and £ -- characterizing the elastic
response, Since these parameters are not sufficient to umiquely define the locations,
stiffnesses, and yield deformations of resisting elements of systems considered in this investi-
gation, additional restrictions on the system properties are necessary. These restrictions are
identified in Appendix B, where procedures to determine the locations and stiffnesses of
resisting elements in a system characterized by the above-listed parameters are presented,
and in Appendix C, where procedures to compute the yield deformations of resisting ele-
ments are developed. It will be shown in the following chapter that the inelastic response of
many asymmetric-plan systems may be characterized to a useful degree of accuracy by con-

sidering only the above-listed parameters.
3.3 Method of Analysis

The response of the system to the selected ground motion is determined by solving the
equations of motion (equatiori (3.1)) by a numericél, step-by-step integration procedure [21}.
The time scale is discretized into equal intervals of no more than a small fraction (1/50th) of
the lateral vibration period of the corresponding torsionally uncoupled elastic system.
Within each time interval, the lateral and torsional accelerations of the deck are assumed to
remain constant. For the time interval during which stiffness of any of the resisting elements
changes, the tangent stiffness matrix is re-cvaluated and the force unbalance created by the

numerical approximation is reduced to an acceptably small value by an iterative procedure.



4. EFFECTS OF STIFFNESS AND STRENGTH DISTRIBUTION
4.1 Introduction

The effects of plan-wise distribution of stiffness -- as determined by the number, loca-
tion, and orientation of resisting ¢lements -- and of the plan-wise distribution of strength -
as characterized by the overstrength factor and relative values of sirength and stiffness
eccentricities -- on the inelastic response of systems are investigated in this chapter. Subse-
quently, the adequacy of the system parameters identified in Chapter 3 in characterizing the
inelastic response is evaluated, The response results are presented for the simple excitation

defined in Chapter 2.

4.2 Systems Considered

Several systems are investigated with the objective of establishing how the response is
influenced by (1) the presence of resisting elements oriented perpendicular to the direction
of ground motion (Figure 4.1); (2) the relative contribution of these perpendicular resisting
elements to the torsional stiffness; (3) the translational stiffness of the system along the per-
pendicular direction relative to the sﬁﬂ"ness along the direction of ground motion; (4) the
number of resisting elements along the direction of ground motion (Figure 4.2); (5) the over-
strength typical of code-designed buildings; (6) the property typical of code-designed build-
ings that strength eccentricity is much smaller than stiffness eccentricity; and (7) whether the
asymmetry of the system is due to eccentricity in stiffness or in mass (Figure 4.3). The
stiffness and location of resisting elements in the systems of Figures 4.1 to 4.3 are deter-
mined by procedurc presented in Appendix B and their yield deformations by procedures
presented in Appendix C. Also examined are some of the systems considered in earlier stu-

dies, described in Chapter I, in order to resolve any differences in conclusions.

Response results are presented for a wide range of values of the uncoupled lateral
vibration period T =2r/w. Since in the linear elastic range of behavior the torsional
response is most prominent for close uncoupled torsional and lateral frequencies, @, is

chosen to be unity. The selected stifftness eccentricity ratio, e;/r=0.5, represents significant

22
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eccentricity between centers of mass and stiffness; for a rectangular building plan, it is
equivalent to an eccentricity of approximately 30% of the dimension perpendicular to the
direction of ground motion. Four values are chosen for the strength eccentricity: e,=e;, ¢,/2,
e./4, and zero; the first implies, for example, a system with element yield forces same as for
the corresponding symmetric-plan system, and the last represents a system with strength pro-
perties symmetric about the CM. The intermediate values of ¢,=¢,/2 and ¢,/4 are included
to cover the range of e, values representative of systems designed according to various
building codes. Four values are chosen for the overstrength factor: O,=1, 1.1, 1.2, and [.3.
The first represents an asymmetric-plan system with combined design strength of all resisting
elements equal to the value for the corresponding symmetric-plan system. The latter three
cover the range of overstrength values for code-designed buildings. Since the strength of
code-designed systems is a small fraction of that required for the system to remain e¢lastic,
the yield factor ¢ is chosen to be 0.25. The damping ratio £ is assigned a value of 5% which
1s reasonable for many buildings.

Figure 4.4 shows the yield deformations of the outermost elements on the flexible and
stiff sides of the system, determined by procedures presented in Appendix C. It is apparent
that for asymmetric-plan systems with no overstrength (O;=1) and e,=¢,, the yield deforma-
tions of all the resisting elements are identical and equal to the yield deformation, u,, of the
symmetric-plan system. However, for asymmetric-plan systems with e,<e;, the yield defor-
mations of resisting elements differ from each other and from u,. The vyield deformations of
flexible-side elements are higher whereas those of the stiff-side elements are lower (Figure
4.4) compared to u,. The element yield forces and hence yield deformations obviously

increase with increasing values of O; (Figure 4.4c).

The relative increase or decrease in yield deformations of these elements depends on
the number, location, and orientation of resisting elements in plan. The yield deformation
of a flexible-side element is increased more, and that of a stiff-side element is decreased

more in systems with perpendicular elements compared to systems with elements only along
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the ground motion direction (Figure 4.4a); also in systems with larger number of resisting
elements compared to systems with fewer elements (Figure 4.4b). The yield deformation of a
flexible-side element in a stiffness-eccentric system is increased more and that of the stiff-
side element is decreased less compared to the corresponding elements of a mass-eccentric

system (Figure 4.4d).

4.3 Response Characteristics

Figure 4.5 shows response histories for the asymmetric-plan system of Figure 4.1b and
its corresponding symmetric-plan system, each analyzed for two different assumptions of
force-deformation behavior: linearly elastic and inelastic. Whereas symmetric-plan systems
respond only in translation, asymmetric-plan systems undergo translational as well as tor-
sional motions. This torsional-coupling generally has the effect of reducing lateral deforma-
tions compared to the symmetric-plan system, an observation made many times before
[7,20]. The torsional component of response [7] causes larger deformations in elements
located on flexible side of the CS and smaller deformations. in those located on the stiff side,

compared to deformations of elements in a symmetric-plan system (Figure 4.5c¢).

It is also apparent that whereas, elastic systems oscillate about the initial equilibrium
position, the response of inelastic systems is characterized by increments in the plastic part
of the deformation, each causing a shift in the equilibrium position about which the system
oscillates until the next increment occurs. This characteristic of inelastic systems has been
identified earlier for symmetric-plan, SDF systems [37]. As is well known, the ductility
demand for SDF systems with same ¢ generally increases for decreasing values of T [37]

and, as will be seen later, the same trend holds for asymmetric-plan systems.

The responses of the inelastic system are replotted in Figure 4.6, together with the his-
tory of yielding in the various resisting elements. Elements oriented perpendicular to the
ground motion yield, unload, or re-yield simultaneously; when the element on one side of
the CS experiences positive yielding, the other element undergoes negative yielding, and vice

versa, On the other hand, clements oriented along the ground motion direction yield,
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Figure 4.6 Response histories of the four-element system due to simple input;
T/t=0.75, e,/r=0.5, Q=1.0, v,=0.5, w,/w=1, ¢=0.25, e,=¢;, O,=1, and
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unload, or re-yield with a time lag. The system has no torsional stiffness about the instan-
taneous CS during the time durations when all elements oriented perpendicular to the
ground motion vield together with all, or all but one, of the elements oriented along the
ground motion dirgction. Such time durations are identified as T1, T2, and T3. The lateral
stiffness of the system is zero during the time durations when all the elements oriented along
the ground motion direction yield; and these durations are identified as T4, TS5, and Té.
The system undergoes significant plastic torsional deformation during the time durations
when the torsional stiffness is zero, especially during T2 which is the longest of all these
durations. Similarly, the system experiences significant plastic lateral deformation during
the time durations when the lateral stiffness is zero, especially TS5. As a result of these plas-
tic deformations, the system has a tendency to undergo larger total deformations. These
observations made from Figure 4.6 are typical of short-period systems in which significant

inelastic action occurs.

In a vielding system the location of the CS varies with time. In the four-element sys-
tem of Figure 4.1b, the CS abruptly shifts from its initial position (e,/r=0.5) to the location
of element 1 when element 2 is yielding and to the location of element 2 when element 1 is
yielding (Figure 4.6). For systems with more than two resisting elements in the direction of
ground motion (Figure 4.2¢), vielding of one element has smaller effect and the stiffness
eccentricity changes more gradually (Figure 4.7). Because the one-element system of Figure
1.1a, described in Chapter 1, does not permit migration of the CS, it may not be able to
accurately predict the inelastic response of buildings with lateral load resisting system con-
sisting of several elements, especially if the system undergoes significant yielding,

The ductility demands in all the resisting clements oriented along the direction of
ground motion are not the same because of torsional response. As shown for the four-
element system (Figure 4.1b), the higher ductility demand occurs in the stiff-side element
(1)) for systems with ¢,=0 but generally in the flexible-side element () for systems with

e,=¢,; 1n the latter case, for some 7'/¢; values the ductility demand in the stiff-side element
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may be higher (Table 4.1 and Figure 4.8). This is primarily due to the differences in the
yield deformations of resisting elements in the two types of systems. In systems with e,—e,
the higher deformation generally occurs in the flexible-side element [36], all the resisting ele-
ments have identical yield deformation, and therefore the higher ductility demand also
occurs in this element. On the other hand, in systems with €,=0, the yield deformation of
the stiff-side element is much lower than that of the flexible-side element (Figure 4.4), which
results in the former element generally experiencing higher ductility demand even if the

larger deformation occurs in the latter element.

4.4 Influence of Torsional Stiffness Disiribution

Idealized systems considered in this investigation include: (1) systems with torsional
stiffness provided only by resisting ¢lements oriented along the direction of ground motion
(Figure 4.1a), and (2) systems with torsional stiffness provided by elements oriented along
both the principal directions (Figure 4.1b). In the system of Figure 4.1b, resisting elements
oriented along the two principal direction are selected to contribute equally to the torsional
stiffness of the system, i.e., v,=0.5; and the translational stiffness along the two principal
directions is identical, i.e., w,/w=1. But for this difference, the properties of the two systems
are taken to be same in comparing their responses. In particular, the uncoupled lateral
vibration period T, the normalized stiffness eccentricity e,/r, and the uncoupled torsional-
to-lateral frequency ratio €, are identical. Note that in order to keep the same value of Qg
the resisting elements need to located farther from the CS in the first system compared to
the second. Moreover, the yield factor ¢, the overstrength factor Q,, and the strength eccen-
tricity e, are the same in the two systems. Thus, the elastic response at the CS of the two
systems is identical, and the differences in the inelastic response result from differences in

the torsional stiffness distribution.

Figure 4.9 shows time-histories of the torsional deformations and element yield pat-
terns of systems with and without resisting elements perpendicular to the direction of

ground motion. It is apparent that the torsional stiffness in the system without
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Table 4.1 Ductility demand in resisting elements of four-element system due
to simple 1nput; e,/r=0.5, Q=1, v,=0.5, w,/w=1, ¢=0.25, O,=1, and £=5%.

T/t €, =€, e,

=2 Ho P 2
1 315.532 421.647 564.808 151.151
0.15 201.226 245.352 351.375 94.1092
0.2 135.353 161.457 233.813 62.4743
0.25 101.123 126.678 178.544 48.0487
0.3 81.3332 102.032 144.334 38.6379
0.35 75.4044 98.7459 136.169 36.1259
0.4 48.6423 63.299 87.0761 23.454
0.45 33.3241 45.7615 61.1287 16.7553
0.5 28.281 41.4251 53.9012 14.8673
0.55 29.0679 43.6203 56.6972 15.4781
0.6 29.7591 44.794 58.7235 15.8181
0.65 23.2447 36.5327 47.8726 12.7011
0.7 17.378 29.1873 38.3264 9.94042
0.75 13.07 23.8034 31.3989 7.97841
0.8 9.84748 19.7515 26.1234 6.58318
0.85 7.44507 16.6826 22.0263 5.60371
0.9 5.76104 14.444 18.9062 4.94131
0.95 4.63778 12,8295 16.5128 4.48745
1 3.91341 11.6439 14.64 4.1631
1.5 2.80418 5.58387 5.43897 2.18273
2 3.29834 4.41056 5.24111 1.95558
2.5 3.25403 3.44748 5.17473 1.851
3 2.94291 2.6823 4.66672 1.58764
3.5 2.61571 2.79212 4.01823 1.3419
4 2.71902 3.15727 3.86775 1.1534
4.5 3.15932 3.55135 4.50696 1.30726
5 3.59734 3.94785 5.18025 1.47422
5.5 4.02676 4.34531 5.51303 1.55902
6 4.07654 4.35413 5.84706 1.64358
6.5 4.06446 4.3079 6.5063 1.81211
7 4.05294 4.26898 6.56035 1.81977
7.5 4.04345 4.23662 6.52181 1.80351
8 4.03761 4.21044 6.4915 1.7896
8.5 4.03315 4,18898 6.46604 1.77796
9 4.02968 4.17108 6.44606 1.76854
9.5 4.02563 4.15472 6.43004 1.7608
10 4.02182 4,14027 6.41708 1.75435

Note: Bold-faced numbers are the maximum ductility demand in the system.
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Figure 4.9 Torsional deformations and element yielding patterns of systems
with and without perpendicular resisting elements due to simple input;
T/t1=0.75, e;/r=0.5, =10, v,=03, w,/0=1, ¢=025, ¢,=¢,, O;=1, and
£=5%. T1, T2, and T3 identify time durations when torsional stiffness is zero
and T4 identifies time duration when lateral stiffness is zero.
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perpendicular elements becomes zero for longer durations of time compared to the system

with perpendicular elements, resulting in larger torsional deformations in the first case.

The peak values of the responses of the two systems are presented as a function of
period ratio T'/#; for two values of e, and for fixed values of Qy, ¢;/r, ¢, O;, and £ in Figures
4,10 and 4.11. Such response spectra are presented for: the normalized lateral and torsional
displacements at the CS, wu,/u,, and rup/ug,; the normalized element deformations, u;/ug,;
and the maximum ductility demand in the system uq.,. The peak responses of short-period,
acceleration-sensitive systems are influenced significantly by the contribution to the torsional
stifiness from the resisting elements perpendicular to the direction of ground motion. If such
elements do not exist, the effects of torsional coupling are larger, leading to greater increase
in torsional response and greater decrease in the lateral response. The torsional response is
affected more than the lateral response. Thus, in the system without perpendicular ele-
ments, the flexible-side element experiences largef deformations and the stiff-side element

undergoes smaller deformations compared to the system with perpendicular ¢lements.

While these observations are valid for systems with equal strength and stiffness eccen-
tricities (e,=e;) as well as ‘strength-symmetric’ systems (e,=0), the differences in these two
systems influence the largest ductility demand among all elements. For systems with ¢,=e¢;,
the largest ductility demand generally occurs in the flexible-side element (Figure 4.8), which
is smaller in systems with perpendicular elements because this element experiences smaller
deformations. On the other hand, for systems with ¢,=0, the largest ductility demand gen-
erally occurs in the stiff-side elemeﬁt (Figure 4.8), which is smaller in systems without per-
pendicular elements because this element experiences smaller deformations and its yield

deformation is higher.

It is apparent from the preceding results that the torsional deformation, element defor-
mations, and maximum ductility demand for systems in the short-period, acceleration-
sensitive region of the spectrum are significantly affected by the contribution to the torsional

stiffness from the resisting elements perpendicular to the direction of ground motion. These
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elements have no influence on the elastic response because the overall properties: w, @y, e./7,
and £ of the two systems -- with and without such elements -- are chosen to be identical.
Thus the differences in the responses of the two systems presented in Figures 4.10 and 4.11
are the result of differences in their yielding behavior presented in the preceding section.
Because acceleration-sensitive systems usually undergo much yielding, the system response is
significantly affected by the perpendicular elements. However, these elements have smaller
influence in the medium-period, velocity-sensitive and the long-period, displacement-
sensitive regions of the design spectrum because such systems typically experience less yield-

ing (Figures 4.10 and 4.11).

The system of Figure 1.1c¢ with all three resisting elements in the direction of ground
motion has been the subject of extensive investigation [{,30,35,36]. It was concluded from
responses of acceleration-sensitive systems that considerable torsional motions occur that
can lead to ductility demand in an asymmetric-plan system that may be two to three times
larger than in a symmetric-plan system, and the edge displacements are larger by a factor of
two to six [1,35]. These conclusions were contrary to those reached in References {7,20]
from responses of systems with resisting elements providing resistance in both plan direc-
tions. In order to investigate the reasons underlying these apparent contradictions, the
response spectrum for the system of Figure 1.1c is also presented in Figure 4.10 where it is
seen to be essentially identical to the response of the two-clement system with the same
overall properties. Thus, the conclusions of References [1,35], while applicable to the system
of Figure 1.1c, are not valid for systems with resisting elements in both directions con-
sidered in References [7,20]. More importantly, they are not applicable to most actual build-
ings which invariably include resisting elements in both lateral directions to provide resis-
tance to both horizontal components of ground motion. In particular, the large increases in
ductility demand and edge displacements due to plan-asymmetry, observed in References

[1,35], are overly excessive for the design of most buildings.
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After having examined the extreme case of v,=0, 1.e, no torsional stiffness from per-
pendicular clements, the iﬁﬂuence of vy, within a practical range is examined next. The
peak responses of systems with v,=0.25, 0.5, and 0.75 are presented in Figures 4.12 and
4.13 as a function of period ratio 7/¢; for two values of ¢,: e,=¢; and ¢,=0; and for fixed
values of Qq, e,/r, w./w, ¢, O, and &. A value of v,=0.25 implies that the perpendicular ele-
ments contribute 25 percent to the total torsional stiffness whereas clements oriented in the

direction of ground motion contribute 75 percent.

The peak responses of short-period, acceleration-sensitive systems with e,=e; are
significantly affected by the parameter v, (Figure 4.12). As v, increases, i.e, the relative‘ con-
tribution of the torsional stiffness due to perpendicular elements increases, the torsional
deformation decreases and the lateral deformation increases. Because the torsional response
is affected more than the lateral response, the ﬂexible-side element deformation decreases
and the stiff-side element deformation increases with increasing vy,. Furthermore, the largest
ductility demand decreases with increasing +v,. The response of medium-period, velocity-
sensitive and long-period, displacement-sensitive systems is essentially unaffected by v, i.c.,

the relative contribution of perpendicular elements to the torsional stiffness (Figures 4.12),

The response of ‘strength-symmeitric’ (e,=0) systems is affected very little (Figure 4.13)
by the parameter v, compared to systems with e,=¢, (Figure 4.12). In particular, the
decrease in torsional deformation, increase in the lateral deformation, and modifications in
largest ductility demand and in deformations of flexible-side and stiff-side elements are small
in ‘strength-symmetric’ (e,=0) systems.

It is apparent from the preceding results that the inelastic response of short-period,
acceleration-sensitive systems with ¢,=¢; is significantly influenced by the relative contribu-
tion of perpendicular elements to the torsional stiffness of the system, but the response of
medium-period, velocity-sensitive and long-period, displacement-sensitive systems is affected

little in the parameter range considered. However, the response of ‘strength-symmetric’
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(e,=0) systems is affected very little by v, over the entire period range. It will be shown in
Chapter 7 that many asymmetric-plan buildings designed according to building codes pos-
sess strength eccentricity much smaller than the stiffness eccentricity, and hence respond like
‘strength-symmetric’ (e,=0) systems. The above results indicate that the response of such
systems would be essentially unaffected by ~v,. Therefore, the parameter v, is fixed in the

rest of this investigation at v, =0.5, a value representative of many actual buildings.

4.5 Influence of Translational Stiffness in Perpendicular Direction

As mentioned earlier, the linearly elastic response of the system of Figure 4.1b to
ground motion in the Y-direction is characterized by system parameters, o, &, €,/r, and £.
In particular, the response does not depend separately on the translational stiffness of the
system in the direction perpendicular to the direction of ground motion. However, such is
not the case after the system yields because the perpendicular elements may also yield
because of torsional deformation, thus affecting the instantaneous value of @, Thus, the
influence of the relative translational stiffness in the perpendicular direction, as character-
ized by the frequency ratio w,/w (which is equal to X,/K,) on the inelastic response of sys-
tems is examined next. For this purpose, the peak response of systems having w,/w=0.8, 1,
and 1.25 are presented in Figures 4.14 and 4.15 as a function of period ratio 7/t for two
values of ¢, ¢,=¢; and ¢,=0; and for fixed values of Qy, ¢,/r, v, ¢, Oy, and & The values of

w,/w considered represent a practical range for many asymmetric-plan buildings [10].

The peak response of short-period, acceleration-sensitive systems with e,=e; is
significantly influenced by w,/w or K /K, (Figure 4.14). As the relative stiffness along the
perpendicular direction increases, i.e., as w,/w increases, the effects of torsional coupling
decrease. In particular, the system undergoes smaller torsional deformation and larger lateral
deformation (Figure 4.14). Since these effects are larger in torsional deformation compared
to lateral deformation, the deformation of flexible-side element decreases and that of the

stiff-side element increases with increasing w,/w. Furthermore, the largest ductility demand
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decreases with increasing w,/w. The response of medium-period, velocity-sensitive and

long-period, displacement-sensitive systems is essentially unaffected by w,/w or K, /K,,.

The response of ‘strength-symmetric’ (e,=0) systems is essentially independent of w,/w

or K, /K, over the entire range of period values (Figure 4.15).

The preceding results indicate that the inelastic response of short-period, acceleration-
sensitive systems with e,=¢, is significantly influenced by K, /K,, the translational stiffness
along the perpendicular direction relative to the translational stiffness along the ground
motion direction; but the responses of medium-period, velocity-sensitive and long-period,
displacements-sensitive systems are essenfially unaffected. However, the response of
‘strength-symmetric’ (¢,=0) systems is essentially independent of w,/w in the parameter
range considered over the entire range of period values. As will be shown in Chapter 7,
many asymmetric-plan buildings designed according to building codes possess strength
eccentricity much smaller than the stiffness eccentricity, and hence respond like ‘strength-
symmetric’ (e,=0) systems. The above results indicate that the response of such systems
would be essentially unaffected by w,./w. Furthermore, w,/w is close to one for many build-

ings [10]. Thus, w,/w is fixed at w,/w=1 in the rest of the investigation.

4.6 Influence of Number of Resisting Elements

The lateral and torsional deformations of linearly elastic systems depend only on the
uncoupled lateral period 7', the normalized stiffness eccentricity e./r, the uncoupled
torsional-to-lateral frequency ratio @y, and the damping ratio £, but not independently on the
number and location of the resisting elements. However, the number, location, and yield
properties of resisting elements affect the instantaneous values of T, e,/r, and @, and may
therefore influence the inelastic response of systems. This question is examined next by com-
paring the response of systems shown in Figures 4.2a, 4.2b, and 4.2¢, having the same values
for the elastic parameters 7', @, and ¢;/r, and the overall inelastic parameters ¢, O,, and ¢,.

Thus, the differences in the responses of the three systems will be due to the number of
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elements influencing the yielding behavior. Note that in order to keep the same value of Q,
the outermost element in a system with larger number of resisting elements needs to be
located farther from the CS compared to the resisting element in a system with fewer ele-
ments. The peak responses of systems shown in Figure 4.2 are presented in Figures 4.16
and 4.17 as a function of period ratio 7/¢; for two values of ey: €p=e; and ¢,=0; and for

fixed values of Qg e,/r, v, @ /w, ¢, O, and &.

The number of resisting elements in the direction of ground motion has very little
effect on the response of systems with equal stiffness and strength eccentricities (e,=e;) (Fig-
ure 4.16). The lateral as well as torsional deformations at the CS are essentially unaffected,
the deformations of resisting elements are affected for some values of 7/¢, and the max-
imum ductility demand is essentially unaffected. The element deformations, although
affected little by the number of elements, are affected more than the other response quanti-
ties. The deformation of the outermost element on the flexible side tends to increase with
increasing number of elements whereas that of the element on the stiff side tends to
decrease. Such is the case because the outermost elements on the flexible and stiff sides in a
system with larger number of elements are located farther from the CS compared to those in
a system with fewer elements, and they experience greater effects of torsional coupling even

if the lateral and torsional displacements at the CS are the same.

The response of ‘strength-symmetric’ systems (e,=0) is affected more (Figure 4.17) by
the number of resisting elements compared to systems with e,=¢; (Figure 4.16); however,
the effects are still small over a wide range of lateral vibration periods. The lateral and tor-
sional displacements at the CS as well as the element deformations are essentially indepen-
dent of the number of resisting elements. However, the maximum ductility demand, which
occurs in the outermost element on the stiff side of such systems (Table 4.1), increases with
thé number of elements because the yield deformation of this element in systems with e,=0

decreases with increasing number of resisting elements (Figure 4.4b).
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elements along the direction of ground motion due to simple input: e;/r=0.5,
Qp=1.0, v,=0.5, w,/w=1, c=0.25, e,=¢,, O;=1, and £=5%.
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Figure 4.17 Response spectra for systems with two, three, and four resisting
elements along the direction of ground motion due to simple input; e,/r=90.5,
2,=1.0, v,=0.5, o, /w=1, ¢=0.25, e,=0, O;=1, and £=5%.
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It is apparent from the preceding results that the number of resisting clements oriented
along the direction of ground motion has little influence on the overall (ru, and u;) as well as
the local (u; and up,.x) responses of systems with ¢,=¢,. Thus, a system with only two resist-
ing elements along the direction of ground motion should provide a satisfactory estimate of
the inelastic response of a system with larger number of resisting elements provided the
parameters T, e;/r, Qy, vx, wy/w, €y, ¢, Oy, and £ are the same for the two systems. There-
fore, using a three-element system [1,35] over a two-element system [17], or a sixteen-

element system [7] over a four-element system [7] is of little benefit in research studies.

Although the number of resisting elements has very little influence on the lateral and
torsiopal displacements at the CS, and element deformations of systems with ¢,=0, it has
significant influence on the maximum ductility demand. Therefore, for such structures, a
system with actual number of elements should be used to accurately predict the ductility
demand from the other response quantities; the iat.ter may be determined from dynamic

analysis of a system with two elements.

4.7 Mass-Eccentric and Stiffness-Eccentric Systems

In some earlier studies, mass-eccentric and stiffness-eccentric systems have been used
interchangeably to study the inelastic response of asymmetric-plan systems. While the elastic
response of these two systems at the CS is identical provided that the elastic parameters, T,
Q. e./r, and £ ar¢ the same for both systems, the inelastic response is not the same [35]. The
factors contributing to these differences are examined in this section.

The inelastic response of mass- and stiffness-eccentric systems (Figures 4.3a and 4.3b)
having the same values for 7', Qy, &/r, vy, wy/w, and £ as well as ¢, Oy, and ¢, are compared
in Figures 4.18 and 4.19. The torsional and lateral displacements at the CS are essentially
identical for mass- and stiffness-eccentric systems with ¢,=¢; but the the elements on the
flexible as well as stiff sides of the system undergo smaller deformations in the mass-

eccentric system (Figure 4.18). Such is the case because the flexible-side element is located
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Figure 4.18 Response spectra for stiffness- and mass-eccentric systems due to
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closer to the CS, and the stiff-side element is located farther from the CS, in the mass-
eccentric system compared to the stiffness-eccentric system, both having the same values of
Q. Therefore, the effects of torsional coupling are smaller for the flexible-side element and
larger for the stiff-side clement in a mass-cccentric system, although the lateral and torsional
displacements at the CS are about the same as in the corresponding stiffness-eccentric sys-
tem. Because the maximum ductility demand, u,,, in systems with ¢,=¢; generally occurs
in the outermost element on the flexible side (Figure 4.8), and this element experiences

smaller deformations in a mass-eccentric system, pny,, 15 also slightly smaller.

The above observations help explain why two earlier investigations, both considering
systems with ¢,=¢;, resulted in contradictory conclusions. The additional ductility demand
in an asymmetric-plan system over that for the corresponding symmetric-plan, SDF system
was observed to be generally below 30 percent in one case [17] which is much smaller than
the factor of two to three observed in other studies [1,35]. In order to identify the reasons
for the apparent contradiction, the ratio of ductility demands in asymmetric—plan and
symmetric-plan, SDF systems is presented in Figure 4.20 for the stiffness-eccentric system
(Figure 1.1c) used in References [1,35] and the mass-eccentric system (Figure 1.1f) of Refer-
ence [17]. In the acceleration- and velocity-sensitive regions of the spectrum, the increase in
ductility demand due to plan-asymmetry is much larger for stiffness-eccentric systems. Thus,
it is apparent that the differences in conclusions between the two investigations result from

the use of different systems in the two investigations.

For ‘strength-symmetric’ systems (e,=0), all the response quantities can be significantly
different for the two systems (Figure 4.19). The torsional displacement of the mass-eccentric
system is lower, whereas the lateral displacement at the CS is unaffected over a wide range
of T/t, values, except in the velocity-sensitive region where it tends to be larger. This com-
bination resualts in lower deformation in the flexible-side element and higher deformation in
the stiff-side element of mass-eccentric systems for medium-period, velocity-sensitive sys-

tems. For other spectral regions, the element deformations. are similar for the two types of
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Figure 4.20 Normalized ductility demand of three-element stiffness-eccentric
and two-element mass-eccentric systems due to simple input; e,/r=0.5,
Q=1.0, v,=0, ¢=0.25, ¢,=¢;, O;=1, and £=5%.
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systems.

The maximum ductility demand in mass-eccentric systems with ¢,=0 is up to two to
three times that for stiffness-eccentric systems. As shown previously, the maximum ductility
demand for systems with e,=0 occurs in the stiff-side element (Table 4.1 and Figure 4.8),
the yield deformation of this element is significantly smaller for mass-eccentric systems (Fig-
ure 4.4d), and the maximum deformation of the stiff-side element tends to be larger for
mass-eccentric systems. Consequently, the maximum ductility demand in mass-eccentric

systems is much larger.

These results indicate that for systems with identical values of strength and stiffness
eccentricities (e¢,=e;), mass-eccentric and stiffness-eccentric systems may be used inter-
changeably to estimate the deformations at the CS but not for predicting the maximum duc-
tility demand. For ‘strength-symmetric’ systems (e,=0), however, these two systems can not
be used interchangeably at all because responses, overall as well as local, can be significantly
different for the two systems. Since the plan-asymmetry in most buildings arises from distri-
bution of stiffness and not of mass, the mass-eccentric system should not be used in inelastic
response studies of such buildings. In particular, the imposition of a minimum value of the
strength eccentricity in the recent Mexico Federal District Code [9] in order to reduce the
ductility demand may be unneccessary for most buildings because this restriction is based on

the response studies of mass-cccentric systems.

4.8 Influence of Overstrength Factor

Figure 4.21 shows time-historics for the asymmetric-plan system of Figure 4.1b with
two values of the overstrength factor: O;=1 and O,;=1.2. The increase in strength has the
effect of reducing slightly the time durations T4, TS5, and T6 when the system has no lateral
stiffness; and increasing slightly the time durations T1, T2, and T3 of no torsional stiffness.
Consequently, the system with overstrength experiences smaller lateral deformation and
larger torsional deformation. These observations made from Figure 4.21 are typical of

short-period systems which undergo significant inelastic action.
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The peak values of responses of systems with different strengths, as characterized by
overstrength factor O,=1, 1.1, 1.2, and 1.3 are presented in the form of response spectra in
Figures 4.22 and 4.23 for two values of the strength eccentricity: e,=¢; and ¢,=0. The
influence of overstrength on the system response varies with the response quantity of
interest and the spectral region. With increase in strength, the lateral deformation decreases
in the acceleration-sensitive region, may increase for some values of 7 /¢, in the velocity-
sensitive region, and remains unaffected in the displacement-sensitive region. These effects
of increased stirength on the lateral deformation of asymmetric-plan systems are consistent
with earlier results for SDF systems [38]. The torsional deformation increases slightly for all
but a few T /¢, values. Deformations of the elements on the flexible and stiff sides follow the
same trends as the lateral deformation because the contribution of the torsional deforma-
tion, which increases slightly with overstrength, to the element deformations is small com-
pared to that of the lateral deformation. Since the element deformations generally decrease,
and the element yield deformations ix_lcrcase (Figure 4.4c), the maximum ductility demand
Emax 18 smaller in systems with overstrength. The above observations are valid for systems
with e,=¢; as well as systems with e,=0. However, the effects are slightly smaller in the

latter systems compared to the former.

In most of the carlier investigations [1,7,17,20,24,35], the combined strength of all the
resisting elements in an asymmetric-plan system has been assumed to be equal to that of the
corresponding symmetric-plan system. However, as would be demonstrated in Chapter 7,
code-designed asymmetric-plan systems are generally stronger than corresponding
symmetric-plan systems. Thus the conclusions from most earlier studies are not directly
applicable to code-designed buildings. Such overstrength may lead to significant reduction
in the response, €.g., the maximum ductility demands for acceleration-sensitive systems with
30% overstrength, which is not unusual in code-designed buildings, may decrease by more
than 33%. Such reductions in ductility demand may merit consideration in the design pro-

CEess.
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Eigure 4.22 Response spectra of systems with O,=1, 1.1, 1.2, and 1.3 due to
simple input; ¢,/r=0.5, Q,=1.0, Y5=0.5, w, /w=1, ¢c=0.25, e,=¢;, and £=5%.
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Figure 4.23 Response spectra of systems with O,=1, 1.1, 1.2, and 1.3 due to
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4.9 Influence of Strength Eccentricity

It is apparent from the preceding sections that the relative values of the strength eccen-
tricity and stiffness eccentricity can significantly influence the response behavior of
asymmetric-plan systems. For example, among systems having equal strength and stiffness
eccentricities, those without perpendicular resisting elements experience larger ductility
demands compared to systems with perpendicular elements; the opposite trend is observed
in ‘strength-symmetric’ systems (e,=0). Similarly, mass-eccentric systems undergo smaller
ductility demand compared to stiffness-eccentric systems if e,=¢;, whereas the opposite
occurs for systems with e,=0. The influence of the strength eccentricity value is further
examined by considering two additional values, e,=¢,/2 and e,/4, to cover a range of values
typical of code-designed buildings.

Figure 4.24 shows time-histories of deformations and element yielding for the inelastic
system of Figure 4.1b for two values of the strength eccentricity: ¢,=¢; and ¢,=0. The stiff-
side element of the system with e,=0 yields for longer durations and the flexible-side ele-
ment for shorter durations compared to systems with e,=¢,. Such is the case because,
among the two systems, the yield deformation of the stiff-side element is smaller and that of
the flexible-side element is larger in systems with €,=0 (Figure 4.4). Furthermore, the per-
pendicular elements do not yield at all in the system with e,=0, whereas they yield for
significant time-durations in the system with ¢,=¢;. As a result, the torsional stiffness of the
system with €,=0 becomes zero for much shorter durations (in this particular case the dura-
tion is zero) compared to the system with e,=e;. Thus, the system with ¢,=0 undergoes
much smaller torsional deformation. Although, both systems, e,=¢; and ¢,=0, have no
lateral stiffness for similar time-durations, the stiff-side e¢lement of the system with e,=0
yields for longer time durations resulting in smaller lateral stiffness and hence larger lateral
deformation. These observations made from Figure 4.24 are typical of short-period systems

in which significant inelastic action occur.



62

"OJJZ ST SSQUJNIS [e1dle]
U9yM SuonBINp-0wWI} I8 9] pue ‘C1 ‘v Pue 0IdZ ST SSOUPIIS [BUOISIO) UdYM SUOTIBINp-owI]
Anuapt €1, Pue ‘zI ‘1L "%S=3 pue ‘1=°0 ‘€T0=2 ‘[=0/%® ‘¢'o="4 ‘0" 1=0 ‘G'0=4/%
ﬁm\(.OH_N\rN mw.DQﬁ« oﬁQEmm 0] osﬁ Eoﬁm%m ”—ﬁoaoﬁo-.:ao.u onp mo moﬁou‘w_ﬂ Omﬁoamvvm .vN.v ouswmm

i "n
€ 4 L 0 v € Z L 0
T T T T y B T T T T T T \
0 [ ] 1 [] [ I P
e B e s L
[] M _ [] rRe#13
T T T T y T T T T y T T T 0t-
L J N p
Yy 1 vL ] 5L 1 vl 460
\\://r \\/ 00 oms\ms
S ] l/f\?\/\ {50
/. T 4
0’1
g T T T y T T T T T T T T T 05°0-
. \l 4¢5z0-
i ] J o s
,/n ——100 "n/nd
—
1 =2 L Il 15¢0
0S50

uao s Hao



63

The peak values of responses of systems with e,= ¢, ¢,/2, ¢,/4, and zero are presented
in Figure 4.25 in the form of response spectra for fixed values of @y, e./r, vy, wy/w, ¢, O,
and £ Because the overall elastic parameters: w, Qp, ¢,/7, and ¢ and the ine¢lastic parameters
¢, and O; are chosen to be identical, the differences in the responses of these systems are the
result of differences in their yielding behavior arising from differences in the ¢, values. As
acceleration-sensitive systems typically undergo much yielding, their response is affected
more by the strength eccentricity compared to velocity- and displacement-sensitive systems
which typically experience less yielding.

The torsional deformation and element deformations of short-period, acceleration-
sensitive systems are significantly affected by the strength eccentricity (Figure 4.25). The
torsional response of systems with e,<e; (e,=¢,/2, ¢,/4, and zero) is much smaller compared
to the systems with e,=¢;, whereas the lateral response of the former systems is slightly
larger than the latter, indicating that systems Witi’l e,<e; experience smaller effects of tor-
sional coupling due to plan-asymmetry. The lateral and torsional deformations combine to
produce smaller deformation in flexible-side elements, and larger deformations in stiff-side

elements, of systems with ¢,<e; compared to systems with ¢,=¢,.

Because the yield deformations of the resisting elements are different in systems with
ep<e; compared to the systems with e,=e; (Figure 4.4), the largest of ductility demands
among all elements is affected in all the spectral regions by the strength eccentricity although
the element deformations are affected primarily in the acceleration-sensitive spectral region.
As shown in Figure 4.8, for systems with ¢,=e¢, the largest ductility demand generally occurs
in the flexible-side element; it occurs in the stiff-side element for systems with ¢,=0.
Because the deformation of the stiff-side element generally increases with reduction in the
strength eccentricity (Figu_re 4.25) and its yield deformation decreases (Figure 4.4), the max-
imum ductility demand, ppy,y, generally increases. The effect of e, value on the pp,, is not

large, and it may be reversed for a few 7'/t; values compared to the general trend.
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Figure 4.25 Response spectra of systems with ep=¢€y, €,/2, e;/4, and zero due
to simple input; e;/r=0.5, 2=1.0, v,=0.5, «, /w=1, ¢=0.25, O,=1, and £=5%.
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It was recently concluded from the response of three-element mass-eccentric systems
(Figure 1.1f) that systems with strength eccentricity much smaller than their stiffness-
eccentricity would experience excessive ductility demand due to torsional coupling [8].
However, another investigation arrived at the opposite conclusion for stiffness-ecccentric sys-
tems (Figure 1.l1c) in that torsional coupling leads only toc a little additional ductility
demand in systems with e,<<e, [36]. Two reasons explain this apparent contradiction.
Firstly, the assumption of Reference [36] that the largest ductility demand occurs in the
flexible-side element even for systems with e,<<e, is not supported by Figure 4.26. These
results indicate that, whereas this assumption is generally appropriate for system with e,=e,
it is not so for systems with ¢,=0. The largest ductility demand in the former class of sys-
tems generally occurs in element 3, which is the outermost element on the flexible side; in
the latter class of systems however, it occurs in element 1, the outermost element on the stiff
side. The assumption of Reference {36] therefore led to underestimation of the ductility
demand and hence to the contradictory conclusion. Secondly, as shown in Figure 4.27, the
increase in ductility demand resulting from plan-asymmetry is much smaller for stiffness-
eccentric systems (Figure 1.1¢) of Reference [36] compared to mass-eccentric systems (Figure

1.1f) of Reference [8], both with ¢,=0.

4.10 Adequacy of System Parameters

As mentioned in Chapter 3, 3N parameters are required to fully characterize the inelas-
tic response of a one-story system with N resisting elements. Most of the previous investiga-
tions have avoided the difficulty in dealing with many parameters by restricting to a particu-
lar system with a specified number, location, stiffness, and yield deformation of the resisting
elements. In order to develop more generally applicable results, inelastic systems in this
investigation have been characterized by the following parameters: w, Qy, &5/, vy, wy/w, €p,
O, ¢, and £ In order to evaluate whether these parameters are sufficient to characterize the
inelastic response of asymmetric-plan systems to a useful degree of accuracy, the results of

preceding sections are re-examined next.
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The inelastic responses of stiffness-eccentric systems having two, three, and four resist-
ing clements along the direction of ground motion (Figures 4.2a, 4.2b, and 4.2¢) were com-
pared in a preceding section. The above-listed parameters were kept the same for the three
systems, although the location, stiffness, and yield deformation of individual resisting ele-
ments differed significantly in these systems. However, it was shown that the overall lateral
and torsional deformations at the CS of these systems are almost identical (Figures 4.16 and
4.17). This indicates that the overall inelastic responses of different stiffness-eccentric sys-
tems would be essentially the same if the above-listed parameters are identical in these sys-

tems.

The inelastic response of mass-eccentric and stiffness-eccentric systems {(Figures 4.3a
and 4.3b), both with two resisting elements along the direction of ground motion and identi-
cal values of the above-listed parameters were compared in another section. Clearly the
locations, stiffnesses, and vield deformations of both the resisting elements differ
significantly in the two systems. It was shown that the overall responses of these two sys-
tems are essentially identical if e,=¢, (Figure 4.18), but they may differ significantly for
‘strength-symmetric’ (e,=0) systems (Figure 4.19). Thus, the system parameters considered
in this investigation are not able to distinguish between the response behavior of mass-
eccentric and stiffness-eccentric systems if the strength eccentricity of these systems is much

smaller than the stiffness eccentricity.

The preceding discussion indicates that the overall inelastic response of many
asymmetric-plan buildings may be characterized to a useful degree of accuracy by only a few
parameters -- vy, wy/w, €,, O, ¢ - in addition to those necessary to characterize linearly
clastic systems -- w, Qy, €,/7, and & Thus, the overall inelastic response of an asymmetric-
plan systcm may be estimated by analyzing a simpler system with fewer resisting clements
but having the same values of the above-mentioned system parameters as in the actual sys-
tem. However, a mass-eccentric system should not be used to estimate the response of a

stiffness-eccentric system and vice-versa, especially if the strength eccentricity of the system
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is much smaller than the stiffness eccentricity.



5. EFFECTS OF SYSTEM PARAMETERS AND YIELDING
5.1 Introduction

The inelastic responses of one-story, asymmetric-plan systems with plan-wise distribu-
tion of stiffness and strength chosen in accordance with the conclusios of Chapter 4 to
ensure wide applicability of results are presented and analyzed with the objective of identi-
fying the influence of system parameters: uncoupled lateral vibration period, uncoupled
torsional-to-lateral frequency ratio, stiffness eccentricity, relative values of the strength and
stiffness eccentricities, and yield factor. Furthermore, the influence of yielding on the
response of asymmetric-plan systems is examined. In particular, we determine whether the
well known relationship between the response of vyielding and elastic SDF systems are also

applicable to asymmetric-plan systems.

5.2 System Considered

Consider the idealized one-story building of Figure 5.1, which includes resisting cle-
ments oriented along the direction of grognd motion as well as perpendicular to the ground
motion; the latter are included to ensure widely applicable results (Chapter 4). Because the
system response is not sensitive to the number of elements along the direction of ground

motion, two elements are sufficient (Chapter 4).

As shown in Chapter 4, parameters v, and w,/w affect the inelastic response of short-
period, acceleration-sensitive systems with e,=¢; to a significant degree; but the response of
medium-period, velocity-sensitive and Iong-i)eriod, displacement-sensitive systems is affecfed
very little. However, the response of ‘strength-symmetric’ (e,=0) systems is cssentially
unaffected by these parameters over the entire range of period values. Because many
asymmetric-plan buildings designed according to building codes possess strength eccentricity
much smaller than the stiffness eccentricity [36], and respond like ‘strength-symmetric’
(e,=0) systems (Chapter 7), the response of such buildings would also be essentially indepen-

dent of v, and w,/w. Thus, in the present chapter and subsequent chapters these parameters

70
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Figure 5.1 Selected one-story asymmetric-plan system; elements 1 and 2 are
located equidistant from the CM, and system parameters v, and w,/w are
fixed at 0.5 and 1 respectively.
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have been fixed at values that are representative of many actual buildings: v,=0.5 and
wy/w=1.

Consequently, the inelastic response of the system of Figure 5.1 is characterized by the
strength eccentricity, ¢,, and the yield factor, ¢, in addition to all the parameters - w, Q,

e,/r, and £ - characterizing the elastic system; note that O, is selected as one.

5.3 Response Characteristics

Figures 5.2 to 5.6 show response histories for the asymmetric-plan (e,#0) system of Fig-
ure 5.1 and its corresponding symmetric-plan (¢,=0) system -- a SDF system -- subjected to
the simple input. Such response histories are presented for elastic systems and inelastic sys-
tems with four values of ¢=0.75, 0.5, 0.25, and 0.1. Also included in these figures for inelas-
tic systems are the histories of yielding in resisting elements and histories of instantancous

values of the system parameters @, and e, /r.

In symmetric-plan (e,/r=0) systems, which respond as SDF systems, all the elements
oriented along the direction of ground motion yield simultaneously and elements oriented
perpendicular to the ground motion do not undergo any deformation and thus they experi-
ence no yielding. On the other hand, in asymmetric-plan (e,/r#0) systems, elements 1 and 2
oriented along the ground motion direction yield, unload, or re-yield with a time lag. More-
over, the torsional component of the response produces deformation in elements 3 and 4,
causing these elements to yield, unload, or re-yield simultaneously; when the element on one
side of the CS experiences positive yielding, the other element undergoes negative yielding,
and vice versa. The duration of yielding in asymmetric-plan as well as symmetric-plan sys-
tems increases as the yield factor, ¢, reduces, i.¢., as the strength of the system decreases and

it is excited more and more into the inelastic range.

The response histories for inelastic systems (Figures 5.3 to 5.6) show that as the yield
factor decreases, the torsional deformation decreases significantly and the lateral deforma-

~ tion history of the asymmetric-plan system becomes increasingly similar to that of the
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Figure 5.2 Time variation of torsional and lateral deformations of elastic sys-
tem due to simple input; 7'/f; = 1.5, ¢,/r = 0.5, @y = 1, and ¢ = 5%.
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Figure 5.3 Time variation of torsional and lateral deformations, element
yielding, stiffness eccentricity, and frequency ratio of inelastic system due to
simple input; 7/¢; = 1.5, e,=¢ey, ¢ = 0.75, e;/r = 0.5, Q5 = 1, and £ = 5%.
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Figure 5.4 Time variation of torsional and lateral deformations, element
vielding, stiffness eccentricity, and frequency ratio of inelastic system due to
simple input; 7'/t = 1.5, e,=¢;, ¢ = 0.5, ¢;/r = 0.5, Q, = 1, and £ = 5%.
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Figure 5.5 Time variation of torsional and lateral deformations, element
yielding, stiffness eccentricity, and frequency ratio of inelastic system due to
simple input; T/¢; = 1.5, ep=e€;, ¢ = 0.25, ¢;/r = 0.5, Qy = 1, and £ = 5%.
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Figure 5.6 Time variation of torsional and lateral deformations, element
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corresponding symmetric-plan system. This indicates that as the asymmetric-plan system is
excited increasingly into the inelastic range, it beha\;es more and more like the correspond-
ing symmetric-plan system. While this statement has been made before [7,19,20], the plot
of Figure 5.6 provides an especially clear demonstration. Several factors possibly contribute

to this behavior, the more significant of which are mentioned next.

In a yielding system, instantancous values of the stiffness eccentricity, e, and the
uncoupled torsional-to-lateral frequency ratio, @ which have been shown to affect
significantly the response of elastic systems [19,20], vary with time. In the four-element sys-
tem of Figure 5.1, the CS abruptly shifts from its initial position (e,/r=0.5) to the location
of element | when the element 2 is yielding and to the location of the element 2 when ele-
ment 1 is yielding. Thus, the instantaneous CS may move farther away from the CM or
abruptly shift to the opposite side, leading to cancellation of some of the effects of increased
stiffness eccentricity. The instantancous value of @y becomes infinite during time-durations
when the lateral stiffness is zero while the system still has some torsional stiffness, and the
system behaves as if it is laterally very flexible or torsionally rigid. With decreasing yield fac-
tor, the system tends to behave as torsionally-rigid for longer time durations (Figures 5.3 to
5.6), and the above-mentioned cancellation of stiffness eccentricity effects become increas-
ingly significant. As a result, the torsional deformation decreases as the system is excited

more and more into the inelastic range (Figures 5.3 to 5.6).

Figures 5.3 to 5.6 show that the insténtaneous value of the frequency ratio, Q, may
become smaller or larger compared to its initial elastic value, which implies that the yielding
system may become torsionally-flexible or torsionally-stiff compared to the initial elastic sys-
tem. As a result, the uncoupled torsional and lateral frequencies which are identical in a
system with initial elastic value of ©, =1 may temporarily become separated (Figures 5.3 {o
5.6); similarly it seems possible for the uncoupled torsional and lateral frequencies of a sys-
tem with Qz#1 to become close for short time-durations. Therefore, as will be demonstrated

in Chapter 6, the large effects of torsional coupling in elastic systems with =1 are reduced
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by inelastic behavior.

The observations of this section are based on the response of medium-period, vélocity-
sensitive systems with equal torsional and lateral vibration frequencies and resisting ele-
ments in both lateral directions. They are also expected to apply to systems with much
different torsional and lateral frequencies, because their torsional response is smalier in the
elastic range and inelastic behavior is likely to reduce it further. However, these observa-
tions generally would not apply to the foliowing situations: (1) systems wifh resisting ele-
ments only along the direction of ground motion because such systems undergo larger tor-
sional deformation (Chapter 4), and cven with strongly inelastic behavior, the lateral defor-
mation history may not become similar to that of the corresponding symmetric-plan system
[35]; (2) short-period, acceleration-sensitive systems with larger eccentricities which tend to
undergo larger torsional deformations because their torsional stiffness may become zero for
extended time durations (Chapter 4); and (3) long-period, displacement-sensitive systems
because, as will be demonstrated later, the lateral deformation of such systems is affected
very little by vielding or plan-asymmetry; although, the torsional deformation of such sys-
tems is reduced by yielding in a manner similar to medium-period, velocity-sensitive sys-

tems.

5.4 Effects of System Parameters
5.4.1 Stiffness eccentricity

Presented in the form of response spectra are the peak values of three response quanti-
ties: the normalized lateral and torsional displacements at the CS, u,/u,, and ruy/u,,; and
the normalized value of the largest of peak deformations among all resisting elements,
Umax/Ugo- Such response spectra are presented in Figures 5.7 to 5.10 for e,/r=0, 0.05, 0.2,
and 0.5 with fixed values of {; and ¢. For inelastic systems, two values of strength eccentri-
city, e,, are considered: e,=¢, and e,=0. The results are presented for the half-cycle dis-
placement pulse {(or simple input) and the El Centro ground motion. The general trends

gleaned from the responses to the simple input are described first followed by the differences
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arising from the complexity of actual earthquake motions.

The system response to the simple excitation indicates that the peak deformation
response of elastic as well as inelastic asymmetric-plan systems may be significantly
influenced by the stiffness eccentricity, e,/r (Figures 5.7 to 5.10). The torsional deformation
increases with increasing stiffness eccentricity for a wide range of structural vibration
periods. For very-short-period, acceleration—contfolled, elastic systems the torsional defor-
mation increases lincarly with e;/r (Appendix D); inelastic systems in the same period range
may experience significantly larger increase in torsional deformation (Figure 5.8), especially
for larger ¢;/r, because the torsional stiffness of such systems may become zero for extended
time-durations (Chapter 4). The torsional deformation of very-long-period, displacement-
sensitive, elastic systems tends to zero regardless of the e,/r value (Appendix D); however,
such may not be the case for inelastic systems as indicated by the ﬂaitening of the curves in
Figures 5.8 and 5.9. Furthermore, for systems with small values of eccentricities, the largest
increase in the torsional deformation with increasing e,/r occurs in the medium-period,
velocity-sensitive spectral region compared to other spectral regions; this becomes apparent
by comparing the torsional deformations of systems with e,/r=0.05 with the zero torsional
deformation for symmetric-plan (e;/r=0) systems (Figures 5.7 to 5.9). However, as the
stiffness cccen'tricity becomes large, short-period, acceleration-sensitive systems may experi-
ence larger increase in the torsional deformation with increasing e¢,/r compared to systems
in other spectral regions (Figure 5.8). Among inelastic systems, the increase in torsional
deformation with increasing e;/r tends to be smaller for ‘strength-symmetric’ (g,=0) systems
(Figure 5.9) compared to systems with equal strength and stiffness eccentricities (e,=¢,) (Fig-
ure 5.8), with this difference between the two types of systems being most pronounced in the
acceleration-sensitive spectral region.

The lateral deformation is affected primarily in the velocity-sensitive region of the spec-

trum where it generally decreases with increase in the stiffness eccentricity (Figures 5.7 to

©3.9). In particular, significant decrease in the responsc occurs only for very large values of
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stiffness eccentricities (e,/r=0.5); response of systems with small e,/r values (e,/r=0.05, and
0.2) is essentially identical to that of the symmetric-plan system (e;/r=0). The stiffness
eccentricity affects the response of clastic and inelastic systems with equal strength and
stiffness eccentricitics (e,=¢;) In a similar manner (Figures 5.7 and 5.8); however, the
response of ‘strength-symmetric’ (¢,=0) systems is affected to a much smaller degree (Figure
5.9). In the acceleration-sensitive and displacement-sensitive spectral regions the lateral
deformation is essentially unaffected by the stiffness eccentricity (Figures 5.7 to 5.9). In the
limit, as the vibration period becomes very short or very long, it can be analytically demon-
strated that the lateral deformation of an elastic system is independent of the stiffness eccen-
tricity; the limiting value for long periods is the same as the peak ground displacement and
that for short periods is zero (Appendix D). For inelastic systems, the same limiting value is
valid for long periods; but it tends to be larger for short periods (Figures 5.8 and 5.9). The
observation about the lateral deformation being independent of the stiffness eccentricity car-
ries over to inelastic systems in the acceleration- and displacement-sensitive spectral regions
(Figures 5.8 and 5.9). In the transition regions of the spectrum, the lateral deformation
depends on the stiffness eccentricity in a complex manner, increasing for some period values
and decreasing for others; however, the dependence is small.

These observations of how stiffness eccentricity influences structural response in the
various spectral regions of the simple input generally carry over to the corresponding spec-
tral regions of the El Centro excitation. However, the detailed trends are more complicated
because the response spectrum of an actual ground motion is irregular compared to the rela-
tively smooth shape for the simple input. Because of this irregularity, the response is affected
more by the differences in the natural vibration periods, T and T, of the asymmetric-plan
system compared to the vibration period, T, of the corresponding symmetric-plan system.
Depending on the variation of the response spectrum in the neighborhood of T, the spectral
ordinates associated with the periods 7; and 7, may increase or decrease by varying

degrees. Thus, it is possible that the lateral deformation of an elastic, asymmetric-plan
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system may even become slightly larger than that of the corresponding symmetric-plan sys-
tem (Figure 5.7). This tendency is even greater for inelastic systems (Figures 5.8 and 5.9) for
reasons that are not apparent. The resulting complications in the trends show up more
strongly, as will be seen later, when the response spectra are plotted for different values of
Q. Such is the case because the uncoupled torsional-to-lateral frequency ratio, Qg, affects the

coupled vibration periods to a larger degree compared to the stiffness eccentricity ratio, ¢,/r.

The deformation of a resisting element arises from the combined effects of lateral
deformation, #,, at the CS and the torsional deformation, u,, the peaks of which generally do
not occur at the same time instant. The increase in torsional deformation with increasing
stiffness eccentricity combined with decrease in lateral deformation results in increased #,,,,
the largest of peak deformations among all elements, because of plan-asymmetry (Figure
5.10). This increase in u,, is observed for systems over a wide range of vibration periods
with isolated exceptions -- few for the simple input and more for the El Centro input. The
increase in u#,,, with increasing e./r is larger for elastic systems compared to inelastic sys-
tems, being especially small for ‘strength-symmetric’ (¢,=0) systems relative to systems with
equal strength and stiffness eccentricities (e,=¢;) (Figure 5.10). How significant in design
application is the increase in element deformation due to plan-asymmetry is an issue that
remains to be addressed. Among the various spectral regions, the increase in #y,,, IS gen-
erally more significant in the acceleration- and velocity-sensitive regions of the spectrum,
whereas it is negligible for displacement-sensitive systems; in the latter case the g,y is
essentially equal to the peak ground displacement. All of the aforementioned trends regard-
ing increased element deformation in asymmetric-plan systems are closely tied to how the
torsional deformation is affected by the stiffness eccentricity in various regions of the spec-

tram (Figures 5.7 to 5.9).
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5.4.2 Frequency Ratio

Another key parameter that influences the response of asymmetric-plan systems is g,
the uncoupled torsional-to-lateral frequency ratio. This is apparent from Figures 5.11 to
5.14 where the response quantities are presented in the form of response spectra for several
values of €,=0.8, 1, 1.25, and 2 but ¢,/r and ¢ are kept fixed. System responses to the sim-
ple input and El Centro excitation were computed for the same set of system parameters;
however, when required for clarity, some of the curves have been omitted from the figures

associated with the El Centro excitation.

The computed responses to the simple excitation show that, as {}, decreases, implying
that the system becomes increasingly flexible in torsion, the torsional deformation tends to
increase over a wide range of structural vibration periods, with this effect being largest for
acceleration-sensitive systems, smaller for velocity-sensitive and even more so for
displacement-sensitive systems (except for inelast.ic systems with ¢,=0) (Figures 5.11 to

5.13). The torsional deformation of very-short-period, acceleration-sensitive, elastic systems

is proportional to the factor 1/ Qg (Appendix D). Thus, the torsional deformation of elastic
systems increases at this ratio as @, decreases (Figure 5.11); however, inelastic systems may
experience significantly larger increase in deformation with decreasing Qy (Figures 5.12 and
5.13). The torsional deformation of very-long-period, displacement-sensitive, elastic systems
tends to zero regardless of the @, value {(Appendix D); however, such may not be the case for
inclastic systems as indicated by flattening of curves in Figures 5.12 and 5.13. Among ine-
lastic systems, the increase in torsional deformation of ‘strength-symmetric’ (¢,=0) systems
(Figure 5.13) is generally smaller compared to systems with ¢,=¢; (Figure 5.12).

The results for the simple input show that the lateral deformation of medium-period,
velocity-sensitive systems tends to decrease, with a few exceptions, as {, decreases (Figures
5.11 to 5.13). Furthermore, as mentioned previously, the lateral deformation of

acceleration-sensitive and displacement-sensitive systems is essentially unaffected by €@,. In
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the limit, as the vibration period becomes very short or very long it has been analytically
shown that the lateral deformation of elastic systems is independent of @, (Appendix D); the
limiting value is equal to the peak ground displacement for very long periods and zero for
very short periods. In the transition regions of the spectrum, the lateral deformation
depends on & in a complex manner, increasing for some period values and decreasing for
others; however, the dependence is small. These effects of @, on the lateral deformation of
inelastic systems with equal strength and stiffness eccentricities (e,=¢,) (Figure 5.12) are gen-
erally similar to those for elastic systems (Figure 5.11); however, the lateral deformation of

‘strength-symmetric’ {(¢,=0) systems {Figure 5.13) is affected to a much smaller degree.

The above mentioned trends in the lateral and torsional deformations of systems com-
bine to produce increasing ¢lement deformation, u,,,,, with decreasing Q, for systems in the
acceleration-sensitive region of the spectrum (Figure 5.14). For systems in the velocity-
sensitive and its associated transition regions, however, these trends may be reversed pri-
marily because of reduction in the lateral deformation. Furthermore, in the displacement-
sensitive region, u,, is affected very little by @, The maximum element deformations of
inelastic systems are affected by @, much less compared to elastic systems, especially in case
of the simple input (Figure 5.14). Between the two types of inelastic systems, ‘strength-
symmetric’ (e;p=0) systems are affected by @y to a much smaller degree, especially in the
acceleration-sensitive spectral region, compared to systems with equal strength and stiffness:
eccentricities (e,=¢;). Such is the case because Qy generally has smaller effect on the lateral
and torsional deformations of the former type of inelastic systems (Figure 5.13) compared to

the latter (Figure 5.12).

These observations of how the frequency ratio @, influences structural response in the
various spectral regions of the simple input also apply in an overall sense to the correspond-
ing spectral regions of the El Centro excitation. However, the detailed trends are more com-
plicated for reasons mentioned in the preceding section, Furthermore, the complications in

" the trends are more pronounced in Figures 5.11 to 5.14 compared to Figures 5.7 to 5.10
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because the frequency ratio, Q,, affects the coupled vibration periods of the system to a

larger degree compared to the stiffness eccentricity ratio, ¢,/r.

5.5 Effects of Yielding
5.5.1 Response of Asymmetric-Plan Systems

The effects of yielding on the lateral and torsional deformations, #,/u,, and riy/u,,,
and the largest of peak deformations among all resisting elements, yax/Ugo, are examined
next. For this purpose, these response quantities are presented in the form of response spec-
tra in Figures 5.15 to 5.23 for elastic systems and inelastic systems with vield factor, ¢=0.25
and 0.5. The value of ©,=1 is chosen to emphasize the large effects of pfan—asymmetry in
elastic systems. Three values of stiffness eccentricity are considered: ¢,/r= 0.05, 0.2, and
0.5; and two values of strength eccentricity are included: ¢,=¢; and ¢,=0. System responses
to the simple input and El Centro excitation were determined for the same set of system
parameters; however, when required for clarity, some of the curves have heen omitted from

the figures associated with the El Centro excitation,

It is apparent from response of asymmetric-plan systems to the simple input (Figures
5.15 to 5.20) that effects of yielding on the lateral deformation, u,/ug,, at the CS depend on
the vibration period of the system. In the short-period, acceleration-sensitive spectral
region, the lateral deformation is greatly increased by yielding. In the medium-period,
velocity-sensitive region, and the neighboring transition regions, depending on the lateral
period T, yielding may increase or decrease the lateral deformation. These effects of yield-
ing in the short- and medium-period systems increase as the yield factor decreases, i.e., the
system is excited increasingly into the inelastic range; because short-period, acceleration-
sensitive systems are known to experience generally the largest ductility demand, the effects
of yielding are largest for such systems. In the long-period, displacement-sensitive region,
lateral deformation is controlled by the ground displacement, and is unaffected by the inelas-

tic behavior, regardless of the yield factor. The above-noted effects of yielding on the lateral
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“Figure 5.15 Peak lateral and torsional deformations of elastic and inelastic
systems (e,=e¢;, ¢ = 0.25 and 0.5). Results are presented for asymmetric-plan
(e;/r = 0.05, @y =1) and symmetric-plan systems; ¢ = 5%.
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Figure 5.16 Peak lateral and torsional deformations of elastic and inelastic
systems (¢,=0, ¢ = 0.25 and 0.5). Results are presented for asymmetric-plan
(e./r = 0.05, @4 =1) and symmetric-plan systems; £ = 5%.
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Figure 5.17 Peak lateral and torsional deformations of elastic and inelastic
systems (e,=e,, ¢ = 0.25 and 0.5). Results are presented for asymmetric-plan
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Figure 5.18 Peak lateral and torsional deformations of elastic and inelastic
systems (e,=0, ¢ = 0.25 and 0.5). Results are presented for asymmetric-plan
(e,/r = 0.2, @y =1) and symmetric-plan systems; £ = 5%.
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Figure 5.19 Peak lateral and torsional deformations of elastic and inelastic
systems (e,=e;, ¢ = 0.25 and 0.5). Results are presented for asymmetric-plan
(es/r = 0.5, Qy =1) and symmetric-plan systems; £ = 5%.
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Figure 5.20 Peak lateral and torsional deformations of elastic and inelastic
systems (e,=0, ¢ = 0.25 and 0.5). Results are presented for asymmetric-plan
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Figure 5.21 Largest of peak element deformations of elastic and inelastic sys-
tems (e,=¢; and €,=0, ¢ = 0.25 and 0.5). Results are presented for
asymmetric-plan (e,/r = 0.05, @, =1) and symmetric-plan systems; £ = 5%.



101

SIMPLE INPUT EL CENTRO INPUT

g 0.1
3
P
E —- .
S | /7
f
0.01 INELASTIC 4 Curves for ¢=0.5
; :;fg'gs 2 omitted
3 ELASTIC [
0-001 } 1 Illllll [ [l IIl]-I| 1 3 llllfl' ] 1 Illllll 1
2
3
S A
- v
o 0.1 -
:!m F 1
3 ¢
> i 3
Ji
0.01 2 Curves for ¢=0.5
. omitted
-
r —_
0-001 —l L L i 410l | ] ]_lllll‘ [l 1 1L lJIIll 1
0.1 1 10 0.1 1 10 20
T, T

Figure 5.22 Largest of peak element deformations of elastic and inelastic sys-
tems (e,=¢, and ¢,=0, ¢ = 0.25 and 0.5). Results are presented for
asymmetric-plan (e,/r = 0.2, @, =1) and symmetric-plan systems; £ = 5%.
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Figure 5.23 Largest of peak element deformations of elastic and inelastic sys-
tems (e,=¢; and e,=0, ¢ = 0.25 and 0.5). Results are presented for
asymmetric-plan (e,/r = 0.5, @, =1) and symmetric-plan systems; £ = 5%.
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deformation of asymmetric-plan systems in the various spectral regions are seen in Figures
5.15 to 5.20 to be generally similar to symmetric-plan, SDF systems; the latter have been

extensively investigated [e.g. 38].

The effects of yielding on the torsional deformation depend on the lateral vibration
period, T, and on the stiffness and strength eccentricities of the asymmetric-plan system.
For short-period, acceleration-sensitive systems with yield strength about one-half of that
required for the system to remain elastic (¢='), yielding has the effect of slightly increasing
the torsional deformation. However, if the yield strength is much smaller, the torsional
deformation may increase or decrease depending on the values of strength and stiffness
eccentricities. For systems with equal strength and stiffness eccentricities (e,=¢;) and large
stiffuess eccentricity, the torsional deformation of short-period systems is increased by yield-
ing (Figure 5.19); such is the case because the torsional stiffness of such systems becomes
zero for extended time durations (Chapter 4). On tﬁe other hand, if the stiffness eccentricity
of the system is smaller, the torsional deformation of inelastic systems with e,=¢, tends to
be smaller compared to elastic systems (Figures 5.15 and 5.17). The torsional deformation
of ‘strength-symmetric’ (¢,=0) inelastic systems with very small yield strength is smaller than
that of the elastic system even for larger stiffness eccentricity (Figure 5.20). Such is the case
because, for reasons identified in Chapter 4, ‘strength-symmetric’ (e,=0) systems experience

smaller torsional deformation compared to systems with e,=e;.

The torsional deformation of medium-period, velocity-sensitive and long-period,
displacement-sensitive systems decreases as the yield factor decreases, i.e., as the system is
excited more and more into the inelastic range, regardless of the stiffness eccentricity (Fig-
ures 5.15 to 5.20). This is the case because, as mentioned in a preceding section, such sys-
tems tend to behave as torsionally-rigid for extended time-durations and inelastic action
causes the stiffness eccentricity to vary -- increase or decrease -- with time, leading to cancel-

lation of some of the effects of increased eccentricity.
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Inelastic action influences the largest of peak deformations among all resisting elements,
U pax, Of Systems in various spectral regions in generally a similar manner as it influences the
lateral deformation, u; (Figures 5.21 to 5.23). Such is the case because u,, for inelastic sys-
tems is dominated by u, with the contribution of torsional deformation decreasing with

increasing in€lastic action, i.e., decreasing c.

The observations presented in the preceding paragraphs of how yielding influences
structural responses in the various spectral regions of the simple input also apply in an
overall sense to the corresponding spectral regions of the El Centro excitation. However, the
detailed trends are more complicated for reasons mentioned earlier. Furthermore, the effects
of yielding on the lateral deformation of acceleration-sensitive systems due to El Centro
excitation seem to be less pronounced, in part because the spectra do not extend to periods

as extremely-short as in the case of the simple input.
5.5.2 Effects of Plan-Asymmetry

It is of obvious interest to know how the deformation responses of an asymmetric-plan
system differ from that of the corresponding symmetric-plan system. These effects of plan-
asymmetry are investigated in detail in Chapter 6; only the principal effects are identified
here. By comparing the lateral deformations of asymmetric-plan and corresponding
symmetric-plan (SDF) systems due to the simple input (Figures 5.15 to 5.20), the following

observations can be made.

The lateral deformations of the asymmetric-plan and SDF systems are essentially ident-
ical in the short-period, acceleration-sensitive and long-period, displacement-sensitive spec-
tral regions. This observation applies to elastic as well inelastic systems. In the medium-
period, velocity-sensitive region, however, the lateral deformation of the asymmetric-plan
system tends to be smaller than that of the SDF system. Among the two types of inelastic
systems considered, ‘strength-symmetric’ (e,=0) systems experience smaller reduction. As
the system yield strength decreases and the system is excited more and more into the inelas-

tic range, the reduction in the lateral deformation becomes small, resulting in essentially
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identical deformations of the asymmetric-plan and symmetric-plan systems.

Due to the contribution éf the torsional deformation, the element deformation, .y,
tends to be larger in asymmetric-plan systems compared to symmetric-plan systems, espe-
cially in the short-period, acceleration-sensitive spectral region (Figures 5.21 to 5.23). How-
ever, if the system is excited well into the inelastic range (small ¢), the difference between
the element deformation of the two systems decreases; this difference becomes especially

small for ‘strength-symmetric’ systems (e,=0).

The above-noted differences between responses of asymmetric-plan and symmetric-plan
(SDF) systems are apparent only for systems with larger stiffness ¢ccentricities (Figures 5.19,
5.20, and 5.23). For systems with small stiffness eccentricities, as seen in a preceding sec-
tion, these differences are small for elastic systems and become even smaller as the yield

strength decreases (Figures 5.15 to 5.18, 5.21 and 5.22).
5.5.3 Ratio of Inelastic and Elastic Responses

In the 1960’s, there was much interest in relating the earthquake response of yielding,
SDF systems to that of associated linearly elastic systems. This relationship was shown to
vary with the spectral region and general trends for the various spectral regions were
identified [38]. From a design point of view it would be useful to know whether the relation-
ships well known for SDF systems are also applicable to asymmetric-plan systems. For this
purpose, the response spectral plots of Figures 5.15 to 5.23 for lateral deformation, u,, and
the element deformation, u,,, are presented in a different form. Figures 5.24 to 5.29 show
peak deformations of the inelastic system divided by the value for the associated elastic sys-

tem.

This deformation ratio for asymmetric-plan systems is about the same as for SDF
(symmetric-plan) systems when the effects of plan-asymmetry on lateral deformation are
small (Figures 5.24 and 5.25). As indicated by the results of the preceding sections, plan-
asymmetry effects are small for short-period, acceleration-sensitive systems; long-period,

displacement-sensitive systems; systems with small stiffness eccentricity; and systems with
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Figure 5.25 Ratio of peak lateral deformations of inelastic (¢,=¢; and ep=0, ¢
= 0.25 and 0.5) and elastic systems. Results are presented for asymmetric-plan
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Figure 5.26 Ratio of peak lateral deformations of inelastic (e,=¢; and ep=0, ¢
= 0.25 and 0.5) and elastic systems. Results are presented for asymmetric-plan
(e,/r = 0.5, @y =1) and symmetric-plan systems; £ = 5%.
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Figure 5.27 Ratio of largest of peak element deformations of inelastic (e,=e¢;
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Figure 5.28 Ratio of largest of peak element deformations of inelastic (e,=¢;
and €,=0, ¢ = 0.25 and 0.5) and elastic systems. Resulis are presented for
asymmetric-plan (e;/r = 0.2, @ =1) and symmetric-plan systems; £ = 5%.



INELASTIC SYSTEM DEFORMATION / ELASTIC SYSTEM DEFORMATION

100

10

0.1

100

0.1

SIMPLE INPUT

111

N,
st

LI II'IIII

) I | LIJILJJ

e Lo L L LL

EL CENTRO INPUT

10

L

e =Cg

p

i lJlIII[ L 1 lJ_lllll L

0.1

— |

i l_l_ll_lll i

l_l_.l.ltltl L

0.1

0.1

1 10 20
T

Figure 5.29 Ratio of largest of peak element deformations of inelastic (e,=e;
and e,=0, ¢ = 0.25 and 0.5) and elastic systems. Results are presented for
asymmetric-plan (e,/r = 0.5, @, =1) and symmetric-plan systems; & = 5%.



112

small yield factors that undergo much yielding. For a system that falls into any of these
categories, the ratio of deformations for inelastic and elastic systems is affected little by
plan-asymmetry and tends to be slightly higher. As a corollary, the deformation ratio may
be affected significantly by plan-asymmetry, being smaller or larger compared to SDF sys-
tems, for systems with lateral vibration period in the velocity-sensitive spectral region, large
stiffness eccentricity, or yield factor close to one -- implying essentially elastic behavior (Fig-

ure 5.26).

Because of the contribution of torsional deformation, plan-asymmetry has greater
influence on u,,,,, the maximum among the peak deformations of all the resisting elements,
compared to 1, the lateral deformation at the CS. Consequently, the ratio of element defor-
mations for inelastic and elastic systems, while affected by plan-asymmetry in a manner gen-
erally similar to the lateral deformation at the CS (Figures 5.24 to 5.26) is affected to a
greater degree (Figures 5.27 to 5.29). When significantly different, the ratio is generally

smaller for asymmetric-plan systems cqmpared to symmetric-plan systems (Figure 5.29).



6. EFFECTS OF PLAN-ASYMMETRY

6.1 Introduction

From a design point of view, it would also be useful to know how the response of an
asymmetric-plan system differs from the response of the corresponding symmetric-plan sys-
" tem, and how these ef