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ABSTRACT
This report summarizes the main results of studies evaluating the response of an existing
instrumented ten-story Reinforced Concrete (RC) building, which was subjected to earthquake
ground motions of what can be considered moderate damage potential during the 1987
Whittier Narrows earthquake, The seismically laterally resistant structural system consists
of moment-resisting frames in the N-S (longitudinal) direction and RC shear walls in the E-W
(transverse) direction. It was designed according to the 1970 edition of the Uniform Building
Code (UBC). The ultimate goal of the studies reported herein has been to evaluate the
reliability of present methods of estimating the performance of existing buildings. To achieve
this goal the following objectives were pursued: (1) evaluation of the reliability of presently
available system identification techniques for inferring the dynamic characteristics of a
building from its recorded responses; (2) assessment of the reliability of analytical models
and methods presently available for conducting analyses of the seismic performance of
buildings; (3) evaluation, through static and dynamic (time-history) analyses, of the strength
and deformation capacity of the building as well as its response, overall and local, and
particularly the damage that the building could suffer when subjected to future critical ground
motions; and (4) assessment of the implications for present EQ-resistant design practice of

the results obtained.

After collecting all of the necessary data regarding design, construction and instrumentation
of the building; the records of the ground motions at its foundation; and its response to such
ground motions in the past, the following studies were undertaken: (1) analysis of the
recorded responses of the building during the most demanding motions that it had
experienced, and an attempt to identify from these records its dynamic characteristics using
different available system identification techniques; (2) development of analytical models and
calibration of these models with the identified dynamic characteristics; (3) analytical
prediction of the behavior of the building when subjected to the recorded earthquake ground
motions, and comparison of these predictions with the recorded responses in order to evaluate
the reliability of the analytical models used in the prediction; (4) evaluation of the capacities
supplied to the building in order to evaluate its possible overstrength; (5) analysis of the

probable performance of the building under more demanding seismic motions than those
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recorded; (6) study of the possibility of using a simpler methodology than one requiring
nonlinear time-history analyses to attain reliable estimates of the magnitude and distribution
of local demands on buildings; and (7) assessment of the implications for present EQ-resistant

design practice of the results obtained.

These studies showed the foilowing. (1) Large peak ground accelerations were recorded in
both directions (0.60g and 0.40g, respectively, in the transverse and longitudinal directions).
(2) In spite of the apparent severity of the recorded ground motions, there was only a small
change in fundamental period during the earthquake for the transverse direction of the
building. This indicates that some extra damage (extra cracking or small foundation
movement or both) had occurred. No changes in the longitudinal direction fundamental
period were observed, indicating that no significant damage could have occurred in this
direction during the response of the building to the earthquake ground motions. (3) For both
directions, the analyses that took into account only the fundamental mode fatled to reproduce
the recorded accelerations. When the first nine modes of vibration were considered, very
good correlation between the measured and computed responses was obtained for both
directions. Maximum computed interstory drifts of 0.34% in the longitudinal direction and
0.21% in the ransverse direction explain the absence of significant damage in the building.
These results confirm once more that Peak Ground Accelerations of recorded ground motions
are not a reliable parameter by which to judge the damage potential of an earthquake ground
motion to a specific structure. (4) From static-to-collapse lateral loading, using both a
triangular and a rectangular loading pattern, significant overstrengths were computed,
particularly in the transverse direction. For the longimdinal direction, the ratio between the
base shear at first significant yielding and the design base shear (0.052W) was about 3.06 for
the case of triangular lateral loading pattern, and about 3.62 for the rectangular loading. For
the transverse direction the overstrength ratios were higher than for the longitudinal direction.
Base shear strengths corresponding to first significant yielding of the shear walls were 0.32W
and 0.43W, respectively, for the triangular and the rectangular load patterns. Considering that
the structural system according to code requirements has to be designed for 0.073W, the
resulting strength ratios are 4.38 and 5.89. The maximum base shear strengths were

computed as 0.42W and 0.51W, respectively, for the triangular and rectangular load patterns,
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with the result that their ratios with the code requirement of 0.073W were 5,75 and 6.99.
These overstrengths were obtained assuming that the shear wall systems can develop a global
displacement ductility ratio larger than 3 and near 2.5 for the triangular and rectangular
patterns respectively. It is doubtful that the detailing of the reinforcement in the coupling
girders and walls could allow such a high global displacement ductility ratio to develop.
{5) Nonlinear time-history analyses were carried out for the longitudinal direction of the
building when subjected to the Hollister and James Road records, which were selected as the
most demanding earthquake ground motions that have been recorded in the U.S. on site
conditions similar to that of the building site. The maximum displacement for this particular
building was 7.71 inches, and the maximum interstory drift index was 0.016, resulting in a
maximum demanded story displacement ductility ratio of 3.15 in the 4th story. The number
of yielding reversals was small, only four. (6) Simplified earthquake analyses were
conducted, using a proposed approximate method, under the James Road and Hollister
records, For both records, the simplified analysis method produced very good estimates of
story displacement ductility demands. (7) Attempts have been made to estimate the
maximum displacement at the roof and the maximum Interstory Displacement (IDI) of the
building when subjected to the James Road record, using the results from the proposed
simplified analysis: while the estimates of the maximum IDI agreed very well with the value
obtained from the time-history analysis, the estimated value of the maximum displacement

at the roof was larger.

These studies confirm once mare that there are large uncertainties in predicting the seismic
performance of existing buildings, and point out clearly the advantages of having very well
instrumented buildings. Any recorded response can be used effectively to identify the actual
dynamic characteristics of the whole building system. These characteristics can then be used
to calibrate the analytical models of the building., The results also show that RC structures
designed according to present building regulations have significant first yielding and
maximum resistance overstrengths. These overstrengths need to be considered in the design.
In order to attain in practice realistic estimations of the real strength and deformation capacity
of existing or newly designed buildings it is necessary to develop simple but reliable

analytical methods such as the one proposed and used in the studies reported herein.



iv
ACKNOWLEDGEMENTS
‘The studies reported herein were conducted by Eduardo Miranda as part of his Ph.D program.
They are part of a research program on the seismic performance of existing buildings which
has been conducted at Berkeley for several years under the supervision of Professor Vitelmo
V. Bertero. Most of this research program has been supported by grants from the National
Science Foundation (NSF). Since September 1990, part of the research has been supported
by research grants provided by Kajima Corporation and administered by CUREe (California
Universities for Research in Earthquake Engineering). The financial support provided by
NSF and Kajima is gratefully acknowledged. Part of the data used in the studies reported
herein has been obtained owing to the support of the California Department of Conservation

(Division of Mines and Geology, Strong Motion Instrumentation Program).

The long and fruitful discussions held with Professors James Anderson and Helmut
Krawinkler, as well as with several researchers from CUREe and Kajima, are greatly
appreciated. Hatem Goucha, a Research Assistant, and Brad Young helped in the preparation

of this report.



v

TABLE OF CONTENTS

ABS T RACT . i i i it e e e e e i
ACKNOWLEDGEMENTS . . ... . ittt ittt e iv
TABLE OF CONTENT S . ... it ittt et st st e it e e earns \4
LIST OF TABLES . .. ittt it et e st e et e e vii
LIST OF FIGURES . . ... it e et e e et e viii
1. INTRODUCTION . . ...t s e et et e e 1
1.1 INTRODUCTORY REMARKS . ... ... .. i ieen 1
1.2 OBIECTIVES .. i i i e et e e e e e 1
1.3 SCOPE ... e e e e e 2
2. DESCRIPTION OF THE BUILDING, ITS INSTRUMENTATION
AND DESIGN CRITERIA . . ..o oot it ittt et e e e i e e S
2.1 GENERAIL DESCRIPTICN OF THE BUILDING SYSTEM .......... 5
2.2 INSTRUMENTATION ...ttt ittt ittt i e et et e e e 6
2.3 SEISMIC DESIGN CRITERIA . ... .. e e e 8
- 10) 11
BIgULeS .« ot e e e e e e e e e 13
3. RECORDED RESPONSE DURING THE WHITTIER NARROWS
EARTHQUAKE . ... i e i et e e e e 19
3.1 THE WHITTIER NARROWS EARTHQUAKE .................. 19
3.2 DESCRIPTION OF THE RECORDED RESPONSE DURING THE
WHITTIER NARROWS EARTHQUAKE .................... 19
3.3 SYSTEM IDENTIFICATION OF THE DYNAMIC
CHARACTERISTICSOF THEBUILDING . . ................. 20
Tables ... e e e e e e 23
B gUreS . . e e e 25
4. EVALUATION OF THE PERFORMANCE OF THE BUILDING UNDER
MODERATE EARTHQUAKE GROUND MOTIONS ................. 33
41 INTRODUCTORY REMARKS ... ... ... .. .. . i, 33
42 EIGENVALUE ANALYSIS . . .. i i i e v e 33
4.3 TIME-HISTORY ANALYSES . ... ... ... .. i 34
Tables . ... e e e 37
Bigures . . e e 39
5. EVALUATION OF THE SUPPLIED CAPACITIES TO THE BUILDING . .... 47

5.1 GENERAL REMARKS



vi

5.2 NONLINEAR STATIC-TO-COLLAPSE ANALYSIS IN THE

LONGITUDINAL (N-S) DIRECTION OF THE BUILDING ....... 47
5.3 NONLINEAR STATIC-TO-COLLAPSE ANALYSIS IN THE

TRANSVERSE (E-W) DIRECTION .. ......... .. ... ... ...... 50
Figures . . .. e 53

6. NONLINEAR ANALYSES OF THE PERFORMANCE OF THE BUILDING

UNDER SAFETY LEVEL EARTHQUAKE GROUND MOTIONS ....... 63
6.1 SELECTION OF THE CRITICAL GROUND MOTIONS ........... 63
6.2 BEHAVIOR UNDER THE HOLLISTER RECORD ............... 65
6.3 BEHAVIOR UNDER THE JAMES ROAD RECORD ............. 65
6.4 COMPARISON OF THE BEHAVIOR OF THE BUILDING UNDER

THE HOLLISTER AND JAMES ROAD RECORDS ............ 66
6.5 SIMPLIFIED NONLINEAR ANALYSES ... ... .. ... ... ... ... 66

6.5.1 Estimation of Displacement Ductility Demands . . ........... 66

6.5.2 Estimation of the Maximum Displacement and Interstory Drift

Index .............. e e e 69
Tables ... ... 71
Bigures . . oo e e 73
7. SUMMARY, CONCLUSIONS, IMPLICATIONS OF RESULTS

AND RECOMMENDATIONS . . ... . i 85
7.1 SUMMARY AND CONCLUSIONS .. ... .. ... ... . ... 85
7.2 ASSESSMENT OF IMPLICATIONS OF THE RESULTS FOR EQ-

RESISTANT PRACTICE .. ... ......... 88
7.3 RECOMMENDATIONS FOR FUTURE RESEARCH AND

DEVELOPMENT .. ... ... .. .. . . i e 89

REFERENCES .. . . 91



vii
LIST OF TABLES

Table 2. 1 Summary of the steel reinforcement in the structural members of the

DU & . ot e e e e e
Table 2. 2 - Peak accelerations recorded in the building during three earthquakes . . .

Table 3. 1 - Peak responses in the building during the October 1st, 1987 Whittier

Narrows Earthquake. . .......... 0. it

Table 3. 2 - Translational modal frequencies identified from the earthquake

TECOTAS, . . v e e e
Table 3. 3 - Translational periods of vibration identified from earthquake records. . . .

Table 3. 4 - Comparison of vibration periods identified from the 1976 Whittier and
the 1987 Whittier Narrows records

Table 4. 1 - Participating mass as a percentage of the total mass for the first two
modes of the structure
Table 4. 2 - Comparison of analytical and measured responses of the building
during the Whittier Narrows earthquake,

Table 6. 1 - Summary of response parameters computed in nonlinear time-history
analyses
Table 6. 2 - Story ductilities for different levels of global deformation computed
using nonlinear static analyses
Table 6. 3 - Comparison of computed story displacement ductility demands for the
Hollister record.
Table 6. 4 - Comparison of computed story displacement ductility demands for the
James Road record.

........................................

..........................

..................................................

...........................................

.........................................

23



viii

LIST OF FIGURES

Figure 2. 1 - General view of the ten-story RCbuilding . . . .................. 13
Figure 2. 2 - Floor plans of basement and first floor ....................... 14
Figure 2. 3 - Floor plans of second and fourth through tenth floor .. ... ...... ... 15
Figure 2. 4 - Elevation of the transverse direction of the building . ............. 16
Figure 2. 5 - Column reinforcing details . .................... .. ......... 17
Figure 2. 6 - Beam reinforcing details. . .............. . ... .. ... .. ... 18

Figure 3. 1 - Transverse (East-West) acceleration time-histories recorded in the

1987 Whittier Narrows earthquake. . ......... . o, 25
Figure 3. 2 - Longitudinal (North-South) acceleration time-histories recorded

during the 1987 Whittier Narrows earthquake. ...................... 26
Figure 3. 3 - Linear-elastic response spectra of horizontal ground motions recorded

in the basement of the building (0, 2, 5, 10, and 20% damping). . ......... 27
Figure 3. 4 - Fourier amplitude spectra of accelerations recorded in the

longitudinal direction of the building . .................. ... ... . ... 28
Figure 3. § - Fourier amplitude spectra of accelerations recorded in the transverse

direction of the building. .. ........ ... . i i 29
Figure 3. 6 - Transfer functions for the longitudinal direction of the building. ... ... 30
Figure 3. 7 - Transfer functions for the transverse direction of the building. . ... ... 31
Figure 4. 1 - Three-dimensional finite element model of the building. ........... 39
Figure 4. 2 - Results from the eigenvalue analysis of the building. ............. 40
Figure 4. 3 - Comparison of measured and calculated acceleration time-histories at

the Sth floor for the transverse direction of the building. . .............. 41
Figure 4. 4 - Comparison of measured and calculated acceleration time-histories at

the 10th floor for the transverse direction of the building. .............. 42
Figure 4. 5 - Comparison of measured and calculated acceleration time-histories at

the 5th floor for the longitudinal direction of the building. .............. 43
Figure 4. 6 - Comparison of measured and calculated acceleration time-histories at

the 10th floor for the longitudinal direction of the building. ............. 44
Figure 4. 7 - Comparison of measured and calculated displacement time-histories

for the transverse direction of the building. ........................ 45
Figure 4. 8 - Comparison of measured and calculated displacement time-histories

for the longitudinal direction of the building. ........ ... ... ... ... 46

Figure 5. 1 - Load-deformation relations for the longitudinal direction of the

bullding. . .. ... 53
Figure 5. 2 - Comparison of computed strengths (for the longitudinal direction of

the building) and 1970 UBC minimum strength requirements. . . . .. ....... 54
Figure 5. 3 - Longitudinal displacement profiles of the building at different levels

of deformation when subjected to a triangular loading pattern. . .......... 55

Figure 5. 4 - Longitudinal displacement profiles of the building at different levels
of deformation when subjected to a uniform loading pattern. .. .......... 55



ix

Figure 5. 5 - Interstory drift index profiles of the building at different levels of

deformation when subjected to a triangular loading pattern. ............. 56
Figure 5. 6 - Interstory drift index profiles of the building at different levels of

deformation when subjected to a uniform loading pattern. . ............. 56
Figure 5. 7 - Contribution of exterior and interior frames to the total lateral

strength and stiffness of the building. . ........ ... ... ... L 57
Figure 5. 8 - Locations of plastic hinges in the building at three different levels of

deformation when subjected to a triangular loading pattern. ............. 58
Figure 5. 9 - Locations of plastic hinges in the building at three different levels of

deformation when subjected to a uniform loading pattern. . ............. 59
Figure 5. 10 - Load-deformation relation to the transverse direction of the building. . 60
Figure 5. 11 - Transverse displacement profiles in the building at different levels

of deformation when subjected to a triangular loading pattern. . .......... 61
Figure 5. 12 - Transverse displacement profiles of the building at different levels

of deformation when subjected to a uniform loading pattern. . ........... 61
Figure 5. 13 - Locations of plastic hinges in the building when subjected to a

triangular loading pattern. . . ......... e e 62
Figure 5. 14 - Locations of plastic hinges in the building when subjected to a

uniform loading pattern. . ......... .. .. i 62

Figure 6. 1 - Acceleration time-histories of the 1989 Hollister record and 1979

James Road record. . ... ... .. 73
Figure 6. 2 - Roof displacement and base shear time-histories computed in the

building for the Hollister record. ... ... ... . ... .. 74
Figure 6. 3 - Story load-deformation relations computed in the building for the

Hollister record. . . ... . ... . e 75
Figure 6. 4 - Computed response envelopes in the building for the Hollister record. . 76
Figure 6. 5 - Roof displacement time-histories computed in the building for the

James Road record. . ... ... .. . . ... 77
Figure 6. 6 - Story load-deformation relations computed in the building for the

James Road record. . . ... ... . . . ... e 78
Figure 6. 7 - Computed response envelopes in the building for the James Road

TECOTA. e e e 79
Figure 6. 8 - Locations of plastic hinges in the building for the Hollister record. . . .. 80

Figure 6. 9 - Locations of plastic hinges in the building for the James Road record. . 80
Figure 6. 10 - Comparison of computed response and idealized response used to

define global ductility. . ........ ... ... ... ... . . 81
Figure 6. 11 - Relationship between global and local ductility demands for the

longitudinal direction of the building. . .. ........ ... .. ... o 81
Figure 6. 12 - Nonlinear spectra for the 1989 Hollister record. .. ........ ... ... 82

Figure 6. 13 - Nonlinear spectra of the 1979 James Road record. . ............. 83






-1-
1. INTRODUCTION

1.1 INTRODUCTORY REMARKS

The studies reported herein are a part of an ongoing research program at the University of
California at Berkeley on the seismic performance of existing building structures. This
program has continued over several years, with the ultimate objectives of developing reliable
methods for the design of new buildings and aiding in the vulnerability assessment of existing
buildings and the selection of efficient strategies and techniques for the seismic upgrading
of existing hazardous buildings. To achieve these goals it was considered necessary to carry
out case studies on seismically instrumented real buildings which have survived recent
moderate earthquake excitations. One of the buildings selected for these case studies was a
ten-story Reinforced Concrete (RC) building which survived the ground excitations induced
by the 1987 Whittier Narrows earthquake. The studies conducted on this particular building

have the following objectives,

1.2 OBJECTIVES
Although the main objective is to determine how reliable are present methods of estimating
the seismic performance of existing buildings, the studies conducted herein also have the
following objectives:
(1)  Evaluation of the reliability of present system identification techniques of inferring

the dynamic characteristics of the building from its recorded responses.

(2)  Assessment of the reliability of analytical models and methods that are presently

available for conducting analyses of the seismic performance of buildings.

(3)  Evaluation, through static and dynamic (time-history) ahalyses, of the strength and
deformation capacities of the building, of its response, and particularly of the damage

that the building can suffer when subjected to future critical ground motions.

(4)  Development of a simplified method of analysis to estimate the expected overall and

local deformation, particularly the local ductility ratios of the building.
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2.

Assessment of the implications of the results obtained regarding the reliability of
present code regulations for the earthquake-resistant design of buildings similar to the

one studied.

1.3 SCOPE

To achieve the above objectives the following tasks were undertaken.

)

)

)

(4)

Collection of all the necessary data regarding the design of the structure and
construction of the building, how the building is instrumented, and the records of the
responses of the building to the earthquake motions it has experienced in the past.
A brief description of the selected building, its seismic design criteria, its

instrumentation and its recorded responses is presented in Chapter 2 of this report.

Analysis of the recorded response of the building during the most demanding
earthquake ground motions that it has experienced, and an attempt to identify from
the recorded accelerations, through system identification techniques, its dynamic
characteristics. The description of the recorded response during the October 1987
Whittier Narrows earthquake and the system identification of the dynamic

characteristics are summarized in Chapter 3 of this report.

Analytical prediction of the behavior of the building when subjected to the recorded
earthquake ground motions, followed by comparison of such predictions with the
recorded response during the Whittier Narrows earthquake, This comparison was
planned in order to evaluate the reliability of the analytical methods used in the
prediction. A description of the three-dimensional linear elastic model used in the
time-history prediction of the response of the building, as well as of the results
obtained and the comparison of these results with the recorded response, is contained

in Chapter 4.

Evaluation of the capacities supplied to the building, particularly in order to find out
its possible overstrength, i.e., its strength beyond that required by the code. This

gvaluation was conducted using static lateral load-to-collapse analyses of the
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(6)
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analytical model developed for the building. The results of this study are presented
in Chapter S,

Analysis of the probable performance of the building under more demanding
earthquake ground motions than those which occurred at its foundation during the
1987 Whittier Narrows earthquake. To achieve this, nonlinear time-history analyses
under two severe recorded ground motions, Hollister and James Road records, were

conducted, and are reported in Chapter 6.

Study of the possibility of using a simpler methodology than that requiring nonlinear
time-history analyses for obtaining estimates of the magnitude and distribution of
local ductility ratio demands in the building when subjected to a number of previously
recorded ground motions on similar sites and geological conditions. The simplified
nonlinear analysis, conducted with the objective of evaluating the response of the
building in the longitudinal direction when subjected to the Hollister and James Road

records, is presented in Chapter 6.

The drawing of conclusions, the assessment of the implications of the results obtained
regarding present earthquake-resistant design practice, and the formulation of
recommendations for future research to improve the state of the art in evaluating
seismic performance of existing buildings. The main conclusions drawn from the
studies reported, the assessment of the implications of the results, and the

recommendations for future research are presented in the final chapter of this report.
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2. DESCRIPTION OF THE BUILDING, ITS INSTRUMENTATION
AND DESIGN CRITERIA

2.1 GENERAL DESCRIPTION OF THE BUILDING SYSTEM

The building selected for this case study is a ten-story RC building located at latitude
33.98°N and longitude 118.04°W. A photograph of the building is shown in Fig. 2.1. The
building was designed and constructed in 1972. Plan views of the foundation and first floors
are shown in Fig. 2.2. Plan views of the second floor and the fourth through tenth floors are
shown in Fig. 2.3. The structural system in the transverse (E-W) direction is a dual system
composed of RC coupled shear walls in the north and south ends of the building (lines 2 and
13 in Figs. 2.2 and 2.3), two smaller shear walls surrounding the elevators (lines 7 and 8) and
a very flexible frame (columns and flat plate) on the remaining lines. There are additional

shear walls at the second story on all E-W lines between lines G and E [Fig. 2.3 (A)].

In the longitudinal (N-S) direction the structural system of the building comprises a
moment-resisting frame designed to carry most of the lateral loads in the exterior frames.
The interior frames (lines D and E) consist of 16 in.x16 in. RC columns and a cast-in-place
6 1/2 in. thick concrete slab (flat plate). The exterior frames (C and F) consist of 20 in.x20

in. columns and 24 in.x24 in. beams.

The foundation of the building consists of spread footings [Fig. 2.2 (A)] with a design
bearing pressure of 5,000 psf. The parking structure consists of a prestressed floor and
columns as shown in Fig. 2.2 (B). The building is 183 ft.-4 in. by 52 ft.-8 in. in plan from
the third level to the roof level and is 183 fi.-4 in. by 64 fi.-2 in. from the first floor up to
the third floor, while the parking deck is 205 ft.-4 in. by 50 fi.-6 in. in plan. The building
extends 90 feet above the ground level. Fig. 2.4 shows an elevation of the transverse
direction of the building. Interstory heights are 12 ft.-0 in. in the first story and 8 ft.-8 in.

for the second through tenth stories.
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The specified 28-day strength of the concrete (f)) was 4,000 psi for the first floor and
columns up to the 6th floor, and 3,000 psi for the rest of the structure. All reinforcing steel

was grade 60, conforming to ASTM specification A-615.

Longitudinal and transverse reinforcement details of typical columns are shown in Fig. 2.5.
Reinforcement details of typical beams are shown in Fig. 2.6, It is important to note that the
amount of specified transverse reinforcement exceeds the minimum requirements of the 1970
UBC (the specification used in the design of the building). However, reinforcement at the
beam-column joints is still minimal and transverse reinforcement in the columns consists of
ties with 90° hooks at the corners. Similarly, ties in the beams are not closed, instead
consisting of U-shaped ties with alternating caps. By today’s standards these details are
considered unacceptable. A summary of the steel reinforcement in the structural members

of the building is presented in Table 2.1.

2.2 INSTRUMENTATION

The building forms part of the National Strong-Motion Instrumentation Network (NSMIN)
operated by the U.S. Geological Survey (USGS). The building instrumentation consists of
three SMA-1 analog accelerographs (each capable of recording three components of motion)

located at the basement, 5th floor and 10th floor. The location of these instruments is shown

in Figs. 2.2, 2.3, and 2.4.

The first set of earthquake records obtained from the building was obtained in the January
1, 1976 Whittier earthquake. The epicénter of this magnitude 4.2 (M;) earthquake was
approximately 8.6 miles (13.8 km) east of the building [1]. In the transverse (E-W) direction
peak accelerations of 0.16g, 0.23g, and 0.18g were recorded at the basement, 5th floor, and
10th floor, respectively. In the longitudinal (N-S) direction peak accelerations of 0.06g,
0.06g, and 0.04g were recorded at the basement, 5th floor, and 10th floor, respectively.

At the time of writing, the largest magnitude earthquake to shake the building was the
October 1, 1987 Whittier Narrows earthquake. The epicenter of this magnitude 5.9 (M)
earthquake was approximately 10 km (6.2 miles) north of the building. Among more than

250 strong-motions accelerograph stations (operated by USGS, CSMIP, and the University
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of Southern California) that were triggered in the earthquake, the largest peak ground
acceleration was recorded in the basement of this building. In the transverse (E-W) direction
peak accelerations of 0.63g, 0.62g, and 0.53g were recorded in the basement, 5th-floor, and
10th floor, respectively. In the longitudinal (N-S) direction peak accelerations of 0.43g,
0.55g, and 0.40g were obtained on the 10th floor, 5th floor, and the basement, respectively
[2].

A magnitude 5.3 (M;) aftershock which occurred on October 4, 1987 produced peak
accelerations of 0.33g, 0.58g, and 0.43g in the transverse direction in the basement, Sth floor
and 10th floor, respectively. Recorded peak accelerations in the longitudinal direction were

0.30g, 0.30g, and 0.17g in the basement, 5th floor, and 10th floor respectively [3].

Peak accelerations recorded in the building during these three carthquakes are summarized
in Table 2.2. Two general trends can be observed from this table: (a) the largest acceleration
has always been recorded at the 5th floor and not at the 10th floor, indicating a possible
strong participation of the second mode; and (b) larger accelerations have been recorded in

the transverse (stiff) direction than in the longitudinal (flexible) direction.

Besides the earthquakes listed in Table 2.2, instruments in the building were also triggered
during the July 8, 1986 North Palm Springs Earthquake (M; = 5.9) and the February 28,
1990 Upland, California earthquake (M; = 5.5). The epicenter of the North Palm Springs
earthquake was 9.3 miles (15 km) north of Palm Springs, approximately 81 miles (131 km)
east of the building. Maximum ground and building accelerations recorded in this event were
0.03g and 0.08g, respectively [4]. The epicenter of the Uplands earthquake was 3.1 miles
(5 km) northwest of downtown Upland, approximately 22.4 miles (36 km) east of the
building. Owing to a malfunction of the 5th floor instrument, records were only obtained in
the basement and 10th floor during this earthquake. At both locations peak accelerations
were smaller than 0.05g [5].



-8-
2.3 SEISMIC DESIGN CRITERIA
The building was designed according to the 1970 edition of the Uniform Building Code [6].
Under these design recommendations the building had to be designed to resist the lateral

forces given by the following expression

V=ZKCW 2.1

where V is the total horizontal force to be resisted, Z is a factor which depends on the
seismic zone, K is a factor that is a function of the structural system of the building, and W

is the total dead load of the building. C is given by

C=— 2.2)

where T is the fundamental period of the building, which shall be determined by

o 005k,

@3)

ST

D

where h, is the height of the roof above the ground level (in feet), and D is the dimension
of the building (in feet) parallel to the applied forces. Formula 2.3 shall be used for all
buildings except for buildings where 100% of the lateral forces were resisted by

moment-resisting space frames, in which case the period shall be estimated by
T=01N 2.4)

where N is the number of stories.

The use of Eq. 2.3 leads to an unrealistically low period of 0.33 second for the longitudinal
direction, while for the transverse direction the same expression leads to a very reasonable
approximation of 0.62 second. Equation 2.4 predicts a more realistic fundamental period for

the longitudinal direction (1.0 second).

For the transverse (dual system) direction, the use of Egs. 2.1 to 2.3 along with corresponding

load and strength reduction factors lead to the following minimum factored (ultimate) strength:



9.

V_(075 x 17 x LIZKC_(075 x 1.7 x LI)(10)08)0.0586) 1 n (2.5)
W 09 09 '

For the longitudinal (moment-resisting frame) direction, Eqs. 2.1, 2.2, and 2.4 and
corresponding load and strength reduction factors lead to a minimum lateral factored

(ultimate) strength of

12(0.75 x 1.7x1.1)ZKC:(0.75 x L7 x 1.1)(1.0)(0.67)(0.0335)) -0.052 (2.6)
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(A) COLUMNS

FLOOR INTERIOR EXTERIOR CORNER
COLUMN COLUMN COLUMN
1-2 4 #11 10 #11 14 #11
2-3 4 #8 6 #11 14 #11
3-4 448 4 #11 14 #11
4-8 4 #8 4 #10 10 #11
6-7 4 #8 4 #10 8 #11
7-8 4 #8 48 6 #11
8-9 4 48 4 #9 6 #10
9-R 4 #8 4 #5 4 #9

(B) BEAMS
FLOOR LONGITUDINAL REINFORCEMENT
TOP BOTTOM
1-3 6 #10 6 #10
3-8 £ #8 6 #8
6-8 6 #7 6 #7
8-R 6 #6 g #6

(C) SHEAR WALLS

FLOOR LONG. REINFORGENENT WES REINFORCEMENT
5. t5 11 5 @13 hrts
1.4 14 #11 “ g 16" hort
4-6 10 #11 #?@?1126"";;;:
6-7 8 #11 #@4@@11;?;:;
7-8 6 #11 s o 120 v
6.5 6 110 15 @ 12 b,
- sx0 5 & 12+ horz.

Table 2. 1 - Summary of the steel réinforcement of the structural members of the
building. .
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' 1/1/76 EVENT | 1/10/87 EVENT | 4/10/87 EVENT
FLOOR DIRECTION i / /
(ML - 4.2) (ML -, 5.9) (ML - 5-3)
10th Floor gQ° Wi 0.18 0.53 0.43
5th Floor g0° 0.23 0.62 0.58
Basement a0° 0.16 0.60 0.33
10th Fioor 180° ® 0.04 0.43 0.17
Sth Floor 180° 0.06 0.55 0.30
Basement 180° 0.06 0.40 0.30

{(A) Dual sysiem (shear walls & moment-resisting frame}
{B) Momaert-resisting frame

All values in g's

Table 2. 2 - Peak accelerations in the building during three earthquakes.
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3. RECORDED RESPONSE DURING THE WHITTIER NARROWS
EARTHQUAKE

3.1 THE WHITTIER NARROWS EARTHQUAKE

The October 1, 1987 Whittier Narrows earthquake (M; = 5.9) occurred at 7:42 A.M., Pacific
Daylight Time (PDT) at 34" 3.0° N, 118° 4.8° W, about 9.3 miles (15 km) northeast of
downtown Los Angeles, at a focal depth of about 8.7 miles (14 km). The earthquake
ruptured a small part, 4 km by 5 km, of a previously unidentified buried thrust fault that
strikes cast-west and dips 25° down to the north [7]. This earthquake caused 3 deaths, 932
earthquake-related injuries, 385 million dollars in property damage, and displaced (made

homeless) 10,400 persons [8].

Major damage occurred within 3 miles (5 km) of the building, including several partial
collapses in the Whittier downtown shopping area (Whittier Village). A Modified Mercalli
Intensity (MMI) of VII was assigned to the area where the building is located [9]. No
damage was found in the ten-story building during two different post-earthquake visual

inspections [10, 11].

3.2 DESCRIPTION OF THE RECORDED RESPONSE DURING THE WHITTIER
NARROWS EARTHQUAKE

Acceleration time-histories recorded in the building are shown in Figs. 3.1 and 3.2. All
records are plotted with the same time and intensity scales to facilitate their direct
comparison. Although the duration of the digitized records is 30 seconds, the duration of the
strong motion is only about 4 seconds. As mentioned before, motions recorded in the
transverse direction have a larger intensity than those recorded in the longitudinal direction.

Peak acceleration values are summarized in Table 2.2.

Relative velocity and displacement time histories at the 5th and 10th floors were computed
by numerical integration, high-pass filtering, and base-line correction of recorded.

accelerations [12, 13]. Peak values are summarized in Table 3.1.
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Linear elastic response spectra of the horizontal motions recorded in the basement were

calculated by direct integration [14]. Figure 3.3 shows the computed linear elastic spectra
for 0, 2, 5, 10, and 20% damping.

3.3 SYSTEM IDENTIFICATION OF THE DYNAMIC CHARACTERISTICS OF THE
BUILDING

The dynamic characteristics of the building were inferred from the acceleration records
obtained in the October 1, 1987 Whittier Narrows earthquake, using the same three
identification techniques that were used for a thirty-story RC Y-shaped building {15, 16].

Fourier amplitude spectra of acceleration records in the longitudinal direction of the building
are shown in Fig, 3.4. Results are only shown for a 0 to S Hz window for easy identification
of the first few modes of vibration. It can be seen that the ground has its strongest input
in a band between 2 and 3 Hz (predominant period between 0.33 and 0.5 second). Motion
in this frequency band is amplified in the structure, particularly at the Sth floor. Figure 3.5
shows Fourier amplitude spectra of accelerations recorded in the transverse direction of the
building, The input motion (basement} is particularly strong for frequencies between 2 and
3 Hz (as in the longitudinal direction) and around 3.5 Hz. Differences in the frequency
content of the orthogonal motions recorded in the basement may be indicative of
soil-structure interaction; however, this hypothesis cannot be verified due to the absence of

free-field records in the vicinity of the building.

Transfer functions for the longitudinal motion (moment-resisting frame) direction are shown
in Fig. 3.6. From this figure, the 1st, 2nd, and 3rd mode frequencies were identified to be
0.70, 2.03, and 3.15 Hz, respectively. The ratios between these frequencies (F/F, = 2.9 ,
Fy/F, = 4.5) agree reasonably well with what could be expected for moment-resisting frame
buildings [17]. However, the fundamental period (1.43 seconds) is significantly longer than
what could be expected for U.S. reinforced-concrete, moment-resisting frame buildings [18,

19], or assumed by the code used in the design of the building [6].
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Figure 3.7 shows the transfer functions for the motions recorded in the transverse (dual
system) direction of the building. The largest amplitude peak (at 1.64 Hz) corresponds to the
fundamental mode. The second peak (at 4.1 Hz), and the vibrational mode shape associated
with it, corresponds to the second mode. The ratio of second to first modal frequencies is
2.5, which is low for what could be expected for this structural system in this direction. A
summary of translational frequencies and periods of vibration identified from the recorded

earthquake motions are presented in Tables 3.2 and 3.3.

Since the response of each instrumented floor was recorded at only one location, torsional
modes could not be reliably identified. Computed damping ratios varied depending on the
resolution, smoothing, and filter used in computing the Fourier amplitude spectra. For the
first mode the damping varied between 4.9% and 7.3% for the longitudinal direction and

between 3.3% and 4.2% for the transverse direction,

Moving-window Fourier analyses were conducted using windows of 5 seconds for the
transverse direction and 7.5 seconds for the longitudinal direction, moving at 2.5 second
intervals. An increase of 4.2% in the fundamental period was observed in the transverse
direction between the 2.5 and 5.0 second marks. This increase in period could be the result
of some nonstructural or structural damage, or of some movement (rocking) of the foundation
of the shear walls, or of some combination of these. No change in fundamental period was

observed in the longitudinal direction.

It should be noted that Abdel-Ghaffar [1] conducted a detailed analysis of the accelerations
recorded in the building as a consequence of the January 1, 1976 Whittier earthquake. Table
3.4 summarizes the different vibration periods of the building that have been identified by
Abdel-Ghaffar. From comparison of these identified values with the values identified in the
studies reported herein, which are also summarized in Table 3.4, it is clear that the values
of the vibration periods of the building identified from the 1987 records are larger than those
identified from the 1976 records. This should be expected, because in general the stiffness
of RC building structures decrease with their service age and because the stiffness also

depends on the intensity (amplitude) of the response. Although the observed increase in the
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periods of the modes in the longitudinal (N-S) direction, 81% for the first mode, is very high,
similar increases have been reported for other existing RC buildings [15 and 16]. These

observed increases deserve further investigation.
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MAX, REL. VELOGITY®W MAX, REL. DISPL.®
FLOOR DIRECTION
fcm/fsec] [em]
10th go° (@ 55.87 2.94
Sth gQ° 22.07 1.18
10th 180° ©® 46.04 7.14
5th 180° 39.55 4,11

&) Velotities obiained from highpassed, baseline comected integral with respect to time ot recorded accelerations.
{B) Displacements oblained from highpassed, baseline carrected integral with respect 1o time of computed velocities.
(C) Dual system (shear walls & moment-resisting frame)

(D1 Mement-esisting frame

Table 3. 1 - Peak responses in the building during the October 1, 1987 Whittier
Narrows earthquake.

MODAL FREQUENCIES [Hz]
DIRECTION
1st MODE 2nd MODE 3rd MODE
East-West 90° ¥ 1.64 442 -
North-South 180° & 0.70 2.03 3.15

{A) Dual system (shear walls & momant-resisting frame)
{B) Moment-resisting frame

Table 3. 2 - Translational modal frequencies identified from the earthquake records.
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PERIODS OF VIBRATION [sec]
DIRECTION
. 1st MODE 2nd MODE © 3rd MODE
East-West g0° ®) 0.61 0.24 .
North-South 180° ® 1.43 0.48 0.31

(A} Dual system (shear walls & moment-resisting frame)
(B} Moment-resisting frame

Table 3. 3 - Translational periods of vibration identified from earthquake records.

IDENTIFIED VIBRATION PERIODS (SECS) IN THE
DIRECTIONS
RECORDS
ANALYZED | LONGITUDINAL (N-S) | TRANSVERSE (E-W) | TORSIONAL
Tl TZ T3 Tl TZ Tl T2
(1) 1976
WHITTIER | 079 | 027 | 0.14 0.60 0.18 043 | 0.17
(2)1987
WHITTIER | 143 | 048 | 031 0.61 024 | 044
NARROWS
(3) RATIOS
(1)/2) 1.81 | 178 | 221 1.02 1.33 1.02

Table 3.4 Comparison of vibration periods identified from the 1976 Whittier and
the 1987 Whittier Narrows records.
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PSEUDO-VELCCITY
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Figure 3. 3 - Linear-elastic response spectra of horizontal ground
motions recorded in the basement of the building (0, 2, 5, 10,
and 20% damping)
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Figure 3. 4 - Fourier amplitude spectra of acceleratibns recorded in the
longitudinal direction of the building
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Figure 3. 5 - Fourier amplitude spectra of accelerations recorded in the
transverse direction of the building
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Figure 3. 6 - Transfer functions for the longitudinal direction of the
building -
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Figure 3. 7 - Transfer functions for the transverse direction of the
building '
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4. EVALUATION OF THE PERFORMANCE OF THE BUILDING
UNDER MODERATE EARTHQUAKE GROUND MOTIONS

4.1 INTRODUCTORY REMARKS

The assessment of the seismic vulnerability of any given structure requires the estimation of
its mechanical (dynamic) characteristics and the prediction of its response to the seismic
ground motions to which it could be subjected during its service life. Similar estimations and
predictions are necessary for the analysis of the adequacy (soundness) of the preliminary
design of a new structure, No matter for what purpose the analytical estimations and
predictions are used, there are questions about the reliability of the analytical model, the
estimation of the dynamic characteristics, and the method of analysis (computer programs)
used. The occurrence of an earthquake and the recordings of the response of the structure
to the resulting ground motions offer a unique opportunity to calibrate such reliability. It was
decided to use the available records of the response of the ten-story building to find an
answer to the question. For this purpose, the following analyses were conducted: eigenvalue
analysis to determine the periods and mode shapes of the building, and time-history analyses
using a three-dimensional linear elastic model of the building, Special emphasis was placed
on studying the effectiveness of this kind of analysis at capturing the response of the building
when subjected to moderate earthquake ground motions and evaluating the reasons for the

absence of damage during the Whittier Narrows earthquake.

42 EIGENVALUE ANALYSIS

A widely-used finite element structural analysis program, SAP 90 [20], was used for this
stage of the study. The building was modelled as a three-dimensional array of linear
elements. The floor diaphragm was assumed to be rigid and the columns and shear walls
were assumed to have fixed bases. Cracked, transformed sections were used for all structural
elements, and the joints were assumed to be rigid over 75% of their dimensions, The
complete model consisted of 899 nodes, 1642 members, and 2514 degrees of freedom. An

isometric view of the three-dimensional model of the building is shown in Fig. 4.1.
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An eigenvalue analysis was conducted in order to calibrate the model such that the
fundamental periods (in both directions) agreed with those identified from the earthquake
records. Keeping the computed masses constant, adjustments in member stiffnesses of less
than 7% were necessary to calibrate the model. Computed periods and mode shapes for the
dominant modes of vibration of the building are shown in Fig. 4.2. Except for the period
for the second translational mode in the transverse direction, the computed periods agreed

very well with those identified from the records (Tables 3.2 and 3.3).

Table 4.1 summarizes the participation of modal masses of the first two modes in each
direction as a percentage of the total mass, For both directions, the first and second modal

masses account for more than 80% of the total mass.

43 TIME-HISTORY ANALYSES
Time-history analyses were conducted using as input the acceleration time histories recorded

in the basement of the building during the Whittier Narrows earthquake.

A time increment of 0.02 second and a damping ratio of 5% (for all modes) were used in the
analyses. Accelerations recorded at the Sth floor of the building have been consistently
higher in both translational directions than those at the 10th floor. This was confirmed by
a quick analysis of the values of the spectral acceleration given in Fig. 3.3 together with the
periods and mode shapes given in Fig. 4.2 and suggests an important participation of the
second mode in past earthquakes. Two different analyses were therefore conducted to
evaluate the contribution of higher modes o the total response. In the first analysis, only the
first translational mode in each direction was considered. In the second analysis the first nine
modes of vibration were considered, corresponding to all periods of vibration higher than 0.1

second.

A comparison of measured and calculated acceleration time histories in the transverse
direction for the 5th and 10th floors is shown in Figs. 4.3 and 4.4. The correlation is poor
between the measured accelerations and those calculated in the analysis, which only

considered the fundamental mode. The correlation is especially poor at the Sth floor, where
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the maximum acceleration is significantly underestimated. When the first 9 modes were

considered the correlation is, in general, very good.

Figures 4.5 and 4.6 compare the measured and calculated acceleration time histories in the
longitudinal direction of the building for the Sth and 10th floors, respectively. Again, the
analysis that only took into account the fundamental mode failed to reproduce the recorded
accelerations. When the first 9 modes of vibration were considered, the calculated
accelerations agree well with the measured accelerations. In this case, the important
contribution of the second mode is due to the fact that the second translational mode
frequency in this direction (2.02 Hz) lies within the band of predominant frequencies of the

ground motion (see Fig. 3.3 and particularly Fig. 3.4).

Comparisons of calculated (including 9 modes) and measured displacements (computed from
recorded accelerations) for the transverse and longitudinal directions of the building are
shown in Figs. 4.7 and 4.8, respectively. The correlation is relatively good. When
comparing displacement time histories one must consider that differences are due not only
to imperfect modelling assumptions but also to uncertainties in the computation of
displacements from recorded acceleration time histories. The type of filter, and especially
the selection of corner frequencies for the high-pass digital filter, may produce significant

errors in the computation of displacements from strong-motion accelerograms [13, 21].

A summary of the results from the time-history analyses and a comparison with recorded

motions is presented in Table 4.2.

The correlation attained by the present model is very good considering the uncertainties
associated with the estimation of mechanical properties of the structural members, modelling
assumptions, estimation of the masses, uncertainties associated with the structural damping,

and contamination of the input motions due to soil-structure interaction.

The maximum base shears resulting from the time history analyses are 1524 kips and 3618

kips for the longitudinal and transverse directions, respectively. Normalized base shears with
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respect to the total weight above this level are 9.9% and 23.6% for the longitudinal and
transverse directions, respectively. These values are significantly higher than the values for
which the building was designed, i.e., 5.2% and 7.3% (see Eqs. 2.5 and 2.6). In spite of the
significantly higher computed shear values, there was no significant or even visible damage.

This may be surprising, in view of the high recorded values of acceleration at the foundation
(0.40g and 0.60g, see Table 2.2).

The absence of structural and nonstructural damage can be explained by first noting that the
recorded accelerations in the 5th and 10th stories show that there was very small
amplification of the input acceleration (see Table 2.2), and that there was actually
deamplification at the roof. A second and perhaps even more convincing explanation is
obtained by referring to the maximum interstory drifts computed in the time history analyses.
The maximum computed interstory drift index for the longitudinal direction of the building
(moment-resisting frame} was 0.0034, which occurred at the fourth story. For the transverse
direction, the maximum computed interstory drift index was 0.0021. Both values are
considered to be smaller than those which could cause visible damage to the building, as will

be further discussed in the next chapter.
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PARTICIPATING MASS
DIRECTION
1st MODE 2nd MODE 1st & 2nd MODES
East-West 90° ¥ 62.4 19.5 81.9
North-South 180° & 75.3 13.4 88.8

{A) Dual system (shear wails & moment-resisting frame)
{B) Moment-resisting frame

Table 4. 1 Participating mass as a percentage of the total mass for the first
two modes of the structure.
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PEAK ACCELERATION [cm/sec?] ,
FLOOR | DIRECTION DIFFERENCE [%]©
ANALYTICAL MEASURED
10th g0° A 536.3 523.7 2.4
5th gQ° 587.9 612.2 4.0
10th 180° &) 418.3 425.8 1.8
5th 180° 528.4 542.8 2.7
PEAK REL. VELOCITY [cm/sec]
FLOOR | DIRECTION : DIFFERENCE [%]©
ANALYTICAL MEASURED
10th gQ° A 54.70 55.87 -2.1
5th 90° 21.10 22.07 -4.4
10th 180° ® 46.55 46,04 1.1
5th 180° 40.82 39.55 3.2
PEAK REL. DISPL. [cm)
FLOOR | DIRECTION DIFFERENCE [%]©
ANALYTICAL MEASURED
10th 900 & 292 2.94 0.7
5th 90° 1.22 1.18 -3.4
10th 180° ® 7.12 7.14 0.3
5th 180° 4.33 4.11 -5.4

{A) Dual system (shear walis & moment-resisting frame)
(B) Momeni-resisting frame

(C} (Measured - Anahytical}*100/Measured

Table 4. 2 Comparison of analytical and measured responses of the build-
ing during the Whittier Narrows earthquake.
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5. EVALUATION OF THE SUPPLIED CAPACITIES TO THE
BUILDING

5.1 GENERAL REMARKS
A series of nonlinear static-to-collapse analyses was conducted in order to investigate the
supplied capacities (strength and deformability) to the building. The analyses were conducted

using the DRAIN-2D computer program [23].

Nonlinear modelling of structural members was based on section analyses of their critical
regions. For this purpose moment-curvature relations were computed for 18 different
cross-sections. Additionally, moment-axial load interaction diagrams were computed for the

critical cross-sections of 12 different column or shear wall elements,

5.2 NONLINEAR STATIC-TO-COLLAPSE ANALYSIS IN THE LONGITUDINAL
(N-S) DIRECTION OF THE BUILDING

~ To model the longitudinal direction of the building, the exterior frames (frames C and F in
Fig. 2.3) were lumped together, assuming a rigid floor diaphragm. Similarly, the interior
frames (frames D and E in Fig, 2.3) were lumped together. The slab in the interior of the
building was modelled by equivalent beams. These beams had a depth equal to the slab
depth and width equal to the full slab width times an effective-width factor. Experimental
research on flat-plate frame buildings has suggested that the effective width factor is a
function of the level of lateral deformations, and that for drifts higher than 0.0025% the use
of effective widths based on elastic plate theory produces significant overestimations of the
stiffness of the system [23]. In order to account for the stiffness of the slab at large lateral
drifts (IDI > 0.005), an equivalent width of 36 inches, equal to C + 3h (where C = column
width and h = slab thickness), was used. The stiffness of the retaining walls in the basement
was modelled by springs with zero tensile capacity. The mathematical nonlinear model

consisted of 289 nodes, 519 members and 780 degrees of freedom,

Load-deformation relations were determined by imposing assumed shapes for lateral load

distributions over the height of the structure and increasing the total load monotonically from



-48-

zero up to incipient collapse. For this purpose two loading patterns were used, triangular and
rectangular (uniform). Figure 5.1 shows the relationship between the base shear (first story)
and the roof displacement for the longitudinal direction of the building. The uniform loading
pattern led to 24% higher initial stiffness and 19% higher maximum strength. From the
figure it can be seen that the maximum longitudinal displacement of 7,14 cm (2.81 inches)
experienced during the 1987 Whittier Narrows earthquake was not large enough to cause any
yielding in the building. The ratio between the maximum base shear and the base shear at

first significant yielding is 1.38 for both lateral loading patterns,

Figure 5.2 shows the relationship between the base shear (first story) normalized by the total
weight (weight above the first story) and the roof displacement normalized by the roof height
{above ground level). The maximum lateral strength of the building is 22% of its weight
when subjected to a triangular load distribution and 26% for a uniform loading pattern.
Structural damage is initiated in both cases for a normalized displacement of 0.004. Shown
in tilis figure are the minimum strength requirements of the 1970 UBC (see Eq. 2.6). It can
be observed that the building has a lateral strength significantly higher than that for which
it was designed. The computed overstrengths of the building are 3.23 and 4.0 for the

triangular and uniform loading patterns, respectively.

While base shear-roof displacement relationships provide a good picture of the global
behavior of the building, they fail to provide information about the strength and deformation
demands on specific stories of the building. Displacement profiles of the building at different
levels of deformation are shown in Figs. 5.3 and 5.4 for triangular and uniform loading
patterns, respectively. While the building remains elastic the displacement profile increases
proportionally with the applied lateral load. However, when the structure becomes nonlinear
(for roof displacements larger than approximately 4.3 inches) the displacement profiles are
no longer proportional to the applied load. As shown in Figs. 5.5 and 5.6, where the profiles
of the values of the interstory drift indices are presented, after yielding the lateral
deformations tend to concentrate in certain stories. For a triangular loading pattern, large
deformations concentrate in the 3rd to 7th stories, while for the uniform loading pattern, large

deformations concentrate in the 3rd to 6th stories.
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Figure 5.7 shows the contribution of interior and exterior frames to the strength and stiffness
of the building when subjected to a triangular lateral loading pattern. It can be seen that
because of the great flexibility of the interior frames (flat-plate), they make a relatively small
contribution to the lateral strength and stiffness of the building. When the building remains
elastic, the interior frames take 16.4% of the lateral forces. When the maximum strength of
the building is reached, the contribution of the interior frames increases to 26.6% because of
significant yiclding in the exterior frames, The exterior frames start to yield at a roof
displacement of 4.3 inches, while the first nonlinearity in the interior frames does not appear
until a roof displacement of 7.5 inches is reached. This difference in yielding deformations
results in a global (structure) post-yielding stiffness of approximately 22% of the original

stiffness (for this range of deformations).

The location of plastic hinges in the building when subjected to triangular and uniform
loading patterns at three different levels of deformation is shown in Figs. 5.8 and 5.9. As
previously mentioned, deformations concentrate over the 3rd to 7th stories. Furthermore,
because these stories of the exterior frames have stronger beams than columns (strong
beam-weak column), yielding occurs in the columns and not in the beams. The maximum
deformation capacity of the building is controlled by the available rotation capacity of the
columns in these critical stories and by the shear capacity of their corresponding

beam-column joints.

The transverse reinforcement ratio (p,) in the critical regions of these columns is 0.013 which
is, in general, superior to that observed in buildings designed according to "pre-San
Fernando" detailing requirements. The effectiveness of these hoops, however, for providing
confinement to the core and therefore for increasing the rotation capacity of the columns, is
not expected to be good because of the 90° hooks at the corners of the section (see Fig. 2.6).
It has been observed that concrete columns with this detail do not exhibit good behavior,
since when the concrete cover is lost the end of the hoop leg at the 90° hook moves away
from the longitudinal bar it engages, resulting in complete loss of anchorage of the tie {24]

and therefore there is a loss of confinement and restraining capacity against local buckling
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of the longitudinal reinforcement. For the maximum deformation shown in Fig. 5.1, rotations

in excess of 1.6% are observed in the fourth story columns.

When the roof displacement reaches 11 inches, computed joint shear stresses are 654 psi
(10.35 VF ) similar to those measured at failure in recently tested beam-column connections

that had little or no transverse reinforcement [25].

5.3 NONLINEAR STATIC-TO-COLLAPSE ANALYSIS IN THE TRANSVERSE
(E-W) DIRECTION

In order to investigate the strength of the transverse direction of the building, a
two-dimensional model was constructed. In this model, the exterior frames (frames 2 and
13 in Fig. 2.3) were lumped together by assuming a rigid floor diaphragm. Similarly, the two
frames next to the elevator shaft (frames 7 and 8) and the moment-resisting frames (frames
3,4,5, 6,9 10, 11, and 12) were lumped together. The slab in these interior frames was
modelled using the same assumptions previously made for the longitudinal direction. Shear
walls were modelled as beam-column elements with rigid beams extending from the center
line of the shear wall to each edge. The stiffness of the retaining walls in the basement was
modelled by springs with zero tension capacity. The increase in axial load in the shear walls
due to outrigger effects was included by adding nonlinear springs with stiffnesses equal to
those of the beams framing perpendicularly into the shear walls. The complete mathematical

model consisted of 121 nodes, 206 members, and 342 degrees of freedom.

As was done for the longitudinal direction of the building, load-deformation relations were
determined using triangular and rectangular (uniform) lateral load patterns. Figure 5.10
shows the relationship between the base shear and the roof displacement for both loading
patterns. These curves are characterized by a gradual loss in lateral stiffness due to yielding
of the coupling girders, followed by a more drastic change in stiffness due to yielding of the
shear walls. Strengths corresponding to the first significant yield (i.e., when yielding of the
shear walls occurs) of 32% and 43% of the total weight of the building were computed for
the triangular and uniform loading patterns, respectively, Also shown in the figure is the

minimum strength required by the 1970 UBC (see Eq. 2.5). The building has an overstrength
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even higher than that computed for the longitudinal direction. Computed ratios of maximum

strength to code design strength in the transverse direction are 5.75 and 6.99 for the triangular

and uniform loading patterns, respectively.

From Fig. 5.10 it can be seen that the maximum displacement of 1.16 inches (2.94 c¢m, see
Table 4.2) in the transverse direction during the 1987 Whittier Narrows earthquake was not
large enough to cause any significant damage in the building. However, analysis shows that
some yielding must have occurred at the ends of the weak coupling beams of the four upper
stories. It is not known if post-earthquake inspections [10, 11] included a careful inspection

of these beams.

Displacement profiles of the building at different levels of deformation are shown in Figs.
5.11 and 5.12 for both the triangular and uniform loading patterns. From these figures it can
be seen that for large levels of deformations (roof displacements larger than 4 inches) the
presence of the shear walls produces a nearly uniform distribution of interstory displacements

above the fourth story.

Figures 5.13 and 5.14 show the location of plastic hinges at large deformations for triangular
and uniform loading patterns. The flat plate-column frames remain elastic for these levels
of deformation because of their great lateral flexibility. Nonlinearities in frames 7 and 8 are
characterized by yielding of the shear walls (throughout the 3rd and 4th stories) and by
yielding of the slab adjacent to the shear walls in the upper floors. When the roof
displacement reaches 7.5 inches the maximum average shear stress in the shear walls is 439
psi (6.9 V' ¢ ). Under this level of deformation it is expected that a combination of ﬂeﬁural
and shear cracking would occur, but the web of the barbell-section shear wall should resist
these levels of shear stress without a shear failure. Significant strength degradation could,
however, occur under repeated large deformation cycles (roof displacements larger than 6.0
inches). For frames 2 and 13 nonlinearities are characterized by yielding of the weakly
coupled shear walls and by yielding of the coupling beams. For a roof displacement of 7.5
inches, maximum average shear stresses in the coupled shear walls are 561 psi (8.8 \F c)

which could initiate a shear failure of the web. Average shear stresses in the north-west wall
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were computed as high as 755 psi (11.9 vF). This is caused by the presence of a large
opening (see Fig. 2.2) which accommodates the trash room door. Plastic rotations of up to

0.06 radian were computed for the coupling girders in the upper floors.

Because of their low flexural capacity, no shear failure is expected to occur in the coupling
girders above the second floor (the maximum computed shear stress was 97 psi, or 1.8 vT,).
However, a shear failure is expected to occur in the second floor coupling beam. The

computed shear stress for this deep and flexurally strong beam was 885 psi (16 VT ) which

is considerably higher than its shear capacity.
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Figure 5. 3 - Longitudinal displacement profilés of the building at
different levels of deformation when subjected to a triangular

loading pattern
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Figure 5. 4 - Longitudinal displacement profiles of the building at
different levels of deformation when subjected to a uniform
loading pattern
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Figure 5. 5 - Interstory drift index profiles of the bu‘ilding at different
levels of deformation when subjected to a triangular loading

pattern
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Figure 5. 6 - Interstory drift index profiles of the building at different
levels of deformation when subjected to a uniform loading
pattern. ' . :
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Figure 5. 11 - Transverse displacement profiles in the building at
different levels of deformation when subjected to a triangutar
{oading pattern
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Figure 5. 12 - Transverse displacement profiles of the building at different levels
of deformation when subjected to a uniform loading pattern
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6. NONLINFAR ANALYSES OF THE PERFORMANCE
OF THE BUILDING UNDER SAFETY LEVEL
EARTHQUAKE GROUND MOTIONS

6,1 SELECTION OF THE CRITICAL GROUND MOTIONS

A complex pattern of quaternary faults represents the earthquake hazard for this building, and
in general for the Los Angeles region. The seismicity of this area is dominated by two
seismically active fault systems -- the northwest-trending, right-lateral strike-slip San Andreas
and its members (San Jacinto, Whitticr-Elsinore, and Newport-Inglewood) and the
west-trending, reverse faults of the Transverse Ranges (Santa Ynez, Santa Ana, San Cayetano,
San Gabriel, San Fernando, Santa Monica, Cucamonga, efc). Details of the seismicity of

these and many other smaller faults have been described by Ziony and Yerkes [26].

The San Andreas fault could be the source of the largest magnitude earthquake in this region.
The San Andreas fanlt was the source of the 1857 Fort Tejon earthquake, the largest event
. known to have affected the Los Angeles region since the exploration of the area by the
Spaniards in 1769, This ecarthquake is representative of the largest event likely to occur in
the southern portion of the San Andreas fault [26]. Although this earthquake occurred before
the advent of seismograph recordings, its magnitude has been estimated to be larger than the
1906 San Francisco earthquake [27)].

The Mojave segment of the San Andreas fault has been attributed a 30% probability of
producing a major earthquake between 1988 and 2018 [28]. Another study has attributed the
probability of a major earthquake in southern California to be as high as 60% in the next 30
years [29].

The degree of damage that a specific building can undergo when subjected to major EQ
ground motions can be predicted through nonlinear time-history analysis, This requires the
availability of the full characterization of the acceleration time-history of the EQ ground
motion, and particularly of the motion that will drive the structure to its critical response, i.e.,

the safety design EQ which is sometimes called the Maximum Credible EQ (MCEQ). This
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critical EQ ground motion should be selected from all the possible ground motions that can
occur during the service life of the structure {30]. Although an upper limit of about 8 for
earthquakes in the Los Angeles region is compatible with the historical data [26], there are
no acceleration records from earthquakes of magnitude larger than 7.7 in California. In this
study, rather than taking into account what the EQ ground motions would be at the building
site due to an EQ of M = 8 in the San Andreas fault zone, what is considered is the possible
damage induced in the ten-story building by what are considered the two most critical

recorded ground motions obtained on similar soil conditions in California.

The following two sections describe the results of time-history analyses conducted for the

longitudinal direction of the building.

The soil conditions at the site consist of quaternary alluvium deposits of medium-grain sand
sediments [31]. Two earthquake ground motions recorded in California on alluvium deposits
and with relatively high input energies in the vicinity of the longitudinal fundamental period
of the building (1.'43 seconds) were selected as inputs for the time history analyses, The first
ground motion is the north-south component of the Hollister record, obtained during the
October 17, 1989 Loma Prieta earthquake (M, = 7.1) in the city of Hollister (CSMIP Station
No. 47524) approximately 48 km (29.8 miles) southeast of the epicenter [32]. The digitized
record has a total duration of 40 seconds, a peak ground acceleration of 361.9 gals (0.37g),

and a maximum incremental velocity of 121.6 cm/sec {47.9 in/sec).

The second ground motion is the S50W component of the James Road record, obtained
during the October 15, 1979 Imperial Valley earthquake (M, = 6.5) approximately 10 km (6.2
miles) north of the epicenter [33]. The digitized record has a total duration of 39.3 seconds,
a peak ground acceleration of 360.4 gals (0.37g), and a maximum incremental velocity of

160.0 cm/sec (63.0 in/sec).

For both ground motions, only the initial 20 seconds of the records were employed in the
time-history analyses. This portion of both acceleration times histories is shown in Fig, 6.1.

The Hollister record is characterized by a low-frequency content and a long-duration
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acceleration pulse (lasting 0.7 second) at approximately the 8 second mark and another
(lasting 1.0 second) at approximately the 12 second mark. The James Road record is
characterized by a long-duration acceleration pulse (lasting 1.6 seconds) at approximately the

6 second mark. The presence of long-duration pulses in records of the 1979 Imperial Valley
EQ has been the subject of several detailed studies [34, 35].

6.2 BEHAVIOR UNDER THE HOLLISTER RECORD

Time-history analyses were conducted using DRAIN-2D with an integration time step of 0.02
second. Roof displacement and base shear time-histories computed in the building when
subjected to the 1989 Hollister record are shown in Fig. 6.2. The maximum roof
displacement and maximum base shear are 7.59 inches and 3,599 kips, respectively. These
peaks both occur as a result of the long-duration acceleration pulse that occurs at the 8
second mark. Story load-deformation relations for the 1st to 8th stories are shown in Fig.
6.3. The inelastic deformations concentrate from the 3rd to 7th stories, with a maximum
displacement ductility ratio of 3.15 in the fourth story. Columns in this story undergo four
yield reversals and a maximum rotation of (.02 radian. Computed response envelopes are
shown in Fig. 6.4. The story deformations are significantly non-uniform, with the

intermediate stories experiencing the highest demands.

6.3 BEHAVIOR UNDER THE JAMES ROAD RECORD
The time-history analysis for the James Road record was conducted using the same model

and integration time step as that previously used for the Hollister record.

Roof displacement and base shear time-histories computed in the building when subjected to
the 1979 James Road record are shown in Fig. 6.5. The response of the building is
particularly sensitive to the long acceleration pulses in the record, particularly the one
occurring at the 6 second mark. The maximum roof displacement is 7.71 inches while the
maximum base shear is 3,433 kips. Local displacement ductility demands in the building can
be observed in Fig. 6.6, where story load-deformation relations for the 1st to 8th stories are

shown. The nonlincarities occur between the 2nd and 7th stories. The maximum
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displacement ductility (3.03) again occurs in the fourth story. Nonlinearities in these stories

have only one yield reversal. Computed response envelopes are shown in Fig. 6.7.

6.4 COMPARISON OF THE BEHAVIOR OF THE BUILDING UNDER THE
HOLLISTER AND JAMES ROAD RECORDS

A summary of the maximum and minimum values of the main response parameters shown
in Figs. 6.4 and 6.7 is presented in Table 6.1. From these results as well as from the
comparison of the hysteretic behavior illustrated in Figs. 6.3 and 6.6 it can be concluded that
the Hollister record appears to be more demanding than the James Road record, It is of
interest to note that the results obtained in these analyses when compared with those obtained
under the recorded motions at the basement (Chapters 3 and 4) give another good
demonstration that Peak Ground Acceleration (PGA) is not a good parameter by which to
judge damage potential. Although the PGA recorded at the basement, as shown in Table 2.2,
was 0.60g in the E-W direction and 0.40g in the N-S direction, which is larger than the PGA
of the Hollister and James Road records (approximately 0.37g), the damage potential of these
last two records to the ten-story building is significantly larger than that of those recorded
during the Whittier Narrows earthquake. This can be demonstrated easily by comparing the

energy input spectra for the records.

The locations of plastic hinges in the building when subjected to these records are shown in
Figs, 6.8 and 6.9. In the exterior frames most of the yielding occurs in the columns, while

in the interior frames yielding is restricted to the slab.

6.5 SIMPLIFIED NONLINEAR ANALYSES

6.5.1 Estimation of Displacement Duectility Demands

Nonlinear static analyses, in addition to providing information about the strength and collapse
mechanism of the structure, permit the establishment of a relationship between global
(building) ductility ratio demands and local (story or member) ductility ratio demands [16].
Although, strictly speaking, "ductility" is not synonymous with "ductility ratio," in this report
we will sometimes use the word "ductility" to mean "ductility ratio." Thus, the global

ductility ratio is defined as the ratio of maximum deformation to yielding deformation at a
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specific point in the building. For convenience, the reference point used here is the roof;
therefore the global ductility ratio is defined as the ratio of the maximum displacement to the
yielding roof displacement (see Fig. 6.10). Another convenient point to use would be an
equivalent height H, [16]. Such global-local ductility ratio demand relations are dependent
on the imposed level of deformation and are strictly only valid for static loading under
specific lateral loading patterns. They might, however, provide a way to obtain a good
approximation of local demands under earthquake ground motions. A graphic representation
of this relationship in the form of a 3D surface is shown in Fig. 6.11. When global ductility
ratios larger than about 1.2 are imposed on the building, a concentration of local (story)
demands is produced between the 3rd and 7th stories. A summary of relations between
global and local (story) displacement ductility ratios computed using a triangular loading
pattern is presented in Table 6.2 (for selected levels of deformation). It can be seen that for
this building, a global ductility ratio of 2.0 can represent local (story) ductility ratio demands
as high as 3.5.

Given the great uncertainties in the characteristics of future earthquake ground motions, gross
estimates of the magnitude and distribution of local ductility (story and members of each
story) demands in the building when subjected to a number of previously recorded ground
motions might be sufficient when conducting the seismic evaluation of an existing building
or for the design of a new building. These gross estimates can be obtained through
simplified nonlinear analyses. These nonlinear analyses require the use of the relationships
between global and local ductility demands, which are derived from the nonlinear static-to-
collapse lateral loading, together with nonlinear analysis of an equivalent single-degree-of-
freedom system (SDOFS) [using inelastic response spectra (IRS) or time-history analysis] to
predict the magnitude and distribution of local (story) displacement ductility ratio demands.

The effectiveness of this simplified procedure is investigated below.

Nonlinear spectra computed for six levels of displacement ductility ratio, p, were computed
for both the Hollister and James Road records. These spectra, shown in Figs. 6.12 and 6.13,
correspond to SDOFS with 5% damping and bilinear hysteretic behavior, characterized by

a post-yielding stiffness that is 20% of the initial (elastic) stiffness.  This post-yielding
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stiffness is based on the observed behavior on the building under static loading (see Fig.
6.10). A comparison of story displacement ductility demands computed using DRAIN-2D
and those estimated through the use of the global-local ductility relation derived from static-
to-collapse loading (shown in Fig. 6.11) together with nonlinear spectra (shown in Figs. 6.12
and 6.13) arc presented in Tables 6.3 and 6.4, The simplificd analyses arc able to capture
both the magnitude and distribution of story displacement ductility demands well. For the
Hollister record the simplified analysis predicts the maximum story displacement ductility
demand (occurring in the fourth story) within 5.4%. For the James Road record, where the
use of a triangular load distribution is more questionable given the presence of the
very-long-duration acceleration pulse, the maximum story ductility demand is predicted within
16.4%. If the simplified analysis is based on a uniform load distribution instead of a

triangular distribution, the difference is reduced to 5.0%.

Comparison of the results given in Tables 6.3 and 6.4 indicate that while the nonlinear time-
history analyses under the Hollister record resulted in larger story displacement ductility
.demands than those demanded by the James Road record, the result is the opposite when
simplified analyses are conducted. An explanation for this could be in the fact that the
simplified analyses are based solely on the use of a single-degree-of-freedom model, ie.,
neglect the influence of higher modes. Specifically, the values of the local story
displacement ductility demands in the case of the simplified analyses have been obtained
from the global ductility given by the nonlinear spectra for a Single—degree-of—freed01n model
shown in Figs. 6.12 and 6.13, entering with Cy = (.18 (obtained from Fig. 6.10) and T; =
1.43 seconds (Table 3. 3) or T{ = 1.42 seconds from Fig. 4.2. For these values, Fig. 6.12
shows Pglobal = 1.8 and Fig. 6.13 shows Polopay = 1.9. Therefore it is clear that, the pg,op,)
being larger for the James Road record than it is for the Hollister record, the local ductility
should also be larger for the James Road record. However, the linear elastic analysis shows
that the second mode with a T, of 0.48 second has a significant effect on the response of the
building. This second mode has to affect the initiation and response in the inelastic range
as well. A comparison of the spectral values in Figs. 6.12 and 6.13 for a T, = 0.48 second
shows that for Cy = 0.18 the required global ductility for the Hollister record can be

significantly larger than that required for the James Road record.
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One of the main advantages of the use of the proposed approximate simplified analysis is the
amount of time invelved in the required computations. For the building analyzed here, and
for records used in this study (with durations of 20 seconds and an integration time step of
0.02 second), the computational effort in a nonlinear dynamic time-history analysis
(DRAIN-2D) is approximately 12 times greater than that for a nonlinear static-to-collapse
analysis. Thus it is possible to conduct several simplified analyses rather than just one
MDOEFS nonlinear time-history analysis. As a result, simplified analyses can be used to
analyze the sensitivities of the results if the assumed mechanical models are modified.
Furthermore, it is easier to interpret results from a static-to-collapse lateral load analysis than

from a dynamic time-history analysis.

6. 5. 2 Estimation of the Maximum Displacement and Interstory Drift Index

As is illustrated below, the simplified nonlinear analysis, or, in general, the results from
nonlinear static-to-collapse analyses, together with the nonlinear (inelastic) spectra of Figs.
6.12 and 6. 13 can be used to estimate the maximum displacement as well as the maximum

interstory drift.

Maximum Displacement of the Roof. Consider the ten-story building, with T, = 1.43

seconds subjected to the Hollister record, whose Inelastic Response Spectra (IRS) for
different values of ductility are given in Fig. 6.12. According to Fig. 6.10, Cy =V/W =0.18.
From Fig. 6.12, Hoiobat = 1.8. Therefore the displacement at yielding for the equivalent
SDOFS would be approximately 0.18g (1.43/2m)% = 3.60 in., and the maximum displacement
for Pglobal = 1.8 would be 6.49 in. For the real MDOES building, the maximum displacement
will depend on the shape of the lateral deflection that is assumed in the derivation for the
equivalent SDOFS. If this shape is assumed to be an inverted triangle, then the maximum
displacement at the roof will be (6.49 in) x 3/2 = 9.73 in. This value is 28% larger than that

obtained from the time-history analysis, i.e., 7.59 in. (see Table 6.1).

Maximum Interstory Drift Index (IDI). From analysis of the values given in Table 6.2 it is

obvious that the maximum IDI will occur at the 4th story. The following two approaches can

be used to estimate this maximum IDI: (1) from the estimated maximum displacement at the
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roof, i.e., 9.73 in., the IDI at the 4th story will be approximately {9.73 in./1080 in.) (3.08/1.8)
= 0.015; (2) directly from the value of the fhueq oy Obtained from a simplified analysis, i.e.,
3.22 (see Table 6.3) and the value of the IDI at which yielding is initiated at the 4th story,
which is 0.005. Then the maximum IDI at the 4th story is 3.32 x 0.005 = 0.0166. (The value
of 0.005 is obtained from the static-to-collapse analysis of the 4th story. It can also be
obtained from Fig. 6.3). Comparison of the two above estimated values for the maximum
IDI with that obtained from the time-history analysis of the building, i.e., 0.0161 (see Table

6.1) shows good agreement for all practical purposes.
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RESPONSE PARAMETER HOLLISTER JAMES ROAD
Max, Base Shear (kips) 3,58¢ 3,433
Max. Displacement (in) 7.58 7.71

Max. 1Dt® 0.0161 0.0154

Min. Base Shear (kips) 3,520 -2,752
Min. Displacement (in) -7.46 -4.48

Min. 1DI -0.0132 -0.0078

{A} Interstory Drift Index

Table 6. 1 Summary of response pérameters computed in nonilinear time
history analyses.

GLOBAL DUCTILITY
STORY

0.8 1.2 1.8 2.0
1 0.55 0.71 0.78 0.82
2 0.59 0.79 0.90 0.97
3 0.86 1.56 2.16 2.76
4 0.88 1.76 2.68 3.51
5 0.82 1.40 2.25 3.07
6 0.77 _ 1.04 1.60 2.24
7 0.72 0.94 1.17 1.55
8 0.63 0.82 0.91 1.00
8 0.47 0.61 0.67 0.7
10 0.28 0.36 0.40 0.42

Table 6. 2 Story ductilities for different levels of giobal deformation com-
puted using nonlinear static analyses
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STORY DISPLACEMENT DUCTILITY DEMAND
STORY NONLINEAR TIME HISTORY
ANALYSIS - DRAIN-2D SIMPLIFIED ANALYSIS
10 0.59 0.44
9 0.92 0.73
8 1.10 1.01
7 1.797 155
6 2.36 2.22
5 2.51 2.60
4 3.15 3.32
3 2.64 2.68
2 0.96 0.98
1 0.88 | 0.84

Table 6. 3 - Comparison of computed story displacement ductility demands
for the Hollister record.

| STORY DISPLACEMENT DUCTILITY DEMANDS
STORY NONLINEAR TIME HISTORY
ANALYSIS - DRAIN.2D SIMPLIFIED ANALYSIS
10 0.51 0.45
9 0.81 0.74
8 1.06 1.02
7 1.32 _ 1.56
6 1,52 2.25
5 2.23 3.09
4 3.03 3.52
3 261 2,76
2 0.99 0.99
1 0.83 0.83

Table 6. 4 Comparison of computed story displacement ductility demands
for the James Road record.




-73-

‘P10234 peoy sasuwer
6161 2U} pue p10931 1ASI||OH 6861 S} JO SBLI0ISIY BW UONEISI3IJY - | 9 3InBig

(08s) INIL
02 Gl ot G 0
' . @ sieb y09¢c- 00¥-
{1 o0z
\;&E\/\\/}%,ﬁ 0
{1 002
INVADHLYUVYI ATTIVA TVIH3dWI 6481
MOSS 'dWO3 AvOHd SINVT 8180 £'95€ (0]0)7
(steB) NOILYHI 1300V ONNOHD
(08s) gNIL .
0z Gt 0t g 0
_ T sEbapieg . ooy
{ o0z
0
{1 002
INVNOHLIUYE VI3IHd YNO 6861
S-N "dWOO HALSITIOH sieB g'19¢ Y o0b

(sieB) NOILYHI 1302V ANNOHD



‘pi093i 191SI1{{OH ay} 104 Buip(ing
8y} ui payndwoo seu01sIYy Bwiy Jeays aseq pue juawadeldsip Jooy - g "9 ainbidy

(09s) aNIL
02 Gl 0l 0
, . 000b-
1  oooz-
0
{1 0002
000V
(sdp) "V3IHS 3SVE
(08s) IWIL
0z Gl ot 0
: : 0i-
4 m-
0
i1 &
o]

(u) INIWIDV14SIA 400

_VL-



STORY SHEAR (kips)

4000

2000 g

S

2000

8TH STORY

4000 ! —
-1 0 1
RELATIVE DISPLACEMENT (in)

STORY SHEAR (kips)
4000

2000 |
0 .
2000 ¢

BTH STORY

4000

-1 0 1
RELATIVE DISPLACEMENT (in)
STORY SHEAR (kips)

4000

2000

0

2000
ATH STORY

4000

- 0 1
RELATIVE DISPLACEMENT (in)

STORY SHEAR (kips)
4000

2000

0

2000
2ZND STORY

4000

- 0 1
RELATIVE DISPLACEMENT (in)

Figure 6. 3 - Story load-deformation relations computed in the building

for the Hollister record

-75-

STORY SHEAR (ips)

4000
2000 ¢
N /
2000 r
7TH STORY
4000 -~ YE. 1
. -1 0 1
RELATIVE DISPLACEMENT (in)
STORY SHEAR (Kips)
4000
2000
0
2000
5TH STORY
4000
. -1 0 1
RELATIVE DISPLACEMENT (in)
STORY SHEAR (kips)
4000
2000
0
2000
aRD STORY
4000

-1 0 1
RELATIVE DISPLACEMENT (in)
STORY SHEAR (kips)

4000
2000 }
0 L
2000 ¢t
18T STORY
4000 = - *

-1 0 1
RELATIVE DISPLACEMENT (in)



"PioJau 181S1|0H 8yl 10} Buipjing ay) uj sadojanus asuodsa. paindwo) - ¢ "9 ainbi4

iai () (u) INaIW3DVIdSIa (@) (sdpt) HYIHS AHOLS (B)
G100 S00'0  S00'0- S10°0- 01 S 0 G- 0l- 000F 0002 0 000V-

t 1 . ! ) ] 1 1 [l ] ! 1 1 )

_9L_



217-

'pi0931 peoy Ssawer
8y} 10} Buippng ayl u; paindwos sau0lsiy awy Juawedeidsip JOOYH - G 9 aInbi4

(08s) INIL
oz Gl ot g 0
: : : 000b-
{ 0002
0
{ 0002
000V
(sdpf) WV3HS 3sva
(0ss) aniL
02 Gl 0} S 0
— : _ 01-
4 g-
0
1 g
0l

(W) LNIW3OVIdSIA 400



18-

STORY SHEAR (kips)

4000

2000

2000

4000

8TH STORY

-1 0 1
RELATIVE DISPLACEMENT (in)

STORY SHEAR (kips)

4000

2000

2000

4000

/

6TH STORY

1 3 X

-1 0 1
RELATIVE DISPLACEMENT (in)

STORY SHEAR (kips)

4000

2000

2000

4000

-

4TH STORY

-1 g 1
RELATIVE DISPLACEMENT (in)

STORY SHEAR (kips)

4000

2000

2000

4000

Figure 6. 6 - Story load-deformation relations computed in the building

2ND STORY

o L L,

-1 0 1
RELATIVE DISPLACEMENT (in)

for the James Road record

STORY SHEAR (kips)

4000

2000

2000

4000

-/

TTH STORY

i

-1 ¢ 1
RELATIVE DISPLACEMENT (in)

STORY SHEAR (kips)

4000

2000

2000

4000

e

STH STORY

'

-1 0 1
RELATIVE DISPLACEMENT {in)

STORY SHEAR (Kips)

4000

2000

2000

4000

7

3RD STCRY

3

L X

-1 0 1
RELATIVE DISPLACEMENT (in)

STORY SHEAR (kips)

4000

2000

2000

4000

1ST STORY

-1 0 1
RELATIVE DISPLACEMENT (in)




-79-

"p1023i
peoy sawer ay} Jo} Buipjing ay) u sedojaaue asuodsal pajndwo) - 7 g ainbi4

iar () (u) IN3IWIADVIdSIA () (sdp) HYIHS AHOLS (B)
G100 G000  S000- SL00- O} S 0 G- 0l- 000y 0002 0 000b-

L 1 L 1 ] J { 1 1 — i [l 1 —]




-80-

4

™

FF

%
%
R 7 SO NS RN 77 A S T a ST LN

INTERIOA FRAMES

G TN NG PANSE D SN SO 2

EXTERIOR FRAMES

R SN s

Figure 6. 8 - Locations of plastic hinges in the building for the Hollister

record

| ! |

|

|

|

|1 |

|

i
L
|
|
J
L

TS TR T TTRN P77 AN T T T T RN T

INTERIOR FRAMES

YEEE Oy

EANEE Loz N o e £ gy

EXTERIOR FRAMES

T,

Figure 6. 9 - Locations of plastic hinges iri the building for the James

Road record



-81-

BASE SHEAR (kips) VIW
3500 —
ac0o t =TT A 1T
=
2500 !
A, 2 = Amax 40.15
2000 L &
15800 COMPUTED RESPONSE 010
-------- IDEALIZED RESPONSE
1000
410.05
530
TRIANGULAR PATTERN
0 X 3 ) ! ok 0.00
0 2 4 6 8 10 12

ROOF DISPLACEMENT (in)

Figure 6. 10 - Comparison of computed response and idealized
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Figure 6. 11 - Relationship between global and local ductility demands
for the longitudinal direction of the building
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Figure 6. 12 - Nonlinear spectra for the 1989 Hollister record
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Figure 6. 13 - Nonlinear spectra of the 1979 James Road record
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7. SUMMARY, CONCLUSIONS, IMPLICATIONS OF RESULTS
AND RECOMMENDATIONS

7.1 SUMMARY AND CONCLUSIONS

An existing instrumented ten-story RC building, which was subjected to what can be
considered as earthquake ground motions of moderate damage potential during the 1987
Whittier Narrows earthquake, was selected for detailed analytical studies to evaluate its
seismic performance and to compare such performance with the observed (measured)
response during that earthquake. This comparison has permitted an evaluation of the
reliability of the analytical models and methods presently used in the analyses necessary for
checking the preliminary designs of new structures and for the vulnerability assessment of
existing buildings. The laterally-resistant structural system of the building consists of
moment-resisting frames in the N-S direction and shear walls in the E-W direction. The
building was designed according to the ACT strength method for a seismic design coefficient

of 0.052 in the longitudinal (N-S) direction and 0.073 in the transverse (E-W) direction.

The dynamic characteristics of the building were identified using system identification
techniques and the acceleration time histories recorded during the Whittier Narrows
earthquake. The values of the identified vibration periods in the transverse direction
agree with those identified from the 1976 Whittier earthquake records. On the other
hand, the values of the identified period in the longitudinal direction are significantly
higher, 81% for the first mode, than those identified from the 1976 earthquake records.
A small change in fundamental period was observed during the earthquake for the
transverse direction of the building. This would indicate that some extra damage [extra
cracking or movement (rocking) of the foundation or both] had occurred. No changes
in the longitudinal direction fundamental period were observed, indicating that no
significant damage could have occurred in this direction during the response of the

building to the recorded earthquake ground motions.

A three-dimensional, linear-elastic model of the building was calibrated using the dynamic

characteristics previously identified. Using this model, time-history analyses were conducted
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using as input the acceleration time histories recorded in the basement. These analyses had
the following objectives: (i) to investigate the effectiveness of linear-elastic analyses to
capture the response of the building under moderate ground motions; and (ii) to explain the
absence of damage as a result of the Whittier Narrows earthquake despite the apparent
severity of the recorded ground motions (i.e., the large peak ground accelerations in both

directions: 0.60g and 0.40g, respectively, in the transverse and longitudinal directions.)

For both directions, the analyses that only took into account the fundamental mode
failed {o reproduce the recorded accelerations. When the first nine modes of vibration
were considered, very good correlation between the measured and computed responses
was obtained for both directions. Maximum computed interstory drift indices of 0.34%
in the longitudinal direction and 0.21% in the transverse direction explain the absence
of significant damage in the building. These results confirm once more that Peak
Ground Accelerations of recorded ground motions are not a reliable parameter by

which to judge the damage potential of such motions to a specific structure.

Nonlinear static-to-collapse lateral loading analyses were conducted to investigate the strength
and deformatton capacities of the building. Two lateral loading patterns, triangular and
rectangular, were used. Significant overstrengths were computed particularly in the
transverse direction. For the longitudinal direction, the ratio between the base shear
at first significant yielding and the ACI ultimate strength design base shear (0.052 W)
was about 3.06 for the case of triangular loading and 3.62 for the rectangular loading.
Because of plastic redistribution it was estimated that there was an additional
overstrength: the ratio between the maximum base shear resistance and the base shear
at first significant yielding was 1.38 for both lateral loading patterns. Therefore, the
ratios between the maximum base shear resistance (0,.22W and 0.26W) and the code
(ultimate strength) design base shear (0.052W) were 4.23 and 5.0 for the triangular and
the uniform lateral loads, respectively. These overstrengths were obtained assuming
that the structure would be able to develop a global displacement ductility ratio of about
2.4 with a local ductility ratio of about 4 -- although it is doubtful that the existing
detailing of the reinforcing will allow this to be developed. It should be noted that the
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above overstrengths are static overstrengths and that they are a lower bound of the
dynamic overstrength [36]. For the transverse direction the overstrength ratios were
higher than for the longitudinal direction, Base shear strengths corresponding to first
significant yielding of the shear walls were 0.32W and 0.43W, respectively, for the
triangular and rectangular load patterns. Considering that the structural system
according to code requirements has to be designed for an ultimate strength of 0.073W
(Eq. 2.5), the resulting strength ratios are 4.38 and 5.89. The maximum base shear
strengths were computed to be 0.42W and 0.51W, respectively, for the triangular and
rectangular load patterns, with the result that their ratios with the code design
requirement of 0.073W were 5.75 and 6.99. These overstrengths were obtained
assuming that the shear wall systems can develop a global displacement ductility ratio
larger than 3 and near 2.5 for the triangular and rectangular patterns, respectively.
It is doubtful that the detailing of the reinforcement in the coupling girders and walls
could allow such a high global displacement ductility ratio to develop. Nonlinear time-
history analyses were carried out for the longitudinal direction of the building using the
| Hollister and James Road records. In spite of the fact that these two records have peak
ground accelerations smaller than those recorded at the basement of the building during
the Whittier Narrows earthquake, large inelastic deformations along the 3rd to 7th
stories were computed., The maximum base shear demanded was about 0.24W. The
maximum displacement was 7.71 inches, and the maximum interstory drift index was
0.016, resulting in a maximum demanded story displacement ductility ratio of 3.15 in
the 4th story. The number of yielding reversals was small, only four. The maximum

rotation of the columns in the 4th story was (.02 radian.

An approximate method was proposed and used to estimate local displacement ductility ratio
demands. The method is based on the use of a relationship between global and local
deformations obtained from static-to-collapse lateral loading, and the use of nonlinear
(inelastic) spectra for SDOFS. Simplified earthquake analyses using this method were
conducted for this building when subjected to the James Road and Hollister records. Results

were then compared with those obtained using DRAIN-2D. For both records, the
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simplified analysis method produced very good estimates of story displacement ductility

ratio demands,

An attempt has also been made to estimate the maximum interstory drift index using the
above approximate method. The results agree very well with those obtained from the

nonlinear time-history of the building.

7.2 ASSESSMENT OF THE IMPLICATIONS OF THE RESULTS FOR EQ-

RESISTANT DESIGN PRACTICE

The analyses conducted and the results obtained have clearly confirmed once more that there

are uncertainties in the following areas,

® Reliable estimation of the main dynamic characteristics of real buildings, The
estimation of the period for the moment-resistant frames using code provisions

significantly underestimated the fundamental period identified from the records.

® Analytical modelling of real buildings, particularly the foundation and the

stiffnesses of the members and their connections.

® Selecting the critical EQ ground motions; particularly, the inadequacy of the

peak ground acceleration as a parameter for measuring damage potential,

® Estimation of the demands resulting from selected EQ ground motions. The
need to include all of the important modes. The number of significant modes

depends on the response parameter under study.

The studies conducted have also shown that RC structures designed and constructed according
to building code regulations have significantly larger strength than that for which they have
been designed. Not only does the constructed building have a significant first yielding
overstrength, but it could also have developed a maximum strength significantly larger than
the first yielding strength, provided that its members and their connections are provided with

sufficient local ductility through proper detailing of their reinforcement. There is a need to
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evaluate and consider the possible overstrength in the seismically-resistant design of

structures.

The analysis of the detailing of the reinforcement used in the building considered herein
shows clearly that the building cannot develop the local ductility ratio that would be
demanded by the required global ductility ratio when it is subjected to safety level EQ ground
motions. This result points out clearly not only the severity of the problem created by
many existing RC buildings with similar reinforcement detailing, but also the urgent
need for proper seismic upgrading of buildings of this type located in regions of high

seismicity.

To identify the existing seismically hazardous buildings, as well as to improve the design of
new buildings, there is an urgent need to develop and use a simplified nonlinear analysis
procedure to estimate the maximum displacement, IDI, and global and local ductility that can
be demanded of these buildings by safety leve] EQs. The simplified method proposed

herein, which is based on the use of nonlinear static-to-collapse lateral loading and
| nonlinear analysis of an equivalent SDOFS appears to be promising and should be

investigated further.

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH AND DEVELOPMENTS

The analyses conducted in this case study of the ten-story RC building have shown the large
number of uncertainties in the estimation of the demands, and that RC buildings designed
according to the present codes have significant first yielding overstrength. Furthermore, if
their members and connections are provided (constructed) with good local ductility ratios, the
RC building structure can have significantly larger maximum overstrength, These
overstrengths need to be considered in the design. The studies conducted have shown that
to improve design methods for new structures and vulnerability assessment for existing

buildings there is a need for the following research and developments.

® The estimation of realistic seismic demands on new or existing buildings depends on

the consideration of the real strength and stiffness of the building, There is a need
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to estimate the approximate overstrength ef buildings according to their
structural system and their height. Buildings having different structural systems
and heights and located in regions of high seismic activity should be thoroughly

instrumented.

It is recommended that in order to increase the reliability and transparency of
current building code seismic design provisions, reductions in the required design
strength due to inelastic behavior and overstrength should be considered
explicitly, The reductions due to inelastic behavior must be dependent on the
inclastic deformation capacity of the structure (which depends on the type of
structural system and on the detailing of the elements and of their connections), on
the fundamental period of the structure, and on local site conditions. Realistic
estimates of displacement demands must also be considered explicitly in the
design process. To achieve these estimations in practice it is necessary to develop
simple but reliable analytic methods, such as the simplified method proposed and used
in this study. Further work is needed to investigate the limitations and reliability
of this method.
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