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ABS'l'RACT

This study investigates the seismic performance of a six

story steel building which was instrumented with thirteen

accelerometers at the time of the Whittier Narrows earthquake

(October, 1987). The lateral force system is a moment-resistant

perimeter frame. The building was not severely tested by the

motions recorded at its base during the Whittier narrows

earthquake. The dynamic seismic response was entirely linear

elastic. System identification techniques are used to identify

the periods of vibration from the recorded response. Recorded

data are also used to evaluate the finite element model of the

structure and to evaluate the contribution of gravity, framing

and nonstructural components to the dynamic properties. A

detailed stress check of all members is performed for the design

loading. Using a three-dimensional elastic model of the

structure, the effect of the direction of the earthquake input

is evaluated by considering the developed stress ratios. The

directional effects are shown to in_crease the stress in the

critical members by 9%.

Static nonlinear analyses are used to identify the

potential failure mechanism and regions of increased ductility

demand. Relationships between global and local ductility are

investigated along with the distribution of inelastic behavior

throughout the frame. The static nonlinear analysis shows that

the structure has an overstrength which resulted in an ultimate

lateral resistance of more than 20% over the .code required
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strength. Nonlinear dynamic analyses are used to evaluate the

behavior of the building under stronger motions which have been

recorded on similar sites during recent earthquakes. using

these results, the structural system coefficient, Rw, is

evaluated.

The value of Rw for this moment-resistant frame is shown to

vary between 5.6 and 7.4, well below the value of 12 specified

in the 1985 UBC.
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1. INTRODUCTION

The Whittier Narrows Earthquake occurred at 7: 42 am on the

morning of October 1, 1987 and was assigned a local Richter

Magnitude of 5.9 (ML ). The epicenter was north of Whittier,

California, approximately nine miles (15 km) east of downtown

Los Angeles. Following the earthquake, the California Strong

Motion Instrumentation Program (CSMIP) obtained records from 27

extensively instrumented building structures [1]. In addition,

the U. S . Geological Survey (USGS) collected data in

approximately ten instrumented buildings [2] and the University

of Southern California collected data in four. Other data may

have been obtained but is not readily available in the public

domain. It is estimated that over 200 buildings in Los Angeles

have been instrumented by the building owners in compliance with

the local building code. However, a recent code change in the

city of Los Angeles has reduced the seismic instrumentation

requirement to only a single instrument at the roof level. As a

result of this change, many structures which had recorders at

three levels at the time of the San Fernando Earthquake (1979)

now have only a single recorder at the roof, rendering them

unusable for analytical studies. Unfortunately, this is a step

backward in the continuing efforts to improve understanding and

prediction of the seismic behavior of buildings.

In order to perform detailed studies of structural response

during an earthquake, it is necessary to use a copy of both the

structural plans and the architectural plans. A partial list of
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the major structures from the above database of instrumented

buildings for which the structural plans are available is given

in Table 1. Here it can be seen that most of the available data

is for low to mid-rise structures and that only limited data is

available for high-rise buildings over 25 stories. The one

exception is the 33-story structure at 1100 wilshire Boulevard,

instrumented by USGS. From this list, the six-story steel

building in Burbank, instrumented by CSMIP [1] was selected for

detailed study. The structure uses a steel perimeter moment

frame for resistance to lateral loads. A map of the CSMIP strong

motion stations is shown in Fig. 1. The building is station

number 370, which is located approximately 16 miles (26 km) from

the epicenter.

2. BUILDING DETAILS

The building in Burbank was designed in 1976 to the

requirements of the 1973 Uniform Building Code [3] as amended by

the city of Burbank. The primary structural system for carrying

lateral load is a steel moment-resisting frame around the

perimeter of the building, which is shown in the plan view

of the structure in Fig. 2a. Note that the moment continuity of

the peripheral frame is broken at the corners where a

connection is required to the weak axis of a wide flange column.

At these four locations a simple, shear connection is used

instead of a moment connection. This pin connection is

represented by a circle in Figs. 2 and 3. Gravity loads are

carried by an interior framing system consisting of much
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TABLE 1. BUILDING RECORDS, WHITTIER NARROWS EARTHQUAKE

Building Height
(Stories)

Framing
System

Recorded
Accelerations

1. Office
Building

2. Apartment
Building

3. Financial
Building

4. Commercial
Storage

5. Apartment
Building

6. Office
Building

7. Hotel

8. Dormitory

9. Classroom
Building

10. Financial
Building

8

10

6

14

10

12

20

11

10

13

Shear Wall/
Frame

Shear Wall

Steel
Perimeter

Moment
Frame

Shear Wall

Precast
Shear Wall

Steel
Perimeter

Moment Frame

RC
Moment
Frame

Shear Wall

Steel
Perimeter

Moment Frame

RC
Moment

Frame

Base
2nd
Roof

Base
Fifth
Roof

Base
2nd
3rd
Roof

Base
8th
12th
Roof

Base
4th
8th
Roof

Base
6th
Roof

Base
3rd
9th
16th
Roof

Base
6th
Roof

Base
6th
Roof

Base
2nd
8th
Roof

0.39
0.41
0.48

0.63
0.63
0.61

0.22
0.21
0.24
0.30

0.12
0.19
0.14
0.21

0.22
0.31
0.28
0.54

0.30
0.47
0.28

0.11
0.19
0.12
0.13
0.17

0.10
0.18
0.29

0.14
0.08
0.07

0.26
0.18
0.13
0.14
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connected by simple, shear connections. Soil conditions at the

site consist of silty sands extending to a depth of 25 feet

having a blow count of 1-2. Below 25 feet the sands become well

graded and the blow count increases to 14-15. Because of these

soil conditions, the exterior columns of the lateral force

system are supported on two 3D-inch diameter reinforced concrete

piles which are 32 feet long. Interior columns are supported on

spread footings. An elevation of a typical moment frame is

shown in Fig. 3. In the initial stage of this study, the

structure is assumed to be fixed at the base. The validity of

this assumption will be checked by comparing the calculated

response with the recorded response. At the second floor level

and at the roof, the floor deck extends a distance of 6 1/2 feet

beyond the perimeter moment frame, giving it a plan dimension of

132 feet by 132 feet. No damage was reported in the structure.

3. INSTRUMENTATION AND RECORDED DATA

The building was instrumented with 13 strong motion

recorders at the time of the Whittier Narrows Earthquake. The

location and orientation of these instruments is shown in Fig.

4, which is taken from reference [1]. Peak recorded responses

are summarized in Table 2. The vertical acceleration recorded

at the base of the structure is given by channel 1, which is

shown in Fig. 5a. Here it can be seen that the peak vertical

acceleration was about 0.09g and that there is not an apparent

long period motion which would indicate rocking motions of the

building. The horizontal acceleration in the north-south
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direction at the base is given by channel 13 which is shown in

Fig. 5b. Here the relatively short duration and high frequency

of the base motion become readily apparent. The peak

acceleration is approximately 0.22g, but this is due to a high

frequency acceleration spike, and the duration of strong motion

is only about five seconds.

TABLE 2. PEAK RECORDED RESPONSES

Ident. Location Component Accel.
(cm/s2)

velocity
(cm/s)

Disp.
(em)

Chan. 1

Chan. 2

Chan. 3

Chan. 4

Chan. 5

Chan. 6

Chan. 7

Ground

Roof N.W.

Roof S.W.

3RD N.W.

3RD S.W.

2ND N.W.

2ND S.W.

Up

090

090

090

090

090

090

84.98

183.58

156.73

176.65

146.75

146.27

143.86

3.61

21.29

18.48

12.32

10.90

10.37

9.99

0.38

4.03

3.66

2.12

1.96

1. 70

1.50

Chan. 8 Ground N.W.

Chan. 9 Ground S.W.

Chan. 10 Roof N.W.

Chan. 11 3RD N.W.

Chan. 12 2ND N.W.

Chan. 13 Ground N.W.

090

090

180

180

180

180

165.77

162.23

283.72

233.16

194.64

221. 74

9.74

9.56

31.98

18.44

15.94

12.51

1.20

1.19

6.30

2.49

1.68

1.27

Horizontal motions at the base in the east-west direction

are given by channels 8 and 9, which are shown in Fig. 6a and 6b

respectively. Here it can be seen that the peak acceleration in
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this direction is also due to a high frequency acceleration

spike having an amplitude of 0.17g, and that the duration of

strong motion shaking is even shorter than in the north-south

direction. Horizontal accelerations at the second floor level

are given by channels 6, 7 and 12 which are shown in Fig. 7.

Similar data for the third floor level are given by channels 4,

5 and 11 which are shown in Fig. 8. Roof accelerations in the

horizontal direction are given by channels 2, 3 and 10 which are

shown in Fig. 9. From a comparison of the three acceleration

plots, it would appear that the period of vibration in both

directions is approximately the same, having a value of about

1.2 to 1.3 seconds. The peak roof acceleration was recorded in

the north-south direction by channel 10 and has a value of

0.29g.

A cursory examination of the time history plots at the roof

level indicates that there is no appreciable increase in the

period of vibration over the entire time history. This indicates

that the response is linear elastic.

4. SYSTEM IDENTIFICATION STUDIES

In order to understand the recorded dYnamic response of the

building better and to evaluate the dYnamic characteristics of

the building prior to performing the detailed response analyses,

the recorded response data was processed using Fourier amplitude

spectra, transfer functions, moving window Fourier analyses,

linear elastic response spectra and inelastic response spectra.
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The results of these studies are discussed in the following

sections.

4.1 Linear Elastic Response Spectra (LRRS)

In order to obtain a better evaluation of the recorded

response, LERS for 5% damping were generated and plotted for

selected recorded building motions. Rotation of the structure

was evaluated using the spectra shown in Fig. 10. LERS for the

base are compared in Fig lOa using motions recorded on channels

8 and 9. These channels recorded base accelerations on the north

and south sides of the structure in the E-W direction.

Comparison of the response spectra shows that the two spectra

are identical and therefore there is little or no rotation at

the base. Similar data for channels 2 and 3 on the roof are

shown in Fig. lOb. There is some variation between the spectra

in the period range below 0.7 second which could include the

torsional mode of the building but the variation is small.

An LERS for motions in the east-west direction at the roof

level are shown in Fig. 11a. Here it can be seen that the

fundamental period of the response occurs at approximately 1.3

seconds which agrees with that observed from the zero crossing

of the time history data. Amplified response between the base

and the roof in this direction can be evaluated by comparing the

spectral values for channels 2 and 8. As would be expected, the

largest amplification occurs for the fundamental mode and has a

value of approximately 6.3 with smaller amplification for the

second and higher modes. Similar spectra for the north-south
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direction are shown in Fig. 11b. Here a fundamental mode can be

identified at a period of 1.3 seconds and the second mode can be

seen at a period of 0.44 second. The maximum amplification

between base and roof occurs in this direction and has a value

of approximately 9.2.

4.2 Fourier Analyses

Fourier amplitude spectra (FAS) of the recorded

accelerations at the base of the structure are shown in Fig. 12,

for the motion in the north-south direction in Fig. 12a, and for

the east-west direction in Fig. 12b. In the north-south

direction, the strongest input has a frequency content between

0.5 and 2.0 Hz with a strong peak between 0.75 and 1.0 Hz. In

the east-west direction the strongest input is between 0.5 and

1.75 Hz.

Fourier amplitude spectra for motions recorded at other

locations in the building are compared with the corresponding

base FAS in Figs. 13 and 14 for east-west motions and Fig. 15

for north-south motions. All plots have a similar characteristic

shape showing a strong peak at 0.75 Hz (1.33 second) and another

at 2.2 Hz (0.45 second).

Transfer functions for the motions recorded in the

east-west direction are shown in Figs. 16 and 17. From Fig. 16,

it is possible to identify the first three modes in this

direction as occurring at the following frequencies: the first

mode has a frequency of 1.0 Hz (T=1.0 second), the second mode

occurs at a frequency of 2.4 Hz (T=0.42 second), and the third
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mode occurs at a frequency of 3.2 Hz (T=0.31 second). Similar

results can be seen in Fig. 17 for the other side of the

structure. In the north-south direction, the transfer functions

shown in Fig. 18, show that the first mode is dominant at all

three levels and occurs at a frequency of 0.75 Hz (T=1.33

seconds). In this direction the second mode shows up clearly at

the second and third floor levels and has a value of 2.25 Hz

(T=0.44 second). A third mode can also be seen in this direction

at approximately 3.2 Hz (T=0.31 second). The modal frequencies

and periods identified from the Fourier analyses are summarized

in Table 3.

TABLE 3. IDENTIFICATION OF TRANSLATIONAL MODAL PERIODS

Direction

East-West

North-South

Mode 1

1.00

1.33

Mode 2

0.42

0.44

Mode 3

0.32

0.32

In order to identify changes in the frequency content of

the input motions during the earthquake, moving window Fourier

analyses are performed using the recorded base motions. In these

analyses, the FAS has been calculated for ten second window

lengths starting from the beginning of the record and then

offsetting the window by five seconds at each step. For each

window, the length of the record was extended by adding zeros to

obtain good resolution in the spectra.

The result for the vertical component of the base motion is

shown in Fig. 19. This figure shows that although the amplitude

is small, the frequency content during the first ten seconds is
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relatively uniform over a wide band. Two dominant frequencies

appear during the second ten second interval. After ten seconds

the amplitudes drop to almost zero. Moving window analysis of

the base motion in the east-west direction is shown in Fig. 20.

Here it can be seen that during the first ten seconds there is

a relatively strong input in a frequency band between 0.5 Hz and

1.75 Hz. This diminishes significantly during the next window

and reduces to very small amplitudes in succeeding windows. In

the north-south direction, Fig. 21, the moving window analysis

shows that during the first ten second window the input

frequency band extends from 0.7 Hz to 2.5 Hz with a strong peak

at 2.0 Hz.

Moving window analyses of motions in the east-west

direction are shown in Figs. 22, 23 and 24. The moving window

analysis of the motion at the roof level is shown in Fig. 22

where it can be seen that the response is predominantly first

mode at a frequency of 0.75 Hz. Corresponding results for the

third floor level are shown in Fig. 23. Here it can be seen that

there is an increased contribution from the second mode at a

frequency of 2.4 Hz. particularly during the first twenty

seconds. The moving window FAS at the second floor has

characteristics which are similar to the base motion,

particularly during the first ten second window. In succeeding

windows, the FAS at the second mode diminishes and the first

mode becomes dominant.
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Moving window analyses of motions in the north-south

direction are shown in Figs. 25, 26 and 27. At the roof level,

shown in Fig. 25, the response is predominantly first mode

although there is some second mode response during the first ten

second window. The moving window analyses for the third level

which are shown in Fig. 26, indicate that there is a significant

second mode response at this level during the first ten second

period. This diminishes significantly during the second window

and after ten seconds the first mode becomes dominant. A similar

result is obtained for the second floor, which is shown in Fig.

27. During the first window, the response is influenced by the

base motion and the second mode is dominant. As at the third

level, the second mode diminishes during the second window and

the first mode becomes dominant after ten seconds.

Torsional effects can be evaluated by comparing the FAS of

motions recorded on opposite sides of the building. Results of

this analysis are presented in Fig. 28. The spectra shown in

Fig. 28a represent the motions at the base of the structure and

here it can be seen that there is no difference in the input

motions. This result is similar to that obtained from a

comparison of LERS. At the second floor level, Fig. 28b, it can

be seen that there is a small torsional effect at frequencies of

0.75, 2.3 and 3.2 Hz, which represent the first three modes of

vibration. A similar effect can be seen at the third and roof

levels shown in Fig. 28c and 28d. In all cases the torsional
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effect is very small and can probably be neglected in the

structural analyses.

4.3 Inelastic Response Spectra

Inelastic response spectra were generated for the recorded

base motions using a modified version of the NONSPEC [4]

program. Results from this program are presented in terms of the

yielding seismic resistance coefficient of the structure,

defined as

(1)

where Ry = yield resistance of the structure, and

We = total seismic dead load which in most cases
is taken as the total dead load, W.

The nonlinear spectra for the motions recorded on base channel

9 in the E-W direction are shown in Fig. 29b. The solid line

represents a ductility requirement of one (elastic behavior) and

the dashed or broken lines represent ductilities of 2, 3, 4, 5,

and 6. Considering the fundamental period of the structure to be

1.2 seconds, this figure indicates that a yielding seismic

resistance coefficient of about 0.09 will be required to ensure

elastic response of this structure if the response in the

fundamental mode is dominant. Considering a similar spectrum for

motions recorded on base channel 13 (Fig. 29a) in the N-S

direction, it can be seen that at the fundamental period of the

structure, a yielding seismic resistance coefficient of 0.1 is

required for an equivalent single-degree-of-freedom system to

obtain elastic response.
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5. MATHEMATICAL MODELS FOR ELASTIC RESPONSE

5.1 Two and Three-dimensional Models

Both two dimensional and three-dimensional models were

developed for the structure. Because of the symmetry of the

structure and the framing system, two dimensional models can be

used with the resulting savings in coding effort and

computational time. Elastic analyses were done using the SAP90

[5] and ETABS [6] computer programs, although it is recognized

that several alternative programs could have been used for this

phase of the response analysis. The reasons for selecting the

SAP90 program included the following:

1. The program has large capacity which permits

modeling the structure in detail in either two or

three dimensions on a personal computer.

2. The program allows the user to plot the time history

response of any node. This feature was crucial for

comparison of calculated results with the recorded

response.

3. The program permits consideration of a rigid floor

diaphragm through the use of a master node. This

greatly reduces the time required to perform a

dynamic analysis, particularly for a three

dimensional system.

4. The program has a postprocessor [7] which performs a

stress check of every member for the provisions of

the AISC Specification [8]. This greatly facilitates
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an evaluation of the stress level in the structure

under both the code design loading and the recorded

earthquake loading.

The current version of the ETABS program can not produce

time history response plots and therefore does not permit a

comparison of recorded response with calculated response.

Otherwise, this program could have been used for all response

analyses for this structure. Its one significant capability that

SAP90 does not have is the ability to calculate the stress

ratios in each member for a time history ground motion applied

in any direction with respect to the principal axes of the

structure. Therefore, this program was used to study the

directionality effects of the input motion.

The two-dimensional finite element model of a typical

perimeter moment frame is shown in Fig. 30a. Here the joint

numbering is shown along with the pinned moment releases at one

end of the frame. The three-dimensional model is shown in Fig.

30b. Although not shown in this figure, pinned element releases

are incorporated at one end of each frame in a similar manner to

the two dimensional model. Nodes 169 through 174 in the middle

of the figure are master nodes which connect to all nodes at a

particular story level and define the displacement response of

the story level.

5.2 weight (Mass) Determination

A set of the architectural drawings for the structure was

not available, rendering it necessary to estimate the weights of
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some of the finish materials. The weight of the structure was

estimated based on the following unit loads:

ROOF:
Roof Deck 46.0 psf

20 gage metal deck 3" deep with
3 1/4" lightweight concrete on top

Roo f ing 6. 0 psf
Hung Ceiling 8.0 psf
Mechanical Equipment Penthouse ......•..•• 43.0 psf

TYPICAL FLOOR:
Floor Deck 46.0 psf

20 gage metal deck 3" deep with
3 1/4" lightweight concrete on top

Hung Ceiling "............. 8.0
Floor Finish 1. 0

Columns .
7.1 psf
3.7 psf

Partitions
Steel

Beams

.............................. . 15 . 0

and joists .

psf
psf
psf

PERIMETER WALL:
Glass with mullions .........••.••..•..•... 10.0 psf

The weight of the second floor is higher than that of a

typical floor because of the effect of the 6 1/2 foot overhang

of the floor deck at that level. The weight of the roof is also

higher than that of a typical floor because of the overhang of

the roof deck and the addition of a mechanical equipment

penthouse. The total weight of the structure is estimated as

7785 kips.

6. CODE ANALYSIS AND STRESS CHECK

The structure was designed to the requirements of the 1973

uniform Building Code. Therefore, the existing strength will be

based on this lateral force requirement. The structure will also

be checked for the current requirements of the 1988 Uniform



16

Building Code. Lateral forces specified in building codes are

defined in terms of the base shear and have the general form:

V=C~ ~

where Cs is the design seismic resistance coefficient and We is

the total seismic dead load.

6.1 1973 Code Seismic Design Requirement

The seismic lateral force requirements of the 1973 Uniform

Building Code are expressed in terms of a base shear which is

given by the formula

where

v = (ZKCIS)W

T = O.lN = 0.6 sec.

C = 1/(15 ~) = 0.086

K = 0.67

(3)

(4)

(5)

(6)

(7)

If z, S and I are taken as unity, the design seismic

resistance coefficient becomes

Cs = 1.0*0.67*0.086*1.0*1.0 = 0.0577

and the base shear V, can be calculated as

Vcode = 0.0577*7785 = 449 kips. (8)

It should be noted that the expression used in the 1973

code to estimate the period tends to underestimate the actual

building period by more than 50%. As discussed earlier, the

recorded data from the building indicates that the fundamental

period is approximately 1.3 seconds in each direction. This may

be due in part to the fact that the estimate of period given by

Eq. 4 is based on experience with moment-resistant space frames

and not moment-resistant perimeter frames. In the Commentary to
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the 1975 SEAOC Recommendations, it was suggested that the

following expression be used to estimate the period,

T = 0.45 N 2/3 (9)

which results in a value of T=1.48 seconds for this building.

The underestimation of period tends to increase the seismic

design requirement by 41% over what it would be if the period

were estimated more accurately.

6.2 1973 Code wind Design Requirement

The lateral forces due to design winds in the 1973 code are

based on a wind pressure map given in the code. The basic wind

pressure for southern California is 20 psf. The distribution of

wind pressure over the height of the building is the following:

Story height

< 30'
30' to 49'
50' to 99'

Wind pressure

15 psf
20 psf
25 psf

Based on these values, the base shear is determined to be 180

kips which is well below the seismic requirement for the

structure.

6.3 Initial Stress Check

The initial stress check considered the loads for which the

structure was originally designed, and was performed on the two-

dimensional SAP90 model. Therefore, it was assumed that the

total lateral force was equally divided between the two

perimeter frames parallel to the direction of the lateral, force

and the effects of the exterior end frames and the interior

gravity frames were neglected. Because of the square plan of the
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structure, the effect of accidental torsion was approximated by

increasing the lateral seismic force by 5%. In this manner, the

base shear for a single plane frame was calculated as

v = 448 * 1.05/2 = 235 kips (10)

The code loading and resulting deformation of the frame are

shown in Fig. 31. Gravity loading is input as a uniformly

distributed load as shown in Fig. 31a, and this results in the

deformed shape of the frame shown in Fig. 31b. The controlling

lateral force is due to earthquake and the equivalent lateral

forces are shown in Fig. 31c. These result in deformation of the

frame as shown in Fig. 31d where it can be seen that the maximum

deformation at the roof level is 2.07 inches. The relative

displacements (story drifts) under design wind load and design

seismic load are shown in Fig. 32. Here, the seismic deformation

is based on the lateral loads multiplied by l/k as specified in

the building code. Normal design procedure usually limits the

drift under design wind load to 0.002 to 0.003 to prevent motion

of the structure which is discernable to the occupants. It can

be seen from the figure that the calculated wind drift is in the

middle of this range. The drift under seismic load is 0.0035

which is well within the code limit of 0.005.

The stress ratio (SR) is defined as the ratio of the

actual stress in the member to the allowable stress. Therefore,

to meet the allowable stress design criteria commonly used for

steel structures, the stress ratio of all members must be less

than or at most equal to unity. Stress ratios for the members of
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the frame are shown in Fig. 33. The stress ratios due to gravity

load acting alone are shown in Fig. 33a. In the case of combined

gravity load and seismic load, shown in Fig. 33b, the allowable

stresses have been increased by 33% as permitted in the code. It

can be seen that the larger stress ratios are the result of the

combined gravity load and seismic load and that the critical

values occur in the columns of the first floor. The maximum

value of the stress ratio can be seen to be 0.69 which implies

that the structure has a design conservatism for this combined

load condition of 1./0.69 or 45%.

6.4 1988 Code Seismic Design Requirement

The 1988 uniform Building Code defines the base shear as

v = (ZIC/Rw)We = CsWe (11)

where

C = 1.25S/T2/3

and the period, T, may be estimated as either

T = O. 035h3/ 4

(12)

(13)

which results in the following estimate:

T = 0.035*(82.5)3/4 = 0.96 sec. (14)

Alternatively, the period can be estimated using a Rayleigh

procedure as

T (Rayleigh) = 1.48 seconds (15)

Use of these estimates of the period along with Rw = 12,

Z = 0.4, S=1.0 and I = 1.0 results in design seismic resistance

coefficients of either

Cs (T=0.96) = 0.0428 or Cs (T=1.48) = 0.0321
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and corresponding base shears of either

V(T=0.96) = 333.1 kips or V(T=1.48) = 249.4 kips

Since the value of 249.4 kips is 75% of the 333.1 value, the

minimum base shear is limited to 0.8*333.1 = 266.4 kips which

results in a design seismic resistance coefficient of 0.0342. It

can be seen that t:hese values are 74% and 59% of the 1973 code

value. It can also be noted that the actual recorded building

period of 1.3 seconds is between the two estimates of the

period, T=0.96 and T=1.48.

6.5 1988 Code Wind Design Requirement

The lateral forces due to design winds in the 1988 Code are

based on a basic wind speed map given in the code. The design

wind speed for southern California is given as 70 mph and the

design wind pressure as

p = CeCqqs1

where 1=1, Cq=O.8+0.5=1.3 and Ce is determined from

(4)

Height
0-20

20-40
40-60
60-100

Ce
0.7
0.8
1.0
1.1

Use of these values results in a base shear due to wind of 139.3

kips which is 77% of the 1973 code value. Therefore it can be

concluded that the lateral forces used in the original design

will still govern the design and that the structure as built

will satisfy the current code requirements.
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7. ELASTIC RESPONSE ANALYSES

7.1 Modal Analyses

Using the three-dimensional SAP90 model of the structure

and the corresponding ETABS model shown in Fig. 34, the mode

shapes and frequencies for the first nine modes were evaluated.

The deflected shapes of the first three modes obtained from the

SAP90 model are shown in Fig. 35. Here it can be seen that the

first two modes are translational modes and that the third mode

is a torsional mode. The dynamic properties of the two models

are summarized in Table 4.

TABLE 4. PERIODS OF VIBRATION, 3D MODELS

Mode 1 2 3 4 5 6 7 8 9

SAP90

ETABS

1.42 1.42 0.83 0.51 0.51 0.30 0.29 0.29 0.19

1.42 1.42 0.82 0.51 0.51 0.30 0.29 0.29 0.20

It can be seen that, because of symmetry, the translational

modes are the same in each orthogonal direction. It should also

be noted that the value for the fundamental mode compares well

with the estimate of period obtained from the code using the

Rayleigh procedure {1. 48} and the recorded response {1. 33} .

However, it should be recalled that this represents the period

of the bare frame and not the existing frame which will be

stiffened by the addition of the gravity load framing and the

nonstructural components as indicated by the recorded value. Use

of nine modes of vibration represents 98.7% of the participating

mass which is well above the 90% requirement in the code. In
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this model, the first mode contributed 83% of the participating

mass.

The deflected shapes for the first three modes obtained

using the two dimensional model are shown in Fig. 36. These

modes compare with modes 1, 4 and 7 of the three-dimensional

model. The modal periods for the two dimensional model are

summarized in Table 5 below.

TABLE 5. PERIODS OF VIBRATION, 2D MODEL

Mode

SAP90

ETABS

1

1.447

1.425

2

0.525

0.506

3

0.304

0.291

4

0.209

0.198

5

0.157

0.147

In this case using three modes of vibration represents

99.9% of the participating mass, with the first mode

contributing 84.1%, the second mode contributing 11.9%, and the

third mode contributing 2.9%.

From the system identification studies described

previously, the fundamental period of the building based on the

recorded response is approximately 1.3 seconds which is about 9%

lower than the calculated bare frame period. This implies that

the structure at this level of base excitation is about 21%

stiffer than indicated by the bare frame analysis. This

additional stiffness is due to several sources including the

following: (a) the composite action between the concrete and

steel deck and the main girders, (b) the influence of the
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internal gravity framing, which is assumed to have pinned

connections but which has a certain flexural stiffness, and (c)

the influence of the nonstructural components such as the

exterior cladding and the interior partitions. Modifying the

models developed above, an attempt was made to evaluate the

contribution of these sources of additional stiffness.

The three-dimensional model, including the interior gravity

frame, is shown in Fig. 37. In this investigation, the simple

framing is assumed to be completely rigid to give an upper bound

to the increase in stiffness. A modal analysis of this system

shows that the fundamental period of vibration is reduced by

only 5%. The deck system consists of three components. The metal

decking is welded to the steel girders and then filled with 3

inches of normal weight concrete. On top of this is added

another 3 1/2 inches of lightweight concrete. If the steel

decking with 3 inches of concrete acts in a composite manner

with the girder, the fundamental period of the structure is

reduced by an additional 4%, resulting in a total reduction of

9.2%. The directional properties of the steel decking may

account for the difference in period in the two orthogonal

directions noted in the system identification studies. In the

elastic response analyses that follow, these effects are lumped

together by the use of an effective modulus of elasticity of

42,000 ksi rather than 29,000 ksi. Since the period of the fixed

base model agrees reasonably well with the recorded period,

additional flexibility at the base was not considered in this
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study. Although the base is not completely fixed in the actual

structure, at the low acceleration levels experienced by the

building during this earthquake it may have acted as though it

were fixed.

7.2 Dynamic Response Analyses

In these analyses, the three-dimensional SAP90 model was

subjected simultaneously to base accelerations recorded in the

north-south and east-west directions. The response spectrum for

the accelerations calculated at the roof level is compared with

that for the recorded accelerations in Fig. 38. In the spectra

presented in Fig. 38a, the calculations assume there is 5% of

critical damping in all modes, and the spectra are developed for

5% damping. The periods for the first four translational modes

for the structure using the higher modulus are 1.2, 0.44, 0.25,

o•17 seconds. These can be seen as the four peaks on the

response spectra. The match for the first mode is quite good,

while in the higher modes the calculated values exceed the

recorded values. This result can be adjusted by increasing the

damping in the higher modes. The results shown in Fig. 38b are

for damping values of 7, 10, 13, and 15% of critical damping in

the first four modes. This produces a good match of the recorded

spectra over most of the period range with the possible

exception of the fourth mode.

Time history responses at the roof level are compared in

Fig. 39 for the three recording channels. In all cases, the

comparison is good for the peak values although there are
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differences in the lower responses after 20 seconds. In these

comparisons, the calculated accelerations are for the master

node at the center of the structure. Some differences with the

recorded results may be due to torsional effects.

The calculated and recorded responses at the third story

level are compared in Fig. 40.A representative floor spectrum

at the third level is shown in Fig 40a. Here the match of the

spectral values over the period range of the first two modes is

good with a small deviation in the higher modes. The time

histories of the acceleration at the three recording stations on

the third level are compared in Figs. 40b, 40c and 40d and again

show a reasonable correlation.

7.3 Directional Input Analyses

The three-dimensional ETABS model was used to study the

effect of the direction of the input motion on the stresses in

the members of the' structure. Only one component of recorded

base acceleration could be used, and that recorded on Channel 13

in the north-south direction was selected. This input motion was

then rotated through a total angle of 90 degrees in increments

of 15 degrees and the corresponding stress ratios were

calculated. The stress ratios (SR) resulting from the motion

acting in the north-south direction are shown in Fig. 41. Here

it can be seen that the maximum stresses occur in the frames

parallel to the input motion and that the time history values

for this input compare well with the code values obtained

earlier. This implies that this earthquake was close to the



26

minimum requirement specified in the building codes. Note that

the maximum value of 0.67 in the critical column of the first

story compares with 0.69 obtained in the static code analysis.

The effect of applying the input motion at an angle of 15

degrees is shown in Fig. 42. Here it can be seen that the SR in

the critical column increases to 0.71. Further rotation of the

input motion through 30 degrees increases the critical SR to

0.73 as shown in Fig. 43. Note that as the angle of incidence

increases the stresses in the east-west frames begin to increase

as would be expected. As the angle of incidence reaches 45

degrees (Fig. 44), the stress ratio in the critical column

reduces to 0.70. However, the critical column is now in the

east-west frame with a SR of 0.71. Further rotations to 60, 75

and 90 degrees are shown in Figs. 45, 46 and 47, respectively.

In these figures the stresses in the critical members of the

north-south frame are reduced while those in the east-west

frames are increased. In both directions, the maximum SR in the

columns of the first story reached a value of 0.73, which is 9%

larger than the value of 0.67 in the recorded position of zero

degrees.

8. NONLINEAR STATI.C ANALYSES

Nonlinear static analyses were performed on the two

dimensional model of the frame in order to obtain estimates of

the following: (a) yield strength (resistance) of the frame, (b)

ultimate strength (resistance) of the frame, (c) overall

displacement ductility, Cd) corresponding curvature ductility of
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individual elements, (e) total rotation requirements of

individual elements, (f) ultimate interstory drift and (g) story

displacement ductility. Two computer programs were used to

investigate the nonlinear static behavior. Both assume the

loading is applied in a proportional manner and that the

plasticity is concentrated in plastic hinges.

The ULARC [9] program is event driven, where an event

corresponds to either the formation of a new plastic hinge or

the unloading of an existing plastic hinge. If the structure is

assumed to be piecewise linear between events, the load

increment required to produce a new event can be determined by

linear scaling. Loads may be applied at the joints and the

element resistance is assumed to be elasto-plastic: however,

bilinear behavior can be handled by adding an additional element

in parallel with the elasto-plastic elements.

The NODYN2 program, developed by one of the investigators,

uses a step-by-step procedure to determine the nonlinear

behavior. This procedure is used because the program was

originally developed and primarily used for the step-by-step

determination of nonlinear dynamic response. Therefore,

application to nonlinear static response in this manner was a

straightforward modification. Using this procedure, the total

load is divided into a given number of equal load increments

which are then applied sequentially to the structure. Linear

behavior is assumed to occur between each load increment. Moment

resistance of the individual elements is bilinear and gravity
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loads may be applied as equivalent fixed end forces.

Elasto-plastic behavior can be approximated using a small

percentage of strain hardening in the bilinear element. Analyses

using the ULARC program are terminated whenever one of the

following conditions occurs: a collapse mechanism is formed, the

full specified load is applied or a specified maximum

displacement is reached. The NODYN2 program is terminated when

the full specified load is applied.

In the analyses that follow, the lateral resistance of the

building is evaluated by plotting the lateral roof displacement

versus the base shear. A plot of this type comparing the results

obtained using SAP90, ULARC and NODYN2 is shown in Fig. 48. Here

the. resistance in the SAP90 program is linear elastic, the

resistance in the ULARC program is elasto-plastic and the

resistance in the NODYN2 program is bilinear with the rate of

strain hardening equal to 0.5%. In this example, the lateral

loading is taken as uniform over the height of the building. In

the linear elastic range, all three programs give the same

result. In the inelastic range, the results of the ULARC and

NODYN2 programs are very similar. Both depart from the linear

SAP90 curve at a base shear of approximately 640 kips, reach an

ultimate load of 760 kips and attain a maximum displacement of

10.3 inches. Because of the inclusion of strain hardening in the

NODYN2 model, it is able to carry load beyond that indicated by

the ULARC model. However, at some point, the deformation

demands on the individual elements will become excessive and
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these in turn will place a bound on the overall displacement. In

this case the total load was adjusted to produce the same

displacement as that obtained using the ULARC model.

It is also of interest to consider the effect of the

vertical distribution of the lateral load on the lateral

resistance of this building. Reasonable lateral load

distribution functions include

(a) <P(x) = constant (uniform)

(b) <P(x) = x/h (linear)

(c) <P(x) = sin(1tx/2h)

(d) <P(x) = 1 - cos(1tx/2h)

where h is the height of the structure and x is the height

of the story level above the base.

Differences between the triangular and uniform

distributions are shown in Fig. 49. Here it can be seen that

since the triangular distribution raises the height of the

lateral force resultant, the lateral displacement at the roof

level increases substantially. However, the lateral load

capacity of the frame does not change. The shear versus

displacement curves for the other lateral load distributions are

shown in Fig. 50. Here it can be seen that the largest lateral

resistance of the structure is obtained when the resultant

lateral force is at its lowest position. This condition also

results in the least displacement at the roof level. Conversely,

the least lateral resistance occurs when the resultant lateral

load is at its highest position with the resulting maximum roof
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displacement. For this building the ultimate resistance is

relatively insensitive to the lateral load distribution. This is

a function of the failure mechanism and the distribution of

plastic hinges in the building. For other buildings the

difference in ultimate resistance as a function of load

distribution may be more significant.

Up to this point, the resistance curves have been developed

using the nominal yield stress of 36 ksi for the A36 steel used

in the building. Coupon tests on the steel used in the building

indicate that the true yield stress of the material is

approximately 44 ksi. If this value is used in the model with a

triangular load distribution, the resistance changes

considerably as shown in Fig. 51. For the same total load and

the higher yield stress, the building resistance is almost

linear and first yielding does not occur until a base shear of

780 kips is reached. In order to determine the maximum lateral

resistance of the building with the increased yield strength, it

is necessary to increase the total applied load. Results of

increasing the lateral load are shown in Fig. 52. The curve for

the 36 ksi steel is included for comparison. Also included is a

curve for the nominal resistance of the building had Grade 50

steel been used for the columns. It can be seen that the

ultimate resistance of the building with 44 ksi steel increases

to 910 kips. The use of the 50 ksi columns gives a resistance

similar to the 44 ksi steel throughout.
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The influence of strain hardening on the lateral resistance

of the frame is shown in Fig. 53, where the difference in

lateral force capacity for strain hardening rates of 0.5% and

3.0% is also shown.

It is also of interest to consider the lateral story

displacement (relative displacement) as a function of the story

shear, using the triangular loading results in the resistance

curves shown in Fig. 54. Here it can be seen that the 6th story

is linear elastic and that the maximum inelastic displacement

occurs in the first story. The second story level has the

largest lateral stiffness, because the column size is the same

as the first story but the story height is less. Using these

curves, the displacement ductility requirements of the

individual stories can be estimated. For these calculations, the

story ductility will be defined as the ratio of maximum relative

displacement to relative displacement at first yield. This data

will then be compared with the curvature ductility requirements

of individual members.

The maximum curvature ductility requirement for the beams

and columns of a particular story level is compared with the

story displacement ductility requirement in Fig. 55. Here it can

be seen that the maximum requirement for the beams is 3.25 at

the first level. Although this is not excessive for a compact

section, it may cause problems at the connection to the column.

On the other hand, the maximum ductility requirement for the

columns of the first story is 3.47, which for a column under
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combined axial load and flexure is approaching that which can

reasonably be obtained. The story ductility, which is based on

displacement, compares well with the curvature ductility of the

individual members for this system, reaching a maximum value of

3.75 at the first level.

The maximum total rotation for the beams and columns of a

particular story level is shown in Fig. 56 along with the

interstory drift index (drift angle). The interstory drift index

is obtained by dividing the maximum relative (interstory)

displacement by the story height. For the beams the maximum

total rotation is just over 2% which is close to the capacity of

a typical beam-to-column moment connection [10, 11]. For the

columns of the bottom floor, the maximum total rotation is close

to 3.5% which is excessive and provides the justification for

limiting the total lateral load applied to the frame at this

point. A similar result can be seen for the interstory drift

ratios. In the first story level, the interstory drift is close

to 2.6% which is large and along with the column rotation is

reason for limiting the applied lateral load.

The nonlinear static behavior of this structure can be

further illustrated by considering the sequence of plastic hinge

formation shown in Fig. 57. This data was taken from a ULARC

analysis using the nominal yield strength and a triangular load

distribution. It clearly shows that with the formation of the

30th plastic hinge, a sway mechanism is formed in the first

story level which in turn results in the severe ductility and
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drift requirements on the columns of this level. This is a

limitation of the design which results in a soft story at

ultimate load. It can also be seen that at ultimate lateral

load, only one plastic hinge has formed in the columns of the

second story level. This is due to the design practice of

holding the column size constant for at least two story levels.

Because of the increased story height of the bottom story, the

columns of the second story are considerably larger than

required for strength. This tends to concentrate the inelastic

deformation in the first story level and leads to the formation

of a soft story at ultimate load.

By referring to the base shear versus roof displacement

shown in Fig. 58, the overall displacement ductility of the

structure can be approximated. Since the shear versus

displacement curve has a smooth transition from linear behavior

to inelastic behavior, it does not exactly fit the context of

displacement ductility which is defined for a perfectly

elasto-plastic relationship. The displacement ductility is

defined as the ratio of the maximum displacement to the

displacement at yield. with a smooth transition, there can be

several definitions of displacement at yield. Two of these are

the following: (a) the displacement at yield is the displacement

when yielding occurs at the first critical section and (b) the

displacement at yield is determined by comparison with an

idealized elasto-plastic response curve. In the NODYN2 response

curve, first yield occurs at a load of 640 kips and a
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corresponding displacement of 6.5 inches. Using this value, the

displacement ductility of the frame becomes 13.5/6.5 or 2.08. If

an idealized elasto-plastic curve is constructed (Fig. 58), the

yield displacement is 7.5 and the displacement ductility becomes

13.5/7.5 or 1.8. Note that both of these values are considerably

less than the values of 4 or 5 often quoted in building code

commentaries.

The results of this type of analysis also provide a means

for evaluating the seismic resistance coefficient for this

structure. The yielding seismic resistance coefficient has been

defined previously as

Cy = Ry/We

In this equation, the yield resistance, Ry, is taken as the

lateral resistance of an equivalent elasto-plastic system.

Considering both frames, the yield seismic resistance

coefficient for this structure becomes

Cy = 2*750/7785 = 0.19

Referring to the elastic response spectra shown in Fig. llb

for the recorded base motion (Channel 13), it can be seen that

for this earthquake the demand seismic resistance coefficient,

Cd' is approximately 0.07. It is of interest to recall that this

value is above the design seismic resistance coefficient used in

the design (0.058). Since lateral forces specified in the

building codes are based on working stress, this coefficient

must be multiplied by 1.4 to obtain the ultimate seismic

resistance design coefficient (0.081). Comparing the ultimate
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seismic design coefficient with the yield seismic design

coefficient indicates that this structure has an overstrength

represented by the overstrength ratio (OSR) of

OSR = CY/Cd = 0.190/0.081 = 2.35

The inherent overstrength of this structure will be investigated

in more detail in the following section.

9. ANALYSIS OF STRUCTORAL OVERSTRENGTH

using the results of the previous sections, it is possible

to obtain an estimate of the overstrength ratio for this

structure. The OSR can be assumed to consist of the following

five major components: (a) a factor representing the ratio of

the ultimate strength of a member to the allowable strength, (b)

a factor representing the ratio between the actual stress in the

member and the limiting allowable stress permitted by code, (c)

a factor representing the effect of load redistribution, (d) a

factor representing the effect of strain hardening and (e) a

factor representing the ratio between the nominal yield stress

of the material and the actual yield stress. The allowable

stress for a generic member including the 33% increase for

inclusion of seismic loads can be expressed as

Fa = 0.6*Fy *1.33 = O.SFy

which implies that

Fy = 1.25*Fa

The ratio of ultimate moment to yield moment can be expressed as

MP = (Z/S)My = 1.14*Fy *S = 1.14*1.2S*Ma

MP = 1. 425*Ma
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and therefore

ultimate strength/allowable strength = 1.425

where

Z = plastic section modulus

S = elastic section modulus

Ma = allowable moment

MY = yield moment

MP = plastic moment capacity.

The stress in a member is usually expressed in terms of the

ratio of the actual stress to the allowable stress (Fig. 33) and

the limiting value of this ratio is unity. From Fig. 33b it can

be seen that for combined gravity and lateral load, the stress

ratio in the critical member is 0.69. In Fig. 33a, the stress

ratio for this member due to gravity load acting alone is 0.25.

For this value to be used with the gravity plus lateral load

above, the allowable stress must be increased by 33% or

conversely the stress ratio must be reduced by 0.75 resulting in

a value of 0.1875. These values along with those developed in

the preceding paragraphs for estimating the ultimate resistance

are represented on an idealized force versus displacement curve

in Fig. 59.

The capacity of the member to carry additional lateral

force up to the allowable value can be obtained by subtracting

the maximum stress ratio (SR) for gravity loads acting alone

(Fig. 33a) from unity to obtain:

Allowable seismic SR supply = 1.0 - 0.1875 = 0.8125
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Considering the SR due to combined gravity and seismic forces

(Fig. 33b), the SR for the seismic lateral load condition can be

obtained as:

Code seismic SR demand = 0.69 - 0.1875 = 0.5025

using these two values the overstrength due to design

conservatism can be estimated as

Design conservatism = 0.8125/0.5025 = 1.6169

In a similar manner, the overstrength due to the factor of

safety incorporated in the allowable stress design procedure on

first plastic hinge formation can be obtained as

1.425 - 0.1875
Factor of safety = -------------- = 1.5231

1. 0 - 0.1875

Combining these two factors, the overstrength on first yield

(plastic hinge formation) can be estimated as

OSR(yield) = 1.617*1.523 = 2.463

and for this structure the base shear at first yield would be

estimated to be

Vy ' = 2.46*Vcode = 2.46*235 = 578.8 kips

From the base shear versus displacement curve shown in Fig.

48, it was noted that the initial yield actually occurred at a

value of 640 kips representing a difference of 9.5%. The seismic

resistance coefficient at first yield, Cy ', can be expressed in

terms of the design seismic resistance coefficient, Cs ' as

Cy ' = 2.46 Cs

Beyond first yield, the increase in strength is due to a

combination of strain hardening and redistribution of internal
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forces as plastic deformation occurs. Considering the ultimate

shear to be 750 kips without the effect of strain hardening, the

increase due to moment redistribution can be determined as

redistribution = 750/579 = 1.30

The amount of increase due to redistribution of moment is

limited by the formation of a sway mechanism in the first story

level with only a limited amount of inelastic behavior being

distributed to the upper stories. Referring to Fig. 53, the

ultimate shear can be estimated at 800 kips when including

strain hardening, and the increase due to this effect is

strain hardening = 800/750 = 1.06

Summarizing the above results, the OSR for this structure can be

expressed in terms of the four parameters as

OSR = 1.52 (factor of safety)

* 1.62 (design conservatism)

* 1.30 (redistribution)

* 1.06 (strain hardening) = 3.39

The yield seismic resistance coefficient, Cy ' can then be

expressed in terms of the design seismic resistance coefficient

for this building as

Cy = 3.39 Cs

The resistance Ry can now be estimated as

Ry = 3.39*Vcode = 3.39*235 = 797 kips.

This overstrength which is inherent in the current design

process is undoubtedly a significant factor in reducing or
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preventing earthquake damage, particularly for low to moderate

earthquake motions.

The above discussion of overstrength has been based on the

nominal yield strength of the steel. For most rolled steel

shapes, the actual yield stress can be considerably higher than

the minimum specification. In the case of this building, coupon

tests indicated a yield stress of 44 ksi as compared with the

nominal 36 ksi. From Fig. 52, it can be seen that this increase

in yield stress results in an increase of 910/750=1.21 or 21% in

the structure resistance. If this factor is combined with those

discussed above, the OSR for this structure becomes 4.11.

10. NONLINEAR RESPONSE ANALYSIS

In order to evaluate the inelastic dynamic response of the

structure, it is necessary to select an ensemble of possible

strong motion earthquakes. The design earthquake should then be

the selected ground motion that will drive the structure to its

critical response. Linear elastic response spectra (LERS) for

acceleration records obtained during major earthquakes over the

past 13 years are shown in Fig. 60. Also included in the figure

is a plot of the LERS specified by the 1988 Uniform Building

Code. Of particular interest to this study is the spectrum from

Obregon Park which was obtained from the 1987 Whittier Narrows

Earthquake. This motion, which is shown in Fig 61a, is

representative of the strongest motion to be recorded during

this earthquake. The response spectrum of this motion is

compared with that of the motion recorded at the base of the
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building in Fig. 61b. Here it can be seen that the Obregon Park

motion is considerably stronger over the entire period range. It

should also be noted that the nBC spectrum, shown in Fig. 60, is

exceeded by a considerable margin in the period range from 0.0

to 3.0 seconds by several of these ground motions.

Acceleration time histories for these strong motion

earthquakes are shown in Fig. 62. The acceleration recorded at

Bucharest, Romania in 1977 is shown in Fig. 62a. The peak ground

acceleration is a modest 0.2g but the motion is characterized by

two long duration acceleration pulses which can have a

significant effect on the dynamic response. The motion recorded

at Hollister during the Loma Prieta Earthquake of 1989 is shown

in Fig. 62b. This motion has a peak acceleration of 0.35g and a

duration of strong shaking of about 7 seconds. The ground motion

recorded at James Road during the 1979 Imperial Valley

Earthquake is shown in Fig. 62c. This motion is also

characterized by two large acceleration pulses. Previous studies

[12] have indicated that this ground motion can create a strong

response in a flexible frame. The final ground motion considered

in this study is the motion recorded in Mexico City at SCT

during the Michoacan Earthquake of 1985 which is shown in Fig.

62d. This motion has a modest peak acceleration of 0.17g but the

duration of strong motion is in excess of 30 seconds. Note that

the peak acceleration does not occur until almost 60 seconds

into the recording.
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10.1 Inelastic Response Spectra

Nonlinear response analyses of single-degree-of -freedom

systems were performed using the NONSPEC program. Results of

these analyses were used to obtain values of the required yield

seismic resistance coefficient as a function of building period

and displacement ductility for each of the ground motions just

discussed. This data is presented in Fig. 63. These curves are

very useful and can be used in either an analysis or a design

context. From an analysis standpoint, Cy is known and the figures

can be used to estimate the average displacement ductility

requirement. Using the yield seismic resistance coefficient

determined for this structure neglecting the effect of strain

hardening (Cy = 0.19), the average displacement ductility

requirement under the above ground motions can be estimated as

follows: Bucharest = 1.8, Hollister = 3.5, James Road = 3.0 and

Mexico City SCT = 2.0. plots of Cy versus building period have

been developed by Uang and Bertero [13] for other earthquake

ground motions. From a design standpoint, one can enter these

graphs with the estimated periOd and the design ductility and

obtain an estimate of the required seismic yield resistance

coefficient.

10.2 MUltiple Degree of Freedom Response Analyses

The nonlinear dynamic analyses are based on the two

dimensional model of a typical perimeter frame. The analyses are

done using the NODYN2 computer program which was also used for

the static nonlinear analyses. Before considering the inelastic
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response, the computer model to be used for the nonlinear

response calculations was used to calculate the elastic response

and to compare it with that recorded in the building. In order

to include the effect of viscous damping in the nonlinear

response calculation, it is convenient to represent the damping

matrix as a linear combination of the mass and stiffness

matrices. This results in two constants which can be selected to

specify a given percentage of damping in two modes of vibration.

Once these are selected, the damping in the other modes is

defined. Based on the results of the elastic analyses, the

constants were chosen to give 5% of critical damping in the

first mode and 8% of critical in the 4th mode. This resulted in

4.4% of critical in the second mode and 6% in the third mode.

10.3 Linear Dynamic Ana1yses

Using these values and a two dimensional model similar to

that used for the elastic analyses, the elastic response of the

frame was calculated. The acceleration calculated at the roof

level is compared with the recorded acceleration in Fig. 64a. A

similar comparison of accelerations at the third story level is

shown in Fig. 64b. In both cases, the comparisons are quite

good.

The time history of the calculated base shear due to the

recorded base acceleration is shown in Fig. 65a. Here it can be

seen that the peak value of the base shear is about 270 kips

which is well below the initial yield value of 640 kips obtained

from the nonlinear static analysis. The time history for the



43

base shear under the Obregon Park motion is shown in Fig. 65b.

The peak value in this case is 490 kips which is still

considerably less than the 640 kips required to cause initial

yield.

10.4 Nonlinear Dynamic Analyses

The base shear under the Bucharest motion, shown in Fig.

66a has a peak value of 925 kips which is 44% above initial

yield and 22% above the ultimate shear as determined by the

static analysis. This increased base shear in the dYnamic case

above that obtained from a static analysis has been discussed by

Bertero [14]. It is considered reasonable because of the

following factors: (a) the opening and closing of plastic hinges

with time and their migration through the structure, (b) the

time variation of inertia forces and (c) the effect of higher

modes of vibration. The base shear for the Hollister ground

motion, shown in Fig. 66b, has a peak value of 850 kips which is

also above the initial yield and the ultimate values. A similar

result is shown for the base shear due to the James Road motion

which is shown in Fig. 66c and has a peak value of 850 kips. The

base shear for the seT record is shown in Fig. 66d and has a

peak value of 900 kips which is 18% above the ultimate static

value. These studies indicate that the motion recorded at

Bucharest generates the largest base shear and the only records

which are insignificant for considering inelastic response are

those obtained from the Whittier Narrows earthquake.
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The base shear for a single frame based on the 1988 UBC is

either 124.7 kips or 166.5 kips, depending on how the

fundamental period of the building is estimated (see Section

6.4). Dividing the ultimate base shear of 925 kips by these

values results in structural system factors of 7.4 and 5.6,

respectively. Note that both of these values for Rw are well

below those specified in the building code.

The inelastic displacement response is shown in Fig. 67.

The envelope of maximum lateral displacement for the five ground

motions is shown in Fig. 67a. Also included on this figure is

the displacement required by the building code. It can be seen

that as in the case of the base shear, the Bucharest motion

results in the greatest displacement demand. The displacement

requirement for Obregon Park is considerably less than the

others and much closer to the code requirement. For the

Bucharest, James Road and Mexico City records, most of the

lateral displacement occurs in the first story level, whereas

for the Hollister record there is· also a major displacement

increment between the 4th and 5th levels. The former records are

characterized by some significant acceleration pulses which tend

to concentrate the deformation in the first story, particularly

if the first story tends to be a soft story as indicated from

the static analysis. The later record is more sinusoidal in

character, and this allows the inertia forces to build up in the

upper stories. A similar condition can be seen in the plot of

interstory drift shown in Fig. 67b. The Bucharest record has an
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interstory drift of 2.9% in the first story. This value is

relatively large but it is still less than the almost 4%

indicated in the static analysis. Note the large interstory

drift requirement of the Hollister record at the 5th story level

The curvature ductility requirements are shown in Fig. 68.

The ductility requirements for the girders are shown in Fig.

68a. Here it can be seen that all values are less than 2.3 which

can readily be developed in a standard moment connection of two

compact members. As noted previously for the displacement

response, the ductility requirements for the Obregon Park record

are the least and, in fact, are considerably less than unity

indicating elastic behavior. It can also be seen that the

ductility required by the static analysis is about 2.5. The

ductility requirements for the column elements are shown in Fig.

68b. The largest ductility requirement occurs in the first story

columns for the Bucharest motion and has a value of 5.2 which is

quite large for a column. Other column ductilities are 3.1 or

less and should be sustainable.

The element rotation requirements are shown in Fig. 69. The

girder rotations shown in Fig. 69a are all less than 1.4% and

should be readily developed with a standard moment connection of

two compact sections. The column rotation requirements are shown

in Fig. 69b. Here it can be seen that the rotation requirements

for the columns of the first floor under all ground motions

except Obregon Park are quite large. It will be difficult to

develop the large rotations required for the Bucharest and
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Mexico motions. The rotation requirement obtained from the

static analysis gives a good estimate of that which will be

required in the most severe case.

The envelopes of maximum story shear are shown in Fig. 70.

The values given in this figure are based on the sum of the

maximum column shears at a given story level. As such, they

represent an upper bound on the story shear since all of the

maximum column values may not occur at the same time. This

effect can be seen by comparing the base shear to the time

history values given previously in Fig. 66. In addition, the

code loads have been increased by 40% to represent the ultimate

condition. It can be seen that the adjusted code values clearly

represent the minimum shear. The story shears resulting from the

four recent earthquakes are considerably larger than the

adjusted code values and those obtained from the Obregon Park

record. This is further evidence that the Whittier Narrows

earthquake wa~ not a very severe event.

Hysteresis curves of the story shear versus the interstory

displacement are shown in Fig. 71 for the Bucharest ground

motion. At the sixth story, shown in Fig. 71a the behavior is

entirely linear. There is some limited ductility in the fifth

story as shown in Fig. 71b. The fourth story also has only a

limited amount of inelastic deformation, Fig. 71c. At the third

story there is an increase in inelastic deformation followed by

a decrease in the second story, Figs. 71d and 71e. As indicated

previously, the primary inelastic deformation for this ground
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motion occurs in the first (base) story as can be seen in Fig.

71f.

Similar hysteresis data for the Hollister ground motion is

shown in Fig. 72. Here it can be seen that the sixth and second

floors are elastic, Figs. 72a and 72e. From Figs. 72c and 72d it

can be seen that the fourth and third floors have a limited

amount of inelastic deformation. The main regions of inelastic

deformation for this ground motion are on the fifth and first

(base) floors as shown in Figs. 71b and 71f.

A plot of input energy for four of the ground motions used

in this study are presented in Fig. 73. As in the previous

cases, the Bucharest ground motion results in the largest amount

of input energy indicating that it has the largest damage

potential for this particular structure. It can also be seen

that the energy from the Whittier Narrows earthquake is very low

indicating that this is not a very severe earthquake. The

Hollister record also has a significant amount of input energy

for this structure and as shown previously controls some of the

response parameters, particularly in the upper stories. The

James Road energy input, while being substantial, is not the

controlling one for this structure.

10.5 Effect of Increased Ground Accelerations

The effect of a larger earthquake on the building is

evaluated by increasing the accelerations recorded at Bucharest

and Hollister by 30%. The effect of this increase on the maximum

displacement envelope is shown in Fig. 74a. From this figure, it
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can be seen that the effect of the increased acceleration on the

displacement is greatest for the Bucharest motion where the roof

displacement increases from 10.5 inches to 15 inches. The effect

on the interstory drift index is shown in Fig. 74b. For both

records the effect of the increase is greatest in the first

story level. For the Hollister motion, the IDI in the first

story increases to 2.1% and for Bucharest it increases to a very

high 3.9%.

The girder ductility, shown in Fig. 75a, is affected in a

similar manner. The largest increase is due to the Bucharest

motion and the largest increase in girder ductility demand

occurs in the bottom three floors. In the case of the column

ductility demand, shown in Fig. 75b, the largest increase is

again due to the Bucharest motion and occurs in the bottom two

floors.

The maximum rotation demand is shown in Fig. 76. For the

girders, shown in Fig. 76a, the maximum increase in the rotation

requirement occurs in the lower three floors and is due to the

Bucharest motion. At the first and third story levels, the

rotation is above 1.5% which is close to that which can be

developed in a moment connection. Considering the columns, shown

in Fig. 76b, the maximum increase in rotation occurs in the

first floor level. For all cases, the amount of rotation

required in the first floor level is above 2%. For the Bucharest

motion the rotation was 3.7% and it in turn increased to almost
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5%. It is very doubtful that rotations of this magnitude could

be developed in standard beam-to-column moment connections.

The effect of increased acceleration amplitude on the

hysteresis curves of base shear versus interstory displacement

of the first story is shown in Fig. 77. The hysteresis for the

Bucharest motion is shown in Fig. 77a. Comparing this curve with

that of Fig. 71f indicates that the interstory displacement has

increased from 5.0 inches to 7.0 inches, an increase of 40%.

However, the base shear increases only from 900 kips to 950

kips, an increase of 5.5%. This clearly indicates that in the

inelastic range, the base shear becomes relatively insensitive

to changes in seismic demand and that large changes can occur in

the displacement response which are not reflected in the changes

in the base shear. In the case of the Hollister motion, shown in

Fig. 77b, the base shear increases from 860 kips to 890 kips, an

increase of 3.5%. However, the maximum interstory displacement

increases from 3.0 to 3.9 inches, an increase of 30%. Obviously,

the maximum base shear is not going to be a very accurate

parameter for evaluating damage potential.

11. SUMMARY AND CONCLUSIONS

This study has investigated the seismic behavior of a six

story steel building which was instrumented with thirteen strong

motion accelerometers at the time of the Whittier Narrows

earthquake. The building has a square plan with lateral

resistance provided by a perimeter moment-resistant frame.

Recorded peak accelerations were in the north-south direction
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and ranged from O.226g at the base to O.289g at the roof. No

damage was reported as a result of this motion.

System identification techniques were applied to the

recorded data to identify the predominant periods of vibration.

Moving window Fourier analyses were performed to investigate

changes in the period of vibration during the earthquake. The

effect of torsion was also evaluated using Fourier amplitude

spectra and linear elastic response spectra. Linear elastic

two dimensional and three-dimensional models of the building

were developed to study the behavior of the building under code

lateral forces and the recorded base motion. Two dimensional

nonlinear models of the building were developed and used to

evaluate the ultimate strength of the building under

monotonically applied static lateral forces. Using these

results, the overstrength of the structure was estimated. The

two dimensional nonlinear models were also used to evaluate the

behavior of the building when subjected to the ground motions of

selected strong motion earthquakes which have been recorded

previously.

On the basis of these extensive studies, the following

general conclusions are presented:

1. This building was not severely tested by the ground motion

recorded at the base during the Whittier Narrows Earthquake. The

base accelerations were short duration acceleration spikes which

did not result in a significant energy input to the structure.

Furthermore, the duration of strong motion shaking was a
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relatively short three seconds. Results show that the dYnamic

response was completely linear elastic.

2. Using commercially available computer programs, two

dimensional and three-dimensional mathematical models can be

developed which accurately predict the linear elastic dYnamic

response as represented by recorded accelerations at various

locations in the building.

3. The design seismic resistance coefficient' specified by

current building codes has been reduced substantially for a

building of this type when compared with the value used in the

original design in 1973. It is not clear to the investigators

how this significant reduction can be justified.

4. The directional effects of the input ground motion are shown

to increase the stress in the critical members of this structure

by 9%. With current computer programs, this effect can easily be

incorporated into the design analysis.

5. Nonlinear static analyses can be very useful in estimating

the following mechanical characteristics of the structure which

can be used as an indication of inelastic dYnamic response

behavior:

(a) The ultimate resistance of the structure as

represented by the base shear versus roof

displacement relationship.

(b) The maximum rotation requirements and ductility
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requirements of critical members.

(c) The distribution of inelastic behavior (plastic

hinges) at ultimate load.

(d) Determination of the yield seismic resistance

coefficient for the building.

6. The concept of the yield seismic resistance coefficient can

be very useful in estimating the seismic behavior of a structure

for purposes of design. Using a nonlinear static analysis of the

building, the yield seismic resistance coefficient, Cy ' can be

determined. Using Cy ' the fundamental period of the building and

inelastic response spectra for single-degree-of-freedom systems,

the average ductility requirements for various strong motions

earthquakes can be estimated.

7. The structure considered in this study has an inherent

overstrength which resulted in an ultimate lateral resistance

which was more than 200% above the code requirement. This has

undoubtedly had a significant effect on the favorable seismic

response of this structure, particularly under the relatively

low seismic input of this earthquake.

8. Using the nominal values for the material yield stress, the

perimeter frame formed a sway mechanism in the first story level

at ultimate load. This behavior is undeSirable since it limits

the redistribution of plastic hinges (inelastic deformation)

into the upper floors and results in a reduced resistance at
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ultimate lateral load. It also causes the resistance curve to

have a relatively flat post yield characteristic which results

in large lateral displacements for small increases in the

lateral force.

9. The displacement ductility requirement of the individual

story levels shows a relatively good correlation with the

curvature ductility of individual members in the story. However,

the overall displacement ductility is considerably less than

either the story displacement ductility or the member curvature

ductility.

10. The design practice of keeping a column size constant for

at least two story levels causes the inelastic deformation at

ultimate load to be concentrated in a limited number of story

levels rather than being distributed over the height of the

frame in a more uniform manner. This becomes readily apparent

from the results of a nonlinear static analysis.

11. Input motions characterized by strong acceleration pulses

(Bucharest and James Road) tend to affect the lower floors of

buildings. If these floors become soft stories at ultimate load,

the combination of pulse load and soft story can lead to poor

seismic performance. Motions characterized by numerous zero

crossings and longer duration (Hollister, SeT) tend to have more

effect on the upper floors of the structure.
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12. The structural system factor, Rw, evaluated for this moment

resistant steel frame is shown to vary between 5.6 and 7.4. Both

values are well below the value of 12 specified in the 1988 UBC.
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