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ABSTRACT

This study investigates the seigmic performance of a six-
story steel Dbuilding which was instrumented with thirteen
accelerometers at the time of the Whittier Narrows earthquake
(October, 1987). The lateral force system is a moment-resistant
prerimeter frame. The building was not severely tested by the
motions recorded at its base during the Whittier mnarrows
earthquake. The dynamic seismic response was entirely linear
elastic. 8System identification techniques afe used to identify
the periods of vibration from the recorded response. Recorded
data are also used to evaluate the finite element model of the
structure and to evaluate the contribution of gravity, framing
and nonstructural components to the dynamic properties. A
detailed stress check of all members is performed for the design
loading. Using a three-dimensional elastic model of the
structure, the effect of the direction of the earthgquake input
is evaluated by considering the developed stress ratios. The
directional effects are shown to increase the stress in the
critical members by 9%.

Static nonlinear analyses are usged to identify the
potential failure mechanism and regions of increased ductility
demand. Relationships between global and local ductility are
investigated along with the distribution of inelastic behavior
throughout the frame. The static nonlinear analysis shows that
the structure has an overstrength which resulted in an ultimate

lateral resistance of more than 20% over the code required



strength. Nonlinear dynamic analyses are used to evaluate the
behavior of the building under stronger motions which have been
recorded on similar sites during recent earthquakes. Using
these results, the structural system coefficient, R,, is
evaluated.

The value of R, for this moment-resistant frame is shown to
vary between 5.6 and 7.4, well below the value of 12 specified

in the 1985% UBC.
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1. INTRODUCTION
The Whittier Narrows Earthquake occurred at 7:42 am on the
morning of October 1, 1987 and was assigned a local Richter
Magnitude of 5.9 (M;). The epicenter was north of Whittier,
California, approximately nine miles (15 km) east of downtown
Los Angeles. Following the earthquake, the California Strong
Motion Instrumentation Program (CSMIP) obtained records from 27
extensively instrumented building structures [1]. In addition,
the U.S. Geological Survey {USGS) collected data in
approximately ten instrumented buildings [2} and the University
of Southern California collected data in four. Other data may
have been obtained but is not readily available in the public
domain. It is estimated that over 200 buildings in Los Angeles
have been instrumented by the building owners in compliance with
the local building code. However, a recent code change in the
city of Los Angeles has reduced the seismic ingtrumentation
requirement to only a single instrument at the roof level. As a
regult of this change, many structures which had recorders at
three levels at the time of the San Fernando Earthquake (1979)
now have only a single recorder at the roof, rendering them
unusable for analytical studies. Unfortunately, this is a step
backward in the continuing efforts to improve understanding and
prediction of the seismic behavior of buildings.

In order to perform detailed studies of structural response
during an earthguake, it is necessary to use a copy of both the

structural plans and the architectural plans. A partial list of



the major structures from the above database of instrumented
buildings for which the structural plans are available is given
in Table 1. Here it can be seen that most of the available data
igs for low to mid-rise structures and that only limited data is
available for high-rise buildings over 25 stories. The one
exception is the 33-gstory structure at 1100 wilshire Boulevard,
instrumented by USGS. From this 1list, the six-story steel
building in Burbank, instrumented by CSMIP [1] was selected foxr
detailed study. The structure uses a steel perimeter moment
frame for resistance to lateral loads. A map of the CSMIP strong
motion stations is shown in Fig. 1. The building is station
number 370, which is located approximately 16 miles (26 km) from

the epicenter.

2. BUILDING DETAILS

The building in Burbank wasg designed in 1976 to the
requirements of the 1973 Uniform Building Cocde [3] as amended by
the city of Burbank. The primary structural system for carrying
lateral load is a steel moment-registing frame around the
perimeter of the building, which is shown in the plan view
of the structure in Fig. 2a. Note that the moment continuity of
the peripheral frame is broken at the corners where a
connection is required to the weak axis of a wide flange column.
At these four locations a simple, shear connection is used
instead of a moment connection. This pin connection is
represented by a c¢ircle in Figs. 2 and 3. Gravity loads are

carried by an interior framing system consisting of much



TABLE 1. BUILDING RECORDS, WHITTIER NARROWS EARTHQUAKE

Building Height Framing Recorded

{Stories) System Accelerations

1. Office 8 Shear Wall/ Base 0.39
Building Frame 2nd 0.41
Roof 0.48

2. Apartment 10 Shear Wall Base 0.63
Building Fifth 0.63
Roof 0.61

3. Financial 6 Steel Base 0.22
Building Perimeter 2nd 0.21
Moment 3rd 0.24

Frame Roof 0.30

4. Commercial 14 Shear wWall Base 0.12
Storage 8th 0.19
12th 0.14

Roof 0.21

5. Apartment 10 Precast Base 0.22
Building Shear wall 4th 0.31
8th 0.28

Roof 0.54

6. Office 12 Steel Base 0.30
Building Perimeter 6th 0.47
Moment Frame Roof 0.28

7. Hotel 20 RC Base c.11
Moment 3rd 0.19

Frame 9th 0.12

16th 0.13

Roof 0.17

8. Dormitory 11 Shear wWall Base 6.10
6th 0.18

Roof 0.29

9. Classroom 10 Steel Base 0.14
Building Perimeter 6th 0.08
Moment Frame Roof 0.07

10. Financial 13 RC Base 0.26
Building Moment 2nd 0.18
Frame 8th 0.13

Roof 0.14



connected by simple, shear conmnections. 8Soil conditions at the
site consist of silty sands extending to a depth of 25 feet
having a blow count of 1-2. Below 25 feet the sands become well
graded and the blow count increases to 14-15. Because of these
soil conditions, the exterior columns of the lateral force
system are supported on two 30-inch diameter reinforced concrete
piles which are 32 feet long. Interior columns are supported on
spread footings. An elevation of a typical moment frame is
shown in Fig. 3. In the initial stage of this study, the
structure is assumed to be fixed at the base. The wvalidity of
this assumption will be checked by comparing the calculated
regsponse with the recorded response. At the second floor level
and at the roocf, the floor deck extends a distance of 6 1/2 feet
beyond the perimeter moment frame, giving it a plan dimension of

132 feet by 132 feet. No damage was reported in the structure.

3. INSTRUMENTATION AND RECORDED DATA

The building was instrumented with 13 strong motion
recorders at_the time of thé Whittier Narrows Earthquake. The
location and orientation of these instruments is shown in Fig.
4, which is taken from reference [l1]. Peak recorded responses
are summarized in Table 2. The vertical acceleration recorded
at the base of the structure is given by channel 1, which is
shown in Fig., 5a. Here it can be seen that the peak vertical
acceleration was about 0.09g and that there is not an apparent
long period@ motion which would indicate rocking motions of the

building. The horizontal acceleration in the north-south



direction at the base isg given by channel 13 which is shown in
Fig. 5b. Here the relatively short duration and high frequency
of the base motion become readily apparent. The peak
acceleration is approximately 0.22g, but this is due to a high
frequency acceleration spike, and the duration of strong motion

is only about five seconds.

TABLE 2. PEAK RECORDED RESPONSES

Ident. Location Component Accel, Velocity Disp.
(cm/82) (cm/8) (cm)
Chan. 1 Ground w 8a.98 3.61 0.38
Chan. 2 Roof N.W. 090 183.58 21,29 4.03
Chan. 3 Roof S.W. 090 156.73 18.48 3.66
Chan. 4 3RD N.W. 090 176.65 12.32 2.12
Chan. 5 3RD S.W. 080 146.75 10.90 1.96
Chan. 6 2ND N.W. 090 146,27 10,37 1.70
Chan. 7 2ND S.W, 090 143.86 9.99 1.50
Chan. 8 Ground N.W. 090 165.77 9.74 1.20
Chan, 9 Ground S.W. 090 162.23 9.56 1.19
Chan. 10 Roof N.W. 180 283.72 31.98 6.30
Chan. 11 3RD N.W. 180 233.16 18.44 2.49
Chan. 12 2ND N.W. 180 194.64 15.94 1.68
Chan. 13 Ground N.W. 180 221.74 12.51 1.27

Horizontal motions at the base in the east-west direction
are given by channels 8 and %, which are shown in Fig. 6a and &b

respectively. Here it can be seen that the peak acceleration in



this direction is also due to a high fregquency acceleration
spike having an amplitude of 0.17g, and that the duration of
strong motion shaking is even shorter than in the north-south
direction. Horizontal accelerations at the second floor level
are given by channels 6, 7 and 12 which are sghown in Fig. 7.
Similar data for the third floor level are given by channels 4,
5 and 11 which are shown in Fig. 8. Roof accelerations in the
horizontal direction are given by channels 2, 3 and 10 which are
shown in Fig. 9. From a comparison of the three acceleration
plots, it would appear that the period of vibration in both
directions is approximately the same, having a value of about
1.2 to 1.3 seconds. The peak roof acceleration was recorded in
the mnorth-south direction by channel 10 and has a value of
0.29g.

A cursory examination of the time history plots at the roof
level indicates that there is no appreciable increase in the
period of vibration over the entire time history. This indicates

that the response is linear elastic,

4. SYSTEM IDENTIFICATION STUDIRS

In order to understand the recorded dynamic response of the
building better and to evaluate the dynamic characteristics of
the building prior to performing the detailed response analyses,
the recorded response data was processed using Fourier amplitude
spectra, transfer functions, moving window Fourier analyses,

linear elastic response spectra and inelastic response spectra.



The results of these studies are discussed in the following
sections.

4.1 Linear Elastic Response Spectra (LERS)

In order to obtain a better evaluation of the recorded
response, LERS for 5% damping were generated and plotted for
selected recorded building motions. Rotation of the structure
was evaluated using the spectra shown in Fig. 10. LERS for the
base are compared in Fig 10a using motions recorded on channels
8 and 9. These channels recorded base accelerations on the north
and south sides of the structure in the E-W direction.
Comparison of the response spectra shows that the two spectra
are identical and therefore there is little or no rotation at
the base. Similar data for channels 2 and 3 on the roof are
ghown in Fig. 10b. There is some variation between the spectra
in the period range below 0.7 second which could include the
torsional mode of the building but the wvariation is small.

An LERS for motions in the east-west direction at the roof
level are shown in Fig. 1l1lla. Here it can be seen that the
fundamental period of the response occurg at approximately 1.3
seconds which agrees with that observed from the zerc crossing
of the time history data. Amplified response between the base
and the roof in this direction can be evaluated by comparing the
spectral valueg for channels 2 and 8. As would be expected, the
largest amplification occurs for the fundamental mode and has a
value of approximately 6.3 with smaller amplification for the

second and higher modes. Similar spectra for the nocrth-south



direction are shown in Fig. 11b. Here a fundamental mode can be
identified at a period of 1.3 seconds and the second mode can be
seen at a period of 0.44 second. The maximum amplification
between base and roof occurs in this direction and has a value

of approximately 9.2.

4.2 Fourier Analyses

Fourier amplitude spectra (FAS) of the recorded
accelerations at the base of the structure are shown in Fig. 12;
for the motion in the north-south direction in Fig. 12a, and for
the east-west direction in Fig. 12b. In the north-south
direction, the strongest input has a frequency content between
0.5 and 2.0 Hz with a strong peak between 0.75 and 1.0 Hz. In
the east-west direction the strongest input is between 0.5 and
1.75 Hz.

Fourier amplitude spectra for motions recorded at other
locations in the building are compared with the corresponding
base FAS in Figs. 13 and 14 for east-west motions and Fig. 15
for north-south motions. All‘plots have a similar characteristic
shape showing a strong peak at 0.75 Hz (1.33 second) and another
at 2.2 Hz (0.45 second).

Transfer functions for the motions recorded in the
eagt-west direction are shown in Figs. 16 and 17. From Fig. 16,
it 1is possible to identify the first three modes in this
direction as occurring at the following frequencies: the first
mode has a frequency of 1.0 Hz (T=1.0 second), the second mode

occurs at a freguency of 2.4 Hz (T=0.42 second), and the third



mode occurs at a frequency of 3.2 Hz (T=0.31 second). Similar
results can be seen in Fig. 17 for the other side of the
structure. In the north-south direction, the transfer functions
shown in Fig. 18, show that the first mode is dominant at all
three levels and occurs at a frequency of 0.75 Hz (T=1.33
gseconds). In this direction the second mode shows up clearly at
the second and third floor levels and has a value of 2.25 Hz
(T=0.44 second). A third mode can also be seen in this direction
at approximately 3.2 Hz (T=0.31 second). The modal fregquencies
and periods identified from the Fourier analyses are Summarized
in Table 3.

TABLE 3. IDENTIFICATION OF TRANSLATIONAL MODAL PERIODS

Direction Mode 1 Mode 2 Mode 3
East-West 1.00 0.42 0.32
North-South 1.33 0.44 0.32

et b A e G ok e 4 A A AR e o —— — - = = T T T T v = = = = = = T = hn - —— ——— —

In order to identify changes in the fregquency content of
the input motions during the earthquake, moving window Fourier
analyses are performed using the recorded base motions. In these
analyses, the FAS has been calculated for ten second window
lengths starting from the beginning of the record and then
offsetting the window by five seconds at each step. For each
window, the length of the record was extended by adding zeros to
obtain good resolution in the spectra.

The result for the vertical component of the base motion is
shown in Fig. 19. This figure shows that although the amplitude

is small, the fregquency content during the first ten seconds is
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relatively uniform over a wide band. Two dominant frequencies
appear during the second ten second interval. After ten seconds
the amplitudes drop to almost zero. Moving window analysis of
the base motion in the east-west direction is shown in Fig. 20.
Here it can be geen that during the first ten seconds there is
a relatively strong input in a frequency band between 0.5 Hz and
1.75 Hz. This diminishes significantly during the next window
and reduces to very small amplitudes in succeeding windows. In
the north-south direction, Fig. 21, the moving window analysis
shows that during the first ten second window the input
frequency band extends from 0.7 Hz to 2.5 Hz with a strong peak
at 2.0 Hz.

Moving window analyses of motions in the east-west
direction are shown in Figs. 22, 23 and 24. The moving window
analysis of the motion at the rocof level is shown in Fig. 22
where it can be seen that the response is predominantly first
mode at a frequency of 0.75 Hz. Corresponding results for the
third floor level are shown in Fig. 23. Here it can be seen that
there is an increased contribution from the second mode at a
frequency of 2.4 Hz. particularly during the first twenty
seconds. The moving window FAS at the second floor has
characteristics which are similar to the base motion,
particularly during the first ten second window. In succeeding
windows, the FAS at the second mode diminishes and the first

mode becomes dominant.



11

Moving window analyses of motions in the north-south
direction are shown in Figs. 25, 26 and 27. At the roof level,
shown in Fig. 25, the response is predominantly first mode
although there is some second mode response during the first ten
second window. The moving window analyses for the third level
which are shown in Fig. 26, indicate that there is a significant
second mode response at this level during the first ten second
periocd. This diminishes significantly during the second window
and after ten secondé the first mode becomes dominant. A similar
result is obtained for the second floor, which is shown in Fig.
27. During the first window, the response is influenced by the
base motion and the second mode is dominant. As at the third
level, the second mode diminishes during the sgsecond window and
the first mode becomes dominant after ten seconds.

Torsional effects can be evaluated by comparing the FAS of
motions recorded on opposite sides of the building. Results of
this analysis afe presented in Fig. 28. The spectra shown in
Fig. 28a represent the motions at the base of the structure and
here it can be seen that there is no difference in the input
motions. This result is similar to that obtained from a
compariscn of LERS. At the second floor level, Fig. 28b, it can
be seen that there is a small torsional effect at frequencies of
0.75, 2.3 and 3.2 Hz, which represent the first three modes of
vibration. A similar effect can be seen at the third and roof

levels shown in Fig. 28c and 284. In all cases the torsional
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effect is very small and can probably be neglected in the
structural analyses.
4.3 Inelastic Response Spectra

Inelastic response spectra were generated for the recorded
base motions using a modified version of the NONSPEC [4]
program. Results from this program are presented in terms of the
yvielding seismic resistance coefficient of the structure,

defined as

C, = R, / W (1)
where R, = yvield resistance of the structure, and
W, = total seismic dead load which in most cases

is taken as the total dead load, W.
The nonlinear spectra for the motions recorded on base channel
9 in the E-W direction are shown in Fig. 29b. The solid line
represents a ductility requirement of one (elastic behavior) and
the dashed or broken lines represent ductilities of 2, 3, 4, 5,
and 6. Considering the fundamental period of the structure to be
1.2 seconds, this figure indicates that a yielding seismic
resistance coefficient of abéut 0.09 will be required to ensure
elastic response of this structure if the response in the
fundamental mode is dominant. Considering a similar spectrum for
motions recorded on base channel 13 (Fig. 2%a) in the N-8
direction, it can be seen that at the fundamental period of the
structure, a yielding seismic resistance coefficient of 0.1 is
required for an equivalent single-degree-of-freedom system to

obtain elastic response.
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5. MATHEMATICAL MODELS FOR ELASTIC RESPONSE

5.1 Two and Three-dimensional Models

Both two dimensional ahd three-dimensional models were
developed for the structure. Because o0of the symmetry of the
structure and the framing system, two dimensional models can be
used with the resulting savings in c¢oding effort and
computational time. Elastic analyses were done using the SAPSO
[5] and ETABS [6] computer programs, although it is recognized
that several alternative programs could have been used for this
phase of the response analysis. The reasons for selecting the

SAP90 program included the following:

1. The program has large capacity which permits
modeling the structure in detail in either two or
three dimensions on a personal computer.

2. The program allows the user to plot the time history
response of any node. This feature was crucial for
comparison of calculated results with the recorded
response.

3. The program permits consideration of a rigid floor
diaphragm through the use of a master node. This
greatly reduces the time required to perform a
dynamic analysis, particularly for a three-
dimensional system.

4. The program has a postprocessor {7] which performs a
stress check of every member for the provisions of

the AISC Specification [8]. This greatly facilitates
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an evaluation of the stress level in the structure
under both the code design loading and the recorded
earthquake loading.

The current version of the ETABS program can not produce
time history response plots and therefore does not permit a
comparison of recorded response with calculated response.
Otherwise, this program could have been usged for all response
analyses for thig structure. Its one significant capability that
SAP90 does not have is the ability to calculate the stress
ratios in each member for a time history ground motion applied
in any direction with respect to the principal axes of the
structure. Therefore, this program was used to study the
directionality effects of the input motion.

The two-dimensional finite element model of a typical
perimeter moment frame is shown in Fig. 30a. Here the joint
numbering is shown along with the pinned moment releases at one
end of the frame. The three-dimensional model is shown in Fig.
30b. Although not shown in this figure, pinned element releases
are incorporated at one end of each frame in a similar manner to
the two dimensional model. Nodes 169 through 174 in the middle
of the figure are master nodes which connect to all nodes at a
particular story level and define the displacement response of
the story level.

5.2 Weight (Mass) Determination

A set of the architectural drawings for the structure was

not available, rendering it necessary to estimate the weights of
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some of the finish materials. The weight of the structure was
estimated based on the following unit loads:

ROOF : .
ROOCE DECK. .. ittt ttieeeeeencenancnannenn ..46.0 psf
20 gage metal deck 3" deep with

3 1/4* lightweight concrete on top
Roofing .......... .
Hung Celling .....cieeeeeenececsocssesaees B
Mechanical Equipment Penthouse ........... 43

0 psf
.0 pef
.0 psf

*

TYPICAL FLOOR:

FloOL DECK . vvivieeessesossssosansssssnnsesd6.0 psf
20 gage metal deck 3" deep with
3 1/4" lightweight concrete on top

Hung Ceiling .......... teesrseesssasesnsses 8.0 pBEf
Floor Finish ...... ceets s et etenanscessesss 1.0 pBE
Partitions .......iiiiienarenncronaonanans 15.0 psf
Steel

Beamg and joist8 ....cevenvsecaresses 7.1 p8f
COLUMME .....c0000e0ssetesecscccnsces 3.7 p8f

PERIMETER WALL:

Glass with mullions....cevvvveveersaness..10.0 psf

The weight of the second flocor is higher than that of a
typical floor because of the effect of the 6 1/2 foot overhang
of the floor deck at that level. The weight of the roof is also
higher than that of a typical floor because of the overhang of
the roof deck and the addition of a mechanical equipment
penthouse. The total weight of the structure is estimated as

7785 kips.

6. CODE ANALYSIS AND STRESS CHECK

The structure was designed to the requirements of the 1973
Uniform Building Code. Therefore, the existing strength will be
based on this lateral force requirement. The structure will also

be checked for the current regquirements of the 1988 Uniform
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Building Code. Lateral forces specified in building codes are
defined in terms of the base shear and have the general form:
V = CW, @)

where C_, is the design seismic resistance coefficient and W_ is
the total seismic dead load.
6.1 1973 Code Seismic Design Requirement

The seismic lateral force requirements of the 1973 Uniform
Building Code are expressed in terms of a base shear which is

given by the formula

V = (ZKCIS)W K))
where T = 0.1N = 0.6 sec, 4)
C = 1/(15 VT) = 0.086 (5)
K = 0.67 (6)

If Z, S and I are taken as unity, the design seismic
resistance coefficient becomes
C, = 1.0%0.67*0.086*1.0*1.0 = 0.0577 (7)

and the base ghear V, can be calculated as

\'4 = 0,0577*7785 = 449 kips. (8)

code

It should be noted that the expression used in the 1973
code to estimate the period tends to underestimate the actual
building period by more than 50%. As discussed earlier, the
recorded data from the building indicates that the fundamental
period is approximately 1.3 seconds in each direction. This may
be due in part to the fact that the estimate of period given by

Eg. 4 is based on experience with moment-resistant space frames

and not moment-resistant perimeter frames. In the Commentary to
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the 1975 SEAQC Recommendations, it was suggested that the
following expression be used to estimate the period,

P = 0,45 N 2/3 (9)

which results in a value of T=1.48 seconds for this building.

The underestimation of period tends to increase the seismic
design requirement by 41% over what it would be if the period
were estimated more accurately.

6.2 1973 Code Wind Design Requirement

The lateral forces due to design winds in the 1973 code are
based on a wind pressure map given in the code. The basic wind
pressure for southern California is 20 psf. The distribution of

wind pressure over the height of the building is the following:

Story height Wind pressure
< 30’ 15 psfE

30’ to 49- 20 pst

50’ to 99° 25 pst

Based on these values, the base shear is determined to be 180
kips which 1is well below the sgeismic regquirement for the
structure.

6.3 Initial Stress Check

The initial stress check considered the loads for which the
structure was originally designed, and was performed on the two-
dimensional SAP90 model. Therefore, it was assumed that the
total lateral force was equally divided between the two
perimeter frames parallel to the direction of the lateral, force
and the effects of the exterior end frames and the interior

gravity frames were neglected. Because of the square plan of the
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structure, the effect of accidental torsion was approximated by
increasing the lateral seismic force by 5%. In this manner, the
base shear for a single plane frame was calculated as
V = 448 * 1,05/2 = 235 kips (10)

The code loading and resulting deformation of the frame are
shown in Fig. 31. Gravity loading is input as a uniformly
distributed load as shown in Fig. 3la, and this results in the
deformed shape of the frame shown in Fig. 31b. The controlling
lateral force is due to earthquake and the equivalent lateral
forces are shown in Fig. 31lc¢. These result in deformation of the
frame ag shown in Fig. 31d where it can be seen that the maximum
deformation at the roof level is 2.07 inches. The relative
displacements (story drifts) under design wind load and design
seismic load are shown in Fig. 32. Here, the seismic deformation
is based on the lateral loads multiplied by 1/k as specified in
the building code. Normal design procedure usually limits the
drift under design wind load to 0.002 to 0.003 to prevent motion
of the structure which is discernable to the occupants. It can
be seen from the figure that the calculated wind drift is in the
middle of this range. The drift under sgeismic load is 0.0035
which is well within the code limit of 0.005.

The stress ratio (SR) is defined as the ratio of the
actual stress in the member to the allowable stress. Therefore,
to meet the allowable stress design criteria commonly used for
steel structures, the stress ratio of all members must be less

than or at most equal to unity. Stress ratiogs for the members of



19

the frame are shown in Fig. 33. The stress ratios dAue to gravity
load acting alone are shown in Fig. 33a. In the case of combined
gravity load and seismic load, shown in Fig. 33b, the allowable
stregses have been increased by 33% as permitted in the code. It
can be seen that the larger stress ratios are the result of the
combined gravity load and seismic load and that the critical
values occur in the columns of the first floor. The maximum
value of the stress ratioc can be seen to be 0.65% which implies
that the structure has a design conservatism for this combined
load condition of 1./0.69 or 45%.

6.4 1988 Code Seismic Design Requirement

The 1988 Uniform Building Code defines the base shear as

v

(ZIC/R, W, = CW, (11)
where

Cc = 1.255/7%/3 (12)
and the period, T, may be estimated as either

T = 0.035h3/4 (13)
which results in the following estimate:

T = 0.035*(82.5)%% = 0.96 sec. (14)
Alternatively, the period can be estimated using a Rayleigh
procedure as

T (Rayleigh) = 1.48 seconds (15)
Use of these estimates of the period along with R, = 12,
Z =0.4, 8=1.0 and I = 1.0 results in design seismic resistance
coefficients of either

Cg(T=0.96) = 0.0428 or Cg{(T=1.48) = 0.0321
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and corresponding base shears of either

V{(T=0.96) = 3332.1 kips or V{T=1.48) = 249.4 kips

Since the value of 249.4 kips is 75% of the 333.1 value, the
minimum base shear is limited to 0.8*333.1 = 266.4 kips which
results in a design seismic resistance coefficient of 0.0342, It
can be seen that these values are 74% and 59% of the 1973 code
value. It can also be noted that the actual recorded building
period of 1.3 seconds is between the two estimates of the
period, T=0.96 and T=1.48.

6.5 1988 Code Wind Design Requirement

The lateral forces due to design winds in the 1988 Code are
bagsed on a basic wind speed map given in the code. The design
wind speed for southern California is given as 70 mph and the
design wind pressure as

P = C,Cuqsl (4)

where I=1, C,=0.8+0.5=1.3 and C, is determined from

Height Ce

0-20 0.7
20-40 0.8
40-60 1.0
60-100 1.1

Use of these values results in a base shear due to wind of 135.3
kips which is 77% of the 1973 code value. Therefore it can be
concluded that the lateral forces used in the original design
will still govern the design and that the structure as built

will satisfy the current code requirements.
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7. ELASTIC RESPONSE ANALYSES

7.1 Modal Analyses

Using the three-dimensional SAP90 model of the structure
and the corresponding ETABS model shown in Fig. 34, the mode
shapes and frequencies for the first nine modes were evaluated.
The deflected shapes of the first three modes obtained from the
SAP90 model are shown in Fig. 35. Here it can be seen that the
first two modes are translational modes and that the third mode
is a torsional mode. The dynami¢ properties of the two models

are summarized in Table 4,

TABLE 4. PERIODS OF VIBRATION, 3D MODELS

SAPSO 1.42 1.42 0.83 0.51 0.51 0.30 0.29 0.29 0.19

It can be seen that, because of sgymmetry, the translational
modes are the game in each orthogonal direction. It should also
be noted that the wvalue for the fundamental mode compares well
with the estimate of period obtained from the code using the
Rayleigh procedure (1.48) and the recorded response (1.33).
However, it should be recalled that this represents the period
of the bare frame and not the existing frame which will be
stiffened by the addition of the gravity load framing and the
nonstructural components as indicated by the recorded value. Use
of niné modes of vibration represents 98.7% of the participating

mass which is well above the 90% requirement in the code., In
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this model, the first mode contributed 83% of the participating
mass.

The deflected shapes for the first three modes obtained
using the two dimensional model are shown in Fig. 36. These
modes compare with modes 1, 4 and 7 of the three-dimensional
model. The modal periods for the two dimensional model are

summarized in Table 5 below.

TABLE 5. PERIODS OF VIBRATION, 2D MODEL

Mode 1 2 3 4 5
SAPI0 1.447 0.525 0.304 0.209 0.157
ETABS 1.425 0.506 0.291 0.198 0.147
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In this case using three modes of vibration represents
99.9% of the participating mass, with the first mode
contributing 84.1%, the second mode contributing 11.9%, and the
third mode contributing 2.9%.

From the system identification  studies described
previously, the fundamental period of the building based on the
recorded response is approximately 1.3 seconds which is about 9%
lower than the calculated bare frame period. This implies that
the structure at this level of base excitation is about 21%
stiffer than indicated by the bare frame analysis., This
additional stiffness is due to several sources including the
following: (a) the composite action between the concrete and

steel deck and the main girders, (b) the influence of the
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internal gravity framing, which is assumed to have pinned
connections but which has a certain flexural stiffness, and {c)
the influence of the nonstructural components such as the
exterior cladding and the interior partitions. Modifying the
models developed above, an attempt was made to evaluate the
contribution of these sources of additional stiffness.

The three-dimensional model, including the interior gravity
frame, is shown in Fig. 37. In this investigation, the simple
framing is assumed to be completely rigid to give an upper bound
to the increase in stiffness. A modal analysis of this system
shows that the fundamental period of vibration is reduced by
only 5%. The deck system consists of three components. The metal
decking is welded to the steel girders and then filled with 3
inches of normal weight concrete. On top of this is added
another 3 1/2 inches of lightweight .concrete. If the steel
decking with 3 inches of concrete acts in a composite manner
with the girder, the fundamental period of the structure is
reduced by an additional 4%, resulting in a total reduction of
9.2%. The directional properties of the steel decking may
account for the difference in period in the two orthogonal
directions noted in the system identification studies. In the
elastic response analyses that follow, these effects are lumped
together by the use of an effective modulus of elasticity of
42,000 ksi rather than 29,000 ksi. Since the period of the fixed
base model agrees reasonably well with the recorded period,

additional flexibility at the base was not considered in this



24

study. Although the base is not completely fixed in the actual
gtructure, at the low acceleration levels experienced by the
building during this earthqguake it may have acted as though it
were fixed,

7.2 Dynamic Response Analyses

In these analyses, the three-dimensiomnal SAP90 model was
subjected simultaneously to base accelerations recorded in the
north-south and east-west directions. The response sgpectrum for
the accelerations calculated at the roof level is compared with
that for the recorded accelerations in Fig. 38. In the spectra
presehted in Fig. 38a, the calculations assume there is 5% of
critical damping in all mocdes, and the spectra are developed for
5% damping. The periods for the first four translational modes
for the structure using the higher modulus are 1.2, 0.44, 0.25,
0.17 seconds. These can be seen asgs the four peaks on the
response spectra. The match for the first mode is gquite good,
while in the higher modes the calculated values exceed the
recorded values., This result can be adjusted by increasing the
damping in the higher modes. The results shown in Fig. 38b are
for damping values of 7, 10, 13, and 15% of critical damping in
the first four modes. This produces a good match of the recorded
spectra over most of the peried range with the possible
exception of the fourth mode.

Time history responses at the roof level are compared in
Fig. 39 for the three récording channels. In all cases, the

comparison is good for the peak wvalues although there are
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differences in the lower responses after 20 seconds. In these
comparisons, the calculated accelerations are for the master
node at the center of the structure. Some differences with the
recorded results may be due to torsional effects.

The calculated and recorded responses at the third story
level are compared in Fig. 40. A representative floor spectrum
at the third level is shown in Fig 40a. Here the match of the
spectral values over the period range of the first two modes is
good with a small deviation in the higher modes. The time
histories of the acceleration at the three recording stations on
the third level are compared in Figs. 40b, 40c and 404 and again
show a reasonable correlation.

7.3 Directional Input Analyses

The three-dimensional ETABS model was used to study the
effect of the direction of the input motion on the stresses in
the members of the structure. Only one component of recorded
base acceleration could be used, and that recorded on Channel 13
in the north-south direction was selected. This input motion was
then rotated through a total angle of 90 degrees in increments
of 15 degrees and the corresponding sgtress ratios were
calculated. The stress ratios (SR) resulting from the motion
acting in the north-south direction are shown in Fig. 41. Here
it can be seen that the maximum stresses occur in the frames
parallel to the input motion and that the time history values
for this input compare well with the code values obtained

earlier. This implies that this earthquake was close to the
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minimum regquirement specified in the building codes. Note that
the maximum value of 0.67 in the critical column of the first
story compares with 0.69 obtained in the static code analysis.
The effect of applying the input motion at an angle of 15
degrees is shown in Fig. 42. Here it can be seen that the SR in
the critical column increases to 0.71. Further rotation of the
input motion through 30 degrees increases the critical SR to
0.73 as shown in Fig, 43. Note that as the angle of incidence
increases the stresses in the east-west frames begin to increase
as would be expected. As the angle of incidence reaches 45
degrees (Fig., 44), the gtregs ratio in the-critical column
reduces to 0,70. However, the critical column is now in the
east-west frame with a SR of 0.71. Further rotations to 60, 75
and 90 degrees are shown in Figs. 45, 46 and 47, respectively.
In these figures the stresses in the critical members of the
north-south frame are reduced while those in the east-west
frames are increased. In both directions, the maximum SR in the
columns of the first story reached a value of 0.73, which is 9%
larger than the value of 0.67 in the recorded posgition of zero

degrees.

8. NONLINEAR STATIC ANALYSES

Nonlinear static analyses were performed on the two
dimensional model of the frame in order to obtain estimates of
the following: (a) yield strength (resistance) of the frame, (b)
ultimate strength (resistance) of the frame, (¢} overall

displacement ductility, {4) corresponding curvature ductility of
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individual elements, (e} total rotation reguirements of
individual elements, (f) ultimate interstory drift and (g) story
displacement ductility. Two computer programs were used to
investigate the nonlinear static behavior. Both assume the
loading is applied in a proportional manner and that the
plasticity is concentrated in plastic hinges.

The ULARC [9] program is event driven, where an event
corregponds to either the formation of a new plastic hinge or
the unloading of an existing plastic hinge. If the structure is
agssumed to be piecewise 1linear between eventg, the 1load
increment required to produce a new event can be determined by
linear scaling. Loads may be applied at the joints and the
element resistance is assumed to be elasto-plastic: however,
bilinear behavior can be handled by adding an additional element
in parallel with the elasto-plastic elements.

The NODYN2 program, developed by one of the investigators,
uses a step-by-step procedure to determine the nonlinear
behavior. This procedure is used because the program was
originally developed and primarily used for the step-by-step
determination of nonlinear dynamic response. Therefore,
application to nonlinear static response in this manner was a
straightforward modification. Using this procedure, the total
load is divided into a given number of equal load increments
which are then applied sequentially to the structure. Linear
behavior is assumed tc occur between each load increment. Moment

resistance of the individual elements is bilinear and gravity



28

loads may be apprlied as equivalent fixed end forces.
Elasto-plastic behavior can be approximated using a small
percentage of strain hardening in the bilinear element. Analyses
using the ULARC program are terminated whenever one of the
following conditions occurs: a collapse mechanism is formed, the
full specified 1load is applied or a specified maximum
displacement is reached. The NODYN2 program is terminated when
the full specified load is applied.

In the analyses that follow, the lateral resistance of the
building is evaluated by plotting the lateral roof displacement
versus the base shear. A plot of this type comparing the results
obtained using SAP90, ULARC and NODYNZ is shown in Fig. 48. Here
the resistance in the SAPS0 program igs linear elastic, the
registance in the ULARC program is elasto-plastic and the
registance in the NODYN2 program is bilinear with the rate of
strain hardening equal to 0.5%. In this example, the lateral
loading is taken as uniform over the height of the building. In
the linear elastic range, all three programs give the same
result. In the inelastic range, the results of the ULARC and
NODYN2 programs are very similar. Both depart from the linear
SAPS0 curve at a base shear of approximately 640 kips, reach an
ultimate load of 760 kips and attain a maximum displacement of
10.3 inches. Because of the inclusion of strain hardening in the
NODYN2 model, it is able to carry load beyond that indicated by
the ULARC model. However, at some point, the deformation

demands on the individual elements will become excessive and
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these in turn will place a bound on the overall displacement. In
this case the total load was adjusted to produce the same
displacement as that obtained using the ULARC model.

It is also of interest to consider the effect of the
vertical distribution of the lateral load on the lateral
resistance of this building. Reasonable lateral lcad

distribution functions include

(a) ®(x) = constant (uniform)
(b) ®(x) = x/h (linear)

(c) ®&(x) = sin(nx/2h)

(d) ®(x) = 1 - cos{nx/2h)

where h is the height of the structure and x is the height
of the story level above the base.

Differences between the triangular and uniform
distributions are shown in Fig. 49. Here it can be seen that
since the triangular distribution raises the height of the
lateral force resultant, the lateral displacement at the roof
level increases substantially. However, the lateral 1load
capacity of the frame does not change. The shear versus
displacement curves for the other lateral load distributions are
shown in Fig. 50, Here it can be seen that the largest lateral
resistance of the structure is obtained when the resultant
lateral force is at its lowest position. This condition also
results in the least displacement at the roof level. Conversely,
the least lateral resistance occurs when the resultant lateral

load is at its highest position with the resulting maximum roof
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displacement. For this building the ultimate resistance is
relatively insensitive to the lateral load distribution. This is
a function of the failure mechanism and the distribution of
plastic hinges 1in the building. For other buildings the
difference in ultimate resistance as a function of 1load
distribution may be more significant.

Up to this point, the resistance curves have been developed
using the nominal yield stress of 36 ksi for the A36 steel used
in the building. Coupon tests on the gteel used in the building
indicate that the true yield stress of the material is
approximately 44 ksi. If this value is used in the model with a
triangular load distribution, the registance changes
considerably as shown in Fig. 51. For the same total load and
the higher yield stress, the building resistance is almost
linear and first yielding does not occur until a base shear of
780 kips is reached. In order to determine the maximum lateral
registance of the buildiﬁg with the increased yield strength, it
is necessary to increase the total applied load. Results of
increasing the lateral lcad are shown in Fig. 52. The curve for
the 36 ksi steel is included for comparison. Also included is a
curve for the nominal resgistance of the building had Grade 50
steel been used for the columns. It can be seen that the
ultimate resistance of the building with 44 ksi steel increases
to 910 kips. The use of the 50 ksi columns gives a resistance

similar to the 44 ksi steel throughout.
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The influence of strain hardening on the lateral resistance
of the frame is shown in Fig. 53, where the difference in
lateral force capacity for strain hardening rates of 0.5% and
3.0% is also shown.

It is also of interest to consider the lateral story
displacement (relative displacement) as a function of the story
shear, using the triangular loading results in the resistance
curves shown in Fig. 54. Here it can be seen that the 6th story
ig linear elastic and that the maximum inelastic displacement
occurs in the firast story. The second story level has the
largest lateral stiffness, because the column size is the same
ag the first story but the story height is less. Using these
curves, the displacement ductility requirements of the
individual stories can be estimated. For these calculations, the
story ductility will be defined as the ratio of maximum relative
displacement to relative displacement at first yield. This data
will then be compared with the curvature ductility requirements
of individual members.

The maximum curvature ductility requirement for the beams
and columns of a particular story level is compared with the
story displacement ductility requirement in Fig. 55. Here it can
be seen that the maximum requirement for the beams is 3.25 at
the first level. Although this is not excessive for a compact
section, it may cause problems at the connection tc the column.
On the other hand, the maximum ductility requirement for the

columns of the first story is 3.47, which for a column under
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combined axial load and flexure is apprcaching that which can
reasonably be obtained. The story ductility, which is based on
displacement, compares well with the curvature ductility of the
individual members for this system, reaching a maximum value of
3.75 at the first level.

The maximum total rotation for the beams and columns of a
particular story level is shown in Fig. 56 along with the
interstory drift index (drift angle). The interstory drift index
is obtained by dividing the maximum relative (interstory)
displacement by the story height. For the beams the maximum
total rotation is just over 2% which is close to the capacity of
a typical beam-to-column moment connection [10, 11]. For the
columns of the bottom floor, the maximum total rotation is close
to 3.5% which is excessive and provides the justification for
limiting the total lateral 1cad applied to the frame at this
point. A similar result can be seen for the interstory drift
ratiogs. In the first story level, the interstory drift is close
to 2.6% which is large and along with the column rotation is
reason for limiting the applied lateral load.

The nonlinear static behavior of this structure can be
further illustrated by considering the sequence of plastic hinge
formation shown in Fig. 57. This data was taken from a ULARC
analysis using the nominal yield strength and a triangular load
distribution. It clearly shows that with the formation of the
30th plastic hinge, a sway mechanism is formed in the first

story level which in turn results in the severe ductility and



33

drift requirements on the columns of this level. This is a
limitation of the design which results in a soft story at
ultimate locad. It can also be seen that at ultimate lateral
load, only one plastic hinge hags formed in the columns of the
second story level, This is due to the design practice of
holding the column size constant for at least two story levels.
Because of the increased story height of the bottom story, the
columns of the second steory are considerably larger than
required for strength. This tends to concentrate the inelastic
deformation in the first story level and leads to the formation
of a soft story at ultimate load,

By referring to the base shear versus roof displacement
shown in Fig. 58, the overall displacement ductility of the
structure <can be approximated. Since the shear versus
displacement curve has a smooth transition from linear behavior
to inelastic behavior, it does not exactly fit the contgxt of
displacement ductility which is defined for a perfectly
elasto-plastic relationship. The displacement ductility is
defined as the ratio of the maximum displacement to the
displacement at yield. With a smooth transition, there can be
several definitions of displacement at yield. Two of these are
the following: (a) the displacement at yield is the displacement
when vielding occurs at the first critical section and (b) the
displacement at yield is determined by comparison with an
idealized elasto-plastic response curve. In the NODYN2 response

curve, first vield occurs at a 1load of 640 kips and a
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corresponding displacement of 6.5 inches. Using this value, the
displacement ductility of the frame becomes 13.5/6.5 or 2,08, If
an idealized elasto-plastic curve is constructed (Fig. 58), the
yvield displacement is 7.5 and the displacement ductility becomes
13.5/7.5 or 1.8, Note that both of these values are considerably
less than the values of 4 or 5 often quoted in building code
commentaries.

The results of this type of analysis also provide a means
for evaluating the seismic resistance coefficient for this
structure. The yielding seismic resistance coefficient has been
defined previously as

Cy, = R,/W,
In this equation, the yield resistance, Ry, is taken as the
lateral resistance of an equivalent elasto-plastic system.
Considering both frames, the yield seismic resistance
coefficient for this structure becomes
CY = 2*750/7785 = 0.19

Referring to the elastic response spectra shown in Fig. 11b
for the recorded base motion (Channel 13), it can be seen that
for this earthquake the demand seismic resistance coefficient,
Cq, is approximately 0.07. It is of interest to recall that this
value is above the design seismic resistance coefficient used in
the design (0.058). 8Since lateral forces specified in the
building codes are based on working stress, this coefficient
must be multiplied by 1.4 to obtain the ultimate seismic

resistance design coefficient (0.081). Comparing the ultimate
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seismic design coefficient with the yield seismic design
coefficient indicates that this structure has an overstrength
represented by the overstrength ratio (OSR) of

OSR = C,/Cq = 0.190/0.081 = 2.35
The inherent overstrength of this structure will be investigated

in more detail in the following section.

9. ANALYSIS OF STRUCTURAL OVERSTRENGTH
Using the results of the previous sections, it is possible

to obtain an estimate of the overstrength ratio for this
structure. The OSR can be assumed to consist of the following
five major components: (a) a factor representing the ratio of
the ultimate strength of a member to the allowable strength, {(b)
a factor representing the ratio between the actual stress in the
member and the limiting allowable stress permitted by code, {(c)
a factor representing the effect of load redistribution, (d) a
factor representing the effect of strain hardening and (e) a
factor representing the ratio between the nominal yield stress
of the material and the actual yield stress. The allowable
stress for a generic member including the 33% increase for
inclusion of seismic loads can be expressed as

F, = O.G*Fy*l.33 = 0.8Fy
which implies that

F, = 1.25*F,

The ratio of ultimate moment to yield moment can be expressed as

M,
M,

(Z/S)My = 1.14*F *S = 1.14*1.25*M,

1.425%M,

1l
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and therefore

ultimate strength/allowable strength = 1.425

where
Z = plastic section modulus
S = elastic section modulus
M, = allowable moment
M, = yield moment
M, = plastic moment capacity.

The stress in a member is usually expressed in terms of the
ratio ¢f the actual stress to the allowable stress (Fig. 33) and
the limiting value of this ratio is unity. From Fig. 33b it can
be seen that for combined gravity and lateral load, the stress
ratio in the critical member is 0.6%. In Fig. 33a, the stress
ratic for this member due to gravity load acting alone is 0.25.
For this value to be used with the gravity plus lateral 1load
above, the allowable stress must be increased by 33% or
conversely the stregs ratio must be reduced by 0.75 resulting in
a value of (.1875. These values along with those developed in
the preceding paragraphs for estimating the ultimate resistance
are represented on an idealized force versus displacement curve
in Fig. 59.

The capacity of the member to carry additional lateral
force up to the allowable value can be obtained by subtracting
the maximum stress ratio (SR) for gravity loads acting alone
(Fig. 33a) from unity to obtain:

Allowable seismic SR supply = 1.0 - 0.1875 = 0.8125
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Considering the SR due to combined gravity and seismic forces
(Fig. 33b), the SR for the seismic lateral lcad condition can be
obtained as:
Code seismic SR demand = 0.69 - 0.1875 = 0.5025
Using these two values the overstrength due to design
conservatism can be estimated as
Design conservatism = 0.8125/0.5025 = 1.6169
In a similar manner, the overstrength due to the factor of
safety incorporated in the allowable stress design procedure on
firgt plastic hinge formation can be obtained as
1.425 - 0.1875
Factor of safety = --——-==—-uc-—-~ = 1.5231
1.0 - 0.1875
Combining these two factors, the overstrength on first yield
(plastic hinge formation) can be estimated as
OSR(yie1qy = 1.617*1.523 = 2.463
and for this structure the base shear at first yield would be
estimated to be
V' = 2.46%V 4, = 2.46*235 = 578.8 kips
From the base shear versus displacement curve shown in Fig.
48, it was noted that the initial yield actually occurred at a

value of 640 kips representing a difference of 9.5%. The seismic

resistance coefficient at first yield, Cy’

can be expressed in
terms of the design seismic resistance coefficient, C,, as
C,’ = 2.46 C,
Beyond first yield, the increase in strength is due to a

combination of strain hardening and redistribution of internal
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forces as plastic deformation occurs. Considering the ultimate
shear to be 750 kips without the effect of strain hardening, the
increase due to moment redistribution can be determined as
redistribution = 750/579 = 1.30
The amount of increase due to redistribution of moment is
limited by the formation of a gway mechanism in the first story
level with only a limited amount of inelastic behavior being
distributed to the upper stories. Referring to Fig. 53, the
ultimate shear can be estimated at 800 kips when including
strain hardening, and the increase due to this effect is
strain hardening = 800/750 = 1.06
Summarizing the above results, the OSR for this structure can be
expressed in terms of the four parameters as
OS8R = 1.52 (factor of safety)
* 1.62 (design conservatism)
* 1,30 (redistribution)
* 1.06 (strain hardening) = 3.39

The vyield seismic resistance coefficient, C can then be

yl
expressed in terms of the design seismic resistance coefficient

for this building as

c, = 3.39 ¢,

The resistance Ry can now be estimated as

Ry, = 3.39*V = 3.39*235 = 797 kips.

code

This overstrength which is inherent in the current design

process 1is undoubtedly a significant factor in reducing or
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preventing earthquake damage, particularly for low to moderate
earthquake motions.

The above discussion of overstrength has been based on the
nominal yield strength of the steel. For most rolled steel
shapes, the actual yield stress can be considerably higher than
the minimum specification. In the case of this building, cocupon
tests indicated a yield stress of 44 ksi as compared with the
nominal 36 ksi. From Fig. 52, it can be seen that this increase
in yield stress results in an increase of 910/750=1.21 or 21% in
the structure resistance. If this factor is combined with those

discussed above, the 0SR for this structure becomes 4.11.

10. NONLINEAR RESPONSE ANALYSIS

In order to evaluate the inelastic dynamic response of the
structure, it is necessgsary to select an ensemble of possible
strong motion earthquakes. The design earthquake should then be
the selected ground motion that will drive the structure to its
critical response. Linear elastic response spectra (LERS) for
acceleration records obtained during major earthguakes over the
past 13 years are shown in Fig. 60. Also included in the figure
is a plot of the LERS specified by the 1988 Uniform Building
Code. Of particular interest to this study is the spectrum from
Obregon Park which was obtained from the 1987 Whittier Narrocws
Earthquake. This motion, which is shown in Fig 6la, is
representative of the strongest motion to be recorded during
this earthquake., The response spectrum of this motion ig

compared with that of the motion recorded at the base 0of the
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building in Fig. 61b. Here it can be seen that the Obregon Park
motion is considerably stronger over the entire period range. It
should also be noted that the UBC spectrum, shown in Fig. 60, is
exceeded by a considerable margin in the period range from 0.0
to 3.0 seconds by several of these ground motions.
Acceleration time histories for these strong motion
earthquakes are shown in Fig. 62. The acceleration recorded at
Bucharest, Romania in 1977 is shown in Fig. 62a. The peak ground
acceleration is a modest 0.2g but the motion is characterized by
two long duration acceleration pulses which can have a
significant effect on the dynamic response. The motion recorded
at Hollister during the Loma Prieta Earthguake of 13988 is shown
in Fig., 62b. This motion has a peak acceleration of 0.35g and a
duration of strong shaking of about 7 seconds. The ground motion
recorded at James Road during the 1979 Imperial Valley
Farthquake is shown in Fig, 62c¢c. This motion is also
characterized by two large acceleration pulses. Previous studies
[12] have indicated that this ground motion can create a strong
response in a flexible frame. The final ground motion considered
in this study is the motion recorded in Mexico City at SCT
during the Michoacan Earthgquake of 1985 which is shown in Fig.
62d. Thig motion has a modest peak acceleration of 0.l7g but the
duration of strong motion is in excess of 30 seconds. Note that
the peak acceleration does not occur until almost 60 seconds

into the recording.
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10.1 Inelastic Response Spectra

Nonlinear response analyses of single-degree-of-freedom
systems were performed using the NONSPEC program. Results of
these analyses were used to obtain values of the regquired yield
seismic resistance coefficient as a function of building period
and displacement ductility for each of the ground motions just
discussed. This data is presented in Fig. 63. These curves are
very useful and can be used in either an analysis or a design
context. From an analysis standpoint, Cy ig known and the figures
can be used to estimate the average displacement ductility
requirement. Using the yield seismic resistance ccefficient
determined for this structure neglecting the effect of strain
hardening (Cy = 0.19), the average displacement ductility
requirement under the above ground motions can be estimated as
follows: Bucharest = 1.8, Hollister = 3.5, James Road = 3.0 and
Mexico City SCT = 2.0. Plots of C, versus building period have
been developed by Uang and Bertero [13] for other earthquake
ground motions. From a design standpoint, one can enter these
graphs with the estimated period and the design ductility and
obtain an estimate of the required seismic yield resistance
coefficient.

10.2 Multiple Degree of Freedom Response Analyses

The nonlinear dynamic analyses are based on the two
dimensional model of a typical perimeter frame. The analyses are
done using the NODYN2 computer program which was alsc used for

the static nonlinear analyses. Before considering the inelastic
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regponse, the computer model to be used for the nonlinear
regponse calculations was used to calculate the elastic response
and to compare it with that recorded in the building. In order
to include the effect of viscous damping in the nonlinear
response calculation, it is convenient to represent the damping
matrix as a linear combination of the mass and stiffness
matrices. This results in two constants which can be selected to
specify a given percentage of damping in two modes of vibration.
Once these are selected, the damping in the other modes is
defined. Based on the results of the elastic¢ analyses, the
constants were chosen to give 5% of critical damping in the
first mode and 8% of critical in the 4th mode. This resulted in
4.4% of critical in the second mode and 6% in the third mode.

10.3 Linear Dynamic Analyses

Using these values and a two dimensional model similar to
that used for the elastic analyses, the elastic response of the
frame was calculated. The acceleration calculated at the roof
level is compared with the recorded acceleration in Fig. 64a. A
similar comparison of accelerations at the third story level is
gshown in Fig. 64b. In both cases, the comparisons are quite
good.

The time history of the calculated base shear due to the
recorded base acceleration is shown in Fig. 65a. Here it can be
gseen that the peak value of the base shear is about 270 kips
which is well below the initial yield value of 640 kips obtained

from the nonlinear static analysis. The time history for the
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base shear under the Obregon Park motion is shown in Fig. 65b.
The peak value in this case is 490 kips which is still
congiderably legs than the 640 kips required to cause initial
vield.

10.4 Nonlinear Dynamic Analvyses

The base shear under the Bucharest motion, shown in Fig.
66a has a peak value of 925 kips which is 44% above initial
vield and 22% above the ultimate shear as determined by the
static analysis. This increased base shear in the dynamic case
above that obtained from a static analysis has been discussed by
Bertero [14]. It is considered reasonable because of the
following factors: (a) the opening and closing of plastic hinges
with time and their migration through the structure, (b) the
time variation of inertia forces and (c) the effect of higher
modes of vibration. The base shear for the Hollister ground
motion, shown in Fig. 66b, has a peak value of 850 kips which is
also above the initial yield and the ultimate values. A similar
result is shown for the base shear due to the James Road motion
which is shown in Fig. 66c and has a peak value of 850 kips. The
base shear for the SCT record is shown in Fig. 66d and hasgs a
peak value of 900 kips which is 18% above the ultimate static
value. These studies indicate that the motion recorded at
Bucharest generates the largest base shear and the only records
which are insignificant for considering inelastic response are

those obtained from the Whittier Narrows earthguake.



44

The base shear for a single frame based on the 1988 UBC is
either 124.7 kips or 166.5 kips, depending on how the
fundamental period of the building is estimated (see Section
6.4). Dividing the ultimate base shear of 925 kips by these
values results in structural system factors of 7.4 and 5.6,
respectively. Note that both of these values for R, are well
below those specified in the building code.

The inelastic displacement response is shown in Fig. 67.
The envelope of maximum lateral displacement for the five grouhd
motions is shown in Fig. 67a. Also included on this figure is
the displacement required by the building code. It can be seen
that as in the case of the base shear, the Bucharest motion
results in the greatest displacement demand. The displacement
requirement for Obregon Park is considerably 1less than the
others and much closer to the code requirement. For the
Bucharest, James Road and Mexico City records, most of the
lateral displacement occurs in the first story level, whereas
for the Hollister record there is alsc a major displacement
increment between the 4th and 5th levels. The former records are
characterized by some significant acceleration pulses which tend
to concentrate the deformation in the first story, particularly
if the first story tends to be a soft story as indicated from
the static analysis. The later record is more sinuscidal in
character, and this allows the inertia forces to build up in the
upper stories. A similar condition can be seen in the plot of

interstory drift shown in Fig. 67b. The Bucharest record has an
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intersteory drift of 2.9% in the first story. This value is
relatively 1large but it is still 1less than the almost 4%
indicated in the sgtatic analysis. Note the large interstory
drift requirement of the Hollister record at the 5th story level

The curvature ductility requirements are shown in Fig. 68.
The ductility requirements for the girders are shown in Fig,.
68a. Here it can be seen that all values are less than 2.3 which
can readily be developed in a standard moment connection of two
compact members. As noted previously for the displacement
response, the ductility requirements for the Obregon Park record
are the least and, in fact, are considerably less than unity
indicating elastic behavior. It can alsc be 8een that the
ductility required by the static analysis is about 2.5. The
ductility regquirements for the column elements are shown in Fig.
68b. The largest ductility requirement occurs in the first story
columns for the Bucharest motion and has a value of 5.2 which is
quite large for a column. Other column ductilities are 3.1 or
less and should be sustainable.

The element rotation regquirements are shown in Fig. 69. The
girder rotations shown in Fig. 69%9a are all less than 1.4% and
should be readily developed with a standard moment connection of
two compact sections. The column rotation requirements are shown
in Fig. 69b. Here it can be seen that the rotation requirements
for the columns of the first floor under all ground motions
except Obregon Park are quite large. It will be difficult to

develop the large rotations required for the Bucharest and
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Mexico motions. The rotation requirement obtained from the
static analysis gives a good estimate of that which will be
required in the most severe case.

The envelopes of maximum story shear are shown in Fig. 70.
The values given in this figure are based on the sum of the
maximum column shears at a given story level. As such, they
represent an upper bound on the story shear since all of the
maximum column values may not occur at the same time. This
effect can be seen by comparing the base shear to the time
history values given previously in Fig. 66. In addition, the
code loads have been increased by 40% to represent the ultimate
condition. It can be seen that the adjusted code values clearly
represent the minimum shear. The story shears resulting from the
four recent earthquakes are considerably 1larger than the
adjusted code values and those obtained from the Obregon Park
record. This is further evidence that the whittier Narrows
earthquake was not a very severe event.

Hysteresis curves of the story shear versus the interstory
displacement are shown in Fig. 71 for the Bucharest ground
motion. At the sixth story, shown in Fig. 71a the behavior is
entirely linear. There is some limited ductility im the fifth
story as shown in Fig. 71b. The fourth story also has only a
limited amount of inelastic deformation, Fig. 71c. At the third
story there is an increase in inelagtic deformation followed by
a decrease in the second story, Figs. 71d and 7l1le. As indicated

previously, the primary inelastic deformation for this ground
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motion occurs in the first (base) story as can be seen in Fig.
71f.

Similar hysteresis data for the Hollister ground motion is
shown in Fig. 72. Here it can be seen that the sixth and second
floors are elastic, Figs. 72a and 72e. From Figs. 72c and 724 it
can be seen that the fourth and third floors have a limited
amount of inelastic deformation. The main regions of inelastic
deformation for this ground motion are on the fifth and first
(base) floors as shown in Figs. 71b and 71f.

A plot of input energy for four of the ground motions used
in this study are presented in Fig. 73. As in the previous
cases, the Bucharest ground motion resultsg in the largest amount
of input energy indicating that it has the largest damage
potential for this particular structure. It c¢an alsc be seen
that the energy from the Whittier Narrows earthquake is very low
indicating that this is not a wvery severe earthquake. The
Hollister record alsoc has a significant amount of input energy
for this structure and as shown previously contrcls some of the
response parameters, particularly in the upper stories. The
James Road energy input, while being substantial, is not the
controlling one for this structure.

10.5 Rffect of Increased Ground Accelerations

The effect of a larger earthquake on the building is
evaluated by increasing the accelerations recorded at Bucharest
and Hollister by 30%. The effect of this increase on the maximum

displacement envelope is shown in Fig. 74a. From this figure, it
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can be seen that the effect of the increased acceleration on the
displacement is greatest for the Bucharest motion where the roof
displacement increases from 10.5 inches to 15 inches. The effect
on the interstory drift index is shown in Fig. 74b. For both
" records the effect of the increagse is greatest in the first
story level. For the Hollister motion, the IDI in the first
story increases to 2.1% and for Bucharest it increases to a very
high 3.9%.

The girder ductility, shown in Fig. 75a, is affected in a
similar manner. The largest increase is due to the Bucharest
motion and the largest increase in girder ductility demand
occurs in the bottom three floors. In the case of the column
ductility demand, shown in Fig. 75b, the largest increase is
again due to the Bucharest motion and occurs in the bottom two
floors.

The maximum rotation demand is shown in Fig. 76. For the
girders, shown in Fig. 76a, the maximum increase in the rotation
requirement occurs in the lower three floors and is due to the
Bucharest motion. At the first and third story 1levels, the
rotation is above 1.5% which is close to that which can be
developed in a moment connection. Considering the columns, shown
in Fig. 76b, the maximum increase in rotation occurs in the
first floor level. For all cases, the amount of rotation
required in the first floor level is above 2%. For the Bucharest

motion the rotation was 3.7% and it in turn increased to almost
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5%. It is very doubtful that rotations of this magnitude could
be developed in standard beam-to-column moment connections.
The effect of increased acceleration amplitude on the
hysteresis curves of base shear versus interstory displacement
of the first story is shown in Fig. 77. The hysteresis for the
Bucharest motion is shown in Fig. 77a. Comparing this curve with
that of Fig. 71f indicates that the interstory displacement has
increased from 5.0 inches to 7.0 inches, an increase of 40%.
However, the base shear increases only from 900 kips to 950
kips, an increase of 5.5%., This clearly indicates that in the
inelastic range, the base shear becomes relatively insensitive
to changes in seismic demand and that large changes can occur in
the displacement response which are not reflected in the changes
in the base shear. In the case of the Hollister motion, shown in
Fig. 77b, the base shear increases from 860 kips to 890 kips, an
increase of 3.5%. However, the maximum interstory displacement
increases from 3.0 to 3.9 inches, an increase of 30%, Obviously,
the maximum base shear is not going to be a very accurate

parameter for evaluating damage potential.

11. SUMMARY AND CONCLUSIONS

This Study has investigated the seismic behavior of a six-
story steel building which was instrumented.with thirteen strong
motion accelerometers at the time of the whittier Narrows
earthgquake. The building has a square plan with lateral
resistance provided by a perimeter moment-resistant frame.

Recorded peak accelerations were in the north-south direction
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and ranged from 0.226g at the base to 0.289g at the rocof. No
damage was reported as a result of this motion.

Syatem identification technigques were applied to the
recorded data to identify the predominant periods of vibration.
Moving window Fourier analyses were performed to investigate
changes in the period of vibration during the earthquake. The
effect of torsion was also evaluated using Fourier amplitude
spectra and linear elastic response spectra. Linear elastic
two dimensional and three-dimensional models of the building
were developed to study the behavior of the building under code
lateral forces and the recorded base motion. Two dimensional
nonlinear models of the building were developed and used to
evaluate the ultimate strength of the Dbuilding under
monotonically applied static 1lateral forces. Using these
results, the overstrength of the structure was estimated. The
two dimensional nonlinear models were also used to evaluate the
behavior of the building when subjected to the ground motions of
selected strong motion earthquakes which have been recorded
previcusly.

On the basis of these extensive studies, the following

general conclusions are presented:

1. This building was not severely tested by the ground motion
recorded at the base during the Whittier Narrows Earthquake. The
base accelerations were short duration acceleration spikes which
did not result in a significant energy input to the structure.

Furthermore, the duration of strong motion shaking was a
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relatively short three seconds. Results show that the dynamic

response wag completely linear elastic.

2. Using commercially available computer programs, two
dimensional and three-dimensional mathematical models can be
developed which accurately predict the linear elastic dymamic
response as represented by recorded accelerations at various

locations in the building.

3. The design seismic resistance coefficient specified by
current building codes has been reduced substantially for a
building of this type when compared with the value used in the
original design in 1973. It is not clear to the investigators

how this significant reduction can be justified.

4., The directional effects of the input ground motion are shown
to increase the stress in the critical members of this structure
by 9%. With current computer programs, this effect can easily be

incorporated into the design analysis.

5. Nonlinear static analyses can be very useful in estimating
the following mechanical characteristics of the structure which
can be used ag an indication of inelastic dynamic response
behavior:
(a) The ultimate resistance of the structure as
represented by the base shear versus roof
displacement relationship.

(b) The maximum rotation requirements and ductility
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requirements of critical members.

(c) The distribution of inelastic behavior (plastic
hinges) at ultimate load.

(d) Determination of the yield seismic resistance

coefficient for the building.

6. The concept of the yield geismic resistance coefficient can
be very useful in estimating the seismic behavior of a structure
for purposes of design. Using a nonlinear static analysis of the
building, the yield seismic resistance coefficient, Cy. can be
determined. Using C,, the fundamental period of the building and
inelastic response spectra for single-degree-of-freedom systems,
the average ductility requirements for various strong motions

earthquakes can be estimated,

7. The structure considered in this study has an inherent
overstrength which resulted in an ultimate lateral resistance
which was more than 200% above the code requirement. This has
undoubtedly had a significant effect on the favorable seismic
response of this structure, particularly under the relatively

low geismic input of this earthguake.

8. Using the nominal values for the material yield stress, the
perimeter frame formed a sway mechanism in the first story level
at ultimate load. This behavior is undebirable since it limits
the redistribution of plastic hinges (inelastic deformation)

into the upper floors and results in a reduced resistance at
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ultimate lateral load. It also causes the resistance curve to
have a relatively flat post yield characteristic which results
in large lateral displacements for small increases in the

lateral force.

g. The displacement ductility requirement of the individual
gstory levels shows a relatively good correlation with the
curvature ductility of individual members in the story. However,
the overall displacement ductility is considerably less than
either the story displacement ductility or the member curvature

ductility.

10. The design practice of keeping a column size constant for
at least two story levels causeg the inelastic deformation at
ultimate load to be concentrated in a limited number of story
levels rather than being distributed over the height of the
frame in a more uniform manner. This becomes readily apparent

from the results of a nonlinear static analysis.

11. Input motions characterized by strong acceleration pulses
{Bucharest and James Road) tend to affect the lower floors of
buildings. If these floors become soft stories at ultimate load,
the combination of pulse load and soft story can lead to poor
seismic performance. Motions characterized by numerous zero
crossings and longer duration (Hollister, SCT) tend to have more

effect on the upper floors of the structure.
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12. The structural system factor, R, evaluated for this moment-
resistant steel frame is shown to vary between 5.6 and 7.4. Both

values are well below the value of 12 gpecified in the 1988 UBC,
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Fig. 29 Inelastic Response Spectra
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(a) Gravity Load

Fig. 33 Stress Ratios for Code Loads
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Fig. 35 Mode Shapes,
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