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ABSTRACT

The 20x20 ft shaking table at the Earthquake Engineering Research Center

in Berkeley (EERC) is tested for interaction effects. The tests include three
loading configurations: a bare table, a table loaded with 70 kips mass and a

table loaded with 68 kips single degree of freedom structure with a height of

219 inches. The shaking table has 5 degrees of freedom, one horizontal, one
vertical and 3 rotational degrees of freedom. When loaded with heavy and
tall structures, the shaking table undergoes pitching (rocking) motion even

in the absence of a pitch command signal. This i~ mainly due to the flexibil

ity in the pitch degree of freedom. It is observed that the interaction effects

are negligible for the bare table and the table with rigid mass case. In the

case of the tall and heavy structure the pitching of the seismic simulator

was evident when using a table horizontal command signal; in addition, a
change in the frequency component of the horizontal table motion near the

structural frequency was observed. Mathematical models are derived for

analyzing the table-structure system. These include a shaking table with a
horizontal actuator, a pitching actuator and a passive pitch stabilizer.
Simplified spring-mass-dampermodels are also discussed. Methods for

avoiding modeling of the table flexibilities are presented. These include the

use of a two-directional base input motion and the simpler uni-directional

effective base motion. Interaction effects are studied using response spectra

and the equivalent coupled single degree of freedom table-structure system.

It is concluded that the interaction effects are very similar to those encoun

tered in soil structure interaction studies. The interaction causes a reduc
tion in the structural frequency and usually, but not always, an increase in

damping. The change in the frequency component of the command signal

near the structural frequency due to interaction does not significantly affect
the ability of the shaking table to produce damaging motions to the test

structure.
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Chapter One

INTRODUCTION

1.1 INTRODUCTORY REMARKS

Shaking tables are increasingly being used to test the seismic performance

of structures. At present, the shaking table at the Earthquake Engineering

Research Center at Berkeley (EERC) can provide two component input

motions, horizontal and vertical. In order to allow such input motions, the

table is supported by four vertical actuators and three horizontal actuators

(Fig 1.1). No locking mechanism is provided to prevent the table from

pitching, rolling or twisting; only one of the horizontal degrees of freedom is

locked. The undesirable motions are usually minimized by feedback control

mechanisms that provide different force levels to the actuators based on the

amount of the undesirable motion. In the original design of the table, it was

realized that the control system was unable to completely eliminate these

movements; for that reason a system of passive stabilizers was designed to

provide additional resistance to the undesirable pitching motion.

In spite of the presence of the passive stabilizer system, the EERC table

still has some flexibility in the rotational degrees of freedom, and large over

turning moments resulting from testing tall and heavy structures can cause

undesirable table pitch, roll and twist motions as shown by the results of

recent tests [1].

Even in the absence of the rotational degrees of freedom, system reproduc

tion of the horizontal and vertical command signals can be significantly

influenced by the addition of the test structure. This is due to shaking

table-structure interaction. This interaction effect causes the frequency con

tent of the table displacement to be very different from that of the desired

command signal, near the resonance frequency of the test structure.

In planning this research effort, it was hoped that by reproducing the condi

tions under which the first significant pitching interaction was observed,

enough information could be gathered to understand the interaction
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problem. In order to accomplish this goal, a steel test frame was constructed

with a fundamental frequency of 2.5 Hz. This frequency is the same as that

of the reinforced concrete test structure for which significant amounts of

undesirable pitch and roll motions were observed in a standard experimen

tal research program [1].

1.2 LITERATURE REVIEW

Shaking table pitching and interaction effects were traditionally dealt with

by adding two vertical springs to the mathematical model to represent the

pitching flexibility [2,3,4,5,6]. The passive stabilizer system was added to

the EERC table in 1977 to reduce the flexibility in the pitching degree of

freedom. For this reason springs in the mathematical model used by Tang

[2] are different from the ones used by later researchers. The required pro

perties of the springs were typically derived from trial and error analysis, so

that the coupled structure frequency matches the measured frequency. This

approach, though convenient, can lead to serious errors because the springs

will hide other modeling errors.

The performance of shaking tables was the subject of several researchers at

D.C. Berkeley in the past. Rea et al. [7] tested a small unidirectional shak

ing table and the EERC table. Mathematical models were formulated to

represent these shaking tables; however the models did not include the

pitch effects. Rea found that:

"... The magnitudes of the peak and notch distortions in the frequency

response of shaking tables are sensitive to the amount of force feedback

employed by the control system. In addition, the magnitudes depend on

the ratio of the mass of the structure to mass of the shaking table, and

to the transmissibility function of the structure with respect to the

table.

Although the peak and notch effect may cause difficulties in determin

ing the frequency response of structures by means of shaking tables, it

has little effect on the accuracy to which a shaking table can reproduce

earthquake-type motions... "
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Rea also studied the effect of foundation compliance on a shaking table fre

quency response and found that foundation compliance affects the frequency

response of the EERC shaking table only at low frequencies, and that the

magnitude of the effect depends on the transmissibility function of the foun

dation with respect to the table.

Blondet el al. performed a similar study on the unidirectional shaking table

at the Catholic University of Peru [8]. In addition to Rea's model, a two

degree of freedom mass-spring-damper system was used to simulate the

shaking table-structure interaction. Blondet et al. concluded the following

(1) The main aspects of the interaction problem can be studied from a

mechanical viewpoint using a 2DOF spring-mass-damper system.

(2) The interaction effects are mainly manifested by a peak and notch in

the amplitude frequency response with the maximum attenuation

occurring precisely at the natural vibration frequency of the test struc

ture. This is particularly undesirable since the purpose of earthquake

simulation tests is to excite the structure at its own frequency in order

to cause damage.

1.3 RESEARCH OBJECTIVES

The objective of this research project was to evaluate the EERC shaking

table performance and to establish analytical models for the shaking table

that can be used to account for and predict the shaking table-structure

interaction effects.

More specifically the objectives can be stated as:

(1) to evaluate the table reproduction of typical earthquake records and to

study the effects of the pitch motion on the structural response;

(2) to establish a simplified mass-spring-damper system that can account

for shaking table-structure interaction effects and can be easily incor

porated in analytical models of the test structures; also to devise ways

for identifying the model parameters;
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(3) to develop an analytical model for a unidirectional shaking table system

that includes the feedback control loops;

(4) to extend the mathematical model to include table pitching effects by

means of

(a) a mass-spring-damper system ( hybrid model ), and

(b) a feedback control loop similar to that of the horizontal actuators;

(Such models can be used to predict table performance and stability.)

(5) to investigate ways of improving system performance through

modification of the command signal, the addition of actuators, etc; and

(6) to study methods of analyzing tested structures on the shaking table,

that may avoid dealing with interaction altogether.

1.4 SCOPE

This report consists of nine main sections. Chapter 2 introduces the shak

ing table system, test structure and instrumentation. Chapter 3 presents

some preliminary data analysis and describes the techniques used in data

processing and identification of structural properties: it also presents a list

of the acquired data. Transfer functions and response spectra of measured

motions are also shown. Chapter 4, an introductory chapter for the rest of

the report, illustrates the different ways of dealing with shaking table

interaction including methods of avoiding the interaction problem through

use of the effective base horizontal acceleration or two-directional base input

analysis. Chapter 5 deals with representing the shaking table by a simple

spring-damper system, and describes means of identifying the properties of

the springs and dampers used in this model. Chapter 6 presents the

derivation for the feedback control system representing the bare uni

directional table. Chapter 7 extends the model of Chapter 6 to include a

single degree-of-freedom test structure system. Chapter 8 deals with a

two-directional feedback control system loaded with a single degree-of

freedom structure. It also introduces a hybrid model that combines a sim

ple spring-damper model with a control system model. Chapter 9 illustrates

the effect of shaking table interaction on the response of a test structure
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using analytical models. Response spectra and coupled system parameters

are derived and discussed. Chapter 10 presents a summary and the conclu

sions of this study.
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Chapter Two

TEST EQUIPMENT AND PROCEDURE

2.1 INTRODUCTION

The earthquake simulator performance tests consisted of testing the bare

table system, the table with a heavy mass rigidly attached to the table, and

the table with a single degree-of-freedom test structure. A nine-story steel

structure was also tested, both with fixed and isolated bases, but this struc

ture is not covered in this report. The primary objective of the tests was to

obtain measurements of the motions induced in the table by specified inputs

so that a comparison could be made between the input signal and the meas

ured responses.

2.2 EARTHQUAKE SIMULATOR

The Earthquake Engineering Research Center (EERC) earthquake simula

tor consists of a 20 ft by 20 ft reinforced concrete platform. The table is a

one foot thick reinforced concrete slab stiffened by heavy central transverse

ribs at the bottom. The weight of the slab is about 100,000 lb. The slab is

designed to have a fundamental vibration frequency above 20 Hz, so that it

can be considered rigid within the usual operating frequency range (0-10

Hz) of the shaking table.

At the time of the test, the EERC table could be programmed to produce a

specified vertical and a horizontal component of motion. The table, however,

has additional flexibilities in the pitch, roll and twist directions. The shak

ing table is supported vertically by 4 active actuators located in a square

pattern, 12 ft apart; four passive actuators, in a 17-ft square pattern, were

added in the late seventies to reduce the flexibility in the pitch degree of

freedom and to increase the overturning moment capacity. The horizontal

motion is produced by three active actuators. Figure 2.1 shows a sketch of

the table with the locations of actuators. Figure 2.2 shows a schematic of

the hydraulic interconnection of the passive pitch stabilizers. The actuator
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capacities are 25,000 lb for each vertical actuator and 70,000 lb for each hor

izontal actuator. The horizontal actuators have 170 gpm (gal/min) servo

valves; the vertical actuators have 90 gpm servovalves. Table 2.1 lists the

specifications for the various EERC shaking table actuators.

The two translational degrees of freedom can be programmed to produce

any type of wave form within the limits of the displacement, velocity and

force capacity and the frequency bandwidth of the table. With these capaci

ties, the table is able to produce motions about twice those recorded during

the EI Centro earthquake of 1940, including both the N-S horizontal, and

the vertical components combined. The displacement is limited by the

actuator stroke and the table clearance,-=+= 5 inches in the horizontal and -=+= 2

inches in the vertical directions. The flow rate in the servovalves limits the

maximum velocities produced in the horizontal and vertical directions to 25

in/sec and 15 in/sec, respectively. The maximum acceleration is limited by

the force limits of the actuators together with the mass of the table

structure system. Figure 2.3 shows the acceleration limits for the unloaded

table as a function of frequency.

During operation, the air in the pit beneath the shaking table is pressurized

so that the total weight of the table and the structure being tested is bal

anced by the difference between the air pressure in the pit and the ambient

air pressure. The pit entrance is sealed by two airtight doors that provide a

lock chamber and thus permit access to the pit while the air in the pit is

pressurized. The one foot horizontal gap between the edge of the table and

the interior foundation walls is sealed by a 24-inch wide strip of vinyl

covered nylon fabric. A differential air pressure of 1.55 psi is required to

balance the weight of the shaking table alone.

Oil at 3,000 psi is supplied by four 90 gpm pressure regulated pumps, each

of which is driven by a 120 hp electric motor. Accumulators that can double

the peak instantaneous flow rates are installed in the main oil line, but the

oil supply is not sufficient to produce maximum horizontal and vertical velo

cities simultaneously. However, it is considered unlikely that the maximum

horizontal and vertical components of an earthquake would occur
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simultaneously.

The actuator forces are reacted by a massive foundation block, which is a

reinforced concrete structure in the form of an open box with 5 ft thick

sides. The outside dimensions of the box are 32 x 32 x 15 ft, and the inside

dimensions are 22 x 22 x 10 ft. The foundation weighs 1,580,000 lb.

Specifications of the shaking table are given in Table 2.2.

Table 2.3 is a list of the signals measured during the tests on the SDOF

structure.

2.3 DATA ACQUISITION SYSTEM

The data acquisition system can acquire up to 128 data channels. An analog

to digital converter converts the filtered data into digital form to be stored

and processed by a VAX 11/750 computer. Data analysis and display are

mainly done through the S Statistical Software available on the VAX. The

data acquisition system samples data at 50 KHZ, and when acquiring data

on all 128 channels, the maximum sampling rate per channel is 50,000/128

= 390 samples per second. During the current tests an analog lowpass filter

with cut-off frequency of 100 Hz was applied to all output channels before

they were digitized. Sampling was normally done at twice the filter fre

quency in order to avoid aliasing in the digitized signals. Aliasing is a

phenomenon that occurs when sampling a high frequency signal at a sam

pling rate less that twice that frequency. Undersampling would cause the

digitized signal to have lower frequency signals generated from the high fre

quency data. It is usually very difficult to get rid of these aliased frequencies

once the data is collected, and simple filtering would not help in this case.

2.4 TEST STRUCTURE

Figure 2.4 shows the single degree-of-freedom structure mounted on the

EERC shaking table in tests performed for this investigation. The structure

is a four story, braced steel frame weighing 6.45 kips and supporting a

weight of 62.5 kips. This test frame is the lower part of the steel frame

tested by Hucklebridge [3].



10

The structure consists mainly of W6x8.5 beams and W4x13 steel columns.

A W8x31 base beam connects it to the shaking table by means of pres

tressed steel rods spaced at 3 ft intervals which pass through 2-in diameter

holes in the I-ft thick reinforced-concrete table. The two identical parallel

frames that form the steel structure are spaced 6 ft apart, and the total

length of the frame in the test direction is 18 ft. The height of the first floor

is 4 ft above the base beam; all the other floors are 3-ft high except for the

top floor. That floor consists of 1.5-ft high columns supporting 16-inch deep

beams, on which are placed eight concrete blocks weighing 4 kips each. The

height of the concrete blocks is 15 inches. The concrete blocks support 26.4

kips of lead blocks. The center of mass of the lead blocks is 11 inches above

the upper face of the concrete blocks.

A sketch of the instrumentation is shown in Fig. 2.5. Four accelerometers

at the top of the structure were attached to the top deep beams to measure

the structure responses -- two sensing motion in the direction of the table

movement and two oriented to indicate accelerations perpendicular to the

table motion. The accelerometers were 189.3 inches above the top face of the

shaking table. Two displacement meters were also used in the lateral direc

tion (direction of table motion), and the displacements were measured with

respect to a reference frame which was supported on the laboratory floor

away from the table.

2.5 TEST MASS

The table was loaded with three concrete blocks (WxHxL=48x21.5x240

inches) having a total weight of 70.5 kips. Each block was anchored to the

table by post-tensioned steel rods. The long direction of the blocks was

aligned perpendicular to the horizontal direction of shaking. This total

mass was used to determine the effect on the table performance of a rigid

test specimen with relatively low overturning moment. The center of gravity

of the mass was only 10.75 inches above the table surface, as shown in Fig.

2.6.
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2.6 OTHER TEST EQUIPMENT

A small shaker driving a weight of 50 lb was placed on the top of the test

structure; this produced a random input force that was used to evaluate the

uncoupled structure frequency and damping.

A GenRad 2515 vibration analysis system was used for the generation of

random command signals, for data acquisition and for transfer function

evaluation. The system can acquire 4 channels of data at a maximum sam

pling rate of 25000 samples per second. It has a built in Fast Fourier

Transform (FFT) analyzer to perform frequency domain computations. The

FFT frame can be varied from 512 points to 8192 points. Four transfer func

tions can be calculated and averaged in real time. Overlapping windows are

used for noise reduction in transfer function and power spectra computa

tions; other features include cross spectra, auto and cross correlation and

coherence fundion computations. Very efficient "circle fitting" is also avail

able for resonance frequency, damping and amplitude computation. The sys

tem has capabilities for storing the test data on a disk for further analysis

with either TSL2 (Time Series Language), or MODAL software. MODAL is

a program developed by SDRC (Structural Dynamics Research Corporation)

to do multi-mode transfer function fitting, mode shapes estimation and

display. Frequencies and damping ratios were calculated using the RTA

(Real Time Analysis) program on the GenRad system.
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ACTUATOR MODEL AREA STROKE SERVOVALVE FLOW (gprn) CAPACITY

(as in Fig. 2.1) NUM. dn2) (in) (MODEL II) CAPACI'IY (kips)

Hi 204.32 25.4 12 251.42 170 50

H2 204.32 25.4 12 251.42 170 50

H3 204.32 25.4 12 251.42 170 50

Vi 204.25 9.6 4 251.32 90 25

V2 204.25 9.6 4 251.32 90 25

V3 204.25 9.6 4 251.32 90 25

V4 204.25 9.6 4 251.32 90 25

Pi 204.72 26.0 4 N/A N/A 50

P2 204.72 26.0 4 N/A N/A 50

P3 204.72 26.0 4 N/A N/A 50

P4 204.72 26.0 4 N/A N/A 50

Table 2.1: Specifications for MTS actuators used in EERC

earthquake simulator.
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Plan dimensions 20 x 20 ft (6.1 x 6.1 meters)

Model tie down locations 2-inch diameter holes @ 36

inches on center (914 mm)

Model weight capacity 130,000 lb (578 KN)

Overhead clearance 40 ft to ceiling (12.2 meters)

32 ft to 10 ton crane (9.75 meters)

Overturning resistance 3,343 kip-ft (229 NM)

Displacement Horizontal :+= 5 inches (:+= 152 mm)

Vertical :+= 2 inches (:+= 76 mm)

Velocity Horizontal :+= 25 ips (:+= 635 mm/sec)

Vertical :+= 15 ips (:+= 381 mm/sec)

Acceleration Horizontal :+= 1.5 G (:+= 1472 gal)

Vertical :+= 1.0 G (:+= 981 gal)

Bandwidth 0- 20 Hz

Table 2.2: Specifications of EERC Shaking Table
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CHANNEL CHANNEL FULL UNITSID NAME NAME
1 avg hdisp Average Horizontal Displacement inches
2 avgvdisp Average Vertical Displacement inches
3 avg hacc Average Horizontal Acceleration G
4 avgvacc Average Vertical Acceleration G
5 pitch acc Pitch Acceleration rad/sec2
6 roll acc Roll Acceleration radlsec2
7 twist acc Twist Acceleration rad/sec2
8 v2 disp V2 Vertical Actuator Displacement inches
9 v3 disp V3 Vertical Actuator Displacement inches

10 v4 disp V4 Vertical Actuator Displacement inches
11 h span Command Displacement inches
12 hI force HI Horizontal Actuator Force kips
13 h2 force H2 Horizontal Actuator Force kips
14 h3 force H3 Horizontal Actuator Force kips
15 vI force VI Vertical Actuator Force kips
16 v2 force V2 Vertical Actuator Force kips
17 v3 force V3 Vertical Actuator Force kips
18 v4 force V4 Vertical Actuator Force kips
19 hI disp HI Horizontal Actuator Displacement inches
20 h2 disp H2 Horizontal Actuator Displacement inches
21 pI stab PI Passive Stabilizer Force kips
22 p2 stab P2 Passive Stabilizer Force kips
23 p3 stap P3 Passive Stabilizer Force kips
24 p4 stab P4 Passive Stabilizer Force kips
25 h vel Table Horizontal Velocity in/sec
26 accN-NE Accelerometer G
27 accN-NW Accelerometer G
28 accW-NW Accelerometer G
29 accW-SW Accelerometer G
30 potN-SW Potentiometer inches
31 potN-SE Potentiometer inches
32 accCMD Accelerometer G

Table 2.3: Identification of Test Channels
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Fig. 2.4: SDOF Structure Mounted on EERC Shaking Table.
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Chapter Three

PRELIMINARY DATA ANALYSIS

3.1 INTRODUCTION

Tables 3.3-3.6 are lists of tests performed on the VAX computer. The ran

dom test signals recorded on the VAX consisted of short duration signals of

11 seconds each. Normally a random signal test lasted for a period of more

that 1 minute and the GenRad system collected the data through successive

averaging of auto and cross spectra, transfer functions and coherence func

tions. The VAX random signal record was done for reference purposes only.

Four channels were normally recorded on the GenRad system while 32

channels were written to the VAX storage disk. A list of the VAX data

acquisition channels is provided in Table 2.3.

One way of studying the shaking table system performance is by means of

transfer functions which give an indication of the system reproduction of the

command signal, the frequency bandwidth and stability of the table motion.

In this chapter some of the transfer functions produced by the GenRad sys

tem from the shaking table test signals are described.

Transfer functions are presented for three loading conditions: bare table, 70

kip mass attached rigidly to the table, and 62.5 kip SDOF structure having

a height of 190 inches. The transfer functions show the output table hor

izontal displacement and table pitch displacement as a function of the

inputted table command displacement.

The natural frequencies and damping ratios of the test structure were

evaluated. Two cases are considered, first the base of the structure is com

pletely fixed, and second the structure and the table are acting as a coupled

system. The fixed-base structure case is obtained by locking all the motions

of the shaking table. Also presented are response spectra comparisons

including some showing the shaking table interaction effects.
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3.2 DATA PROCESSING

Transfer function measurements of the shaking table horizontal displace

ment, the table pitch acceleration and the test structure top acceleration

relative to the command displacement were performed using the RTA 2.0

program running under the RT-11 operating system of the GenRad 2515.

During data acquisition each signal of length 16 seconds (called a frame) is

represented by 2048 data points in the GenRad system. In the frequency

domain it has a frequency band of 0-32 Hz with 512 complex frequency

points. The GenRad system has a built-in anti-aliasing filter that automati

cally filters any frequencies higher than half the sampling frequency. A

"Hanning Window" was used to minimize the leakage by eliminating the

abrupt discontinuities at the ends of each data frame. Leakage causes the

amplitude spectrum at a given frequency to decrease by transferring some

of the energy at that frequency to adjacent frequencies. The Hanning func

tion also reduces the total energy contained in the frame, but this can be

corrected by a factor such that the total energy is the same as that of the

original input frame. In order to minimize the effect of noise in the meas

ured transfer functions, successive measurements are taken and averaged.

Typically a total of 40 averages were made. Overlapping segments were

used in order to minimize the time needed for averaging and smoothing out

the data. In this case the system does not wait until a completely new data

frame is obtained, it simply uses part of the old frame to complete the

number of points needed for the FFT.

3.2.1 Method Of Estimating Transfer Functions

In order to get the best estimate of the transfer function Hxy between two

channels x & y, the GenRad system uses the following calculation pro

cedure:

where

Gxy
H =

xy G
xx

(3.1a)

(3.1b)
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(3.1c)

Sx =Fourier Spectrum of Input x

Sy =Fourier Spectrum of Output y

Bx ,By =Complex Conjugates of Sx and Sy , respectively

In the GenRad system, transfer functions are evaluated and added to the

current average values to obtain an updated average which is displayed.

In order to estimate the degree of noise present as well as the nonlinearity

and repeatability in the system transfer function, the coherence function

was also measured. The coherence function between input x and response y

is defined as

(G )2
Coherence (x ,y) = G ~

xx Y.Y
(3.2)

The coherence function is meaningful only for averaged data and it is

always less than or equal to unity. A value close to one indicates good qual

ity transfer function data. Mitchell [9] discusses more improved methods

for transfer function estimation.

3.3 IDENTIFICATION OF STRUCTURAL PROPERTIES

Random signals provide input energy that is relatively uniform over the fre

quency range of interest; therefore these signals can be useful in frequency

and damping identification. In addition to the random signals, two earth

quake records, the 1952 Taft and the 1978 Miyagi-Ken-Oki were used for

structural identification.
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3.3.1 Fixed Base Case

3.3.1.1 Identification using random signals: The fixed-base case was

studied by placing a small shaker at the top of the structure while the shak

ing table was completely blocked against motion. A random signal was

applied to the small shaker mass ( 50 lb ) and the inertia forces induced in

the structure were used to estimate the frequency (2.87 Hz) and damping

(0.3 percent).

3.3.1.2 Identification using earthquake records: The method using a

small shaker involved locking the base of the structure from motion and

applying a very small amplitude load to the top of the structure. In actual

tests the forces applied to the structure are large enough so as to produce

yielding and damage in the tested specimen. The fixed-base characteristics

of the model under such severe loads could be very different from those

corresponding to small amplitude vibrations. An updated estimate of the

structural characteristics during the actual test becomes important.

During a horizontal earthquake motion simulation test with the EERC

shaking table, the table would move horizontally and would undergo some

pitching due the high overturning moment induced by the test structure.

The equation of motion for a single degree-of-freedom structure subjected to

a rigid base translation Xt and rigid base rotation e as shown in Fig. 3.1 can

be written as

(3.3)

where m s ' Cs and ks are, respectively, the values for the structural mass,

damping and stiffness. The absolute displacement of the mass of the struc

ture consists of a rigid body component due to the base motions and a defor

mation or relative displacement component Xs as

(3.4)

where xeff is the effective rigid body translation of the structural mass and

is written as

(3.5)
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Equation (3.4) can be substituted in Eq. (3.3) to get

(3.6)

and in terms of the structural frequency and damping parameters it can be

rewritten as

(3.7)

where W 8 and ;8 are the fixed-base frequency and damping of the structure,

and are given by the relations

2 k8
00 =

8 m
8

In the frequency domain Eq. (3.7) can be written as

(3.8)

(3.9)

(3.10)

(3.11)

where j is v-I. The transfer function between the structural relative dis

placement and the effective displacement can be written as

x8 (00) 002
H (j w) = =-------

Xeff (w) (008
2-002) + j (2;8 w8 (0)

This transfer function is the focal point in identifying the fixed-base fre

quency and damping. Damping can be estimated using the half power or

bandwidth method [11]; but in most cases a linear least squares circle

fitting [10] or amplitude fitting [Appendix D] were used to identify the

fixed-base characteristics. The transfer function H (j (0) was estimated from

the measured relative structural displacement and the measured effective

acceleration for each earthquake simulation test.

Much larger damping values were determined from the earthquake tests

than were observed in the random signal tests with the small shaker. These

damping values increased with the amplitude of earthquake excitation and

this significant change in damping can be attributed to the fact that the
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mass was not rigidly attached to the structure. The relative movement of

the 264 lead weights which were stacked on three layers can lead to friction

and hence energy dissipation. The fixed-base structural frequency and

damping during the different earthquake tests are shown in Figs. 3.2a and

3.2b. Figure 3.2b shows clearly the damping dependence on the response

amplitude. The procedure used for fixed-base frequency and damping

identification as described here is exact for SOOF systems and also can give

a good approximation of the first fixed-base frequency for MOOF systems, as

discussed in Chapter 4.

3.3.2 Coupled Table-Structure Properties

The coupled shaking table-structure properties were evaluated by subjecting

the table-structure system to a random horizontal table command displace

ment. The transfer function of the relative mass acceleration with respect to

the command signal was evaluated and circle fitting [10] was performed to

evaluate the system frequency (2.54 Hz) and damping (3.33 percent). These

properties reflect the coupling due to both the horizontal and pitching

degree of freedom. In order to evaluate the coupled parameters in the pitch

ing degrees of freedom only, another transfer function, the relative mass

acceleration with respect to the horizontal table acceleration was used.

The frequency and damping determined for the SOOF test structure for the

two earthquake signals used are listed in Table 3.1 for the fixed-base case,

for the pitch coupling case, and for the pitch and horizontal coupling case.

The estimation of the coupled system parameters and their usefulness will

be explained in more detail in Section 5.3.1.

3.4 TRANSFER FUNCTIONS OF THE SHAKING TABLE SYSTEM

In this section the experimentally measured transfer functions are

presented for three cases: bare table, table with 70 kip mass rigidly

attached to the table, and table with a SOOF structure. In all cases the

EERC table was subjected to a random command displacement signal. The

resulting transfer function between the table displacement and the



27

command displacement was instantaneously calculated using the GenRad

system. In this section only the experimental results corresponding to the

standard settings of the shaking table control system (Table 3.2) are

presented, although additional tests were performed to investigate the

influence of the control system settings as shown in Tables 3.3-3.6. The

effect of some control system settings will be dealt with in Chapters 6 and 7.

3.4.1 Bare Table Transfer Function

The transfer function of the bare table horizontal displacement relative to

the command displacement is shown in Fig. 3.3. It has characteristics simi

lar to a low-pass filter of about 10 Hz, almost completely attenuating all fre

quencies above 25 Hz. The phase curve of the transfer function shows that

frequencies in the table displacement above about 12.6 Hz are out of phase

with those of the command displacement. The transfer function of the pitch

displacement 8 relative to the command displacement is shown in Fig. 3.4.

Pitch displacement was obtained from the measured pitch acceleration by

dividing the Fourier amplitude at each frequency by w2. The bare table

pitch consists mainly of high frequency response. It is out of phase with the

command displacement at about 11.5 Hz, it has a peak around 12.5 Hz, and

it shows a notch at about 24 Hz.

3.4.2 Table Loaded With 70 Kip Mass

The transfer function for the horizontal displacement of the table loaded

with a 70 kip weight is shown in Fig. 3.5. Also shown in the figure for com

parison is the bare table transfer function (taken from Fig. 3.3). The addi

tion of the mass caused a decrease in the system frequency bandwidth. The

table displacement becomes out of phase with the command signal at about

8.5 Hz frequency.

The pitch transfer function for the table loaded with a rigid mass is shown

in Fig. 3.6 . It has two prominent peaks, at about 8 and 15 Hz. The figure

also indicates that the pitch becomes out of phase with the command dis

placement at about 8 Hz.
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3.4.3 Table Loaded With SDOF Structure

The transfer function of the shaking table horizontal displacement over the

command displacement for the loaded table case with SDOF structure is

shown in Fig. 3.7 together with the bare table transfer function from Fig.

3.3. This transfer function shows a significant peak (resonance) with an

amplitude of 2.2 and a notch (anti-resonance) with an amplitude of 0.7,

occurring near the coupled table-structure frequency. A significant phase

lag is clearly seen near the peak and notch frequencies.

Compared with the bare table transfer function, in addition to the peak and

notch effects, the transfer function with the SDOF structure showed

amplification of response for frequencies between 5 and 8 Hz, and attenua

tion for frequencies higher than 8 Hz. In addition, the out-of-phase fre

quency (frequency at which the phase is 180 degrees) was significantly lower

(9.6 Hz). All of the effects contributed to reducing the bandwidth.

The transfer function of the shaking table pitch displacement over table hor

izontal command displacement for the loaded table with SDOF structure is

shown in Fig. 3.8. In this case the shaking table pitch motion is dominated

by the response at the coupled table-structure frequency. The phase shift

frequency is about 9.6 Hz together with a small peak near 15 Hz and a

notch at about 24 Hz.

3.5 GENERAL COMMENTS ON TRANSFER FUNCTIONS

From the bare table transfer functions (Fig. 3.3), it can be seen that the

table horizontal displacement gives a good representation of the command

displacement if the command displacement has no frequencies higher than

10 Hz. Frequencies higher than 10 Hz are significantly attenuated and are

almost eliminated above 25 Hz. It also can be seen that in the range of 3-10

Hz the table displacements are only about 80 percent of the command dis

placements. Very long period signals (0-3 Hz) are reproduced much better

than the higher frequency signals.

In the case of the 70 kip added mass (Fig. 3.5), the command signals having

frequencies between 0 and 8 Hz are reproduced with less than a 5 percent
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error In the amplitude. However, the phase is not as well reproduced

because at frequencies higher than 8.5 Hz the response is out of phase with

the command signal.

The addition of the SDOF structure changed the horizontal table transfer

function significantly (Fig. 3.7). The peak and notch in this function are due

to interaction effects and in this case, system reproduction of the command

signal is questionable. At frequencies just below the coupled table-structure

frequency, the table displacement amplitudes are more than twice the com

mand displacements. At frequencies just higher than the coupled frequency

(which also happened to be the fixed-base structural frequency) the table

displacement amplitudes are significantly lower than those of the command

displacement. In addition, a close look at the pitch transfer function (Fig.

3.8) shows a clear significant response near the same coupled frequency.

This is undesirable since most of the structural response is concentrated

around this frequency. It was for this reason that this investigation was

undertaken in order to see how accurately the system reproduces the com

mand displacement and whether the real table motion produces greater or

less damaging effects to the test structure.

Although the rigid mass had some eccentricity, with respect to the table

mass, the maximum table pitch in this case (Fig. 3.6) was only twice as

much as for the bare table (Fig. 3.4). The addition of the SDOF structure

however caused the pitch motion to have a peak near the coupled table

structure frequency (Fig. 3.8) with an amplitude ten times higher than the

maximum amplitude in the bare table transfer function (Fig. 3.4).

3.6 COMPARISONS OF MEASURED ACCELERATION SPECTRA

One way to look at the extent of interaction is to compare the command

acceleration spectra with that of the measured horizontal table acceleration,

and more important, with that of the effective acceleration spectra which

was defined in Section 3.3.1.2. The effective acceleration spectrum

represents the peak response of a SDOF test structure with no coupling

effects (i.e. with fixed-base properties). The response spectrum of the
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horizontal table acceleration represents the peak responses of a SDOF

structure with pitch coupling only. The command acceleration spectrum in

this case represents the maximum responses of a SDOF test structure tak

ing into account coupling in both the horizontal and pitching degrees of free

dom.

Figure 3.9a shows the response spectra of the original Taft acceleration

record and the measured table acceleration record. All the spectra are for 5

percent of critical damping. It is clear that the spectrum of the table

acceleration is slightly higher than that of the earthquake record near the

coupled table-structure period Tc ' The spectrum evaluated from the

effective table acceleration xt +h e can be compared with the original Taft

spectrum in Fig. 3.9b. Clearly the effective acceleration has a much higher

response at periods greater than the fixed-base structure period Tf . This

spectrum has a very significant peak at the coupled period Tc of the system

at which period the pitch motion is mainly concentrated. It should be noted

here that only the value at the fixed-base frequency applies to this struc

ture. Furthermore, with respect to the original spectrum shown in Fig. 3.9b,

only the spectral value corresponding to the coupled period Tc applies to

this particular structure. This latest observation suggests that although the

effective acceleration spectra differ significantly from the original spectra,

the peak response for the tested structure did not vary significantly.

It should be noted here that since the effective motion is a function of the

tested structure and its effective height, simple comparisons of this type are

not very useful in studying the interaction effects. In addition, damping is

an important factor as it varies from the uncoupled to the coupled case.

Damping was taken as a constant value of 5 percent in this case. The

response spectrum approach will be discussed in more detail in Chapter 9.
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EARTHQUAKE Fixed Base rotation Trans!. and rot.

base coupling coupling

RECORD FREQ DAMP FREQ DAMP FREQ DAMP

(Hz) (%) (Hz) (%) (Hz) (%)

Miyagi span 270 2.87 1.2 2.71 2.3 2.62 2.0

Miyagi span 350 2.86 1.4 2.71 2.5 2.59 1.8

Taft span 200 2.86 1.7 2.70 1.0 2.58 2.4

Table 3.1: Vibration characteristics of the structure for three

boundary conditions and three different records.

DIRECTION GAIN DELTA-P RATE

Horizontal Control 9 1.5 5
Pitch Control 0 2.0 0
Vertical Control 4 2.0 10

Roll Control 4 2.0 10
Twist Control 5 2.0 0

Table 3.2 : Standard Shaking Table Control Settings (1985-1986).
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RUNNUM RUNID DURATION Time Step Comments

BARE TABLE

850802.01 RANDOM 0-25hz 15 .005 span=50
850802.02 RANDOM 0-25hz 15 .005 span=100
850802.03 RANDOM 0-25hz 15 .005 span=150
850802.04 MIYAGI 15 .005 span=270
850802.05 MIYAGI 15 .005 span=500
850802.06 TAFT.s 25 .005 span=400
850802.07 TAFT.s 20 .005 span=800
850802.08 TAFT.s 20 .005 span=800

ADDED STRUCTURE 60kips 200 inches SDOFSTEELSTRUCTURE

850809.01 RANDOM 0·25hz 1 .002 ADD SMALL SHAKER
850809.02 RANDOM 0-25hz 11 .005 small shaker
850812.01 RANDOM 0-25hz 25 .01 small shaker

INCREASES GAINS ON CHANNELS 26-29 from 50 to 500

850812.02 RANDOM 0-25hz 25 .01

MOVED CHANNELS 27 TO SHAKER & PUT GAIN BACK TO 50

850812.03 RANDOM 0-50hz 25 .01 transv excit
850813.01 RANDOM 0·25hz 25 .01 skewed excit

CHANNEL 27 GAIN AT 500 SDOFSTEELSTRUCTURE

850813.02 RANDOM 0-50hz 25 .01 skewed excit
850813.03 RANDOM 0-50hz 25 .01 skewed excit
850813.04 RANDOM 0-50hz 9 .004 skewed excit
850813.05 RANDOM 0-50hz 10.5 .0025 skewed excit
850814.17 RANDOM 0-25hz 11 .005 skewed excit
850814.18 RANDOM 0-25hz 11 .005 stopped @t=-5sec
850814.18 RANDOM 0-25hz 11 .005 stopped @t=-5sec
850814.19 RANDOM 0-10hz 11 .005 filters@10hz
850814.20 RANDOM 0-10hz 11 .005 stopped @t=-5sec
850815.01 RANDOM 0-25hz 22 .005 SMALL SHAKER REMOVED

CHANNELS 26-29 GAIN AT 50 SDOFSTEELSTRUCTURE

850816.01 sine 11 .005 1.0hz
850816.02 sine 11 .005 7.5hz span=20
850816.03 sine 11 .005 10hz span=20
850816.04 RANDOM 0-25hz 11 .005 span=500

VERTICAL EXCITATION SDOF STEEL STRUCTURE

850816.05 RANDOM 0-25hz 11 .005 vertical spv=70
850816.06 RANDOM 0-25hz 11 .005 spv=700 rg=O

Table 3.3: A List of EERC Shaking Table Tests
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RUNNUM RUNID DURATION Time Step Comments

HP GENERATOR 0-25 Hz HSPAN=400 SDOF STEEL STRUCTURE

850819.01 RANDOM 0-25hz 11 .005 HC: std sp=150
850819.02 RANDOM 0·25hz 11 .005 HC: std sp=400
850819.03 RANDOM 0-25hz 11 .005 HC: gain=10
850819.04 RANDOM 0·25hz 11 .005 HC: gain=8
850819.05 RANDOM 0-25hz 11 .005 HC: p=O
850819.06 RANDOM 0-25hz 11 .005 HC: p=5
850819.07 RANDOM 0-25hz 11 .005 PC: gain=3
850819.08 RANDOM 0-25hz 11 .005 PC: gain=3 p=O

HP GENERATOR 0-25 Hz VSPAN=400 SDOF STEEL STRUCTURE

850819.09 RANDOM 0-25hz 11 .005 std vertical
850819.10 RANDOM 0-25hz 11 .005 RC: gain=O
850819.11 RANDOM 0-25hz 11 .005 RC: gain=5
850819.12 RANDOM 0-25hz 11 .005 RC: p=6.0
850819.13 RANDOM 0-25hz 11 .005 RC: p=O
850819.14 RANDOM 0-25hz 11 .005 VC: gain=2
850819.15 RANDOM 0-25hz 11 .005 VC: gain=6.0
850819.16 RANDOM 0-25hz 11 .005 VC: p=1
850819.17 RANDOM 0-25hz 11 .005 VC: p=3
850819.18 RANDOM 0-25hz 11 .005 VC: r=5

HP GENERATOR 0-25 Hz HSPAN=500 SDOF STEEL STRUCTURE

850819.19 RANDOM 0-25hz 11 .005 TC: gain=O
850819.20 RANDOM 0-25hz 11 .005 TC: gain=8
850819.21 RANDOM 0-25hz 11 .005 TC: p=O
850819.22 RANDOM 0-25hz 11 .005 TC: p=5
850819.23 MIYAGI 22 .005 span=270
850819.24 MIYAGI 22 .005 span=350
850819.25 TAFT.s 22 .005 span=400
850819.26 TAFT.s 22 .005 span=200

Table 3.4: A List of EERC Shaking Table Tests
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RUNNUM RUNID DURATION Time Step Comments

CHANGED SIGN OF CALIBRATION ON CHAN 21-24
SDOF STEEL STRUCTURE

(PASSIVE STAB.) GENRAD HSPAN = 50

850822.01 RANDOM 0-32hz 128secs .07813 HC: std span=30
850822.02 RANDOM 0-32hz 128secs .005 HC: std span=30
850822.03 RANDOM 0-32hz 11 .005 HC: std span=30
850822.04 RANDOM 0-32hz 11 .005 HC: std span=50
850822.05 RANDOM 0-32hz 11 .005 HC: gain=10
850822.06 RANDOM 0-32hz 11 .005 HC: p=O
850822.07 RANDOM 0-32hz 11 .005 HC: p=5
850822.08 RANDOM 0-32hz 11 .005 PC: gain=l
850822.09 RANDOM 0-32hz 11 .005 PC: gain=3
850822.10 RANDOM 0-32hz 11 .005 PC: gain=3 p=O
850822.11 RANDOM 0-32hz 11 .005 TC:gain=8
850822.12 RANDOM 0-32hz 11 .005 TC: p=O

CHANGED CH11 FROM HSPAN TO VSPAN = 100 SDOF STEEL STRUCTURE

850822.13 RANDOM 0-32hz 11 .005 VC: stand span=100
850823.01 RANDOM 0-32hz 11 .005 VC: gain=6.0
850823.02 RANDOM 0-32hz 11 .005 VC: p=l
850823.03 RANDOM 0-32hz 11 .005 VC: p=5.0
850823.04 RANDOM 0-32hz 11 .005 RC: gain=O,
850823.05 RANDOM 0-32hz 11 .005 RC: gain=6,
850823.06 RANDOM 0-32hz 11 .005 RC: p=O,
850823.07 RANDOM 0-32hz 11 .005 RC: p=6,

CHANGED 11 to HSPAN=50 SDOF STEEL STRUCTURE

850823.08 RANDOM 0-32hz 11 .005 HC: std, VC: gain=6
850823.09 MIYAGI 22 .005 Hspan=350, Vspan=O
850823.10 TAFT.s 22 .005 Hspan=400, Vspan=O
850823.11 RANDOM 0-32hz 11 .005 PC: pstab=off,
850823.12 RANDOM 0-32hz 11 .005 PC: pstab=off g=4

DISCONNECTED PASSIVE STABILIZERS SDOF STEEL STRUCTURE

850823.13 RANDOM 0-32hz 11 .005 PC: gain=2.0 sp=30,
850823.14 RANDOM 0-32hz 11 .005 PC: gain=O sp=30,
850823.15 RANDOM 0-32hz 11 .005 PC: g=2,p=1,sp=30

Table 3.5: A List of EERC Shaking Table Tests
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RUNNUM RUNID DURATION Time Step Comments

RECONNECTED STABILIZERS, INCREASED
SDOF STEEL STRUCTURE

STAB. PRESS FROM 1000 TO 2000

850827.01 TAFT.s 22 .005 PC: g=6 span=100
850827.02 RANDOM 0-32hz 11 .005 PC: gain=O span=400
850827.03 RANDOM 0-32hz 11 .005 PC: g=4 p=2 span=400
850827.04 RANDOM 0-32hz 11 .005 PC: g=6 p=2 span=400
850827.05 RANDOM 0-32hz 11 .005 PC: g=6 p=O span=400

BARE TABLE

860821.01 random 0-32Hz 128 .004 sph=500
860821.02 random 0-32Hz 128 .004 sph=400
860821.03 ec2 18 .004 sph=200 ts=I/4
860821.04 ec2.corr 18 .004 sph=200ts=I/4
860821.05 ec2.corr2 18 .004 sph=200ts=I/4

ANCHORED 3 CONCRETE BLKS @ 25 kips each TABLE WITH MASS

860822.01 random 0-32Hz 128 .004 sph=500
860822.02 random 0-32Hz 128 .004 sph=400

CONCRETE BLOCKS REMOVED BARE TABLE

860826.01 ec2 18 .004 sph=200
860826.02 ec2.cl 18 .004 sph=200
860827.01 ec2 18 .004 sph=200
860827.02 ec2.cl 18 .004 sph=200
860827.03 ec2.c2 18 .004 sph=200
860828.01 random 0-32Hz 10 .004 sph=600
860828.02 random 0-32Hz 10 .004 sph=700
860828.03 random 0-32Hz 10 .004 sph=900
860828.04 random 0-32Hz 10 .004 sph=1000
870121.01 pulse 10 .0025 HC: p=I.5 AS
870121.02 pulse 10 .0025 HC: p=O.O AES
870121.03 pulse 10 .0025 HC: p=5.0 AES

SLAVE SPOOL VALVE TESTS
all calibrated except slave rate BARE TABLE

slave calib 0.25in/5volts int=.005

890331.02 r.30 random 0-32Hz 32 0.005 sph=50 ignore h2disp&force
890331.03 r.30 random 0-32Hz 32 0.005 sph=25 ignore h2disp&force
890331.04 r.30 random 0-32Hz 32 0.005 spv=50 ignore V3disp&force
890331.05 r.30.filt@30Hz 32 0.005 spv=50 ignore V3disp&force

Table 3.6: A List of EERC Shaking Table Tests
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Chapter Four

MODELS FOR ANALYSIS INCLUDING
SHAKING TABLE-STRUCTURE INTERACTION

4.1 INTRODUCTION

This chapter serves as an introduction to the rest of this report. It

describes ways of avoiding complicated interaction analysis techniques when

analyzing and correlating test results with analytical models. It also

describes a mechanical model that may be used to approximate interaction

effects. In addition, control system models and hybrid models are described

briefly.

4.2 AVOIDING INTERACTION ANALYSIS

Two ways of avoiding table-structure interaction effects in calculating the

dynamic response are discussed in this section. Both methods require the

measurement of the table horizontal and rocking motions. The first method

is an exact method and requires an analysis program to account for both

horizontal and rocking ground motions as earthquake input. The second

method is an approximation and requires an analysis tool to account for the

horizontal ground motion input only.

4.2.1 Two Directional Base Input

The shaking table can be considered rigid within the usual frequency range

of operation [0-12 Hz], The structure supported on this rigid platform will

undergo a base movement equal to that of the platform, the motion of which

includes a horizontal as well as a rocking component. All other table

motions are assumed negligible, but they could be accounted for similarly if

they were found to be significant.

The analysis of structural response to multi-component ground motion is a

common problem in structural dynamics [11]. The necessary information for

analyzing a structure for a two-component ground motion will be
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summarized in this section.

Consider a multi-degree-of-freedom building structure as shown in Fig. 4.l.

The governing equation for a horizontal and rocking base motion can be

written as

(4.1)

and the total structural displacement can be written as

(4.2)

where

M.,Cs,Ke are structural mass, damping and stiffness matrices defined with

respect to the displacement vector "s

Xs Vector of horizontal story displacements relative to a fixed-base

x: Vector of total horizontal story displacements

rt,re Vectors of story displacements due to unit horizontal base dis

placement Xt and base rotation e
For a building where the story displacements are the only degrees of free

dom, the influence coefficient vectors, rt and re are given by

rt = [ 1 1 1 . . . 1 JT

re = [ hI h 2 h 3 ••• hn]T

(4.3)

(4.4)

Note that the height h of a given story should be measured from the level at

which the table horizontal displacement is measured. For the EERC shaking

table this corresponds to the location of the horizontal actuators.

Differentiating Eq. (4.2) twice and substituting the result in Eq. (4.1), the

equation of motion can be written as

(4.5)

Up to this point the solution is exact, and some linear dynamic response

analysis programs are available to handle such two component input

motion.
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4.2.2 One-Directional Base Input: Effective Base Motion

Some available nonlinear analysis programs cannot handle both horizontal

and rocking input motions concurrently. One obvious way of getting around

this problem is to modify the program to account for such an extended input

requirement, but if that is not feasible the effect of the table pitching can be

accounted for approximately by defining an equivalent "effective horizontal

table acceleration" xeff (Section 3.3.2.1) to substitute for the two directional

input motions, and using it as an excitation.

4.2.2.1 Single Degree of Freedom Structure Case: Equations (4.3) and

(4.4) can be simplified for a single mass system as

The equation of motion (Eq. 4.5) can then be rewritten as

msxs + csxs + ksxs = -ms (xt +8h)

(4.6)

(4.7)

(4.8)

If the base of the structure were prevented from pitching, the equation of

motion for a single direction input would be

(4.9)

Note that the equation of motion for the two types of input motion are very

similar, in fact Eq. (4.8) can be written in terms of an equivalent one direc

tional motion or "effective horizontal acceleration" as

(4.10)

where the "effective horizontal acceleration" is given by

(4.11)

This definition is useful since the problem of finding the response due to

two-directional base input can be reduced into that of finding the response

to a single direction base motion. This equivalence between the two systems

is shown in Fig. 4.2. The "effective" motion is very useful in identifying the.
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fixed-base structural frequency and damping as was shown In Section

3.3.1.2.

The effective acceleration analysis procedure is exact for a SDOF system;

the effective motion to be used for multi-degree-of-freedom systems is

derived in the next section.

4.2.2.2 Multi-Degree-of-Freedom Structure Case The effective accelera

tion concept described earlier in Section 4.2.2.1 for a single-degree-of

freedom system cannot be exactly extended to multi-degree-of-freedom sys

tems as we will see in this section. However approximate methods are avail

able and can be applied effectively to multi-degree-of-freedom systems [12].

For a multi-degree-of-freedom system subjected to both translational as well

as pitching motion, the equation of motion (Eq. 4.5) was derived in Section

4.2.1; this equation can be used to solve for the structural responses once

the two motions, Xt and 8 are known. However, as noted in Section 4.2.2.1,

many analysis softwares deal only with the single base-input motion. In this

section an approximate single base input solution is provided to account for

the two input time histories.

Equation (4.5) can be rewritten using this equivalent "effective acceleration"

as in the following

where the effective table acceleration can be expressed in the form

(xt )eff =Xt + he 8

in which he is the effective height of the structure.

Equating the right hand sides of Eqs. (4.5) and (4.12) we get

Msrthe = Msro

(4.12)

(4.13)

(4.14)

where he represents the first estimate of the effective height of the struc

ture.

The above equation consists of n equations for an n DOF system and has

only one unknown; hence it cannot be solved exactly for he. Nevertheless,
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(4.16)
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an approximate least squares solution can be obtained by premultiplying

each side of the above equation by r(Ms as

he :::: r(M;ro
r(M;rt

For an idealized shear building with diagonal mass matrix and where rt and

ro are given by Eqs. (4.3-4.4), the above equation simplifies to

~m.2h.
~ J J

h :::: -=--j_-I _
e n

Lml
j-I

where hj is the height of the j'th story from the ground or the table level

and mj is the mass of the j'th story.

Uang [12] decoupled the linear system in 4.5 into modal coordinates as

where

and

.. . 2 ..
y. + 2'i:· (0. y. + (0. y. == - Lt,xt + L e·e

l '='l l l l l l l

cl»i = i'th mode shape of the structure.

cI»['Msrt
L ti == = participation factor for base

cl>>i™scl>>i
horizontal excitation in i'th mode

cI»['Msro
Lei =--- = participation factor for base

cI»['Mscl»i
pitching excitation in i'th mode

(4.17)

(4.18)

(4.19)

(4.20)

The pitching motion will contribute mainly to the first mode for two reasons
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(1) The pitching motion frequency spectrum consists mainly of a

dominant single peak near the first coupled table-structure fre

quency.

(2) The first mode shape of the structure is very similar to re, i.e

ch :::: ro, so that the first pitch participation factor L 81 will be

dominant.

For that reason it may be more accurate to calculate the effective height of

the structure (he) from the first modal coordinates equation in (4.17) as

(4.21)

from which he} can be evaluated as

(4.22)

In the absence of the first mode shape, the approximation eJ>1 :::: r o, can be

used so that

(4.23)

Again if ro and rt are given by Eqs. (4.3) - (4.4), the above equation can be

simplified to

n 2
~m·h·
~ J J

h :::: -,,-)_-1 _
e} n

~m·h·
~ J J

)-1

(4.24)

In fact he} can also be called the effective height of the first modal mass.

Similarly the effective height of the second modal mass he2 could be

evaluated using the second mode shape but that would lead to a different

input history for each mode and may not be handled easily for nonlinear

systems, since the method of superposition does not apply.

For equal story heights and masses the effective height he} is about 2/3 of

the total height of the structure, and the effective height he is about 1/2 of
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the total height. Depending on whether or not the contribution of the higher

modes is significant, an appropriate value for the effective height can be

determined.

4.3 SIMPLIFIED INTERACTION ANALYSES: MECHANICAL

MODELS

In this section simplified methods for dealing with the interaction effects

will be described. These methods consist mainly of adding springs and

dampers to the base of the structure to account for shaking table flexibili

ties.

4.3.1 Rocking Flexibility Model

On some occasions, as was the case for several tests on the EERC table, the

table pitching motion was not recorded. In this situation, the interaction

effects can be approximated by using the measured table horizontal dis

placement as the test input and adding a rotational spring and a rotational

dash-pot to the model of the structure being tested as shown in Fig. 4.3.

The characteristics of the pitching spring and damper to be added to the

model may be evaluated by system identification or by a trial and error

analysis such that the measured coupled frequency matches that of the

model with the spring. This procedure has been used by many D.C.

researchers in the past [2,3,4,5,6]. Alternatively, values of the parameters

for the spring and damper may be determined by other methods as is

explained in Chapter 5.

4.3.2 Rocking and Horizontal Flexibility Model

Mechanical models of this type have been used successfully in soil structure

interaction analysis for many years [13,14,15,16,17,18]. In such interaction

analyses, it is customary to provide an additional spring and damper to

represent the horizontal soil flexibility as shown in Fig. 4.4. In this case it

is important to note that the earthquake input is applied through the sup

ports of this spring and dash-pot; however for shaking table tests, the
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command signal represents the earthquake input. The measured horizontal

table acceleration should not be used as the horizontal spring support input

as in the previous section. The reason is that the measured horizontal

acceleration already includes the effect of the flexibility in the horizontal

direction, approximated in this case by the horizontal spring and damper.

The required characteristics of the springs and dampers can be determined

using the methods described in Chapter 5.

4.4 CONTROL SYSTEM MODELS

The shaking table system task is to reproduce a certain displacement input

history. To achieve this goal, the system continually compares the command

signal with the table displacement and applies a correction proportional to

the difference between the two signals. This feedback mechanism cannot be

represented exactly with a spring-damper model. A control system model

intended to represent the shaking table horizontal interaction will be dis

cussed in Chapters 6 and 7 and Appendices Band C. A more complicated

system that accounts for the pitching control system will be discussed in

Chapter 8.

4.5 HYBRID MODELS

As will be shown in Chapter 8, when the command pitch displacement is

zero, (which is normally the case), the pitching feedback mechanism can be

represented by a frequency dependent spring and a dashpot. The hybrid

model approach then consists of combining these frequency dependent

spring and damper components with a horizontal feedback mechanism. This

will significantly simplify the model for the total system. The hybrid model

will be dealt with in more detail in Chapter 8.
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54

:···
~ ..x .. x +h9

eff t

(a)

Fig. 4.2: Equivalence of two-directional base input
and "effective" uni-directional base input

(b)



56

··--I·..••T ••••••••••••••••••••••

·•••····•··•·

······:·····..J..

f\g·4.3:

m •\
t



66

···l.... ····..···......................

·•:•···•·•·•
h

··•···•··:·•·...t .. m ,\
t



57

Chapter Five

EVALUATION OF MECHANICAL MODEL PARAMETERS

5.1 INTRODUCTION

This chapter describes the mechanical model which was initially introduced

in the previous chapter and is shown in Fig. 5.1. It also presents methods

for evaluating the necessary parameters in the analysis. Mechanical models

are known for their simplicity and were frequently used in the past. Most

researchers applied a trial and error approach of parameter evaluation for

the springs. They frequently used different parameters for different tests of

the same model because of shaking table system nonlinearities. Frequently

the analyst used the parameters that gave the best correlation between the

experimental and analytical results; however, this approach should be used

with caution as it can mask errors in the analytical modeling of the test

structure. In this chapter, ways of estimating the parameters from the cou

pled and fixed-base frequencies will be discussed. In addition, methods for

estimating the damping and stiffness using frequency domain as well as

time domain methods will be described. A comparison is made between the

mechanical model transfer function and the actual shaking table transfer

function in order to show the limitations of the mechanical model compared

with control system models.

5.2 DESCRIPrION OF THE MECHANICAL MODEL

The mechanical model used in this study to represent shaking table interac

tion is shown in Fig. 5.1. It consists of a rigid base constrained by horizontal

and rotation springs and dash-pots. Several researchers in the past ignored

the flexibility in the horizontal degree of freedom because its effects are less

evident in the response than is the rotational flexibility.



58

5.3 PARAMETER EVALUATION FROM COUPLED AND FIXED-BASE

FREQUENCIES

This section describes a method for estimating the stiffnesses in the

mechanical model using only the values of the coupled and fixed-base fre

quencies. This method can be applied to individual tests and different

parameters can be justified as the frequencies of the test structure change

from one test to another.

5.3.1 Estimation of Coupled and Fixed-Base Frequencies

Certainly the coupled and fixed-base frequencies can be obtained from sim

ple standard tests of the test structure. Typically the tools include the use of

a pull test, and a rotating mass shaker or a small shaker driving a small

mass along a fixed axis. Normally these tests are conducted only a few

times during the course of many more shaking table earthquake runs

applied to the specimen. Since the frequencies and damping of the system

can depend on the amplitude of shaking [24], the results of the tests may

not be very useful since the magnitude of shaking during these tests is rela

tively small. A more useful approach is to use the transfer function method

of estimation from the measured test channels. The transfer function

method will be introduced in the following paragraphs.

Normally if one applies a displacement signal Xc to the horizontal spring

support, as shown in Fig 5.1, the response of the structure would reflect the

coupling in the horizontal as well as the rocking degrees of freedom. On the

other hand if a displacement signal xt is applied to the rigid table directly,

rather than to the spring support, the horizontal spring will have no

significance and the response will only reflect the coupling in the rocking

degree of freedom (as in Fig. 5.2). If two displacements are specified for the

rigid table, a horizontal, xt , and a rocking, 8, then the response will reflect

only the fixed-base characteristics (as in Fig. 5.3).

In order to evaluate the fixed-base characteristics of any SDOF test struc

ture, one can estimate the transfer function obtained by dividing the Fourier

transform of the relative mass movement by that of the effective horizontal
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acceleration at the mass level of height h : xt +h e. The theoretical foundation

of this procedure is discussed in Section 3.3.1.2. One can estimate from the

peak and bandwidth of the transfer function H, ' the fixed-base frequency

and fixed-base damping of the system [11]. In mathematical form the

transfer function can be written as

H (00) _ Xs (00)
, xt (oo)+h a(oo)

(5.1)

Here H f stands for the fixed-base transfer function, Xs is the measured

relative structural displacement which excludes the rigid body contributions

of the horizontal, Xt, and the rocking, h a, motions of the shaking table and

can be expressed as

x =xt-Xt-has s (5.1a)

where x; is the measured total structural displacement with respect to a

stationary reference point. The resulting estimated fixed-base frequency

and damping can be denoted by 00, and ;" respectively. The use of the rela

tive structural motion in evaluating the fixed-base characteristics is

emphasized by Beliveau [19] in the analysis of uni-directional base excita

tion. A least squares method of estimation of the damping and frequency is

outlined in Appendix D.

Similarly the transfer function representing coupling in the rocking degree

of freedom can be denoted by H r and can be calculated from (refer to Fig.

5.3)

(5.2)

The frequency and damping associated with this transfer function can be

denoted by OOr and;n respectively.

The transfer function representing the relation between the command signal

and the relative structural movement is denoted by H hr . It represents the

coupling in the horizontal and rocking degrees of freedom, and is defined as
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(5.3)

where Xc is the command or spring support displacement as shown in Fig.

5.1. The coupled frequency and damping for this function are denoted by

(J)hr and ;hr, respectively.

Table 3.1 lists the spring and damping parameters for the tested SDOF

structure using the above mentioned procedure.

This procedure applies only to a SDOF system. For multi-degree of freedom

systems, the above procedure can still lead to good results if the height h is

replaced by the "effective height" corresponding to the first mode response

as described in Section 4.2.2.

Figure 5.4 shows the transfer functions H t ,Hr and Hhr for a Taft 1952

earthquake test applied to the SDOF test structure. Note that the fixed

base peak frequency is the highest and that the peak frequency is reduced

as more coupling is introduced.

5.3.2 Estimation of Horizontal and Pitching Spring Stiffnesses

Relations between the coupled and fixed-base frequencies of a SDOF system

can be derived for a rigid massless table as is explained in [13], leading to

the following result

wJ
(5.4)

Having obtained Wt, wr as explained in the previous section, the structural

mass ms in Eq. (5.4) can be used to compute the rocking spring stiffness.

Another equation that relates Whr to Wt is given in the same reference as

follows

WJ
(5.5)
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This equation may be used to estimate the horizontal spring stiffness, kh .

For a MDOF system, ms becomes the modal mass of the first mode. A good

estimate of the modal mass can be obtained from

(5.6)

In this expression, the mode shape cj)1 for a shear building with height for

each story above the basement, hi, can be approximated by

(5.7)

where M is the (nxn) diagonal mass matrix of the MDOF system.

5.4 EVALUATION OF PARAMETERS FROM ACTUATOR TRANSFER

FUNCTIONS

In the mechanical model, the resistance of the system in the pitching mode

is represented by a rotational spring and a damper. Then the total moment

acting on the rigid table, which will be denoted here by M, can be written in

terms of the pitching angle 8 as

(5.8)

in which kr and cr are the parameters of the spring and damper in the

rocking degree of freedom. In the frequency domain, Eq. (5.8) can be writ

ten as

M(co) .
Gr (co),. 8 (co) ,. kr (co) + 1, coer (co) (5.9)

where i is the complex equivalent of v'-1. The moment acting on the table

M(co) can be evaluated either from the measured forces of the vertical actua

tors supporting the table or from the measured structural inertias. The

transfer function Gr (OJ) can be evaluated easily using Eq. (5.9). This transfer

function has the following important properties

Real [Gr (OJ)] = k r (OJ)

Imag [Gr (OJ)] = coer (OJ)

(5.10)

(5.11)

From the above equations, the frequency dependent stiffness and damping
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parameters can be determined. Figure 5.5a shows the real and imaginary

parts of the transfer function Or (00) as defined by Eq. (5.9) that was

obtained from the response of the SDOF test structure to the Taft 1952

earthquake where the control system was set to a span of 200. Figures 5.5b

and 5.5c show the individual contributions of the active and passive actua

tors to the total pitch resistance. As can be seen from Fig. 5.5d, most of the

pitch response is concentrated around the coupled table-structure frequency

oohr; for this reason reasonable results can be expected by ignoring the fre

quency dependence of the stiffness and damping parameters and using the

values evaluated at the coupled table-structure frequency.

It is important to note at this stage that both the vertical actuators and sta

bilizers work to reduce the pitching by applying forces proportional to the

pitching motion. This is in direct agreement with the assumed rotational

spring property. The same concept, however, does not apply to the horizon

tal actuators. The forces applied by the horizontal actuators are intended

primarily for producing a prescribed table displacement. Obviously they do

not serve to maintain a zero displacement of the table.

5.5 IDENTIFICATION OF PARAMETERS FROM HYSTERESIS

LOOPS

In the above procedure a frequency domain method is used to estimate the

system properties. Similar results can also be obtained using a time domain

method, namely from· evaluation of the hysteresis loops of the applied

moment-rocking displacement relationship during horizontal excitation. Fig

ure 5.6 shows the hysteresis loops measured from the Taft 1952 test. An

average value of the system stiffness can be obtained from the slope of the

regression line shown in Fig. 5.6 which was derived by a regression analysis

of the measured data during the test. In addition a damping estimate can

be made from the area inside the loops as follows

(5.12)
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where ~v is the viscous damping ratio and WD and Ws are the areas as

shown in Fig. 5.7. The damping coefficient C can be estimated from

WDC----
31:oo8~ax

Here 00 represents the excitation frequency and in this case it represents the

coupled table-structure frequency. 8max is the amplitude of the measured

pitching displacement as shown in Fig. 5.7.

Note that while the frequency domain method allows us to see the variation

of the stiffness and damping with frequency, the time domain method can

show the variation of those quantities with time and amplitude of shaking.

Alternatively, one may estimate the table pitching flexibility from the force

displacement curves of the individual vertical actuators and passive stabiliz

ers shown in Figs. 5.8 and 5.9 as follows

(5.14)

where h
Vi

and h
Pi

are the stiffnesses of the i'th individual vertical actuator

and passive stabilizer located respectively at distances dv; and dpi from the

center of symmetry of the table. The layout of the actuators and stabilizers

is shown in Fig. 2.1.

5.6 EVALUATION OF HORIZONTAL SPRING AND DAMPER

PARAMETERS FROM A BARE TABLE TRANSFER FUNCTION

Figure 3.3 shows the transfer function of the shaking table horizontal dis

placement over the command displacement. When an analytical model

including the feedback loops is derived for the uni-directional shaking table

as described in Chapter 6, system identification could then be used to iden

tify the parameters of the model from fitting the transfer function to the

analytical model using a nonlinear least squares algorithm [30,31,32,33].

The fitted model is displayed in Fig. 6.4 together with the experimental

curve. The parameters for this case were: the open loop frequency f 0 - 231:000

= 12.6 Hz, the open loop damping ~o =47.7 percent and the open loop gain
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ko = 25.07. As will be seen in Chapter 7 these parameters change when the

table is loaded with a SDOF structure. The corresponding parameters for

the table with a SDOF structure are f o = 9.6 Hz, ~ = 60.6 percent and ko

=29.54 (Table 7.2).

Section 8.5 shows a simplified model of the pitch actuator when the pitch

command displacement is set at zero. This same model approach could be

used to evaluate the shaking table flexibility in the horizontal degree of free

dom. It should be noted that, in general, the assumption of zero command

signal is not realistic. However it does occur in some cases. For example,

before testing most structures on the shaking table, the structure is tested

in a fixed-base condition by the blocking the table from movement. The

structure is also tested in the coupled case by having the table operational

with a zero horizontal and rotational command signal.

The horizontal spring stiffness kh and the damping constant ch can be

evaluated by a method analogous to that in Section 8.5 as

mt w;(w2+2~Wo ko )
kh (w) .. 2 2 2

w +4;00)0

(5.16)

And for the numerical model parameters listed above the frequency depen

dent stiffness and damping can be plotted as shown in Fig. 5.10a and 5.10b.

Two cases are shown in Fig. 5.10, the bare table case and the case when the

table is loaded with SDOF test structure. Figure 5.10a shows that the

equivalent horizontal spring stiffness kh (w) increases with frequency and

that the stiffness for the loaded table case is always lower than the bare

table case. Figure 5.10b indicates that the horizontal damping constant

ch (w) decreases with frequency and that the loaded table has a higher

damping constant.
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5.7 HOW WELL DOES A MECHANICAL MODEL REPRESENT

THE ACTUAL SYSTEM?

Figure 5.11 shows a transfer function obtained by dividing the measured

shaking table horizontal displacement by the command displacement. The

transfer function obtained similarly from the calculated response of the

mechanical model due to the command displacement is shown by the dashed

line on the figure. The analytical model parameters are listed in Table 5.1.

Appendix A shows the derivation of the transfer function for the mechanical

model. It is clear that the mechanical model overestimates the response at

frequencies above the structure's resonance frequency. The mechanical

model predicts very well the peak and notch frequencies as can be seen from

Fig. 5.11.

Figure 5.12 similarly shows the transfer function obtained by dividing the

measured pitching displacement by the command horizontal displacement,

together with the corresponding mechanical model transfer function.

As mentioned in Section 5.3, the pitching flexibility can be satisfactorily

represented by a pitching spring and damper. Horizontal flexibility on the

other hand cannot be completely represented by springs and dampers

because of the feedback mechanism.

Mechanical models can be used effectively for analysis if the horizontal

interaction is eliminated through the use of the measured horizontal table

acceleration as the control signal; in this case the model includes only the

rotational parameters.

In Chapter 8, a control system model for the horizontal degree of freedom is

combined with the rotational springs and dampers to account more accu

rately for horizontal interaction.

As was seen in Section 5.6, the characteristics of the model for the loaded

table are different from that for the bare table. This suggests that the

mechanical model parameters should be identified whenever the loading

conditions are changed because of system nonlinearities.
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Structural Mass (kips) m s 68.4

Structural Stiffness (kips/in) ks 57.9

Structural Damping (lb-sec/in) Cs 64.2

Table Mass (kips) mt 100.0

Table Horizontal Stiffness (kips/in) kh 401.0

Table Horizontal Damping (lb-sec/in) ch 6126.0

Table Inertia (kips-in2) I 1251.0

Table Rocking Stiffness (kips/rad) kr 2.22E+07

Table Rocking Damping (lb-sec/in) cr 3.70E+05

Height of Structure (inches) h 219.0

Table 5.1

Mechanical Model Parameters For Analytical Curves in Fig. 5.10.

* Model equations are derived in appendix A.
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Fig. 5.7: Estimation of Damping Properties from Hysteresis loops.
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Chapter Six

ANALYSIS OF UNI·DIRECTIONAL EARTHQUAKE
SIMULATORS

6.1 INTRODUCTION

Electrohydraulic shaking tables are driven by actuators that are controlled

by an electrohydraulic servomechanism. Several books have dealt with the

analysis of electrohydraulic servomechanisms [20,21,22,23]. Analysis and

performance of unidirectional shaking tables have been the subject of

numerous researchers [7,8,24,25,26,27,28]. This chapter presents the

development of an analytical model for unidirectional earthquake simula

tors. Both time and frequency domain analyses are included, and stability

conditions are derived.

6.2 TIME DOMAIN SOLUTION

A sketch of the main components of a typical table-actuator system is shown

in Fig. 6.1 [7]. It consists of a rigid table mass driven by an actuator which

is controlled by a two stage servovalve. The servovalve consists of a pilot

stage spool to which input forces are applied and a slave spool that is driven

by the pilot spool. In two stage servovalves, the feedback loops tend to

linearize the input force-slave spool displacement relationship so that (fol

lowing Rea's [7] assumptions)

(6.1)

where

F i is external force applied to the pilot spool

xsp is slave spool displacement

k 1 is gain factor

The oil flow induced to the slave spool is usually a nonlinear function of the

spool displacement xsp and the force in the actuator Fa [20]. However, for

spool position near the equilibrium position, the relationship can be
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linearized by a Taylor's series expansion to get

(6.2)

In this equation, q is the slave stage load flow, while kq and ke are, respec

tively the flow-gain and flow-force coefficients. The first term on the right

hand side is the flow induced by the spool valve displacement, and the

second term represents the flow due to leakage, assumed to be proportional

to the force in the actuator.

The differential equation governing the actuator piston can be expressed by

the formula [7]

(6.3)

where

A is Actuator piston area.

V is Volume of oil in the actuator.

13 is Bulk modulus of fluid.

Xt is Table horizontal displacement.

Fa is Actuator force applied to the table.

The above equation indicates that the flow provided by the slave valve can

be decomposed into two components: a flow generated by the displacement

of the piston and a flow induced by the compression of the oil in the actua

tor chamber.

Normally earthquake simulators employ a displacement feedback, a velocity

or rate feedback and a force or differential pressure feedback. The displace

ment feedback is used in order to improve the accuracy of reproducing the

command signal, while the force and velocity feedback are usually employed

to increase system stability [29].

The input force F i applied to the pilot stage of the servovalve is proportional

to the difference between the command displacement and the sum of the

different feedback signals, as is given by

(6.4)
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where

Xc is displacement command signal

kf ,kd ,kv is gains of force,displacement and velocity feedback

Figure 6.2 represents, in block diagram form, the dynamic response of the

earthquake simulator system as described by Eqs. (6.1)-(6.4). Equation (6.4)

is valid as long as the displacement, velocity and acceleration limits of the

system are not exceeded. These limits were shown in Fig. 2.3 for the bare

table system.

Eliminating q from Eqs. (6.2) and (6.3) and substituting Equations (6.1) and

(6.4) into the resulting equation we get

(6.5a)

where

(6.Sb)

The actuator force-table acceleration relationship, neglecting the damping

effects, is expressed by

(6.6)

where mt is the table mass.

The differential equation of the system relating the command displacement

to the output table displacement is obtained by substituting Eq. (6.6) into

(6.5a)

which is of the form

d 3Xt d 2Xt dxt
a3~ + a2~ + al dt + aoxt = boxc

(6.7a)

(6.7b)

This equation is a third order linear differential equation with constant

coefficients, and can be solved numerically by writing it in the state equa

tion form
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(6.8a)

or

(6.Sb)

where

and A and F are the square matrix and vector on the right hand side of Eq.

(6.Sb). Equation (6.Sb) can be solved in the time domain by the Runga

Kutta method to determine the table displacement, velocity and acceleration

responses.

6.3 FREQUENCY DOMAIN SOLUTION

As an alternative, Eq. (6.7b) can be transformed to the Laplace domain to

obtain the transfer function as follows

(6.9a)

or using Eq. (6.7a)

(6.9b)

(6.10)

In order to reproduce the command displacement, a unity displacement

feedback (kd ...1) is required. This results in (bo =ao =kt ). Rewriting the

transfer function in terms of the original constants leads to

Xt (s) k tH(s)... =--------------
Xc (s) (Vm/413A)s3+m (ktkf +kc )s2+(kt k v +A)8 +kt

The amplitude and phase of the transfer function may be obtained by sub

stituting (i (0) for (8) in the above equation and separating it into real and
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imaginary parts. The table motion resulting from a given input signal Xc

may then be obtained by

X t (i w) ...H (i (0) Xc (i (0) (6.10a)

where Xt (i (0) and Xc (i (0) are, respectively, the Fourier Transforms of the

table and command displacements. The table response can then be obtained

from the inverse Fast Fourier Transform (FFT) of Xt (i (0). Equation (6.10a)

represents the steady state part of the response which, under the normal

circumstance of zero initial conditions, would constitute the total response.

The bare table system is stable as long as the roots of the denominator of

(xt/xc ) have no positive real parts. Positive real parts correspond to negative

damping in the case of complex roots, and to a growing exponential response

in the case of real roots. To insure that all roots have negative real parts,

the Routh-Hurwitz criterion [29] can be applied to give

ktkf+kc>O

(kt k f +kc)(kt kv+A) - (k t V /41M»0

6.4 OPEN LOOP RESPONSE

(6.l1a)

(6.11b)

(6.llc)

Often, it is more convenient to express the transfer function in terms of its

open loop parameters, such as the open loop frequency and open loop damp

ing. This leads to simplifications of the above transfer function expressions.

The open loop response can be obtained by eliminating the displacement,

velocity and force feedback loops in Fig. 6.2. or by substituting (kd =kv =kf -0)

in Eq. (6.9b) to get

ktG(s) ... -----------
s [ (Vm /4j3A)s2 + (mkc)s + A ]

kt 1

= A s [ (Vm/4IM )s2 + (mkc)s + 1 ]

(6.12)
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This may be expressed in a more familiar form as

koG (8) .. -------::--------
8[ (1/&;)8 2 + (2~/&o)8 + 1 ]

(6.13)

where

A 2 4~A2 (6. 14a)000 ..
mV

~ .. mkc&o
(6.14b)

2A

A kt (6. 14c)k =-
o A

&0 , ~ and ko are the open loop frequency, damping and gain, respectively.

As is clear from the above expression, the open loop frequency is inversely

proportional to the square root of the table mass, and the open loop damp

ing is directly proportional to the square root of the table mass.

6.5 CLOSED LOOP RESPONSE: DISPLACEMENT FEEDBACK

The transfer function with displacement feedback can be obtained from G(s)

by the following relationship

G(s)
H (s).. 1 + G (s ) (6.15a)

(6. 15b)

The above equation corresponds exactly to Eq. (6.10) when (kv =kf=O) is sub

stituted.

6.6 EFFECT OF FORCE AND VELOCITY FEEDBACK

It is evident that the equation would still hold the same form when the force

and velocity feedback are added. The new system parameters can be easily

found by equating Eqs. (6.10) and (6.15) to get
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ko ... k (6. 16a)
kkv+A

2
4~A(kkv +A)

(6.16b)00
0

...

mV

So ...
m 000 (kkr+kc )

(6.16c)
2(kkv+A)

Therefore, the effect of the force or pressure feedback is to increase the open

loop damping in the system. On the other hand, velocity feedback has the

effect of decreasing the open loop gain and damping while simultaneously

increasing the open loop frequency of the system. Rea et al. [7] suggested

that velocity feedback has very little effect on the response of shaking

tables.

In terms of these parameters, the stability requirement in (6.11) can be

expressed as

(6. 17b)

Also, the state equation [Eq. (6.8)] can be written as

(6.18)

6.7 PARAMETER IDENTIFICATION

Tests were performed on the EERC shaking table to determine the bare

table system parameters. For this purpose it was fed with a band limited

random signal (0-32 Hz) from the GenRad 2515 data acquisition and

analysis system. The noise level was set to 0.12 volt on the GenRad, and a

span of 400 was selected for the table control system.

Data acquisition was done using two systems: First, time history measure

ments of 32 channels were made using the VAX computer running under

the Unix 4.2 operating system; a sampling rate of 250 samples per second
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was chosen to avoid aliasing in the signal after it passed through a 100 Hz

analog filter.

Second, transfer function measurements were made between 4 of the above

32 channels using the RTA 2.0 program running under the RT-11 operating

system of the GenRad 2515. The GenRad system has a built in anti-aliasing

filter. The frequency band was set to 0-32 Hz, and consisted of 512 fre

quency lines. In the time domain, each frame of 16 seconds consisted of

2048 points. A Hanning window was used to minimize the leakage by elim

inating the abrupt ends of the frame discontinuities. Leakage causes the

amplitude spectrum at a certain frequency to decrease by transferring some

of the energy at that frequency to the adjacent frequencies. The Hanning

function also reduces the total energy in the frame but this can be corrected

by a factor such that the total energy is the same as that of the original

input frame. Overlapping data segments were used in order to minimize the

time needed to obtain the 40 averages used to smooth the data. When over

lapping segments are used, the system does not wait until a completely new

frame is obtained, it simply uses part of the old frame to complete the

number of points needed for the FFT.

Estimation of the transfer function from the measured data was described

in Section 3.2.1.

System parameters (equivalent open loop frequency, damping and gain)

were estimated by performing a nonlinear least squares fit on the experi

mentally obtained transfer functions. The Levenberg- Marquardt algorithm

[30,31] implemented in IMSL [32], and NL2S0L [33] were used for solving

the nonlinear least squares problem. NL2S0L is especially convenient as it

allows bounds on the optimum parameters. These algorithms are relatively

fast when good initial estimates are provided. Good initial estimates for the

open loop frequency can be obtained by recognizing a useful characteristic of

the closed loop transfer function in (6.15)
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(6.19)

From the stability requirement in (6.19), H(iooo ) is real and negative. Hence

a good estimate of 000 is the frequency at which the phase is 180 degrees.

Figure 6.3 shows a least squares fit on the experimentally obtained transfer

function [bare table displacement/command displacement]. This transfer

function corresponds to the standard setting of the EERC shaking table con

trol system that is normally used for testing structures on the table. Figures

6.4-6.5 show the system transfer function when the differential pressure (

Delta-P) stabilization is changed from its standard value of 1.5 to 0 and 5

respectively. Figures 6.6-6.7 present the effects of changing the Horizontal

Gain from the standard value of 9 to 8 and 10 respectively. Figure 6.8

demonstrates the effect of adding a 70 kips mass to the original table mass

of 100 kips. Table 6.1 shows the least squares estimate of the open loop fre

quency, damping and gain obtained for the different settings mentioned.

As predicted by Eq. (6.14), the added mass caused a decrease in the fre

quency while increasing the open loop damping. An increase of horizontal

gain mainly caused the open loop gain to increase. Increasing the Delta-P

however caused an unexpected decrease in the open loop frequency.

6.8 STABILITY STUDY

To study the effect of the various parameters on the bare table system sta

bility, the Nyquist plot of the open loop transfer function was used. The

Nyquist plot represents a plot of the real versus imaginary part of the open

loop transfer function. This plot can be used in conjunction with the Nyquist

Stability Theorem [29] to establish whether the closed loop system is stable.

It is also useful for establishing the relative stability of different systems

based on the evaluation of the gain and phase margins from this plot. In

control theory a system is said to be more stable if it has larger gain and

phase margins. The phase margin is defined as the phase angle at which

the amplitude is unity. Gain margin on the other hand is the inverse of the
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amplitude at which the phase is 180 degrees. Phase and gain margins can

be easily obtained from a Nyquist plot of the open loop transfer function

G (8) as shown in Fig. 6.9, which also shows their values for the PUC shak

ing table [8]. For the bare table system, the gain margin can be easily

derived from Eq. (6.13) by substituting ( i (0) for s and equating the ima

ginary part to zero. This would yield the frequency at which the Nyquist

plot crosses the real axis. The inverse of the amplitude at that frequency

would give the gain margin as

(6.20)

(6.21)

where 000 - 2JtfO' The equivalent open loop transfer function G (8) can be

obtained from the measured closed loop H(8) from Eq. (6.15) as follows

H(8)
G (8) - 1 _ H (8 )

Since the higher the gain margin Gm the more stable is the system, Eq.

(6.20) shows that increasing the open loop frequency and damping tends to

stabilize the system, however, increasing the gain renders the system less

stable. The gain and phase margins obtained from the fitted curves are

presented in Table 6.1.

Figures 6.10-6.11 show the effects of varying the Delta-P stabilization and

the horizontal gain on the stability of the EERC system. From Figure 6.10 it

can be seen that the Delta-P stabilization control knob on the EERC table

works in reverse order, so that a smaller Delta-P tends to improve stability.

This behavior of the Delta-P gain may be attributed to the highpass filter on

the force feedback loop [Appendix B]. On the other hand, Fig. 6.11 shows

that an increase in the horizontal gain tends to destabilize the system.

6.9 ANALYTICAL STUDY: EFFECT OF SYSTEM PARAMETERS

The effect of changing the open loop frequency f o can be seen in Fig. 6.12.

The lower the value of f 0 the lower the bandwidth of the system.
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Frequencies near fo are more amplified for lower fo. Equation (6.20) sug

gests a more stable system for higher f 0 •

The effect of changing the equivalent open loop damping is shown in Fig.

6.13. Low damping values cause a significant peak near f 0' and a trough

just before that, so that higher gain is attained for frequencies higher than

f 0' and lower gain for lower frequencies. Equation (6.20) suggests a more

stable system for higher ~ .

When ko is increased, amplification or gain is higher for all frequencies as

can be seen in Fig. 6.14. The absolute phase angle tends to be higher for

lower ko and for frequencies less than f o. For higher frequencies the phase

is not affected. Equation (6.20) suggests a more stable system for lower ko .
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FREQ DAMPING LOOP GAIN PHASE

SE'ITING (Hz) (percent) GAIN MARGIN MARGIN

fo So ko Gm <Pm

STANDARD 12.60 47.7 25.07 3.01 70.1

Delta-P=O 13.70 43.4 22.84 3.26 75.4

Delta-P=5 9.00 52.8 23.60 2.53 59.3

Horizontal Gain= 8 12.60 51.2 17.60 4.61 76.1

Horizontal Gain=10 12.00 48.6 28.56 2.56 64.4

Added Mass of 70 kips 9.40 59.4 25.07 2.80 56.8

* Standard Settings: Delta-P=1.5 Gain=9

Table 6.1 : System parameters for different control settings
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Chapter Seven

UNIDIRECTIONAL EARTHQUAKE SIMULATOR
~THSDOFSTRUCTURE

7.1 INTRODUCTION

The effects of a viscoelastic SDOF structure on the response and stability of

the earthquake simulator system are discussed in this chapter.

Figure 7.1a shows the 2DOF combined system. The table of mass mt IS

loaded with a SDOF structure of mass m s ' stiffness ks and damping cs ' The

table is driven by a horizontal actuator using a a displacement and force

feedback mechanism. Table pitching is neglected here, but will be treated

in later chapters. A block diagram of the system is shown in Fig. 7.2.

7.2 TIME DOMAIN SOLUTION

When a structure is added to the shaking table, the actuator force Fa shown

in Fig. 7.1b is acting on the table-structure system, instead of acting on the

table mass alone as in the case of the bare table. Equilibrating the forces

results in

(7.1)

(7.2)

where

x; is total structural displacement.

X t is total table displacement.

Xc is Command displacement.

It is more convenient to represent the structure in terms of its frequency <Os

and damping;s' and for this purpose Eqs. (7.1) and (7.2) are rewritten as

(7.3)
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where

u--

(7.4)

(7.5)

The response of the electro hydraulic actuator and control system is

described by Eqs. (6.1) to (6.5). These equations will still hold when the

structure is attached to the table platform. In particular, Eq. (6.5a) which

expresses the actuator force in terms of the table and command displace

ments, can be rewritten as

(7.6)

The above Eqs. (7.3) to (7.6) represent the table-structure system, and can

be written in the state equation form
.
X-AX+F (7.7a)

0 1 0 0 0
Xt

-w 2u -2~ WSU 1 ws
2u 2~ WsU

Xt 0
Xt 0 Xt 0d

Fa/mt -w;ko _w 2 -2;" Wo 0 0 Fa/mt w;ko (7.7b). + cdt 0

xt
0 0 0 0 1 x; 0s

0• t • t
Xs w 2

2~ Ws 0 _w 2
-2~Ws

Xss s

The above system can be easily solved in the time domain using suitable

numerical methods (such as Runga-Kutta) to obtain the structure and table

responses due to any command displacement xc'

7.3 FREQUENCY DOMAIN SOLUTION

Equation (7.5) can be transformed into the Laplace domain to give

x; (8) 2;s (Os 8 + (Os2H == -- == -------
st xt (8 ) 2 2'i: 2

8 + "=>s (Os 8 + (Os
(7.8)

x; from Eq. (7.8) can be substituted into Eq. (7.3) to give Fa as a function of

xt . Inserting that in Eq. (7.6) results in the system transfer function
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(7.9)

The denominator coefficients are given by

al "" oos
2 + 2oos~sko

a 2 "" 2(1+u )oos2~s /000 + 2~s oos + ko

as'" (oos /ooo )2(1+u) + 4(oos/ooo)~0~s(1+u) + 1

a4 = 2[(1+u)(oos/ooo)~s + ~o]/ooo

The conditions for absolute stability can be obtained by applying the

Hurwitz criterion [29] as follows

(7.10)

Once the command displacement is known, the table displacement can be

computed from

(7.11)

and

(7.12)

where Xc (00) and xt (00) represent the Fast Fourier Transform (FFT) of the

command and table displacement signals. The time history of table displace

ment can then be evaluated using the Inverse Fast Fourier Transform

(INVFFT). Similarly, the structural response can be evaluated from

(7.13)

and



x;et) - INVFFT(x;(ro))
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(7.14)

The transfer function H tc , given by Eq. (7.9), can be written in a more fami

liar form [7] as

where

Xt (s)

xc(s)
(7.15)

(7.16)

Equation (7.15) is similar to that of the bare table [Eq. (6.10)]; the only

difference here is that the bare table mass mt is replaced by the effective

mass me given by Eq. (7.16).

This effective mass is mainly influenced by the transmissibility function

xi/xt, relating structural displacement response to the table displacement.

This transmissibility was derived earlier in Eq. (7.8). Fig. 7.3 shows a typi

cal transmissibility function for different amounts of structural damping.

As is clear from Fig. 7.3, the transmissibility function (xi/Xt ) is nearly

unity for frequencies up to 70 percent of the natural frequency of the struc

ture, and it is nearly zero for frequencies greater than two times the natural

frequency.

Adjacent to the natural frequency of the structure the transmissibility func

tion (xi /Xt ) shows a significant peak that can be approximated by 1/(2~s)

(the dynamic amplification factor [11]).

Figures 7.4 to 7.5 show the influence of structural damping and mass ratio

on the effective mass.

As is clear from Fig. 7.4, at the lower frequencies the effective table mass is

given by

(7.17)
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and at the higher frequencies it becomes

(7.18)

Noting the abrupt change of phase of the transmissibility function near the

natural frequency of the structure, the effective mass just below the natural

frequency is

(7.19)

and at frequencies just above the natural frequency the effective mass

becomes

ms
me .. m t - 2~8 (7.20)

m
For structures with a small amount of damping, the term + can be com-

. 2ss

parable to the table mass and hence, a significant peak and notch is

expected in the frequency response curve of the table near the natural fre

quency of the structure.

7.4 ANALYTICAL SIMULATION

The bare system parameters were determined in the preceding chapter.

These parameters consist of the open loop frequency fa = 2:rtooa=12.6 Hz, the

open loop damping ~ = 0.477 and the open loop gain ka =25.07. The uncou

pled structural frequency and damping were chosen as 2.90 Hz and 0.4 per

cent, respectively. The transfer function of the table horizontal displacement

over the command displacement x:(oo)/xt (00) is shown by the solid line in Fig.

7.6. Figure 7.6 also shows the effect of varying the structural frequency on

the transfer function of the table-structure system. It is clear from this

figure that a significant peak and notch are present. The notch, or attenua

tion of the frequencies, occurs at and around the uncoupled structural fre

quency. The peak, or amplification of the frequencies, occurs at frequencies

lower than the uncoupled structural frequency. For structural frequencies

higher than the open loop frequency of the table, a second peak is observed
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at frequencies larger than the uncoupled structural frequency. The fre

quency interval between the peak and notch is increased for higher struc

tural frequencies. The notch implies that the input energy near structural

resonance is seriously reduced near the uncoupled structural frequency.

This seems like a serious problem for shaking table testing as it may lead to

lower damage potential for the actual table displacement in comparison with

the command displacement. It will be shown in Chapter 9 that this effect is

not as serious as it appears here; the reason is that the structural frequency

varies due to the coupling effect.

Figure 7.7 presents the effect of structural damping on the system transfer

function. It shows a clear advantage in having higher structural damping.

The peak and notch effect are significantly reduced for higher amounts of

structural damping. Table response is slightly lower at higher frequencies

for higher amounts of damping.

Figure 7.8 shows the effect of the structural mass ms on the system transfer

function. It shows clearly an increase in peak and notch effects for heavier

structures. It also shows a decrease in the peak and notch frequency.

The effect of changing the open loop frequency roo - 2rtf0 can be seen in Fig.

7.9. The higher the open loop frequency, the lower the peak value, although

the notch amplitude is not influenced significantly. In addition, the ampli

tude at corner frequency is greatly influenced. The lower the open loop fre

quency, the higher the amplification of frequencies near that frequency, at

the same time higher frequencies are rapidly attenuated.

Open loop damping does not seem to have a significant effect on the peak

and notch amplitudes, as may be seen in Fig. 7.10. However the range of

the peak and notch seems to be widened when So is increased. In addition

a higher amount of damping tends to attenuate the higher frequencies much

faster. At So = 30 percent a significant peak is developed near roo, as shown

in Fig. 7.10.

Figure 7.10 also shows how the phase angle changes with So' Higher So
causes a larger phase difference between the command displacement and

the table displacement for frequencies lower than roo, and a lower phase
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difference for frequencies higher than <Do •

The effect of changing the open loop gain ko can be seen in Fig. 7.11.

Higher gain values tend to amplify the peak amplitude. No significant effect

was noticed with the notch. The abrupt phase change near the peak and

notch was only slightly affected. Lower ko values tend to attenuate the

higher frequencies much faster.

7.5 EXPERIMENTAL RESULTS

Tests were performed on the shaking table at EERC to verify the validity of

analytical model. Note that this analytical model does not take into account

the table rocking effects.

The test structure and its instrumentation were described in Chapter 2. Fig

ure 2.4 is a photograph of the test structure on the shaking table. Struc

tural vibration characteristics were determined in Section 3.3. Some

transfer function results were shown in Section 3.4.2. For a random com

mand displacement, the transfer function of the table displacement over the

command displacement was instantaneously calculated using the GenRad

system. The transfer function for the standard EERC table settings, is

shown in Fig. 7.12. Also shown (dotted) is the transfer function correspond

ing to the bare table.

As is clear from Fig. 7.12 the transfer function shows a significant peak

(amplitude=2.2) and notch (amplitude=O.7), as Eq. (7.9) predicts. It also

shows a significant phase lag near the peak and notch frequencies.

Compared with the bare table transfer function, the SDOFS transfer func

tion in addition to the peak and notch effects, shows amplification at fre

quencies between 5 and 8 Hz, and attenuation at frequencies higher than 8

Hz. In addition the out-of-phase frequency ( frequency at which the phase is

180 degrees) was significantly lower. All that contributed to producing a

lower bandwidth.

In order to study the effect of the control settings, tests were performed by

varying the horizontal control settings on the EERC shaking table. The

effect of increasing the horizontal gain from 9 to 10 can be seen from the
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transfer function in Fig. 7.13. It caused an amplification in the frequencies

higher than 7 Hz. The effect of increasing the Delta-P setting from 1.5 to 5

can be seen in Fig. 7.14. In addition to amplifying the peak and notch

effects, the increase in Delta-P caused a lower bandwidth and corner fre

quency and a much faster phase lag as the frequency increases.

7.6 CORRELATION WITH ANALYTICAL MODEL

To predict the table-structure system response (standard settings), the

parameters obtained in chapter 6 for the bare table system were used here

in Eq. (7.9). Those parameters were the equivalent open loop frequency

(fo" 2muo = 12.6 Hz), the equivalent open loop damping (~o = 47.7 per

cent), and the equivalent open loop gain (ko = 25.07). The structure's lateral

frequency (fs"" 2Jtws = 2.87 Hz) and damping (~s = 0.4 percent) and mass

ratio of 0.60 also were considered (60 kips/100 kips).

The resulting computed transfer function is shown in Fig. 7.15 together with

the experimentally obtained transfer function. The analytical function

differs from the experimental function in two respects:

First, the peak and notch frequency is slightly lower for the experimental

function. That can be attributed to the fact that the pitch effect was not

included in the analytical model.

Second, the equivalent open loop frequency has decreased significantly; that

can be attributed to the nonlinear system behavior [Appendix C] as can the

increase in equivalent open loop gain.

Appendix C shows that the system parameters can change with loading con

ditions on the table. It also states that the system can be considered linear

at a given operating point, so that the linear system would have different

characteristics for different system configurations or inputs. Because of the

change in the loading condition in this case (bare table versus table with

SDOF structure) new parameters had to be determined. In order to find

the best analytical representation of the experimental transfer functions,

the nonlinear least squares algorithm used in Section 6.4 was again used

here to fit the data to the analytical transfer function given by Eq. (7.9). In
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this case the algorithm needed to find five parameters, rather than three as

in the bare table case, which required more iterations. This means that

values for structural damping and frequency and bare table parameters will

be different than those measured. The damping and frequency variation

should be attributed in this case to the coupling in the pitch degree of free

dom, so that a lower frequency and a higher damping were obtained.

It was found that the algorithm failed to converge in most cases when the

amplitude of the complex error was minimized. On the other hand, if the

difference between the amplitudes of the analytical and experimental func

tions was minimized, convergence was much faster and more stable. As for

the phase, it was found that fixing the frequency f 0 - 231:000 to a value

slightly lower than the frequency at which the phase in the experimental

function is 180 degrees, yielded a very nice fit to both the amplitude and

phase functions.

Figure 7.16 presents a fit to the transfer function obtained using the stan

dard setting of the EERC shaking table. Another set of experimental

transfer functions corresponding to different control settings was also fitted.

Figure 7.17 shows the fitted curve and parameters when the horizontal gain

was raised to 10 from the standard value of 9. In this case only the

equivalent open loop gain parameter was different than that of the standard

setting. It was higher, as expected.

Figure 7.18 demonstrates the effect of decreasing the Delta-P setting to

zero, as compared with the standard value of 1.5. In this case the decrease

in Delta-P had the effect of decreasing the equivalent open loop gain ( ko )

and equivalent open loop damping (~o ). Similar effects were noticed for the

bare table.

Figure 7.19 illustrates the effect of increasing the Delta-P to the value of 5.

As in the case of the bare table, this resulted in lower open loop gain ko ' but

higher open loop damping ~o' In addition it led to a significant decrease in

the open loop frequency fo = 231:000 , which also was noticed in the case of the

bare table.
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The variation of the open loop gain ko with Delta-P is clearly nonlinear.

Decreasing or increasing the Delta-P setting led in both cases to a lower

open loop gain ko .

7.7 STABILITY STUDY

7.7.1 Introduction

In this section the effect of the various parameters on the stability of the

shaking table system is studied. For this purpose the parameters obtained

using least squares fit in the last section were used as a reference. The

fitted parameters for the different table settings are listed in Table 7.1,

together with the corresponding gain and phase margins obtained from the

fitted parameters.

7.7.2 Effect of Control Settings

As is clear from Table 7.1, the decrease in the Delta-P setting led to both

higher gain and phase margins, and hence to higher stability. This also can

be seen from Fig. 7.20. The effect of the Delta-P could have been influenced

by the high-pass filter on the force feedback loop.

The increase in the horizontal gain on the other hand, led to smaller gain

and phase margins as shown in Fig. 7.21.

7.7.3 Effect of Shaking Table Parameters (Analytical Model)

In order to study the effect of the system parameters on the system stabil

ity, the bare table parameters were chosen as reference. The different

parameters used are shown in Table 7.2.

When the equivalent open loop gain was decreased from 29.5 to 25.0, the

gain and the phase margins were both increased. Increasing ko on the other

hand to 35 led to a smaller gain margin but to a slightly higher phase mar

gin. It can be said here that near this point, the larger the ko value the less

stable the system will be.
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A decrease in f 0" 2Jtwo led to much lower gain and phase margins. An

increase in f 0 resulted in higher gain and phase margins. System stability

is greatly affected by the oil column resonance frequency.

The effect of the increase in ~ is to raise the gain margin while decreasing

the phase margin. Stability is improved since the gain margin is more

important.

7.7.4 Effect of Structure

The slight change in the structure frequency did not seem to produce a

significant change in the stability margins. The decrease in the structure

damping however has the effect of significantly reducing the phase margin.

The gain margin is slightly reduced.

The mass ratio u has a significant effect on the phase margin. Increasing u

leads to a lower phase margin, but a slightly higher gain margin on the

other hand.

7.8 EFFECT OF PITCH COUPLING

In order to get a feel of how the pitch flexibility might have affected the sys

tem transfer function, the coupled structural frequencies that include only

the coupling due to the pitching degree of freedom can be estimated and are

listed in Table 3.1. Assuming the values corresponding to the Taft record

with span of 200, these coupled frequencies are f s '" 2Jtws =2.70 Hz and

~s ::1.0 percent.

Figure 7.22 shows the analytical transfer function using bare table system

parameters evaluated in Chapter 6. The peak and notch frequencies match

very well with the experimental curve (shown as a solid line in the figure).

However the overall quality of fit is not good. Figure 7.23 shows the same

transfer function using the loaded system parameters evaluated in this

chapter. The analytical curve shows an excellent match with the experimen

tal transfer function for the new system parameters.
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7.9 CONCLUSIONS

The table parameters derived for the bare table in Chapter 6 were not the

same for the loaded shaking table. The main effect of the table load is a

decrease in its open loop frequency from 12.6 Hz to 9.6 Hz. This confirms

Merritt's [20] statement about the change of system frequency response

with different loading conditions on the table.
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OPEN TABLE TABLE structure structure Maas GAIN PHASE

LOOP FREQ DAMP FREQ DAMP

SETl'ING
Ratio MARGIN MARGIN

GAIN (Hz) (%) (Hz) (%)

ko fo ;0 fa ;a
ma Gm cj>m-.
me

STANDARD· 29.54 9.60 60.6 2.76 3.33 0.60 2.54 34.5

Delta·P=O 22.66 9.60 50.3 2.76 3.33 0.60 2.75 41.1

Delta·P=5 26.85 7.67 64.2 2.76 3.33 0.60 2.39 29.2

Gain=10 32.79 9.60 60.6 2.76 3.33 0.60 2.29 34.4

* STANDARD SETTING: Delta-P=1.5 Horizontal Gain=9

Table 7.1 : System parameters for different settings
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OPEN TABLE TABLE structure structure Mass GAIN PHASE

LOOP FREQ DAMP FREQ DAMP MARGIN

CASE Ratio MARGIN
GAIN (Hz) (%) (Hz) (%) (Deg.)

ka fa ~ fs Ss
m s Gm 4>m-
mt

Standard· 29.54 9.60 60.6 2.76 3.33 0.60 2.54 34.5

ka- 25 25.07 9.60 60.6 2.76 3.33 0.60 2.99 37.3

ka- 35 35.00 9.60 60.6 2.76 3.33 0.60 2.14 34.6

fa- 6Hz 29.54 6.00 60.6 2.76 3.33 0.60 1.63 19.8

fa- 15Hz 29.54 15.0 60.6 2.76 3.33 0.60 3.94 47.7

;0- 0.406 29.54 9.60 40.6 2.76 3.33 0.60 1.71 39.4

~- 0.806 29.54 9.60 80.6 2.76 3.33 0.60 3.40 31.9

fs-2.50Hz 29.54 9.60 60.6 2.50 3.33 0.60 2.54 37.7

fs-2.90Hz 29.54 9.60 60.6 2.90 3.33 0.60 2.55 34.1

;s- 0.004 29.54 9.60 60.6 2.76 0.40 0.60 2.49 21.8

;s- 0.060 29.54 9.60 60.6 2.76 6.00 0.60 2.61 43.6

;s- 0.100 29.54 9.60 60.6 2.76 10.0 0.60 2.69 53.6

ms
29.54 9.60 60.6 2.76 3.33 O. 2.48 50.3---0

mt

ms
29.54 60.6 2.76 3.33 0.10 2.48 52.2-- 0.10 9.60

mt

ms
3.33-- 2.00 29.54 9.60 60.6 2.76 2.00 2.71 22.3

mt

*Standard Settings: Delta-p=1.5 Horizontal Gain=9

Table 7.2 : Stability Margins for Different System Parameters
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Fig. 7.1 a: Model of a uni-directional earthquake simulator loaded
with a SDOF structure.
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Fig. 7.1 b: Simplified diagram of a uni-directional earthquake simulator.
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Table Horizontal DispJ Command Disp.
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Table Horizontal DispJ Command Disp.
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TRANSFER FUNCTION

Table Horizontal DispJ Command Disp.
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TRANSFER FUNCTION

Table Horizontal DispJ Command Disp.
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TRANSFER FUNCTION

Table Horizontal Disp./ Command Disp.
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TRANSFER FUNCTION

Table Horizontal Disp} Command Disp.
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TRANSFER FUNCTION

Table Horizontal Disp.l Command Disp.
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Table Horizontal DispJ Command Disp.
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Table Horizontal Disp.l Command Disp.
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Fig. 7.22: Experimental and analytical transfer functions
using pitch-coupled table-structure parameters
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Chapter Eight

TWO-DIRECTIONAL EARTHQUAKE SIMULATOR

8.1 INTRODUCTION

In this chapter a model of a two-directional shaking table is presented

where both horizontal and pitching degrees of freedom are involved. The

system with only a horizontal degree of freedom was treated in chapters 6

and 7 where the equations for the horizontal actuator were derived. In this

chapter a model is derived which includes a pitching actuator and a passive

stabilizer.

8.2 PITCHING ACTUATORS

In Chapter 7 it was shown that the horizontal actuator force Fa acting in a

closed loop shaking-table system is a function of both the table command

displacement and the table horizontal displacement as indicated in Eq. (7.6),

which is repeated here for convenience:

1 Fa 2~ Fa
- (-) + -- (-) + xh + k X = k X

2 m OJ mot 0 C
OJo tot

(8.1)

Here OJo , ~ and ko represent, respectively, the equivalent open loop fre

quency, damping and gain for the horizontal actuator-bare table system

described in Chapter 6. The vertical actuators employed with the EERC

table are similar in character to the horizontal actuators but they have

smaller piston area and lower flow capacity. The actuator specifications are

listed in Table 2.1. In the absence of a vertical command displacement sig

nal, their action is intended to reproduce the command table pitch record

(usually zero). When the table is instructed to move horizontally, the test

structure generally will induce overturning moments. These moments need

to be resisted by the vertical actuators through the pitch controller in

attempting to prevent any pitch movement. Assuming that the pitch actua

tor moment is a function of the pitch table displacement and the pitch com

mand displacement by analogy with Eq. (8.1) for the horizontal actuator

Preceding page blank
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case, the equation for the pitch actuator-bare table system is

(8.2)

(8.3)

where M r is the moment applied to the shaking table by the pitch actuators;

(J.)r , ;r and kr are, respectively, the equivalent open loop frequency, damp

ing and gain of the pitch actuator system.

8.3 PASSIVE STABILIZERS

The EERC table was modified in the late seventies by adding four vertical

passive stabilizers to provide enhanced control of the table pitch motion.

These passive stabilizers act independently of any control system and pro

duce equal and opposite vertical forces to reduce the pitch motion.

A schematic diagram of one set of passive actuators is shown in Fig 2.2.

While this system has virtually no resistance to forces applied in the same

direction on both pistons, it offers significant resistance to forces applied in

opposite directions; this fact makes the system ideal for resisting the pitch

ing motion.

When the forces F are applied in the downward direction, the bottom piston

chambers will be in compression and the top ones in tension. This causes

the flow of the fluid from the bottom chamber of one actuator to the top of

the other. The only resistance offered here is friction and flow resistance

adding some damping to the vertical motion, in addition to the inertial resis

tance of the oil flow which may increase the effective mass of the table in

the vertical direction [23].

When the forces F on the actuators act in opposite directions as shown in

Fig 2.2, the oil in the bottom chamber of the left piston and the top of the

right piston will both be in compression as well as in the oil line connecting

them. When ignoring frictional forces, the displacement Ax of each actuator

piston can be related to the force F as follows [34]

V :nrrL :nrlLc Cz
/xx = ( 2 + 2 + 2 +-2)F

213e A A tIE I A t 2E 2 A
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The four terms in the above expression are due respectively to the oil

compression, the expansion in the oil line due to hoop stress caused by pres

sure, the corresponding expansion of the wall of the actuator chamber, and

the leakage of oil across the actuator piston from the high pressure chamber

to the lower pressure chamber. The parameters in the above equation are

as follows; L, t l' a and r 1 : oil line length, wall thickness, flow area and

pipe radius, respectively; Lc ' t 2, A and r 2 : actuator cylinder length, wall

thickness, piston area and radius respectively; f3e : the effective bulk

modulus of the oil, V: the volume of the compressed oil given by V =ALc +aL ;

and Cz: a leakage coefficient relating the amount of leaking oil to the pres

sure difference across the actuator piston. From the above relation the

moment rotation stiffness for two sets of passive stabilizers or four actua

tors can be written as

(8.4)

(8.5)

where dp is the horizontal distance between the two paSSIve actuators.

Note that the main contribution to the stiffness comes from the first term in

Eq. (8.3) which corresponds to oil compressibility. This compressibility or

bulk modulus is a function of the amount of entrained air in the oil and the

pressure in the compressed cylinder. An increase in the pressure will

increase the effective bulk modulus of the oil-gas mixture. An increase in

the entrained air will cause a drop in the bulk modulus and hence in the

stiffness. This effect can be described by the following equation [20]:

1 1 r
-=-+--
Pe P l.4P

where Pe is the effective bulk modulus of the oil-air mixture and P is the

pressure in the compressed cylinder.

It should be noted here that the pressure in the passive stabilizer has two

benefits; first it increases the stiffness by increasing the bulk modulus of the

oil, and second it helps prevent cavitation of the actuator. Cavitation occurs

when pressure in the chamber under tension drops below zero. Having a

high initial operating pressure will prevent such a phenomenon and thus
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will increase the loading capacity of the stabilizers.

Finally friction in the actuators causes some damping in the system and

hence the moment resistance of the passive actuator can be written as

M = -k 8-c 8p p p (8.6)

where Mp is the moment applied by the passive stabilizers, 8 is the table

pitch displacement, kp is rocking stiffness contributed by the passive stabil

izers and cp is the coefficient of the viscous damping contribution to the

pitching motion. In this report, the terms pitching, rotational and rocking

are synonymous and they refer to the direction represented by the angle of

rotation 8 shown in Fig. 8.1.

8.4 ANALYTICAL MODEL OF THE SYSTEM

Figure 8.1 shows a model of the two-directional shaking table. It includes a

horizontal actuator, a pitching actuator, and a rotational spring and damper

representing the passive stabilizer system. The actuators have a closed loop

feedback mechanism which feeds back the measured displacements and

forces into the control system. The system also includes a single-degree-of

freedom structure.

Equilibrium of the forces acting on the mass of the structure mounted on

the table requires that

Equilibrating the horizontal forces acting on the table gives

mtXt = Fa + cs (X:-Xh-8h ) + ks (x;-xt -8h)

and equilibrating the table moments leads to

(8.7)

(8.8)

If we let
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cpT - 2wp~p

h
xm -Mr /

m h 2
s

V ----I

(8.10)

Equations (8.1,8.2,8.6-8.9) can be rewritten as

. 2'i: 2' k 2 k 2Xf = - ~oWoXf - OJoXh - oOJoXt + oOJoXc

Xm = -2~rwrXm - OJ;Xr - k r OJ;Xr + k r OJ;Sc h

Or in matrix form

d-x= Fx+ Gu
dt

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

(8.16)

where x is a vector of system state variables and u is the input vector of

command horizontal and pitch displacements

Xt
Xr

x t
s

U -{~:}x=
xh

x r
. t

Xs
xf
x m

and where the matrices F and G are as follows
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0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0
0 0

-002U -002U OO2U -a -a a 1 0 0 0s s s
F ...

-002V b oo2V -d 0 1
G. 0 0s s -c c

00 2 00 2 _00 2 0 0
0 0

8 8 8 e e -e
kooo~ 0

-koOO~ 0 0 _00 2 0 0 f 0 0 kroo~h0

0 -kroo~ 0 0 _00 2 0 0 gr

in which

a = 2~8OOSU

C 2~SOO8V

e 2~800S

g -2~roor

b = -oo~ - 00 2
s p

d 2~8 008 V +2~p OOp

f -2~OooO
(8.17)

The solution of Eq. (8.16) can be written as

t
x(t) ... eFtxo +£eF(t-'t) Gu('t) d't

or in the Laplace domain this becomes

(8.18)

(8.19)

When the initial conditions are set to zero, the transfer function B(s) can

completely define the system

where

x(s) ... H(s )u(s )

B(s) = [s I-F]-lG

(8.20)

(8.21)

In the frequency domain the solution can be obtained by substituting s ...i 00

as

xCi (0) = B(i oo)u(i (0) (8.22)
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where

(8.23)

Once the matrices F and G are known, the transfer matrix H(i (0) can be

evaluated by solving the system of equations

[i ooI-F]HCi (0) = G (8.24)

(8.25)

for each frequency. The time history of system responses can then be

evaluated by taking the Inverse Fast Fourier Transform INVFFT of the

state variables vector xCi (0).

8.5 SIMPLIFIED MODEL FOR THE PITCH ACTUATOR

If the command pitch displacement 6e is zero, which normally is the case,

Eq. (8.2) can be rewritten in the Laplace domain as

100;(8 + kr )
M (8) = - 8(8)

r 8 + 2~rOOr

and if 8 is replaced by the frequency parameter i 00 , Eq. (8.22) becomes

. M r (i (0)
G(zoo)= 6(ioo) =

Equation (8.26) can be rewritten as

(8.26)

G (i (0) = -kv (00) - i oocv (00) (8.27)

(8.28)

in which k v and Cv are the parameters for the equivalent frequency depen

dent rocking stiffness and damper which are expressed as

I 00;(002+2~roorkr)
kv(oo) = ------

002+4't 200 2
~r r

(8.29)

Equation (8.2) can then be rewritten as
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.
M r - -kv (ro)8 - Cv (ro)e (8.30)

Equation (8.27) suggests that the pitch actuator can be modeled by a rock

ing spring and a damper as in the case of the passive stabilizers. The

difference in this case is that the pitch actuator spring and damper are fre

quency dependent. Also kv and Cv are functions of the open loop parame

ters of the pitch actuator, i.e. ror , ;r and kr, which are in turn dependent

on the feedback loop gains, or in other words, on the control settings of the

pitch controller.

As for the dependence on the control settings, the shaking table is normally

set for a standard operation setting and this is unlikely to change unless

some instability or other type of poor performance is noticed.

On the other hand, the pitch motion is normally dominated by the coupled

table-structure frequency such that the dependence of kv and Cv on ro is not

a major issue; thus these parameters generally can be taken as constants

corresponding to their values at the coupled table-structure frequency.

8.6 HYBRID MODEL

Having shown that the pitch actuator can be reasonably represented as a

spring and a damper similar to those of the passive stabilizer, these two

types of spring and damper constants can be combined to obtain equivalent

rocking constants k e and ce. This in effect eliminates the pitch actuator

from the model, and the new model is as shown in Fig. 8.2. This model is

termed a hybrid model since it includes a feedback loop on the horizontal

displacement but not on the pitch displacement. In contrast to this develop

ment, it should be noted that the representation of the horizontal actuator

by an equivalent spring and damper cannot be completely justified because

the horizontal command signal Xc is not normally zero. The assumption of

zero command displacement was the key to deriving the simplified model in

Section 8.5; in the next section the equations for the hybrid model are

presented.
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8.6.1 Mathematical Representation

Equation (8.27) can be combined with Eq. (8.3) as

Mt = Mp+Mr = -heS-ceS

where

(8.31)

(8.32)

(8.33)

Equations (8.8), (8.10) and (8.11) are still applicable. Equation (8.12) can be

rewritten as

where

2 he
We =-

I

Equation (8.16) can then be rewritten as

d A AA GAA-x= Fx+ u
dt

in which

Xt
xr

x t

U -{xc}s

x= xh
xr
. t

Xs

xf

(8.34)

(8.35)

(8.36)

(8.37)
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0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

F= -W 2U -W 2U ro 2u -a -a a 1 G= 0s s s

-ro 2v 6 ro 2v -d 0 0
s s -c c

0
ro 2 00 2 _00 2 e e -e 0 kow;s s s

-kow; 0 0 _00 2 0 0 f0

a = 2~srosu

c = 2~s WsD

e = 2~sws

" 2 2b = -ros v - roe

d = 2~s Wsv +2~ewe

f = -2~0 roo

(8.38)

The solution of Eq. (8.37) is then as described by Eqs. (8.18-8.24).

8.6.2 Validation of the Hybrid Model

In order to compare the performance of the two actuator model (Fig. 8.1) to

that of the hybrid model (Fig. 8.2), the parameters of the pitching actuator

need to be known. However no measurements have been made to estimate

those parameters, and in the absence of such experimental data the com

puted rotational stiffness and damping kv and Cv of the vertical actuators

will be used to evaluate the unknown parameters, using Eqs. (8.28) and

(8.29). These equations are not enough, however, to determine the three

unknown parameters, namely, the open loop frequency f r' the open loop

damping ~r and the open loop gain kr . To avoid this difficulty, the open loop

frequency is assumed and then the other two parameters are evaluated.

Considering the computed values of Cv =1.04 x 108 lb-in/(rad/sec) and

k v =7.72 x 109 lb-in/rad, evaluated from Fig. 5.5b at the coupled table

structure frequency, it is found that an open loop frequency of less than 12.5

Hz will lead to negative damping and hence to an unstable system. Two

values were considered here which are thought to represent a wide range on

the open loop frequency: fr=13 Hz and fr=21 Hz. The first of these gave
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3.5 percent damping, the second 50 percent damping. The transfer func

tions of the pitch actuator for these two cases are shown in Fig. 8.3. These

functions represent the ratio of the table pitch displacement to the pitch

command displacement for a bare table having a pitch actuator only. Note

the wide difference in performance for the bare table system, considering

these two open loop frequencies. However when both models of the pitching

actuator are used to estimate the combined system performance with regard

to the horizontal and pitching interaction, they both give virtually the same

response as that of the hybrid model as shown by the transfer functions in

Figs. 8.4 and 8.5. The results shown in Fig. 8.6 demonstrate that the inclu

sion of the pitch actuator reduces the pitch response, as expected.

It can be concluded from these studies that the simpler hybrid model can be

used with confidence to substitute for the more complicated model derived

in Section 8.4. It needs to be noted again, however, that the assumption

made here is that the command pitch displacement is zero.

8.6.3 Comparison with Experimental Results

Table 8.1 shows the hybrid mpdel parameters. The bare table mass and

inertia are assumed to be 100 kips and 1251 kip-in/sec2, respectively. The

open loop parameters of the loaded table were used which differ from those

used for the bare table, as was noted in Chapter 7. The parameters k e and

C e were evaluated from the curves of Fig. 5.5a at the coupled table-structure

frequency of 2.58 Hz. f e and ;0 are evaluated from Eqs. (8.35) and (8.36).

Figure 8.7 shows the comparison of the measured table horizontal transfer

function with that predicted using the hybrid model. Equivalent results for

the pitch transfer function are shown in Fig. 8.8. The agreement between

the experimental and analytic curves representing both transfer functions is

considered excellent, thus validating the analytical model. Further discus

sion of the analytical model is presented in Section 8.6.4. The experimental

curve shown by the solid unsmooth curve in Fig. 8.8 was obtained from a

transfer function computed from an earthquake type input signal; the earth

quake signal did not have high frequencies and a spike would normally
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occur when the input energy at a certain frequency is zero while the output

energy at the same frequency may not be zero because of the presence of

noise in the output signal.

8.6.4 Examination of Analytical Model Response

Figures 8.9 and 8.10 show detailed plots of the analytical transfer functions.

Three transfer functions with respect to the table horizontal command dis

placement Xc are shown. They are the table horizontal Xt displacement, the

table pitch displacement scaled by the structural height Sh and the effective

table displacement which was obtained by adding the first two functions:

xeff = Xt +Sh. The latter constitutes a better measure of interaction as it

includes the combined effects of the horizontal and rocking interaction. It

can be seen from Figs. 8.9 and 8.10 that the pitch motion is concentrated

around the coupled table-structure frequency f c and peaks at f c' On the

other hand the effective motion has maximum attenuation (notch) at the

fixed-base frequency f 8 of the structure and shows an amplified response

near the coupled table-structure frequency. The notch in the transfer func

tion xt /xc no longer occurs at the fixed-base frequency of the structure f s as

was the case when pitching was absent (as in Chapter 7), but rather at a

lower frequency. At the fixed-base frequency, the pitch and horizontal

motion have similar amplitudes and are out of phase, so that they cancel

each other; on the other hand, they both peak and add up near the coupled

frequency f c' The method of analytically computing the coupled system

parameters is discussed in Chapter 9.

8.6.5 Parametric Study of the Hybrid Model

.As noticed in the preceding section, the effective displacement is more

relevant when pitching is considered than is the table horizontal displace

ment. In this section the effect of the various parameters will be studied

using the effective and pitch displacement response as a measure. The

parameters used in the previous section or those listed in Table 8.1 will be

considered as the reference parameters.
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8.6.5.1 Rocking stiffness k e: Figures 8.11, 8.12 show the effect of doubling

the rocking stiffness parameter k e. The higher stiffness reduced the rocking

motion shown in Fig. 8.12 to about two-thirds of the original value. The

effect on the horizontal motion, shown in Fig. 8.11 is not very significant;

only a minor increase in the peak frequency is evident.

8.6.5.2 Rocking damping ce: Figures 8.13,8.14 show the effects of varying

the damping coefficient C e. The dominant effect in this case is an

amplification of both the effective and rocking response near the coupled

table-structure frequency for lower damping values. Higher damping

reduces both the table pitching motion and the overall effective interaction.

8.6.5.3 Open loop frequency f o : Figures 8.15, 8.16 show the influence of

the open loop frequency f 0 on the shaking table effective and rocking

motion response. The pitching motion was not significantly affected by the

increased open loop frequency as can be seen from Fig. 8.16. Also as Fig.

8.15 demonstrates, the peak in the effective motion is reduced and that can

be attributed to the horizontal interaction mechanism.

8.6.5.4 Open loop damping ;0: Figures 8.17, 8.18 show the effects of vary

ing;o on the system behavior. 'Lower open loop damping seems to amplify

the response near both the coupled table-structure frequency and the open

loop bare table system frequency. In addition the table rocking is increased

significantly. Table rocking motion now has two peaks, instead of the usual

one peak; the second peak is at the open loop bare table frequency f o. This

indicates that open loop damping is very helpful in reducing the pitching

and overall interaction.

8.6.5.5 Open loop gain ko : Figures 8.19, 8.20 show the effects of changing

the open loop gain from its value of 29.54 to 40. The higher gain value pro

duced both larger rocking and effective motions.

8.6.5.6 Bare table mass inertia I: Figures 8.21, 8.22 show the effect of the

bare table inertia on shaking table performance. An increase of the inertia

by a factor of four gave a very minor increase in the table rocking motion

and had no effect on the effective motion. Neglecting the table inertia (I =0)

virtually produced no change in table performance.
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8.6.5.7 Structural height h: Figures 8.23, 8.24 show the effect of reducing

the structural height from its value of 219 inches to 110 inches and zero

inches, respectively. The reduction of the table height by a factor of two

reduced the rocking motion by a factor of four. The rocking motion is elim

inated as expected for a zero structural height; the effective motion will then

be mainly due to horizontal interaction. Figure 8.23 shows, in a sense, the

effect of the rocking motion on system performance.

8.6.5.8 Structural Frequency f s: Figures 8.25, 8.26 show the effect of

varying the structural frequency. Structural frequencies of 1, 3 and 12 Hz

were considered. The lower the structural frequency the sharper the peak

and notch in the effective transfer function. The peaks are also sharper in

the rocking transfer function. The notch occurs at the fixed-base frequency

f s ' but the notch phenomenon disappears for the higher frequency f s =12

Hz. The peak and notch tend to separate more for higher f s •

8.6.5.9 Structural Damping ;s: Figures 8.27, 8.28 show the effect of

fixed-base structural damping on system performance. The lower damping

produces higher peaks and deeper notches in the effective transfer function;

it also introduces more rocking. It can be said that structural damping helps

alleviate the interaction effects.

8.6.5.10 Conclusions: Table inertia had a minor influence on table perfor

mance and therefore can be neglected. Structural damping, open loop damp

ing and rocking damping are important because they all reduce the system

interaction effects. Structural height is an important factor in the rocking

interaction but not in the horizontal interaction.
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Structural Frequency (Hz) Is 2.870

Structural Damping (%) ;s 1.000

Structural Mass (kips) m s 68.000

Structural height (inches) h 219.000

Horizontal Open Loop Frequency (Hz) 10 9.600

Horizontal Open Loop Damping (%) ~ 0.606

Horizontal Open Loop Gain ko 29.500

Rocking Stiffness (lb-in/rad) k e 2.22E+10

Rocking Damping (lb-in/(radlsec» Ce 3.70E+08

Bare Table Inertia (kip-in-sec2) I 1251.000

Bare Table Mass (kips) mt 100.000

Table 8.1: Hybrid Model Parameters
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Fig. 8.1: Two-directional earthquake simulator with horizontal
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Fig. 8.2: Hybrid model for a two-directional earthquake simulator.

The active and passive pitch actuators are modeled as

a spring and a dash-pot. The horizontal actuator has
a feedback control loop.
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Chapter Nine

EFFECT OF SHAKING TABLE-STRUCTURE INTERACTION
ON THE RESPONSE OF SDOF STRUCTURES

9.1 INTRODUCTION

In Chapter 8, models for the behavior of two-directional shaking table were

presented. These models include the interaction in the horizontal as well as

the rocking degrees-of-freedom. The hybrid model consists of a feedback con

trol mechanism in the horizontal degree-of-freedom but only a rocking

spring and dashpot in the pitching degree-of-freedom. This model was found

to be simple and effective for representing the assumed linear system. In

this chapter the hybrid model is used for studying the effect of interaction

on structures mounted on the shaking table. Other simpler models will also

be used as mentioned in Section 9.4 in order to identify the interaction

mechanism. The effect of shaking table-structure interaction is studied here

by means of response spectra comparisons of three different earthquake

records. The interaction effects also are examined through the coupled

modes of the table-structure system.

9.2 RESPONSE SPECTRA EVALUATION

A response spectrum represents the maximum structural response of a

SDOF system to a given earthquake record for a range (i.e. spectrum) of

structural frequencies. For the hybrid model case described in Section 8.6

and for the model parameters listed in Table 9.1, which are equivalent to

those shown in Table 8.1, the maximum response can be determined for

different structural periods by solving Eq. (8.37) using the fourth order

Runga-Kutta integration technique. The command displacement history Xc

in Eq. (8.37) was obtained from the corrected accelerogram, by integrating

the most intense portion of a given earthquake record. Three different

records were used in this study: the 1952 Taft (N21E), the 1957 Miyagi

Ken-Oki and the 1985 Mexico (N90W) earthquake records. All records were

Preceding page blank
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scaled so that the range of displacement is 4 inches. The first two records

were used in the shaking table tests with a prototype/model length scale fac

tor of 3.2801 corresponding to a time scale factor of 1.811. The Mexico

record was used in this analytical study with a length scale factor of 4, i.e. a

time scale factor of 2. In the cases of the Taft earthquake, the corrected

accelerogram was that distributed by Caltech [35]. The Mexico 1985 record

was processed using a trapezoidal bandpass filter with corner frequencies at

0.5, 0.55, 23 and 24 Hz. Some further adjustment was done to the displace

ment signal to insure the zero initial and final conditions. The corresponding

acceleration signal, used as input in the analysis of the SDOF system, was

obtained by numerical differentiation of the adjusted displacement record.

Two differentiation schemes were used, namely the first order forward

difference scheme and the central difference scheme. Results of both

schemes were very similar because of the lack of high frequencies in the dis

placement records.

The displacement signals used in this study are shown in Figs. 9.1a, 9.2a

and 9.3a; the corresponding acceleration signals and amplitude spectra are

shown in Parts band c, respectively, of these figures. In this chapter the

pseudo velocity response spectrum is used for comparison. It represents the

product of the circular fixed-base frequency with the maxima of the displace

ment responses. The systems considered and the comparisons of the

response spectra are described in Sections 9.4 and 9.9, respectively.

9.3 COUPLED SYSTEM PARAMETERS

If a system has a certain fixed-base frequency and damping, when loaded on

a shaking table which has flexibilities in the horizontal and rocking

degrees-of-freedom it will respond mainly at a lower frequency called the

coupled structural frequency and usually, but not always, with higher

damping called the coupled damping ratio. In order to understand the

interaction mechanism and the difference in the calculated response spec

tra, the coupled system parameters were computed. There are higher cou

pled frequencies in the response which correspond to the frequencies associ

ated with the shaking table flexibilities. However, in our case these higher
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frequencies do not contribute to the response because of the lack of high fre

quencies in the earthquake records used.

The coupled frequencies listed in this chapter were computed by solving the

eigenvalue problem

(9.1)

where ~ is a diagonal matrix of eigenvalues I...k' and V is a matrix whose

columns constitute the eigenvectors of F. For the hybrid model, the matrix

F was defined in Eq. (8.37). Since F is normally unsymmetric, the eigen

values and eigenvectors are complex valued. A typical eigenvalue can be

written as

(9.2)

where Rk and Ck are the real and imaginary parts, respectively, and

j =v-l. The frequency and damping can then be computed as

-fR 2 C2<.Uk = V· k + k (9.3)

(9.4)

Note that not all I...k are complex; some are real valued corresponding to

non-vibratory decaying exponential response. Note also that any eigenvalue

of positive real part ( i.e. Rk > 0 ) leads to a negative damping ratio as given

by Eq. (9.4). Negative damping ratios indicate a system with infinitely grow

ing exponential response, which implies system instability. Hence, eigen

value estimation of the system matrix F constitutes one way of checking for

system stability.

9.4 ANALYTICAL MODELS CONSIDERED

The various analytical models for the shaking table used in this study are

as follows:

Hybrid model The horizontal interaction is modeled by a linear

feedback control system, which includes the dis

placement, velocity and force feedback as described
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in Chapter 6. The rocking flexibility is modeled by

rotational springs and dashpots as described in

Chapter 8. This is considered to be the best linear

model used in this study. The characteristics of

this model are listed in Table 9.1. These parame

ters were found to represent the current system

configuration as shown in Chapter 8. The main

assumption here is that the system is linear. Sys

tem linearity in shaking tables may be questioned

because of many factors as described in Appendix

C. However, in general, the system can be con

sidered to be linear about its operation point. The

mathematical model is presented in Section 8.6.

One Directional Model In this model the shaking table is represented by a

one degree-of-freedom system and includes the

feedback system in the horizontal degree-of

freedom. There is no flexibility in the rocking

degree-of-freedom. This model was presented in

Chapter 6. The parameters of this model are the

same as those of the hybrid model except that no

rocking is allowed. This permits study of the

influence of the horizontal interaction indepen

dently of the rocking interaction.

Rocking Model The shaking table is modeled in this case by an

inertial mass with a rotational spring and a dash

pot. The rocking flexibility is the same as was

given by the hybrid model. This model is intended

to compare the contribution of the rocking interac

tion to the total system interaction; it is shown in

Fig. 5.2.

This system was described in detail in Chapter 5.

The table is modeled as a rigid mass with
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translational as well as rotational inertia, and is

connected to horizontal and rocking springs and

dashpots. The characteristics of this model are

listed in Table 9.3. The system parameters were

evaluated using methods described in Chapter 5. A

schematic of this model is shown in Fig. 5.1.

9.5 EFFECT OF VARYING STRUCTURAL FREQUENCY

ON THE COUPLED SYSTEM PARAMETERS

Since the total structural response is a direct function of the coupled system

properties [13], coupled parameters of this type have been used frequently

in estimating soil-structure interaction effects [14]. Understanding the vari

ation in coupled system parameters will help in understanding the interac

tion phenomenon. The effect of varying the structural frequency on the cou

pled system will be investigated using different shaking table models.

Table 9.1 shows the parameters of the hybrid model including a SDOF

structure. The SDOF structure parameters are those identified from the

system tested on the shaking table. Table 9.2 shows the coupled system

parameters for the above listed model values computed by the procedure

described in Section 9.3. The structural response for this system subjected

to typical earthquake records in which the major part of the ground motion

has frequency content below 5 cycles per second is governed mainly by the

first coupled system mode which has a frequency of 2.54 Hz and damping of

4 percent.

By varying the structural frequency f s from the value of 2.87 shown in

Table 9.1 and evaluating the corresponding first coupled frequency and

damping, the results shown in Figs. 9.4 and 9.5 for the coupled frequency

and damping, respectively, are obtained. For the hybrid model case in these

figures it can be clearly seen that for a structural frequency lower than 1

Hz, the coupled system mode is virtually the same as the fixed-base struc

tural mode; hence the interaction effect is negligible for this range of fre

quencies. For structural frequencies in the range of 1-5 Hz, the ratio of the
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coupled structural frequency to the fixed-base frequency varies from 0.98 at

1 Hz to 0.72 at 5 Hz. The ratio between the damping in the fixed-base struc

ture to that of the coupled system varies from 1.14 at 1 Hz to 10.7 at 5 Hz.

For the higher frequency range 5-10 Hz, the coupled frequency does not

change appreciably and stays around 4 Hz. The coupled damping however

varies from 10.7 percent to 20 percent. The general trend in this case is

that the coupled system frequency is always lower than the fixed-base sys

tem frequency. The damping, on the other hand, is higher in the coupled

system. Figures 9.4 and 9.5 show these variations, but it should be

emphasized here that these curves were predicted on the basis of the

current control system settings of the shaking table and assume a linear

system.

Figures 9.4 and 9.5 also show similar results for the case where there is no

flexibility in the rocking direction (i.e. horizontal interaction only). This case

is equivalent to the unidirectional shaking table treated in Chapter 6. The

coupled system parameter variation is remarkably similar to that in the

hybrid model case where rocking is considered. The coupled frequencies are

consistently slightly larger than in the case with two-directional flexibility.

Coupled damping on the other hand is slightly lower at frequencies lower

than 6 Hz and higher for frequencies larger than 6 Hz.

Similar results are also seen in Figs. 9.4 and 9.5 for the rocking model

which has no horizontal flexibility. Again the phenomenon is remarkably

similar, except that the coupled frequencies are slightly larger than those in

the pure horizontal case or the hybrid case. The damping is significantly

lower than in the two-directional interaction case except for frequencies

near 10 Hz. The damping is consistently lower in the horizontal interaction

case.

The effect of varying the structural frequency can be looked at from a

different perspective by using the transfer function of the effective rigid

body translation of the structural mass Xh + eh with respect to the com

mand displacement Xc as indicated in Fig. 8.25 of Chapter 8. In this figure

the transfer function is evaluated using the hybrid model for frequencies of
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1, 3 and 12 Hz. For the low levels of fixed-base damping that pertain to our

case, the notches of the transfer function coincide with the fixed-base fre

quency. The peaks on the other hand occur at frequencies slightly lower

than the coupled system frequencies. Note that as the fixed-base frequency

increases, the peak and notch tend to depart from each other and also to

become broader. The increase in separation means in this case that the

difference between the fixed-base and coupled frequencies becomes larger,

as Fig. 9.4 indicates. The broader peaks indicate increases in the structural

damping for higher frequencies as was seen in Fig. 9.5.

The effect of varying the structural frequency for a SDOF system with a

relatively large amount of damping (10 percent) is shown in Fig. 9.6. In this

case, the damping in the coupled system is slightly lower than in the fixed

base system for frequencies smaller than 2.5 Hz, but it starts increasing for

higher frequencies. It is clear from Fig. 9.6 that structures with already

high fixed-base damping would not undergo a large variation of the damping

due to interaction.

9.6 EFFECT OF VARYING STRUCTURAL DAMPING ON THE

COUPLED SYSTEM PARAMETERS

Figures 9.7 and 9.8 show the effect of varying the fixed-base structural

damping for the hybrid system described in Table 9.1. The effect of struc

tural damping on the coupled mode frequency can be seen to be negligible

from Fig. 9.7. The coupled damping is shown in Fig. 9.8 to vary linearly

with the fixed-base damping. It is important to note that a system with zero

fixed-base damping will have 3.33 percent coupled damping, while a system

with fixed-base damping of 20 percent will have a coupled damping of 16.8

percent. Thus the coupled damping value is larger if the fixed-base damping

is less than 10 percent, but it is lower than ;8 for higher values of fixed-base

damping.
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9.7 EFFECT OF VARYING STRUCTURAL MASS ON THE COUPLED

SYSTEM PARAMETERS

The effect of varying the structure mass rns , while keeping the structural

frequency, damping and height as those in Table 9.1, is shown in Figs. 9.9

and 9.10. For a larger mass, the difference between the fixed-base frequency

and the coupled frequency becomes larger. The coupled damping, on the

other hand, is higher for larger mass and low fixed-base frequencies, and it

is lower for larger mass and higher fixed-base frequencies.

9.8 EFFECT OF VARYING STRUCTURAL HEIGHT ON

THE COUPLED SYSTEM PARAMETERS

The effect of varying the structural height h is shown in Figs. 9.11 and 9.12.

For higher h the difference between the fixed-base frequency and coupled

frequency becomes larger. The coupled damping, on the other hand is higher

for higher h and low fixed-base frequencies and lower for higher hand

higher fixed-base frequencies. It is clear that increasing either the mass or

the height of the structure causes very similar effects on coupling and

interaction.

9.9 RESPONSE SPECTRA COMPARISONS

The pseudo-velocity response spectra of the Taft 1952 Record, the 1957

Miyagi-Ken-Oki Record and the 1985 Mexico Record are shown in Figs. 9.13,

9.14 and 9.15, respectively. The damping assumed in the fixed-base system

used in the response analysis is 1 percent. The figures show the effect of the

horizontal interaction and the two-directional interaction that includes hor

izontal and rocking components as compared with the fixed-base response.

It is clear that for periods above one second the interaction effects are negli

gible. This is due to the fact that the coupled system frequency and damp

ing, as shown by Figs. 9.4 and 9.5, are almost the same as those of the

fixed-base model. For periods lower than 1 second, the interaction gen

erally, but not always, produced lower responses. That reduction is due

mainly to the increase in damping in the coupled system as shown by Fig.
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9.5. However, since the coupled systems have higher periods, this reduction

is not always achieved as shown by the spectrum of Fig. 9.13.

The horizontal interaction spectrum is not very different from the hybrid

model spectrum, for all three earthquakes; however, it is lower than the

hybrid model response for periods near 0.1 seconds as a result of the higher

damping in the coupled system as shown in Fig. 9.5. The main reason for

including the Mexico record was its special frequency characteristics. It was

believed that such frequency concentration near 1 Hz would amplify the

peak and notch effects and produce some significant interaction. It turned

out that this interaction, as shown in Fig. 9.15, was the least in comparison

with the response spectra for other earthquakes shown in Figs. 9.13 and

9.14. One reason for this lower interaction is that the coupled mode

behavior near 1 Hz is virtually the same as for the fixed-base mode, not to

mention that the peak and notch in the transfer function are significantly

reduced for structures with frequencies near one Hz (see for example Fig.

8.25).

In order to produce significant interaction, the dominant frequency of the

earthquake record should be higher than one Hz. To increase the dominant

frequency to 2.5 Hz in the Mexico record would correspond to a length scale

factor of 25 or correspondingly a time scale factor of 5. If this scale factor is

used and the damping is increased to 10 percent in the fixed-base structure,

the response spectra for the Mexico record will be as seen in Fig. 9.18. The

response spectra for the Taft and Miyagi-Ken-Oki records also have been

calculated for 10 percent structural damping as shown in Figs. 9.16 and

9.17. It is clear by comparison of these figures with Figs. 9.13 and 9.14 that

the interaction effect is reduced significantly for a higher amount of struc

tural damping. It can also be seen from the spectra of the Mexico record

(Fig. 9.18) that the peak and notch in the transfer function still did not

cause the anticipated change in the response for this narrow-banded input

signal.

Figures 9.19, 9.20 and 9.21 present the response spectra of the rocking

model together with those of the Hybrid and SDOF models. The peak
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responses shown in these figures agree very well for high periods. For the

lower periods, the rocking model, in general, gives results that lie between

those of the two other models. The rocking model coupled period is higher

than that of the hybrid model and generally, it has lower damping. This

explains the spectrum variation of the rocking model, since an increase in

damping causes the response spectrum to decrease in amplitude.

Figures 9.22-9.24 show the rocking interaction effects for higher damping

values. It is clear here that the interaction effects are less significant and

that all interaction models produce very similar results.

It can be said here that the effect of the horizontal and rocking interactions

can be characterized by the variation in the coupled system parameters;

that is, by an increase in the period and a change in damping.

9.10 MECHANICAL VERSUS HYBRID MODEL

The mechanical model parameters are listed in Table 9.3. When the struc

tural frequency f s is varied, the effect on the mechanical coupled system

parameters can be evaluated with results as plotted in Figs. 9.25 and 9.26;

also shown are the corresponding results for the hybrid model case. It can

be seen from these figures that the mechanical model predicts accurately

the coupled frequency. Damping errors are relatively less for the higher fre

quencies than for the lower frequencies.

The pseudo velocity spectra for the mechanical model system are compared

with the hybrid system spectra in Figs. 9.27-9.29 for the 1 percent struc

tural damping case, and in Figs. 9.30-9.32 for 10 percent damping. The

mechanical model agrees very well with the hybrid model for higher periods,

because interaction is not significant for those periods. For the lower periods

on the other hand, the mechanical model response is somewhat higher. This

increase can be attributed to the lower coupled system damping in the

mechanical model, as shown by Fig. 9.26. It is believed that this effect could

also be partly due to the contribution of the higher system frequencies. The

second coupled mode in the mechanical model is 6.71 Hz while that of the

hybrid model is 8.19 Hz.
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9.11 CONCLUSIONS

• The effect of the peak and notch behavior on the system response is not

as significant as has been previously thought [8]; this conclusion was

verified by using the Mexico record which is basically a very narrow

banded input.

• The shaking table interaction effects can be expressed as a lowering in

the system frequency and a change in damping, as is frequently the

case in soil-structure interaction. For a structure with low fixed-base

damping, the effect of interaction is to increase the structural damping

significantly; for higher fixed-base damping ratios, the interaction can

actually decrease the total damping in the system.

• Interaction effects are negligible for structural systems with periods

greater than one second (Le., frequencies lower than 1 Hz).

• Both the horizontal and rocking interaction mechanisms play an impor

tant role in the total system interaction. Figures 9.4 and 9.5 seem to

indicate however, that the horizontal interaction is more important for

the specific table-structure configuration considered in this study.

• The mechanical model used in this chapter gave a response that IS

slightly higher than the hybrid model, which in this case was due to the

fact that this specific mechanical model has a coupled damping value

that is lower than that of the hybrid model. In addition, the second cou

pled mode is more important in the mechanical model than it is in the

hybrid model.

• In general, although not always, shaking table interaction tends to

reduce the structural response. This is because the added damping

caused by interaction more than compensates for the frequency shift in

most cases.
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Structural Frequency (Hz) fs 2.870

Structural Damping (%) ;s 1.000

Horizontal Open Loop Frequency (Hz) fo 9.600

Horizontal Open Loop Damping (%) ~ 0.606

Horizontal Open Loop Gain ko 29.500

Rocking Frequency (Hz) fa 21.200

Rocking Damping (%) ~ 111.500

Mass Ratio
ms 0.680-
mt

m h 2

Inertia Ratio s 6.800
I

Table 9.1
Hybrid Model Parameters.

These parameters are equivalent to those in Table 8.1.

* Note that fa - 2:n:roa where roa is given by equation 8.35
All other parameters are defined in section 8.6

Frequency =
Frequency =

2.5391 Hz Damping = 0.040079
8.1906 Hz Damping = 0.259045

REAL ROOTS:
-199.616612
-99.309331
-46.343754

Table 9.2
Coupled System Modes For the SDOF Model Mounted on the Shaking Table
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Structural Frequency (Hz) fa 2.870

Structural Damping (%) ;a 1.000

Horizontal Frequency (Hz) fh 6.250

Horizontal Damping (%) ;h 0.300

Rocking Frequency (Hz) fa 21.200

Rocking Damping (%) ~ 111.500

Mass Ratio
ma 0.680-
mt

Inertia Ratio
m h 2a 6.800--

I

Table 9.3

Mechanical Model Parameters

* Model equations are derived in Appendix A.
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Chapter Ten

SUMMARY AND CONCLUSIONS

10.1 SUMMARY

Shaking table interaction was observed experimentally in this research by

comparing the table motions that were produced with the input excitation

signal, using 3 loading configurations. First, the bare table was studied

using random as well as real earthquake input records. Second, a 70 kip

concrete mass with a height of 2 ft was studied mainly with white noise

excitation. Third, a 68 kip single degree-of-freedom braced steel structure

with a fixed-base frequency of 2.87 Hz was tested using random as well as

earthquake records. The height of the SDOF structure was about 219 inches

from the horizontal actuator position, which was expected to cause a reason

ably high overturning moment that will induce the shaking table to undergo

significant rocking (pitching). The effect of varying the shaking table control

settings was observed during testing by using white noise excitation. Shak

ing table-structure interaction was analyzed using transfer functions,

response spectra and the response of an equivalent SDOF model. In addi

tion these interaction effects were analyzed using an effective acceleration

applied to the table mass. Most of the analysis was confined to single

degree-of-freedom systems mounted on the shaking table, but in some

instances the method was extended to multi-degree-of-freedom systems.

Linear analysis of the interaction has been assumed throughout most of the

investigation. Appendix C includes a treatment of a nonlinear model and

highlights the effects of nonlinearities on the system behavior.

The shaking table itself was modeled using various methods. These included

a horizontal feedback control system model, a horizontal feedback model

with a filter on the pressure feedback, a horizontal mass-spring-damper

model, a rotational mass-spring-damper model, and a combined horizontal

and pitching mass-spring-damper model. A hybrid model was also used

which included a horizontal feedback control together with a rotational

Preceding page blank
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spring and a rotational dashpot. In addition, a horizontal nonlinear feedback

model was presented. The single degree-of-freedom structure was assumed

to be viscously damped and linear.

Several methods that avoided modeling of the shaking table were also

treated in Chapter 4. These included using the measured table acceleration

and the measured table pitch as an input to the rigid massless foundation.

In this case the fixed-base structural characteristics should be used in

defining the model. Another method was used that combines the horizontal

and pitching motion of the table in an equivalent or "effective horizontal

motion". This method is exact for SDOF structures, and can also yield good

results when extended to multi-degree-of-freedom systems.

Several practical methods were described to estimate the shaking table

model parameters experimentally as well as to determine the fixed-base

structural parameters which may be assumed to vary with the amplitude of

earthquake excitation.

Some of the important findings of this report are listed in the section below.

10.2 CONCLUSIONS

• Transfer functions of the bare table and of the table loaded with a

heavy concrete mass showed a very reasonable response behavior. The

table displacement was very similar to that of the command displace

ment. Table pitching was insignificant. Transfer functions showed no

peaks or notches in this case.

• The shaking table loaded with a tall and heavy SDOF structure demon

strated significant pitching, and a peak and notch appeared in the

transfer function between the table horizontal displacement and the

command displacement. The notch in the transfer function occurred at

the fixed-base structural frequency, the peak occurred near the coupled

table-structure frequency. Table pitching was most evident at the cou

pled table-structure frequency.

• The effect of the peak and notch behavior on the system response was

not as significant as had been previously thought, this conclusion was
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verified by using the Mexico record which is basically a very narrow

banded input.

• The shaking table interaction effects can be expressed as a lowering in

the system frequency and as a change in damping, as is frequently the

case in soil-structure interaction. For a system with low fixed-base

structural damping, the effect of interaction is to increase the structural

damping significantly; for structures with higher damping ratios, the

interaction can actually decrease the total damping in the system.

• Interaction effects in the EERC shaking table are negligible for struc

tures with periods greater than 1 second (i.e., frequencies lower than 1

Hz).

• Both the horizontal and rocking interaction mechanisms play an impor

tant role in the total system interaction for such flexible structures.

• In general, though not always, shaking table interaction tends to reduce

the structural response. This is because in most cases the added damp

ing due to interaction more than compensates for the frequency shift.

• Compensation for the reduced frequency effect of interaction can be

achieved either by stiffening the structure or by a time-scale elongation

in the earthquake record to account for the reduced natural frequency

due to interaction. Appropriate reduction in structural damping is

harder to achieve; moreover damping is poorly understood in most sys

tems and may not be scaled properly in the test specimens so any shak

ing table discrepancy in damping has limited significance.

• Linear shaking table system parameters can change significantly with

different test specimens or loading conditions. This requires estimating

different system parameters for every loading configuration.

• It could be counter productive to try to correct for shaking table interac

tion using an input signal correction scheme that accounts only for hor

izontal interaction [36,37]. The reason is that the rocking interaction

would not be taken care of, and more important, the modification of the

command signal will amplify the input forces near the fixed-base fre

quency (in the process of correcting for the notch at that frequency).
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This amplification of the signal at a frequency the system no longer has,

because of the coupling effect, may not change the response

significantly; moreover, the correction would also lower the input forces

at the coupled table-structure frequency. The combined effect of the

correction to the command signal may lead to a reduced response. If a

correction scheme is ever justified, it must be based on the effective dis

placement that includes the pitching effect [Section 4.2.2].

• When a feedback control system is maintaining a zero command signal,

as is the case with the pitch controller in the EERC earthquake simula

tor, it can be modeled as a frequency dependent spring-damper system.
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APPENDIX A

ANALYSIS OF A MECHANICAL MODEL FOR
TWO-DIRECTIONAL EARTHQUAKE SIMULATORS

Figure 4.4 shows the mechanical model of the pitching table and identifies

its degrees of freedom.

Equilibrating the forces acting on the mass of the structure we get

(A. I)

Summing the horizontal forces on the table platform we get

Summing the moment acting on the platform we get

Ie + cre + krO - csx;h - ksxJh = 0

(A.2)

(A.3)

Note that the relative structural displacement and the relative table dis

placements are defined as

x[ = Xt - Xc

where X r is given by

Multiplying Eq. (A.3) by h and rewriting in terms of Xr we get

IXr + crxr + krxr - csh 2x; - ksh 2xr = 0

(AA)

(A.5)

(A.6)

(A. 7)

Dividing Eqs. (A. 1) and (A.2) by ms ' and (A.7) by I and making use of the

relations

Cs- = 2m ~m s S
S

Preceding page blank
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Ch
- = 2wh;h
m t

crT = 2wr;r
m h 2

s
I = v

(A. B)

Equation (A. 1) can be rewritten as

x; + 2;s wsx; + w;x; = -(Xt +8h ) = -xeff (A.9)

where xeff is the effective horizontal table acceleration as described in Sec

tion 4.2. Equations (A.2) and (A.3) can be rewritten as

(A. 10)

(A. 11)

and substituting Equations (A.5), (A.6), (A.I0) and (A.ll) into (A.9) we get

x; = -2;s W s (1+u +v ):i; - 00;(1+u +v )x;

+ 2;h whXr + wlx[ + 2;rwrxr + w;xr

(A. 12)

Equations (A.12), (A.I0) and (A. 11) can be rewritten in state equation form

as

-2ss Ws (l+u +v) 2;h Wh 2sr wr -w;(1+u +v) wl w;
• r • r

Xs 2ss ws U -2shWh 0 W2U 2 0 Xs
• r s -Wh •r 0

Xt
W2V -W;

Xt -1
d Xr

2ss Ws v 0 -2sr wr s 0 Xr 0 .. A.13
dt x r 1 0 0 0 0 0 x r + 0 c

s s
0x[ 0 1 0 0 0 0 x[
0

Xr 0 0 1 0 0 0 Xr

which has the same form as Eq. (8.16) and can be solved In a similar

manner, as described in Section 8.4.
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APPENDIXB

UNI-DIRECTIONAL EARTHQUAKE SIMULATOR
WITH FILTER ON FORCE FEEDBACK

B.t INTRODUCTION

At the time the shaking table at the Earthquake Engineering Research

Center was tested, it included in addition to the force, displacement and

velocity feedback loops, a filter on the force feedback signal. This filter

which is basically a highpass filter did not change the shaking table perfor

mance dramatically. In the preceding chapters the filter was neglected in

order to reduce the system order from four to three and make the system

completely expressed in terms of the open loop frequency f 0' open loop

damping So and open loop gain ko ' The system open loop parameters were

then found by a nonlinear least squares method as described in Chapter 6.

The third order least squares model was found to fit the system very well

(Section 6.7).

B.2 RC FILTER

The characteristics of the RC highpass filter are sketched in Fig. B.1, and

for the assumed RC value of 0.01, the frequency response in shown in Fig.

B.2. The input output relationship is given by

ZR
Vout = ZR + Zc Yin

where ZR and Zc are the impedances of the resistor R and the capacitor C,

respectively. Substituting leads to

R
1 Yin

R +---:--C
JW

In differential equation form the above equation can be rewritten as

(B.2)
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(B.3)

B.3 MODEL EQUATIONS

The filtered pressure or force feedback signal P f can be expressed in a

manner similar to Eq. (B.3) as

(B.4)

where PL is the pressure difference across the actuator chamber. Equation

(6.6) can be expressed in terms of the differential pressure as

where A is the actuator piston area.

Equation (6.5a) can be rewritten for this case as

~ PL = -kct PL -AXt +kt (xc -Xt -kvxt -kpPf)

(B.5)

(B.6)

Velocity feedback was found to have negligible influence on the response

and performance of the EERC table and will be neglected here by setting

kv =0 in the above equation. Equations (B.4-B.6) can be written in state

equation form as

- ~kct - ~ktkp -~A _ 4~ k
t ~kV V

rL

)

- ~kct ~ 1 -~A - ~kt !f)+
V t

- ktk -- ~k!i Pf _ V p RC V
~.7)A xcdt;: - 0 0 0 0mt

0 0 1 0

B.4 SYSTEM PARAMETERS

Table B.l lists the amplification factors corresponding to different shaking

table control settings. The relationship between the error function and the

slave spool displacement is shown in Fig. B.2, this verifies the assumption of
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the linear relationship between the input force and the slave spool displace

ment as given by Eq. (6.2). The transfer function of the table velocity over

the slave spool displacement, is shown in Fig. B.3. The analytical form of

this function can be derived from Eqs. (6.2), (6.3) and 6.6. The latter

transfer function will have the form given by the open loop transfer function

in Eq. (6.13), except that ko will be replaced by kq/A. The analytical model

fitted in Fig. B.3 has the parameters kq/A - 129,fo = 15.00Hz and

So = 0.126. From f 0' the oil modulus can be found as (3= 94000 psi, then

only two parameters need to be determined, kct and kt . A nonlinear least

squares method was employed to get the best estimates for kct and kt which

are listed together with all the assumed values for the standard control set

tings in Table B.5. For the standard shaking table settings, the experimen

tal and fitted transfer functions are shown in Fig. B.4.

B.5 EFFECT OF VARYING DELTA-P

By replacing the DELTA-P gain in Table B.5 by the appropriate values for

DELTA-P=5 from Table B.1, the corresponding transfer function is shown in

Fig. B.5. The higher Delta-P corresponds to a higher gain kp . The effect of

varying the Delta-P on system stability is shown in Fig. B.6. The case with

higher Delta-P has lower phase and gain margins and hence is less stable.

(Gain and phase margins were introduced in Chapter 6.) In the absence of

the filter on the force feedback, the force feedback (or pressure feedback)

gain k f would normally lead to greater open loop system damping;o as

given by Eq. (6.16c); this in turn would lead to a greater gain margin as

shown by Eq. (6.20) and hence to a more stable system. In this system,

which differs from that in Chapter 6 only by the addition of highpass filter

on the force or pressure feedback, the feedback gain effect is reversed and

that difference can be attributed to the presence of the filter. We observe

from Fig. B.l that the highpass filter changes the phase of the unfiltered

part of the low frequency signal.



250

HORIZONTAL FACTOR
SETTING

Gain=8 4.58
Gain=9* 5.68
Gain=10 7.07

DELTA-P=O 0
DELTA-P=1.5* 0.0000514
DELTA-P=5 0.000274

RATE=5* 0.157

RATE=10 0.999

Table B.1
Corresponding Factors for the Different Shaking Table Settings.

(* : Standard bare table settings)

VERTICAL FACTOR
SETTING

Gain=O 0.189

Gain=2 0.380
Gain=4* 0.542

DELTA-P=O 0
DELTA-P=2* 0.000116
DELTA-P=4 0.000252

RATE=5 0.192
RATE=10* 1.000

Table B.2
Corresponding Factors for the Different Shaking Table Settings.

(* : Standard bare table settings)
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PITCH FACTOR
SETTING

Gain=O* 0.222

Gain=1 0.420

Gain=3 0.745

DELTA-P=O 0
DELTA-P=2* 0.000127
DELTA-P=4 0.000290

RATE=0* 0

RATE=5 0.222
RATE=10 1.015

Table B.3
Corresponding factors for the different shaking table settings.

(* : Standard bare table settings)

ROLL FACTOR
SETTING

Gain=4* 0.743

RATE=10* 0.911

Table B.4

Corresponding factors for the different shaking table settings.
(* : Standard bare table settings)
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Delta-P Gain kp 0.0000514

Total Horizontal Gain kt 663.0

Flow Pressure Coefficient (in 3/s/psi) ket 0.0787

RC Filter RC 0.01

Table Mass (100 kips/(3g» m t 86.3

Oil Modulus (psi) 13 94000.0

Actuator Area (in 2) A 25.4

Oil Volume (in 3) V 317.5

Table B.5

Bare Table Fitted Parameters
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APPENDIXC

NONLINEAR MODEL FOR A
UNI-DIRECTIONAL EARTHQUAKE SIMULATOR

C.I MODEL EQUATIONS

Figure C.I shows the slave spool and actuator chamber employed in the

actuators at EERC. The pilot spool is omitted from the figure for simplicity.

It will be assumed that the pilot spool helps linearize the input force-slave

spool displacement as inEq. (6.1). This assumption can be justified on the

basis of the results shown in Fig. B.2 and also by the fact that the slave

spool mass involved is very small so that the component frequency is much

larger than the system frequency.

The flows Q1 and Q2 into and out of the actuator chambers consist of an

orifice flow and a leakage flow. For positive spool displacement (Xsp > 0 ),

these flows can be written as

Ql=CVXspVPs-Pl - ClP l

Q2=CvXsp yP2 - Cl (Ps-P2)

and for negative spool displacement the equations become

Q I=CvXsP v'Pl - Cl (Ps-PI)

Q2=CvXspyPs-P2 - ClP 2

(C.I)

(C.2)

(C.3)

eCA)

The flow through the orifice is assumed turbulent because of the high veloci

ties associated with this type of flow. While the leakage is assumed to be

laminar, a more realistic assumption for the leakage term would be a flow

that varies from turbulent to laminar based on the spool displacement xsp '

The power of the pressure term could then be varied from 0.5 for small

values of xsp to the value of one for the maximum spool displacement xvm .

Cv is the valve coefficient and is a function of the discharge coefficient Cd,
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orifice area gradient wand the oil density p as

Cd -
Cv == -=-w v'2 (C.5)

v'p

The discharge coefficient Cd :::::0.61 [20] and for petroleum base fluids

p:::::0.78x10-4 Ib-sec2jin4. The area gradient can be roughly estimated as the

spool perimeter. Alternatively Cv can be obtained from the servovalve flow

rating supplied by the manufacturer. The rated flow is normally given at the

maximum valve stroke Xvm and a standard pressure drop of 1000 psi. The

other parameters in Eqs. (C.1) and (C.2) are Ps , the supply pressure (usu

ally 3000 psi), PI and P 2 the oil pressure on both sides of the actuator pis

ton as shown in Fig. C.l. Cl is a leakage coefficient of the servovalve and is

zero for the ideal case of no leakage. Note that the flow into the actuator is

limited by the supply flow and by the maximum valve stroke xvm ; which

may introduce an additional nonlinearity into the system.

The continuity equations for the flow into the actuator chambers require

that

dV l VI dP lQl-C· (P l -P 2)-C P l == -- + ---
~p ep dt ~ dt

Pe 1

dV2 V 2 dP2
C· (P l -P 2)-C P 2-Q 2 == -- +--

~p ep dt ~ dt
Pe2

(C.6)

(C.7)

The left hand terms include the internal leakage ( Cip terms ) across the

actuator piston and external leakage (Cep terms) from the cylinder. The

right hand terms include first, the change in volume on one side of the pis

ton due to piston movement and second, the change in volume due to

compressibility of the fluid. If the initial piston volumes are Vo land Vo 2, the

volume of oil as a function of the actuator displacement is

V l = Vol+Axt

V 2 == Vo2-Axt

(C.B)

(C.9)

where A is the actuator piston area, and Xt is the piston movement. The

effective bulk modulus of the oil in each chamber is a function of the
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amount of entrained air r and the pressure [20].

1 1 r---+--
~e1 ~ 1.4P1

1 1 r- ... -+--
~e2 ~ 1.4P2

(C.10)

(C.11)

where ~ is the oil bulk modulus and for petroleum base fluids is about

210,000 psi. r is the ratio of the volume of entrained air to the total volume.

The compressibility of the actuator cylinder is neglected and normally it has

a minor influence on the effective bulk modulus.

Equilibrating the forces acting on the actuator piston we get

(C.12)

in which mt is the table mass and Fr is the friction force. The spool dis

placement xsp is proportional to the difference between the command dis

placement Xc and the several feedback terms as follows

(C.13)

where kv and kp are the gains for the velocity and pressure feedback. The

above equation can be solved using a Runga-Kutta integration scheme to get

the output table displacement. The state variables involved are P 1, P 2, Xt

and xt . The initial value for both pressure terms is Ps /2. The initial table

displacement and velocity are zero.

C.2 SYSTEM NONLINEARITIES

It is important to identify the system nonlinearities that can be seen from

the nonlinear model equations.

• Saturation nonlinearity: This type of nonlinearity occurs when the velo

city or acceleration limits are reached. The displacement limit is nor

mally not a problem as that can be avoided in advance by adjustment of

the command signal. A typical performance curve for the EERC bare
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table is shown in Fig. 2.3. Force limits are imposed by the actuator

capacity (P I-P 2)A, in which the maximum pressure is limited by the

supply pressure. A negative pressure would cause cavitation and is

highly undesirable. On the other hand, actuator velocity is limited by

the servovalve flow capacity which is achieved with the maximum spool

displacement Xvm .

• Effective Bulk Modulus: The Bulk Modulus of oil changes significantly

with the amount of entrained air and the operating pressure as given

by Eq. (C.lO).

• Friction: Mechanical friction is always present in hydraulic systems and

constitutes a common nonlinearity.

• Interaction between the pressure supply and the servo load: Sudden

velocity changes in the servo valves require high flows from the

hydraulic supply; this high flow in turn causes a reduction in the sup

ply pressure which could worsen system performance. The EERC sup

ply consists of four 90 gpm pumps each driven by a 120 hp motor; accu

mulators can double the peak instantaneous flow rates. However, the

demand includes three 170 gpm horizontal actuators and four 90 gpm

vertical actuators may exceed the supply flow, and that can cause a

drop in the supply pressure.

• Orifice Flow equation: The flow across orifices is normally turbulent in

high pressure systems because of the high Reynolds numbers associated

with such flows. For turbulent flow, the flow rate is a function of the

square root of the pressure difference across the orifice.

C.3 LINEARIZED FLOW EQUATION

By ignoring the leakage terms in Eqns. (C.l-C.4), and assuming the supply

pressure as the sum of the two piston pressures PI and P 2, Eqs. (C.l-C.4)

can he expressed in one single relation as

(C.14)
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where QL is the flow into or out of the actuator chambers and PL is the

pressure difference across the actuator piston. A first order approximation

of C.t4 is

(C.t5)

This can be rewritten as

(C.t6)

where the flow gain kq is given by

(C.t7)

and the flow-pressure coefficient kf is given by

(C.tS)

The term kf in this equation is related to the flow force coefficient ke which

was introduced in Eq. (6.2) as follows

(C.19)

where A is the actuator piston area.

It is to be noted that Eq. (C.t6) is valid near the operating point of the

table. This linearized flow relation was used in model building in Chapter 6.

C.4 VALIDITY OF THE LINEARIZED SYSTEM

In Chapter 6 and throughout this report, the system is assumed linear and

the linearized flow equation (Eq. C.t6) was used. This presents important

simplifications which are valuable in understanding the shaking table sys

tem behavior. However, one needs to put the problem in perspective and

consider the validity of these assumptions. Some important facts about the

linearized system are listed below:



(C.20)
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• The flow gain kq given in Eq. (C.17) is largest at the null position and

is reduced when a load is applied. At the maximum design load

corresponding to PL=~P8' the kq value is only 57.7 percent of the no

load value.

• The open loop system damping;o given by Eq. (6.14b) is proportional to

the flow-pressure coefficient kg. This value is minimum at small spool

displacements giving the lowest damping ratio.

• The open loop frequency 000 as given by Eq. (6.14a) depends on the

effective bulk modulus of the oil. This effective bulk modulus is a func

tion of the amount of entrained air and the pressure in the actuator;

the entrained air can reduce the bulk modulus by more than 50 per

cent.

• The open loop frequency is a function of the initial oil volumes on both

sides of the actuator piston Vo 1 and Vo,2 [20]:

~ A 2
00; = Pe (_1_+_1_)

mt Vol V02

The open loop frequency is minimum when Vo 1=Vo 2=0 .50V where V is

the total volume of entrained air in the actuator cylinder. If V02=0.25V

then the natural frequency would be increased by 15 percent.

• Merritt [20] states that: "Small variations (perhaps 2 or 3 to 1) in the

gain constant kq and natural frequency 000 and very large variations

(perhaps 20 or 30 to 1) in the damping ratio of the valve motor dynam

ics can and do occur...These variations cause the frequency response to

float around, so to speak, as the operating point is changed".
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Fig. C.1: Typical slave spool and actuator used in EERC shaking table.
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APPENDIXD

IMPROVED AMPLITUDE FITTING FOR

FREQUENCY AND DAMPING ESTIMATION

D.I PROCEDURE

A well separated peak in the transfer function can be approximated by a

single mode response as

(D.l)

(D.2)

in which <.Un' ~n are the structural frequency and damping for the particular

mode. Pn is the participation factor for the mode. At a given input fre

quency Ok, the steady state amplitude of the response y is given by

Pn
Ak - -;::.=;:::==;~::::::::::::::::::::::;

y'(00;-0;)2 + (200n ~n 0k)2

The unknown parameters in the above equation are OOn' ~n and Pn. It is

important to note that the above equation is valid only for a transfer func

tion relating the input force (or acceleration) to the output displacement. If

that is not the case, the amplitude Ak needs to be scaled by the appropriate

power of Ok to transform the equation into the above form.

Equation (D.2) can be written as

(D.3)

or as shown in the next section it is better to scale it by the amplitude Ak as

follows

Ak3Dk2 - Ak Pn2 = 0

Substituting Dk of Eq. (D.2) gives

A k3x1 + Ak30k2x2 - Akx3 = -Ak
30t

Preceding page blank

(D.4)

(D.5)
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where

4
Xl = ron

For a set of frequencies Q k , k=l,N; Eq. (D.5) can be written as

(D.6)

Af AfQ? -AI
-Afot

A~ A~Q~ -A 2

l~:) =

-A~Qi
Al AIQi -A g -AHQ§

(D.7)

-AJQ~
AJ AJQ~ -AN

or by an equation of the form

Ax=B'

The least squares solution of Eq. (D.8) is

which can be simplified as

(D.B)

(D.9)

N
1: Ak

6

k.l

N
1: Ak

60l
k-l

N 4
-1: Ak
k·l

N
1: Ak

6Ql
k-l
N
1: Ak

6gi
k-l

N
- LAk4Q'

k-1

(D.lO)

Once the above equation is solved, the modal parameters can be computed

from

ro - (x )1/4n - 1

(D.II)
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It is important to note that Eq. (D.IO) contains high powers of the experi

mental amplitude Ak • In order to avoid overflow it is suggested that all the

Ak values be normalized such that

Max (Ak ) == I (D.llb)

by dividing all Ak values by the maximum value. The same normalizing fac

tor should then be applied to the resulting value Pn as is apparent from Eq.

(D.2).

D.2 GLOBAL FREQUENCY AND DAMPING

It is frequently the case that several measurements could be used to esti

mate the frequency and damping of a particular mode. For example the

responses at different nodes in system are usually measured in order to

establish the mode shapes. Technically the transfer function at any of these

locations may be used to get the frequency and damping. The frequency

and damping estimates obtained from different transfer functions

corresponding to different locations would normally be different. The ques

tion of which values to use would then be encountered. Fortunately it is pos

sible to combine all the response transfer functions such that average or glo

bal parameters can be determined.

Let us assume that the measured transfer function amplitudes at node A

and Care Ak and Ck respectively. Equation (0.7) can be rewritten to

include the responses Ok by recognizing that Xl and X2 are functions of (On

and ~n only and hence are global parameters. The parameter X 3 on the

other hand is a function of the participation factor at the particular node

and would have two different values x~ and x~ for the different locations.

If we write Eq. (D.5) for each point on the transfer functions at nodes A and

C we get
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(D.13)
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Ar A3Q2 -A 1 0 -ArQf1 1

AH A3Q2 -A 2 0 -AHQ~2 2

Al AIQ~ -A g 0 -AIQi

AJ AJQt;
Xl

-AJQ&-AN 0
x2

xf - (D.llc)

cp C3 Q2 0 -c1 -CrQt1 1
x~

cH C~Q~ 0 -C2 -cHQ~

cl CIQ~ 0 -c3 -clQI

cJ cJQt; 0 -CN -cJQ&

Equation (D.lle) is similar in form to Eq. (D.7) and can be solved similarly

for the four unknowns. Note that it was assumed here that the number of

points in each function is N and both have the same frequencies. It should

be straight forward to generalize Eq. (D.llc) to include different N values

and frequency points for different transfer functions. The procedure can also

be generalized to include more transfer functions by adding an additional

participation factor for each new curve.

D.3 JUSTIFICATION FOR SCALING ( WEIGHTING)

Equation (D.2) cannot be exact because of errors that inevitably exist in the

experimental data, so it may be written as

k Pn
Ak + £1 =Dk

where £f is the error m the amplitude. But as seen in Section D.l, the

square root in Dk complicates the equation so that expressing in terms of

the squares of the amplitude gives

2 k P;
Ak + £2 =-Dl

where £~ is the error in the square of the amplitude At It can be easily
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shown that

by neglecting the second order error term.

expressed as

A 2D2 p2 kD2k k - n ... £2 k

(0.14)

Equation (0.13) can be

(0.15)

(0.16)

If Eq. (0.3) is used to solve for the unknowns, the minimized error would be

N
L (£~D~)2
k-l

Dl can be considered a weighting factor corresponding to the point at fre

quency Qk' But since Dk is minimum at resonance, the points near reso

nance are given a lower weighing factor than those away from the peak.

This is normally undesirable since points further from the peak are contam

inated by residues from adjacent modes.

The term E~Dk2 in Eq. (0.15) can be written using Eq. (0.14) as

(0.17)

(0.18)

or as

k 2 2Ef 2 2
E2 Dk ... A

k
(Ak Dk )

But Ak2Dk2 in Eq. (0.18) can be approximated from Eq. (0.13) by Pn2 so

that Eq. (0.15) can be written as

If Eq. (0.19) is multiplied by Ak we get

Ak
3Dk2 - Ak Pn2 = 2£fp;

(0.19)

(0.20)

Equation (0.20) shows that if Eq. (0.4) is solved using the least squares

method, the error minimized is
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(D.21)

N
but since Pn is a constant, the function L (ef)2 which is the error term in

k-l

Eq. (D.12), is actually minimized.

This method is an extended or weighted version of the procedure used by

Clough et al. [38] and Mau and Wang [39].

D.4 EXAMPLES

The frequencies and damping ratios listed in Table D.1 were obtained using

this procedure. The corresponding values in Table 3.1 were obtained by cir

cle fitting or amplitude fitting [38]. For the Taft 200 case listed in Table D.1,

the experimental and analytical curves are shown in Fig. D.1 for the fixed

base structure case. Fig. D.2 shows the results obtained if Eq. (D.3) is used

instead of Eq. (D.4). Note that the analytical curve in Figure D.2 fits the

lower amplitude values very well but gives a much larger error for the

points near resonance. The analytical curve in Fig. D.1 provides a better

overall fit. The damping ratio used in Fig. D.1 is 1.2 percent and that in Fig.

D.2 is 0.67 percent. If the procedure described in [39] is used, a negative

damping ratio would have been obtained because the lower amplitudes are

much more weighted than those in Eq. (D.3). Since the transfer function

used here represents a displacement/displacement ratio, it was converted

into a displacement/force ratio by dividing the amplitude at each frequency

by g2 before fitting.

The fitted curve in Fig. B.3 was also computed USIng the procedure

described in this section.
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EARTHQUAKE Fixed Base rotation Transl. and rot.

base coupling coupling

RECORD FREQ DAMP FREQ DAMP FREQ DAMP
(Hz) (%) (Hz) (%) (Hz) (%)

Miyagi span 270 2.91 1.1 2.72 2.3 2.62 2.2

Miyagi span 350 2.91 1.3 2.71 2.4 2.60 2.5

Taft span 200 2.89 1.2 2.70 0.7 2.57 2.4

Table D.1: Vibration characteristics of the structure for three boundary conditions

and three different records. Updated values of those in Table 3.1 using

the procedure described here.
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