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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand
and disseminate knowledge about earthquakes, improve earthquake-resistant design, and imple­
ment seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis
is on structures in the eastern and central United States and lifelines throughout the country that
are found in zones of low, moderate, and high seismicity.

NCEER's research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elements, as shown in the figure below. Element I, Basic Research, is carried out to
support projects in the Applied Research area. Element II, Applied Research, is the major focus
of work for years six through ten. Element III, Demonstration Projects, have been planned to
support Applied Research projects, and will be either case studies or regional studies. Element
IV, Implementation, will result from activity in the four Applied Research projects, and from
Demonstration Projects.

ELEMENT I
BASIC RESEARCH

• Seismic hazard and
ground motion

• Solis and geotechnical
engineering

• Structures and systems

• Risk and reliability

• Protective and
Intelligent systems

• Societal and economic
Impact program

ELEMENT II
APPLIED RESEARCH

• The Building Project

• The Nonstructural
Components Project

• The lifelines Project

• The Bridge Project

ELEMENT III
DEMONSTRATION PROJECTS

Case Studies
• Active and hybrid control
• Hospital and data processing

facilities
• Short and medium span

bridges
• Water supply systems In

Memphis and San Francisco
Regional Studies
• New York City
• Mississippi Valley
• San Francisco Bay Area

ELEMENT IV
IMPLEMENTATION

• ConferenceslWorkshops
• EducatlonlTrainlng courses
• Publications
• Public Awareness

Research in the Building Project focuses on the evaluation and retrofit of buildings in regions of
moderate seismicity. Emphasis is on lightly reinforced concrete buildings, steel semi-rigid
frames, and masonry walls or infills. The research involves small- and medium-scale shake table
tests and full-scale component tests at several institutions. In a parallel effort, analytical models
and computer programs are being developed to aid in the prediction of the response of these
buildings to various types of ground motion;
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Two of the short-term products of the Building Project will be a monograph on the evaluation of
lightly reinforced concrete buildings and a state-of-the-art report on unreinforced masonry.

The risk and reliability program constitutes one of the important areas of research in the
Building Project. The program is concerned with reducing the uncertainty in current models
which characterize and predict seismically induced ground motion, and resulting structural
damage and system unserviceability. The goal of the program is to provide analytical and empiri­
cal procedures to bridge the gap between traditional earthquake engineering and socioeconomic
considerations for the most cost-effective seismic hazard mitigation. Among others, the follow­
ing tasks are being carried out:

1. Study seismic damage and develop fragility curves for existing structures.
2. Develop retrofit and strengthening strategies.
3. Develop intelligent structures using high-tech and traditional sensors for on-line and real-

time diagnoses of structural integrity under seismic excitation.
4. Improve and promote damage-control design for new structures.
5. Study critical code issues and assist code groups to upgrade seismic design code.
6. Investigate the integrity of nonstructural systems under seismic conditions.

This report presents a new technique for simulating multidimensional and multivariate random
processes. One version of the sampling theorem for deterministic functions is used as the starting
point. The theorem is then extended from the deterministic case to the one-dimensional uni­
variate random case, and then to the multidimensional, multivariate case. The global smoothing
implicit in the sampling theorem is then replaced by a local smoothing which limits the size of
the data required for simulating the random field at a given index location. The attraction of the
new simulation technique is its limited storage requirement while sequentially simulating a
random field in a manner analogous to the generation of ARMA processes. Asymptotic
properties, as the smoothing window size tends to infinity, of the simulated random processes
and fields is also discussed in the report. Several examples are presented that illustrate the
proposed technique.
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ABSTRACT

A unified method is developed for simulating realizations of real-valued

stationary Gaussian processes, vector processes, fields, and vector fields.

The method has direct applications to earthquake engineering. Realizations of

Gaussian processes and vector processes can be used to model seismic ground

accelerations at single and multiple sites. Gaussian random fields can pro­

vide representations of the spatial variation of soil properties that need to

be considered in earthquake engineering when dealing with systems extending

over large areas such as pipeline systems. The proposed method involves

parametric random models consisting of superpositions of deterministic func­

tions of time or space with random amplitudes. The parametric models are

based on the sampling theorem for random processes and generalizations of it

for vector processes and random fields. The proposed simulation method is

efficient and uses algorithms for generating realizations of random processes

and fields that are similar to simulation techniques based on ARMA models.

Several examples are presented to demonstrate the proposed simulation method

and evaluate its efficiency and accuracy.
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SECTION 1
INTRODUCTION

Continuous and discrete time models are currently used to generate reali-

zations of a stationary Gaussian stochastic process. The continuous models

generally consist of a finite sum of harmonics with random phase and determin-

istic or random amplitude [13,15]. They can be obtained by approximating the

power spectral density of the process by a discrete spectrum with power at a

finite number of frequencies. These models are simple and can be applied to

generate Gaussian processes and fields [12,13,14,15]. However, the computer

storage required for generation can be excessive. The autoregressive moving

average CARMA) random sequences are the most common discrete time models that

are used in simulation [5,8,10,16]. The main feature of the ARMA models is

that the sample generation can be performed on-line such that the computer

storage demand is minimum. On the other hand, the calibration of these models

to a target stochastic process can be complex. Moreover, the ARMA models have

only been applied to generate samples of random processes.

Current simulation algorithms based on continuous and discrete time models can

be extended to generate realizations of a class of non-Gaussian random func-

tions that can be obtained from Gaussian processes by memoryless transforma-

tions [6,19]. The continuous and discrete time models can also be generalized

to represent nonstationary processes by, e.g., modulating the amplitude or the

amplitude and phase of a stationary process [7,11], considering ARMA models

with time-dependent coefficients [5], or using the Priestley process with

evolutionary spectrum [7,11].

This report presents a unified method for simulating realizations of

stationary Gaussian processes, vector processes, fields, and vector fields
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that has direct applications to earthquake engineering. Realizations of

Gaussian processes and vector processes can be used to represent the seismic

ground acceleration at single and multiple sites. Gaussian random fields can

provide models of the spatial variation of soil properties that need to be

considered in earthquake engineering when dealing with systems extending over

large ares such as pipeline systems.

The method is based on parametric random functions depending on a finite num­

ber of dependent Gaussian variables. The parametric models in the report can

be obtained from the sampling theorem. The proposed method has attractive

features. It is simple, efficient, and allows on-line simulation as the ARMA

model. Moreover, the accuracy of the model can be calculated prior to simula­

tion. The algorithm for generating realizations of a Gaussian random function

is less simple because of minor bookkeeping problems and the need to generate

dependent Gaussian random variables. However, these are not significant

inconveniences because the simulation algorithm needs to be codified once and

efficient algorithms are available for generating dependent Gaussian variables

[9] .
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SECTION 2
SAMPLING THEOREM FOR DETERMINISTIC FUNCTIONS

Consider a deterministic function & defined on Rq. q - 1. 2•...• with values

in RP, P 1, 2, ... It is assumed that the components gr(1). r = 1. 2,

...• p, of &(1) have band-limited Fourier transforms in the frequency range

(-frs ' frs)' 0 < frs < 00, r = 1 •...• p, s = 1 •...• q.

2.1 Sampling Theorem (q = I, P = 1)

Suppose that function g is real-valued and defined on the real line R. Let

f - f ll be the band-width of the function. According to the sampling theorem

[2.18]

co

g(t) = I g(to + kT) Qk(t - to; T)
k--oo

in which

sin [~(u - kT)!T]
Qk(u; T) = w(u - kT)!T

T 1/(2f), and to any real number.

2.2 Generalized Sampling Theorem (q > 1 and/or p > 1)

Three cases are examined: (1) q - 1. P > 1; (2) q > 1, P - 1; and (3)

(2.1)

(2.2)

p > 1, q > 1. They correspond to a vector function &(t); real-valued function

g(1) defined in Rq; and vector function &(1) defined on Rq with values on RP.

Case 1 (g = 1. p > 1): Let gr(t). r - 1, ...• P. be the components of &(t)

that are assumed to have a finite bandwidth with power concentrated in the
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frequency range (-fr , f r ), where t r = f r1 . The sampling theorem in Eqs. (2.1)

and (2.2) applies to every component gr(t) of g(t) so that

co

in which Tr

I g (t a + kT ) Qk(t-t 0; T )
k=-co r r, r r, r

1/(2fr ) and tr,a is an arbitrary real number.

(2.3)

Case 2 (9 > 1, P = 1). Suppose that the Fourier transform of function
q -

g: R
q
~ R exists and vanishes outside a set A = IT (-fs ' fs)' where f s f 1s '

s=l
s = 1, "" q. Then, function g can be represented by the series expansion

co

where Ts - 1/(2f ) and {t a} are arbitrary real numbers, s = 1, ... , q.s s,

The result follows from the sampling theorem. Suppose that (t2' ... , t q ) are

fixed. According to Eqs. (2.1) and (2.2),

co
(2.5)

Using similar considerations for all arguments of g(t) one finds the result in

Eq. (2.4).

Case 3 (9) 1, p> 1). Let gr(t) , r - 1, ... , p, be the real-valued functions

defining the vector function g(t). The components gr(t) of g(t) satisfy the

conditions in the previous case such that Eq. (2.4) applies and
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<Xl

I g (t 1 O+k1T l' ... , t O+k T )k =_<Xl r r ,r rq, q rq
q

* 1, ... , p (2.6)

in which Trs = 1/(2f ) and t 0 are arbitrary real numbers.rs rs,
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SECTION 3
SAMPLING THEOREM FOR RANDOM FUNCTIONS

Consider a zero-mean stationary Gaussian function X(~) defined on Rq with

values on RP, p, q = 1, 2, .. , . It has the covariance functions

and mean power spectral densities

J -i2~f'Ts (f) = e - - c (T) d£ru - ru -
Rq

r, u 1, 2, ... , p (3.1)

(3.2)

in which i = s:I and the symbol ' denotes vector and matrix transposition. It

is assumed that the mean power spectral densities of the

r = 1, ... , p, of X(t) are concentrated on the intervals

0< f < 00, r - 1, ... , p, s - 1, ... , q.rs

3.1 Random Processes (q - 1. p = 1)

components ~(~),

q
IT (-f f)rs' rs's-l

The real-valued zero-mean stationary process X(t), t € R, has covariance

function C(T) - E X(t+T) X(t) and a power spectral density s(f) -

Je-i2~fT c(r) dr vanishing outside a bounded interval (-f, f), 0 < f < 00.

R
From the sampling theorem in Eq. (2.1) with T - 1/2f

00

c(r) - L c(ra + kT) Qk(r-ra; T)
k--oo

(3.3)

for any real TO because c(r) is a deterministic function whose Fourier trans-

form coincides with the spectral density s(f) that is concentrated on

(-f, f). a < f < 00.
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Define the family of parametric stochastic processes

(3.4)

in which N - 1, 2, .. and Xk - X(kT) are random variables that are fully

defined by the finite dimensional distributions of X(t). The instances kT,

k - -N, ... , N are called the nodal points. The parametric processes XN(t)

have several interesting properties that suggest their use as approximations

of X(t).

Proposition 1. XN(t) in Eq. (3.4) has the same first two moments as X(t)

asymptotically as N ~ ~ [18].

The mean of XN(t) is zero for any value of N because EXk - EX(kT) =0,

k - -N, ... , N. The cross-covariance of the two parametric representations of

order Nand M is

cN,M(t+r,t) - E ~(t+r) ~(t)

Denote by

N
L

k--N

M
Qk(t+r; T) L c«k-l)T) Ql(t; T)

l--M
(3.5)

M
c«k-l) T) Qi(t; T) - L c(-kT+lT) Qi«t-kT) + kT; T)

l--M

(3.6)

the second sum after index l in Eq. (3.5) and let M approach infinity. From

Eq. (3.3), hk(t; M) converges to c(t-kT) as M ~ ~

3-2
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can be shown that the remaining sum in Eq. (3.5) after index k, approaches

C(T) as N -+ exl.

The covariance function in Eq. (3.5) shows that the family of processes XN(t)

with N < 00 is not stationary in the wide sense. This is caused by the depen-

dence of XN(t) on a finite number of values of X(t) in the bounded range

(-NT, NT) when N < exl. According to Proposition 1, XN(t) approaches stationar-

ity in the wide sense as N -+ exl

The Proposition also shows that XN(t) provides a satisfactory approximation of

X(t) for large values of N. The approximation does not hold when t is close

to the boundary of the interval (-NT, NT) or outside it. In fact, XN(t) for

N < exl approaches zero as t increases indefinitely because the functions

Qk(t; T) in the representation of the process vanish as t -+ exl This problem

can be eliminated by letting N increase indefinitely. However, the resultant

model XN(t) would become impractical for simulation. An alternative local

representation of X(t) is proposed in Sec. 3.1.2 for efficient simulation.

Proposition 2 (Sampling Theorem). XN(t) in Eq. (3.4) approaches X(t) in the

mean square sense as N -+ exl, i.e.,

lim E(~(t) - X(t))2 - 0
N-+CXl

(3.7)

The proof of this statement is similar to that of Proposition 1 and can be

found in textbooks [18].

Let

(3.8)
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be the error of the approximation XN(t) of X(t). The difference ~N(t) is a

zero-mean random process with variance

(3.9)

The variance of this error process ~N(t) depends on t and provides useful

information on the order of the approximation required in the analysis. For

example, let t be a multiple of T. Then, EAN(t)2 is equal to zero or one when

It I ~ N or It I > N. Therefore, errors can be significant if X(t) is approxi­

mated by XN(t) and It I > N.

Proposition 3. Suppose that the process X(t) in the previous two propositions

is Gaussian. Then, XN(t) in Eq. (3.4) is a version of X(t) asymptotically as

N -+ <Xl.

From Proposition 1, XN(t) is equal to X(t) in the second-moment sense asymp-

totically as N -+ <Xl. From Eq. (3.4) and the hypothesis that X(t) is Gaussian,

the parametric representations XN(t) are Gaussian processes for any value of N

as linear combinations of the Gaussian variables {Xk }. Therefore, all finite

dimensional distributions of X(t) and XN(t) coincide asymptotically as N -+ <Xl

because they only depend on the mean and covariance functions of these

processes.

There is no simple extension of the statement in Proposition 3 to the case of

non-Gaussian processes. When X(t) is not Gaussian the finite dimensional dis-

tributions of any order of X(t) and XN(t) coincide provided that (i) the

instances {til at which these distributions are calculated coincide with nodal

points and (ii) N is sufficiently large such that ti €(-NT, NT) for all

indices i. The coincidence of these distributions follows from Eq. (3.4)
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showing that XN(ti) - X(ti) when ti is a multiple of T and belongs to

(-NT, NT). The distribution of XN(t)at instances different from nodal points

can be calculated but its determination is complex.

3.1.1. Narrow-Band Random Processes (q - 1, p - 1)

Suppose that the zero-mean, stationary, band-limited process X(t) has a

power spectral density s(f) that is zero outside the set

(-r - fa, -fa + f) u (-r + fa, fa + f) in which a < r « f O <~. The power of

the process is concentrated in small vicinities centered on the frequencies

± fa. Results of Propositions 1-3 and the parametric representation in Eq.

3.4 are still valid. However, the representation is impractical because the

required sampling 1/(2fO) can be very dense when fa is large.

An alternative parametric representation can be used for narrow-band pro-

cesses. The representation is based on a classical definition of narrow band

processes [3,4],

X(t) - Vet) cos(2~fot + ~(t»

and

in which

1 X (t)
~(t) - tan- [- XS(t) ]

c

3-5
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Processes Xc(t) and Xs(t) are linear transformations of X(t) such that their

mean is zero, are stationary, and have the covariance functions

c(r) - E X (t+r) X (t) - E X (t+r) X (t)c c s s

and

f
- 4 ~ J dv s(v+fO) cos(2~vr)

-f

c(r) - E X (t+r) X (t) - -E X (t) X (t+r)c s c s

f
- 4~ J dv s(v+fO) sin(2~vr)

-f

(3.13)

(3.14)

These processes are uncorrelated when the spectrum s(f) is symmetric about the

central frequency f O because a(r) is zero for all values of r. The random

variables Xc(t) and Xs(t) are uncorrelated for any value of t irrespective of

the shape of s(f).

Consider the parametric family of stochastic processes

in which

N
X__ (t) - I X k 0k(t; T)
-~,c k--N c,

(3.15)

N
I X k 0k(t; T)

k--N s,

3-6
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Xc,k - Xc(kT), Xs,k - Xs(kT), and ak; T are defined in Eq. (3.4). Processes

XN,c(t) and XN,s(t) are Gaussian as linear combinations of discrete values of

Xc(t) and Xs(t) and are fully defined by the probability of these processes

The sampling rate, T - 1/2f, used to define processes XN,c(t) and XN,s(t) is

much lower than the required sampling rate, 1/2(fO+f), corresponding to a

direct use of Eq. (3.4) for process X(t).

Proposition 4. XN(t) in Eqs. (3.14) and (3.16) has the same first two moments

as X(t) asymptotically as N ~ 00

The mean of XN(t) is zero for any value of N because Xc(t) and Xs(t) are

linear transformations of X(t). The covariance function of two parametric

representations of order Nand M is

cN,M(t+T, t) - E ~(t+T) ~(t)

N M
- I ak(t+T) I c«k-l)T) al(t) cos(2~fOT)

k--N l--M

N M
- I ak(t+T) I c«k-l)T) al(t) sin(2~foT)

k=-N i--M

Using arguments as in Eqs. (3.5) and (3.6) it can be shown that

lim cN,M(t+T, t) - C(T) cos(2~fOT) - C(T) sin(2~fOT)
N~

M~

(3.17)

(3.18 )

The limit coincides with the covariance C(T) of X(t) as it can be found by

direct calculations.
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Results in Propositions 2 and 3 can also be extended directly to narrow-band

processes [11]. Thus, XN(t) in Eqs. (3.15) and (3.16) approaches X(t) in the

mean square sense as N ~ ~ Moreover, XN(t) is a version of X(t) asymptot-

ica11y as N ~ ~ provided that X(t) is Gaussian. In this case the parametric

processes XN(t) are Gaussian for any value of N as linear transformations of

values of X(t) at the nodal points.

3.1.2 Local Representation of X(t)

Consider a band-limited, zero-mean stationary Gaussian process that can be

approximated by XN(t) in Eq. (3.4). An alternative representation of X(t) is

Y (t)
n

n t +n+1

I Xk Qk(t; T)
~n -n

t

(3.19)

in which nt - [tiT] - the largest integer smaller than tiT and n is a positive

integer. The representation has a local character because it involves 2(n+l)

nodal values of X(t) centered about the active cell [ntT, (nt+l)T], i.e., the

cell containing current time t. The choice of n defines the size of the win-

dow or vicinity about the active cell.

The local representation in Eq. (3.19) has similar asymptotic properties as

XN(t) in Eq. (3.4). For example, it can be shown that Yn(t) has the same mean

and covariance function as X(t) asymptotically as n ~~. Moreover, the pro-

cess Yn(t) is a version of X(t) as n ~ ~ when X(t) is a Gaussian process.

There is a notable difference between the representations in Eqs. (3.4) and

(3.19). Although they both involve values of X(t) equally spaced at
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T - 1/(2£), these values are centered about zero for XN(t) and about t for

Yn(t). As t increases N must take large values to assure that t is included

in (-NT, NT) and XN(t) provides an accurate approximation of X(t). On the

other hand, the representation Yn(t) involves 2(n+l) values of X(t) at any

time t. This feature is particularly attractive in simulation because the

generation of samples of Yn(t) depends on a relatively small number of random

variables that can be generated sequentially as time t increases. In con-

trast, simulation based on XN(t) requires to generate samples of all variables

{Xk } , k = -N, ... , N and store their values prior to the determination of a

realization of XN(t).

The local representation in Eq. (3.19) can be extended without difficulties to

the case in which X(t) is a narrow-band stationary Gaussian process with

power centered at the frequencies ± f O' A global approximation of the process

is XN(t) in Eqs. (3.15) and (3.16). A local approximation of the process can

be provided by the model

Y (t) - Y (t) cos (2~fot) + Y (t) sin (2~fot), ntT ~ t ~ (nt+l)Tn n,c n,s

in which

(3.20)

Y (t)-n,c

nt+n+l

I
k-n -n

t

(3.21)

nt+n+l

Yn,s(t) - k I Xs,k Qk(t; T)
-nt-n

with nt and n as in Eq. (3.19). The local representation Yn(t) of X(t) has

the same asymptotic properties as XN(t) in Eqs. (3.15) and (3.16). The
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representation is more suitable for simulation since, as Yn(t) in Eq. (3.19),

involves a smaller number of random variables that can be generated sequen-

tially. Moreover, the number of random variables in the representation Yn(t)

of X(t) is independent of t. It only depends on the size n of the window con-

sidered in the representation.

The local representations in Eqs. (3.19) and (3.20) have continuous samples.

However, they are not differentiable at the nodal points. For example, the

discrepancy between the right and left derivatives of Yn(t) in Eq. (3.19) at a

nodal point ntT is

~n _n_l(nt T; T)
t

(3.22)

This difference decreases with n and vanishes asymptotically as n ~ ~

3.2 Vector Random Processes (q - 1, p > 1)

Consider a zero-mean stationary Gaussian vector process X(t) with components

Xy(t), r 1, ... , p. The Gaussian process Xy(t) have mean zero, bandwidth

r,u - 1, ... , p. Let
-00

X N (t)
r, r

N
r

I
k--Nr

X k Qk(t; T )r, r (3.23)

be parametric representations of the process Xy(t), in which Xy,k - Xy(kTr ),

Tr - 1/(2fr ), and Qk is defined in Eq. 2.2. Let
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Xl N (t)
• 1

~(t)

X N (t)
p. P

be a vector of parametric random process of order N

(3.24)

Proposition 5. Process ~,Nr(t) has the same first two moments as ~(t)

asymptotically as Nr ~ 00. r = 1, ...• p. Moreover. ~.Nr(t) approaches ~(t)

in the mean square sense as Nr ~ 00, r = 1 •... , p.

The proof follows from Propositions 1 and 2.

Proposition 6. The vector process ~N(t) approaches ~(t) in the mean square

sense as Nr ~ 00, r - 1, ...• p.

It is needed to show that the processes ~(t) and ~N(t) have the same mean and

covariance functions as Nr ~ 00. r - 1 •...• p. The mean of ~N(t) is zero for

any values of Nr • r - 1. "0' P because E ~,k - 0 for all k and r by hypoth­

esis. Consider the covariance function of two arbitrary components of ~N(t).

This covariance is

c N N(t+T. t) - E X N(t+r) X N(t)
r' u r u

3-11
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in which

or

(3.26 )

gru N (t; T , T ) -, u r u

N
u

I
e=-Nu

c (eT + r ) ac(t'-ro; T )
ur u 0 '> U

(3.27)

with rO = - u Tr and t' - t + rO because cru(r) = cur(-r). From Eq. (3.26)

Nr ~ ~ in Eq. (3.26) gives

The limit for

lim
N~

r
N~

u

cN N (t+r, t) -
r' u

lim
N~

r

N
r

I
r--Nr

c (t-rT) a~(t+r; T )
ur r ~ r

c (rT -t) a~(r+t; T )
ru r ~ r

(3.28 )

and is equal to Cru(T) because

~

C (T) - I c (kT +T O) ak(T-r o; Tru)
ru k--~ ru ru

(3.29)

in which Tru l/(2fru) and f ru min (fr , f u )' Indeed, the Fourier trans-

form s (f) of c (r), r ~ u, is zero outside the range (- f ,f ) such thatru ru ru ru

Eq. (3.29) holds according to the sampling theorem in Eq. (2.1). The band-

width (- f ru ' f ru) of sru(f) can be obtained from the spectral representation

of the components rand u of X(t) by direct calculations.
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A direct consequence of this result is that XN(t) is a version of X(t) asymp­

totically as Nr ~~, r = 1, ... , p, provided that X(t) is a Gaussian process.

In this case, XN(t) is also Gaussian and the finite dimensional distributions

of X(t) and XN(t) are defined by their second-moment characteristics uniquely

and the first two moments of these processes coincide asymptotically as

Nr ~~, r = 1, ... , p.

A local representation as in Sec. 3.1.2. can be developed for X(t). Consider

the processes

n t+n +1r, r
I

k=n -nr,t r

X k 0k(t; T )r, r

r = 1, ... , p

n T < t ~ (n ·t+l)Tr,t r - r, r

(3.30)

in which ~ is a specified positive integer defining the size of the window

for the r-th component of X(t) and ~,t = [t/Trl - the largest integer smaller

than t/Tr . The representation depends on 2(~+1) values of ~(t) that are

located symmetrically about the cell [~,t Tr , (~,t+l) Trl containing the

current time t. The processes Yr,nr(t) have the same asymptotic properties as

~,Nr(t) in Eq. (3.23) as ~ ~~, r - 1, ... , p. Therefore,

Y
1

(t),n
1

Y (t) ­
-xl

Y (t)p,n
p

(3.31)

can be used to generate realizations of X(t), in which n - (n1' ... , np )'. As

in the case of random processes, the size of the windows ~, r = 1, .... , p,

determines the number of random variables f 2(n +1) involved in the
r-l r
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representation Xn(t) of K(t) and the accuracy of the representation. The

model Xn(t) is a nonstationary process for any n. However, it is nearly sta-

tionary when the components ~, r = 1,

as demonstrated in figures 4-4 and 4-5.

3.3. Random Fields (q > 1. P = 1)

... , p, of n are larger than 5 or 10,

Let X(~) be a real-valued, zero-mean, homogeneous Gaussian random field

defined on Rq with covariance function c(~) - E X(~+~) X(~) and mean power

spectral density s(f) = J e-i2~f'~ c(~) d~, [1]. It is assumed that the power

aq q -
of X(~) is concentrated 1n the interval IT (-f £), £ - £1 • ° < £ < 00,

s-l s' s s s s
s = 1, ... , q.

Consider the family of parametric random fields

N

I
q

k --Nq q

q
x. k IT ok (ts ; Ts )
--kl , ... , q 1s- s

(3.32 )

in which N- (Nl , ... , Nq)I, Ts - 1/(2£s)' s = 1, ... , q, and Xk k
1"'" q

X(klTl , ... , kqTq). The random field depends on a finite number of variables

for Ns < 00, s - 1, ... , q. that coincide with the values of the field at the

nodal points (klTl , ...• kqTq) , k s = - Ns ' ... ,0, ...• Ns ; s - 1 •... , q.

The parametric fields XN(~) and X(~) take on the same values at the nodal

points for any value of N provided that t s ~ [-NsTs ' NsTs ]' s - 1, ... , q.

Proposition 7. Xli(!) has the same first two moments as XC!) asymptotically as

Ns ~~, s = 1, ... , q.
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The mean of Xli(~) is zero for any ~ f Rq and li because E X(~) ~ O. The covar­

iance function of two parametric fields Xli(~) and XM(~) is

Nl N

I
q q

I II Ctk (tS+T S; T ) (3.33 )
kl=-Nl k =-N s=l ssq q

Ml M

I
q q

* I c«kl -.2 1 )T1 ' (k -.2 )T ) II Ct.2 (tr ; T )... ,
.2 l =-Ml .2 -M q q q r=l rr

q q

From Eq. (2.4), the condition c(~) - c(-~) that is satisfied by the covariance

function of X(~), and the fact that the Fourier transform s(f) of c(~) is zero
q

outside the interval II (-[s' f ), one finds that
s-l s

lim
M->co

r
r-l, ... ,q

N

I
q

k --Nq q

q
c(tl-klTl , ... , tq-kqTq ) s~l CtkS(tS+TS; Ts )

(3.34)

Moreover, the expression in Eq. (3.34) approaches c(~) as Ns ~~, s - 1, ... ,

q, as demonstrated by the result in Eq. (2.4). This proves the statement in

the proposition.

It can be noted from Eq. (3.33) that Xli(~) is an inhomogeneous random field

for any finite values of Ns ' s - 1, ... , q. However, it is nearly homogeneous

even for small values of these parameters, as it is demonstrated by examples

in the next section.

3-15



Proposition 8. Random field Xli(t) approaches X(t) in the mean square sense as

Ns ~~, s - 1 .... , q, for any t E Rq.

Direct calculations following the approach in the previous proposition show

that

lim E(~(t) - X(t»2 = 0
N~

s
s=l •... ,q

which proves the statement in the proposition.

(3.35)

A consequence of the last two propositions is that Xli(t) is a version of X(t)

asymptotically as Ns ~~. s - 1, ...• q. when X(t) is Gaussian. Indeed, the

first two moments of Xli(t) and X(t) coincide as Ns ~~, s-l, ... , q.

Therefore, the finite dimensional distributions of these processes are iden-

tical because X(t) is a Gaussian field.

Propositions 7 and 8 demonstrate that Xli(t) is a viable approximation of X(t).

The accuracy of the approximation increases with its order N, i.e .• as param-

eters Ns ' s - 1,2•... , q, take on larger values. The mean square error of

an approximating field can be obtained from the expectation in Proposition 8

by following the approach in Eqs. (3.8) and (3.9). It was shown that XN(t)

becomes a version of X(t) asymptotically as Ns ~~. s - 1 •... , q. when the

field is Gaussian. This property cannot be extended to non-Gaussian random

fields. Although Xli(t) and X(t) coincide at the nodal points, it is difficult

to find the distribution of XN(t) at arguments t different from the nodes when

X(t) is a non-Gaussian random field.
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Consider the family of parametric random fields

Y (t)n -

n (t)+n +1q - q

I
k =n (t)-nq q - q

q
Xk k IT Q k (ts ; Ts )

1"", q 1s= s

q
IT

s=l
[n (t) T , (n (t) + 1) T ]s - s s - s (3.36 )

defining local representations of X(~), in which ns(~) - [ts/Ts ] = the largest

integer smaller than ts/Ts and ns ' s = 1, ... , q, are chosen positive integers
q

defining the size of a window centered on the cell IT [n (t)T , (n (t)+l)T ]
s-l s - s s - s

which contains the current value of argument~. The window includes all nodal

values of X(~) in Eq. (3.36).

The local representation in Eq. (3.36) has similar properties as XN(~) in Eq.

(3.32). It coincides with the field X(~) at every nodal point in the window.

The field Yn(~) has the same mean and covariance function as X(~) asymptotic­

ally as n s ~~, s - 1 ..... q. Moreover. Yn(~) is a version of X(~) as

ns ~ 00, s - 1, ... , q, when X(~) is Gaussian.

However, there is a significant difference between the approximations of X(~)

in Eqs. (3.32) and (3.36). Although they both involve values of X(~) equally

spaced at Ts - 1/(2ts )' s - 1, ... , q, these values are centered about the

increases the order

[2(n +1)] values of X(~) for all ~.s This

other hand, the

As the norm of ~

q
N of XN(~) must also increase such that the rectangle IT

s-l
On theincludes ~ and XH(~) accurately approximates X(~).

q
representation Yn(~) involves IT

s-l
feature is particularly useful in simulation studies.
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3.4. Vector Random Fields (q > I, p > 1)

Suppose that X(~) is a vector random field defined in Rq with values on RP.

The field is homogeneous with mean zero covariance functions Cru(L) =

E Xr(~+L) Xu(~) and power spectral densities sru(f) - J e-i2~f'L cru(f) df,

Rq
r,u - 1, ... , p. It is assumed that the power of component ~(~) of the field

q
is concentrated in IT (-£ £) 0 < £ < ~ r - 1 qrs' rs' rs' , ... ,.

s-l

The extension of the results in the previous sections to vector random fields

can be based on considerations similar to those in Sec. 3.2. Indeed, the com-

ponents ~(~) of X(~), r - 1, ... , p, are real-valued band-limited random

fields such that results in Sec. 3.3 apply to each of these components.

Therefore, the models

x (t) -r ,N(r) -

Nrq
L X (k1T l, ... k T )

k --N r r q rq
q rq

q
IT (;tk (t . T )s' rs's-l s

(3.37)

in which N(r) - (Nr1 , ... ,

nrl(~)+nrl+1

Y (t) - L
r,n(r) - k (t)-

1-nrl - n r1

and T - 1/(2£ ) andrs rs

n (t)+n +1rq - rq q
L X (kIT 1, ... ,k T ) IT

k -n (t)-n r r q rq s-l
q rq - rq

(3.38)

in which ~s(~) - [t/Trs ] - the largest integer smaller than t/Trs and ~s -

positive integers, approach ~(~), r - 1, ... , q, in the mean square sense as

Nrs ~ ~ and ~s ~~, s - 1, ... , q, respectively. It is also possible to show

that the vector random fields with components ~,N(r)(~) and Yr,n(r)(~)
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converge in the mean square sense to X(t) as Nrs and ~s approach infinity,

respectively, r - 1, ... , p; s - 1, ... , q.
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SECTION 4
SIMULATION ALGORITHMS

The local representations in Eqs. (3.19), (3.30), (3.36) and (3.38) are used

to generate realizations of a zero-mean stationary Gaussian random function

X(~) € RP, ~ € Rq, for q = 1, p = 1; q = 1, p > 1; q > 1, p = 1; and q > 1,

p > 1. The local representations involve a fixed number of random variables

that are equal to the values of the random function at a set of nodal points.

The set of nodal points is determined by the size of the window considered in

the representation and the value of argument ~.

4.1. Random Processes (q = 1, p = 1)

Consider an instant t, the corresponding cell [ntT, (nt+l)T), and the local

approximation Yn(t) of order n in Eq. (3.19). Suppose that a sample

Y (t)
n

nt+n+l

I Xk Qk(t; T)
~n -n

t

(4.1)

of Yn(t) is available in the cell. It involves realizations xk of the nodal

values Xk of the process X(t) included in the window [(nt-n)T, (nt+n+l)T].

The objective is to extend the sample Yn(t) of Yn(t) in the next cell

[(nt+l)T, (nt +2)T). This extension depends on the nodal values Xk , k

nt-n+l, ... , n t +n+2, of which the values Xk - xk' k ~ nt+n+l, have already

been generated. The only new nodal (random) value in the local representation

of X(t) over the cell [(nt+l)T, (nt +2)T) is ~ +n+2. Therefore, the generated
t

sample of ~ +n+2 should be conditioned on Xk - xk' k ~ nt+n+l. In the
t

proposed algorithm for simulation the condition is limited to the width of the

window such that the new nodal value is a sample of the random variable
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X* 2 = X 2 I{Xk = ~, k = nt-n, ... , nt+n+l}. Efficient methodsnt+n+ nt+n+ K

are available for generating samples of conditional Gaussian variables

(Appendix). The generation of the nodal values for the subsequent cells can

be performed sequentially when time t crosses from one cell to another. The

storage requirement is minimal because only 2(n+l) values need to be recorded

at any time t. This constitutes a major advantage over the simulation method

based on a discrete spectral representation of X(t) that requires storage of

realizations of many random variables. Moreover, the generation of samples of

X(t) is performed on line, similar to the simulation method based on the ARMA

model. However, the definition of the local representation of X(t) requires

much less computation than for an ARMA model.

Example 1. Suppose that X(t) is a band-limited white noise process with spec-

truro s(f) - sO' So - 1.0, for f f(-f, f), f - 0.5, and zero otherwise.

Covariances of the approximation Yn(t) of X(t) are shown in figure 4-1 for

tiT = k, k+l/4, k+l/2, and k+3/4, in which k is an integer.

Results in table 4-1 and figure 4-2(a) are based on 5000 realization of Yn(t)

for n = 1 and 3. They show, consistent with theoretical results in figure

4-1, that the variance of Yn(t) depends on the order n of the model.

Unsatisfactory estimates can be obtained for n - 1 when time t coincides with

the mid point between consecutive nodes. On the other hand, the histograms

follow closely the probability of X(t) for all values of n.

The proposed simulation algorithm is particularly efficient when applied to

estimate the probability q(x) that a process X(t) exceeds a high threshold x

at an arbitrary instant. For example, suppose that X(t) is a stationary band-
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FIGURE 4-1 Covariance Functions of Yn(t) in Eq. (3.19) and X(t) for a Band­
Limited White Noise Process
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FIGURE 4-2 Histograms of Yn(t) in Eq. (3.19) for Band-Limited White Noise and
Truncated First Order Gauss-Markov Processes
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TABLE 4-1 Estimated Variances of Yn(t) for a
Band-Limited White Noise

Model Yn(t)
Time

~l n-3

0.0 0.9996 0.9888

0.25 0.9466 0.9433

0.50 0.8754 0.9087

0.75 0.9282 0.9455

10.0 0.9938 0.9670

10.25 0.9298 0.9433

10.50 0.8563 0.9337

10.75 0.9180 0.9713

limited Gaussian white noise with bandwidth (0, 0.5), mean zero, and variance

one. Estimates of q(x) based on Yn(t) in Eq. 3.19 have errors of approxi­

mately 3% when x - 5, n - 75, and the sample size is infinity. On the other

hand, a thousand harmonics with random phase are needed to achieve a 3% error

in the estimates of q(x) for x - 5 when the simulation is based on the spec­

tral representation method and infinite sample size [15). The computation

times for generating a thousand 10 sec. long realizations of X(t) are 63 and

15.80 minutes for the spectral representation method and the algorithm devel-

oped in this study, respectively.

Example 2. Similar results as in table 4-1 and figure 4-2(a) are presented in

table 4-11 and figure 4-2(b) for a process X(t) with power spectral density

obtained by truncating the spectrum of a first order Gauss-Markov process.

The spectrum s(f) of X(t) is proportional with (4~2 f2 + a 2)-1 for f €(-l, f),

f - 0.5, and zero otherwise. It is scaled such that the variance of X(t) be

equal to one. Even the lower order model (n-l) provides a satisfactory
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TABLE 4-11 Estimated Variances for a Truncated First Order
Gauss-Markov Process

Model Yn(t)
Time

n-l n-3

0.0 1.0163 0.9899

0.25 0.9994 0.9951

0.50 0.9975 0.9952

0.75 1.0336 1.0090

10.0 0.9652 0.9861

10.25 0.9699 0.9762

10.50 0.9862 0.9748

10.75 1.0301 0.9944

approximation for this process. Results correspond to 5000 realizations of

Yn(t) and Q - 2. The improved representation relative to the case studied in

Example 1 relates to differences in the frequency content of the band-limited

white noise and the truncated Markov processes.

Example 3. The mean upcrossing rate of level x of X(t) can be obtained from

the Rice formula [3]

IT2 1 2v(x) = ~ exp (- 2 x ) (4.2)

f

f
-f

v(x)

3in which A2 - (2~)

estimates vn(x) of

X(t).

f2 s(f) df. Simulation can also be used to obtain

from realizations of the model Yn(t) in Eq. (3.11) of

Figure 4-3(a) and table 4-111 give the mean x-upcrossing rates v(x) and vn(x)

when X(t) is the band-limited white noise process in Example 1. Figure 4-3(b)
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TABLE 4-111 Mean Upcrossing Rates for a Band-Limited Gaussian
White Noise Process

Exact, v(x) Simulation based on Yn(t) , vn(x)
Level x (Eq. 4.2) n=l n=2 n=5 n=lO

0.0 2.87xlO- l 2.71xlO- l 2.77xlO- l 2.80xlO- l 2.84xlO- l

1.0 1. 75xlO- l 1.62xlO- l 1. 65xlO- l 1. 7lxlO- l 1.73xlO- l

2.0 3.9lxlO- 2 3.44xlO- 2 3.63xlO- 2 3.79xlO- 2 3.85xlO- 2

3.0 3.2lxlO- 3 2.62xlO- 3 3.l0xlO- 3 3.26xlO- 3 3.34xlO- 3

TABLE 4-1V Mean Upcrossing Rates for a Truncated First Order
Gauss-Markov Process

Exact, v(x) Simulation based on Yn(t) , vn(x)
Level x (Eq. 4.2) n-l n-2 n-5 n-10

0.0 2.39xlO- 1 2.35xlO- l 2.33xlO- l 2.37xlO- l 2.40xlO- l

1.0 1.45xlO- 1 1.40xlO-1 1.40xlO- 1 1. 38xlO- 1 1.43xlO- 1

2.0 3.24xlO- 1 3.05xlO- 2 3.l0xlO- 2 3.18xlO- 2 3.19xlO- 2

3.0 2.66xlO- 3 2.44xlO- 3 2.30xlO- 3 2.24xlO- 3 2.l4xlO- 3

and table 4-IV show simulation results for the truncated Markov process in

Example 2. The simulation results are based on 5000 realizations of Yn(t).

The estimated mean upcrossing rates are satisfactory even for n = 1.

Example 4. Suppose that X(t) is a zero mean stationary Gaussian process with

a narrow band spectrum s(f) - So 0.5, for If ± fol < f, 0 < f « f O' t - 0.5.

f O = 20, and zero otherwise. The peaks of narrow band processes tend to clus­

ter in time such that maxima of X(t) can be estimated more accurately from

upcrossings of the envelope V(t) of the process defined in Eq. (3.12). It
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can be shown that the mean v-upcrossing rate of V(t) is [3,4]

*v (v) =

_ A 2
1

211" A 2o

2
v exp [ - ;A

O
]

J\;
(4.3)

ex>

in which Ak = J
-ex>

k1211" fl s(f) df, k 0, 1, ... , are spectral moments.

Let vn*(v) be an estimate of v*(v) obtained from realizations of the n'th

order local approximation of V(t) defined by

1/2
V (t) _ [Y (t)2 + Y (t)2]n c,n s,n (4.4)

in which Yc,n and Ys,n(t) are given in Eq. (3.21). Figure 4-3(c) and table 4-

* *V show the mean rates v (v) and vn (v) for several values of n. Satisfactory

*approximations are obtained for v (v) when n ~ 2.

TABLE 4-V Mean Upcrossing Rates of the Envelope of a Narrow
Band Gaussian Process

Simulation based on Vn(t) , ** vn (v)
Level v Exact, v (v)

(Eq. 4.3) n-l n=2 n-5 n=lO

1.0 4.39xlO- l 4.13xlO- l 4.2lxlO- l 4.28xlO- l 4.3lxlO- 1

2.0 1. 96xlO- l 1. 72xlO- 1 1. 79xlO- l 1. 86xlO- l 1. 92xlO- 1

3.0 2.71xlO- 2 1.80xlO- 2 1. 93xlO- 2 2.21xlO- 2 2.27xlO- 2

4.0 9.71xlO· 4 4.60xlO- 4 6.80xlO- 3 8.20xlO- 4 6.60xlO- 4

4-9



4.2. Vector Random Processes (q ~ I, P > 1)

Consider an instant t, the corresponding cells [nr,t Tr , (nr,t+l)Tr ],

r = 1, ... , p, and the local representations Yr,n(t), r = 1, ... , p, in

Eq. (3.30) depending on the nodal values Xy,k' k = ~,t-~, ~,t+~+l,

r = 1, ... , p. The generation of samples of X(t) based on these representa­

tions can pose minor bookkeeping problems when the nodal intervals Tr do not

coincide for all components. Two cases are examined.

Case 1 (Tr = T; r = 1, .,., p). The parameters ~,t = nt have the same values

for all components because Tr = T, r = 1, "" p, The window sizes ~ may

depend on the component, However, the same window size ~ ~ n, r - 1, ... , p,

is used for all components,

Let t be an instant in cell [ntT, (nt+l)T] and yn(t) a realization of Xn(t) in

this cell depending on the nodal values X«nt+n+l)T) ~l; ... ; X«nt-n)T) =

~2(n+1) of X(t). The extension of yn(t) in the next cell [(nt+l)T, (nt +2)T]

involves a sample of random vector X«nt +n+2)T). This sample depends on the

previously generated nodal values of the process. For simplicity, the condi­

tion is only extended over the width of the window, i,e., a sample of

X*«nt +n+2)T) - X«nt +n+2)T) I {X«nt+n+l)T) - ~l' ... , X«nt -n+1)T) - ~2n+l}

is used in simulation, The generation of such conditional samples can be

performed efficiently by the algorithm in the Appendix.

Case 2 (General); The nodal points and window sizes differ from component to

component. Consider first the special case in which the periods Tr do not

differ significantly. Let
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T - min {Trl
l~r~p

(4.5)

and take ~ - n, r - 1, ... , p. Simulation of samples of ~(t) can be based on

the representation in Eq. (3.30) with Tr replaced by T in Eq. (4.5) and the

approach in Case 1. The replacement of Tr by T in Eq. (4.5) is valid because

it corresponds to a sampling rate that is equal or higher than the minimum

required rate. This approach can be applied in all situations. However, it

may become inefficient when the components of ~(t) have significantly differ-

ent bandwidths.

Consider now the more general case in which the nodal intervals Tr satisfy the

conditions

T1 ~ T2 ~ ~ Tp

aoo

Tr-lT r - 1, ... , pr mr,r-l

(4.6)

(4.7)

where ~,r-l are positive integers and ml,O = 1. The condition in Eq. (4.6)

can always be satisfied by renumbering the components of ~(t). On the other

hand, Eq. (4.7) is not generally true. However, it can be validated if the

bandwidths of the components of ~(t) are adequately increased. From Eqs.

(4.6) and (4.7), there are instances at which all components have nodes and

the period of these instances is Tl' The simulation algorithm can consist of

cycles of duration Tl . Let to be an instant at which all nodes coincide. The

algorithm starts by generating realizations of components ~(t) in the cells

(to, to+Tr ), r = 1, ... , p. Then, the realization of ~(t) is extended in the

next ~,p-l cells of length Tp until the next node of component ~_l(t).
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The next step is to extend the realization of ~_l(t) one step ahead in cell

(to+Tp _1 ' to+2Tp _1)' The process continues until realizations are obtained

for components (X2(t), ... , Xp(t)} in [to, to+T1 ]. This constitutes the end

of a simulation cycle.

Example 1. Consider the zero-mean bivariate Gaussian process X(t) with

components

o < P < 1, r 1, 2 (4.8)

in which Yr(t), r - 1, 2, and Y(t) are independent zero-mean, unit-variance

stationary Gaussian processes. The power spectral densities sY (f), r - 1, 2,
r

*and sy(f) of these processes are constant and equal to s - 1/(411"f ) ,r r

* * * * *r = 1, 2, and s - 1/(411'f ) in (-f , f ) and (-f , f ) , respectively, andr r

zero outside these frequency bands. The corresponding covariance functions

are

*sin(27ff T)
Cy(T) - E Y(t+T) Y(t) - *

27ff T

, r - 1, 2

(4.9)

The covariance functions c (T) - E X (t+T) X (t), r, u - 1, 2, of the compo-ru r u

nents of X(t) are

(l-p) cY (T) + Cy(T)
r

r - 1, 2

C (T) - P C..(T)ru r r, u - 1, 2, r ... u (4.10)

so that the corresponding power spectral densities can be obtained from



s (f)
rr (l-p) Sy (f) + p sy(f)

r
r = 1, 2

s (f) = p Sy(f)ru
r, u = 1, 2, (4.11)

Therefore, the components ~(t) of ~(t) have power in the frequency band

- * *(-fr , f r ), where f r = max {fr ' f }, r = 1, 2.

Figure 4-4 shows exact and approximate covariance functions cru(r) for f 1* =

1.0, f 2* - 0.2, and f* - 0.1 for a medium correlation of the components Xl(t)

and X2(t), p = 0.5. The approximate covariance functions correspond to the

local representation in Eq. (3.30) with Tl = 1/(2fl ) = 0.5, T2 = 1/(2f2 ) =

2.5, window sizes n = 1, 2, 5, 10, and instances t coinciding with the nodes

and the mid points between consecutive nodes. Consistent with Proposition 5

the approximate covariance functions approach the exact values cru(r) as the

window size n increases. The convergence is faster at instances t coinciding

with nodal points.

Example 2. Consider the same vector random process as in Example 1 and a safe

xi ~ ai' i - 1, 2l, where ai are specified thresholds.

It can be shown that the mean rate at which ~(t) crosses out of D, or the mean

D-outcrossing rate of ~(t) is [17]

(4.12)

in which

Q -
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v
1

(a
1

) 1 J. 2 exp [
1 2 ]- 211" E X1(t) - '2 a1

2

v
2

(a
2

) 1 E Z(t)2 [ - ~
a 2 ]- 211" Z(t)2

exp
E Z(t)2E

(4.13)

Table 4-VI gives values of v(D) in Eq. (4.12) and estimates of this mean

D-outcrossing rate obtained from 10,000 samples of X(t) generated from the

local model Xn(t) in Eq. (4.8). Results are for (a1' a2) = (3, 3); (2, 3);

(3, 2); and (2, 2) and p 0.9999; 0.5. The estimates of v(D) can be obtained

by calculating the rate of D-outcrossings for each sample of X(t) and averag-

ing this rate over the ensemble of samples. A sample of X(t) has a

D-outcrossing in a small time interval (t, t+~t) when X(t)€D and X(t+~t)1D.

TABLE 4-VI Mean D-Outcrossing Rates of X(t)

p - 0.9999 p - 0.5
(a1' a2)

Simulation Simulation
Exact Exact

n-2 n-5 n-10 n-2 n-5 n=lO

(3,3) .00378 .00148 .00068 .00065 .00610 .00493 .00532 .00534

(2,3) .02975 .01321 .00948 .00849 .05736 .05289 .05625 .05567

(3,2) .01051 .00799 .00782 .00782 .01583 .01498 .01498 .01550

(2,2) .03377 .01446 .00812 .00792 .06236 .05810 .06024 .05946
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Example 3. Consider another bivariate Gaussian process ~(t) whose components

satisfy the stochastic differential equations

d
dt [

X1(t)]_[
X

2
(t)

(4.14)

in which Pr > 0, r - 1, 2, and Y(t) is a zero-mean stationary Gaussian white

noise process with covariance function cw(r) = Co 6(r). Direct calculations

show that the covariance and power spectral density functions of the station-

ary components of ~(t) are

r = 1, 2

r > 0

r < 0

(4.15)

and

r - 1, 2

(4.16)

Figure 4-5 shows exact and approximate covariance functions of the stationary

response ~(t) in Eq. (4.14) for several values of Pr , r - 1, 2, and instances

t coinciding with nodes and mid points between nodes. The approximate covar-

iance functions are based on the local representation in Eq. (3.30) and window

sizes n - 1, 2, 5, 10. The local representation in Eq. (3.30) is a
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nonstationary Gaussian process. However, the representation approaches ~(t)

as the window size n increases.

4.3. Random Fields (q > 1, p - 1)

q
Consider an argument~, the corresponding cell IT [n (t)T , (n (t)+l)T ],

s-l s - s s - s
and the local representation Yn(~) in Eq. (3.36) depending on the nodal values

Xk k ' k = n (t)-n , ... , ns(~)+ns+1, s = 1, ... , q. Consider also a
1"." q s s - s

q
rectangular domain D = IT [0, as] in Rq.

s=l

The objective is to generate samples of X(~) in D based on the model Yn(~) in

Eq. (3.36). The case q - 2 is used to demonstrate the algorithm. Suppose

first that u1 » u2' where Us = as/Ts ' s = 1, 2, as shown in figure 4-6.

Then, the model Yn(~) can be given in the form

Y (t)n-

in which

(4.17)

x. k Q k (t2 ; T2)
--k1 , 2 2

(4.18)

The simulation of a realization of X(~) in D can proceed in cycles generating

realizations of the field in sets of cells, cells 1, ... , n2 in the first

cycle, cells u2+1, ... , 2u2 in the second cycle, and so on. The simulation

starts with the generation of samples of X(~) at nodal points (k1T1 , k 2T2),

k 1 = -n1' ... , n1+1, k 2 = -n2' ... , n2+u2+1 . Then, Eqs. (4.17) and (4.18) can
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be used to obtain a realization of X(~) in cells 1, ... , n2' This completes

the first cycle. The second cycle starts with the generation of samples of

X(~) at nodal points (klTl , k2T2), k1 = nl+2, k2 = -n2' ... , n2+n2+1, that are

needed to calculate Yn(t) from Eqs. (4.17) and (4.18) when ~ belongs to cells

n2+1, ... , 2n2' The nodal values of the field generated in this cycle are

dependent on the previously generated nodal values of X(~). The algorithm

generates a sample of the conditional Gaussian vector Y2 =

- ,
vector Y = (X(k1T1 , k 2T2 ), k1 = -n1' ... , n1+1, k2 = -n2' ... , n2+n 2+1 } .

These vectors have dimensions 2n2+n2+1 and 2(n1+1)(2n2+n2+1), respectively.

All the subsequent cycles are similar to cycle 2. The generation of condi-

tional Gaussian variables can be based on the algorithm in the Appendix.

The simulation procedure in Eqs. (4.17) and (4.18) becomes less satisfactory

when both TIl and TI2 are large because the number of random variables that has

to be stored during every cycle increases substantially. Alternative simula-

tion algorithms can be developed in this more general case. For example,

Eq. (3.36) can be used directly to generate a sample of X(~) by "marching"

from cell to cell. The algorithm has to account for previously generated

nodal values of X(~) that may affect the sample of the field in any particular

cell. The complexity of the simulation algorithm increases when the dimension

of the field q exceeds 2 and/or the domain D is not rectangular. Neverthe-

less, the complexity relates to bookkeeping issues rather than conceptual or

theoretical considerations.

Example 1. Consider a real-valued homogeneous Gaussian field X(~) defined on

R2 with mean zero and power spectral density
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{ O

so
s (f.) -

otherwise
(4.19)

2where So ~ 1/(16 ~ I l I 2 ) and 0 < Is <~, s ~ 1, 2. The field has the

covariance function

2
II
s~l

sin(2~f 1" )
s S

2~f 1"s s

(4.20)

and variance c(Q) = 1. It is referred to as band-limited Gaussian white noise

random field.

The covariance function of two local representations of order ill and n in Eq.

(3.36) is

nl (,t+zJ+nl +1

I
kl =nl (,t+z.) -nl

n 2(t+.!)+n2+l

I
k 2-n2(,t+z.) -n2

ml(,t)+ml+l

I
il-ml (,t)-ml

m2(,t)+m2+l

I c«kl-il)Tl , (k2-i 2 )T2 )
i 2-m2(,t) -m2

* (4.21)

Figure 4-7 shows exact and approximate covariance functions in Eqs. (4.20) and

(4.21) for several values of ,t, ill - n, Il - 1.0, and I2 - 0.5, as a function

of the lag 1" - (1"12 + 1" 22)1/2 for several values of 1"1 and 1"2' The local

representation Yn(,t) is not stationary, as previously indicated. However, it

is nearly stationary unless the window size n is extremely small. The figure

does not show approximate covariances for ,t equal to a nodal point because

they coincide with the exact covariances for a band-limited white noise field.
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Example 2. Consider a real-valued homogenous Gaussian random field X(~),

t € R2 , with zero-mean, unit-variance, power spectral density

1
2 d (d f )2

s [ s2 s ]s(f) = 2- IT --2 exp -
"s=l 11"

(4.22)

where d s > 0, s 1, 2, and covariance function

2
c(~) = exp [- L

s=l
(4.23)

To apply the simulation algorithms, s(f) is approximated by

s(f)

f (-£
s s'

otherwise

£ )
s , s - 1, 2

(4.24)

in which °< £ < 00, s - 1, 2, are so chosen that most of the power of s(f)
s

is included in (-£1' £1) x (-£2' £2)'

Figure 4-8 shows exact and approximate covariance functions of the field. The

approximate covariance functions are based on the local representation in

Eq. (3.36), £1 = 1.0, £2 - 0.5, d l - 3, and d 2 - 6. Results show that the

approximate covariance functions approach stationarity and the exact covar-

iance functions as the window sizes increase.
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SECTION 5
CONCLUSIONS

A general method was developed for generating samples of stationary Gaussian

processes, vector processes, fields, and vector fields. The method is based

on the sampling theorem for real-valued deterministic and random functions

defined on the real line and a generalization of it for vector functions

defined on vector spaces. The probabilistic model of a stationary Gaussian

random function used in simulation depends on a finite number of values of

this function at a set of points, referred as nodes. The model (i) improves

as the number of nodes increases; (ii) converges to the random function as the

number of nodes approaches infinity; (iii) is simple; and (iv) is fully

defined by the finite dimensional distributions of the random function. More-

over, the algorithm is efficient and sample generation can be performed on-

line, analogous to the generation by the ARMA sequence. The codification of

the simulation algorithm can be delicate for vector random processes and

fields because of bookkeeping issues.

Several examples were presented to illustrate the simulation method and eval-

uate the rate of convergence of the proposed probabilistic models to the ran-

dom functions they represent. The examples include random processes, vector

random processes, and random fields. Numerical results demonstrate that the

proposed simulation method is a viable alternative to current techniques for

the generation of realizations of stationary Gaussian functions.
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APPENDIX
GENERATION OF CONDITIONAL GAUSSIAN VARIABLES AND VECTORS

Let 1 be a n-dimensional zero-mean Gaussian vector with covariances ~k1 ­

EYkY1 , k, 1 = 1, ... , n. Consider a partition of 1 in two vectors 1(1) and

1(2) consisting of the first 1 ~ nl < n and the last n2 - n-nl components of

1. Suppose that a value y(l) of 1(1) is given. The objective is to generate

samples of the conditional Gaussian vector y(2) - 1(2) I 1(1) = y(l). Con-

sider the transformation [9]

(A.l)

in which Y is a vector consisting of n independent standard Gaussian variables

with zero mean and unit variance and ~ is a lower triangular matrix with

components

1-1
~k1 - I akj a1j

ak1 -
j-1

1/2 k - 1, 2, n; 1 ~ 1 ~ k (A.2)1-1 ... ,

[ 1'ki I 2 ]- aij
j-l

o 0
d h . \' \' 2 - O. Th d . . f .an t e convent~on L ak · ai · = L ai . - e eterm~nat~on 0 matriX ~

j-l J J j-1 J
can be performed sequentially starting with the first row and involves elemen-

tary algebraic calculations. Moreover, the components of y can be obtained

from the components of Y sequentially, and the equalities

k-1
1 [Yk - I a,. n Vn ]

akk i-I !\.A; ,(;

with the starting condition V1 - a~l Y1 ·

A-I

k - 1, 2, 3, .... , n (A. 3)



Suppose that X(l) = X(l) = (Yl' ... , Yn ). From Eq. (A.3), the first nl
1

components of yare equal to

k - 2, ... , n l (A.4)

I
in which VI = all YI'

components calculated

Let y(l) = (vI' ... ,

in Eq. (A.4) and y(2)

V ) be a vector consisting ofn l
a vector of n2 independent

vector XI\(2) isstandard variables. Then, from Eq. (A.I), the conditional

1\(2) (1) + a V(2)
X = ~21 Y -22 - (A. 5)

in which ~21 consists of the last n2 rows and the first nl columns of ~ while

~22 is a n2-dimensional lower triangular square matrix obtained from the last

n2 rows and columns of ~.

The generation of samples of y(2) is based on Eq. (A.S). It involves genera­

tion of a realization y(2) of the n2 independent standard Gaussian variables

y(2) and calculation of the corresponding value i(2) of the conditional vector

y(2) = x(2)lx(l) y(l) from Eq. A.S,

1\(2) (1) (2)
v a v +a v
~ = -21 - -22 -

A-2

(A. 6)
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