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PREFACE

This report presents the results of Category 2.0, Task 2.3 of the

u.s. Coordinated Program for Masonry Building Research. The

program constitutes the united states part of the United States­

Japan coordinated masonry research program conducted under the

auspices of The Panel on Wind and Seismic Effects of the U.S.-Japan

Natural Resources Development Program (UJNR).

This material is based on work supported by the National Science

Foundation under Grant Nos. ECE-8517023 and CES-8722867. Program

Director: Dr. S.C. Lui.

Any opinions, findings, and conclusions or recommendations

expressed in this pUblication are those of the authors and do not

necessarily reflect the views of the National Science Foundation

and/or the United States Government.
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FOREWORD

~,

[>:,;/ LPM/II is a general nonlinear dynamic analysis code developed for

mUlti-degree-of-freedom (MOOF) structural systems. The principal

use envisaged is the analysis of reinforced masonry or concrete

walls. LPM/II is similar to and is based on elastic beam behavior

but routines for incorporating the nonlinear properties of

reinforced masonry or concrete represented as stiffness degradation

is a feature of the analysis program.

The nonlinear code uses acceleration-time, velocity-time or force­

time records as the dynamic loading. The stiffness/displacement

relationship of each sub-element of the MDOF system is determined

independently by a nonlinear analysis program such as FEM/1 (Ewing,

1987, 1990). The code updates the stiffness of the system, if

needed, for each time step of the dynamic loading.

LPM/II is suitable for the analysis of the dynamic behavior of

reinforced masonry and concrete shear walls. '''':::''o::Tfle sub=element

behavioral model of LPM/II is a linear sub-element, with

conventional types of damping, that has stiffness degradation

implemented in the dynamic behavior. This beam element is capable

of representing the response of all modes of vibration and can be

used in combination with the nonlinear springs of LPM/I (Kariotis,

1992). These springs, translational and rotational, can have

hysteritic damping as well as conventional damping.

LPM/II can be utilized to model a mUlti-story shear wall with

masses at each story level representing the floor masses. The

boundary conditions for the wall can vary from fixed to a spring

type support that represents a flexible base. Multiple forcing

functions and acceleration-time records can be applied to various

OOFs simultaneously. LPM/II can also be used to represent a

reinforced masonry or concrete wall excited normal to its plane by

a ground motion at the base of the wall and by a diaphragm motion

at the upper end. The out-of-plane wall model can be extended to

walls in mUltistory structures excited at their ends normal to

v



their plane by linear or nonlinear diaphragm response.

LPMjII should be used in preference to LPMjI for the analysis of

multistory shear wall buildings. The damping of LPMjII is assumed

rather than hysteritic. Comparison of LPMjII and LPMjI used as a

Q model (Saiidi, 1981), may quantify the appropriate damping for

LPMjII. LPMjI uses hysteritic damping only and this hysteritic

damping cannot be easily sUbstituted for vicous damping. However,

a probable effective vicous damping can be estimated for an LPMjI

model and used for the and LPMjII model. The two models should

have equal dynamic top displacements.
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SECTION 1

GENERAL DESCRIPTION OF THE COMPUTER CODE

1.1 DESCRIPTION

LPMjII is a computer code for the nonlinear, dynamic analysis of

lumped parameter models. The models can be one-, two-, or three­

dimensional and are synthesized from a library of nonlinear

elements using compatibility matrices. The code separates the

nonlinear springs and nonlinear beams and treats them in a

different manner, taking advantage of the computational

efficiencies afforded by each portion. This version of the LPM/II

code is operational on the COMPAQ 286, IBM PC/AT, and compatible

personal computers.

The nonlinear element library includes a one-dimensional spring and

a two-dimensional beam. The springs can develop axial forces or

torsional moments. A three-dimensional beam element can be formed

by the superposition of the nonlinear beams and springs. Three

types of viscous damping are available for the model; namely, a

damping matrix that is proportional to the global stiffness matrix

(proportional damping), a damping matrix that is proportional to

the global mass matrix (proportional damping), and a damping matrix

that is assembled, element by element, based on a percentage of

critical damping for each element (nonuniform damping). A

combination of proportional and nonuniform damping can be used.

The nonlinear element library includes several one-dimensional

springs that can develop axial forces or torsional moments. The

springs can have several characteristics including non-linear

elasticity, nonlinear inelasticity, hysteresis, two-way action,

one-way action, and they can be gapped. Three basic types of

damping are available; namely, viscous damping, viscous power

damping, and Coulomb damping. The Coulomb damping can be constant

or variable. The element library is modular, so that additional
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elements can be added and thereby extend the useful life of the

code.

The models can be subjected to excitations in the form of force or

pressure time-histories and kinematic boundary conditions in the

form of acceleration or velocity time-histories, together with

initial displacements, velocities, and constant forces applied to

the various degrees-of-freedom.

The code uses an explicit numerical integration algorithm for the

solution of the system of coupled, second-order, ordinary

differential equations of motion. The fourth-order Adams-Bashforth

"2/3" predictor-corrector method (Ralston and Wilf, 1960) is used

for the majority of the solution. However, this method is not

self-starting, and the fourth-order Runge-Kutta method (Ralston and

Wilf, 1960) is used to start the solution process. The solution of

the equations of motion is obtained step-by-step, where the

algorithm provides estimates of the displacements and velocities at

each time step based on previous responses. The forces and

accelerations are calculated using these estimates in the equations

of equilibrium. In the predictor-corrector mode, the code uses a

two-pass procedure for each time step. In the first pass, the

displacements and velocities are predicted and the forces and

accelerations are evaluated. In the second pass, the displacements

and velocities are corrected based on the first-pass results, and

the forces and accelerations are re-evaluated. In addition to the

step-by-step solution of the nonlinear equations of motion, the

code provides for the solution of the undamped natural frequencies

and mode shapes of the linear portion of the model. The modal

analysis is not used to obtain the system response, but is included

to provide frequency and period information about the dynamic

models. The highest frequency of a model is needed to assist in

the determination of the integration time step for the dynamic

response solution. Nonlinear models must be linearized to obtain

these dynamic characteristics.
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The output available from the code consists of selective printed,

plot file, and formatted file output of all response quantities,

including motions, internal forces, and internal deformations.

Every attempt has been made to make LPM/II a useful code by

providing many user options, a great deal of modeling flexibility

through model synthesis, and the capability to add new nonlinear

elements. However, it is· the user's respons ibi I i ty to def ine

meaningful dynamic models and forcing functions, and to properly

interpret the results provided. Moreover, the code is not

necessarily the proper tool for all classes of problems, but it can

be quite useful in certain situations involving nonlinearities.

The formulation of the analysis methods is given in section 2. The

element library and damping are described in Section 3, along with

a definition of the element sign conventions and procedure for

forming the compatibility matrices that are used in the synthesis

of dynamic models. section 4 describes the various program options

available and the data required for each option. A sample problem

for program demonstration and verification is given in Section 5.

section 6 describes in engineering terms applications of LPM/II to

analytical problems that are commonly encountered in dynamic

analysis of structural systems.

1 • 2 BACKGROUND

This code is based on an earlier main frame computer program

(Ewing, et al, 1982) that was extensively modified for the research

on unreinforced masonry buildings conducted by ABK (1981) under a

grant from the National Science Foundation (NSF). Also, under NSF

Grant No. ECE-8517021, the User's Guide was extensively revised and

expanded under the TCCMAR coordinated research program. The

conversion of the code to be operational on the personal computer

and the final revision and release of the User's Guide was

conducted under the sponsorship of the NSF as noted in the preface.
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SECTION 2

FORMULATION OF THE ANALYSIS METHOD

2.1 INTRODUCTION

LPM/II is a computer code for the linear or nonlinear, dynamic

analysis of lumped parameter models subjected to external forcing

functions and kinematic boundary conditions. The formulation of

the analysis method for the code is based on the displacement

method and provides for the dynamic, step-by-step, explicit

solution of the equations of motion. The models can be one, two or

three dimensional and are synthesized from a library of nonlinear

elements using compatibility relations among the deformations of

the stiffness and damping elements and the external degrees of

freedom.

This section describes the formulation of the equations of motion

and equilibrium, and the numerical solution method employed in the

code.

2.2 EQUATIONS OF MOTION AND EQUILIBRIUM

The equations of motion of a nonlinear, mUlti-degree of freedom,

discrete mass system may be written in matrix form as

[M) d,} + [C] {x} + [K] {x} = {R} (2-1)

where

{x\ =
{x} =
{X} =
[M] =
[C) =

[K] =
{R} =

Accelerations, external degrees of freedom

Velocities, external degrees of freedom

Displacements, external degrees of freedom

Diagonal mass matrix

Nonlinear, proportional and/or nonuniform damping

matrix

Nonlinear stiffness matrix

External applied forces

2-1



The terms that represent the nodal point resultants of the internal

forces in the system, due to damping and stiffness, may be written

as,

{P} = [K) {x} ( 2-2)

{D} = [C] {x} (2-3)

where

{P} = Nodal forces resulting from stiffness

{D} = Nodal forces resulting from damping

The nodal forces due to system stiffness are evaluated from the

internal forces and system geometry. The internal forces are

determined from the internal deformations and element stiffnesses.

The internal deformations are related to the external displacements

by a compatibility transform, while the nodal forces are related to

the internal forces by an equilibrium transform. In matrix form

these relations are:

{e}

{F}

{P}

= [A)T {x} ;

= (5) {e}

= [A] {F};

Compatibility

Force-deformation

Equilibrium

(2-4)

(2-5)

(2-6)

where

{e} = Internal deformations

{F} = Internal forces

[A) = Equilibrium transformation matrix

[A)T = Compatibility transformation matrix

(5) = Element stiffness matrix, uncoupled

It follows that the global stiffness matrix can be obtained from

Equations (2-2), (2-4), (2-5), and (2-6) as:

[K] = [A] [5) [A]T

2-2

(2-7)



If the system is sUbjected to kinematic motions and degrees of

freedom (OOF) are to be eliminated l
, it is convenient to partition

the equations of motion to separate the OOF with kinematic motion,

OOF with unknown motion, and OOF to be eliminated. Accordingly,

Equation 2-1 becomes:

[Mil] {XI} = {R1} - {PI} - {Ol}

[Mn ] {X2} = {R2} - { P2 } - { O2}

[M)) ] { X) } = {R)} - { p)} - { O)}

(2-8)

where the sUbscript 1 refers to the external OOF with kinematic

motion, the sUbscript 2 refers to the external OOF with unknown

motion, and the subscript 3 refers to the external OOF with unknown

motion which are to be eliminated from the equations of motion. In

addition, the OOF (xd that have kinematic motion and the OOF (x))

that are to be eliminated cannot have an associated mass, damping,

or external applied forces. Accordingly,

[Mil] = 0

[M33 ] = 0

{RI } = 0

{R3 } = 0

Since the elements provided in this analysis method include:

o Nonlinear beam elements

o Nonlinear spring elements

it is convenient to partition these matrices to separate each

element type, as given below:

I Frequently, it is necessary to assign internal and
external OOF for some elements and nodes so that the element
stiffness matrix is not overconstrained; and it is not desirable
to retain these as dynamic OOF. This is particularly useful when
modeling with nonlinear beam elements to account for joint
rotations.
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~e'J{e} = (2-9 )
{eN}

~F'J{F} = (2-10)
{FN}

where

{eB} and {FB} are associated with the linear beams

{eN} and {FN} are associated with the nonlinear springs

Using the partitioning described above for external and internal

DOF, the internal and external relations (Eq. 2-4 and 2-6) become,

[~] [ [AlI]T [A2d T
[AlI]TJ[ (XI)]

{ x 2}

{eN} [An] T [A23 ]T [An] T {x3}

[~] [ [All] [A12 ]
[All) J[~]=

{P3} [A3d [A32 ] [ A33 ] {FN }

(2-11)

(2-12)

Since elements with nonlinear characteristics cannot be associated

with DOF that are to be eliminated, the submatrix (A33 ) is null, or

[A33 ] = [ 0 ]

The nonlinear terms can be calculated from the equations given

previously using the uncoupled, nonlinear stiffness matrices of the

individual nonlinear elements.
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2.3 SOLUTION OF THE EQUATIONS OF MOTION

The code uses an explicit numerical integration algorithm for the

solution of the system of coupled, second-order, ordinary

differential equations of motion. The fourth-order Adams-Bashforth

"2/3" predictor-corrector method (Ralston and Wilf, 1960) is used

for the majority of the solution. However, this method is not

self-starting, and the fourth-order Runge-Kutta method (Ralston and

Wilf, 1960) is used to start the solution process. The solution of

the equations of motion is obtained step-by-step, where the

algorithm provides estimates of the displacements and velocities at

each time step based on previous responses. The forces and

accelerations are calculated using these estimates in the equations

of equilibrium. Therefore, at each time step, the relationship

between the response motion and the internal forces is satisfied.

In the predictor-corrector mode, the code uses a two-pass procedure

for each time step. In the first pass, the displacements and

velocities are predicted and the forces and accelerations are

evaluated. In the second pass, the displacements and velocities

are corrected based on the first-pass results, and the forces and

accelerations are re-evaluated. In the Runge-Kutta mode, the code

uses a four-pass procedure for each time step, which operates in a

manner similar to the predictor-corrector mode. The Runge-Kutta

mode is used to start the solution and when the integration time

step is changed.

In addition to the step-by-step solution of the nonlinear equations

of motion, the code provides for the solution of the undamped

natural frequencies and mode shapes of the linear portion of the

system. The frequencies and modes are obtained by solving the

eigenvalue problem using the sweeping technique (Hurty, et al.,

1964). This technique uses a power method (i.e., an iterative

method) and the orthogonality relationships among the normal modes.

The modal analysis is not used to solve the equations of motion,

but is included to provide frequency and period information about

the dynamic models. The highest frequency of a model is needed to

assist in the determination of the integration time step for the
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dynamic solution. Nonlinear models must be linearized to obtain

those dynamic characteristics.

Three guidelines have been established for determining the maximum

allowable integration time step size that can be used in the code

(Chuang, 1982). This time step is a function of the shortest

period, T~, of the linearized system or the dynamic input, and the

minimum rise time, To of the input. These guidelines are:

o For a nonlinear system, involving strain hardening,

Del ta-tm.u = 0.2 * TOlin

o For any system,

Del ta-tmu: = 0.1 * Tr

The guidelines are based on a series of runs made with the code

that produced not only stable solutions, but solutions that

provided reasonable correlations with closed-form results.
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SECTION 3

ELEMENT LIBRARY AND DAMPING

3.1 INTRODUCTION

The element library for the LPMjII code includes nonlinear beams

and nonlinear springs. As noted in Section 2, the code uses an

explicit integration algorithm and treats the beams and springs

separately.

The nonlinear beam element is discussed in Section 3.2 with the

special case of a linear beam element and expanding the theory into

nonlinear element. The nonlinear spring element is introduced in

Section 3.3, briefly discussing the possible applications of spring

elements into LPMjII. A complete description of the nonlinear

spring elements is presented in LPMjI.

3.2 NONLINEAR BEAM ELEMENTS

The nonlinear beam in its virgin state is a linear beam. In this

section a description of the linear beam in presented and is

followed by a discussion of the introduction of the nonlinear

properties into the linear beam.

Three main components of the linear beams are discussed; the

compatibility matrix formulation that relates internal deformations

to external Degrees of Freedom, the stiffness matrix that relates

forces to displacement, and the damping characteristics of the

beam.

3.2.1 LINEAR BEAM COMPATIBILITY MATRIX

The linear beams are two-dimensional elements that have two

internal degrees-of-freedom (deformations) and two moments per beam

as shown in Figure 3-1a. The internal degrees of freedom, e, are

the internal end rotations in the beam elements, and are defined as

the angle in radians measured from a straight line joining the ends
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of the beam to the tangent to the elastic curve at that end. For

a fixed-fixed beam that is subjected to a unit lateral translation

of end 2 in the vertical direction, the internal deformations are

as shown in Figure 3-1b. If end 1 is given a unit lateral

translation in the vertical direction, the internal deformations

will have the same magnitude as shown in Figure 3-1b, but will be

of opposite sign. For a beam that is fixed at one end and pinned

at the other end and subjected to a unit clockwise rotation at the

pinned end, the internal deformations are as shown in Figure 3-1c.

In all cases the beam end moments have the same sign as the

deformations.

The compatibility submatrices, All /A21 and AJI , (Eq. 2-11) are

constructed using the sign convention defined above, and the

relationship among the internal deformations, e, in the linear

beams and the external degrees-of-freedom, x. Their construction

can best be shown by considering an example. The beam element

shown in Figure 3-2a has two internal degrees of freedom and four

external degrees of freedom. The internal degrees of freedom are

numbered e l and e2' and the external degrees of freedom are numbered

1 through 4 ( i . e., XI' x2 , xJ , and x4), none of which are to be

eliminated. In this case, the AJI matrix is null. The positive

directions for the e's and x's are defined by the arrows. The

Al1 /A2l matrix has four rows and two columns, where the rows

correspond to the external degrees of freedom (XI through x4 ) and

the columns correspond to the deformations (i.e., internal degrees

of freedom) in the linear beam (el and e 2). The matrix is formed

row by row. The first row of the matrix is obtained by holding X2'

x)l and x4 fixed, and deflecting XI one unit in its positive

direction. When this is done, it can be seen from Figures 3-2a and

3-1b that rotations of -IlL are induced in e l and e 20

Accordingly, the first row of the All /A21 matrix becomes:

A(I,I)

A(I,2)

= -IlL

= -IlL
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The second row is obtained by holding XII x3• and x4 fixed, and

rotating x2 one unit in its positive direction. From Figures 3-2a

and 3-1c, it can be seen that e l is compressed one unit of rotation

and e2 is zero. The second row of the AliI A21 matrix becomes:

A(2,l)

A(2,2)

= 1

= 0

Similarly, the third row is obtained by holding XI' x2, and x4 fixed,

and deflecting X3 one unit in its positive direction. This induces

rotations of IlL in e l and e 2 (Figs. 3-2a and 3-1b), and the third

row of the Alii A21 matrix becomes:

A(3,1)

A(3,2)

= IlL

= IlL

The last row is obtained by holding XI' x2, and x3 fixed, and

rotating X4 one unit in its positive direction. This results in e2

being compressed one unit of rotation and e l is zero. The fourth

and last row of the All I A21 rnatr ix becomes:

A(4,l)

A(4,2)

= 0

= 1

The complete compatibility sUbmatrix, AII /A21 is shown in Figure

3-2b.

An identical procedure is used to form the compatibility sUbmatrix,

A31 , where the external degrees of freedom to be eliminated, N3,

are numbered independently from those with known and unknown

motion.

In summary, the i th row of the compatibility submatrices, Alii A21 and

All' is formed by deflecting the ith external degree of freedom one

unit in its positive direction, while holding all other external

degrees of freedom fixed, and determining the deformations induced
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in all of the internal degrees of freedom in all linear beam

elements.

3.2.2 LINEAR BEAMS STIFFNESS

The linear beams are two-dimensional elements that develop in-plane

moments and shears, but not axial forces or torsional moments.

Axi.l force and torsional moment capability can be included in the

modeling by superposing linear spring elements onto top of the

beam. Moreover, a three-dimensional beam can be modeled by the

superposition of beams and springs. The linear beams have two

internal degrees-of-freedom (deformations) and two moments ·per beam

that are defined bye's and M's as shown in Figure 3-1a.

The linear beam elements can be prismatic or nonuniform (i. e. ,

stepped section) as shown in Figure 3-3. In general, the uncoupled

stiffness properties (Eq. 2-5) for each beam are defined by the

values of SPAN, EI, and GAK in Card Group 10,

where

SPAN =
EI =
GAK =

beam length, L

bending stiffness

shear stiffness

The uncoupled stiffness matrix relates the internal moments at each

end of the beam to the internal rotations (deformations) at each

end of the beam, as given by Equation 2-5. Referring to Figure 3­

la, this internal moment-rotation relation is:

{M} = [S] {e} (3-2)

The uncoupled stiffness matrix, S, is given as
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EI (4+cp) EI (2-cp)

L (l+cp) L (l+cp)
(5) =

EI (2-cp) EI (4+cp)

L (1+¢) L (1+¢)

where

E = Modulus of elasticity

I = principal moment of inertia of the beam

L = beam length

12EI

(3-3 )

ep = = shear deformation parameter
L2GA

G = shear modulus

A = effective shear area

The global stiffness matrix, relating nodal point forces to nodal

point deflections is given by Equation 2-7. Using the beam in

Figures 3-2a and 3-3a and the compatibility matrix given in Figure

3-2b, the global stiffness matrix for the beam can be obtained from

the triple matrix product.

[K) = (A) (5) [A)T (3-4)

Using the matrices defined by Equation 3-3 and Figure 3-2b, it can

be shown that the global stiffness matrix in Equation 3-4 is

defined by:
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12EI -6EI -12EI -6EI

LJ (1+¢) L2 (1+¢) L3 (1+¢) L2 (1+¢)

-6EI EI(4+¢) 12EI EI(2-¢)

L2 (1 +¢) L (1+¢) L2 (1+¢) L (1+¢)
=

-12EI 6EI 12EI 6EI

L3 (1+¢) L2 (1+¢) L3 (1+¢) L2 (1+¢)

-6EI EI(2-¢) 6EI EI(4+¢)

L2 (1+¢) L (1+¢) L2 (1+¢) L (1+¢)

(3-5)

It can be seen that this is the standard stiffness matrix for a

two-dimensional beam as given by Przemieniecki, (1968).

3.2.3 LINEAR BEAM DAMPING

Since the linear element properties do not change, the global

stiffness and damping matrices for the linear portion of the

synthesized system are formed once at the beginning of the

solution. The nodal point forces due to stiffness and damping are

then computed directly from these matrices.

The code has three viscous damping options for the linear portion

of the system, that are controlled by the value of LDAMP in Card

Group 4. The damping is defined by Equation 2-3 and for the linear

portion of the system

(3-6)

where {DL} is the vector of nodal forces due to damping, [CL ] is the

linear damping matrix, and {x} is the vector of nodal velocities.

Depending on the value of LDAMP, the linear damping matrix is

defined in three ways.
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If LDAMP = 0, no damping for the linear portion of the model is

included in the system.

If LDAMP = 1, the linear damping matrix is defined to be

proportional to the linear stiffness and mass matrices

(proportional damping), and is described in section 3.2.3.1.

If LDAMP = 2, the linear damping matrix is formed in a similar

manner to the linear stiffness matrix, where the damping in each

linear element is proportional to its individual uncoupled

stiffness matrix (nonuniform damping). This formulation is

described in section 3.2.3.2.

If LDAMP = 3, the linear damping matrix is defined by proportional

damping and nonuniform damping applied simultaneously.

3.2.3.1 PROPORTIONAL DAMPING

An assumption frequently used for elastic systems is that the

global damping matrix is proportional to the linear stiffness

matrix, as given below:

(3-7 )

where [KLJ is the linear stiffness matrix and Qt is the constant

of proportionality. However, this formulation provides different

amounts of the critical damping ratio in the various normal

vibration modes of the system. It can be shown that the critical

damping ratio, Yi , in each normal vibration mode varies with the

modal frequency as,

= 2 YJw; (3-8)

where Wi is the undamped circular frequency of the ith normal mode

of vibration. The constant, at, is determined from Equation 3-8 by

selecting a desired critical damping ratio, Yj( in the ith mode
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with circular frequency, Wi' Once this constant is selected, the

critical damping ratios in the other modes of vibration are fixed;

where modes with higher frequencies will have a proportionately

larger critical damping ratio and modes with lower frequencies will

have a proportionately smaller critical damping ratio. So, this is

essentially a high mode damper.

Another type of proportional damping is called mass damping where

the global damping matrix in proportional to the mass matrix, as

given below:

[Cd = am [M] (3-9)

Where am is the constant of proportionality and [M] is the diagonal

mass matrix. This formulation again provides modal damping, such

that the critical damping ratio Yj for each normal mode of vibration

varies with the modal frequency as:

(3-10)

This equation shows that for a fixed value of am' the critical

damping ratio ~' varies inversely with ~, where modes with lower

frequency have higher amount of damping. This is a primary low mode

damper.

3.2.3.2 NONUNIFORM DAMPING

Nonuniform damping is a special form of proportional damping, where

the global damping matrix for the linear part of the system is

formed in the same manner as the linear stiffness matrix.

uncoupled damping matric~s for the linear elements are defined to

be proportional to their uncoupled stiffness matrices as given

below:

[Ch =

3-8

(3-11)



where

(Ch =
13" =

(Sh =

uncoupled damping matrix of the kth linear element

constant of proportionality of the kth linear

element

uncoupled stiffness matrix of the kth linear element

The constant of proportionality is defined by:

(3-12)

where

Y" = critical damping ratio of the kth linear element

~ = undamped circular frequency associated with the kth

linear element

composed of the

element, and is

damping matrix is

individual linear

In this manner, the global

damping properties of each

nonuniform.

For a linear, prismatic beam element,w" can be calculated from:

(3-13)

where

E =
I =
L =
m =

modulus of elasticity

principal moment of inertia of the beam

beam length

mass density per unit length of the beam

For a nonuniform beam, effective values of I, L, and m should be

used in Equation 3-13, Qr w" must be determined by other methods.

Nonuniform damping for the linear beams is defined by the values of

PCTCR and FREQ in Card Group 10, where PCTCR = Y" in Equation 3-12

and FREQ = w" from Equation 3-13. For this option, PCTCR must be

>= 0.0 and FREQ must be > 0.0.
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3.2.4 NONLINEAR BEAM ELEMENT

The nonlinear beam is treated in the same manner as the linear beam

element in many respects. The compatibility matrix is the same,

the damping coefficients are based on the virgin state of the beam,

and the stiffness matrix relating the forces and displacements has

the same form. The main difference is that the nonlinear beam

recognizes degradation in the stiffness of individual beams and

updates the stiffness matrix accordingly.

Beam elements have an initial rigidity equivalent to EI, where E is

Youngs Modulus and I is the moment of inertia of the beam's gross

cross section. Subjecting the beam to deflection and/or rotation

of either end will produce little if any changes in the length, it

will however, produce distortion across the cross section of the

beam and induce stress in the beam. Increasing the stress on the

beam will cause the tensile stress at the extreme edges of the beam

to exceed the cracking stress of the material, thus causing cracks

starting at the edge of the beam and propagating further as the

stress increases. The reinforcement in a reinforced concrete or

masonry structure will yield when the stress at the steel location

exceeds the yield stress of the steel. Distortion of the cross

section, cracking of the concrete or masonry and yielding of the

reinforcement contribute towards degradation in the stiffness of

the beam element. This degradation is represented by reducing the

value of EI. Thus a relationship between the net internal rotation

of the beam and EI will be adequate to describe the degradation in

stiffness for a beam element that is primarily sUbjected to moment

type loading.

The frequency and distribution of cracks vary along the beam length

causing EI to vary, and it is actually expressed as EI(x), where x

is the distance from one end of the beam. An equivalent value of EI

that is assumed uniform for the full length of the beam is

determined and is referred to as the effective EI.
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Each beam has two internal deformations e. and e z as shown in Figure

3-2a. These are expressed in terms of the external degrees of

freedom at the ends of the beams using the compatibility

coefficients as expressed in Figure 3-2b. An equivalent amount of

degradation is represented by the total amount of deformation in

the beam defined as the net internal deformation eN as the

summation of e. and e z• A relationship between EI and eN can be

evaluated for a beam by the use of a nonlinear Finite Element

Analysis technique. This approach is discussed in section 6.

For the purpose of this code, a stair-step 1ike relationship

between EI and eN in needed to execute the problem with

nonlinearity implemented. The main features of this option is:

1. The user can describe the relationship between EI and eN

using pairs of values expressed as two vectors, one listing

the rotation in an increasing order, the other listing the

corresponding fraction of the initial EI with the appropriate

units. At zero rotation the fraction of the initial EI is

unity and it decreases as the net rotation increases. The

current maximum number of pairs is 80, and it can be increased

by a slight modification in the coding.

2. The user can define up to 25 different beam properties,

and each individual property can have different numbers of

pairs of points to describe the degradation rate.

3. The degradation relating EI and eN is symmetric about the

origin, but has an independent history in each direction.

positive deformation produces degradation in stiffness, and

the degraded value is used for subsequent positive deformation

only, while negative deformation has a stiffness that is

dependent on the previous maximum negative internal

deformation only, and is independent of the positive

deformation history.
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The logic of the coding follows the following steps:

1. After constructing the beam initial internal stiff.ness

matrix, several transformation matrices are used to evaluate

the global stiffness matrix of the whole system.

2. The external displacements representing the external DOF

are evaluated after each time step.

3. The internal deformations of each beam are calculated from

the external displacements using the compatibility matrices,

and a net deformation for each beam is evaluated by simply

summing the internal deformations at both ends of the beam.

4. EI is evaluated for each beam by using the values of eN

and then obtaining the corresponding EI from the beams

property cards as determined by the nonlinear Finite Element

Analysis or a similar technique.

5. Comparing current EI with the previous value of EI for the

last time step for each beam. In the case that EI has changed

for any beam, the local stiffness matrices are updated and the

transformation matrices are used to evaluate the updated

global stiffness matrix. If none of the beams suffered further

degradation the previous global stiffness matrix is preserved

and the solution is continued to the next time step.

The program recognizes only the last stiffness matrix at each

time step, so, if the output needed involves the beam internal

deformations or forces or the eliminated DOF's response, an

actual evaluation of these quantities should be performed at

this stage and stored. The user is required to specify a flag

in card group 6 for this purpose.

An ac.rate and valid representation of the shear effects in

the nonlinear beam elements is yet to be determined. The
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linear beam has the shear area factor ¢ imbedded in the

stiffness matrix as described in Section 3.3.2. Currently the

user has the option to include this factor in the nonlinear

beam element, and it is assumed as a constant and is only a

function of the initial EI and it is not updated. It is

important to recognize that the shear area effect should not

depend on the individual beam subelement dimension, but rather

on the overall dimension of beam or the wall, since this

global dimension controls the type of behavior of the

individual elements, whether it is flexure, shear or a

combination of both.

Generally, for a tall wall, the primary mode of vibration is

dominated by flexural deformation, thus, the shear effects can

be ignored if the user is interested in primary mode response

of the wall. This is usually true for evaluation of the top

displacement of the wall. On the other hand, if the user is

interested in quantities associated with higher modes, such as

floor shears, a representation of the shear effects may become

a necessity.

The damping discussed earlier for the linear beam is used for

the nonlinear beam element with the exception of the proportional

damping(i.e. stiffness damping) as shown in Equation 3-7. In this

case, where the damping matrix is dependent on the updated

stiffness matrix, the damping decreases with further degradation of

the beam element. The nonuniform damping as defined in Equation 3­

9 is a function of the elements initial stiffness and the damping

matrix is constant throughout the calculation.

3.3 NONLINEAR SPRING ELEMENTS

The nonlinear element library for LPM/II contains 20 spring element

types, 11 of which are currently used and 9 are available to add

additional capabilities to the code. The nonlinear springs are

one-dimensional elements that develop axial or shear forces or

rotational moments. They have one internal degree of freedom
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(deformation) and force per spring that are defined by e and F,

respectively; where e can be an axial, shear, or rotational

deformation and F can be an axial or shear force or rotational

moment. The stiffnesses of the nonlinear springs are represented

by force-deformation characteristics, where the spring force, F, is

expressed as a function of its internal deformation, e.

The nonlinear springs are identified by a nonlinear spring type

number (1 through 20) and their properties are defined in a set of

material property tables. for each nonlinear spring included in a

model, the user specifies the nonlinear spring type number, NSTYPE,

and the appropriate set number, NSMAT, of its associated material

property. These two values are defined in Card Group 12. The

material properties for the nonlinear springs are defined in Card

Group 13. The force-deformation characteristics are defined by the

six material property values (i.e., XK1, XK2, XK3, F1, F2, and GAP)

given on card '1 in Card Group 13. The damping characteristics are

defined by the six material property values (i.e., CVISC, EXPCV,

COULMB, CFTHN, CNSFN, and VBAR) given on card 2 in Card Group 13.

A full description of the nonlinear springs and their

characteristics is presented in LPM/I.

The nonlinear springs can be used in conjunction with the nonlinear

beam elements. There are two main applications for springs in a

multi-degree of Freedom system; a spring with zero stiffness can

be connected between two degrees of freedom to monitor the relative

displacement. This is useful in determining the relative story

drifts or the relative response to the ground. On the other hand

the user could easily obtain the absolute displacements of various

degrees of freedom and perform a simple subtraction and processing

after the run is completed. Another important application is to

provide a spring support at any degree of freedom. The user to is

referred to LPM/I to choose an appropriate spring type to match the

support type.
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their sequence of operations are accepted by

A new problem execution is depicted in the

SECTION 4

DEFINITION OF INPUT DATA AND DECK SETUP

4.1 INTRODUCTION

The purpose of this section is to describe the input data required

by the LPM/II computer program. It includes a description of the

various execution or program options available, the input required

for each option, and setup procedures for the input decks or files.

4.2 PROGRAM OPTIONS

The execution of the program is controlled and initiated by the use

of program options. The input and calculations for a new problem

are controlled by the Program option "START". The termination of

a jobstream which can include a sequence of program options and

their input data is controlled by the Program option "STOP".

The format for the program option cards is given in Section 4.4,

Card Group I, and the input data required for the various program

options are given in Card Groups 2 through 27.

4.3 GENERAL DECK SETUP AND JOBSTREAMS

A jobstream consists of a series of program options, where each

option is followed by its required data. The execution of the

computer program and the sequence of operations performed are

controlled by the order of appearance of the program options in the

jobstream. The machine-dependent control cards that precede and

follow the computer operating system are not given in this report.

Not all jobstreams and

the computer program.

following jobstream:

a. START

b. (data from Card Groups 2 through 26)

c. STOP

The jobstream results in the following program operations:

a-b Read the input for a new problem, perform calculations,
and output the specified response quantities.
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c. Terminate the jobstream.

4.4 DEFINITION OF INPUT DATA

The definition of the input data for the computer program is

described in this section and consists of 26 card groups. Any

system of units can be used, but, the input data must be in a

consistent set of units. The following pages present the 26 card

groups.

4-2



CARD GROUP 1:
No. of Cards:
Format:

PROGRAM EXECUTION OPTIONS
1
2A4

Columns

1-8

NOTES:

Variable

KTLCD(l)
and
KTLCD(2)

Entry

Program execution option

= START ... (. denotes a blank)
Read input for new problem;
Go to Card Group 2.

= STOP ,..,.. ......
Terminate program execution.

Notes

(1)

(1) All jobstreams should end with this option to insure the
proper wrap-up of any plot or formatted output files that have
been generated in the run.
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CARD GROUP 2:
No. of Cards
Format:

PROBLEM TITLE
1
20A4

Columns

1-68

69-80

variable

JOBHED(l)
through
JOBHED(l?)

JOBHED(18)
through
JOBHED(20)

Entry Notes

Problem Title, 68 characters (1)
maximum

Problem units description (1)
(e.g., IN-LB-SEC) 12 characters
maximum

Go to Card Group 3.

NOTE:

(1) This information is included in all forms of output
provided by the program, and should be left justified in
the fields provided.
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CARD GROUP 3:
No. of Cards:
Format:

Columns Variable

1-5 N1

6-10 N2

11-15 N3

16-20 NBEAMS

21-25 NUMBMAT

26-30 NNS

31-35 NUMMAT

36-40 NOOWAF

41-45 NOFTH

46-50 NOMTH

MASTER CONTROL PARAMETERS-1
1
1015

Entry Notes

Number of external OOF with (1)
kinematic motion.

Number of external OOF with (2)
unknown motion (i.e., dynamic OOF).

Number of external OOF to be
eliminated. (3)

No. of nonlinear beam elements. (3)

No. of properties for nonlinear
beam elements. (4)

No. of nonlinear spring elements. (5)

Number of properties for nonlinear
spring elements. (5)

Number of external OOF with
applied forces. (6)

Number of force-time histories. (6)

Number of kinematic motion-time
histor ies . ( 1) (7)

Go to Card Group 4.

NOTES:

(1) If N1 > 0, NOMTH must be > O.

(2) N2 must be > o.

(3) If N3 > 0, NBEAMS + NLS must be > O.

(4) If NBEAMS > 0, NUMBMAT must be > o.

(5) If NNS > 0, NUMMAT must be > o.

(6) If NOOWAF > 0, NOFTH must be > o. The force-time
histories are defined in Card Groups 19 through 21.

(7) The motion-time histories are defined in Card Groups
22 through 26.
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CARD GROUP 4:
No. of cards:
Format:

MASTER CONTROL PARAMETERS-2
1
10I5

Columns

1-5

6-10

Variable Entry

NSAVE Data storage increment of
calculated data.

NDAMP Damping flag for nonlinear
elements;

.:s. 0, no damping
> 0, damping included

Notes

(1 )

(2)

11-15

16-20

21-25

26-30

LDAMP

NMODES

MAXITR

MASSTD

Damping flag for nonlinear beam
elements.

< 0, no damping
= 1, damping matrix = Dp =

DAMPL1.[KL ] + DAMPL2. [M]
(proportional damping)

= 2, damping matrix= [Dl ]

(nonuniform damping)

> 3, damping matrix =Dp + Dl
(nonuniform plus proportional
damping)

Number of normal modes requested
for the linear system.

Maximum number of iterations for
calculating normal modes.
Default = 100.

Time-dependent mass flag

= 0, no time-dependent mass

(3 )

(4)

(5)

> 0, time-dependent mass; use force­
time history number MASSTD to
control mass as a function of time

< 0, time-dependent mass; use motion­
time history number MASSTD to
control mass as a function of time

31-35 KONFOR Constant force flag;
< 0, no constant forces applied
at the nodes
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36-40

41-45

46-50

KFCHEK

KMTYPE

KMASS

> 0, constant forces applied at
the nodes
Nonlinear spring element number (7)
to be monitored for the initiation
of the applied forces;

~ 0, use control defined by TFSTAR
(card 1 of Card Group 5)

> 0, monitor force in nonlinear spring
NFCHEK, when it reaches the value
FCHECK (card 2 of Card Group 5)
the forces are initiated

Modal extraction flag

~ 0, sequentially extract NMODES
starting with the lowest frequency

= 1, sequentially extract NMODES
starting with the highest frequency

= 2, sequentially extract NMODES
starting with the lowest frequency
and then sequentially extract NMODE
starting with the highest frequency

Reserved for future use.

Go to Card Group 5.

NOTES:

(1 ) All output, except the maximum and minimum
absolute external DOF responses (N1 and N2)
forces, are produced using the data saved.
NSAVE is set to 1.

values of the
and nonlinear
If NSAVE ~ 0,

(2) See Section 3.3.3 for a description of damping.

(3) See Section 3.2.3 for a description of damping.
DAMPLl and DAMPL2 are defined on card 2 of Card Group 5.
0l is composed of the uncoupled damping matrices of
individual elements.

(4) NMODES must be ~ N2, if NMODES > N2, NMODES is set
to N2.

(5) The time dependent mass at each DOF is defined by VWT in
Card Group 9. If MASSTD > 0, NOFTH must be > 0, and
MASSTD ~ NOFTH. (The force-time histories are defined in
Card Groups 19 through 21). If MASSTD < 0, NOMTH must be
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> 0, and MASSTO ~ NOMTH. (The motion-time histories are
defined in Card Groups 22 through 26).

(6) The constant force at each OOF is defined by peONS in
Card Group 9.

(7) If NFCHEK > 0, NFCHEK must be ~ NNS and NOFTH must be ~

o. (The force-time histories are defined in Card Groups
19 through 21).
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CARD GROUP 5:
No. of Cards:
Format:

Card 1

MASTER CONTROL PARAMETERS-3
2
8F10.0j3F10.0

Columns

1-10

11-20

21-30

31-40

Variable Entry

DELTAT Initial integration time step.

TSTART Integration start time.

TSTOP Integration stop time

TMSTAR Time when kinematic motions are
to be initiated.

Notes

(1)

(2 )

(2)

(3 )

41-50

51-60

61-70

71-80

Card 2

1-10

11-20

21-30

31-40

TFSTAR

TREST

TCHGDT

DTCHG

GRAVITY

DAMPL1

DAMPL2

FCHECK

Time when applied forces are to (4)
be initiated.

Integration time for generation (5)
of a restart file or tape.

Integration time to change the (6)
integration time step to DTCHG.

New integration time step. (6)

Acceleration of gravity. (7)

Damping constant for the nonlinear (8)
system; QI:; = DAMPLl.

Damping constant for the nonlinear
system; Qm = DAMPL2. (8)

Force in nonlinear spring number (9)
NFCHEK to control the initiation of
the applied forces, when the force
in nonlinear spring NFCHEK reaches
the value FCHECK the forces are
initiated.

= O' not used
> 0, compression
< 0, tension

Go to Card Group 6.
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CARD GROUP 5:

NOTES:

MASTER CONTROL PARAMETERS-3 (concluded)

(1) DELTAT must be ~ 0.0. If DELTAT = 0.0, no dynamic
calculations will be performed

(2) TSTOP must be > TSTART. If TSTOP = TSTART, no dynamic
calculations will be performed.

(3) Time intervals given in Card Group 26 are relative to
this time. Can be thought of as a delay or arrival time
for the kinematic motions.

(4) Time intervals given in Card Group 21 are relative to
this time. Can be thought of as a delay or arrival time
for the applied forces. If this time is to be used to
control the initiation of the applied forces, NFCHRI<
(Card Group 4) must be O.

(5) If TREST .=s. TSTART, no restart tape of file will be
created. If TREST> TSTART, a restart tape or file will
be created.

(6) If TCHGDT .=s. TSTART, the time step will not be changed
during the calculation. If TCHGDT > TSTART, the time
step will be changed during the calculation and DTCHG
must be > 0.0.

(7) If GRAVITY .=s. 0.0 is set to 386.0. The values of CWT and
VWT in Card Group 9 are divided by GRAVITY. If these
values are input in force or weight units the value of
GRAVITY must be in the correct units to convert the
weights to mass units. However, if these values are
input in mass units the value of GRAVITY should be equal
to 1. O.

(8) See Section 3.2.3 for a description of damping.
Damping matrix = at [KLJ + am [M]

(9) FCHECK ignored if NFCHEK .=s. o.
See Card Groups 4 and 19 through 21.
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CARD GROUP 6:
No. of Cards:
Format:

Card 1

OUTPUT CONTROL PARAMETERS
2
415/1811

Columns Variable Entry Notes

1-5

6-10

11-15

NPR1NT

1PLOT

IPUNCH

Print increment of stored data,
default =1.

Plot output option flag; (1)
$ 0, no plot output
> 0, plot output

Formatted output option flag; (2)

$ 0, no formatted output
> 0, formatted output

16-20 IPRINT Optional output flag; (3)

Card 2

$ 0, no optional output
= 1, all allocations, transformation

matrices, and stiffness and damping
matrices are printed

= 2, To is printed

= 3, Tex is printed

= 4, Tp4 is printed

= 5, [KL], [DL] and nonlinear beams
degraded stiffness is printed after
each update.

= 6, Final values of [KL ], [DL ] and
nonlinear beams degraded stiffnesses
are printed.

> 7, no optional output

Columns Variable Entry Notes

1 10PTPR(1) External DOF absolute displacement (N1N2);
Print option flag. (Typical for all
18 values).
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CARD GROUP 6:

2 IOPTPR(2)

3 IOPTPR(3)

4 IOPTPR(4)

5 IOPTPR(5)

6 IOPTPR(6)

7 IOPTPR(7)

8 IOPTPR(8)

9 IOPTPR(9)

10 IOPTPR(10)

11 IOPTPR(11)

12 IOPTPR(12)

13 IOPTPR(13)

14 IOPTPR(14)

15 IOPTPR(15)

16 IOPTPR(16)

17 IOPTPR(17)

18 IOPTPR(18)

Go to Card Group 7.

OUTPUT CONTROL PARAMETERS (continued)

= 0, no print

= 1,print maximum and minimum values
only

= 2, print time-history decimated by
NPRINT and maximum and minimum
values

Eliminated OOF absolute displacement
(N3)

External OOF absolute velocity (N1N2)

Eliminated OOF absolute velocity (N3)

External OOF absolute acceleration (N1N2)

Eliminated OOF absolute acceleration (N3)

Internal nonlinear spring force (NNS)

Internal nonlinear spring deformation
(NNS)

Internal nonlinear spring velocity (NNS)

Internal nonlinear spring acceleration
(NNS)

= o.

= o.

= o.

= o.

Internal nonlinear beam force (2 x NBEAMS)

Internal nonlinear beam deformation (2 x
NBEAMS)

Internal nonlinear beam velocity
- (2 x NBEAMS)

Internal nonlinear beam acceleration (2
x NBEAMS)
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CARD GROUP 6:
NOTES:

OUTPUT CONTROL PARAMETERS (concluded)

(1) If IPLOT ~ 0, skip Card Group 7. If IPLOT > 0, Card
Group 7 is required.

(2) If IPUNCH ~ 0, skip Card Group 8. If IPUNCH > 0,
Card Group 8 is required.

(3) See Section 2 for description of optional output
matrices Tu ' Tex ' TF_x ' KL , and DL •

(4) If the nonlinear beam internal deformation or internal
forces, or the eliminated DOF responses are requested in
the output, a flag > ° should be used in this card for
that particular response. This would assign a storage
space at the onset of the solution procedure for the
requested response.
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CARD GROUP 7:
No. of Cards:
Format:

Card 1

PLOT CONTROL PARAMETERS
Variables*
I2,3X,15I5

Columns

1-2

Variable

ITYPE

Entry

Output quantity defined by
the numbers given in Card
Group 6, card 2 (i.e., 1
to 18)

For example, ITYPE=1
corresponds to the external
DOF absolute displacements
(NIN2)

Notes

(1 )

6-10 ITEMS (1) OOF number to be plotted. (2)

11-15

76-80

ITEMS (2)

ITEMS (15)

OOF number to be plotted.

OOF number to be plotted.

Next card(s)--if necessary.

6-10

11-15

ITEMS (16)

ITEMS (17)

DOF number to be plotted.

OaF number to be plotted.

(2)

Go to Card Group 8.

NOTES:

(*) If IPLOT ~ 0 in Card Group 6, skip this card group.

(1) ITYPE must be input in ascending order. This card
group is terminated by ITYPE ~ o.

(2) Degree-of-freedom numbers must be in ascending order
with up to 15 on a card. The list is terminated with a
zero or negative DOF number. More than 1 card can be
provided for each type if the list exceeds 15 quantities
to be output. The format for additional cards is
5X,15I5.

(3) If requested response include nonlinear beam responses or
the eliminated DOF responses a flag > 0 should be set in
card 6 for the particular response.
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CARD GROUP 8:
No. of Cards:
Format:

Card 1

FORMATTED OUTPUT CONTROL PARAMETERS
Variable*
I2,3X,15I5

Columns

1-2

6-10

11-15

Variable Entry

ITYPE Output quantity defined by the
numbers given in Card Group 6,
card 2 (i.e., 1 to 18). For
example, ITYPE=l corresponds to
to the external DOF absolute
displacements (NIN2)

ITEMS(I) DOF number to be output.

ITEMS(2) DaF number to be output.

Notes

(1 )

(1)

76-80 ITEMS(15) DaF number to be output.

Next card(s)--if necessary.

6-10 ITEMS (16) DOF number to be output. (1 )

11-15 ITEMS(17) DaF number to be output.

Go to Card Group 9.

NOTES:

(*) IF IPUNCH .$. a in Card Group 6, skip this group.

(1) See notes 1,2 and 3 in Card Group 7.
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CARD GROUP 9:

No. of Cards:
Format:

WEIGHTS, INITIAL CONDITIONS,
AND CONSTANT FORCES
N2
I5,7F10.0

Columns

1-5

6-15

16-25

Variable

N

CWT

VWT

Entry

External DOF number.

Constant weight at DOF N.

Time-displacement at OOF N.

Notes

(1)

(2)

(2) (3)

26-35

36-45

46-55

56-65

66-75

DINIT

VINIT

PCONS

DUM1

DUM2

Initial displacement at DOF N.

Initial velocity at OOF N.

Constant force at OOF N.

Reserved for future use.

Reserved for future use.

(4)

Go to Card Group 10.

NOTES:

(1) Data can be input in any order, but all N2 degrees of
freedom must be specified, where (N1 + 1) < N < (N1 +
N2) .

(2) CWT and VWT are divided by the value of GRAVITY given on
card 2 of Card Group 5.

(3) If MASSTD = 0, ignore time-dependent weight. If MASSTD
> 0, this weight varies according to input force-time
history number MASSTD. If MASSTD < 0, this weight varies
according to the kinematic motion time-history number
:MASSTDl. See Card Group 4.

(4) If KONFOR ~ 0, ignore constant force. See Card Group 4.
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CARD GROUP 10:
No. of Cards:
Format:

NONLINEAR BEAM ELEMENT PROPERTIES
NBEAMS*
A1,I4,5F10.O

Columns

1

Variable

FLAG

Entry

Alphanumeric character to specify
the type of beam input,

= prismatic beam
(A denotes a blank)

Notes

= K, stiffness matrix (1)

= S, stepped section (2)

= L, stepped section, last card (2)

2-5

6-15

16-25

26-35

36-45

46-55

N

SPAN

EI

PCTCR

FREQ

Beam element number (i.e., N = 1
to NBEAMS)

Beam element length

Beam element bending stiffness

Beam element shear factor

Percent critical damping for the
beam element given as a fraction
(e.g., 10% = 0.10)

Angular frequency of the beam in
rad/sec

(3)

(4)

(5)

(6)

(6)

Go to Card Group 11.

NOTES:

(*) IfNBEAMS S 0 from Card Group 3, skip this card group.
Typically, the number of cards in this group will equal
the number of beams. However, if stepped section
properties are input, up to three cards will be required
for each beam.

(1) If FLAG = K, the member properties are known only in the
form of a 2 x 2 uncoupled sti ffness matrix (see Sec.
3.2.2.2) . In this case, SII = SPAN, SI2 = S21 = E1, S22 =
GAK, and the beam length is taken as unity.
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CARD GROUP 10: LINEAR BEAM ELEMENT PROPERTIES (concluded)

NOTES: (Concluded)

(2) If FLAG = S or L, the member is a stepped section (see
section 3.2.2.2). Up to three stepped sections per beam
are allowed. The last stepped section must have FLAG =
S. The stepped section cards must be input in
consecutive order and must be specified from the smaller
internal deformation number to the larger. If nonuniform
damping is used, it is based on PCTCR and FREQ of the
first card (see Note 4).

(3) Data can be input in any order except as noted above.

(4) This represent the nonlinear initial stiffness EI. The
degradation factors are to be mUltiplied by this value
of EI for the actual degraded stiffness.

(5) This factor is calculated by the user as defined in
section 3.3.1 representing the shear effect of a beam
in bending.

(6) These parameters are required when the nonuniform damping
option (see Section 3.2.3.2) is invoked (i.,e., LDAMP =
2 or 3 from Card Group 4); FREQ must be > 0.0 and PCTCR
must be ~ 0.0.
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CARD GROUP 11:
No. of Cards:
Format:

NONLINEAR BEAM ELEMENT PROPERTIES
NBEAMS*
315

Columns

1-5

6-10

11-15

Variable

N

NBMAT

NBINC

Entry

Beam element number (i.e., N = 1
to NBEAMS)

Beam property number (i.e.,
NBMAT = 1, to NUMBMAT)

Number of increment.

Notes

( 1)

Go to Card Group 12.

NOTES:

(*) If NBEAMS ~ 0 from Card Group 3, skip this card group.
The number of cards in this group will equal the number
of beams.

(1) The number of increment can be different for each beam
property cards. NBINC < 80.
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CARD GROUP 12:
No. of Cards:
Format:

Card 1

NONLINEAR BEAM ELEMENT PROPERTIES
NUMBMAT*
215,j,2F10.0

Columns

1-5

6-10

Card 2

1-10

11-20

Variable

NBMAT

NBINC

THETA

ElF

Entry

Beam property number.

Number of increment.

Net rotation angle.

EI factor.

Notes

(1)

(1 )

(2)

(3) (4)

Go to card group 13.

NOTES:

(*) If NBEAMS ~ 0 from Card Group 3, skip this card group.
This group of cards is to be repeated NVMB MAT times.

(1) See card group 11.

(2) This represent the beam net internal deformation as a
measure of the stiffness degradation. The units have to be
consistent with the beam dimension.

(3) EI factor is a fraction of the initial stiffness of the
beam as defined in card group 10. The effective EI for a
particular beam at a particular net rotation is

EI (effective) = ElF * EI (initial)

There is no interpolation between values of the rotation,
for a particular rotation, EI of the previous lower
rotation is adopted. The step size should be fine in the
critical region to achieve a higher degree of resolution
to better represent the stiffness factor.

(4) Card 2 should be repeated NBINC times.
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CARD GROUP 13:

No. of Cards:
Format:

NONLINEAR SPRING ELEMENT TYPE AND
MATERIAL PROPERTY NUMBER
NNS*
3I5,6F10.0

Columns

1-5

6-10

11-15

16-25

Variable

N

NSTYPE

NSMAT

ELMS (1)

Entry

Nonlinear spring element number
(i.e., N = 1 to NNS)

Nonlinear spring type number

Nonlinear spring element material
property number (i.e., NSMAT = 1
to NUMMAT)

Spring pre-damage option flag

ELMS (1) < 0.0, spring is not
pre-damaged

Notes

(I)

( 2)

(3)

26-35

36-45

46-55

56-65

66-75

ELMS(2)

ELMS(3)

ELMS(4)

ELMS(5)

ELMS(6)

ELMS (I) > 0.0, spring is pre-damaged

spring permanent deformation,
tension

Spring permanent deformation,
compression

Spring maximum deformation,
tension

Spring maximum deformation,
compression

Reserved for future use

( 4 )

(4)

(4)

(4)

Go to Card Group 14.
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CARD GROUP 13:

NOTES:

NONLINEAR SPRING ELEMENT TYPE AND
MATERIAL PROPERTY NUMBER (concluded)

(*) If NNS ~ 0 from Card Group 3, skip this card group.

(1) Data can be input in any order.

(2) See Section 3.3.2 for types available.

(3) The nonlinear springs can be pre-damaged prior to the
start of a run by setting ELMS (1) > 0.0 and setting the
damage parameters in ELMS(2) through ELMS(5).

(4) Ignored, if ELMS(l) ~ 0.0.
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Viscous damping velocity exponent (3) (5)

Reserved for future use

Spring gap at zero load

Viscous damping constant

(2 )

(2)

(3)

(2)

(2)

(2)

(1 )

Notes

(3) (5)

(4) (5)

(4) (5)

MATERIALELEMENT

spring constant 1

Spring constant 2

Spring constant 3

Force of first transition point

Force of second transition point

Coulomb damping is a function
of the input force-time history
number CFTHN

Coulomb damping constant

Entry

Material property number (i.e.
N = 1 to NUMMAT)

NONLINEAR SPRING
PROPERTIES
2 x NUMMAT*
I5,7FI0.0/5X,7FI0.0

CARD GROUP 14:

No. of cards:
Format:

Card 1

Columns Variable

1-5 N

6-15 XK1

16-25 XK2

26-35 XK3

36-45 Fl

46-55 F2

56-65 GAP

66-75 DUMMY

Card 2

6-15 CVISC

16-25 EXPCV

26-35 COULMB

36-45 CFTHN

46-55 CNSFN Coulomb damping is a function (4) (5)
of the force in nonlinear spring
number CNSFN

56-65 VBAR Velocity parameter for Coulomb (4) (5)
damping

66-75 DUMMY Reserved for future use

Go to Card Group 15.
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CARD GROUP 14:

NOTES:

NONLINEAR SPRING ELEMENT
PROPERTIES (concluded)

MATERIAL

(*) If NNS ~ 0 and/or NUMMAT ~ 0 from Card Group 3, skip this
card group.

(1) Data can be input in any order.

(2) These parameters are material properties that are used to
define the force-deformation characteristics of the
various nonlinear spring types. See section 3.3.2 for a
detailed description of each spring type and definition
of the various parameters used by each spring.

(3) Viscous damping force is

Fey = CVISC * (e) EXPCY . SIGN(e)

(See LPM/ I Section 3.3.3.1 for a description of the
nonlinear viscous damping.)

(4) The Coulomb damping force may take one of three forms:

Coulomb damping is a constant, except for spring
velocities (e) between ± VBAR, where the damping is
proportioned based on the ratio of (e)/VBAR.

Fcc = COULMB . SIGN(e); when CFTHN = CNSFN = 0.0

Coulomb damping is a function of the input force-time
history number CFTHN, evaluated at the current
integration time.

Fcr = COULMB . F(CFTHN) . SIGN(e); when CFTHN > 0.0

Coulomb damping is a function of the current force in
nonlinear spring no. CNSFN. (Note: CNSFN must be
smaller than the current spring number) .

Fcc = COULOMB· FN(CNSFN) . SIGN(e); when CNSFN >
0.0 and CFTHN = 0.0

Only one form of Coulomb damping can be used.

(See LPM/I section 3.3.3.2 for a description of the
nonlinear Coulomb damping.)

(5) Viscous damping and one form of Coulomb damping can be
used simultaneously.
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CARD GROUP 15:

No. of Cards:
Format:

COMPATIBILITY SUBMATRIX [Alii A21 ]

(N1N2 x NLB)
Variable*
2I5,F10.O,I5

Columns

1-5

Variable

I

Entry Notes

Row number of a nonzero element in (1)
All

the submatrix.

6-10 J Column number of the above nonzero (2)
All

element in the submatrix.

11-20 AIJ Value of the above nonzero element,
All

A(I,J), of the submatrix.

21-25 INXEL Beam element number, if the value
AIJ given above is to be divided
by the beam length.

Go to Card Group 15.

NOTES:

(*) If NBEAMS ~ 0 from Card Group 3, skip this card group.
One card is required for each nonzero element.

(1) 0 < I $ (N1 + N2). I $ 0 signals the end of the input
for the submatrix.

(2) 0 < J $ (2 • NBEAMS).
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CARD GROUP 16: COMPATIBILITY SUBMATRIX [A 13 /A23 J
(NIN2 x NNS)

No. of Cards: Variable*
Format: 2I5,F10.0,I5

Columns variable Entry Notes

1-5 I Row number of a nonzero element in (1)
A13

A23
Value of the above nonzero element,

Column number of the above nonzero
A I3

6-10

11-20

J

AIJ

the

element in the

A(I,J), of the

submatrix.

submatrix

submatrix

(2)

(3)

21-25 INXEL Beam element number, if the value of
AIJ given above is to be divided by
the beam length.

Go to Card Group 17.

NOTES:

(*) If NNS ~ 0 from Card Group 3, skip this card group. One
card is required for each nonzero element.

(1) 0 < I < (N1 + N2). I ~ 0 signals the end of the input
for the submatrix.

(3) 0 < J ~ NNS.

4-26



CARD GROUP 17:
No. of Cards:
Format:

COMPATIBILITY SUBMATRIX (A31 ] (N3 x NLB)
Variable*
2I5,F10.0,I5

Columns

1-5

6-10

11-20

Variable

I

J

AIJ

Entry

Row number of a nonzero element in
the (A31 ] submatr ix.

Column number of the above nonzero
element in the (A31 ] submatr ix.

Value of the above nonzero element,
A(I I J), of the (A3d submatrix.

Notes

(1)

(2)

21-25 INXEL Beam element number, if the value AIJ
given above is to be divided by the beam
length.

Go to Card Group 18.

NOTES:

(*) If Ns ~ 0 and/or NBEAMS ~ 0 from Card Group 3, skip this
card group. One card is required for each nonzero
element. Input a blank card if matrix is null, when N >
o and NBEAMS > o.

(1) 0 > I ~ N3. I ~ 0 signals the end of the input for the
submatrix.

(2) 0 < J ~ (2 NBEAMS).
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CARD GROUP 18:
No. of Cards:
Format:

COMPATIBILITY SUBMATRIX [An] (N3 X NLS)
Variable*
2I5,FI0.0,I5

Columns

1-5

6-10

11-20

21-25

Variable

I

J

AIJ

INXEL

Entry

Row number of a nonzero element in
the [An] submatrix.

Column number of the above nonzero
element in the [An] submatrix.

Value of the above nonzero element,
A(I,J), of the [An] submatrix.

Beam element number, if the value AIJ
given above is to be divided by the
beam length.

Notes

( 1)

(2)

Go to Card Group 19.

(*) If N3 ~

group.
Input a
> o.

o and/or NLS ~ from Card Group 3, skip this card
One card is required for each nonzero element.
blank card if matrix is null, when N3 > 0 and NLS

( 1) 0 < J ~ NLS.
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CARD GROUP 19:
No. of Cards:
Format:

EXTERNAL FORCING FUNCTION CONTROL
1*
F110.0,I1

Columns variable Entry Notes

1-10

11

FACTR

IFPRT

Multiplicative scaling factor for
all force-time histories. If
FACTR = 0.0, a default value of 1.0
is assumed and no scaling is performed.

Force-time history print flag;

$ 0, print force-time histories before
the scale factor is applied.

= 1, print force-time histories after
the scale factor is applied.

~ 2, force-time histories are not
printed.

Go to Card Group 20.

(*) If NOFTH $ 0 from Card Group 3, skip Card Groups 19
through 21 and go to Card Group 22.
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CARD GROUP 20:
No. of Cards:
Format:

EXTERNAL FORCING FUNCTION PARAMETERS
NODWAF*
2I5,F10.0

Columns

1-5

6-10

11-20

variable

NDOF

NFOR

FFACT

Entry

External DOF number with applies
force.

Force-time history number to be
applied at DOF number NDOF.

MUltiplicative scaling factor for
force-time history NFOR, when
applied at DOF number NDOF. No
default value.

Notes

(1)

(2)

Go to Card Group 21.

NOTES:

(*) If NODWAF ~ 0 or NOFTH ~ 0 from Card Group 3, skip this
card group.

(1) N1 < NDOF ~ (N1 + N2). Data can be input in any order,
but all NODWAF cards must be input.

(2) 0 < NFOR ~ NOFTH.

(3) FFACT is applied in addition to FACTR of Card Group 19.
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CARD GROUP 21
No. of Cards:
Format:

Card 1

EXTERNAL FORCING FUNCTION TIME HISTORIES
Variable*
8F10.0

Columns

1-10

11-20

21-30

71-80

Variable

TIM

FORC(l)

FORC(2)

FORC (7)

Entry Notes

Time value, t· (1)I

Force value at t· for time (2)I

history 1-

Force value at t· for timeI

history 2.

Force value at ~ for time
history 7.

Next card(s) -- if necessary

11-20 FORC(8) Force value at t; for time
history 8.

(2)

FORC(NOFTH) Force value at t j for time
history NOFTH.

Go to Card Group 22.

NOTES:

(*) If NOFTH ~ 0 from Card Group 3, skip this card group.

(1) This card group is terminated when the time value is less
than that given on the previous card .. This data must be
input in order of ascending time values and time values
cannot be repeated. The force-time history must be
specified to at least TIM = TSTOP + 2.0·DELTAT.

(2) If NOFTH 5 7, one card per time is input using the format
8F10.0. If NOFTH > 7, second and sUbsequent cards, if
required, use the format 10X,7F10.0.
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CARD GROUP 22:
No. of Cards:
Format:

KINEMATIC MOTION CONTROL
1*
FI0.0,2Il

Columns variable Entry Notes

1-10

11

12

FACTK

MPRT

MTYPE

MUltiplicative scaling factor for
all kinematic motion-time histories
including their initial conditions.
If FACTK = 0.0, a default value of 1.0
is assumed an no scaling is performed.

Motion time-history print flag;

5 0, print motion-time histories
before the scale factor is
applied.

= 1, print motion-time histories
after the scale factor is
applied.

~ 2, motion-time histories are
not printed.

Kinematic motion type flag;

~ 0, motion-time histories input in
Card Group 26 are accelerations.

~ I, motion-time histories input in
Card Group 26 are velocities.

Go to Card Group 23.

NOTES:

(*) If NOMTH ~ 0 from Card Group 3, sk ip Card Groups 22
through 26 and go to Card Group 1.
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CARD GROUP 23:
No. of Cards:
Format:

KINEMATIC MOTION PARAMETERS
N1*
2I5,F10.0

Columns

1-5

6-10

11-20

Variable

NDOF

MTH

FACTM

Entry Notes

External DOF number with kinematic (1)
(i.e., known) motion

Kinematic motion-time history number (2)
to be applied at DOF number NDOF

Multiplicative scaling factor for (3)
motion-time history MTH, 'when
applied at DOF number NDOF. No
default value.

Go to Card Group 24.

NOTES:

(*) If N1 ~ 0 or NOMTH ~ 0 from Card Group 3, skip this card
group.

(1) . 0 < NDOF ~ N1. Data can be input in any order, but all
N1 cards must be input.

(2) 0 < MTH ~ NOMTH.

(3) FACTM is applied in addition to FACTK of Card Group 22.
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CARD GROUP 24:

No. of Cards:
Format:

Card 10

KINEMATIC MOTION INITIAL CONDITIONS-­
DISPLACEMENTS
Variable*
10X,7F10.0

Columns

11-20

21-30

71-80

variable

DINIT(l)

DINIT(2)

DINIT(7 )

Entry

Initial displacement for motion­
time history 1.

Initial displacement for motion­
time history 2.

Initial displacement for motion­
time history 7.

Notes

Next cards(s) if necessary

11-20 DINIT(8)

DINIT
(NOMTH)

Initial displacement for motion­
time history 8.

Initial displacement for motion­
time history NOMTH

Go to Card Group 25.

NOTES:

(*) If NOMTH ~ 0 from Card Group 3, skip this card group.
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CARD GROUP 25:

No. of Cards:
Format:

Card 1

KINEMATIC MOTION INITIAL CONDITIONS-­
VELOCITIES OR ACCELERATIONS
Variable*
10X,7F10.0

Columns

11-20

21-30

71-80

variable

VAINT (1)

VAINT(2)

VAINT(7)

Entry

If MTYPE ~ 0, initial velocity for
motion-time history 1. If MTYPE ~ 1,
initial acceleration for motion-time
history 1.

If MTYPE ~ 0, initial velocity for
motion-time history 2. If MTYPE ~ 1,
initial acceleration for motion-time
history 2.

If MTYPE ~ 0, initial velocity for
motion-time history 7. If MTYPE ~ 1,
initial acceleration for motion-time
history 7.

Notes

Next card(s) -- if necessary

11-20 VAINT(8) If MTYPE ~ 0, initial velocity for
motion-time history 8. If MTYPE ~ 1,
initial acceleration for motion-time
history 8.

VAINT
(NOMTH)

Go to Card Group 26.

NOTES:

If MTYPE ~ 0, initial velocity for
motion-time history NOMTH. If MTYPE ~ I,
initial acceleration for motion-time
history NOMTH.

(*) If NOMTH ~ 0 from Card Group 3, skip this card group.
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CARD GROUP 26:
No. of Cards:
Format:

Card 1

KINEMATIC MOTION TIME HISTORIES
Variable*
8FIO.0

Columns

1-10

11-20

21-30

variable

TIM

AMOT (1)

AMOT(2)

Entry

Time value, ti.

Motion value at t j for motion­
time history 1.

Motion value at t j for motion­
time history 2.

Notes

(1)

(2) (3)

71-80 AMOT(7) Motion value at t· for motion-
I

time history 7.

Next card(s) -- if necessary

11-20 . AMOT (8) Motion value at t· for motion-I

time history 8.

AMOT

Go to Card Group 1.

NOTES:

Motion value at t j for motion­
time history NOMTH.

(*) If nomth $ 0 from card group 3, skip this card group.

(1) This card group is terminated when the time value is less
than that given on the previous card. The data must be
input in order of ascending time values and the time
values cannot be repeated. The motion-time history must
be specified to at least TIM = TSTOP + 2.0 • DELTAT.

(2) Motion values are in acceleration or velocity units
depending on the value set for MTYPE in Card Group 22.
If NOMTH 5 7, one card per time is input using the format
8FI0.0. If NOMTH > 7, the second and sUbsequent cards,
if required, use the format 10X,7FI0.0
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CARD GROUP 26:

NOTES: (concluded)

KINEMATIC MOTION TIME HISTORIES (concluded)

(3) If acceleration values are input, linear interpolation is
used to obtain accelerations at any time t; velocity and
displacement are obtained using a linear acceleration
assumption (i.e., quadratic velocity variation and cubic
displacement variation).

If velocity values are input, accelerations are
calculated at the input time values using a linear
acceleration assumption, and all kinematic quantities are
obtained as described above.

See Appendix D of Kariotis, (1992), for a more detailed
description of the linear interpolation algorithms
utilized in the code.
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SECTION 5

SAMPLE PROBLEM

Sample Problem

The problem represents a five-story shear wall with lumped masses

representing floor weights at each story height. The model is

represented by five beams and five masses as shown in Figure 5-1.

Each beam element represents a floor level.

Beam Properties:

Beam length = story height = 12 ft. = 144 inches.

Beam width = 20 ft. = 240 inches.

Beam thickness = 7.6 inches.

E = 3000 ksi.

EI = 3000 x
7.6 X (240)3

12
= 2.628 X 10 10 k - in. 2

Mass =

Dynamic Model:

30

386.4
= 0.0776

The active DOF as shown in Figure 5-2 are subdivided into known and

unknown DOF. The ground motion is the known and the translational

OaF of all five masses are the unknowns. There are two OaF

associated with each mass at the end of the beam. Since only the

translational DOF are to be considered, the rotational DOF are to
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be eliminated. These OOF are shown in Figure 5-2.

internal deformation of all beams are shown in Figure

5-2.

Compatibility Matrices:

Also, the

The only non-zero matrices are; [All]' [A21 ] and [A31 ]. [All]' [A21 ]

relate the active OOF to the beams internal deformations. [A3l ]

relates the eliminated OOF to the beams internal deformation.

Results:

A sample input file and a part of the output is presented in the

following section.

The relationship of the degrading EI value of the beam with the

rotation angle is shown in Figure 5-3. The EI ratio is the

degraded EI value as a percentage of the initial EI. Figure 5-4

represents the ground motion used for the analysis. The

displacement of the top mass relative to the ground is shown in

Figure 5-5. This is for linear beam elements with no degradation

allowed.

Comparisons of the top displacement as evaluated by LPMjII and

SAP90 are presented in Figures 5-6 and 5-7. The stiffness used in

the SAP90 model is the fully degraded stiffness of the beam

elements as obtained from the LPMjII prism. There is no damping
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for the response in Figure 5-6 while the response as shown in

Figure 5-7 has a mass damping ratio of 0.75. Tables 3 and 4 show

the ratio of EI compared to the initial EI for both damping

conditions.

Conclusions:

The displacement for the linear beam with no degradation as shown

in Figure 5 indicated a smaller amplitude and higher frequency

contents than the response of an identical system with degraded

elements. Figure 5-6 show the response of LPMjII with no damping

compared to the SAP90 response of a linear beam that has properties

equal to the final degraded stiffness as obtained from LPMjII. It

is clear that SAP90 response is greater than LPMjII, since it

starts with the final stiffness of LPMjII. Adding damping for

similar runs forces the displacements to converge at about six

seconds into the record as shown in Figure 5-7.

Tables 3 and 4 indicated that damping controls the maximum rotation

and thus controls the degradation of the beams.
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BEAM NO.

1
2
3
4
5

TABLE 1

BEAMS INITIAL PROPERTIES

LENGTH

144.0
144.0
144.0
144.0
144.0

INITIAL EI

2.6E+10
2.6E+10
2.6E+10
2.6E+10
2.6E+10

TABLE 2

MATERIAL STIFFNESS DEGRADATION RATE

INCREMENT ROTATION EI
NO. (rad. ) RATIO

1 0.000000 1.0
2 0.000005 0.9
3 0.000030 0.8
4 0.000070 0.7
5 0.000110 0.6
6 0.000160 0.5
7 0.000250 0.4
8 0.000350 0.3
9 0.000400 0.2

10 0.000600 0.1
11 0.000800 0.05
12 0.100000 0.05
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TABLE 3

BEAMS FINAL DEGRADED STATE, AND
THE TIME OF OCCURRENCE FOR THE
CASE WITH MASS DAMPING = 0.75

BEAM ROTATION FINAL
NO. (rad. ) EI RATIO

1 0.002736 0.05
2 0.000262 0.40
3 0.000110 0.60
4 0.000042 0.80
5 0.000003 0.90

TIME = 5.47 (sec. )

TABLE 4

BEAMS FINAL DEGRADED STATE, AND
THE TIME OF OCCURRENCE FOR

THE CASE WITH NO DAMPING

BEAM
NO.

1
2
3
4
5

ROTATION
(rad. )

-0.002439
-0.002299
-0.000805

0.000056
0.000060

FINAL
EI RATIO

0.05
0.05
0.05
0.40
0.60

TIME = 13.44 (sec.)
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SAMPLE PROBLEM, TEST FIVE STORY MODEL, ELCENTRO N-S
1 5 5 5 1 0 0 0 0 1
100 0 0 5 0 0 0 0 0
0.0001 0.0 20.0 0.0 0.0 0.0 0.0 0.0
1.0 0.00 0.75 0.0
1 1 0 5
000000000000000000
1 1 6 0
0
2 0.0776 0.0 0.0 0.0 0.0
3 0.0776 0.0 0.0 0.0 0.0
4 0.0776 0.0 0.0 0.0 0.0
5 0.0776 0.0 0.0 0.0 0.0
6 0.0776 0.0 0.0 0.0 0.0

1 144.0 2.628E10 0.0 0.0 0.0
2 144.0 2.628E10 0.0 0.0 0.0
3 144.0 2.628E10 0.0 0.0 0.0
4 144.0 2.628E10 0.0 0.0 0.0
5 144.0 2.628E10 0.0 0.0 0.0

1 1 12
2 1 12
3 1 12
4 1 12
5 1 12
1 12

0 1.0
0.000005 0.9
0.000030 0.8
0.000070 0.7
0.000110 0.6
0.000160 0.5
0.000250 0.4
0.000350 0.3
0.000400 0.2
0.000600 0.1
0.000800 0.05
1.1 0.05
1 1 1.0 1
1 2 1.0 1
2 1 -1.0 1
2 2 -1.0 1
2 3 1.0 2
2 4 1.0 2
3 3 -1.0 2
3 4 -1.0 2
3 5 1.0 3
3 6 1.0 3
4 5 -1.0 3
4 6 -1.0 3
4 7 1.0 4
4 8 1.0 4
5 7 -1.0 4
5 8 -1.0 4
5 9 1.0 5
5 10 1.0 5
6 9 -1.0 5
6 10 -1.0 5
0
1 2 1.0
1 3 1.0

SAMPLE INPUT DATA FILE
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1.0
1.0
1.0
1.0
1.0
1.0
1.0

4
5
6
7
8
9
10

20
1.0
0.0
0.0

0.0000 -0.5512
0.0200 -4.2520
0.0400 -3.9764
0.0600 -3.4646
0.0800 -3.7401

2
2
3
3
4
4
5
o
1.000
1 1

53.1400
53.1600
53.1800

0.0
STOP

-1.1024
-0.2756
-0.9055

SAMPLE INPUT DATA FILE
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SAMPLE PROBLEM, TEST FIVE STOREY MODEL, ELCENTRO N-S

MAS T E R CON T R 0 L PAR A MET E R S

NO. OF EXTERNAL D-O-F WITH KINEMATIC MOTION =
NO. OF EXTERNAL D-O-F WITH UNKNOWN MOTION
NO. OF EXTERNAL D-O-F TO BE ELIMINATED =

NO. OF NONLINEAR BEAM ELEMS =
NO. OF PROPERTIES FOR NONLINEAR BEAM ELEMENTS · · · · =

NO. OF NONLINEAR SPRING ELEMENTS · · · . . · =
NO. OF PROPERTIES FOR NONLINEAR SPRING ELEMENTS · · · · =

NO. OF EXTERNAL D-O-F WITH APPLIED FORCES . · · · · =
NO. OF FORCE TIME HISTORIES · · · · · · · · =
NO. OF MOTION TIME HISTORIES · · · · =

DATA STORAGE INCREMENT . . . . · · · · =

DAMPING FLAG FOR NONLINEAR SPRING ELEMENTS · · · ·DAMPING FLAG FOR LINEAR ELEMENTS . · · · · =

1
5
5

5
1

a
a

o
o
1

100

a
a

NO. OF NORMAL MODES REQUESTED FOR THE LINEAR SYSTEM
MAX. NO. OF ITERATIONS FOR CALCULATING NORMAL MODES =

5
100

TIME DEPENDENT MASS FLAG
SPECIAL FULL MASS MATRIX FLAG
CONSTANT FORCE FLAG . • • •

=
· . . . =

=

a
a
a

BLANK COMMON BLOCK SIZE

INITIAL INTEGRATION TIME STEP
INTEGRATION START TIME •••••
INTEGRATION STOP TIME • • • •
NO. OF INTEGRATION STEPS AT INITIAL TIME STEP
TIME WHEN KINEMATIC MOTIONS ARE TO BE INITIATED
TIME WHEN APPLIED FORCES ARE TO BE INITIATED
INTEGRATION TIME FOR GENERATION OF RESTART
INTEGRATION TIME TO CHANGE TIME STEP ••••
NEW INTEGRATION TIME STEP • • • • • . •

ACCELERATION OF GRAVITY •• • • • • •
DAMPING CONSTANT STIFF LINEAR SYSTEM . • . •
MAX. ACCELERATION ALLOWED BEFORE PROGRAM TERMINATION
ITERATION TOLERANCE FOR CALCULATING NORMAL MODES

NONLINEAR SPRING ELEMENT NO. TO BE MONITORED FOR
THE INITIATION OF THE APPLIED FORCES

FORCE IN NONLINEAR SPRING ELEMENT TO CONTROL THE
INITIATION OF THE APPLIED FORCES . . . .

SAMPLE OUTPUT DATA FILE
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= 65000

= 1.0000E-04
= O.OOOOE-Ol
= 2.0000E+01
= 2.0000E+05
= O.OOOOE-Ol
= O.OOOOE-Ol
= 4.0000E+Ol
= 4.0000E+Ol
= O.OOOOE-Ol

= l.OOOOE+OO
= O.OOOOE-Ol
= l.0000E+l5
= l.OOOOE-06

= 0

O.OOOOE-Ol



C o M PAT I B I LIT Y S U 8 MAT R I X A11/A21

ROW(l) COL(J) A(I,J) BEAM ELEMENT NO.
(MAX. OF 6) (MAX. OF 10) (MAX. OF 5)

1 1 1.00000E+00 1
1 2 1.00000E+00 1
2 1 -1.00000E+00 1
2 2 -1.00000E+00 1
2 3 1.00000E+00 2
2 4 1.00000E+00 2
3 3 -1.00000E+00 2
3 4 -1.00000E+00 2
3 5 1.00000E+00 3
3 6 1.00000E+00 3
4 5 -1.00000E+00 3
4 6 -1.00000E+00 3
4 7 1.00000E+00 4
4 8 1.00000E+00 4
5 7 -1.00000E+00 4
5 8 -1.00000E+00 4
5 9 1.00000E+00 5
5 10 1.00000E+00 5
6 9 -1.00000E+00 5
6 10 -1.00000E+00 5

COM PAT I B I L I T Y S U B MAT R I X A31

ROW(l) COL(J) A(I,J) BEAM ELEMENT NO.
(MAX. OF 5) (MAX. OF 10) (MAX. OF 5)

1 2 1.00000E+00 0
1 3 1.00000E+00 0
2 4 1.00000E+00 0
2 5 1.00000E+00 0
3 6 1.00000E+00 0
3 7 1.00000E+00 0
4 8 1.00000E+00 0
4 9 1.00000E+00 0
5 10 1.00000E+00 0

COMPATIBILITY SUBMATRICES
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6.1 INTRODUCTION

SECTION 6

APPLICATIONS

LPM/II is a general purpose dynamic computer code that is explicit

in that the materials or element behavior is determined by one of

several separate methods. The behavior of the elements is then

coupled with the LPM/II code to determine dynamic displacements of

the system. The dynamic model is excited by acceleration/time or

velocity/time sequences. These sequences may be scaled recorded

ground motions or artificially generated records. Selection of the

input data used for excitation of the dynamic model is generally

made by comparing the spectra of a large number of available

records or generated records with a spectrum that is appropriate

for the analysis. As a general rule several records, five to ten,

are used to develop a data base for interpretation of the dynamic

behavior of the structural element or system. These five to ten

records are amplitude scaled within a selected range of frequency,

to an intensity equal to the appropriate spectra. Selection of the

frequency range and methods of scaling are discussed in the

following references, (Kariotis, 1989), (Kariotis, 1992).

LPM/II is restricted to dynamic analysis in time domain. The

dynamic behavior of the structural system is best presented as plot

of displacement versus time. These dynamic displacements are

related to materials stress and nonlinear strains by reference to
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the materials model that was used to define the stiffness and

strength degradation/displacement relationship.

The following example is a description of an application of LPM/II

to a specific problem. Assume the problem is to analyze the

nonlinear behavior of a multistory reinforced masonry shear wall.

This shear wall provides the lateral resistance to earthquake

caused inertial forces at floor levels and a partial support of the

vertical floor loads. The reinforcement of the masonry shear wall

and its dimensions have been determined by a design procedure. The

weight of each floor level are known and these floor diaphragms are

very stiff for loading in their plane and can be considered as

rigid in the plane of the diaphragm.

The stiffness degradation of the shear wall is determined by FEM

analysis of each story height of the wall. This analysis imposes

a constant value of moment on the story height of the wall section

and the stiffness degradation in the story height section is

related to that moment. The moment value used in LPM/II for

determination of stiffness is the maximum value that may occur at

either end of the wall section. This procedure tends to favor

replication of primary mode displacements and may over estimate

higher mode displacements.

The building model is a series of cantilever shear walls, either

fixed at their base or with a rotational spring at the base, that

are slaved to a common displacement and mass at each diaphragm

level. Each story height of every shear wall is described as a
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beam element. The curvature/effective EI relationship is given for

each element. The base of each shear wall is considered fixed and

the ground motions are applied to the system at the fixed base.

The LPM/II model provides output in curvature at each story level.

Internal stresses and strains in the beam element are found by

reviewing the FEM analysis. The stresses and strains caused by

ground motions scaled to a 475 year average return period

earthquake are not limited to "code" stresses and strains. The 475

year average return per iod spectrum represents a ground motion

where nonlinear behavior of structural elements is implicitly

accepted. The nonlinear dynamic analysis is to determine if drift

limitations are exceeded. If conformance with stress limitations

are the criteria, it is common practice to scale their time­

histories of ground motions to a Lower Level Earthquake (LLE). The

LLE is commonly defined as that spectrum that has a 50 percent

probability of being exceed in a 50 year time period. The average

return period of the LLE, defined in this manner, is 72 years.

LPM/II is efficient for the dynamic analysis of reinforced concrete

or masonry walls shaken normal to the plane of the wall. The

length (height) of the wall is subdivided into beam elements.

Engineering jUdgement is used to select the length of the element.

Obviously two elements will be a poor representation of a wall that

is free to rotate at both ends. Ten elements may cause a lengthy

run time and not produce better data than an eight element

subdivision.
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The curvature/effective E1 relationship of the reinforced wall is

determined by a static analysis of the segment by FEM/1. The

curvature is imposed incrementally and a plot of moment curvature

is obtained. The stiffness degradation of the wall element is

programmed with the FEM data. The input motion to the ends of the

wall, its top and bottom, is either a dynamic motion scaled to a

deterministic spectrum or to a motion that is the result of the

dynamic motion of the wall support, generally a diaphragm.

Reference (Kariotis, 1992) describes the analysis of two single

story buildings using LPM/11 and LPM/1. The out-of-plane walls use

LPM/11 beam elements. The inplane shear wall and the diaphragm was

modeled by LPM/1 springs. A mUltistory masonry bearing wall

building is also analyzed in the same reference by LPM/II. The

cantilever shear walls were modeled by LPM/1I beam elements. The

out-of-plane walls in each story height were also modeled by LPM/II

beam elements.
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