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PREFACE

This report presents the results of Category 2.0, Task 2.3 of the

u.s. Coordinated program for Masonry Building Research. The

program constitutes the United states part of the United states­

Japan coordinated masonry research program conducted under the

auspices of The Panel on Wind and Seismic Effects of the U.S.-Japan

Natural Resources Development Program (UJNR).

This material is based on work supported by the National Science

Foundation under Grant Nos. ECE-8517023 and CES-8722867. Program

Director: Dr. S.C. Lui.

Any 0p1n1ons, findings, and conclusions or recommendations

expressed in this pUblication are those of the authors and do not

necessarily reflect the views of the National Science Foundation

and/or the United States Government.
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SECTION 1

INTRODUCTION

--,~. 'rfi:ese studies of the comparative behavior of nonlinear single­

degree-of-freedom (SDOF) and nonlinear multiple-degree-of-freedom

(MDOF) models were made to better understand the dynamic behavior

of a dynamic model with hysteretic damping, the SDOF, and of a

model with specified damping, the MDOF. Each of these models can

be used for dynamic modeling of structures. The limitations of

each of the nonlinear models provided the impetus for the

development of these two nonlinear lumped parameter models.---

The SDOF model can have three degrees of freedom, rotational,

vertical and horizontal for replication of a shear wall rotating

and uplifting on the supporting soils. It can represent a

multistory structure if the dynamic displacement at each story

level can be represented by only a translation degree of freedom at

that level. The SDOF model can model mUltistory shear walls by

converting the multi-story shear wall structure into an equivalent

SDOF model (Biggs, 1964 and Saiidi, 1981). This SDOF model uses

hysteretic damping by replicating the loading, unloading and

reloading stiffnesses of the reinforced masonry shear wall. The

rules for describing the stiffness parameters are obtained from

cyclic testing of experimental specimens. However, the SDOF model

is limited to predicting only the dynamic displacements of the

fundamental mode of the structure. The shear calculated by the

SDOF model is limited to the shear forces caused by primary mode

response.

The MDOF model replicates a cantilever shear wall, either fixed at

'its base, or with a rotational spring at its base. The rotational

spring at the base cannot fUlly simulate uplifting at the

foundation-soil interface but can represent foundation flexibility.

The MDOF model has the capacity to simulate stiffness degradation

in the story-height beam elements that is due to tensile cracking,

reinforcement yielding and crushing of the compression zone at the
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edges of the shear wall. However, a preplanned amount of damping

must be added to the beam elements of the MDOF model. The quantity

of damping should replicate the hysteretic damping of the SDOF

model as closely as possible.

T~is study is of how to specify the quantity of damping of the MDOF

model. Two SDOF models, one with a very low quantity of hysteretic

damping and one with a more typical quantity of hysteretic damping

were comparing to MDOF models with specified damping. The goal of

these studies was to have equal dynamic response of the two

nonlinear models. _~~~~-----
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SECTION 2

MDOF NONLINEAR BEAM

2.1 INTRODUCTION

A nonlinear model of reinforced masonry shear walls has been

developed to study the response of multi-story reinforced masonry

structures sUbjected to earthquake ground motions (Kariotis, 1992).

The structure used in this study is represented by a massless shear

wall that provides the stiffness and has lumped masses at floor

levels. A nonlinear finite element analysis program was used to

establish the stiffness/rotation relationship for each of the story

height panels.

2.2 MODEL DESCRIPTION

The model consists of a 60 feet tall shear wall as shown in Figure

2-1. It has a width of 20 feet and it is 7 5/8 inches thick.

Properties of the masonry wall between floor levels is given in

Table 2-1. The properties of the strip of the wall at each floor

level is given in Table 2-2. The wall is assumed to be rigidly

fixed with the base, thus, allowing no rotation. Five lumped

masses equivalent to a weight of 30 kips each represent the floor

masses that are located at each floor level and are spaced equally

along the height of the shear wall. Additional horizontal

reinforcement was included in a thin strip at each floor level.

This reinforcement represents the diaphragm reinforcement that is

mobilized with the wall reinforcement.

2.3 STIFFNESS/ROTATION RELATIONSHIP

The stiffness of a single panel of a story height was evaluated

from the moment/rotation relationship. A finite element mesh of

two stories was constructed as shown in Figure 2-2. The top of the

model is statically displaced by SUbjecting the top nodes to a

controlled displacement. The reaction at the top nodes was
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calculated for each displacement increment and an equal force is

applied at the top of the lower story. The additional

reinforcement in the diaphragm contributes towards reducing the

local deformations due to load application.

The top panel is used to apply the loading uniformly to the lower

panel which is the segment of the wall represented by the beam

element. The stiffness degradation of this beam element is

evaluated.

The stiffness was evaluated using simple beam theory with pure

bending. The moment/deflection relationship is described by the

following equation:

where

M ex) :

v

EI

so

where

o

M(x) = EI x d
2
v

dx 2

Moment at location x

Lateral deflection of the beam

Effective stiffness factor of the beam

EI = M/ dO
dx

Angle of rotation, dv/dx

2-1

2-2

The rotation angle 8 of the axis of the beam, as shown in Figure 2­

3, is equivalent to the relative rotation between the two end

surfaces of the beam. The net rotation was calculated by

monitoring the relative translational displacement at the edges of

the top surface of the panel as sho~~ in Figure 2-3; such that:

2-3
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where

L

Difference in vertical deflection

Difference in horizontal deflection

Wall depth

The moment in the beam section is defined as:

M(x)= -(Pl-P2)x+(2Pl-P2)L 2-4

Combining Equations 2-2 and 2-4:

dv 1 [- = - - (2 Pl - P2) Lx
dx EI

x
2

]- (Pl - P2) "2 2-5

and for x = L:

dv L
2 [3 1] 2-6= -- -Pl - -P2

dx EI 2 2

and:

EI = -~[~Pl - ~P2] 2-7

In the case of Pl = P2:

EI =
_ P1L

XL = ML 2-8---r T

A moment versus rotation plot is presented in Figure 2-4. The

relationship between EI and 8 as illustrated by Equation 2-7 is
shown in Figure 2-5. This figure shows the rate of degradation of

stiffness caused by the internal rotation due to the presence of

moment only and the absence of shear. The relationship between

effective EI and 8 is dependent on the loading system. In the

presence of substantial shear in the section, a different

relationship between EI and 8 exists. Double curvature of the beam

element would produce significant degradation in stiffness with
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Iittle change in the rotation. Thus, the Ell e relationship is

valid for primary mode deflection of multi-story walls, where

cantilever curvature is predominate.

2.4 DYNAMIC MODEL

A MDOF system of beam elements with degrading stiffness can be

modeled. A computer program, LPM/II, was developed (Kariotis,

1992) for the dynamic analysis of nonlinear lumped parameter

models. The solution techniques are similar to LPM/I (Kariotis,

1992). The nonlinearity of the beam elements is defined by the

relationship between effective EI and 8. This relationship is

defined as a stair-step type function. At each time step of the

dynamic solution, a net relative rotation e is calculated for each

beam element and the effective EI is determined from the EIle

relationship for that rotation of each beam. The new stiffness is

compared to the previous value for each beam and if there is any

reduction in the local stiffness of any beam element, the local

stiffness is adjusted and the global stiffness matrix is updated

and the solution is continued.

The degradation is related to the direction of the deformation,

where it is assumed that net positive internal deformation

influences the stiffness for the positive rotation and a similar

relationship holds for negative deformation, so there are two local

stiffness matrices for each element; one for the positive

deformation and one for the negative deformation. The appropriate

stiffness values are adopted based on the direction of internal

deformation of each individual element. This is based on the

assumption that the degradation of stiffness is a result of

cracking in the concrete or yielding of the steel. The location of

the cracked concrete and the yielding steel depends on the

direction of deformation, such that when the rotation is positive,

assuming primary mode deflection governs, the degradation of

stiffness of the whole beam results from cracking and yielding at

one edge of the beam due to tensile stress, while a negative
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rotation causes the other edge of the beam to degrade.

2.4.2 MDOF DAMPING

For the MDOF system, there are three types of damping that can be

implemented using LPM/II:

2.4.2.1 Mass Damping

This type of damping assumes that the global damping matrix is

proportional to the mass damping as given below:

[C) = ex[M] 2-9

Where ex is the constant of proportionality. This damping matrix is

usually diagonal and there is no coupling between different degrees

of freedom. This formulation of the damping matrix provides

different critical damping ratios for the various normal modes of

vibration. The amount of damping for each mode is inversely

proportional to the mode natural frequency following the

relationship:

Where

s·I
w·I

s. = ex
I 2w.

I

critical damping ratio for mode i

Undamped circular frequency for mode i

2-10

For modes with higher frequency, for a fixed value of ex, the

critical damping ratio is less than that of a lower frequency. So,

mass damping is mainly a fundamental mode damper. Figure 2-7 shows

the effect of mass damping on the response of a MDOF system as

represented by the displacement at a height Lc of the system

sUbjected to the excitation signal shown in Figure 2-6.
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2.4.2.2 STIFFNESS DAMPING

Another type of proportional damping is stiffness damping and is

defined as:

[C]=8[K] 2-11

Where P is the proportionality factor, this type assumes that the

global damping matrix is proportional to the global stiffness

matrix. This formulation is modal damping, where:

8w j 2-12O. =
'2

So the damping ratio for a mode, is proportional to the frequency

of this mode for any fixed value of~. Thus, this is mainly a

higher mode damper. Figure 2-8 compares the response of the MDOF

system SUbjected to stiffness damping compared to the undamped

system.

2.4.2.3 NONUNIFORM DAMPING

This is a special form of proportional damping, where the global

damping matrix is constructed in the same manner as the global

stiffness matrix. The uncoupled damping matrix of each beam is

proportional to the uncoupled stiffness matrix of that beam as

given below:

where

2-13

[C]t Uncoupled damping matrix of km beam

[S]t Uncoupled stiffness matrix of km beam

Pt Constant of proportionality of k~ beam

This form of damping provides different damping for different
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beams. It has the flexibility to update the stiffness matrix and

thus influence the damping matrix after some degradation of

stiffness. But, it is assumed in this study that the damping of

the beam elements is not proportional to the degrading stiffness of

the element, but rather to the initial stiffness of each element.

The damping increases if there is a degradation of stiffness, so

the elements that are likely to experience more internal

deformation, such as the bottom element which will have the most

deformation for primary mode deflection. The effect of this type

of damping is illustrated in Figure 2-9 showing the response for a

system sUbjected to nonuniform damping compared to an undamped

system.
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TABLE 2-1
MATERIAL PROPERTIES OF

THE WALL PANEL

General Properties
Material Model Parameter
Poisson's Ratio of Masonry
Thickness of Composite
Weight Density of Composite

compressive Properties
Uniaxial compressive strength of Masonry
Masonry Strain at uniaxial Comp. strength
Shape Factor A(l), Rising Branch
Shape Factor A(2), Falling Branch
Shape Factor A(3), Exponential Limit
Shape Factor A(4), Exponential Attach. Pt.
Masonry Initial Compression Modulus
Masonry Comp. Unloading Focal Point Factor
Compression Damage Model No.

Tensile Properties
Elastic Modulus of Masonry, Tension
Cracking Strength of Masonry
Tensile Cracking strain of Masonry
Tension Stiffening (TS) Model No.
B(l), Exponential Limit, TS Model 2
Exponent Alpha, TS Model 2

Reinforcement Properties
Elastic Modulus of Reinforcement
Bilinear Factor, Reinf. Plastic Modulus
Plastic Modulus of Reinforcement
Vertical Reinforcement Ratio
Yield Stress of Vertical Reinforcement
Yield strain of Vertical Reinforcement
Horizontal Reinforcement Ratio
Yield Stress of Horizontal Reinforcement
Yield strain of Horizontal Reinforcement

2-8

= 1
= 1.6000E-01
= 7.6000E+OO
= O.OOOOE-Ol

= 3.0000E+OO
= 2.2000E-03
= 2.0000E+OO
= 2.0000E+OO
= 1.0000E-Ol
= 6.0000E-Ol
= 2.7273E+03
= 1.OOOOE+OO
= 2

= 3.0000E+03
= 1.0000E-Ol
= 3.3333E-OS
= 2
= O.OOOOE-Ol
= 5.0000E-02

= 2.9000E+04
= 2 .. 0000E-02
= 5.8000E+02
= 1.6400E-03
= 6.S000E+Ol
= 2.24l4E-03
= 1.6400E-03
= 6.S000E+Ol
= 2.24l4E-03



TABLE 2-2
MATERIALS PROPERTIES OF

THE WALL AT THE FLOOR LEVEL

General properties
Material Model Parameter
Poisson's Ratio of Masonry
Thickness of Composite
Weight Density of Composite

Compressive Properties
Uniaxial Compressive strength of Masonry
Masonry strain at Uniaxial Comp. strength
Shape Factor A(l), Rising Branch
Shape Factor A(2), Falling Branch
Shape Factor A(3),o Exponential Limit
Shape Factor A(4), Exponential Attach. Pt.
Masonry Initial compression Modulus
Masonry Comp. Unloading Focal Point Factor
Compression Damage Model No.

Tensile properties
Elastic Modulus of Masonry, Tension
Cracking Strength of Masonry
·Tensile Cracking Strain of Masonry
Tension Stiffening (TS) Model No.
B(l), Exponential Limit, TS Model 2
Exponent Alpha, TS Model 2

Reinforcement Properties
Elastic Modulus of Reinforcement
Bilinear Factor, Reinf. Plastic Modulus
Plastic Modulus of Reinforcement
Vertical Reinforcement Ratio
Yield Stress of Vertical Reinforcement
Yield strain of vertical Reinforcement
Horizontal Reinforcement Ratio
Yield stress of Horizontal Reinforcement
Yield strain of Horizontal Reinforcement

2-9

= 1
= 1.6000E-01
= l.OOOOE+Ol
= O.OOOOE-Ol

= 3.0000E+OO
= 2.2000E-03
= 2.0000E+OO
= 2.0000E+OO
= 1.0000E-Ol
= 6.0000E-Ol
= 2.7273E+03
= 1.0000E+OO
= 2

= 3.0000E+03
= l.OOOOE-Ol
= 3.3J33E-05
= 2
= O.OOOOE-O!
= 5.0000E-02

= 2.9000E+04
= 2.0000E-02
= 5.8000E+02
= 1.6400E-03
= 6.5000E+Ol
= 2.2414E-03
= 5.2000E-02
= 6.5000E+Ol
= 2.2414E-03



20 feet

Beam 5.I ~~-:i-h.-
~
0

m
.jJ I ~I~--- -- I I Beam 4II -II
I4-l

N...
CIIJ I ~---

~_- I I Beam 3
IV It'I
I

t-----lC____ --_..... Floor
0

Beam 2 Beam

-Mass

Wall Beam 1

Physical Configuration Dynamic Model

FIGURE 2-1



--.
Floor Level

Wall Panel

FIGURE 2-2 FINITE ELEMENT MESH FOR TWO PANELS

2-11



Loading Configuration

LLl--,,------,t
I

'\
'\

'\.,
,
'"
"

-_.

",,
"

~1

M

Moment-Rotation

FIGURE 2-3 LOADING AND DEFORMATION OF TWO-PANEL SYSTEM

2-12



9876s32

1800

2°OOi---.---r---...-------r----:========!:=:===---i

c
u
e 8000
~

600

400

200

0
0

Rowion (nd.) xlO']

FIGURE 2-4 MOMENT ROTATION RELATIONSHIP FOR A WALL BEAM ELEMENT

xlO IO

2.5r--~-"""T"'""-"""""'----'--~-------'---"----'

2

.....
1.5.5

.s
oi
a.a
iil

005

987
O~"=;:::;:::===~===-----.Jo 2 3 4 S 6

Rotation (rad.) xlO..]

FIGURE 2-5 EI ROTATION RELATIONSHIP FOR A WALL BEAM ELEMENT

2-13



l000,-----.---.----~--.___-_"T""--_r___-__._-_,

:=r .::-r=J=--=j----~--=;---1----
400~.-~- .1-" .. ---;--~I 200 nJ -,- -.;-----;---i---··-~·----· ..l--i---

8 orf- j i

] -200 --\JI-!-l--+l--+-----i--~--~-+_-_+_-_f
~
< -4oo~--;u~.ji-~--+---!----+---i-i

-«>o~---i--H--L--_+_--!_--__+_--!--__+_-__f

-800I--~-lI-~-...;---;__-_i_--;__-__+_-__1

_1000l-_-L__~_.....i..___~_ _i___.i.__ __i..._ __J

o 0.5 1.5 2.S 3.5 4

Iu:nc(sec:.)

FIGURE 2-6 BASE EXCITATION SIGNAL

2'--~--"""""-"""'--~-....,..---,r---""T""---'

43.5

v

2.S

\! f \! \
\i! \ /

1
!

/ i ~., '~'.

\,. . .f~\ .! \! . '. I \

\V

..
;'

f
i

,
\

v
\1

!

\

1.5

,.,

\~

oI! : :

!\ i 1 _ .
1.51--~~''\~~.1-/o/D~--+-/-A--\---+--fl/_,k-+---/A.~----I

I---i-.'I-+-I;~~-j _-I-!l!4'---H'-+--,f-~-:I+-~-+"~-~
:j n
;,: f
~ j...... 0.5.5 l\.......

13
"i 0 .....
j ~
~ ~.5

-I

-1.5

-2
0.50

TIme(sec.)

FIGURE 2-7 HOOF RESPONSE WITH ZERO DAMPING AND MASS
DAMPING OF a m=O.95

2-14



2,------;----,---,-----;---,-----,---,-----,

~.5 .-_.
1-

-201---0...i...5--........--1~.5-- ....2--2.5:'-.:--~3--"':"3.5'---.....J4

T'une(sec.)

FIGURE 2-8 MDOF RESPONSE WITH ZERO DAMPING AND STIFFNESS
DAMPING OF ~=O.0007

43.5

v

.-.. ,

I'

1
v

1.5

v
\1

/\
! :

. i

:--J-+- ,...---. --\;1--;..--r--+-\......---l,...:··tr-·
'-'·..+i++++--t--i-:-i--j--:I~H·-_;r____i/i ~.\ -.'

/ 1 \_L
~..../

2

1.5

~

g 0.5

~c
0

"i 0

~ \c3 ~.5

-1

·1.5

-2
0 0.5

T'une(sec.)

F:GURE 2-9 MDOF RESPONSE WITH ZERO DAMPING AND ELEMENT
DAMPING OF ~t=O.0006

2-15





SECTION 3

SPRING SYSTEM: HYSTERESIS MODEL

3.1 INTRODUCTION

The analysis of the nonlinearity of experimental test data of

reinforced masonry and reinforced concrete structures sUbjected to

cyclic loading suggests that a model is needed which has the

complexity to represent the physical behavior of the structure and

the capability to match the experimental response. This model has

the capability to produce analytical results that replicate the

experiments and thus improve the understanding of the dynamic

response of the reinforced concrete or masonry structures to

various dynamic loadings. In this chapter, the modified spring 11

(Appendix A, LPM/ I, Kariotis, 1992) is adopted as the spring

system. The characteristics of this spring are described herein.

The performance of this spring under cyclic loading is demonstrated

for small and large deformations, emphasizing its stiffness

degradation and damping.

3.2 FORCE-DEFORMATION RELATIONSHIP

The stiffness obtained for the five story wall that represents the

mUlti-degree-of-freedom system was defined in terms of the moment

at the base versus the deformation at a particular height that is

to be defined later. The moment at the base can be a result of any

combination of loading at various levels of the structure. A

triangular load configuration as shown in Figure 3-1 is adopted to

produce a deflection mode similar to the primary mode of vibration

of the structure. The load at each floor level is proportional to

the height of the floor. The moment at the base is equivalent to:

3-1

where

Force at level r
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N

Height at level r

Total number of floors

The force-deformation relationship describing a spring for an

equivalent SDOF system represented by a single mass, He at an

equivalent height, Le is the single force Fe at that height as shown

in Figure 3-1. This force would produce an equivalent base moment

to the moment produced by triangular loading. Further description

of the force-deformation relationship is presented in the next

section.

3.3 HYSTERESIS MODEL

The general rules of the spring system are designed to simulate the

actual response of the structure. The main phases that describe

the cyclic behavior are loading, unloading and reloading. Initial

loading follows the virgin envelope as would be determined by

monotonic loading. This envelope was obtained from a monotonic

test using a nonlinear finite element analysis program FEM, (Ewing,

1990). Triangular loading as shown in Figure 3-1 was used to apply

loading on the mesh shown in Figure 3-2. Figures 3-3 and 3-4 show

the virgin envelope representing the force-deformation relationship

of this system as obtained from the finite element analysis. Figure

3-3 shows the moment as calculated using Equation 3-1 versus the

lateral displacement at the top of the wall. Figure 3-4 shows the

force Fe at a height Le versus the lateral displacement X at the

same height. This figure shows the comparison of the actual

envelope obtained from FEM analysis to the LPM/I spring model.

The virgin envelope is defined in three regions; the first is an

exponential curve modeling the transformation from elastic linear

uncracked behavior to nonlinear post-yield behavior. The remaining

two segments of straight lines describing the region of pre-peak

compressive strain phase. Unloading follows a line that has a

slope defined in terms of the initial stiffness, the peak force and

the maximum deformation of the spring as follows:
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where

K =K.~PJU IKE
I IlI4X

3-2

~ Unloading Stiffness

~ Initial stiffness

~ Maximum previous deformation

l' Exponent. Ranges between 0.5 - 0.8 for concrete

and masonry

The exponent l' controls the unloading slope where a higher value of

l' indicates a steeper unloading path as shown in the variation of

the unloading path in Figure 3-5. Reloading is defined in two

phases depending on the sign of the deformation. The first region

is defined between the zero force crossing and the deformation zero

crossing as shown in Figure 3-5. In this region the force and

deformation have opposite signs, and the reloading slope has a low

value in this region that is dependent on the unloading stiffness

and the pinching force. The pinching force is a principal factor

in the amount of damping of the system since it influences the size

of the loop. The second region of the reloading phase follows a

straight line between the origin and the force on the stabilized

envelope corresponding to the maximum deformation of the spring in

the same direction. The stabilized envelope defines the maximum

force in the spring at a displacement that has been reached in

previous cycles. The value of this force depends on the maximum

deformation in the history of the spring in the same direction, it

is modeled as a fraction of the virgin envelope force for the same

displacement. This fraction varies between unity at zero

deformation to a user defined value r at the peak force. r usually

varies between 0.7 - 0.9. This factor is significant since it

controls the variations of reloading stiffness and the amount of

energy dissipation under cyclic loading. The response of an SDOF

system implementing this type of spring is controlled by two main

components; stiffness degradation and energy dissipation.
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3.3.1 Stiffness Degradation

The stiffness of the spring at any particular deformation is

defined as the secant stiffness. Generally, the virgin envelope

controls the magnitude and the rate of degradation of the stiffness

for a monotonic test. Cyclic loading causes a different rate of

degradation of stiffness. The stabilized curve indicates that an

additional loss of stiffness is encountered on recycling to the

same internal deformation in the spring. The system's natural

frequency evaluated using the final stiffness of the degraded

system compared to the natural frequency of the system with

undegraded stiffness gives an indication of the amount of

degradation. It also provides means of comparisons between a MDOF

system and an equivalent SDOF system.

3.3.2 ENERGY DISSIPATION

This component is highly sensitive to many parameters. It is

difficult to obtain from a dynamic test. The variation of the

amount of energy loss in each cycle makes it difficult to implement

an average value in a non-hysteretic model. The energy loss per

cycle can be expressed in terms of an equivalent viscous damping

coefficient, or more conveniently, it is expressed in terms of the

critical damping ratio as (Clough, 1975):

Wo = _0_ 3-3
41TW.

where:

Critical damping ratio

Area under the force-displacement diagram.

Total area within a complete loop.

Figure 3-6 demonstrates Ws and Wo • Wo is the energy loss per cycle.

Ws is a measure of the work done by the spring such that:

Ws = lz Kx2 •

The quantity of energy dissipated in a cyclic variation with the
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unloading slope is represented in Figure 3-7 as a variation of the

critical damping ratio with 1 - the unloading exponent. A lower

value of 1 indicates a steeper unloading path. Figure 3-7 shows

the damping ratio for two cycles with a maximum displacement of 3

inches. The first cycle represents the virgin state of the spring

while the second cycle shows damping for the stabilized curve.

Equation 3-2 shows that a smaller 1 will produce a steeper

unloading slope. This will increase the area within the loop thus

increasing Wo while keeping Ws constant, thus increasing the

critical damping ratio. Figure 3-8 shows an increase in the

damping for higher pinch force. An increase in the pinch force

produces a larger area within the cycle, Wo, while leaving leaving

Ws unchanged and subsequently increasing the critical damping ratio.

There is very little variation in the amount of energy dissipation

with the variations of the stabilized curve ratio as shown in

Figure 3-9, since the increase in the stabilized force introduces

relatively comparable increases in both Wo and Ws • Tables 3-1 and

3-2 show the variation of damping as a function of the maximum

deformation of the spring for various displacement combinations.

For typical spring parameters, the amount of damping increases with

the maximum displacement as shown in Table 3-2, where the damping

for 6 inches of maximum displacement is greater than the damping of

smaller displacements, for both the first and second cycles. The

damping for a cycle depends also on the maximum deformation the

spring has experienced previously. This is shown in Table 3-2. A

second cycle of 3 inches that had a previous cycle of 6 inches, had

higher damping than that shown for two successive cycles of 3

inches. This is also illustrated in Figure 3-10. This is due to

degradation of stiffness that causes Ws to decrease more severely

than the Wo , since Wo represented by the total area within the loop

and are controlled by three variables, namely; the degraded

stiffness, the unloading slope and the pinch force, while Ws is

controlled by the degraded stiffness only. Thus, for a larger

displacement the reloading stiffness degrades and is more

influenced than the unloading slope, and the pinch force is not

affected. One important aspect of damping in hysteresis models is
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that damping forces start taking effect once unloading starts.

There is no damping forces during loading on the virgin state of

the spring.

A displacement sequence is generated to further understand the

damping of hysteresis loops. This displacement sequence is shown

in Figure 3-11. Two springs with their characteristics listed in

Table 3-3 are sUbjected to this displacement sequence and their

force-deformation plots are shown in Figures 3-12 and 3-13. The

critical damping ratios for each cycle are presented in Table 3-4

for springs that have low damping and have typical damping.

3.4 SOOF DAMPING

The hysteresis loops of the SOOF system cause nonuniform damping.

Each cycle has a different damping that is dependent on the maximum

deformation as well as the history of the spring. To investigate

the effects of hysteresis damping of the SOOF system an

acceleration signal, shown in Figure 3-11, is applied as base

excitation to displace the mass. The free vibration response of

the mass is monitored. Figure 3-14 shows the relative displacement

of the mass for two springs with different characteristics. One

spring has minimum damping while the other has a higher value that

is representative of a more typical structure. The percentage of

critical damping ratios of both springs are estimated for each

cycle using the logarithmic decrement method, so:

1 (Xl)0=- In-
2w x2

where

0 Fraction of critical damping ratio

xl The peak of a cycle

x2 The peak of the following cycle

3-4

The damping ratios as percentages of the critical damping are

listed in Table 3-5 for each cycle.
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TABLE 3-1

DAMPING AS A PERCENTAGE OF CRITICAL DAMPING
FOR VARIOUS TWO-CYCLE DISPLACEMENTS.

SPRING PARAMETERS: Fpm=O.l KIPS, t=0.99, AND 1=0.999.
LOW DAMPING SPRING

DISPLACEMENT (IN. ) DAMPING PERCENTAGE
1ST CYCLE 2ND CYCLE 1ST CYCLE 2ND CYCLE

0.3 0.3 14.3 6.4
0.7 0.7 16.3 5.5
1.0 1.0 16.3 5.0
3.0 3.0 13.7 2.6
6.0 6.0 13.3 1.6
6.0 3.0 13.3 1.6
6.0 1.0 13.3 1.6
3.0 1.0 13.7 2.7
3.0 6.0 13.7 8.2

TABLE 3-2

DAMPING AS A PERCENTAGE OF CRITICAL DAMPING
FOR VARIOUS TWO-CYCLE DISPLACEMENTS. SPRING PARAMETERS:

Fpm=5.0 KIPS, t=0.75, AND ,,(=0.5
HIGH DAMPING SPRING

DISPLACEMENT (IN. ) DAMPING PERCENTAGE
1ST CYCLE 2ND CYCLE 1ST CYCLE 2ND CYCLE

0.3 0.3 17.7 10.5
0.7 0.7 22.5 12.7
1.0 1.0 23.6 13.4
3.0 3.0 24.6 14.9
6.0 6.0 25.9 15.9
6.0 3.0 25.9 18.0
6.0 1.0 25.9 33.5
3.0 1.0 24.6 19.7
3.0 6.0 24.6 20.5
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TABLE 3-3

MATERIAL PROPERTY DATA FOR
NONLINEAR SPRING

=

=

=

=

3.600E+02
O.OOOE-Ol
2.350E+OO
6.306E+OO
4.252E+01
4.75SE+01
1.000E-03*
9.990E-01*
2.000E-Ol
9.990E-01*
2.000E+01
O.OOOE-Ol
O.OOOE-Ol
O.OOOE-Ol
O.OOOE-Ol
O.OOOE-Ol
O.OOOE-Ol
9.000E-01
2.000E-01

=

=
=
=

=

=

=

=
=

=

=

=

=

=

=

SPRING 1 (LOW DAMPING)

SPRING INITIAL STIFFNESS, K1 (Sl)
GAP
SPRING CONSTANT, EP1
PEAK DEFORMATION, EP2
1st BREAK POINT FORCE, FP1
2nd BREAK POINT DEFORMATION, FP2
PINCH FORCE, FPIN
UNLOADING CONSTANT GAM
POST PEAK COEFFICIENT BET
STRENGTH DEGRADATION CONSTANT ZET
MAXIMUM DEFORMATION (EM)
SHEAR ENVELOPE DISP
VELOCITY EXPONENT FOR CV, EXPCV
COULOMB DAMPING COEFFICIENT, CC
FORCE TIME HISTORY NUMBER FOR CC
NONLINEAR SPRING NUMBER FOR CC
UNUSED COEFFICIENT
TAU (ENVEL. CONSTANT)
KAPPA (ENVEL. CONSTANT)

SPRING 2 (TYPICAL DAMPING)

SPRING INITIAL STIFFNESS, K1 (Sl)
GAP
SPRING CONSTANT, EP1
PEAK DEFORMATION, EP2
1st BREAK POINT FORCE, FP1
2nd BREAK POINT DEFORMATION, FP2
PINCH FORCE, FPIN
UNLOADING CONSTANT GAM
POST PEAK COEFFICIENT BET
STRENGTH DEGRADATION CONSTANT ZET
MAXIMUM DEFORMATION (EM)
SHEAR ENVELOPE DISP
VELOCITY EXPONENT FOR CV, EXPCV
COULOMB DAMPING COEFFICIENT, CC
FORCE TIME HISTORY NUMBER FOR CC
NONLINEAR SPRING NUMBER FOR CC
UNUSED COEFFICIENT
TAU (ENVEL. CONSTANT)
KAPPA (ENVEL. CONSTANT)

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3.600E+02
O.OOOE-Ol
2.350E+OO
6.306E+OO
4.252E+01
4.75SE+01
1.500E-OO*
9.000E-Ol*
2.000E-01
S.OOOE-Ol*
2.000E+Ol
O.OOOE-Ol
O.OOOE-Ol
O.OOOE-Ol
O.OOOE-Ol
O.OOOE-Ol
O.OOOE-Ol
9.000E-Ol
".OOOE-Ol

*Variable properties affecting the damping.
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TABLE 3-4

DAMPING AS A PERCENTAGE OF CRITICAL DAMPING
FOR DISPLACEMENT SEQUENCE. SPRING 1 PARAMETERS:
Fpm=O.l KIPS, r=0.99, AND ~=0.999. LOW DAMPING.

SPRING 2 PARAMETERS: Fpm=5. 0 KIPS, r=O. 75, AND ~=O. 5
HIGH DAMPING

CYCLE DAMPING PERCENTAGE
NO. DISPLACEMENT (IN. ) SPRING 1 SPRING 2

1 1.0 16.1 18.1
2 1.0 4.8 7.32
3 2.0 8.9 11. 9
4 2.0 3.1 6.9
5 3.0 6.7 9.7
6 3.0 2.3 7.0
7 4.0 5.4 8.3
8 4.0 1.9 7.4
9 5.0 4.2 6.8

10 5.0 1.5 7.6
11 6.0 3.3 6.0
12 6.0 1.1 7.9
13 5.0 1.1 7.9
14 4.0 1.1 8.0
15 3.0 1.1 8.2
16 2.0 1.1 8.5
17 1.0 1.1 9.9

TABLE 3-5

PERCENTAGE OF CRITICAL DAMPING FOR SUCCESSIVE
CYCLES OF SPRING SYSTEMS EVALUATED USING

THE LOGARITHMIC DECREMENT METHOD

CYCLE
NO.

DAMPING PERCENTAGE
SPRING 1 SPRING 2

1
2
3
4

4.0
4.3
4.3
4.3

3-9
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SECTION 4

EQUIVALENT MODEL

4.1 INTRODUCTION

This chapter introduces the two models being compared, a

mUlti-degree-of-freedom system representing five story structure,

and an equivalent single-degree-of-freedom Q-model. The behavior

and responses of both models are presented in this section.

Various excitations and material nonlinearities were implemented in

this investigation.

4.2 Q-MODEL

The MDOF model as described in Section 2 has five lumped masses

connected by beam elements with degrading stiffness as shown in

Figure 2-5. This system is sUbjected to ground motions with

acceleration Xg. This is equivalent to a set of forces applied at

each mass equivalent to M~g.

The differential equations of motion for an undamped MDOF system

can be expressed as:

where

M

K

X

F

[M] [X] + [K] [X] = [F]

Mass matrix

Stiffness matrix

Response vector

External force vector

4-1

An equivalent SDOF model representing equation 4-1 can be expressed

in several ways. Biggs (1964) derived a simple expression

describing the equivalent system as:
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4-2

where

a l
...

am

~

X

K

Ft

F· .
I

..
~

<Pi

p:Nr=l Fj<Pi] 1Ft

p:Nr=1 ~<p2d I~

Total mass

Relative displacement of equivalent mass

stiffness of original system

Total external force

External force at level i

Mass at level i

Mode shape coefficient at level i with top

displacement normalized to unity.

The external force is represented by ground motion.

equivalent to a set of forces applied at each mass so:

and
N

Ft = LMjXg = ~Xg
r=l

so Equation 4-2 becomes:

where

This is

4-3

4-4

4-5

4-6

~ is the equivalent mass of the SDOF system. It is a function of

the distribution of masses and the mode shape coefficients of the

selected mode. For structures sUbj ected to earthquakes, the
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deflected shape of the MDOF system is closely matched with the

primary mode of the structure. Me will be located at a height Le,

where:

N N

Le=I: Mj¢jhJI: Mj¢j
r-l r-l

where N is number of floors.

4-7

The ground motion for the MDOF system is equivalent to M~. This

will produce a moment at the base equivalent to:

N

Moment = L MrXgHr 4-8
r-l

This moment should be equivalent to the moment calculated for the

equivalent SDOF system. Ground motion applied to the SDOF system

is equivalent to a force MeXg applied at a height Le from the base,

so the moment is equivalent to~

4-9

In order to obtain equal moment at the base of the two systems, the

SDOF and the MDOF models, we introduce a factor for the ground

motion, such that:

or

N

C [MeXgLc] = L MrXgHr
r-l

N

C = I: M~rlMcLc
r-l

4-10

4-11

The stiffness is determined

4-3

from the moment deflection



relationship, such that the term Kx represents the spring system

forces. This is evaluated by applying a triangular load on the

MDOF system such that the load of each level is proportional to the

height of that level. This system of forces produces a moment at

the base which is equivalent to a force at Lc multiplied by Lc • The

equivalent force is conveniently located at the equivalent mass

level, such that:

F = Moment/Lc 4-12

The deformation has to be at the same height as the force Lc • It can

be evaluated either by directly monitoring the displacement at Lc

if it coincides with a floor level, or by linear interpolation if

Lc is between levels. The stiffness is defined as the force

necessary to produce a unit displacement at level Lc ' which is

illustrated by the force-deformation plot in Figure 3-4.

4.3 APPLICATION EXAMPLE

The MDOF system described in section 2 is adopted as an application

example. The linear system has the following properties:

m= 30 =0.0776 k-sec2/inch. 4-13
386.4

T_[¢]l-[O 0.06 0.22 0.45 0.72 1.0]

Qm and QL as defined by Equation 4-2 are:

Qm = 0.3544

Q = 0.4904

4-4

4-14

4-15
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so:

and:

Le = 47.088 feet

4-17

4-18

The beams rigidity El, is a function of the deformation and is

defined in Figure 2-5.

The validity of the Q-model representation was examined for the

linear system by assuming that the beams have a non-degrading

properties (i. e. constant El). The stiffness of the MOOF is

equivalent to:

The SOOF stiffness defined as the force necessary to produce a unit

displacement at height Le is:

3El 3x2.45x109
K = = = 40.7 k/inch. 4-20

U (47.1 x 12)3

El = 2.45 x 109 k-inch. 2 4-19

Using these values the response of both the MOOF and the SOOF

systems are shown in Figure 4-1. The second graph on the plots

shows the difference between the two responses.
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SECTION 5

RESULTS

5.1 INTRODUCTION

The response of the MDOF and SDOF systems are compared in this

chapter. Two loading conditions are used to excite the models.

The displacement at the equivalent height, Le , was monitored and

plotted. Three types of damping of the MDOF system were used; mass

damping, stiffness damping and element damping.

5.2 FREE VIBRATION RESPONSE

Both systems are subjected to a ground motion acceleration as shown

in Figure 5-1 to give them an initial displacement, then released

to vibrate freely. The response of the MDOF system is compared to

the response of the SDOF system and is illustrated in Figures 5-2,

5-3 and 5-4. The plots show the deflection of the MDOF system at

a height, L e , and the deflection of the mass of the SDOF Q-model.

Figure 5-2 shows the response of lightly damped SDOF systems

compared to undamped MDOF responses. There was a slight difference

in the period of free vibration. This variation was due to the

fact that the SDOF system had damping implemented within the spring

system, however small it was, it influenced the response. Also the

damping in the SDOF system introduces a damped period of vibration,

which is longer than the undamped period.

The effect of mass damping on the MDOF system is shown in Figure 5­

3. The SDOF system is lightly damped, while the MDOF system has a

factor of proportionality, a, equal to 0.95. This is equivalent

to:

[C) = 0.95[M]

This produces a diagonal uncoupled damping matrix equivalent to

0.95 M at each DOF. The damping can be translated as modal damping
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where:

So, an a value of 0.95 is equivalent to modal damping of:

0.= 0.425
I Wi

5-1

5-2

Where OJ is the critical damping ratio for mode i. The angular

frequency W is a function of the system's stiffness and mass. The

stiffness of the MOOF system degrades, thus reducing the frequency

and increasing the critical damping ratio. Table 5-1 shows the

damping ratio calculated using the logarithmic decrement method for

both the SOOF system with low damping and the MDOF system with mass

damping. It is clear that beyond the first cycle, the damping is

constant and is approximately equal to 5%. This represents a 5%

damping of the first mode for the degraded stiffness model. Table

5-2 shows the percentage of critical damping as obtained from

Equation 5-2, where Wi is evaluated based on the MOOF system initial

undegraded stiffness and the final degraded state of stiffness.

Generally the amount of damping depends on the maximum displacement

in the SOOF and the MOOF systems. For the SOOF the structural

damping is a more appropriate representation as it follows the

behavior of the hysteresis loops. In the MOOF system, the physical

damping problem is more complicated than the simple representations

of damping currently adopted.

stiffness proportional damping has an opposite effect on the modal

damping ratios than the mass damping. It damps the higher modes

more than the lower modes. The direct effect on the response of

the MDOF system is shown in Figure 5-4. The proportionality factor

is 0.0007. The critical damping ratios are shown in Table 5-3.

The modal critical damping ratios as evaluated using Equation 5-2

are shown in_Table 5-4, where the natural frequencies are evaluated

using the initial stiffness and the final stiffness of the degraded

system. From the plot, it is clear that stiffness damping smoothes
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the deformation graph, or filters out most of the high frequency

content. This type of damping does not influence the overall

response since the contributions of the higher modes to the

deflected shape is usually small. However , it would influence

other parameters that are strongly related to higher modes, such as

floor acceleration and inter-story shears.

Element damping as defined earlier is constant throughout the

degradation stages. It is defined in terms of the elements initial

stiffness. The top deformation is mainly primary mode deflection,

so the damping of the higher elements has little influence on the

total displacement, and the damping of the lower two elements which

suffer the most stiffness degradation and the highest amount of

internal deformation, is enough to obtain the same response, or the

same top deformation.

The effect of uniform damping is shown in Figure 5-5 for {3" of

0.0006, where K is defined in Equation 4-6. The damping in the

lower elements influences the primary mode deflection while damping

the upper elements influences the higher modes.

5.3 RESPONSE TO GROUND MOTIONS

The response of both the SOOF and MOOF to ground motion records are

shown. The SOOF responses for two spring systems with the

characteristics shown in Table 3-3 were monitored. The MOOF system

was sUbjected to the same set of ground motions and the responses

were monitored for the systems having no damping and with mass

damping. The amount of mass damping was estimated from the

response of the SOOF system.

The damping of the SOOF is hysteretic damping. It can be

represented by a percentage of critical damping for each individual

cycle as explained in Section 3. The MOOF mass damping is a

constant form of damping. It acts on loading and unloading and is

equivalent to modal damping. For a degrading system, mass damping
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produces a higher value of modal damping as the system degrades

since the frequency decreases and Yj as defined by Equation 5-2

increases.

The main differences between hysteretic and mass damping are:

1. Hysteretic damping is activated on unloading, while mass

damping forces take affect at all times.

2. Hysteretic damping takes in affect the degradation of

stiffness and the percentage of critical damping stays

relatively uniform. Mass damping stays constant and is not

affected by stiffness degradation. An estimate of the final

stiffness is necessary to determine the adequate amount of

mass damping in order to provide adequate amount of damping to

represent the loss of energy in the system.

The following steps were used to estimate the appropriate amount of

mass damping:

1. The SOOF spring 2 is sUbjected to a displacement sequence

and the critical damping ratio is calculated for each

individual cycle. Figure 5-6 shows the hysteretic loops and

the critical damping ratio for all cycles. The damping of the

virgin cycle is ignored because it only occurs once and any

subsequent cycles have a different amount of damping than the

virgin cycle. An average critical damping ratio of 6.87 is

estimated.

2. The secant stiffness of the spring defined as the force

divided by the displacement is estimated from the virgin

envelope described in section 3. Rd is the ratio of the

secant stiffness for a particular displacement divided by the

initial stiffness kjo For d = 1,2, and 3 inches. Rd is:

3. The frequency of a system w is related to the stiffness
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R1 = 30 0.083
360 =

~ = 17.3 = 0.048
360

~ = 13 0.036
360 =

such as:

W c:x ..[k

The frequency change due to the changes of stiffness

corresponding to Ril R2 and R3 are:

WI = "/0.083 = 0.29
WI

W
2 = "/0.048 = 0.22

WI

W
3 = "/0.036 = 0.19

WI

Where WI corresponds to the frequency of the initial system.

4. The MDOF system has an initial frequency of primary mode

of vibration equal to:

WI = 0.29 x 38.0 = 11.0 (rad./sec.)

wI = 38.0 (rad./sec.)
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so:

W2 = 0.22 x 38.0 = 8.4 (rad./sec.)

W3 = 0.19 x 3.80 = 7.2 (rad./sec.)

5. The mass damping for a system that has a one inch average

displacement and a critical damping ratio of 6.87% for the

primary mode

ami = 2'Yi wj

= 2 X 0.0687 X 11 = 1. 51

similarly a~ = 1.15

and a~ = 0.99

This mass damping is based on the frequency of the degraded

system.

6. Mass damping would induce damping on loading and unloading

of the MDOF system. The SDOF has damping on unloading only.

The values obtained in the previous step should be halved to

provide an average damping force. A set of mass damping

values equivalent to Wm = 0.76, 0.58 and 0.5 are used in the

following analysis.

The ground motions applied to both the SDOF and the MDOF systems

are listed in Table 5-5. A scaling factor C2 is applied to all

records of the ground motions. Figure 5-7a and b through 5-15a and

b present the response of both systems to nine ground motions.

Figure 5-7a shows the scaled ground motion acceleration in the top

plot. The second plot is the SDOF response with low damping spring

(spring 1), as defined in Table 3-3. The third plot is the MDOF

response with no damping. The top plot of Figure 5-7b shows the

response of the SDOF system with a spring (spring 2) of typical

damping as defined in Table 3-3. The MDOF responses are shown in

the following three plots with mass damping of 0.76, 0.56 and 0.5
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respectively. The plots shown in Figure 5-8a and b through Figure

5-15a and b present the same sequence of plots for different ground

motions.

The final degraded stiffness ratios of the beams shown in Figure 2­

1, are presented in Table 5-6. The natural frequencies of the MDOF

system were calculated based on the final stiffness and are

presented in Tables 5-7 and 5-8. Table 5-9 shows the critical

damping ratio for the primary mode of MDOF systems based on the

initial and final stiffness. The maximum absolute displacement for

all different cases of all ground motions are shown in Table 5-10.
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TABLE 5-1

PERCENTAGE OF CRITICAL DAMPING FOR SUCCESSIVE
CYCLES OF SDOF AND MDOF SYSTEMS FOR MASS

DAMPING OF 0.95. EVALUATED USING
THE LOGARITHMIC DECREMENT METHOD

CYCLE
NO.

DAMPING PERCENTAGE
SPRING 1 MDOF

1
2
3
4

4.0
4.4
4.4
4.4

TABLE 5-2

7.2
5.0
5.6
5.0

EQUIVALENT MODAL DAMPING AS EVALUATED
FROM EQUATION 5-2 BASED ON THE

INITIAL AND FINAL STIFFNESS OF
THE MDOF SYSTEM

MODE DAMPING PERCENTAGE
NO. INITIAL FINAL

1 1.12 5.21
2 0.17 0.60
3 0.06 0.20
4 0.03 0.11
5 0.02 0.06
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TABLE 5-3

EQUIVALENT MODAL DAMPING AS EVALUATED
FROM EQUATION 5-2 BASED ON THE

INITIAL AND FINAL STIFFNESS OF
THE MDOF SYSTEM

MODE DAMPING PERCENTAGE
NO. INITIAL FINAL

1 1. 33 0.33
2 8.51 2.78
3 24.12 8.18
4 46.6 15.94
5 69.41 27.24

TABLE 5-4

PERCENTAGE OF CRITICAL DAMPING FOR
SUCCESSIVE CYCLES OF SDOF AND MDOF SYSTEMS

FOR STIFFNESS DAMPING OF 0.0007.
EVALUATED USING THE LOGARITHMIC DECREMENT METHOD

CYCLE
NO.

DAMPING PERCENTAGE
SPRING 1 MDOF

1
2
3
4

4.0
4.4
4.4
4.4
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TABLE 5-5

GROUND MOTIONS FOR LPM RUNS

NO. NAME DURATION C1 C2

1 El Centro E-W 53.0 0.9255 1.7875
2 El Centro N-S 53.0 0.6777 1.3145
3 Pine Union 140 29.0 0.8622 1. 7067
4 Cruickshank Rd 230 34.0 0.7632 1. 4951
5 James Road 140 29.0 0.7126 1. 3893
6 Kern County 69 54.0 1.4080 2.8648
7 Cruickshank Rd 140 34.0 0.6157 1. 2024
8 Brawley Airport 315 37.0 1.0644 2.0738
9 Keystone Road 140 39.0 0.9485 1. 8501

C1: Scaling Factor for ZPA 0.2g.
C2: Scaling Factor for ZPA 0.4g.

TABLE 5-6

RATIO OF FINAL DEGRADED STIFFNESS
TO INITIAL STIFFNESS

GROUND BEAM 1 BEAM 2 BEAM 3 BEAM 4 BEAM 5
MOTION

1 0.0152 0.1202 0.6757 0.9997 1.0000
2 0.0219 0.1202 0.2259 0.9506 1.0000
3 0.0219 0.1202 0.4430 0.9997 1.0000
4 0.0197 0.1202 0.2088 0.9997 1.0000
5 0.0289 0.1651 0.3809 0.9854 1.0000
6 0.0197 0.1202 0.3993 0.9997 1.0000
7 0.0414 0.1202 0.4697 0.9997 1.0000
8 0.0414 0.1202 0.2855 0.9506 1.0000
9 0.0239 0.1202 0.1651 0.7950 1.0000

MEAN 0.0260 0.1252 0.3615 0.9645 1.0000
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TABLE 5-7

NATURAL FREQUENCIES OF MDOF
BASED ON THE FINAL DEGRADED STIFFNESS (RADjSEC)

GROUND 1ST 2ND 3RD 4TH 5TH
MOTION MODE MODE MODE MODE MODE

1 6.01 90.28 291.87 621. 90 1411. 66
2 7.09 88.05 268.04 579.34 1186.71
3 7.12 95.28 297.50 617.31 1320.64
4 6.75 85.49 258.70 574.09 1182.62
5 8.16 104.61 313.23 652.06 1305.54
6 6.77 92.39 286.53 609.92 1299.24
7 9.41 107.22 342.89 645.29 1336.72
8 9.36 100.73 320.04 620.27 1229.82
9 7.33 84.34 258.02 549.72 1107.73

INITIAL 38.08 243.18 689.02 1331.55 1983.02

TABLE 5-8

RATIO OF THE NATURAL FREQUENCIES OF
THE MDOF BASED ON THE FINAL DEGRADED

STIFFNESS DIVIDED BY THE INITIAL FREQUENCIES.

GROUND 1ST 2ND 3RD 4TH 5TH
MOTION MODE MODE MODE MODE MODE

1 0.16 0.37 0.42 0.47 0.71
2 0.19 0.36 0.39 0.44 0.60
3 0.19 0.39 0.43 0.46 0.67
4 0.18 0.35 0.38 0.43 0.60
5 0.21 0.43 0.45 0.49 0.66
6 0.18 0.38 0.42 0.46 0.66
7 0.25 0.44 0.50 0.48 0.67
8 0.25 0.41 0.46 0.47 0.62
9 0.19 0.35 0.37 0.41 0.56

MEAN 0.20 0.39 0.42 0.46 0.64
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TABLE 5-9

PERCENTAGE OF CRITICAL DAMPING OF THE
FIRST MODE OF VIBRATION AS EVALUATED BASED

ON THE FINAL DEGRADED STIFFNESS FOR VARIOUS
GROUND MOTIONS AND THE INITIAL STIFFNESS

GROUND FREQ. MD=0.76 MD=0.58 MD=0.5
MOTION (RAD/SEC)

1 6.01 6.32 4.82 4.16
2 7.09 5.36 4.09 3.53
3 7.12 5.34 4.08 3.51
4 6.75 5.63 4.30 3.71
5 8.16 4.65 3.55 3.06
6 6.77 5.61 4.28 3.69
7 9.41 4.04 3.08 2.66
8 9.36 4.06 3.10 2.67
9 7.33 5.18 3.95 3.41

MEAN 5.13 3.92 3.38

INITIAL 38.08 1. 00 0.76 0.66

TABLE 5-10

MAXIMUM DEFLECTION OF MODEL SUBJECTED TO
NINE GROUND MOTIONS. MDOF MODEL HAS

STIFFNESS DAMPING =0.0002, AND MASS DAMPING

GM SDOF SDOF MDOF MDOF MDOF MDOF
No. LOW TYP. NO MD=0.76 MD=0.58 MD=0.5

DAMP DAMP DAMP

1 4.78 4.65 5.42 4.60 4.77 5.42
2 5.64 4.16 4.81 3.21 3.52 3.75
3 6.91 4.98 5.97 3.15 3.66 3.35
4 4.53 4.53 4.43 5.47 5.69 5.86
5 3.29 4.13 3.59 2.51 2.75 2.96
6 7.45 3.90 8.53 3.78 4.07 4.10
7 22.01 4.29 7.41 2.58 2.57 3.78
8 3.67. 2.98 3.27 2.57 2.68 2.82
9 21. 36 5.74 5.38 3.44 3.68 6.25

MEAN 8.85 4.37 5.42 3.48 3.71 4.25
SD 6.98 0.72 1. 61 0.95 0.97 1. 20
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SECTION 6

CONCLUSIONS

The studies have shown that nonlinear MDOF models with specified

damping can simulate the top displacement of a mUlti-story shear

wall as calculated by a nonlinear SDOF model with hysteretic

damping. The studies have also shown that simulation of the

response of a SDOF model with hysteretic damping to a specific

ground motion, ie. a recorded ground motion, is dependent on the

user's choice of damping values and of the combination of mass and

stiffness damping.

Figures 5-7a and b through Figures 5-15a and b show that the

damping needed for a full simulation of hysteretic damping is

dependent on the sequence of energy pulses. A single large pulse

followed by a train of smaller pulses will not be accurately

modeled by the MDOF model. The apparent reason is the hysteretic

model has no damping on the initial loading and a large quantity of

energy dissipation upon unloading. Subsequent cycles will have

small quantities of energy dissipation. The MDOF model has damping

on the initial pulse and will predict a smaller peak response to

the initial pulse. As its damping is selected from hysteretic

response of the SDOF to a second displacement to the displacement

attained at the first cycle, the MDOF model is under-damped for the

subsequent smaller cycles and responds in a manner somewhat similar

to a forced vibration. Figure 5-11b and Figure 5-13b illustrate

this behavior. The damped SDOF model, without damping on the

initial loading pulse has larger deformation and thus a

significantly lower stiffness when sUbjected to the following

pulses.

The ground motions that have a longer duration of high intensity

shaking, such as GM I, 4, 6 and 9 have a closer relationship in the

response of the damped SDOF and MDOF. These histories of response

maintain a good comparison throughout the length of the record.

This study indicates that selection of damping values and methods
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are critical for the prediction of peak dynamic displacements when

using the nonlinear MDOF model.

These studies indicate that the following procedure is necessary to

determine the damping values imposed on the nonlinear beam model.

The peak displacement expected in a seismic hazard zone can be

estimated by the following procedure:

• Determine 5.(0.3) and S.(I.O> for the site from the maps accompanying

the 1991 Edition of the NEHRP Recommended Provisions.

• Estimate the expected period of the structure by using a

reduced effective stiffness that is appropriate for the

seismic risk and the degraded stiffness of the lateral load

resisting system.

• Calculate a base shear in accordance with the Provisions,

distribute the loading prescribed on the lateral load

resisting elements and calculate a displacement of the system

using the stiffness used to estimate period. Multiply this

displacement by the displacement amplification factor, Cd.

• Use the nonlinear finite element program (Ewing, 1987, 1990)

to determine the energy dissipated on cycles subsequent to the

calculated displacement and to one-half of the calculated

displacement.

• Follow the methods used in this report to determine the

appropriate damping values to be used for the MDOF model in

the nonlinear analysis.

• Analyze the structure using a minimum of five scaled ground

motions. The ground motions should be scaled to a response

spectrum having an S.(0.3) and S.(I.O) predicted for the seismic risk

of the site.
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• Use the mean of the dynamic displacements calculated to

determine the drift ratio of the structural system. Compare

this calculated drift ratio with recommended maximum drift

ratio.

If the behavioral data needed for modeling the lateral load

resisting element by an equivalent SDOF model is available, the

process of determining damping used in this study may be followed.

studies of buildings designed in accordance with proposed limit

state design standards (Kariotis, 1992) have shown that the MDOF

beam element model is useful for predicting the distribution of

dynamic shear over the height of the lateral load resisting system.

These studies indicate that the shear associated with primary mode

response, the base shear calculated by the equivalent SDOF model,

understates the base shear. The SDOF model cannot predict shear

due to higher mode response.

In conclusion, use of an equivalent SDOF nonlinear model and of a

nonlinear beam element MDOF model is recommended for analysis of

mUlti-story reinforced masonry shear wall buildings.
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