BIBLIOGRAPHIC INFORMATION

PE93-214625

Report Nos: REPT-4.1-2

Title: Seismic Behavior of Flanged Masonry Shear Walls. Final Report.

Date: Nov 92

Authors: L. He, snd M. J. N, Priestley.

Performing Organization: United States-Japan Coordinsted Program for Masonry
Building Research.**California Univ., San Disgo, La Jolla. Dept. of Applied
Mechanics and Engineering Sciences.

Spongoring Organization: *Netionsl Science Foundstion, Washington, DC.

Grant Nos: NSF-CES-8722864

Supplementary Notes: See also PB89-147987. Prepared in cooperation with Cslifornis

Univ., San Diegc, La Jolla. Dept. of Applied Mechanics and Engineering Scisnces.
Sponsored by National Science Foundation, Washington, DC.

NTIS Field/Group Codes: 89G, 89D, 58C

Price: PC A13/MF A@3

Availability: Available from the National Technical Information Service,
Springfield, VA. 22161

Number of Pages: 295p

Keywords: *Dynamic response, *Masonry, *Walls, *Earthquake damsge, Ductility,
Stiffness, Matrices(Mathematics), Moments, Reinforcement {Structures),

Loads (Forces), Mathematical models, Computer programs, Seismic effscts,
Tables(Data), Earthquake engineering, Mechanical properties, Flexural strength,
Dynsmic structural analysis, Test Facilities, Strains, *Flanged masonry walls.

Abstract: In the research described here, both sxperimental and theoretical atudies
were carried out to investigate the seismic bshavior of flanged masonry walls.
Baced on section analysis, dimensionless design charts and tables for flexursl
strength, ductility snd equivalent stiffness of bdboth unconfined and confined T-
section masonry walls have besn produced. An inelastic structural component model
(SCH) for flanged masonry walls was developed to simulate the overall behavior of a
single flanged wall or & T-section component in masonry sseemblages. Together with
the model, unsymmetrical hysteresis loocps for flanged masonry walls were proposed
te allow non—linear time-history response analyses. Parallel to the analytical
work, the expsrimental studies involved both pseudo-static and dynamic shake table
tests of full scale flanged masonry walls. The experiments investigated the effects
of various parameters on the performance of flanged masonry walls and their real
response under sarthquake attacks. The test dats also provide verifications of the
analytical models.



‘K U.S. - JAPAN COORDINATED PROGRAM

FOR
> MASONRY BUILDING RESEARCH
LT LA I
REPORT NO. 4.1-2 PBOY- 21460

SEISMIC BEHAVIOR OF FLANGED
MASONRY SHEAR WALLS

FINAL REPORT

by

LIMIN HE
M. J. NIGEL PRIESTLEY

November 1992

supported by:
NATIONAL SCIENCE FOUNDATION
GRANT NO. CES-8722864

DEPARTMENT OF APPLIED MECHANICS & ENGINEERING SCIENCES :\;
UNIVERSITY OF CALIFORNIA, SAN DIEGO :

RE PRODUCED BY

U.S. DEPARTMENT OF COMMERCE
NATIONAL TECHNICAL INFORMATION SERVICE




ﬂﬁsrepor:égresmtsﬂ\emu]tsofaresearch ject which was part of the
U.S. Coordinated Program for Masonry Bmldmgta ch. The program
constitutes the United States part of the United States - Japan Coordinated
Masonry Research am conducted under the auspices of the Panel on Wind
and Seismic Effects of the U.S.-Japan Natural Resources Development Program

This material is based on work su the National Science Foun-
dation under the direction of Program Di r, Dr. S.C. Liu,

Any opinions, findings, and conclusions or recommendations expressed in

this publication are those of the authors and do not necessarily reflect the views
of the National Science Foundation and/or the United States Government.

a



U.S. - JAPAN COORDINATED PROGRAM
FOR
MASONRY BUILDING RESEARCH

0T T

REPORT NO. 4.,1-2 PB93-214625

SEISMIC BEHAVIOR OF FLANGED
MASONRY SHEAR WALLS

FINAL REPORT

by

LIMIN HE
M. J. NIGEL PRIESTLEY

November 1992

supported by:
NATIONAL SCIENCE FOUNDATION

GRANT NO. CES-8722864

DEPARTMENT OF APPLIED MECHANICS & ENGINEERING SCIENCES :\u
UNIVERSITY OF CALIFORNIA, SAN DIEGO ;




2 of 6 Complete Record

NTIS No: PB89-147987/HDM

Title: Seismic Behavior of Flanged Masconry Shear Walls

Author(s): Limin, H. ; Priestley, M. J. N.

Performing Organization: California Univ., San Diego, La Jolla. Dept. of
Applied Mechanics and Engineering Sciences.

Report No: NSF/ENG-88007

Sponsoring Organization: National Science Foundation, Washington, DC.
Directorate for Engineering.

Contract No: NSF-CES87-22864

Notes: U.S.-Japan Coordinated Program for Masonry Building Research.
Sponsored by National Science Foundation, Washington, DC. Directorate for
Engineering.

Date: May 88 Pages: 134p NTIS Price Code: PC A07/MF AO1l

Language: English Country: United States

Abstract: The report summarizes the results of a research project
representing preliminary studies into the flexural strength, ductility, and
seismic response of T-Section Masonry Walls, The project consisted of two

sections: (1) analytical studies resulting in the development of dimensionless

design charts for flexural strength, stiffness and ductility capacity of

unconfined and confined T-section walls loaded in the two opposite directions
parallel to the web; and (2) shake table testing of a full-size wide-flange T-

section wall under sinusoidal and simulated earthquake acceleration input

focusing on the expected asymmetric response, and the shear lag in the flange.

Results confirmed the importance of the directionality of strength angd
stiffness characteristics.

Descriptors: *Earthquakes; *Dynamic response; *Walls; Masonry: Dynamic
structural analysis; Flexural strength; Ductility; Stiffness; Mechanical
properties; Loads(Forces): Graphs(Charts)

Identifiers: NTISNSFENG

NTIS Subject Codes: 89D (Building Industry Technology--Structural analyses):

89G (Building Industry Technology--Construction Materials, Components, and
Equipment); 46E (Physics--Structural Mechanics); 71D (Materials Sciences--
Ceramics, Refractories, and Glass)



TABLE OF CONTENTS

Page
Table of Contents i
Abstract iv
List of Figures ......... vi
Listof Tables ...........cccconvenneee x
Acknowledgements xi
. Introduction 1
1.1 Characteristics of Flanged Masonry Walls .............ccovverincecrinene 1
1.2 Review of Relevant Rescarches ... e 5
1.3 Overview of Present Research ...t ssesstssas s s 14
Fiexural Strength, Stiffness and Ductility of Flanged
Masonry Walls .........ccoeeiciiiiinnnnae rersasesenssseasansins 17
2.1 Introduction .............. eresssssese irrse i e ey e eessraater et e e r AT Sr R aa TR SR Ee RS s pan 17
2.2 Basic ASSUMPUONS .......c.cccrivvnrineiiisiniccssosinnens seorsst et aneresensas s esssanetes 18
2.3 Material PrOPerties ...........ccoueimncnmsessinissssiosissnssinestsnssasssisns cessteensrsstsastsias 19
2.4 Problem FOIMUIBHON .....cc.oooiireenirencrconienstesee st seseasies s st sesestatassnesecssasssas st ntaseanen 22
2.5 Design Charts and TabIes ........ccuieeecvveceeenrneceenrerensisnesnssssercretasesressaarssssteserasaans i3
2.6 An Example of Use of Design Charts ... ssnessases 37
. Inelastic Structural Component Model ...........civeiimeiiiinicnisensecniinncsrasssnsanncans 54
3.1 Introduction .... vereesesasressnsnaseesensasaaseranit 54
3.2 Formulation of the Stiffness MAIHIX ......c.cccciecnniinceninnicnrcncerscasesseserssassasssns 59
3.2.1 Stiffness Matrix in Local Coordinates .............cccooovrevenerrceccrccsvnnannes 60
3.2.2 Stiffness Matrix in Global Coordinate ...... rrreserisrssstestassassaterseassaneases 64
3.3 Hysteresis Loops for Flanged Masonry Walls ...........covveevorecirencisenens 65
3.3.1 MOMCNI-CUIVAUIE .....coenirrmreninicasscscssesssrsssssssssssssssssssssesssssssensssssnsansestans 65
3.3.2 Shear DefOIMAation ...........ccoevemeeeerencerroresssessessnarssssssersssessseressassssssssssriness 67
3.3.3 Discussion on Reverse Loading .......c.ccccvinrnnicnninniinsicsnncsnnessssessens 69
. Experimental Studies - General Description ........ccoocoieneniiennecvnsaereannens 74
4.1 Introduction 74
4.2 Design and Construction of the Test Units ..... . 75
4.2.1 Considerations of Test Unit Design .. . 75
4.2.2 Reinforcement ATTANGEMENL  ........ccovveereeecenereriosnisssansesseresssssissessonss 78
4.2.3 Foundation Beam, Top Slab and Wall Construction ..................... 81
4.3 Material PIOPETHEE ......cccccicniencrrerrnercesiresessisesassesnessesssesesansonsnssensnssess sessesssssssass 87
4.3.1 Strength of Masoary and Its Component  ......... 87
4.3.2 Reinforcement Stress-strain Characteristics  .......cveciivinensnsinees 89
5. PSCUO-SIALC TEBS .ucvvcreieiommnssenmmosencnmrancossonnanassssserersnmsssseressnss 91
5.1 Test Set-up And Instrumentation .............. SRR .. 9

1



S. 2 Test PrOCEUUNE ..o ectccsennicessresnesesensens censnsssssnsnans sessssnenareserans sesssanassnsnnns 94

5.3 Observations and Test ReSUMS ... esse ttasnsserasassas 97
5.3.1 General Behavior Observed ... iiecvnininnan, sesssssnnan s sess st ner s 97
5.3.2 Latcral Load-deflection Response ......coiiiiinmnninniinnsnnsnnsnnsinnnnanes 112
5.3.3 Flexural Response of Walls ..........ccoiciiiiiiinicice e etncsieseans 115
5.3.4 Influence of Shear on RESPONSE ......ccococvvvviovtinrensessnmnsrrerinsssssvsssasnnes 124
5.3.5 Material Propertics Inferred From the Testing Results ........ 132

5.4 Discussion of Testing Results ............ccccccrmcrmerirrsenrisssncernssessons retessaebsenatans 136
5.5 CoNCIUSIONS ...ttt s st bbb s s bs st rat bbb 144
. Experimental Studies, Part 2 --- Dynamic Tests .......ccoccecvreneeincrcnsnces 146
6.1 INOQUCTION .....ccirevriereereucenec s rststis tsetsse st sesascsesesmessssaassssaspsan st ssessecsbormans 146
6.2 Testing Facilitics and Instrumentation ... 147
6.3 Vertical Loading and Test Procedure .........ccvniiniiiivcnncienees 150
6.3.1 Vertical LOBING ..ot et e i nren e seeses e aeseaassianasseasnns 150
6.3.2 Mass-SPring SYSIEM  .....ooooiiniiriicireiiee e sne e sn s seas s mrsssnssns 151
6.3.3 TeSt PrOCedure ... ncrerenssererenssesmeassme s b easasessanane 152

6.4 Test Result, and ObSEIVAUONS  .......c.cccvereueerevnirneiermrsescceecssae et eesrsaenene 157
6.4.1 general Behavior Observed  .....ccvvvcninicciiniinininnis e 157
6.4.2 Natural Frequency and Damping .......cccocvevveviiicciiminereeieecniens 170
6.4.3 Displacement and Acceleration Response  ..........cccovevvviemreinnnnins 175
6.4.4 Hysteresis Loops Under Dynamic Loading  ....c.ccovvviiinininiinnne. 187
6.4.5 Ultimate Suength and Ductility  ...cccoocriviniiiciimnn e 189
6.4.6 Effects of Loading HisStory ......ccccveieccniciie e 191
6.4.7 Response to Skew Earthquake Input  ..ooeiiicriniiecccnvenenens 192
6.5 Comparison between Dynamic and Static Responses ... 201
6.6 CONCIUSIONS ... et sensmc st srs s e et e soasasaseassrsmsasens 204
. Time-history Response ANAlYSES ......coecieiiiicnniensinnssessscssscssensasessnsensnes 206
T INUCHON ..ot sersisese e sses e seassesarsassansesaseans praserssesantessessasenns 206
7.2 Load-displacement Envelope ..........ccvieeiimeeccinenninineininissssesssssmsesesesnns 207
7.2.1 Analysis Procedure  ......... serervennettrenoneretresseoressnsnebhneraresttbarieresbtasebibaatens 207
7.2.2 The Moment-curvature Curves —..........coceiivninnsinnnissnessssnnsens 208
7.2.3 Comparisons Between Computed and Test Results  ................. 209
7.3 Time-history Response Analyses ........cccceevveereneene eetheesarreasaserntaas errerens 214
7.3.1 GEneral DESCHPHON  .....ovvcovemmmmsesrsensrssssssisssessssssssmssssnassssssssssmmsassssssssrises 214
7.3.2 Equations for Dynamic Response Analysis . ......coeiiieciinccnnnn. 216
7.3.3 Analytical Results and Comparisons ...........cccccvvcinneniinicnerininens 218
7.4 Discussions and Conclusions ............ccoveeeivimnnensesnisesssmeianiims 227
. [Effective Flange Width of T-section Masonry Walls  ..........ccovvenrinnnene 229
B.1 INOAUCHON ..o nese e sneses s rossa s e snss csmse e sssemesseeser s anosmstens 229
8.2 Experimental RESUIIS .........oimiiiicccssisesassesasssossstsensssnssssasesssssnsssonmamssnses 230
B.3 Analytical SIMUIALON ......c.coccvveresereiiretessinmeessessssecsessssasesssssssarsnssssarssssssns 236
8.4 Inclastic Finite Element Analysis .......c....coorriimiccnetecrerercceeesneeesiens 239

it



8.4 Conclusion . 248

9. Summary and Conclusions

............................................................ 250
9.1 Conclusions ...... Eireesesesreniessbihe A a RS A b SR b0 250
9.2 Recommendatio.s for further Studies .......c.oooviviiniiinicnnnnenieiens 255

Appendix A Computer Program for

Design Tables of Flanged Masonry Wall Analysis .. ......cecenens 258

Appendix B Computer Program for Time-history Analysis

of Flanged Masonry Walls ... s, 266
References . . . 275

111



ABSTRACT

This report summarizes the results of a research on  seismic
behavior of flanged masonry walls which is listed under Task 4.1 among
the specific tasks under the U.S.-Japan Technical Coordinated Committee on

Masonry Research(TCCMAR).

Flanged masonry walls have special problems associated with their
material and T-section geometry, especially the strong unsymmetrical
response in the two opposite directions parallel to the web under
earthquake attacks. The contribution of reinforcement in the flange
towards the flexural strength in the direction where the flange is in
tension will be subjected to shear-lag cffects ctc.. Although these
phenomena have been understood by many designers for some time, they

have not previously been systematically investigated and quantified.

[

7 In the research described here, both experimental and theoretical
studies were carried out to investigate the scismic behavior of flanged
masonry walls. Based on secction analysis, dimensionless design charts
and tables for flexural strength, ductility and equivalent stiffness of both

unconfined and confined T-section masonry walls have been produced.

An inelastic structural component model (SCM) for flanged
masonry walls was developed to simulate the overall behavior of a single
flanged wall or a T-scction component in masonry assemblages. Together
with the model, unsymmetrical hysteresis loops for flanged masonry

walls were proposed to allow non-linear time-history response analyses.

iv



Parallel to the analytical work, the experimental studies involved
both pseudo-static and dynamic shake table tests of full scale flanged
masonry walls. The experiments investigated the effects of various
parameters on the performance of flanged masonry walis and their real
response under ecarthquake attacks. The 1test data also provide

verifications of the analytical models. -

The numcrical examples of time-history response analyses with
the SCM model are presented and the comparison showed very good
agreement between the analytical and experimental results. Based on the
theoretical and experimental studies, formulas for determining the
cffective flange width of T-section masonry walls were proposed. Finally,

conclusions and somc recommendations for further studies are discussed.
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1. INTRODUCTION

I.1 Characteristics of Flanged Masonry Walls

Masonry, as a structural material, has been used for thousands
years and is still very popular in many countries including the United
States. Despite this, rescarch about masonry material properties and
structural behavior, especially the scismic performance, is less well
developed than for other materials, such as steel and reinforced concrete
structures. There are certain problems inherent in the prediction of the
bechavior of mascnry structures and the main difficulties are seen to be

the following:

(1) Masonry does not contain a single material. It consists of three
components, namely masonry units, mortar and grout. Therefore, the
property of masonry will depend on the properties of, and interactions

between these components.

(2) The propertics within masonry structures are neither
homogeneous nor isotropic. They depend on the position and direction cof
the mortar beds and also the reinforcement, when used. Because of
masonry tensile cracking, slip between the steel and the surrounding
masonry, and the yielding of reinforcement, the behavior of masonry

structures is further complicaied.

(3) Since masonry structures must be laid-up in-situ, the
workmanship may affect the quality and performance of the structures

significantly.



The most commenly used construction form for masonry buildings
utilizes structural walls. In many practical design situations, the
structural requirements for lateral strength in the two principal
orthogonal directions of masonry structures will result in intersecting
shear walls, creating structural clements of flanged shapes, such as I, T

and [ section walls.

For the flanged wall shown in Fig. 1.1, of particular interests is
scismic response with the loading direction parallel to the web, because
the wall has different flexural strength, stiffness and ductility capacity in
the two opposite directions. As idealized in the figure, when the flange is
in twension, the flexural siwrength and post-cracking stiffness are greater
than when the flange is in compression, but the ultimate displacement
and hence the displacement ductility is greatly reduced. Clearly, the
stiffness of such a wall relative to other lateral load resisting clements
and the contribution to lateral strength will depend on the direction of
seismic attack. Although this directionality effect has been understood by
many designers for some time, the effects have not previously been

quantified.

There are other problems associated with T-section walls. Flexural
strength design will normally be dictated by the weak direction (i.e. with
the flange in compression) and web reinforcement for responsc parallel to
the web will be based on providing adequate flexural strength in this
direction of loading. Reinforcement in the flange will normally be dictated

by strength requirements under seismic response paralle]l 1o the flange.
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This reinforcement has imsignificant influence on the flexural strength
parallel to the web with the flange in compression, but contributes
greatly to flexural strength in the opposite dircction of loading, and may
cnhance the flexural strength significantly above the level required to

satisfy design lateral force levels.

Assuming the structure to be designed for ductile response to
carthquakes, it is the actual flexural strength that will be achieved, not
the design level. The consequence can be amplification of the response
shear force well above the level required to conform to code-level
loading. If this situation is not recognized by the designer, and

appropriatc capacity design!4) measures adopted, shear failure can result.

Shear-lag cffects in the flange are poorly understood. The extent to
which the flange reinforcement contributes to the flexural strength when
the flange is in tension will be influenced by shear-lag. Although the New
Zealand Design Codel3) provides some guidance on this matter, its
provisions are based on the application of ACI design rules(2] for effective
width of T-beam floors, and have not been verified experimenially, Other
codes do not appear to have specific recommendations for effective flange
width. It seems probably that the extent to which the flange is effective
may depend on cracking in the plane of the flange developed by previous

inclastic response ( if any ) perpendicular to the web.

Effectiveness of the conncction detail at the intersection between
the flange and web is also a matier of concern, and will depend on the
block type adopted, amount of transverse reinforcement crossing the

intersection, type of conncction dctail adopted ctc.. Again, cxperimental



rescarch is needed to investigate this aspect. Testing of squat flanged
reinforced concrete walls by Paulay et al.[5) has indicated that the
tendency for such walls to slide on the base in the absence of significant
applied axial load can result in punching shear failure, where the sliding
web punches through the stationary flange as illustrated in Fig. 1.2. It
may be expected that masonry walls with pre-existing planes of
weakness imposed by the mortar beds and head joints might be more
susceptible 10 this form of damage than reinforced concrete walls would
be. The solution suggested by Paulay et al. of using diagonal
reinforcement across the wall base to reduce slip would scem to be

impractical for hollow unit masonry construction.
1.2 Review of Reclevant Research

In recent years, the behavior of masonry structures, especially
relaring to their seismic performance has received increased research
attention. The basic and important structural form of masonry buildings
is rectangular section walls which have been investigated both

analytically and experimentally in some detail.
1.2.1 Experimental Studies on Rectangular Section Walls

Experimental studies at the University of Canterbury by Priestley
of heavily reinforced squat walls[6] and slender wallsl?], subjected to in-
plane simulated seismic loading, confirmed that ultimate strength design
equations for masonry structural walls are applicable and ductile flexural

response can result, provided capacity design procedures are applied,



ensuring that the shear strength cxceeds the maximum feasible flexural

strength.

Tests at the University of California, Berkeley by Mayes et al.[}] on
masonry piers investigated the in-plane shear failure mode. In this and
the subsequent experiments, they carried out tests of 80 specimens,
including double and single piers with height to width ratio from 0.5 ta 2.
The research variables included the effects of height to width ratio, axial
load level, amount of vertical and horizontal reinforcement and type of
construction and grouting, on the failurc mode and ultimate strength of

masonry wall ¢lements.

The above studies indicated that walls failing in a predominantly
shear mode exhibited more brittle behavior than those whose inelastic
responsc was dominated by flexural strength, and that the flexural
strength of reinforced masonry walls can be accuratcly cvaluated with

simple analytical models.

Starting from 1985, a comprehensive program on masonry
research in the United States, coordinated with a parallel program in
Japan was carried out. The program, funded by the National Science
Foundation, has been conducted under the auspices of the UINR panel on
wind and scismic effects and consists of twenty eight specific tasks.
Among these, seven projects have dealt with masonry walls, including
static and dynamic modelling and cxperimental studies on in-planc and
out-of-planc behavior of one, two and three story walls. A final study of a

five story masonry building is currently in the design phase and will be



tested in Charles Lee and Powell Structural Laboratory at the University

of California, San Dicgo soon.

Recent  studies at the University of Colorada by Shing et al.[l0] gg
part of the TCCMAR program, have beecn concentrating on defining the
strength and ductility of masonry shear-resisting mechanisms, again with
squat rectangular section walls. They conducted & experimental program
of twenty two 6 foot square masonry wall panels, including sixtecen walls
with hollow concrete blocks and six with hollow clay bricks. The study
interests included the influence of the applied axial load and amount of
vertical and horizontal reinforcement on the lateral resistance, failure
mcchanism, ductility and cnergy dissipation capacity of masonry shecar

walls.

The test results of Shing et al. show that the flexural strength
incrcases with the applied axial stress and amount of vertical
reinforcement present and the shear strength dominated by diagonal
cracking increases with the amount of vertical and horizontal steel, the
tensile strength of masonry and the applied axial stresses. However, for
the panel dimensions tested, the axial stress had a more significant
influence on the flexural strength than on the shear strength, while

flexural ductility was substantially reduced at high axial load levels.

Since brittle failure is undesirable for secismic response and also
since shear strength is difficult to calculate from first principles, a semi-
empirical formula for predicting the shear strength was proposed and

calibrated against the experimental results.



In-plane resistance of multi-story masonry walls(15) and the
behavior of rectangular masonry walls under out-of-plane loads,
especially subjected to earthquake attacks have also been investigated in

the TCCMAR Program recentlyl!6.17],

The Japanese side of TCCMAR research program coasists of two
categories: the Structural Test Program and Material & Construction
Program(33]. The Structeral Test Program involves tests of masonry wall
columns, wall girders, 3-story planar masonry frames and a S5-story
rcinforced masonry building. Mcanwhile, the Material & Construction
Program involves tests of masonry units and prisms to set up standard
methods of testing and evaluating material properties such as strength
and elastic modulus for masonry. Many construction techniques, mainly
grout admixture, bonding system, joints and mcasures to resist frost and
salt effects are also investigated under this category. All the researches
above have been aimed at developing design and construction guidelines

for new reinforced masonry buildings.

The rescarch on masonry walls consists of 5 tasks and 44
specimens have been tested. Teshigawara and Nishil36.38.40) carried out a
group of experiments on diagonal compression test of masonry panels,
masonry prism compression and shear wall tests to study the correlation
of diagonal cracking and strength between diagonal compression and
combined axial load and shear. In another test program, they investigated
the seismic capacity of reinforced masonry walls under high axial load.
Arivaga and Baral39) did a similar test of 28 wall panels under diagonal

compression. It was concluded from the above tests that  diagonal



cracking occurred independent of the existence, or amount of horizontal
reinforcement, but higher axial forcc and horizontal reinforcement ratio

increased the shear strength of the wall after cracking.

Imai and Miyamoto!35:37) carried out a test program 10 investigate
the cffects of openings on scismic behavior of masonry walls. They
concluded that with openings, diagonal cracks developed at lower shear
level from the corner of the opening 10 the edge of the wall and the final
failure mode could be cither bending or shear failure, depending on the
relative size of the opening. Shear and flexural strength of masonry walls
with openings can be predicted by the same formula as for reinforced
concrete  walls, but using masonry compression strength instead of

concrete compression streq gth.

The effectiveness of shear enforcement in fully grouted hollow
clay masonry walls and effects of lap joint of reinforcement on flexural
strength of concrete masonry walls were investigated by Matsumural36]
and Kubota & Murakamil4!] respectively. Out-of-plane behavior of
masonry wall-slab and wall-subbeam subassemblages was also

investigated by Kaminosono et al. [42]
1.2.2 Theoretical Studies
(a) Constitutive Models

Paralle] 1o the experimental studies, many analytical methods of
different levels of complexities for predicting the performance of
structural masonry walls and assemblages have been developed. In these

theoretical studies, a fundamental task has been to determine the



relationship beiween siress and strain for masonry. Based on prism tests,
axial compression stress-strain curves of masonry were proposced by
Priestley & Elder(18] and Hart et al.[1%) which can serve as material
constitutive Jaw when analytical methods are used to analyze masonry

structures.

Hegemier et al.[20.21) carried out bi-axial tests of full scale
concrete masonry panels and proposed stress-strain relationship for both
compression and tension, and a failure envelope of the material under bi-
axial loading. Based on the above tests, they developed a finite element
micro model for reinforced masonry to simulate the pre- and post-
fracture behavior of joints or interfaces in assemblages with nonlinear
material properties including masonry cracking and effects of reinforcing

steel.

Hamid and Drysdalel22] proposed two scparated failure criteria for
shear failure mode and tension failure mode for brick masonry. The shear
failure criterion was based on the assumption that sliding along a single
plane of weakness is governed by a linear relationship using the Mohr-
Coulomb theory of internal friction. In the meanwhile, for tension failure,
the maximum stress thcory was adopted. Motta & Damorel(23] and
Priestleyl13] also suggested similar failure envelopes for coacrete masonry

under bi-axial loading.
(b) Section Characteristics

Priestley carried out analytical studies in dimensionless form to

produce design charts predicting the flexural strength{11) and ductility

10



capacity[!2] of unconfined masonry walls of rectangular section. He
showed that flexural strength was rclatively insensitive to the fashion in
which the flexural reinforcement was distributed, provided the
distribution was symmetrical about the wall centerline. Ductility capacity
increased with increasing masonry compression strength, but decreased

with increasing axial load level and vertical reinforcement ratio.
(c) Finite Element models (FEM)

Recently, many researchers have been concentrating on
developing finite element models for masonry structure analyses at
diffcrent levels of compicxiiy. Arturo and Abrams(24], in a TCCMAR
study, used an elastic finit¢ e¢lement model to simulate the dynamic
response of two and three storey reinforced masonry buildings subjected
to carthquakes. A 3-dimensional clement was applied to model
perforated flange walls. They examined the influence of different lateral
force distributions on normal and shear stresses in the walls and on
lateral drifts and compared the computed results with measured values

from test results.

Seible et al.[23] developed a nonlinear finite element model for
analyzing in-planc reinforced concrete masonry components and
subassemblages under seismic loads, as part of the TCCMAR program. The
model was based on lower or higher order isoparametric elements in
which reinforcement and masonry arc treated scparately but are overlaid
and linked by compatibility requirements. The constitutive law for the
fully grouted masonry is orthogonally anisotropic with a smeared crack

theory adopted from the Vecchio & Collins model for reinforced

11



concretel32] | The reinforcement can be treated cither in discrete form or
as a smeared overlay in horizontal and vertical directions. The model can
predict thc structural bechavior from the initial undamaged conditions to
the ultimate collapse, including simulation of cracking, yielding and
crushing, and has been used to predict the bechavior of single-story walls
and flanged wall subassemblages of full-scale reinforced concrete
masonry buildings. Analytical results compared favorably with

experimental results.
(d) Structural Component Model (SCM)

Although the FEM is versatile and capable of performing structural
analyses at different levels, it is time-consuming and expensive due to

the fine discrete requirement.

Another analytical method, the structural component model for
masonry has been developed by Hart et al.[26] This is a ‘macroscopic’
approach 1o simulatc the overall behavior of the structure and requires
much less computational 1ine than the ordinary FEM. So far, the response
of SCM in the form of force-deflection envelope curve for single degree of
frecedom rcctanguiar walls under monotonic incremental displacement has
been completed. Extension of the model to simulate nonlincar behavior of

complete structures under cyclic loading is in progress.
1.2,3 Flanged Wall Studies

Although flanged masonry walls are more common in the ‘real

world® than rcctangular section walls, there has been surprisingly little

12



rescarch emphasis to develop an understanding of the performance of

such sections under seismic responsec.

Recent work by Abrams and Paulson(!4] at the University of
Illinois, Urbana/Champaign involved structural testing of simple complete
masonry structures including flanged clements. The scope of the program
did not, however, aliow a systematic investigation of the characteristics of
flanged walls. Apart from this therc appear 1o have been no  studies of
the behavior of flanged masonry walls. It is of interesting and concern
that lack of relevant experimemial data on flanged walls extends to

reinforced concrete shecar walls as well as masonry walls.

Considering the above, a preliminary study on seismic behavior of
flanged masonry walls was carried out by Priestley and Hel27), The study
was  initiated at the University of Canterbury, New Zealand and
completed at the University of California, San Diego. This study, which
formed the first phase of the more detailed program reported herein
consisted of analytical research to extend the dimensionless design charts
for flexural strength and ductility of rectangular wall, to flanged walls,
and the shake table testing of one wide-flange T-section masonry wall.
Both the theoretical analysis and shake table test clearly indicated the
unsymmetrical bechavior of flanged masonry walls in the two directions

parallel to the web, as idealized in Fig. 1.1.

This preliminary study revealed some important aspects of the
properties of flanged masonry walls, such as the flexural strength,
curvature and displacement ductility capacity, equivalent stiffness and

damping, shear-lag in flange, shear stress and deformation in the web

13



etc.. Since the theoretical analysis was limited and only one wall was
tested in this project, the more complete swudy described in this report
was undecrtaken to provide better understanding and quantifying the
propertics of flanged masonry walls, in a form suitable to the

development of a general flanged wall structural component model.
1.3  Overview of Present Research

This report summarizes the results of a  research project on
flanged masonry walls carried out as part of the US side of research
under the auspices of US-Japan Technical Coordinated Committee on
Masonry Research ( TCCMAR). The research in this project consists of the

following aspects:

(1) Theoretical analysis to develop dimensionless design charts
and tables for flexural strength, ductility and cquivalent stiffness for
unconfined and confined T-scction masonry walls. The basic assumptions
and theoretical formulations arc described in Chapter 2. Some sclected
design charts and a numerical example for demonstrating the use of these
charts are also presented in the chapter. The computer program which
can be used to produce the above design tables is included in Appendix A

for reference.

(2) An inelastic structural component model(SCM) for flanged
masonry walls is developed in Chapter 3. The model is formulated in such
a way as lo simulatc the overall behavior of a single flanged wall, or to
represent a T-section component in a masonry assemblage by connecting

it to the other elements in order to analyze the whole structure. The

14



basic concepts of the modelling, formulations of the element stiffness
matrix in local coordinates and its transformation into global coordinates
are summarized. The element formulation includes description of
hysteresis loops for flanged masonry walls to allow non-linear time-

history response analyses to be carried out.

(3) Experimental studies were also carried out to provide
verifications of the analytical models. The work consisted of two phases;

pscudo-static tests and dynamic tests.

Chapter 4 provides a  general description of the 1est program,
including design and construction of the specimens. The dimensions of the
walls, reinforcement arrangement and test results of material properties

arc also presented in this chapter,

The pseudo-static tests comprised four full scale flanged masonry
walls. The influence of variation of vertical reinforcement ratio, the width
of flanges, and the use of confined vs. unconfined masonry were
investigated. The test set-up, instrumentation and data acquisition

system, loading procedure and test results are summarized in Chapter 5.

Chapter 6 introduces the dynamic testing program, which
consisted of five full scale flanged masonry walls tested on the shake
table, in order to check the differences in the responses under static and
dynamic conditions, and to investigate response to simulated earthquake
ac.elerograms. The tests also investigate the influence of loading history
and direction as well as vertical reinforcement ratio and confinement on

the performance of flanged masonry walls. The test facilities, data

15



acquisition, testing procedures and results of the tests are also described

in this chapter.

(4) To compare the theoretical and experimental studies, Chapter 7
comparcs analytical time-history response predictions using the SCM
model developed in Chapter 3 with experimental results obtained in
Chapters 5 and 6. Some discussions and conclusions concerning the

analytical model are also presented together with the comparisons.

(5) In Chapter 8, both theoretical and experimental methods are
applied to investigate shear-lag effects in wall flange. The theoretical
studies include elasto-plastic solution and finite clement analysis with a
2-dimensional inelastic model for masonry assemblages. The
experimental data are adopted from pseudo-static and dynamic tests
described in Chapters 5 and 6. Bascd on the results of above studies,
formulas for determining the effuctive flange width of T-section masonry

walls are proposed.

(6) Finally, Chapter 9 summarizes the rescarch project and
provides concluding remarks. Some recommendations for further studies

are also proposed.
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2. FLEXURAL STRENGTH, STIFFNESS AND DUCTILITY
OF FLANGED MASONRY WALLS

2.1 Introduction

A typical flanged masonry wall and its idealized load-deflection
relationship in the two opposite directions parallel to the web are shown in
Fig. 1.1. The flexural strength, stiffness and ductility of the wall depend on
the direction of load application. The reason is as follows: with the flange
in tension, a high reinforcement tensile force with a large lever arm is
mobilized, resulting in a higher flexural strength than when the flange is in
compression. However, a consequence of the high tensile force and reduced
compression zone width when the flange is in tension is that the distance
from the extreme compression fibre to the ncutral axis, ¢, is much greater
than when the flange is in compression. This results in increased stiffness
of the cracked scction and significantly reduced ultimate curvature @,
which can be expressed as @, =€, /c, where €, is the ultimate compression

strain of masonry and C is the depth of the compression zone.

For the purpose of designing flanged masenry walls, charts and
tables of flexural strength, equivalent stiffness and ductility capacity for
both unconfined and confined masonry may be produced using the

following convenient dimensionless parameters:

N=Pe/fnlut @.1)
P =Au/lwt @2
M=m/fy%t 2.3
?=31 (2.4)

17



where N, M, @and P,, m, ® arc dimensionless or rcal axial load,

moment and curvature respectively, Ax and P are flexural reinforcement
area and ratio respectively; frm is masonry compression strength; e and t

arc web length and thickness respectively.
2.2 Basic Assumptions

The secction shape analyzed is shown in Fig. 2.1, tagether with
critical dimensions. Note that if the total flange length I = 0, the wall
section reverts to a rectangular wall of section of 1, by t. The following

assumptions are madc for the analysis:
(1) Plane sections of the wall remain plane up to the uliimate siate.

(2) The discrete reinforcement pattern indicated in Fig. 2.1 (a) can
be replaced by an equivalent reinforcement lamina of equal total area as

shown in Fig. 2.1 (b).

(3) Shear-lag effer.s are ignored. Thus all reinforcement in the
flange is considercd as fully cffective ( note: this assumption results
directly from assumption (1) ). Shear-lag cffects arc considered scparately
in Chapter 8, enabling the effective flange width to be used in calculation

to be considered.

(4) The thickness and local reinforcement ratio of flange and web
are cqual, ie. =t andpr=p Note that Pt is frequently not equal to P.
However, by adjusting the flange width and using an equivalent width,
the effect of different steel ratios in flange and web can be considered.

This adjustment is exact when the flange is in tension. When the flange is

18



in compression, small errors may result because of an incorrectly
calculated masonry compression zone depth. The error introduced in
strength or stiffness are usually less 1%. Ductility will be affected more
significantly, but is almost never a problem when the flange is in

compression.

(5) The axial load is uniformly distributed across the T-section.
Thus, the vertical line of action of the resultant axial load passes through

the geometric center of the gross section.

i

Reinforcement
Lamina{(p)

[:‘—b

. daN

T n
) L
b 2
gLy
[ ]
et Lv >
{a) Actual Section {b) Equivalent Section

Fig. 2.1 Cross Section of Flanged Masonry Wall
2.3 Material Properties

The stress-strain relationship of the flexural reinforcement is

assumed to be elastic-perfect plastic, ignoring strain hardening effects.
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The stress-strain curve for both unconfined and confined masonry,
proposed by Priestley and Elderl18] as shown in Fig. 2.2, was employed in

the scction analyses.

xf'm‘

Confined (3 mm Plates, ps -0.00766)
1.2
1.0 |
N Unconfined
| : -
2 ! | |
@ L
@ | | |
| | |
! . |
' . [
' L |
J 1 »
0.0015 0.0025 0.008 Em

Strain
Fig. 2.2 Stress-Strain Curve for Masonry(!8)
The curves in Fig. 2.2 can be represented by the following equations:
(a) For Unconfined Masonry:

When £, £ 0.00185, then

- 28y &y ’]
fn = 1.067 £ [o.ooz @002 (2.52)
When 0.0015 < gy, < 0.0025, then

fmafm[] - Zm (E€x - 0.0015))] (2.5b)
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(b) For Confined Masonry:

When g, £0.002 k , then

fm = 1.067k fm [0002k )] (2.6a)
When 0.002 k < e, < 0.008 , then
fm= 1067 k fi[1 - Zn (€ - 0.002 k )] (2.6b)
where k=14+p,fyn/fm Qan
z'n._
and 3+029fm + ‘“]_ 0.002 (2.8)
145 f, - 1000 af

In Equations (2.5a) through (2.8), the following parameters are used:

fm --- compression strength of unconfined masonry

Ps -.. volumetric ratio of confining steel

fyn - yield strength of confining steel

h" --- lateral dimension of the confined core ( i.c. block width )

Sh --- spacing of confining steel (i.e. block height )

Tests on masonry prisms confined with 3 mm ( 0.125 inch ) thick
stainless or galvanized steel plates within the mortar beds exhibit a
changed failure mode from one initiated at mortar beds by vertical
splitting to a shear-crushing failure largely within one coursel18), The
stress-strain curve for confined prisms has increased strength, higher

strain at peak load and a much flater falling branch. A safe ultimate

21



compression strain for concrete masonry confined in this fashion has been

established to be 0.008[18]. It was found that the relationship described by

the above cquations provided a good agreement with the experimental

data.

For masonry which is not confined adequately to change the failure

mode, a consistent formula for both unconfined and confined masonry can

be used as follows:

When e, £0.0015Kk, then
- 2¢ €m ]
= 7 —~=m__
fim = 1.067 k fm [0.002 k {(}.mz k)z

When 0.0015 k €€, £ 0.0025 +0.0275 (k-1} , then

fm =k fm[? - Zn (Em - 0.0015 k)]

where k and Z,, are given by Equations (2.7) and (2.8).

24 Problem Formulation

241 Moment capacity

c Ivlo I Eo | ]:Q lI [ B 3 [ I

The distributions of strains and stresses

(2.9a)

(2.9b)

of masonry and

reinforcement along the cross section of the flanged masonry wall at first

yield are illusirated in the left side of Fig. 2.3. At this stage, the extreme

rebar in tension just yields and the extreme fiber of masonry in

compression has not reached its ultimate strain. The equilibrium equations
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for axial forces and moments may be cxpressed in dimensionless form as

Al

T

follows:
Pe
ir| € \ e P T
2\"“ Py - T
[
“il” ¢ N o
Y 2 g
- Lw / l —
(4) Strain Distribution
1k
(b) Masonry Stresses
T T/
i i/
(c) Reinforcement Stiresses
AL Fi Yield At Ullimate State

Fig. 2.3 Distribution of Strain and Stresses
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Axial equilibrium:

KaNa + PKoKK(1 - R) + 0.5P(1 - ¢y - B2Vg - P - P =0 (2.10)

Moment equilibrium:

KaNA{(1-ep-cyn)(1-R)+{en-cyn)R] + PprlK.(l-c,n-ﬁ/Z)(l -R)+
0.333P(1 - ¢y - B2)/g +Mc+Mpm = M, (2.11)

Where Myn is the dimensionless external moment at first yicld. The first
term in the 1wo above equations is axial load or moment of axial load
about the ncutral axis respectively. The second term is tensile force and
moment due to reinforcement in the flange. The third term is tensile force
and moment due 1o distributed reinforcement in the web respectively.
Pe, P, Mc and My, are forces and moments contributed by the
reinforcement and masonry in compression area respectively. Since the
internal forces in  cross sections of masonry walls depend on the position
of the neutral axis, an iteration approach has to be employed to solve
Equation (2.10) for €ya, which will be then substituted into (2.11) to
calculate Myn The detail of expressions of internal forces and moments are
presented below and the following dimensionless symbols are used in the
expressions,

Sy =cy/ lw

Cn=C/lw

en=¢/ly

k=1/l,

ki=te/t

B=teAw

g=1-p

ko =ps/p
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a=(ut+lrtM it
=] +kk

Na=P./fmAy

P=pf,/fy

&y =1y /E,

fi=kik/B

€ = Strain at maximum compression stress for masomry

€u= Ultimate compression strain for masonry

R is a flag, when the web is in compression, set R=0; if the flange is

in compression, set R=1.

Steel Compression Force:

e IfcynS 0.5, then
Pe = PKpKiKi(cyn-B2IRA1-Cy-B12) + 0.5P(cyn-B/2) M1 <P (2.12)
M, = PKoK Ky(Cyn-V2) R/(1-cyn-B/2) + 0.333P(cyn-B/2) Mg (1 <pm-P/2)] (2.13)
« Ifcyy >05, then
P, = PK,KKKR + 0.5P(1-Cyn-B/2)/g+P(2cyn-1)/g (2.14)
M. = PKoKKi(€yn-B/2)R + 0.333P(1 ¢yn-B/2) /g +P(cyn-0.5) (2.15)

Masonry Compression Force

. fcpmel-cyn-f/2) S€) and cyn2 B, then

Pm = (PI(*}(146R) - RGP1[*(1-Blcyn)] }(1-Cyn-B/2)ey 2.16)
Mm = (QI(*)(1+6iR) - RGQI[*(1-Bleyn)] }(1-cyn-Br2) ey @17
o Hcye /(l-cyn-pr2) <€) and cyn< B, then
Pm = Pi(*Y(1+fiR)(1-cyn-P/2)ey (2.18)
Mm = Qi(* X1 +6R)X1cyn-B2) fe,2 2.19)
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In equations (2.16) to (2.19), the function P1( ) and QI( ) represent
Pl(s) = 533.3 «2 - 8.89 x 1043 (2.20)
QI(*) = 355.6 +3 - 6.6 x104 +4x (2.21)
where * =Cyn€y / (1- Syu-P2), or is specified in the ().
o If &) <cpt /(1 cyn-Pr2) S ey and (cyn-Pley/(1-cyn-Pf2) 2 €, then

P = (PL(ey) +P2(*)(1 +R) - REP2(M)(1-c,n-P2)Vey 2.22)

Mo, = (Q1(e1) +Q2(*)(1 +6R) - REQ2(#X1-Cyn-B/2) 76} @.23)
o IfE; <CynEy/(1-Cyn-Pf2) S Ecy and (Cyn-BIEW(1-Cyn-B/2)<E), then

Pm = {{P1(g))+P2(*)](1+fyR)-REP1(#) ) (1-cym-P/2) /ey (2.24)

Mpn = ([Ql(t:n)+QI(‘)l(l+fk)R)-RkaI(#)l(l-cyn-lm)zlt:,,2 (2.25)
In Equations (2.22} to (2.25)

P2(#) = 1.067ka((14€1Zm)(#-€1)-0.5Zn(#%-€;)) (2.26)

Q2(#) = 1.067k2(0.5(14€,Zy)(#-£1)-0.333Z(#-€,3)) (2.27)

where # = (Cyn-P)ey/(1-¢1-B/2) and k2 = 0.9375 for unconfined masonry ; k2 =
k for confined masonry, and k is defined in Eqn. (2.7). If
Cyn€y(1-Cyn-B/2) >€cu then crushing of the extreme compression fiber of

masonry occurs before the extreme tension rcbar yields and no value for

Myn exists.

In the above equations, the functions Pl and P2 will be recognized
as integrals of the masonry compression stress block to obtain the total
masonry compression force. Q1 and Q2 provide the moment of the totsl

masonry stress block about the necutral axis.
Conditions at Ultimate Compression Strain:

The distribution of strain and stresses of masonry and

reinforcement along the cross section is illustrated in the right side of Fig.
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2.3. At this stage, thc extreme rebar in tcnsion has passed the first yield
and the extreme fiber of masonry in compression just reaches its ultimate
strain. The equilibrium equations for axial forces and moments expressed

in dimensionless form are:

KANpA+P - P, - Pp =0 (2.28)
KaNA[(1-eq-cun)(1-R)+(enCun)R] +M, +M¢ +Mp= M, (2.29)

Where Mun is the dimensionless external moment at the ultimate state. The
first term in the two above equations is axial load and moment about the
ncutral axis respectively. Py, Pc, Pm, M, Mc and M, are forces and moments
contributed by the reinforcement in tensicn, and the reinforcement and
masonry in the compression area respectively. As with the case of first
yield, the internal forces in the cross section of masonry walls depend on
the position of the neutral axis. Again, an iteration approach has to be
employed to solve Equation (2.28) for ¢un, which is then substituted into
(2.29) to calculate Mun. Details of expressions of internal forces and

moments arc presenicd as follows:

Steel Tension Force:

o If Cun€yfEey S (1-Cun-P/2), then
Py = Pokiki(1-R)+P[1-Cyn-B/2-Cunfy(26) /g (2.30)
M = Pkpkiki(1-Cun-/2)(1-R)+0.5P{{1Coir- pfz)z_cmzeyy(k“l)]/g (2.31)
o If(1-Cun-B/2) S CunEyfEcy S (Cun-1-P2), then

Py = PlCun-P/2-Cunky(26.0)V/g-P-Pkokik(1-R) (2.32)
M = -Pﬁ[(cm-Bﬂ)z-(cme,)zl(3e¢u2)]/g+P(cm-ll2)+Pkpk;kt(c‘..- 14B/2)(1-R)
(2.33)

o I Cunkyfecy > (Cun-1-P/2), then

27



P, = Pkokiki(1-Cun-B/2)Ecu(1-R¥(CunEy) + 0.5P(1 Cun-B2) Ec(Cunky®)  (2.34)

M, = Pkokik(1-Cun-B/2) En(1-RW(CunEy) + 0.333P(1-Cop-B/2) €/ (Cunty 8)

(2.35)
Steel Compression Force:
o If Cuntyley S (Cun-P/2), then
Pe = PlokikiR + PlCun-B/2-Cunt)/(26c)V/g {2.36)
M. = Pkokik(R(Cun-B/2) +0.5P[(Cun-B/2)’-Cunky Y (Becu )V (2.37)
o Ifcun 2 PI2(1+€y/Ec))
Pe = Phpliki€ou(Cun-BR/CuEy) + 0.5Pecu(Cun-B2) /(Cunky8) (2.38)

Me = PkokiKe€ey(Con-B/2) RACunEy) + 0.333Pecu(CanB2) few&s®)  (2.39)
» Then , for all other cases
P = -Pkokik,R- P + P[1-Cun-B/2-Cun€y/(26c0) Vg (2.40)

M, = Pkokiky(B2-cun)R+ P(172-Can) - 0.5 P{(1-Cun-B/2)*-cun26, Y (3ecD)/g
2.41)

Masonry Compression Force:

For all cases except when R = 0 and Cun 2 1-B
o If €culcun-B)/cun 2 €1, then

P = [P1(€))4+P2(ec,)(1 +,R)-RfP2(x) Jeunfecy (2.42)

M = [Q1(EN+Q2(Ecu)(] +iiR)-R{Q2(X ) JCunEcu? (2.43)
. Else, if ¢yn 2 B then

P = ([(P1(€1)+P2(Ecu)I(1 +£iR)-RfLP1(x) ) Cun/Ecy (2.44)

Mm = ([(Q1(e1)+Q2(ec))(1+HR)-RAEQI(X) JcinYea® (2.45)
« Else, for all other cases

P = [P1(e1)+P2(Ec))(1+fkR)Cun/Ecu (2.46)

Mm = [Q1(e1)+Q2(Ecu) l(1 iR )Xoy fEcn? (2.47)
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In Equations (2.44) 10 (2.47), x= (Cun-P)ea/Cun. When R = 0 and Cun 21-B, then

special conditions apply as follows:
o If (Cun*1WCun 2 €1/€cy, then

P = [P2(Ecu)+P2(y)fx-(1 +fi)P2(2)lcw/Ecu (2.48)

M = [Q2EH QW) (1+10Q2(@) cmfen? (2.49)
o Elsc, if (Cyn-1+P)Veun 2 €1/€cy then

Pm = (P2(e+P2()fiH 1+£)[P1(€1)-P1(2)] JowvEcu (2.50)

Mg = {Q2(Ec)+Q2(y) i H1+)[Q1(€1)-Q1(2)] ) cun/ecs? (2.51)
. Else,ifcyy 21 then

Pm = [P2(€cu)+P1(€))+P1(y)i-(1+f)P1(2)]Cun/Ecu (2.52)

Mg, = [Q2(€)+QIEN+QUYHi-(14+60Q1 (2) Jounfecy® (2.53)
« Else, for all other cases

Pm = [P2(Ecu)+P1(€1)+P1(y)fk]Cu/Ecy (2.54)

M, = [Q2(eaH+QLEN+QI ()i cunYec? (2.55)

In Equations (2.48) to (2.55)
Y = (Cun-1+P)ec/Om (2.56)
2= (Cun- 1 )Ecv/Cun (2.57)

Solutions of the above equations directly yield dimensionless
flexural strength. The other parameters of interests, namely the ductility
factor and cquivalent stiffness are then calculated in accordance with the

following sections.
2.4.2 Curvature ductility
The dimensionless curvature corresponding to the onset of yield

strain in the extreme tensile reinforcement is given by
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Pm=ey/(1-Cyn -B2) 2.58)
And at the ultimate state by
Pun =€y /Cim 2.59)

In term of an clasto-plastic approach of the moment-curvature
relationship, the yield curvature needs to be related to the ultimate
moment rather than the reduced moment corresponding to first yield.

Extrapolating lincarly, as shown in Fig. 2.4, the cormrected yield curvature is

Pyn = Pyn Mun / Myn (2.60)
Thus, the curvature ductility factor can be found directly from

N =Qun/ Pyn (2.61)

A Actual

&

T

|

|

|
\>/

N

Elasto-plastic
First yield

\

¢; ¢)’ Curvature

Fig. 2.4 Moment-curvature Relationship
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2.4.3 Equivalent Stiffness

For a cantilever member subjected to a concentrated transverse
force at the free end, the distribution of moment and curvature along the
member after cracking are shown in Fig. 2.5. Assuming that the curvature
is linearly distributed along the height at first yield, then the stiffness
related to displacements at the top end will be

k= 3EL/h} (2.62)

Where 1. is an effective stiffness, taking into account the distribution of
curvature up the member. The actual distribution of curvature will be
nonlinear, and show local irregularities due to the effects of cracking. It
would appear that the assumed straight-line distribution from the
computed yield curvature at the member base would overestimate the
member flexibility. However, the effects of strain penctration into the
base, and tension shift, which increases curvature at the base section to
levels higher than predicted based on a simple ‘plane-section’ analysis
have been shown to compensate these cffects/28]. A linear cutvature
distribution as shown in Fig. 2.5, can thus be used to predict equivalent

stiffness. Since m'y=EIc¢;, therefore
L =m, /Eq, (2.63)
The stiffness ratio of cracked section to uncracked one is given by

A=1 1 (2.64)
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Where leandI; are moments of inertia for equivalent and gross sections of
the wall respectively, and the later is determined by the dimensions of the

wall section.

P
| Assumed
Rea!
<=
Cracking
(a) Moment (b) Curvature

Fig. 2.5 Distribution of Moment and Curvature at First Yield

Note that shear deformation will reduce the effective stiffness, s0 a
shear-adjusted moment of inertia can be expressed as:
v =L/ (1+F) (2.65)
Where F is the ratio of shear deformation to flexural deformation. An
approximate value for F may be based on the uncracked relative stiffness,
assuming the shear stiffness is reduced by cracking in proportion to the
reduction in flexural stiffness, giving F-A,/Agzl(rfl(, where
Ay, 81, K, and Krare displacement or stiffness at the top of cantilever wall
due to shear and bending respectively. Ki is given by Eqn. (2.62) and K
can be calculated as K, =GAch in which G and A, arc shear modulus and
effective shear area of the cross section respectively. Assuming G = 0.4 E

and Aw/A. is 1.2 for rectangular section, finally we have
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F=9['/A', hZ (2.66)

in which Aw is thc cross scction arca of thc web. The flange is not

considered to contribute to the shear stiffness.
2.5 Design Charts and Tables

Based on the formulas described above, a computer program which
can producc the design tables of flexural strength, equivalent stiffness and
curvature ductility in dimensicnless forms for both unconfined and
confined flanged masonry walls was written in FORTRAN 77 and is

included in Appendix A for reference.

Table 2.1 Parameters for The Computation

Lower Upper

Description Formulas Bound Bound Increment
Width Ratio Ik /L 0 20 0.25
Axial Load Ratio N/fm Ay 0 04 0.05

Mechanical Rein-
forcement Ratio pfy/ fm 0.01 0.2 0.01/ 0.02

The parameters considered in the calculation are summarized in
Table 2.1. The reinforcement yield strength considered were fy = 275 MPa
(40 Ksi) and 3BC MPa (55 Ksi). A typical masonry compression strength
used of fm=16 MPa (2.3 Ksi ) was adopted for the analyses. As the results

are not sensitive to the material strength duc to the dimensionless form of
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the equations, they may be used for a wider range of mechanical

properties with only minor crrors.

It is also assumed that the flange and web have the same thickness
and longitudinal reinforcement ratio in the calculation. For confined
masonry, 1/8 inch (3.2 mm ) thick mortar bed confining platcs of mild
steel were used, resulting in a volumetric confining ratio of 0.00785. Two
values of g ( sec Fig. 2.}, 0.95 and 0.80 ) werc sclected to produce the
design tables, and values for other g may be found with adequate accuracy

by interpolating between the above two values.

A sclection of the resulting data has been put in graphical form 1w
enable major trends to be emphasized, as shown from Fig. 2.6a to Fig. 2.16,
which can be also used for the purpose of design. For all design charis
presented, g = 0.95, with the vertical axis was chosen to be dimensionless
axial load ratio. Graphs of moment capacity, effective stiffness, and
curvature ductility are given for different levels of the mechanical
reinforcement ratio. From comparisons, the following trends can be

observed:
(a) Moment Capacity:

(1) Strength of reinforcement does not affect the ultimate moment
significantly, cspecially for the direction of loading with flange in

compression.

(2) Moment capacity increascs generally with increasing axial load
level for the direction of loading with flange in compression and the

relationship between the above two parameters is very close to linear. But
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for wide flange walls in the direction of loading with web in compression
above a cenain axial load, the moment capacity decrcases with increasing
axial load due to the failure mode changing from ductile failure (tensile
yiclding of reinforcement first) to brittle failure (compression crushing of

masonry first).

(3) Moment capacity always increases with increasing mechanical
reinforcement ratio. In the direction of flange in compression, the

relationship is close to linear.

(4) Confining plates on mortar beds do not affect uliimate moment
significantly for cases with the flange in compression, or with flange in
compression when flange width is small, but increase moment capacity
significantly for wider flange walls or when the mechanical reinforcement
ratio is high because horizontal confinement improves the ultimate
compression strain of masonry and can change the failure mode from

brittle to ductile.

(5) Fig. 2.15 shows the influence of flange to web length ratio on
moment capacity. It is obvious that in the direction of flange in
compression, the increase of flange width has little effects on ultimate
moment, but in the opposite direction, moment capacity increases with

increasing ratio of flange to web lengih.
(b) Effective Moment of Inertia:

(1) Effective moment of inertia is more sensitive to the strength of
reinforcement than is moment capacity. The wall with lower reinforcement

strength has larger effective moment of inertia.
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(2) Generally, effective moment of inertia increases with increasing
axial load level in both directions. Note that the graphs show discontinuity
in the direction of web in compression. The reason is that when the axial
load reaches a certain level, the failure mode will change from ductile
failurc to brittle compression failure. In the case of brittle failure a
different definition of ‘yield' condition applies, with my andtp'yin Eqn. (2.63)
being substituted by mMyand ¢, For these cases the stiffness is strongly

influenced by inclastic masonry compression stresses.

(3) As with moment capacity, the effective moment of inertia

increases with increasing mechanical reinforcement ratio.

(4) Effective moment of inertia is not sensitive to the ratio of flange

t0o web length.
(¢) Curvature ductility:

(1) Curvature ductility decrcases with increasing axial load level

and mechanical reinforcement ratio.

(2) Confining plates improve curvature ductility factor significantly

in the direction of web in compression.

(3) With the same axial load and reinforcement ratio, curvature
ductility in the direction of flange in compression is much higher than the

opposite direction as a result of the great difference in ueutral axis depth.
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2.6 An Example of Use of Design Charts

To illustrate the use of the design charts and significance of
directional characteristics of T-section walls, a specific example is worked

in the following:

Problem

Calculate the flexural strength, yield and ultimate displacement and
ductility factors for a T-scction cantilever masonry wall with the following

parameters:

web length: 3.6 m (11.8 ft )
flange length: 3.8 m (12.5 ft )
wall height: 18 m (59 ft )
wall thickness: 190 mm (7.48 in )
masonry compression strength: f = 12 MPa (1740 psi )
flexural reinforcement: D 20, diameter is 20 mm (0.787 in)
fy = 275 MPa (40 Ksi)
spacing 400 mm ( 15.7 in)
axial load: 1230 kN ( 276 Kips )

Solution
f=38-0.19~36m, t=019

If/ =10, g=(3.6-2x0.1)/3.6~095
axial load ratio:  Pe/ fm Ag = 1.230/ (12 x 2 x3.6x0.19) ~ 0.075

reinforcement ratio: Pty fm =% x 10? X275 / (400 x 190 x12 ) = 0.095
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(1) Moment Capacity

With the flange in compression, using Fig. 2.7a, with axial load ratio
= 0.075, interpolating between the curves of reinforcement ratio 0.08 and
(.12, we have

Mis = 0.0865 fr, Bt

=2.55 MNm ( 22,600 K-in)
With the web in compression, from Fig. 2.7b

Mijw =0.192 £ 131

= 5.67 MNm ( 50,200 K-in )

(2) Stiffness

With the flange in compression, from Fig. 2.10a
I /1 =0.187
I, = 1.73 m*
I. = 0.324 m*(37.5 ft*)
With the web in compression, from Fig. 2.1Cb
I./1;=0.308
I.=0.533mt (61.6 ft*)
If the effect of shear is considered,

F=91,/(Aw h?)=9x1.73/(3.6 x 0.19 x 18%) = 0.07
(3) Curvature Ductilily

With the flange in compression, from Fig. 2.13a
Pu/ Py~ 30
With the web in compression, from Fig. 2.13b

Gu/ Py=20
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(4) Displacement at Yield (Elasto-plastic Approximation)

Yield displacement can be expressed as:

Ay=M;h?/3El
Pricstley has recommended a value of Ep.1000fy, for deflection calculation
to ensure adequately high estimates of stiffness [13), Thus with flange in
compression:

Ay =2.55x%182/( 3 x1000 <12 x0.324 ) = 70.8 mm { 2.79 in )
With web in compression,

Ayy =5.67 x182 /(3 x1000 x12 x0.533 ) = 95.7 mm ( 3.77 in }
{85 Displacement Ductility

The relationship between displacement ductility and curvature

ductility can be expressed(28] as:
13l
l-l-1+3(¢y DE(1-51)

where H is displacement ductility factor and Ly is equivalent plastic hinge

length. Assuming

Lp=05ly=18m,
then

L,/h=18/18=0.1
With the flange in compression,

Mr=1+3 (50-1)x0.1x(1-0.05)=150
With the web in compression,

Ho=1+3 (20-1)x01x(1-005)=1.29
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(6)

Ultimate Displacement

Since Au= i Ay , then with the flange in compression,

Ay = 15.0 x 70.8 =1062 mm (41.8 in )

and with the web in compression,

Ay=129x%957=123.5mm (4.86in)

The results of the above calculations are summarized in Table 2.2

Table 2.2 Summary of Strength, Stiffness and Ductility
for Example Flange Wall

Flange in compression

web in compression

Flexural strength

g.SS MNm(22,600 Kin)

5.67 MNm{50,200 Kin)

Effective stiffncss

0.324 m% (37.5 ftd)

0.533 m? (61.6 fi4

Curvature ductility 50.0 20
Yield displacement 70.8 mm {2.79 in) 95.7 mm (3.77 in)
Displacement ductility 15.0 1.29

Ultimate displacement

1062 mm (41.8 in)

123.5 mm (4.86 in
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3. AN INELASTIC STRUCTURAL COMPONENT MODEL
FOR T-SECTION MASONRY WALLS

3.1 Introduction

Reinforced flanged masonry structural walls are widely used in
construction practice.  Since they have different properties (stiffness,
strength, and ductility) in two opposite directions due to their asymmetric
configuration and reinforcement, masonry cracking and steel yielding,
when subjected to in-plane loading parallel to the web, a special model is
neceded to simulate the asymmetric ineclastic behavior of these

components.

Fig. 3.1 (a) illustrates a typical masonry assemblage with openings.
To analyze this structure, there are three main methods which can be
employed, each at different levels of sophistication. The ordinary frame
model (Fig. 3.1 (b)) uses the simple line clement ( usually located at the
geometric center of the cross section) and rigid connection at the joints.
Typically variation of cross section along the member axis is not
considered, and the joint regions arc cither taken as cxtension of the
member , or to be infinitely rigid. As a consequence, applicability to the

decp-membered structure of Fig. 3.1 (a) is questionable.

Although the finite element method is versatile and suitable for
structural analysis at both elastic and inclastic response levels, it is time-
consuming and expensive due to the fine discrete requirement. Fig. 3.1 (c)
shows what would bc considercd to be a very coarse mesh for anmalyzing

this structure.
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Between the two methods above, the structural component
model(SCM) which divides the structure into its component level (bcam,
column and joint etc. ) may be capable of realistic simulation of deep-
membered structures, provided member deformation characteristics are
carefully considered. The method would require much less computational
cffort than the ordinary finitc clement model, but can expect to be more

realistic than the line element approach.

Fig. 3.1 {d) shows the idealization of the masonry assemblage with
structural components. The structure is divided as a system of beam
members (1), column or wall members (2) ., joint members (3) and
flanged members (4), connected by corner nodes. Generally, a 4-node
plane clement has 8 degree of freedom, including three rigid body
movements and five basic deformation modes, as illustrated in Fig. 3.2.
For the beam and column members of an SCM simulation it is reasonable
to assume that strain perpendicular to the principal member axis is zero
so that only axial strain, flexural and shear deformation along the
longitudinal direction are considered. As a consequence the beam and
column clements (including the flanged type 4 clement of Fig. 3.1 d) have
only 6 degree of freedom, namely 3 rigid body movements and 3 basic
deformation modes(modes 1, 2 and 5 in Fig. 3.2). Their stiffness matrices

can be derived from the corresponding degenerated plane frame element.

Deformation compatibility of the structure is enforced through the
common nodes between the connected components. For interior joint
elements, since there are four constraints between displacements of

adjacent nodes introduced from connected beam/column clements as
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mentioned above, the effective degree of freedom for this eclement
reduces to 4, including 3 rigid body movements and one basic

deformation mode , that of shear deformation.

In this chapter, an inelastic SCM for flanged masonry structural
walls is developed. Complete structural analysis using SCM models is
beyond the scope of this study and is considered in TCCMAR TASK
2.1(3)[26). For the flanged member ( type 4, Fig.3.1d ), the clement has
the same basic deformation modes as a column/beam component, but a
spccial model is needed in order to simulate its asymmetric

characteristics in the two directions parallel to the web.

The model is based on the ordinary shear-flexural element and
allows the formation of a flexural hinge with a limited length at each end
10 simulate the possibility of plastic hinges forming at the 1op and/or
bottom of the SCM. The stiffness matrix is derived through invening the
flexibility matrix of bending and shear deformation. An asymmetric
hysteresis loop pattern is also proposed utilizing a tri-linear envelope
with modeling of stiffness degradation and pinching effects. The skeleton
mode! for force-deformation is based on the strength, stiffness and
ductility calculation developed in the previous chapter. The model can be
used to simulate the overall inclastic response of a single flanged
masonry wall, or a flanged structural component of a building subjected
to earthquake excilation, by connecting it to the other structural

members.
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3.2 Formulation of the Element Stiffness Matrix

The flanged masonry wall subjected to in-plane loads parallel 1o
the web, as shown in Fig. 3.3 (a), can be modeled as a planar
shear-flexural element  (Fig. 3.3 (¢) ). The relationship between node
forces and displacements of the element in local coordinates can be

expressed as

P kiy kj2 O ‘v,\
Pz} =| kan ka2 O |iva 3.1)
P3 0 0 ki \val

or {p} = [k} {v} (3.2)

Where {p) and {v] are node force and displacement vectors respectively

and [k] is the element stiffness matrix, as shown in Fig. 3.3 (c).

\ PV
h
| pP2v2
lw \

(a) (b) (e)

Fig. 3.3 Flanged Wall and Equivalent SCM Simulation
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The stiffness matrix (k] depends on the material properties and
configuration of the element. Since flanged masonry walis consist of
different materials (masonry units, rcinforcement, ctc.) and the cross
sections may crack, yield, or develop plastic hinges at the eads under
planar loads, an ordinary stiffness matrix cannot adequately describe its
complicated behavior during the different possible loading stages. In this
section, the energy priaciple is cmployed to obtain the special element

stiffness matrix.

1.2.1 Stiffness Matrix in Local Coordinates:

< h
i
12
m?2 ‘l_ - — NBy2 o
~_/ w2 2
(a) Shear-flexural (b) Moment {¢) Curvature
Element Distribution Distribution

Fig 3.4 SCM Element

Fig. 3.4 (a) shows a column-type element with two plastic hinges,

one at each end. The equivalent plastic hinge lengths are 1] and 12

respectively which can be determined(28) by
1,=008h +6dy (3.3)
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where dpis thc diameter of vertical recinforcement. In the central region
of thc wall the clement remains in the elastic stage and has a constant
stiffness{cracked). Note that since behavior at inelastic levels of structural
response is of prime concern, the simplification that all sections of the
wall between plastic hinges are cracked will induce only small errors. It
would, however, be straightforward to add an additional subsection of the
element represented uncracked region. The moment is linecarly
distributed along the clement in this case, and the curvature is assumed

as shown in Fig. 3.4 (c).

The energy principle will be used to obtain the flexibility matrix of
bending and shecar deformation, then the stiffness matrix of the clement
can be derived by inverting the resultant flexibility matrix. The

deformation energy of the clement in Fig. 3.4 duec to bending is

Up =Ue + Up 3.4)
in which Ue and Up are contributed by elastic and plastic deformations
respectively. Since the central region of the clement remains in the elastic
stage and hence M(x) = EI &(x) applies. Further, the curvature in plastic

hinge regions can be divided into two parts: elastic and plastic, and hence

h
Ub=j %{ + I (@1- @y) L) + M2 (@2- @y2) 2 (3.5)
clastic plastic

Where M(x), ®&(x) are distribution functions of moment and elastic
curvature along the element; Mii and M2 are average moments in top and

bottom plastic hinge regions of the element respectively. Using mi=mm
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and M2~ and the relationship between moment and curvature, the
deformation encrgy can be expressed approximately as

- - | - |
U"r?_ELfI (m;-ml hﬂz x,’dx LM (mlEl:nyl) L, M (m:‘.l zmyz) 2 36)

In which EI; and EI; arc cquivalent flexural stiffness in the wp and
bottom regions of the element respectively. Then, the flexibility
cocfficients of the node rotation due to bending can be derived from the

following differential operation

(fijl = — i) =12 3.7
om; in =1

Using the approximation of my)~m my2~m; again, we have

[ fin fi2 ]
[fo] '[fn faz |
I
. hf2-1] |Eh
= ewl12]t o L @8

El,

in which the first part is the normal flexibility matrix due to elastic

deformation. and the second one is due to the plastic hinges at the ends.

The flexibility matrix of shear deformation can be easily obtained

as
o1 [
161= oAzl 1) 3.9)
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where G and A' are shear modulus and effective shear area respectively.
Combining the two matriccs above and inverting the resultant flexibility

matrix, the stiffness matrix of node rotation can be derived as

{(k}2x2=(Ifb] +(fs) )]

2+B+y, 1-PB
- GEI 3.10)
ha I-B 2+B+y,
in which
o:=(2+|3<1-'{|)(2«}[5+'rz)-(1-B)2
B = 6El /GA'h?
Y =611/ Lh
v = 6112/ Ih

Adding the axial load terms into the above matrix, the stiffness

matrix of the element in local coordinates has the final form as

2+B+y, 1-PB 0

Kha=SEl | 1.8 2484y, 0 @3.11)
aA
0 0 .

In which A is the area of cross section for axial load.
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3.2.2 Stiffness Matrix in Global Coordinates

In global coordinates shown in Fig. 3.3 (b), the flanged wall has 8
degrees of freedom and the relationship between the node forces and

displacements is

(F}={K] (u} (3.12)

where
(F} ={ F1. F2. - Fg IT (3.13)
(u} ={vy, u2, --ug T (3.149)

Transformation of node forces from local coordinates (p} 1o global

coordinate forces [F} can be established through the following matrix

operation.
(F1=(TIT (p} (3.15)
where _ _
Al ML Mg A
h d h d h h 0
=AM A L o1
[T] I 0 b 0 h d h -é. (3.16)
0 % 0 & 0 -2, 0 -M

is termed the transformation matrix and A= di/l,, A;= d2 A, wherel,, di
and d? are transverse dimensions, defined in Fig.3.4. Therefore, the

element stiffness matrix in global coordinates is
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[K] = [T)T (k] [T} @17

Egn. 3.17 can be used for both static and dynamic analysis of
flanged masonry walls or as & T-scction member in masonry
assemblages. Numerical examples and comparison between the analytical

results and experimental results are presented later in Chapter 7 .

3.3 Hysteresis Loops for Flanged Masonry Walls
3.3.1 Moment-Curvature

To match the inelastic structural component element developed
above, an asymmetric hysteresis loops for flanged masonry walls is
proposed in order to allow time-kistory response analyses to be carried

out.

Fig 3.5 Proposed Moment-curvature Hysteresis Loops
For Flanged Masonry Walls
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Based on the assumption of plane-cross section and the material
properties described in Chapter 2, the moment-curvature hystetesis loops
for rcinforced flanged masonry walls arc proposed as shown in ¥ig, 3.5.
The loops have an asymmetric tri-linear envelope in each loading
direction and a falling branch when the web is in compression to simulate
compression failure of the flexural compression zone at high strain levels.

The points on the envelope are defined as

Pw1 : first cracking, web in compression
Pw2 : first yield, web in compression

Pwi : ultimate state, web in compression
P first cracking, flange in compression
Prp :  first yicld, flange in compression

The tangent stiffness in cach linear segment is

ki = ( Mis1 - M)/{ 901 - ) (3.18)

where Mj, § arc corresponding moment and curvature which can be
calculated by cross section analysis or using the design charts or program
in Appendices. Fig. 3.5 shows a falling branch to the moment-curvature
envelope after crushing occurs at point Py3. With the simplified moment
curvature section analysis developed for this study, the slope of the
falling branch can not be determined analytically. As a consequence, all
analytical prediction using this model extend only to the stage of first
crushing. The falling branch characteristics can be modelled by inelastic

finite ¢lement mcthods, as reported by Seible et all25),
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Unloading paths have a stiffness degradation factor L which
varies from O - no stiffness degradation (unloading parallel to 0 - Py2 or

0 - Pr2) to 1 — unloading towards the origin, until they reach the x-axis.

Reloading in the opposite direction has a pinching cffect, with all
the paths directed towards a ceriain point ( pw or pr, see discussion in
next section ) on the moment-axis. After returning to zero deformation,
the loading direction will cither be towards the maximum previous
position or the first cracking point in the opposite direction, whichever is

larger,

3.3.2 Shear Deformation

G

Fig. 3.6 Hysteresis Loops for Shear

Since shear failure is undesirable under scismic response, and is

avoided by use of capacity design principles(4). and shear characteristics
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are expected to be symmetric in the two opposite directions parallel to
the web, hysteresis loops for shcar dcformation arc assumed to have a
symmetric bi-linear envelope as shown in Fig. 3-6 Point P, on the
envelope, represents the onset of shear cracking and all unloading paths

are assumed to point to the origin.

The shear stiffness before diagonal cracking is equal to the initial

masonry shear modulus as

Gg =GO = (3.19)

_Em _
21 +v)
in which v, Gpand E, are Poisson ratio, shear and eclastic moduli of
masonry respectively. After diagonal cracking, the shear stiffness is
assumed to be proportional to the ratio of horizontal reinforcement in the
web and its elastic modulus. The equivalent shear modulus thus has the

form

Gi = pa é G (3.20)

where Ph and, Eg are ratio and elastic modulus of horizontal reinforcement

in the web respectively.

Theoretically, point P is corresponding to a stress state where the
principle tensile stress in the web reaches the tensile strength of
masonry. Since the vertical stress varics along the web duc to bending, as
an average, at the neutral line, the principle tensile stress equals to the

shear stress thus the corresponding horizontal load can be determined.
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3.3.3 Momen Imtercept at Zero Curvature on Reverse Loading

In Fig. 3.5, there are two points Py and Pron the moment-axis
which the hysteresis loops are directed towards on reloading from an
inclastic excursion they allow the pinching cffects durimg the reloading to

be simulated. The determination of these two points is discussed briefly

as follows:
e —
(a) Flange in (b) Neutral (c) Web in
Compression Position Compression
- e e - |
(h) _ (e)
+ EP Ep \
(i) {r) —
i_J S es=e- 0.5t o e
= - lec (d) Cross o
e Section

{j) (g)

Fig. 3.7 Strain Distribution on Reloading after an Inelastic Excursion
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(a) Reloading From Web In Compression

The positions and strain distributions for the cross-section of a
flanged wall at different loading/unloading stages involving previous
inelastic response are shown in Fig. 3.7. In the case of the web in
compression, at the end of unloading, the moment returns to zero, but
there are still residual strains (deformation) at the base cross-section as a
consequence oOf inclastic reinforcement strains in the previous cycle of
response as shown in Fig. 3.7 (c¢). Assuming the position of the resultant
vertical loads (center of the cross section) is close to the geometric center
of the vertical reinforcement (Fig. 3.7 (d)), the strains duc 1o vertical
loads may be considered to be uniformly distributed along all the vertical
rebars (Fig. 3.7 (e)). The residual strains duec to bending deformation can
be assumed to be linearly distributed along the web (Fig. 3.7 (f)). When
loading in the reverse direction, the crack will occur for re-open, if
cracked already) before the residual tension strains of vertical rebars in
flange arc c¢liminated completely. Since the whole cross scction is
cracked, the external moment will be carried by the vertical
reinforcement only, and the strains due to the applied moment will be
linearly distributed along the vertical reinforcement as shown in Fig. 3.7

(8)-

When loading to a point where the residual strain is eliminated
at the cxtreme compression bar by the reverse deformation, the crack
will be closed and the stiffness of the wall should indicate a sharp

increase, as shown in Fig. 1.6. At this stage

€-€-6=0 (3.21)
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where g, €; and . are vertical reinforcement strains in the flange caused
by residual deformation, axial load and reverse loading as shown in Fig.
3.7 (f), (e) and (g) respectively. Since the curvature for closing the crack

may be written as
qyp,,=£c/c=(ep-€;)/¢ (3.22a)

the moment required to generate the above curvature will be
Mpw =ElL(g,-g)) /¢ (3.22b)
where
E¢ - Elastic modulus of vertical reinforcement

I - Moment of incrtia of the cross section based on vertical

reinforcement only.
(b) Reloading From Flange In Compression

When the wall is unloaded from the opposite direction , flange n
compression, the distributions of the strains along the cross-section are
similar to that in the previous case and are shown in Fig. 3.7 (h) to (§). In
this case, however, the depth of the compression zone is (glw-t) instead of
¢ in the former case. The curvature and moment corresponding for closing
the crack at the flexural end can be derived, in similar fashion to the

above as
Ppr=E M(glw- €)= (€p-€g) / (glw - €) (3.22¢)

Mpr = EyL,(ep - €) / (gly - € (3.22d)
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where gly, is the total length between the extremec vertical rebars along

the web and the other parameters are the same as in Eqn. 3.22b.

To simplify the hysteresis loops for both cases, it is reasonable to
assume the points are on the moment-axis, i.e., the curvatures are equal

to zero or the strains at both extreme sides along the web are equal

Ep-E=8 (3.23)

Therefore, the curvature duc to elastic deformation under reloading is

P=(g +e) 1 =gpf1 (3.242)
and the corresponding moment will be

M=ElL &/l (3.24b)

Note that in Equations 3.22 and 2.23, the calculatcd moment will

depend on the residual strain & of the extreme rebar. When reloading

from flange in compression, g, could be much larger than the yicld strain,
resulting in very high corresponding moment. Actually, under reloading,
the extreme rebar at the free end of the web may reach its yield strength
long before the residual strain is completely eliminated. Therefore, the

corresponding moment  will be

M=My= él% (2.25)

where fyis yield strength of the reinforcement and the other parameters
are the same as above. The real values for P, and Pgshould be
corresponding to the smaller moment between the calculated results from

Equations 2.24 and 2.25.
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To ecvaluale the formulas proposed above, wall Fl1 (for Pseudo-
static test} and F5 (for dynamic test) have been calculated with the
formulas. In the calculation, fy = 71.2 Ksi (tested result for wall F1) Eg =
30,000 Ksi, P = 80 Kips(axial load) and € was a&ssumed to be 0.5 and 4.0
times of steel yielding strain(0.002) for WIC and FIC respectively. The
shear equivalent to the critical moments of both calculated and
cxperimental results are listed in Table 3.1. It is seems that when
reloading from web in compression, Equation 3.24 dominates the

calculation result, but in the opposite direction, Equation 3.25 will be

applicable.
Table 3.1 Critical Shear { Kips)
Equation Equatiol{ Wall F1 | Wall F5
3.24 3.25 (static) [dynamic“
Web in 38 10.9 <4 0
compression
Flange in
Comptression 30.6 10.9 s <155
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4. EXPERIMENTAL STUDIES - GENERAL DESCRIPTIONS
4.1 Introduction

The single T-section wall tested in preliminary studies(27] had
confirmed the predicted behavior in term of stiffness, strength and
failure mode. However, as an initial pilot test, there were inevitable
problems with experimental technique and the influence of variation of

key parameters could not be considered.

In this continuing research (TCCMAR Task 4.1), a comprehensive
experimental program was carried out to investigate the seismic behavior
of flanged masonry walls. The program consisted of two phases: a pseudo-
static phase involving tests of four full scale T-section masonry walls and
a dynamic phase, involving tests of five full scale T-section masonry walls

on a shake table.

The purpose of the static tests was to investigate the influence of
the vertical reinforcement ratio, the flange width, and confinement to
the mortar beds at the web toe, on the strength, stiffncss and ductility of
flanged masonry walls. The test results were also intended to be used to
provide a data base for examining and calibrating the theoretical work.
Although static testing is very usecful and cnables detailed observation
under controlled conditions during the testing, it does not simulate a
dynamic environment necessary to examine the real seismic response of

structures.

As the second phase of the experimental srudies, the dynamic tests

used identical specimens to the walls for static tests, facilitating the
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investigation of the influence of above parameters under dynamic
condition. It also allowed comparison of the structural response between
static and dynamic test regimes in order to investigate the reliability of
predicting of seismic behavior of flanged masonry wills, using the static

analytical and experimental results.
4.2 Design and Construction of the Test Units

4.2.1 Considerations of Test Unit Design

Since identical static and dynamic test units were desired, the size
and weight of all test units werc limited by the loading capacity and
dimensions of the shake table. As a consequence, the effective wall height
was chosen to be 12 feet(3.66 m), which may be considered equivalent to
two story walls, since lateral forces were applied at the top of the wall in
the test, whereas the resultant seismic force in a 2 story wall would be
approximatecly at the mid-height of the second story, as a result of inertial
forces at the second floor and the roof levels. Table 4.1 defines wall
dimensions, and reinforcement for the two phases of walls. Among the
units, wall Fl was considered as the basic wall and the other static walls
F2, F3 and Fd4(confined) were designed to have either different vertical
reinforcement ratio, different width of flange or to have confinement
plate on mortar beds at web toc in order to investigate the influences of
these parameters. Dimensions for wall F1 are shown in Fig. 4.1. As will be
seen from Table 4.1 and Fig. 4.1, the dimensions of the basic wall (F1)
were such that the ratio of flange to web length was 2.25, and the ratio of

wall height to flange length was 1.38. These dimensions were chosen to
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ensure highly unsymmetrical response characteristics, and to provide a

real test of shear-lag effects.

For dynamic tests, units F5, F6 and F7(confined) duplicated walls
Fl. F2 and F4 respectively (wall F3 was too wide to test on the shake
table ), in order to comparc thc rcsults between static and dynamic tests
as well as 1o check the effects of vertical reinforcement ratio and
confinement on strength, stiffness and ductility of flanged masonry walls
under dynamic conditions. Walls F8 and F9 were identical to wall F5 (also
wall Fl), but were tested in different ways to investigate the effects of
loading history and direction on the response of flanged masonry walls, as
will be described in Chapter 6. The only physical difference between the
twe groups is that the walls for dynamic tests were constructed two
masonry courses (sixteen inches) shorter than the static walls in height so
that the center of mass for the inertia biocks on the top of the dynamic
test units was at the correct position to maintain an equivalent wall

height of twelve feet.

In accordance with TCCMAR requirements, all walls were
constructed with 6§ inch wide (nominal) concrete masonry units and were
fully grouted. Three kinds of blocks were used: namely, end closures were
cither standard open-end units (block type 1) or half open-end units
(block type 2) on each side of flange and at the free end of web; all others
were open-end bond beam units (block type 3), allowing transverse
reinforcement to be placed. The three block styles and their dimensions

are shown in Fig 4.2
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4.2.2

Reinforcement

Arrangement

Vertical reinforcement for wall F1, F4, F5, F?, F8 and F9 consisted

of #6 bars (19.05 mm diameter) of grade 60 steel! (fy = 414 MPa) at 16

inch (406 mm) nominal centers, resulting in 6 bars in the flange and 4 in

the web (including 1 at the web-flange intersection)., Over the full cross

78



section, the average vertical reinforcement ratio was 0.00546. Wall F2, F3
and F6 were rcinforced vertically with #4 bars (12.75 mm diameter) of
grade 60 steel at 16 inch nominal centers, resulting in an average

reinforcement ratio of 0.00248,

Table 4.1 Test Matrix for TCCMAR Task 4.1

Wall | Wall Dimensions AxialLoad | Vemical |No.in | No.in
HxLfxLw* (psi) Rebars web Flange
FI | 12x88"x310" 100 #6 @ 16" 4 6
§ 2 | 12x88"x310" 100 M@ 16 4 6
@ | F | 1272168 x310" 100 “@ 16 4 12
Fa'l| 12x88" x310 100 #*@ 16" 4 6
F5 | 12x88"x 310" 100 #6@ 16" 4 6
g | re | 12x88*x310" 10 #@ 16" 4 6
g F7'| 12x8'8"x 310" 100 #6@ 16" 4 6
k8 "2 12x8'8"x310 100 0@ 16" 4 6
P3| 12288 x310 100 6@ 16" 4 6
¢ : H=wall height , Lf=flange length , Lw=web length
*1: confined

42: Tested with a single severe carthquake input
*3: skewed 45 degrec to shake table axis

Vertical reinforcement was continuous from the wall base to mid-
height of the wall, where it was lapped with standard laps of 40 bar
diamcters. Lapping of short starter bars at the wall base was deliberately
avoided to alleviate potential bond problems in the plastic hinge region.
The vertical bars were bent with 90 degree hooks at both ends into the
top concrete slab or the bottom concrete base respectively to assure
adequate development length. Detail of the reinforcement arrangement of
wall Fl (also F4, F5, F7, F8 and F9) is illustrated in Fig. 4.3. For wall F2

and F6, the only difference is that the diameter of the vertical

79



reinforcement was #4 instead of #6. Wall F3 had twelve vertical rebars in

flange rather than six for wall F2 due to its wide flange, as illustrated in

Fig. 4.3(d).
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(c) Plan (d) Cross Section of Wajil F3

Fig. 4.3 Reinforcement Arrangement, and Straingauge Locations

80



Horizontal reinforcement was essentially the same in all 9 walls. In the
web, #4 (12.75 mm diameter) grade 60 steel bars were placed &t 8 inch
(203.2 mi) centers over the full height of the wall. This provided a
nominal shcar capacity of 81 kips (360 kN) which was greater than the
maximum expected force. Web transverse reinforcement was hooked
around the vertical rebar at the free end of the web with a i80° hook and
bent with a standard horizontal 90 degree hook into the flange at the
other end. Because of the small flue dimensions of the 6 inch block units,
the hook at free web end had to be rotated 45 degree out of the
horizontal plane. In the flange, transverse reinforcement consisted of #4
bars of grade 60 stecl at 16 inch vertical center. The bars were bent down

into end vertical flues with standard 90 degree hooks.( see Fig. 4.3)

Wall F4 and F7 included 1/8 inch (3.175 mm) thick mortar bed
steel confining plates at the free end of the web over the lower 7 mortar
beds. The confining plates were 24 inches (609.6 mm) long and cut to the
shape of the net block profile, allowing 1/4 inch (6.35 mm) for pointing.
The plates were laid into the mortar beds, which was placed in two thin
layers, one under and one over the plate. No problems were experienced
in laying the plates. Fig. 44 shows a mortar bed confining plate being

placed during construction.

4.2.3 Foundation Beam, Top Slab and Wall Construction

The walls were constructed on 12 inch (304.8 mm) thick reinforced
concrete bases with vertical reinforcement of the wall extended into the
bottom of the base and bent 90 degree horizontally to cnsure adequate

anchorage (sec Fig. 4.3). On the base, a pattern of PVC tubes ( 2 inch
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diameter) were cast into the concrete for ticing down the wail onto the
strong floor for the pseudo-static test or the shakc table for dynamic test.
To ensure that there would be no foundation failure, the concrete base
beam was a little over reinforced. Both the dimensions and reinforcement

arrangement arc shown in Fig. 4.5.

On thc top of the wall, an B inch (203.2 mm) thick reinforced
concrete slab was cast to distribute the lateral load. As with the base, the
vertical reinforcement of the wall extended into the slab and was bent 90
degree horizontally for adequate anchorage. The dimensions and

reenforcement for top concreic slab are presented in Fig. 4.6

The construction process for cach test unit consisted of the

following four steps:

(1) Constructing the wood form, placing base reinforcement and
casting the concrete foundation beam with the bottom half vertical rebars

in position.

(2) Placing horizontal reinforcement and laying blocks up to about
half height of the wall, then fully grouting (leaving a length of 40 bar

diameter for lap splicing).

(3) Placing horizontal reinforcement and laying the wall to its full
height, then placing the top half vertical rebars, tieing to existing bars,

and fully grouting.

(4) Constructing the wood form for top slab, placing reinforcement

and casting.

83



Position of T-section wall

and veriical rebars 1632 PVC for
. tieing down
AT
x| PVC for
veruczl loading
+ -l + 1 + * ‘
T y
N
. - T .

ih
l }—"""-‘n—

o
i

1
n

o
1

.
*
»
»
-
1
W
+ -——-"“‘"r )
—
oE
i
—

-

Vertical rebars
¢tlended into base

1

Fig. 4.5 Concrete Foundation Beam

20" Vertical rebars of the wall

ax1” PVC I‘_hl extended into top slab
for vertical

loading

52"
] TN 4
12

4

)
!

1047

Fig. 4.6 Concrete Top Slab

8u




thi - Botom Hudt Wall Completed

() Whole Wall Complated dy Top Concrere Slab Completed

Fros L7 Procedure of Wall Construction



Fig. 4.7 (a) through (d) show photos at each stage of wall
construction. The walls were constructed by certified masons to ensure
that normal standard of workmanship was achieved. A special mortar mix
of cement: lime: sand = 1 : 0.5 : 4.5 by volume, required by TCCMAR was
used, and water was added by cyc to obtain a mix of satisfactory

workability.

The intersection between the web and flange is a natural planc of
weakness, subjected to high shear stress and deserves special attention in
design and construction. No masonry units penetrated the flange-web
interface, but continuity of grout and horizontal reinforcement, and hence
monolithic action, was provided by removing the top half of the face shell
on the flange block at the interface. When a half unit butted against the
flange(the odd courses counted from the base), half depth saw cuts were
also made in the end face shell of the block and the top half knocked off

to allow continuity of grout and transverse reinforcement.

The walls were fully grouted and compacted with a pencil
insertion vibrator. Sika grout aid was added (6 pounds per cubic yard) to
compensate for concrete shrinkage. To ensure the bond between grout
and concrete base, the concrete base surface was roughened with brush,
and a clean-out ports for cleaning the mortar were cut into the block
faces at the location of each vertical rebar at the bottom course (see Fig.
4.4 b). These were replaced after cleaning. A similar detail of clean-out
ports was provided at the wall mid-height, corresponding to the bottom

of the second construction lift.
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4.3 Material properties

4.3.1 Strength of Masonry and Its Components

In accordance with the requirement by TCCMAR, the following
samples of mortar and grout were taken during the wall construction to
determine the material properties.

(1} mortar cubes 2 inch long, using a special bronze mould

(2) mortar cylinders with 4 inch height and 2 inch diameter

(3) grout cylinders with 12 inch height and 6 inch diameter

(4) grout prisms with 6 inch height and 3 inch square cross
scction, using four masonry units &s the mould with absorbant paper
placed between the grout and masonry surface to allow proper water

absorption by the masonry.

Three-course high stack-bonded prisms were made, using a
special jig to ensure precise dimensions(30]. Since the walls were laid up in
pairs simuliancously, for example Fl and F2; F3 and F4 etc., one set of
materials apply to both walls of thc pair. However, since the walls were
grouted sequentially and the prisms were laid up approximately half way
through the grouting process, it is possible that variation in strength
between the critical scctions of the walls cxisted duc to variation of grout
properties through the mix. In particular, a difference in the amount of
water absorbed by blocks from grout could be expected with time as the

grout stiffens.

Table 4.2 summarizes the material test results. Also listed in the

table is the prism strength predicted by a formula developed from
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analysis of the mechanics of masonry compression strength{29), This
approach relates the prism strength to the strength of its components by
the expression

fmp =06 afy, + 09 (1- ) f; .1
where f'c,,andt‘, are compression strength of masonry units and grout
respectively, and @« is the ratio of net 10 gross arca of the units ( in this
case, o is 0.62). It will be noted that the predicted strength is about 28%
above the measurced value fm, from prism test for walls F3 & F4, and 17%
below the test results for both walls F6 & F7 and F8 & F9. It is not clear
why such larger discrepancies exist for these walls, but it is possible that
insufficient care was taken during construction, capping and testing of
prisms for walls F3 & F4, and grout cylinders for walls Fé to F9.
Comparison between measured strength and strength interpreted from

test results is discussed further in Section 5.3.2.

Table 4.2 Compression Strength of Masonry
Prisms and Components(Ksi)

Fl & F2 F3 & F4 FS F6 & F7 F8 & F9
£ 2.56 2.56 2.56 2.56 2.56
foa 3.67 2.82 3.11 1.18 2.69
A 5.64 3.94 3.44 2.30 1.11
£, 2.60 1.80 2.26 2.10 2.43
fmp 2.88 2.30 2.13 1.74 2.02
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4.3.2 Reinforcement Stress-strain Characteristics

Three samples for each batch of vertical reinforcing steel were

taken and tested in a universal testing machine. The mean values of

yielding and ultimate tensile strength for each group are listed

4-3. Also straingauges were attached to one steel bar in each group and
tensile stress-strain curves were ploted during the testing. The stress-

strain curves of vertical #6 and #4 rebars are shown in Fig. 4.8 (a) and (b)

respectively.

Table 4.3 Tensile Strength of Reinforcement (Ksi)*

Yicld strength Ultimate strengh
Wall F1& F4 (#6) 712 99.7
g Wall F2 & F3 (44) 75.9 117.2
e
g
€ all F5,7,8 &9 (#6) 68.9 107.4
=
Wall F6 (#4) 62.5 97.3
All horizontal rebars 759 117.2

*: 1 Ksi = 69 MPa
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5 PSEUDO-STATIC TESTS

5.1 Test Set Up and Insirumentation

As the first phase of the experimental studies, the pseudo-siatic
tests of four full scale flanged masonry walls were carried out. The walls
were tied down onto the strong floor through the holes in concrete base
with 1.25 inch DWIDAG bars. A thin layer of hydrostone was cast
between the wall base and strong floor and post-tensioning was applied
to ensure adequate friction between the basc and ground during the

testing.

Lateral load was applied by a double-acting 100 kip (450 KN)
capacity hydraulic actuator reacting against a strong wall, and supplied
with swivel mounts at each end allowing rotation in the vertical plane only
(sce Fig. 5.1). Vertical load was applied by either 4 (walls F1, F2, F4) or 6
(wall F3) 5/8 inch (16 mm) high strength DWIDAG prestressing bars
anchored at the bottom of the concrete base , and stressed against the top
slab of the wall, through a stiff coil spring. The flexibility of the springs
was specially designed to have a axial compression stiffness of 6 kips/inch
(1051 KN/M), which was about one tenth of the axial tensile stiffness of
the 5/8" DWIDAG bar. The flexibility of the springs were such that the
vertical load provided by the stressed bars would remain essentially
constant during lateral displacement, despite the carresponding vertical
displacement resulting from the integration of vertical strains. The level of
applied axial load was chosen to provide an cssentially uniform stress of

100 psi (0.69 MPa) (including wall self weight) at the base of the wall. The
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vertical load bars were straingauged to cnable actual load variations to be
monitored during testing. Fig. 5.1 shows the test set up for ‘he psecudo-

static testing.

Electric resistance strain gauges were placed on both vertical and
horizontal reinforcement within the potential plastic hinge region at
location shown in Fig. 4.3, The purpose of this instrumentation was to
investigate shear lag cffects in vertical reinforcement, and shear forces

carried by transverse reinforcement in the web.

Masonry deformation in the lower region of the wall were
monitored with linear potentiometers (0.5 inch (12 mm) range) attached
to steel studs epoxied into holes drilled into the masonry. The bottom line
of gauges measured strains over a 4 inch (102 mm)} gauge length, while
all other gauge lengths were 8 inches (203 mm). The locations of these

gauges are also shown in Fig. 5.1.

Other instrumentation included measurements of gross wall
deformations relative to a reference frame, as shown in Fig. 5.1. Gauges |
(10 inch LVDT), 2 and 3 (4 inch potentiometers) monitored wall
horizontal displacements at the line of lateral load application, and at 2/3
and 1/3 of the wall height. Gauges 4 and 5 were 1 inch potentiometers
mounted at the mid-length of the web , one on ecach side , to measure the
vertical cracking at the base level and the slip between the web and
concrete base. Gauges 6 and 7 (also 1 inch potentiometers) monitored
vertical movement of the wall. These data were needed to fully
characterize the SCM model, which formed a inain part or the theoretical

studies in this rescarch project and is discussed in Chapters 3 and 7.
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At the top of the wall, the load cell and displacement gauge were
connected directly to a x-y recorder to plot the load-displacement curve
to allow test progress to be monitored, and all the dawa were recorded
and stored by a NEFF DATA ACQUISITION SYSTEM which is capable of
reading 512 channels for subsequent processing and analysis. Fig. 5.2 (a)
and (b) show wall F] ready for testing and wvertical load springs on the

wall top respectively.
§.2 Test Procedure

Lateral loading was carried out under a controlled-displacement
test regime, after initial load-controlled cycles at load-levels less than
that required to induce yield of vertical reinforcement. The standard
TCCMAR test  pattern{25] was modifiecd somewhat to recognize the
difference in strength, stiffness and expected ductility capacity in the two

opposite loading directions,

Fig. 5.3 shows a typical loading procedure for the pseudo-static
test. Before yiclding, the wall was subjected to two cycles for each load
level at 25%, 50% and 75% of the predicted first yield load in ecach
direction. After that, the test was controlled by displacement instead of
load. At each test level, the wall was first displaced to the desired
displacement level ( a defined multiplier of the yield displacement ),
followed by 2 cycles of lower intensity loading ( 50% and 25% of yield
load respectively), then three complete cycles repeated at the same

displacement before increasing displacement to the next level of ductility.
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Since  the strength and ductility capacity of T-sections are
different in the (wo opposite directions, loading cycies with different
ductility factors were assigned for cach direction, namely larger (2, 4, 6
etc. ) for the flange in compression and smaller steps (1.25, 1.5, 2 etc. ) for

web in compression until the wall finally failed.
5.3 Observations and Test Resulis

5.3.1 General Behavior Observed

Before cracking ( at very carly loading stage), the flanged masonry
walls behaved symmetrically in the two opposite directions parallel to the
web. Due to the unsymmetrical configuration of the T-section, initial
cracking occurred at different loading stages in the two opposite
directions, that is , first cracking occurred carlier in the direction of the
flange in compression than the web in compression. After cracking, the
load-displacement curves softened and as the load increased, more cracks
developed at higher sections; diagonal cracking occurred at mid-height of
the web due to shear and inclined cracks from web/flange interface up to

iwo ends of the flange also developed duc to vertical shear in the flange.

During this stage, the unsymmetrical behavior of the flanged wall
became obvious. With the flange in tension, the wall has higher strength,
stiffness but less ductility than in the opposite direction when the wall
reached its first yiclding in the direction of the flange in compression,
with the tension rebar yiclding at the web toc, the load-displacement
curve became very flat, but the wall can still deform stably to much

higher ductility level. After yielding occurred in the direction placing the
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flange in tension, the wall finally failed as the toe of web vertically
cracked and face shell spalled off, followed by buckling of vertical
reinforcement in the area due to lack of support in the direction

perpendicular to the web.

Vertical splitting of the bottom course block at the free end of the
web typically originated at displacements of about 0.80-1.00 inch (20-
25mm). It was apparent however, that a significant degree of
confinement to the bottom block was provided by the foundation pad.
This effectively delayed failure until compression strains at the level of
mortar course 2 (8 inch above the base) had reached a strain of about
0.003( see Figs. 54, 5.5 and 5.6 for unconfined walls). At this stage
vertical splitting developed upwards from course 2 and was followed by
sudden and catastrophic loss of strength due to collapse of the
compression zone.  Strength typically dropped to 20-30% of the pre-

failure load without significant increase in displacement.

Wall F4, which contained mortar bed confining plates in the lower
courses of the web cxhibited significantly improved bechavior, compared
with the other walls, in the form of increased deflection at maximum load,
and reduced scverity of load degradation following compression zone
failure. Since the seven lower courses were all confined with steel plates,
it put the failure section down to the bottom course of the wall (see Fig.
5.7), where the curvature reached its maximum value. Wall F4 failed as a
consequence of lateral buckling of thz web following a loading sequence
where the web reinforcement had been subjected to high residual

inelastic tensile strains prior to load reversal placing the web in
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compression. Before the masonry in the web could support compression
stress it was necessary for the web reinforcement to yield in compression,
to remove the residual tensile strains and close the cracks. During the
process there was no cffective lateral support to the web vertical
reinforcement, which exhibited lateral instability, placing eccentric loads

on the web and causing failure.

It is interesting to note that the walls failed in their stronger
direction at displacement substantially lower than the reversed direction.
For all four walls, the unsymmetrical characteristics of the responses
were very similar. However, the ratio of vertical reinforcement, and
width of flange, can affect the strength, stiffness and ductility of the wall
significantly in both directions. Confining plates in mortar beds of the web
toc improves the ductility of the wall in the direction of flange in tension.
The influence of above parameters will be discussed in detail in the
following sections. The observed details during four wall tests are
presented below and following abbreviations are used in the description:

WIC--- direction of loading placing the web in compression

FIC--- direction of loading placing the flange in compression

Pw --- horizontal load with WIC

Pt --- horizontal load with FIC

Ww ...ductility factor with WIC

Mt .. Quctility factor with FIC
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Wall F1_(#6 (19.05 ) Vertical Reinf L U fined)
Eorce-controlled Cycles

Prior to commencing data acquisition, an accidental load of Pr =5.1
Kips (22.7 kN) was applied, causing horizontal cracking in thc web at the
base, and at the 2nd and 4th moriar beds. These cracks closed when the

lateral force was removed.

First cracking with the web in compression occurred at Pw =20
kips(89 kN). At Py =30 kips(133 kN), vertical cracking at the «~eb/flange
interface was noted, and the first indication of shear inclination to
flexural cracks occurred. As the lateral force was further increased, under
WIC, further inclination of flexural cracks occurred. At Pw =40 kips(178
kN)} a flange crack devcloped at the 4th mortar bed, with considerable
associated noise and significant drop in lateral force, as a consequence of
the release in strain energy as the flange tension force was released. It
was significant to note that the crack did nor initiate at the web/flange
interface and gradually extend across the width of the flange, but
appeared to crack across the full width almost instantaneously. The
audible indication of cracking, and the associated irregularity in the force-
deformation curve made it possible to accuratcly assess the instant of
cracking, and hence by back calculation, the average flange tension stress
at which cracking occurred. At Pw =45 kips(200 kN) more significant

flexural shear cracking developed in the web.

In the reversed direction of loading (FIC), the instant of crack

formation was less precisely defined, but could still be estimated with
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reasonable accuracy. At a lateral force of Pr =15 kips(67 kN) web cracks
had formed up to the 7th mortar bed, with cracks forming up to the 1lth
bed at Pr =18 kips(80 kN). The lateral force levels of Pw =45 kips(200 kN)
and Pr =18 kips (80 kN) corresponded approximately to theoretical first
yield of the extreme tension reinforcing bars. This was confirmed by
strain measurements at Pr =18 kips(80 kN) of €=2860 me, compared with

a yield strain of €y=2450 me.

The crack pattern at this stage of testing is shown in Fig. 5.4(a).
Note that the shear inclination of the flexural cracks with the web in
compression are much stceper {(about S5 degree) than with the flange in
compression (about 35 degree). Average shear stresses, based on the
effective web area of 5.6 X 42.5 = 238 in? (153,500 mm?) were 189 psi
(1.30 Mpa ) for WIC and 75.6 psi (0.52 Mpa) for FIC respectively.
Extrapolation of displacements to the theoretical flexural sirength gave
the yicld displacement as

Ayw = 0.498 inch

Byt = 0.813 inch

Displ C led Testi

On the first displacement controlled cycle, to Bv = 1.0 and Hf = 2.0,
vertical cracking developed at the toe of web under WIC. The base crack
appeared to about 1/8 inch (3 mm) with FIC, and cracks at higher levels
were also wide. During subsequent cycles at this level of displacement, no
further significant cracking developed, though force and stiffness both
degraded . On cycling to Mw=1.5 and W = 4.0, further flexural cracks
developed in the flange at the 6th and 7th mortar beds under WIC
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loading, with significant increase in inclined shear cracking in the web.
Severe cracking in the web toc developed, and the masonry face shell
started to spall in this area. The maximum lateral! force at this stage was
Py =55 kips. or 92 percent of theorctical strength. Cracks formed under

FIC forces opened wide for a height up to the 6th mortar bed.

At Bw =2.0 and Pf =6.0, the maximum strength of Pw =63.4 kips was
recorded The degradation of the web compression zone continued, with
vertical cracking and spalling extending up the bouom 3 courses. On the
fourth cycle to this level of displacement, the end vertical reinforcing bar
in the web vuckled laterally, and the web compression zone crashed, with
rapid degradation of strength. Despite this, the wall was capable of
sustaining forces in the reverse direction {(FIC) with no significant
strength degradation. Fig. 5.4 (b) and (c) show the crack pattern and

failure mode of wall F1 at the end of testing.
Wall F2 (#4 (127 )_Vertical Reinf U fined)
Force-controlled Cycles

Initial displacement reading of 0.033 inch in the direction of WIC
was noted before commencing horizontal loading. First flexural cracking
at the base of the flange with loading dircction of the web in compression
occurred at Pw =20 kips. In the reverse direction of loading (FIC), base
mortar bed cracked at Pr =5.2 kips, and cracks at the 3rd and 4th morar
beds in the web occurred at Pr =8.7 kips and 10.5 kips respectively. First

yield of the extreme tension reinforcing bar at the web toe occurred
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during first cycle of Pr = 10.5 kips at Ayt= 0.227 inch. The crack pattern at

this stage of testing is shown in Fig. 5.5 (a).
Displacement Controlled Testing

On the first displacement controlled cycle, to Kw = 1.0 and Bt = 2.0,
the 3rd mortar bed of flange cracked under WIC and first yicld occurred
during this cycle at Pv =373 kips and Byw= 0.367 inch. In the reverse
direction of loading(FIC), the 5th mortar bed in the web cracked. During
subsequent cycles at this level of displacement, no further significant
cracking developed, though force and stiffness both degraded. On cycling
10 Bw =15 and Hf = 4.0, further flexural cracks developed at the 3rd and
4th mortar beds in the flange at Pw = 46.2 kips under WIC loading. New
crack formed at the 7th mortar bed in the web under the loading

direction of FIC .

At Bv =2.0 and Hf =8.0, vertical cracking at web toe occurred at Pw
= 48.6 kips. During cycles of ¥w = 3.0, masonry of bottom 2 courses at web
toe crashed at Pw= 50.8 kips and the end vertical reinforcing bar buckled
laterally, with rapid dcgradation of sirength. Despite this, the wall was
capable of sustaining forces in the reverse direction (FIC) with no
significant strength degradation. Fig. 5.5 (b) and (c) show the crack

pattern and failure mode of wall F2 after testing.
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Wall F3 (#4 Vertical Reinf L. Wide FI u fined)
Force-controlled Cycles

First flexural cracking at the flange base with the web in
compression occurred at Pw =35 kips. This force was much higher than
that for wall F2 due to its wide flange. But in the reverse direction(FIC),
the behavior was very similar. First flexural cracking at base mortar bed

formed at Pr = 7 kips and the 2nd mortar bed cracked at Pr = 8.7 kips.
Displ Controlled _Testi

On cycling Hw = 1.0 and K¥f = 1.0, cracking at the 4th mortar bed in
the flange formed at Pw = 54.7 kips. vertical cracking developed at the toe
of web and four inclined shear cracks were observed in the web at Pw =
59 kips under WIC. No further significant cracking developed in the
direction of FIC. On cycling to Hw =1.5 and Hf = 3.0, vertical cracking at web
toc extended and more shear cracks in the web formed under WIC
loading. At Pw = 64.2 kips, inclined cracks in upper part of the flange
developed duc to shear lag effects and cracks also formed in top concrete
siab. In the loading direction of FIC, & few inclined cracks in the web were

observed at Pr = 13.6 kips.

At Bv =2,0 and Pf =6.0, cracks formed at the 3rd and 6th mortar
beds in the flange and more inclined cracks in upper part of the flange
developed under WIC, At Bw =30, vertical cracks at web toe were
exiending quickly after thce maximum horizontal load Pw = 70.6 kips was
reached and masonry face shell began to spall, then suddenly the bottom

three masonry courses crashed and the horizontal load dropped to 19
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kips. Despite this, the wall deformed steadily up to W = 12 in the reverse
direction (FIC) with no significant sirength degradation. Fig. 5.6 (a) shows
the crack pauern of ths wall a1 lower load level, and (b) and (c) show its

crack patiern and failurc mode at the end of testing.

wall F4 (46 (19.05 ) Vertical Relnf Confined)
Ecorce-conirolled Cvcles

First flexural cracking at the base mortar bed in the flange
occurred at Pw =25 kips. 6th mortar bed and center part of the 7th mortar
bed cracked at Pw =44.8 kips, and inclined shear cracks in the web also
developed at this stage. While the horizontal load was remaining at its
pecak value, a sudden cracking at 3rd mortar bed happened and the

horizontal force dropped obviously.

In the reverse direction, first flexural cracking at base level of the
web was observed at Pi = 8.9 kips. The 2nd, 3rd and 5th morar beds
started to crack at Pr = 12 kips and extended obviously when horizontal
load reached 15 kips. Inclined shear cracks across the 5th through the 8th
masonry courses developed at Pr = 18 kips. During a repcated cycle, the

Oth mortar bed in the web also cracked.
Disol C Hed  Testi

On the first displacement controlled cycle, to Hw = 1.0 and Bf = 2.0,
the 4th and Bith mortar beds in the flange cracked and inclined shear
cracks across the 3rd and 4th masonry courses in the web developed at

Pw = 49.1 kips. First vertical cracking at the toe of web and shear cracking

105



between the 6th and 9th courses were observed at Pw = 53.1 kips under
WIC. In the direction of FIC, more inclined cracks across the 4th and Bth
masonry courses appeared at Pr = 20.3 kips. Flexural cracks at the 8th and

11th mortar beds also formed during this cycle.

On cycling to v =1.5 and 1 = 4.0, further flexural cracks
developed in the flange at the 7th mortar bed under WIC loading, with
significant increase in inclined shear cracking at the mid-height of the
web. Severe cracking at the web toe developed, and first vertical cracking
along web/flange interface was formed at Pw =57.7 kips. In the reverse
direction, cracking at the 12th mortar bed developed and more inclined

shear cracks formed in the web at Pr = 24.4 kips under FIC.

At Hw =20 and Bf =6.0, 10th mortar bed in the flange cracked at Pw
= 63.7 kips, this is equivalent to the ultimate sirength of wall Fl. And
although inclined shear cracking and vertical cracking along web/flange
interface extended significantly during this cycle, the wall sustained the
horizontal load steadily. With increasing horizontal load, flexural cracking
at the 12th and 14th mortar beds developed and more shear cracks in the
upper part of web and inclined cracking in the flange up to the top
concrete slab formed at Pw =67.2 kips. Vertical cracking at web toc began
to penetrate into concrete base and masonry face shell started to spall off.
In the reverse direction (FIC), extensive shear cracking at mid-hight of
the web developed at Pr = 259 kips. During second repeated cycle,

vertical cracking along web/flange interface extended severely.

On cycling to Hv = 3 and f = 8, in thc dircction of WIC, morc shear

cracks in the web developed (Pw = 68.6 kips), then the wall suddenly
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failed due to end reinforcing bar buckling and masonry crash at the web
toe, the recorded maximum horizontal force was 70.1 kips. Fig. 5.7 (a)
shows the cracking pattern at lower load level, (b) and (c) show the crack

pattern and failure mode of wall F4 at the end of testing.
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(c) Toe Crushing, at End of Test

Fig. 5.4 Condition at Different Stages of Testing, Wall F1
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{c) Toe Crushing, at End of Test

Fig. 5.5 Condition at Different Stages of Testing, Wall F2
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(c) Toe C:-ushing, at End of Test

Fig. 5.6 Condition at Different Stages of Testing, Wall F3
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{c) Toe Crushing, at End of Test

Fig. 5.7 Condition at Different Stages of Testing, Wall F4
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§.3.2 Lateral Load-deflection Response

The test results of lateral load-displacement hysteresis loops for
wall F1 to F4 are shown in Figs. 5.8 to 5.11 respectively. All the responses
show strong unsymmetrical characteristics in strength, stiffness and

ductility in the two opposite directions parallel to the web.

At an carlier phase of the preliminary stages of testing, the
strongly asymmetric stiffness characteristics are apparent with the wall
being approximately 2.5 times stiffer with the web in compression than
with the flange in compression. With the web in compression, the loops
are rather thin, particularly on seccond and subsequent cycles to a given
displacement level, indicating poor energy absorption qualities. With the
flange in compression, the loops are rather fatter, particularly at the
latter stages of testing, when large inelastic strains were developed in the
web reinforcement. The very brittle failure mode is apparent in the final
stages, where the load-deflection plot drops at a very steep angle. This is
a particularly  dangerous characteristics for dynamic seismic response.
Confined wall F4 exhibited more ductile load-deflection behavior and less
steeper falling branch in the direction of the web in compression than

unconfined walls.

In the direction of flange in compression, the behavior of all walls
was essentially the same, ie. lower strength and stiffness, but more
ductile, even after the walls failed in the opposite direction, they could
still sustain deflection without significant degradation of strength and

stiffness.
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In Figs. 5.8 through 5.11, the lines with * are the predicted load-
displacement envelopes for eah wall. In the direction of the web in
compression, the predicted ultimate strength coincided well with the
experimental results, but ultimate displacements which were calculated
by the plastic hinge thcory which will be discussed later in this chapter
were much smaller than the tested results. In the opposite direction,
although the tests stopped after the walls failed, it seems that the wall
deflection could reach the predicted displacement. Discussion and
comparison of cxperimental results with theoretical  analyses will be

presented later in this chapter.
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Fig. 5.8 Load-displacement Hysteresis Loops, Fl1
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Fig. 5.11 Load-displacement Hysteresis Loops, F4
5.3.3 Flexural Response of Walls

The distribution of vertical strains of reinforcement of wall F1
along the cross section at maximum response in the direction of web in
compression arc shown in Fig. 5.12 and Fig. 5.13 presents the distribution
in the oppositc direction after first yielding (the displacement ductility
factor W = 2). The measured corresponding vertical deformation of
masonry surface by the linear potentiometers are presented in Figs. 5.14
and 5.15. Fig. 5.16 illusirates the vertical strain distribution of wide
flange wall F3 at Pw = 64.4 kips, unfortunately lot of the straingauges
damaged at ultimate state and can not be presented here. The

corresponding veniical deformation of masonry surface is shown in Fig.
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5.17. From the above figures, the following tendemcy in distribution of

vertical strains and deformation can be observed:

1. Strain distribution along the height: For wall Fl, in the direction
of the¢ web in compression, the strains of vertical reinforcement at bottom
two courses (16 inch) were almost the same, and all yielded. From the
third layer the strains started to decrease gradually. But in the direction
of flange in compression, it seemed that all bottom four courses (32 inch)
yielded which indicates that the length of plastic hinge zone for flanged
walls is also different in the two opposite dircctions. The vertical strains
of wall F3 showed decrcase from the bottom along wall height before

reached its maximum response.

2. Strain disiribution horizontally along the web: The distribution
of vertical strain horizonially along the web was close to lincar in both
directions, but the width of compression zone, therefore the position of
neutral axis was quite different due to effects of the flange. In the
direction of web in compression, the neutral axis was about 24 inch, a
little more than 50% of the web length (Fig. 5.13 (a)). From Fig. 5.15 (a) to
(¢), the calculated position of neutral axis was 20, 21, 31, and 27 inches
respectively, the average was 24.8 inch. In the opposite direction, from
Fig. 5.14, the strains of vertical reinforcement at web/flange intersection
were close to zero which indicaied that the position of neutral axis was
coincided with the central line of thc flange thickness, i.c. 2.8 inch. The
above results can be confirmed by the mecasured vertical deformation of

masonry surface in Figs. 5.14 and 35.15.
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3. Swrain distribution horizontally along the flange: It is clear from
both strain of vertical reinforcement and masonry deformation that at the
ultimate state of wall Fl, the strains were almost the same along the
flange section which implied that shear lag effects could be ignored. But
for wide flanged wall F3 before maximum response (Figs. 5.16 and 5.17),
the effects of shear-lag was obvious. The strains at flange section
decrecased from web/flange intersection towards its two ends due to this
cffect. The shear-lag effects and equivalent flange width will be discussed

in Chapter 7.
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Fig. 5.12 Vertical Strain Distribution(me), Fi, WIC, 4=Amux

118



(2) 32" from Base
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(b) 24" from Base

(c) 16" from Base

Fig. 5.13 Vertical Strain Distribution(me), F1, FIC, # =2
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Fig. 5.14 Vertical Deformation of Masonry(in), Fl, WIC, A=Aman
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5.3.4 Influence of Shear on Response

The strain distribution of horizontal reinforcement for wall Fl and
F2 are show in Figs. 5.18 and 5.19 respectively. For each wall, three load
levels, namcly before shear cracking, intermediate and ultimate state
were selected to show the variation of shear sirain distribution at
different loading stages. For wall Fl, the three load levels were Pv = 15
kips, 49 kips and 63.4 kips respectively, and 12 kips, 37.5 kips and S50.8
kips for wall F2 correspondingly. Unfortunately shear strain of horizontal
reinforcement for wall F3 and F4 could not be presented here due to
excessive damage during construction and testing. From the above

figures, the following fcaturcs of shcar strains can be found:

1. Before shear cracking, horizontal reinforcement was not
mobilized, which can be proved by very low strains at this loading stage

with both walls.

2. It is obvious from comparison between Figs. 5.18 and 5.19 that
shear cracking with wall F1 is much more severe than with wall F2 due to
its higher loading. This can also be confirmed by comparing the cracking

patterns of wall F1 and wall F2 from Figs. 54 and 5.5.

3. To estimate the shear capacity of masoary, equation 5.1 was

applied as

ve Ym4 Vs (5.1
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where v is the total shear force at the cross section, YVm and Vs are shcar

carried by masonry and horizontal reinforcement respectively, and

vy = Afd/s (5.2)
in which As, fyand s are area, yield strength and vertical spacing of
horizontal reinforcement , d is effective width of the web. The above
values in this casc are 0.2 in?, 60 ksi, 8 inch and 38.8 inch respectively.
Assuming the angle between shear cracking and horizontal axis te be 55
degree, results in that seven horizontal rebars will be crossed by one
shear crack on average. Supposing that the shear crack cross from the 8th
mortar bed at web/flange intersection (strain 1920 mf) down to the 2nd
mortar bed at free end of the web (strain 346 me), and estimating the
unknowing strains by interpolating the measured strains, will result in
the approximate shear carried by the horizontal reinforcement Vs = 42.2
kips. Since the total shear v = 63.4 kips, the shear carried by masonry Vm
= 21.2 kips and the corresponding shear stress would be 88.5 psi. Using
the same assumptions to wall F2, at the ultimate state, the shear carried
by horizontal reinforcement would be 21.5 kips and the shear carried by
masonry is given by ¥Ym = 50.8-21.5 = 29.3 kips. In this case, the

cquivalent shear stress is 122.2 psi.

Since shear in the direction of flange in compression is never a

problem, the measurement results and discussion will not be presented.
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(b) Shear Deformation

Figs. 5.21 through 5.24 present the horizontal displacements of
four walls at their maximum responses in the direction of web in
compression. The four locations of displacement measurement were 12

feet (wall top), 8 feet 4 feet and zero from the base respectively.

The horizontal displacerent due to shear was derived by
deducting the displacement caused by flexural deformation from the total
displacement measured during testing. The displacement due to flexure
was calculated as follows: From the vertical deformation of masonry
surface measured with potentiometers at both sides of the web, the

average curvature at bottom part of the wall can be derived as

@i =(A1i-A2)/ 1k (5.3)
Assuming a liner curvature distribution from the calculated value at the
highest position to the top of the wall, as shown in Fig. 5.20, the

displaccment at wall top can be estimated using the equation

A= %(H-Ehi)zﬂ + I @;hi(H-Zh;-0.5h;) (5.4)
where n is the number of total potentiometers at cach side, i varies from
1 to n, while j varies from 1 to (i-1), and all other parameters are as
shown in Fig. 5.20. The calculated results for four walls are presented in
Figs. 5.21 though 5.24, from which it can be seen that the distribution of
displacements due 10 flexural and shear deformation along the wall
height is quite diffcrent. The displacement due to rotation increased with
increase of the height faster than that duc to shear deformation, and the

combined total displacement is close to linear distribution along the wall
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height. It is also noted that displacement due to shear is not ncgligible . it
can make up to 30% of the total displacement at the ultimate state for
hecavy reinforced flanged walls. Based on the gross section propertics, the
displacement due 10 shear will be 17% of the total displacement. For wall
F2, the shear displacement was rclative smaller because of its lower

horizontal force resulted from less vertical reinforcement ratio.

wall

potentio-
side 1 metlers

Y

L

(a) Location of (b) Curvarure
Potentiometers Distribatlion

Fig. 5.20 Horizontal Displacement due to Rotation
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§.3.5 Material Properties Inferred From the Testing Results
Masonry Compression Strengih

A cstimatc of masonry compression strength is possible by section
analysis at thc wall base at ultimate strength conditions. The lincar
potentiometers on the line of the web (see Fig. 5.1) allowed the position of
the neutral axis, and the reinforcement strains, to be estimated at the
wall base. Equilibrium of vertical forces ¢nabled the masonry

compression force Cm to be estimated from

Crm = 2 fuAs + P, (5.5)

i=l
where fgi is the stress (negative for compression) of bar i of area Agj.n
is the number of vertical reinforcing bars and Py is the total axial load at

the wall base.

Assuming an equivalent rectangular stress block of average stress

085 fyt and extent a = 0.85c¢ (c = length of compression zone), the
masonry compression strength in the wall is given by

= GCn
frow 07225 1.c (5.6)

where t 15 the wall thickness.

For the direction of loading placing the web in compression, the
depth of compression, ¢, was rather large, particularly for walls Fl, F3 and

F4. Hence fn'u could be estimated with reasonable accuracy. As Table

5.1 shows, values showed considerable variation from both predicted and
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measured prism strengths from Table 4.2. In particular, the apparent
difference in strength between walls F1 and F2 should be noted. The high
strength for wall F2 must be viewed with some reserve, since the
mecasured depth of the compression zone was small for this wall, and
comparatively small errors in measurement of ¢ will have large effects on
computed fy w  values. It will be shown later that wall moment
capacities predicted on the basis of inferred wall compression strengths
agree muca better with measured capacitics than do those based on

prism strengths.

Table 5.1 Material Properties {Ksi)

F 1 F2 F3 F 4

£y 2.35 3.51 2.81 3.14

fe 0.32 0.30 0.20 0.26

Enm 2170 2440 1850 2270
Masenry Tensile Strength

When the walls were loaded with the flange in tension, the loads
at which various flange cracks developed were rather precisely defined
by the audible result of the release, as cracking occurred, of the
considerable amount of strain cnergy stored in the wide flanges. The
continuous records of load-deflection hysteresis loops also clearly
identified the instant of cracking by a substantial drop in load without

change in displacement. F - computing thc moment at the level where
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cracking occurred, it was a simple matter to back-calculate to find the

comresponding tensile stress at the instant of cracking.

Table 5.1 shows The average values of f; from 4 or 5 cracks
developing at different levels of the wall, but exclude the base crack,
where bond of the grout to the wall base, rather than grout tensile
strength, governed behavior, and where the instant of crack formation

was not well defined.

The values for tension strength in the wall are surprisingly high.
It is clear that tension bond strength between mortar and concrete block
must have contributed significantly to strength. It should be noted that
the tabulated tension strength arc based on the assumption that tension
stress prior to cracking was uniform across the width of the wide flanges.
In fact measurements indicated significant shear lag effects at early
stages of loading. Thus the tabulated strengths are a lower bound on
actual tension strength. It will be noted that wall F3, with the 16'- 8"
wide flange, and hence the greatest shear lag effect, has the lowest

apparent tension strength.
Elastic Modulus

A third material properly can be inferred from the test results.
From observations of the wall lateral displacements at the early stages of
loading before cracking occurred, the elastic uncracked stiffness, and

hence modulus of clasticity can be inferred from the expression

= Ki Itﬁ + _H_]
Enm 3; 04A; (5.7
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where H is the wall height, Kj is the initial stiffness( lateral load divided
by lateral displacement) and Ig and Ag are the moment of inertia and
web arca of the gross (uncracked) section respectively. Eqn. 5.7 assumes
the shear modules is 0.4Ey . and that shecar lag cffects are insignificant.
As a result of the latter assumption, it should underestimate Ep,
particularly for the extra-width flange F3. Inspection of Table 5.1 will
show that F3 does indeed have an apparently low modules of elasticity
(about 10% below the average for the other walls) and also that wall F2,
which has a high apparent compression strength in the wall also has a
high value for Em. Related to the measured prism strength, a
stiffness/strength ratio of Em = 1000 fm'p is a good average value.
However, related to inferred strength in the wall a value of Ey = 750

) »
fmw seems more appropriate.

It is should be noted that the value of modulus of elasticity Ep is
essential for calculating the natural period of masonry structures, based
on which the seismic load applied on the structures can be predicted.
According to ACI code for masonry structures, for masonry with net area
compression strength of fm = 2500 psi, the suggested modulus of elasticity
is 2.2 to 2.4 106 psi, therefore the average value is Ep = 920 fm which
coincides well with the test results as above. According to New Zealand
code, for all masonry grades, the modulus of elasticity may be taken as 25
Gpa. Therefore for mid-strength of fm = 20 Mpa, Em/ffm = 1250 which is

much higher than the value from ACI code.
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5.4 Discussion of Testing Results

Tables 5.2 and 5.3 summarize results from the experiments and
analytical studies, for peak response in the two loading directions.
Maximum predicted wall-base moments in the direction of the web in
compression, based on two differcnt assumed compression strengths are
listed in rows 2 and 4 of Table 5.2. and may be compared with maximum
cxperimental wall-basc moments, listed in row 1. Moments Myp in row
2 were based on an assumed ultimatc compression strain of & = 0.003,
and masonry compression strength based on results of prism tests, as
given in Table 4.2. It will be observed from the variations in the ratios of
experiment 1o predicted value in row 3 that the agreement is not
particularly good. particularly for wall F3. When masonry compression
strength inferred from the strain distributions at the wall base (see Table
5.1) are used, the agreement between theory and experiment, as

evidenced by the data of rows 4 and 5 is cxcellent.

Rows 6-8 of Table 5.2 summarize shear strengths of the walls., It
will be seen that the maximum shear force (row 6) corresponding to
flexural strength was, as expected, less than the shear sirength capacity
based on transverse rcinforcement alone (that is, ignoring any
contribution of masonry shear mechanisms). Although shear cracks of
significant width developed in all walls, no distress occurred in shear,
despite the high level of shear stress developed. For walls F3 and F4 this
was close to 300 psi(2 MPa), and should be compared with maximum
allowable shear stress permitted by the Uniform Building Code [!] of 75
psi (0.5 MPa) for wall of these proportions.
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In the direction of the flange :in compression, the masonry
compression strength did not affect wall moment capacity significantly.
The moments based on both prism test and inferred masonry
compression strength were lower than the experimental results as shown
from rows 9 to 13 in Table 5.2. The reason may be the effects of strain
hardening of vertical reinforcement duc to large dcformation in this
direction. It is obvious that shear strength can never be a problem in this

loading direction as shown from rows 14 to 16.
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Fig. 5.25 "Tjd" Approach for Predicting Deflection
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Table 5.2 Comparisons Between Analytical and Test Strength

Row | Description F1 F2 F3 F4
1 | Mmax (experi) 9130 | 7315 | 10150 | 10030
(fm' = prism 'y
c 2 | My Y 9590 6830 7115 015
213 Mmax/Mip 0.95 1.07 1.43 110
[ 4]
—wall

S| 4 | M= Senguy | 8930 | 7070 | 10080 | 10040
g
S15 Mmux/Mtw 1.02 103 1.01 101
e
; 6 Vmax {experi.) 634 50.8 70.5 70.1
QO
Bl v Vi (sieelalone) | 313 | 81.3 813 | 81.3

8 vis =Vis/(1d) (Ksi) 0.264| 0.212 0294 | 0.292

9 | Mmax (experi) 3686 2419 | 2952 3744

Mip (fm* prism
.S (o o T rengih) 3488 2128 | 2329 3360
§ 1 Mmax/Mip 1.06 1.14 1.27 111
[ 99
(=
Muwi fm' = wall

g 12 ! Sirength) 3457 | 2133 2437 3536
[40]
a | 13 Mmux/Miw 1.07 1.12 1.21 1.06
[ T]
& 14 Vmax (experi.) 25.6 16.8 20.2 260
<
“ 1 1s Vu(sieef atone) | 81.3 81.3 B1.3 | 813

16 vu Vu(1d) (Ksi)] 0.107 | 0.070 0.084 | o0.108
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Table 5.3 Comparisons Between Analytical and Test Displacement

Row | Description Fl F2 F3 F4
2 Ar (experi) 1.01 1.03 1.0S 1.54
- 3 Av  (experi.) 061 0.14 0.46 0.90
o
i (curvature
2 4 An v 0.60 061 057 071
[ . .
2y (plastic hinge _ » ) 9
= 5 A nethod) 1.06 091 1.09 193
S| e Tja" 111 1.28 1.05 2.28
= Aot . . . .
f, 7 Aov 0.30 0.23 033 0.33
B
8 A3 _Acf. Aov | 141 1.51 1.38 2.60
9 Amax/A 133 1.29 1.39 1.27
10 Ama/As 115 077 1.09 0.94
11 Amax (experi.) 5.0 6.0 4.0 4.0
12 Ar (plastic hinge 5.86 4.75 9.17 5.86
sathod)

*: Flange in Compression

*2: All units are in inch

139




Table 5.3 lists experimental and predicted displacements at
ultimate conditions. Row 1-3 list the cxperimental displacement at
maximum lateral load (Amgx) and shear (Ay) components of Amax in
the direction of the web in compression for the four walls. The flexural
deformation Af was {ound by integrating the measured curvature
distribution up the wall, and the shear deformation was defined as Ay =

Amax - Af, as mentioned carlier in this chapter.

Results from two commonly adopted methods for predicting
ultimate displacements are listed in rows 4 and 5. Values in row 4 are
obtained by integrating the theoretical curvature distribution up the wall,
where the moment-curvature relationship is based on the plane-sections
hypothesis.  This ignores shear deformations and distortion to strain
profiles across horizontal sections resulting from inclined flexure-shear
cracking. Comparison of these values with experimental displacements
Amax indicates poor correlation, with experimental deflections at least
twice predicted values. If values from row 4, which do not include
predicted shear deformation are compared with the flexural component

of the experimental displacements {row 2), the agreement is still poor,

An alternative approach, which is often adopted to compensate in
some part for the inadequacics of intcgrating the curvature distribution is
10 assume an elasto-plastic moment-curvature relationship.  For base
curvaturcs P less than that corresponding to yicld the displacement at
the level of lateral load is based on an assumed linear curvature

distribution up the wall. That is

140



H2
A2 =P 3 (5.8)

For base curvatures greater than the effective yield curvature 9y, a

plastic rotation
S=. ML, (5.9)

is calculated, where Lp is an equivalent plastic hinge length. The lateral

displacement at the wall top is thus

2
A[2= ¢¥HT + (%- %) Lp (H- [_‘22) (510)

Different  researchers advocate different effective pla:tic hinge

lengths. The vaive¢ adopted in this study is

Lp =008H + 6dp é.11)

where H is the height of the wall and dp is the diameter of the
longitudinal reinforcement in the wall. Eqn. 5.11 was derived from
experiments of concrete bridge piers [28] but is supported by analytical
studics as being appropriate for shear walls. In equations 5.9 and 5.10,
P is based on ultimate compression strains of 0.003 and 0.008 for
unconfined and confined masonry respectively. Results of deflections
based on this approach, listed in row 5 are still much lower than the
cxperimental maxima, but are in rcasonably good agrecement with

observed flexural deformation.

A third approach is summarized in rows 6-8. In this method, the
curvature distribution of method 1 (row 4) is modified to take account of

the inclination of flexure shear cracking, as illustrated in Fig. 35.25.
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Designers are familiar with the concept that steel stresses at the extreme
rebar at some position on the wall ( Fig. 5.25 (a)) are related to the
moment at the root of the crack ( Fig. 5.25 (b)). It follows that steel
strains over & length lg at the base of the wall should be essentially
constant, where Iy = (d - c)tan® and d is cffective depth to extreme
tension rebar, ¢ is Jepth of compression zone, and @ is the inclination of
the flexure shear cracks to horizontal axis. A measure of support for this
was provided from the steel strains recorded at different heights of the
flanges which showed little reduction with height over th: lower region

(Figs. 5.12 and 5.13).

Designers accoumt for the shift in steel strain by apporticning steel
in accordance with 2 moment paucrn, termed the Tjd diagram, that is
displaced by an amount l5, as shown in Fig. 5.25 (b). If this approach is
valid, curvatures based on steel strains should alse be displaced
vertically, by an amount equal to lg, as shown in Fig. 5.25 (c). Curvaturc
distributions prior to yicld based on this approach were used to predict
flexural displacements in row 6 of Table 5.3. In addition, plastic rotations
for the confined wall F4 were based on the measured maximum
compression strain of 0.0144 rather than the conservative design value of
0.008.  Since the deflections of row 6 still do not include shear
deformation, an estimate for the latter, listed in row 7 was based on the
equation.

_En PH
Buv = E. AGn (5.12)
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where P = lateral load, Ay = shear area (=web area), Gy, = masonry shear
modules = 0.4Ep, and Pt = steel ratio for transverse rcinforcement. Eqn.
5.11 effectively modifies the elastic uncracked-section shear deformation
on the assumption that the transverse reinforcement provides the
resistance to shear deformation after diagonal cracking develops. The

total predicted deflection for the four walls are then listed in row 8.

Comparison of the predicted displacements from methods 2 and 3
with the observed displacements, listed as ratios in rows 9 and 10
indicate that thc ‘traditional' approach undercstimates deflection by some
30-50% but the more refined method 3 provides a close e¢stimate of

behavior.

The predicted displacements in the direction of the flange in
compression, based on the plastic hinge theory are listed in row 12 and
the recorded experimental displacements are shown in row 11, Since the
tests for all four walls stopped without failure in this loading direction,
the comparison between these values is not proper. it seemed that the
walls still had the ability to sustain horizontal loading without significant
degradation of strength and stiffness, and the final displacements would
cxceed the predicted values. Theoretically, the behavior with the flange
in compression is less sensitive to the width of flange or material
propertics, and more predictable than with the web in compression.
Besides, no wall was found to fail in this direction due to its higher
ductility capacity. The comparisons Between SCM and cxperimental

results will be presented in Chapter 7.
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§.5 Conclusions

Results from the cxperiments and analyses enablc the following

conclusions to be drawn:

1. The flanged masonry walls have unsymmetrical behavior in the
two loading directions parallel to the web. In the direction of web in
compression, walls had higher strength and stiffness, but much less
ductility capacity than the opposite direction. Each wall failed in the
direction of loading the web in compression and the failure was sudden

and briltle, initiated by a compression failure of the web toe.

2. Hysteretic behavior of the walls was characterized by thin loops,
particularly on repetitive loading to a given displacement level. After
yielding in the direction of flange in compression, the half-loops in that
direction became fatter indicating increased ecnergy dissipation.
Quantitative studies on dynamic hysteretic loops and energy dissipation

ratc to estimate the damping ratio will be presented in chapter 6.

3 Material properties inferred from wall response did not agree
well with results of prism tests. Ultimate compression strains measured
over the bottom 12 inch of wall greatly cxceeded values suggested on the
basis of prism tests. It appears that the foundation slab provided strong
confinement to the bottom slab, and that the critical section should be

considered 10 exist at the second or third morter course.

4 Wall moment capacity based on inferred from measured neutral
axis position compression strength was in excellent agreement with

measured capacity.
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5. Displacements duc to shear were significant with the web in
compression, contributing up to 30% to 1otal deflection at the ultimate
state, meanwhile based on gross section, shear displacement would be

17% of the total displacement.

6. Deflection calculations based on & modified elasto-plastic
approach which acknowledge the spread of elastic strains caused by
diagonal flexure shear cracking, agreed well with experimental values.
This approach is simple enough to use as a design approach, and was

incorporative in modifying the hysteretic model developed in Chapter 3.

7. The vertical reinforcement ratio affects the response of flanged
masonry walls significantly in both dircctions. With the increase of
rcinforcement ratio(wall Fl vs. wall F2), the moment capacity and
equivalent stiffness increases, but the ductility capacity will decrease,

especially in the direction of the web in compression.

8. Flange width has significant effects on the behavior in the
direction of the web in compression, i.e. with increasing the flange width,
the wall has higher moment capacity and stiffness, but less displacement
ductility(wall F3 vs. wall F2). In the direction of flange in compression,

the influence of the flange can be ignored.

9. Confining steel plates on mortar beds at the web toe improves
the response in the direction of the web in compression substantially. It
increases the displacement ductility and improves the falling branch after

the maximum response.
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6. EXPERIMENTAL STUDIES, PART 2..-DYNAMIC TESTS

6.1 Introduction

The second phase of the cxperimental swudies on the seismic
behavior of flanged masonry walls, consisted of tests of 5§ full scale flanged
masonry walls subjected to dynamic loading on a large shake table. The
pscudo-static load tests on flanged masonry structural walls presented in
the previous chapter confirmed cexpected performance, including
asymmetric force/deformation characieristics, and a brittle failure mode

irvolving compression failure of the web toe.

Although static testing facilitates detailed observation of
experimental response during testing, it cannot create a realistic seismic
environment to cxaminc the response of structurcs to carthquake attacks
because of the loading rate. As a continuing program, the purpose of these

dynamic tests was to investigate the following aspects.
e Examine the behavior of flanged walls under dynamic excitation.

+ Check the comparative performance of identical flanged walls

subjected 10 static and dynamic loading.

* Investigate the cffects of vertical reinforcement ratio, confining
plates on mortar beds at web toe on seismic response of flanged masonry

walls,
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facilities consist of a single degree of freedom shake table with its control

system and a high specd data acquisition system.

The shake table stands about 4 feet (1.22 m) high with a deck of
10 fi. x 16 ft. (3.05 m x 4.88 m) in plan dimensions (see Fig. 6.1). The
actuator of the table has a maximum driving force of 100 kips ( 445 KN)
and a total dynamic stroke of 12 inch (305 mm). The control system
houses the electronics for the servo-loop control of the test. The system
can be operated in displacement control with an external command signal
provided from a Compaq Deskpro 286 computer equipped with a
Metrabyte DAS-20 1/O analog/digital expansion board. At present, the

displacement control historics can be one of the following:

+ ecarthquake records or ‘customized records’
+ soft-start soft-stop sinusoidal waves

« standard sinusoidal waves

The data acquisition system is composed of an Apple Macintosh II
computer equi'ned with a National Instruments NB-M30-16H-9 12-bit
A/D converter board. The system allows the scanning of up tw 128

channcls at a data sampling rate of 100 KHz.

As with the walls for pscudo-static tests, clectric resistance strain
gauges (81 ir total) were placed on both vertical and horizontal
reinforcement to investigate shear lag effects in vertical reinforcement
and shear forces carried by transverse reinforcement in the web.

Masonry strains in the lower region of the wall were monitored with
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lincar potentiometers attached to steel studs epoxied into holes drilled in
the masonry. A further linear potentiometer was orientated in the
horizontal position to monitor slippage of the wall on the base. Other
instrumentation included measurement of gross top-of-the-wall
deformations relative to the base. Three lincar potentiometers monitored
wall horizontal displacements at the line of 12 feet (center of the top
mass), 8 feet and 4 feet above the base respectlively. Another 2 gauges
monitored vertical movement of the wall. All positions of the
instrumentation were the same as for the static tests, and can be found in

Figs. 4.2 and 5.1.

In addition to the above, 6 accelerometers were installed to
monitor the input and response accelerations. Two of the acceleromelters
were oriented horizontally, A2 at base level and Al at the center of the
top mass. The remaining 4 accelerometers were installed vertically, with
A3 and A4 at the base level (spacing § feet) and AS and A6 at the level of
the top mass center (one at each side) to measure the rowation of both

base and the top mass during the testing (Fig. 6.1).

Since wall F9 was positioned at a 45 degree skew to the axis of the
shake table, three horizontal oricnted gauges monitored the
displacements only in the web plane. Accelerometers were arranged to
measure the horizontal input along the table axis at the base level and
horizontal translation response acceleration in the planc of the web at the
top; response rotations in the horizontal plane and in the plane of the web

at the top respectively, To measure these rotations, four accelerometers
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were attached to the sides of the top concrete inertia masses at 12 feet

(3.66 m) high from the base with two accelerometers on each side.

reference frame = s3pring coil

Ag mass blocks

AS
Al

top slab

|_—— vertical load rods

12 .~~~ masonry wall

O reaction
A2 concrete base block

actuator

' A4 ~\ A3 shake table

stirong floor

Fig. 6.1 Dynamic T¢s: Facilities and Instrumentation
6.3 Vertical Loading and Test Procedure

6.3.1 Vertical Loading

Since adjustment of vertical load during testing was not feasible, a
special system of vertical load application was designed for the dynamic
experiments and alsc adopted for the pscudo-static tests in order to allow

comparison of results between the two tests. The load was applied by
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four 5/8" Dwidag bars anchored at the bottom of the base and stressed
against the top slab of the wall, through 4 stiff coil springs (one for each
bar).  The fiexibility of the springs ensured that the axial force
maintained the required value as the wall displaced laterally and
vertically (refer 10 section 5.1). Measurements taken during the wall
tests showed that the system worked well and the maximum variation of
vertical loads was less than 8%. The level of applied axial force was
chosen to provide an ecssentially uniform stress of 100 psi (0.70 Mpa) at
the base of the wall, Thus the resultant of the vertical forces coincided
with the geometric centroid of the wall sections. Considering the top mass
and self-weight of the wall, the applied axial compression force for each

bar was 12.35 kips (54.9 KN).

6.3.2 Mass-spring System

To ensure that the specimen would respond adequately to the base
excitation, two concrete blocks (each weighing approximately 5 tons)
were made to simulate tributary building mass. The blocks were identical
with dimensions of 8'-8" x 6' x 14" (2.64 m x 1.83 m x 0.41 m = length
x width x height). There were two reasons for casting two blocks
instead of one: the capacity of the 1travelling crane in the lab, and the
intent that they may be used separately for subsequent tests. The total
concentrated mass at the wall top, including these two blocks and top
concrete slab was 23.3 kips, plus one third of wall self weight (2.5 kips),

the resulted equivalent mass at the wall top was 25.8 kips.

The blocks were mounted on the top of the wall in such a way that

the center of the total top mass was 12 feet (3.66 m) high from the base
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and coincided with the geometric centroid of the wall sections
horizontally to cnsurc that their mass would produce uniform gravity at
cross sections of flanged walls. The test system with a flanged wall on the

shake table is shown in Fig. 6.2.

Fig. 6.2 A Flanged Wall on Shake Table During Testing

6.3.3 Test Procedure

The loading sequence for the first three walls (F5, F6 and F7)

consisted of the following 1wo phases:

» Sinusoidal input test: The excitation was chosen as 5

complete cycles of sinusoidal table displaccment with frequency = § Hz.
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The first two runs used very smal! amplitude input to check the natural
frequency of the wall before cracking, then the amplitude of the input
was gradually increased until the vertical reinforcements in the flange

was close to yield in tension.

» Earthquake recard input test: The carthquake record used
was El Centro 1940 N-S. Since the maximum acceleration recorded is
about 0.3g which is not strong encugh to cause damage to the test units, a
reduced time factor of 0.25 was applied to increase the intensity of the
input. It is well known that theorctically, for a undamped harmonic
vibration,

v = vg sin (ot +9p ) 6.1

the relationship between acceleration and amplitude can be expressed as

v = -wlvg sin (Wt +8g ) =-0* v (6.2)

where vo, ® and 8p are the amplitude, circular frequency and initial phase
of the vibration respectively. Equation (6.2) indicates that the acceleration
is proportional to second order of its amplitude. For a carthquake input,
the relationship may not be so simple because of the effects of damping
and excitation with different frequencies. But using a reduced time factor
will certainly increase the frequencies and thercfore the intensity of the
carthquake input. With a time factor 0.25, the running time for the shake
table with El Centro carthquake record during cach test was about 8.5

seconds.

Also a displacement (amplitude) factor was used to adjust the

intensity of carthquake input for different tests. From equation (6.2), for
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a undamped vibration, the acccleration is proportion to its amplitude.
Again, for earthquake input, the relationship may not be exactly
proportional to cach other duc to cffects mentioned above, but should be
very close to it. The displacement (amplitude) factor for the first run was
chosen in such a way so that it would produce the same level of
acceleration at the base as for the last run of sinusoidal input. The
displacement factor was gradually increased until the wall reached its

maximum response and finally failed.

It should be mentioned that to estimate the difference of natural
frequency between on ground and on shake table, wall FS5 was tested on
strong floor before moving onto the shake table. The method was very
simple. First, ticing down the wall base onto the strong floor with Dwidag
post-iensioning bars , then connecting the wall top to a fixed strong
frame with a steel wire and tensioning the wire to give a small
displacement at the wall top ( make sure it will not causc any cracking on
the wall). Finally, suddenly releasing the wall by cutting off the wire, the
wall was in free vibration and natwral frequency and damping ratio can
be measured. Discussion of the test results will be presented later in this

chapter.

Data was recorded at 200 scans/sec. during the entire experiment.
The record time was 3 sec. for sinusoidal tests and 10 scc. for carthquake
input tests. A typical testing procedure for wall FS is listed in Table 6.1.
For wall F8, only two runs were applied. First, as with the previous walls,
a very small amplitude sinusoidal input was used to check the natural

frequency and test facilities. Then, a input of E! Centro 1940 N-S
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carthquake record with a time factor = 0.25 and displacement factor = -
1.0 which produced the maximum response for wall F5, was applied to
investigate the effects of loading history. For wall F9, a similar test
procedure to wall FS was used, but the wall itself was positioned with 45
degree skew to the table axis for a preliminary study on behavior of

flanged masonry walls under arbitrary carthquake attacks.
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Table 6.1 Test Procedure for Wall F5

FIC: loading direction of {lange in compression

WIC: loading direclion of web in compression
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6.4 Test Results and Observalions
6.4.1 General Behavior Observed

The details observed during tests for all S flanged masonry walls
are summarized below and following abbreviarions are used for the
description:

WIC: Direction of loading placing the web in compression

FIC: Direction of loading placing the flange in compression

D: Amplitude of sinusoidal input for the shake table

A: Acccleration of sinusoidal input for the shake table

fq: displacement factor, i.e. peak displacement ratio of shake

table vs. the carthquake record

Aw : Peak response acceleration with WIC

Dy : Peak response displacement with WIC

A{: Peak response acceleration with FIC

D¢: Pcak responsc displacement with FIC
Wall FS (#6 Vertical Reinforcement, Identical to F1)
Pretest on Grounii

The test method was as mentioned in the previous section, The

measured natural frequency was 9 Hz and the damping ratio was 0.02.

T ith _Sinusoidal I f = § Hz

The natural frequency 7.2 was measured during the first two runs

with D = 0.05 inch and no cracking was found after the tests.
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In the direction of the flange in compression (FIC), minor cracking
at the web basc mortar bed was first noted with D = 0.1 inch (A = 0.26 g),
the maximum responses D = 0.17 inch and Ar = 0.51 g were measured.
With D = 0.2 inch (A = 0.51 g), the crack at the base expanded to the
whole cross section of the web and minor cracks at the 2nd, 3rd, 4th and
6th mortar beds in the web formed. The maximum responses Dr = 0.52

inch and Ar = 0.85 g were recorded.

During first run with D = 0.35 inch (A = 0.89 g), the above cracks
expanded and a new crack at 8th mortar bed developed. Shear cracking
in the web was first noted during second run with D = 0.35 inch, the

corresponding responses were Di = 0.96 inch and Af = 098 g.

In the opposite direction (WIC), a minor crack about 20 inch long
formed in the central part of base mortar bed in the flange with D = 0.3§
inch. The maximum responses Dv = 0.44 inch and Aw = 1.62 g were

recorded.

During run #9 ( fd = 0.25) through run # 12 ( fd = -0.75), no new
cracks were observed. With fd = -1.0 (run # 13), vertical cracking at the
web toe devcloped and scvere shear cracks formed in the web with WIC.
The wall reached its maximum ultimatc strength in this direction. Then,
the swrength and stiffness began to degradate during the following runs
(#14 and #15, fd = 1.0), and the wall finally collapsed with WIC resulted
from sudden crashing of the bottom threec masonry courses at the web

toc. The wall inclined in the direction of the web in compression and was
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held by the safety strips from the top. the recorded maximum responses
were Dw = 1.35 inch and Aw = 248 g. But in the opposite dircction, the
wall could sustain the horizontal deformation without significant strength
and stiffness degradation. Comparing with static tests, cracking during
dynamic tests was less developed, i.e. the number of cracks was less and
they expanded slower. The cracking pattern and failure mode after

testing are presented in Fig. 6.3 (a) and (b) respectively.
Wall F6 (#4 Vertical Reinf { Identical fo F2)
T ith _Si idal 1 (= 5 Hz

The natural frequency measured on the shake table was f = 6.9 Hz

during the first two runs with D = 0.05 inch.

Minor cracking at the web base mortar bed was observed with FIC
during run #4 (D = 0.1 inch, A = 0.26 g). With D = 0.2 inch (A = 0.51 g),
the crack at the base expanded to the whole cross section of the web and
a new crack formed at the 2nd mortar bed in the web. The 3rd mortar
bed cracked with D = 0.3 inch ( A = 0.76 g), the maximum responses Dy =
0.88 inch and Ar = 0.58 g were recorded.

In the direction of the flange in compression (WIC), first crack at
base mortar bed in the flange developed during last run of sinusoidal
input (D = 0.35 inch). The mecasured maximum responses Dw = 0.25 inch

and Av = 1.03 .
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In the direction of the flange in compression (FIC), cracking at 4th
mortar bed of the web developed with fd = 0.25. The maximum response
Dt = 0.96 inch and Ar = 0.55 g were recorded. The 7th mortar bed cracked
with fd = -0.5, and maximum responses were Dt = 2.85 inch and Ar = 0.70

In the direction of the web in compression (WIC), the 2nd and 4th
moriar beds in the flange cracked with fd = 025 and fd = -0.375
respectively. With fd = .0.5, cracking at 7th mortar bed devcloped and
the corresponding responses were Dw = 0.78 inch and Aw = 1.80 g. During
run #12 (fd = -0.75), 6th mortar bed cracked , two shear cracks formed in
the web, and vertical cracks at bottom three masonry courses of the web
toc also developed. The wall reached its maximum ultimate strength with
Dw = 1.02 inch and Aw = 1.90 g in this direction. Then, the strength and
stiffncss began to degradatc during the last run (#13, fd = 0.75), the
bottom three masonry courses at the web toe crashed and  the wall
collapsed in this direction. But in the opposite direction, the wall could
sustain the horizontal deformation without significant strength and
stiffness degradation. The cracking pattern and failure mode afier the

tests are presented in Fig. 6.4 (a) and (b) respectively.
Wall F7 _(#6 Verticai Reinf Confined. Identical to F4)
Test ith_Si idal 1 ( f = 5 Ha)

The measured natural frequency of the system during the first

two runs was f = 7.0 Hz.
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Responses in the direction of the flange in compression {FIC). the
base, 3rd and 4th mortar beds in the web cracked with D = 0.2 inch (A =
0.51 g). Cracks developed at 2nd and 5th mortar beds when D = 0.35
inch(A = 0.89 g), the maximum responses were Dr = 0.88 inch and A=

0.94 g which were very close to the test result of wall F5.

In the opposite direction (WIC), cracking at base mortar bed in
the flange formed during the last run of sinusoidal input( D = 0.35 inch).
The maximum responses Dw = 0.40 inch and Aw = 1.58 g were recorded

which were also very close to the test result of wall F5.
Test ith El Centro R L (Ti Factor 0.25)

In the direction of the flange in compression (FIC), no new cracks
formed during the first several runs. During run # 12 (fd = -1.0), flexural
cracks at the 8th, 91a, 10th and 11th mortar beds developed

simultaneously.

With WIC, the crack at the base expanded to whole cross section of
the flange during the first run with El Centro record (fd = 0.25). When fd
rcached 0.5, five minor diagonal cracks formed in the web. During run
#11 (fd = -0.75), two major shear cracks in the web developed and
vertical cracking at the web toc was found. Also ﬂcxural‘cracks formed at

the 2nd, 3rd and 6th mortar beds in the flange.

When fd reached -1.0, new flexural cracks formed at the 9th and
10th mortar beds in the flange, three major shear cracks formed in the
web and two vertical cracks developed at the web toc. The wall reached

its maximum ultimate strength in this direction with Du = 1.60 inch and
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A, = 275 g. which were slightly larger than the test result of wall FS.
Then, the swrength and stiffness began to degradate during the next two
runs (#13 and #14, fd = 1.0), and the wall finally collapsed due to sudden
crashing of the bottom masonry courses at the web toe. But the wall could
still sustain the horizontal deformation without significant strength and
stiffness degradation. Fig. 6.5 (a) and (b) show the cracking pattern and

failure mode after the tests.
Wall FS (#6 Vertical Reinf Identical 1o F5)
T ith._Si idal I f = § Iz

The natural frequency measured on the shake table was f = 6.9 Hz

and no cracking was found afierwards.
Test_with EL C R {_(Ti Factor 0.25)

El Ceniro carthquake record with fd = -1.0 was applied 1o the
shake table which was the samc as the input when wall F5 rcached its

maximum response in the direction of the web in compression.

During the test, cracks at the bottom 4 mortar beds of the web
widely opened in the direction of the flange in compression. In the
opposite direction, bottom 4 mortar beds in the flange cracked and
vertical cracking at web toe formed. With increasing the deformation, the
masonry face shell at web toc began to spall and suddenly the bottom 4
masonry courses crashed, resulting in collapse of the wall in this
direction. The maximum responses recorded were Dw = 1.35 inch and Aw

= 2.40 g. which were very close to the maximum response of wall F5. Fig.
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6.6 (a) and (b) present the cracking pattern in the flange and failure

mode after the tests.
Wall F9 _(#6 vertical Reinforcemen:, Identical to FS)
Tests with Sinusoidal Input (f = 8§ Hz)

During first run ( D = 0.05 inch), rotation of the top concrete blocks
was obvious. With D = 0.1 inch, minor cracking at base mortar bed of the
web formed. when D reached 0.2 inch, more cracks in the web developed
and minor flexural cracking at basc mortar bed in the flange toe was
observed. Inclined cracks also formed in the web. The maximum

responses were Dy =031in., Aw =1.0g and Dr =044 in., Ar =069 g.

During run #4 (D = 0.4 inch, A = 1.02 g), flexural cracks at mid-
height of the web developed. The maximum responses Dy = 0.43 in. , Aw

=1.34g and Dy = 0.75 inch, Ar = (.85 g were recorded.

Yests with EI Cent: o _Record (Time Factor 0.25)

During first run with earthquake record ( fd = -0.5), more shear
cracks in the web were observed and more flexural and shear cracks in
the flange also developed. The maximum responses at this stage were Dy,
= 0.88 inch , Aw =1,79g and Df = 1.64 inch, A1 = 0.94 g. When fd reached
-0.75, vertical cracks at the web toe formed with maximum responses Dw

= 1.51 inch , Aw =1.92g and Df = 2.42 inch, Ar = 0.96 g.

During run #7 ( fd = -1.0), severe vertical cracks formed at the

web toe and masonry face shell began to spall. It is obvious that the wall
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would collapse ir the direction of the web in compression. Then, the test
stopped due to the safety consideration. The crack patierns in the web

and flange arc presented in Fig. 6.7 (a) and (b) respectively.
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(*') Toe Crushing, at End of Test

Fig. 6.3 Condition at Different Stages of Testing, Wall F5
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(b) Toe Crushing, at End of Test

Fig. 6.4 Condition at Different Stages of Testing, Wall F6
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(b) Toe Crushing, Immediately before Failure

Fig. 6.5 Condition at Different Stages of Testing, Wall F7
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(b) Toe Crushing, at End of Test

Fig. 6.6 Wall F8 after Testing
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(b) Cracking Pattern in the Web

Fig. 6.7 Wall F9 aficr Testing
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6.4.2 Natural Frequency and Damping

The natural frequencies of the flanged masonry walls, predicted
and measurcd during the tests, arc listed in Table 6.2. The predicted
value was based on a cantilever model with a uniform stiffness along the
height (12 feet) and a lumped mass at the cenmter of the top concrete
blocks. As a single DOF system, the natural frequency can be calculated

with the equation as
,—__1_-‘/K
f 2r Y M 6.3)

in which f is the frequency, K and M present the stiffness and mass of
the system respectively. The mass included the weight of top concrete
slab and blocks and 1/3 of the self-weight of the wall, the total
equivalent mass was 25.8 kips. The stiffness was based on the gross
cross section of the flanged wall (ignoring the cffects of recinforcement)
and estimated elastic modulus of masonry 2000 Ksi. Shear modulus was

assumed as 40% of the elastic modulus.

170



Table 6.2 Frequencies of Flanged Masonry Walls (Hz)

Wall N Predicled Value Measurd | Measured
all No (1) {2) on Ground on Table
90
F6 9.7 88 6.9
F7 9.7 8.8 7.0
F8 9.7 B.8 6.9

(1) only flexural deformation considered
(2) both [lexural and shear deformation considered

It can be seen from the table that the measured result from
testing on ground (only wall FS was tested in this way) coincides well
with the predicted value. The test resulis on the shake table were about
20% lower than the former. This is cxpected because the flexibility of the
shake table and its supporting system (actuator, pumps, ctc.) acted as an
elastic foundation instead of an absolute solid onc. This reduces the

stiffness, and therefore the natural frequency of the structural system.

The measured frequency and damping ratio were derived from
the first 3 cycles of free vibration of the underdamped system after the
excitation at the shake table was stoped, as shown in Fig. 6.8. The

frequency can be calculated with equation as
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f=n/(t1-t0) (6.4)

where n is the number of the cycles selecied, tO and tl are beginning and
ending time corresponding to the time period. Assuming the cquation of

underdamped free vibration have a form of
v = vpe dwt-tlcos w(1-tp) (6.5)

in which w =2nf is the circular frequency, & is the damping ratio and vo
is the initial amplitude of the vibration. From W to U, the amplitude
decreased from Vo to Vi due to damping, and the ratio of Vi1 vs. Vo can be

calculated from equation (6.5) as

V1o edwtnew) (6.6)
vo

finally the damping ratio is expressed as

ﬁ = _l.__ In Yo (6.7)

Znk Vi

in which Yo and V1 can be casily measured from displacement response

curve and n is the number of cycles considered.

Figs. 6.9 to 6.11 show the variations of natural frequency and
damping ratio with increment of displacement for walls F5, F6 and F7
respectively. It is obvious from these figures that natural frequencies of
the walls deccreased with increasing the amplitude in both directions due
to masonry cracking and steel yielding. Also, the walls were stiffer in the

dircction of the web in compression than in the opposite direction. On the
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contrary, the damping ratio of the structures became larger when

displacement increased, and it is higher in the directiom of the flange in

compression than in the direction of the web in compression.
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Fig. 6.8 Underdamped Free Vibration
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Fig. 6.9 Frequency and Damping, Wall F§
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Fig. 6.10 Frequency and Damping, Wall F6
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Fig. 6.11 Frequency and Damping, Wall F7
6.4.3 Displacement and Acceleration Response

Figures 6.12 and 6.13 show the typical response displacement and
acceleration at the center of top mass during run #7 (Sinusoidal input, f =
5 Hz, D = 0.35 inch and A = 0.89 g) and #13 ( El Centro record. time factor
= (.25 and displacement factor = -1) for wall FS. From the plots, it is
obvious that the responses of the wall to base excitation arc asymmetric
in the two directions parallel to the web. With the flange in tension, the
response displacement was less and response acceleration was larger than
when the flange is in compression, i.e., it is much stuffer when flange is in
tcnsion than in the opposite direction. During run #13, the wall reached
its maximum response in the direction of the web in compression and
strength and stiffness began to degradate. Fig. 6.14 shows the

performance of the wall in the last run (run #15, El Centro record,

175



displacement factor = 1) during which the wall finally collapsed in the

direction of web in compression.

The same trends can also be seen from the test results of the other
walls as shown in Fig. 6.15 through Fig. 6.21. Fig. 6.15 shows the response
of wall F6 10 sinusoidal input (run #6, f = 5 Hz, D = 0.3 inch, A =0.77 g),
Figs. 6.16 and 6.17 present the responses of F6 to run #12 (El Centro
record, time factor = 0.25, displacement factor = -0.75) and run #13 (El
Centro record, time factor = 0.25, displacement factor = 0.75). During run
#12, wall F6 reached its maximum response in the direction of the web in

compression and finally collapsed during run #13.

The performances of wall F7 in runs #7, #12 and #14 arc shown in
Fig. 6.18 to Fig. 6.20 which are corresponding to runs #7, #13 and #15 for
wall FS. Unfortunately, the top displacement was not recorded due to
instrument problem, the displacements presented in the figures were the
displacement at 8 from the base with gauge 2 for run #7 and #12 and
displacement at 4’ from the base with gauge 3 for run #14 after gauge 2
was disconnected. During run #12, wall F7 reached its maximum response
in the direction of the web in compression and collapsed in that direction
during run #14. For wall F8, only one run is presented (El Centro record,
time factor = 0.2§, displacement factor = -1) and the wall reached its
maximum response and collapsed in the direction of the web in

compression as shown in Fig. 6.21.
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6.4.4 Hysteresis Loops Under Dynamic Loading

Acccleration-displacement loops measured during runs #4, #7, #10
and #13 of wall F5 are shown in Fig. 622 (a), (b), (c) and (d) respectively.

The loops show clearly the following trends:

+ Before cracking, respons¢ is symmetric and linear in both
directions. This can be seen from #4, although the noise is significant in

the case of low load level

= Asymmeiric characteristics in the two opposite directions after

cracking i.c., the stiffness, strength, ductility and the damping.

« The stiffness decreases with the increasing displacement in both
directions, but it is more dramatic in the direction of flange in
compression.

+ The damping ratio becomes larger when the amplitude increases
due to loop expansion, especially for the largest loop during which tir:
the wall reached its maximum response. A typical hysteresis loop and
corresponding energy dissipation rate can be calculated as shown in Fig.
6.23. The cnergy dissipation rate can be expressed approximately as
area ratio of the Hysteresis loop OABC vs. cquivalent clasto-plastic shape
in which the slope of AE or BF equals to the initial stiffness OD. The
calculated results for #7, #10 and #13 at the peak response of wall F5 are
0.16, 0.19 and 0.23 respectively. For run #4, it was very difficult to
calculate because of electric noise recorded during the test. It is obvious

that energy dissipation rate increased with increment of displacement
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and when the flange is in compression, the wall has higher cnergy

dissipation rate than in the opposite direction.
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Fig. 6.22 Hysteresis Loops, Wall F5
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6.4.5 Ultimate Strength and Ductility

By comparing the test results from wall F5, F6 and F7, the same
cffects of vertical reinforcement ratio and confining plates on the
strength, stiffening and ductility of flanged masonry walls as shown by
pseudo-static tests, can be observed. It is obvious that the flexural
strength increases with increase of the vertical reinforcement ratio in

both directions( wall F6 vs. F5),

Fig. 6.24 shows the comparison of force-displacement cnvclopes
between wall F? (confined) and F5 (unconfined). The lateral forces were

dcrived by multiplying the maximum response acceleration and total
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equivalent mass at the wall 1op (25.8 kips). It can be scen clearly that
with the flange in compression, the responses are almost the same (no
confining in this direction), but in the opposite direction (flange in
tension) the confined wall F7 has higher strength, larger displacement &t
the pcak load , and a flatter falling section than unconfined wall FS5. Note
that from Fig. 6.24, the displacement ratio of F7 vs. F5 is 1.20 which is
much less than the value of 1.5 for wall F4 vs. Fl in pscudo-static tests.
Wall F4 and wall F7 failed as a consequence of lateral buckling of the
web following a loading sequence where the web reinforcement had been
subjected to high residual inelastic tensile strains prior to load reversal
placing the web in compression. Before the masonry in the web could
support compression stress it was necessary for the web reinforcement to
yield in compression, to remove the residual tensile strains and close the
cracks. During the process there was no cffective lateral support to the
web vertical reinforcement, which exhibited lateral instability, placing
eccentric loads on the web and causing failure. Therefore, the tested

ultimate displacement for Confined walls was much less than expected.
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6.4.6 Effects of Loading history

Fig. 6.21 presents the displacement and acceleration response of
wall F8 under El Centro 1940 N-§ carthquake record (time factor=0.23,
displacement factor=-1.0). It can be seen from the figure that the wall
rcached its maximum response in the direction of the web in compression
(Aw =240 g ) and the corresponding displacement was 1.35 inch, which
was equivalent to the maximum scsponse of wall F5 (Aw =245 g, Dv =
1.35 inch ) during run #13 ( Fig. 6.13). The maximum responses in the
opposite direction were Ar = 1.10 g and Df = 2.10 inch. Comparison with
run #13 of wall F5 (with the same earthquake input factors), as shown in

Fig. 6.13, the responscs arc quitc different because of previous cracks in
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wall FS, but the maximum responses (flexural strength and displacement)

are nearly the same.
6.4.7 Response to Skew Earthquake Input

As a preliminary study on response of T-section masonry walls to
skew ecarthquake attacks, wall F9 was tested with both sinusoidai
excitation and carthquake record at 45 degree to the web. After run #7 {
El Centro 1940 N-S record, time factor = 0.25, displacement factor = -1.0 ),
the test stopped without structural failure of the wall because of safety
consideration. At this stage severe vertical cracking developed at the web
oe. Fig. 6.25 shows the positions of accelerometers which were used to
monitor the horizontal input and response accelerations during the tests
for wall F9. Among them, A2 was attached at the base level to record the
input, meanwhile Al, A3, A4 and LVDT were mounted 12 feet high from
the base to measure the responses at the top. Fig. 6.26 preseats the
recorded response acceleration of A3 and A4. Fig. 6.27 presents the
response displacement znd acceleration parallel to the web for run #4
(sinusoidal input, f = 5 Hz, amplitude = 0.4 in ) and scparated translation
accecleration parallel to the flange ( 0.5(A3 - A4)) and torque component (
0.5(A3 + A4 )) are shown in Fig. 6.28. From the comparison, it can be seen
that a skew excitation will cause responses in the two orthagonal
directions, i.e. parallel 10 the web and the flange and the maximum
response accelerations were 1.35 g and 1.75 g respectively. Therefor the
direction of resultant inertial force will differ from the direction of
excitation ( 52 degree vs. 45 degree to the web in this case) due to

different stiffness and responses in the two directions, Also the skew
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excitation causes response in rotation due to the eccentricity between
mass and stiffness centers of T-sections. The response inertial torque and

maximum shear stress can be estimated as follows:

m=M® (6.8)
where: m is inertial torque, M is inertial modulus of mass, and @ is angle

acceleration. For rectangular section of the mass blocks,

M = P(a? +b?)/3g 69)
®=A/b (6.10)
where: P is the weight, g is gravity acceleration, a and b are half axes of
the rectangular section respectively and A is the translation acceleration
at the corresponding point. Substituting the values of P = 258 Kips, 2 =
433 ft. b = 3 fi, A = 0.5 g into the above equations, m = 19.9 Kft can be

obtained.

To estimate the maximum shear stress caused by the incrtial
torgae, use the formula w = %;;mz for resistance of thin rectangular
sections, where: h is the length and tis the thickness of each section.
Substituting the dimensions of T-section wall into above expression, then
the maximum shear Tm=l\Ivl= 0.16 Ksi. From the calculation result, the
estimated maximum shear caused by inertial torque is significant,
therefore the inertial torque in T-section walls caused by skew

carthquakes is not negligible.
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Fig. 6.29 (a) shows the location of linear potentiometers at the
base level and (b) presents the vertical deformation patiern of masonry
surfacc mcasured during the test. By checking the vertical displacements
at the 4 locations, it is obvious that the assumpiion of ‘plane-section’
during the deformation is not valid. Fig. 6.30 (a) and (b) present the input
acceleration at base and response acceleration parallel 1o the web at top
for run #7 (El Centro record, time factor = (.25, displacement factor = -1)
of wall F9. The separated response acceleration parallel to the flange and
corresponding torque component are shown in Fig. 6.31 (a) and (b)
respectively. For a skew ecarthquake input, like the case of sinusoidal
excitation, there were responses in the two orthogonal directions and
response of rotation. The maximum response acceleration parallel to web
was 1.80 g, meanwhile about 3 g in the direction parallel to the flange,
therefor the resultant response did not coincide with the dircction of

input.
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(a) Location of potentiometers
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(b) Deformation mcasured by potentiometers
Fig. 6.29 Vertical deformation at Base, Run #4, F9
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6.5 Comparisons Between Dynamic and Static Responses

Comparisons of load-displacement envelopes between pseudo-
static tests and dynamic tests for walls F1/FS, F2/F6 and FA4/F7 are
shown in Figures 6.32, 6.33 and 6.34 respectively. It can be seen from
the curves that the dynamic response has the same feature as the
pscudo-static test. But for the identical walls, dynamic tests resulted in
less displacement at the peak load than the pseudo-static tests in the
direction of the web in compression, with ncarly the same ultimate
strength. The reason might be in that the all walls for both dynamic and
static tests failed duc to brittle crushing of masonry followed by buckling
of the extreme vertical reinforcement. In the opposite direction, when the
response of the wall was governed by tension deformation of the vertical
reinforcement, dynamic tests resulted in higher strength and stiffness
due 10 the effects of loading rate. Note that from Fig. 6.33, the dynamic
strength of wall F5 is a little lower than the static strength of Wall F2.
This is because that the vertical reinforcement for F2 had a much higher

yield strength (75.9 Ksi) than the value of wall F6 (62.5 Ksi). (see Table
4.3)
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Table 6.3 summarizes the ultimate flexural strength and

displacement for both pseudo-static and dynamic tests. Checking the failure

mode and position of the walls, it can be found that the failure mode for

dynamic tests is the same as for pscudo-static tests.

Table 6.3 Ultimate Strength of Flanged Masonry Walls (Kips)

Pseudo static Dynanic

Wall No. F1 F2 F3 F4 F5 Fé

F7 F8
46.4 | 71.8 |63.6

Predicted ]62.0 |49.1 |70.0 ]69.7 ]63.6

Test Result {63.4 |S0.8 J70.5 [70.1 164.0 490 [71.0 ]62.0
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6.6 Conclusions

The following conclusions can be drawn from the results of the

dynamic experiments:

(1) Under dynamic loading, the flanged masonry structural walls
have the same asymmetric characteristics in the two directions parallel to
the web, and the same failure mechanism, as observed from pseudo-static

tests.

(2) The flanged masonry walls have less displacement (ductility)
and higher stiffness when subjected 1o dynamic loading than static
loading, with nearly the same ultimate strength in the direction of the

web in compression.

(3) The natural frequency of the flangzd wall decreases with
increasing ampliwde. It has different values in the two opposite

directions after masonry cracking.

(4) The damping ratio of the wall increases with increasing
amplitude. It also has different values in the two directions because of

different energy dissipation rate.

{5) The vertical reinforcement ratio and confining plates have the
same cffects on strength, stiffness and ductility of the structures, as

conciuded for pseudo-static tests.

(6) Pre-existing cracks can alter the natwural frequency and seismic

responses of the walls, but the maximum response (ultimate strength ) will
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remain almost the same provided that the pre-loading does not exceed the

ultimate strength of the structure.

(7) Skew eanthquakes cause seismic responses in the two orthogonal
directions of T-scction walls. The resultant inertial force will differ from
the direction of excitation due to different stiffness and responses in these
two orthogonal directions. Also tlie skew excitation will result in significant
inertial torque because of eccentricity between the mass and stiffness

centers in the cross section.
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7. TIME - HISTORY RESPONSE ANALYSES

7.1 Introduction

To evaluate the inelastic structural component model developed
for fianged masonry walls in Chapter 3 , time-history response analyses
for the dynamically tested walls were camried out with the model and
special hysteresis loops proposed in that chapter. The hysteresis loops
suggested were based on the pseudo-static load test results of flanged
masonry walls summarized in Chapters 5. Two kinds of numerical

examples are analyzed and presented in this chapter:

= As the first step, load-displacement envelopes for the statically
tested walls were computed. The analyses used monotonic increasing load
in the two opposite directions and displacement control after maximum
loading. Wall F1 and F4 (confined) were analyzed in this way and

compared with the experimental results.

» After the static analyses, dynamic time-history response
analyses of T-section walls were performed. The walls analyzed were F5
(#6 vertical reenforcement, identical to F1), F6 (#4 vertical reinforcement,
identical to F2) and F7 (#6 vertical reinforcement, confined, identical to
F4) in order to comparc with the static casc as well as dynamic test

results.

A spccial time-history computer program was written in FORTRAN
77, capable of carrying out the above analyses. For static analyses, the
flanged masonry wall was simplified as a 4-node rectangular eclement

with two nodes at the bottom fixed and two at the top free, as shown in
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Fig. 3.3 (b). The load was applied at the wop horizonially, and both
horizontal and vertical displacements were computed and compared with

the test results.

For time-history response analyses, the wall was further
simplifiecd 10 a two node cantilever column ( Fig. 3.3 {(c¢), in local
coordinate system) in order to reduce computer time. Both sinusoidal
excitation and carthquake record input were introduced at the bottom,
corresponding to different stages of the test program, and the response
horizontal acccleration and displacement at the top of the wall were

computed and compared with the test results.

7.2 Load-displacement Envelope

7.2.1 Analysis Procedure

The T-section wall was simplified as a rectangular plane element
dimensions equal to that of the web, as shown in Fig. 3.3. As described in
Chapter 3, in the global coordinate system, the clement has 8 degree of
freedom and in the local coordinate system, a plane shear-flexural
clement has only 3 degree of freedom. The analyses used an incremental
approach and for cach step, a2 3 by 3 clement stiffness matrix was first
formed in local coordinates, then transformed to a 8 by 8 stiffness matrix
in the global coordinates where the boundary conditions were introduced
and the degrees of freedom were reduced to four. Then, the horizontal
load was applicd and structural analysis was performed to calculate the
incremental displacements of the two top nodes. After the new response

node displacements had been obtained, they were added to the total
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displacements and transformed to node displacements in local coordinates
10 calculate new material properties, then the stiffness martrix was
updated and transformed back into the global coordinates again. Finally, a

new increment of load (or displacement) was applied.
7.2.2 The Moment-curvature Curve

To check the cffects of moment-curvature curve shape between
the origin and first yielding on the load-displacement responses (section
after first yielding remains the same), four different curves were

assumed and cvaluated as follows:

(1) Bilinear, as the initially proposed skeleton which passes

through three points: the origin, first cracking and first yielding.

(2) A parabola which passes through three points ( the origin, first

cracking and first yielding ) and has the following form:

o= M +C2M2 a.n

in which ¢; and ©2 can be determined by values of curvatures and

moments at the points of first cracking and yielding.

(3) A parabola which passes two points (the origin and first
yiclding )} and has the initial stiffness of masonry, the equation has the

following form:

=L 2
[ EIoM + M (7.2)

where €1can be determined by (®y: My)

208



(4) A quartic polynomial which passes through the origin and first

yiclding point and has the form of

cpséll;M-rc‘M‘ (71.3)

where ©4 can be calculated in the same way as (3)

The computed lateral force-displacement ecnvelope with quartic
moment-curvature curve (4) gave the best prediction, but the differences
were not significant between the four curves. The comparisons between
computed envelope (curve 4) and tested hysteresis loops will be
presented in the following section. For time-histery response analyses,
tri-lincar curve was uscd to reducc computer time. The shear load-
deformation relationship applied for the computation was bilinear curve

symmetric in the two opposite dircctions, as described in Chapter 3.
7.2.3 Comparisons Between Computed and Test Results

Walls Fl1 and F4 were analyzed with the above structural
component model and the quartic moment-curvature curve (Eq. 7.3). The
computed load-displacement eavelopes and the comparisons with the
pscudo-static test hysteresis loops are presented in Figs. 7.1 and 7.2
respectively, It can be seen that for wall Fl, the predicted envelope
coincides well with the test load-displacement loops. For wall F4, in the
direction of flange in compression, the predicied envelope is very close to
the test result, but in the direction of web in compression, both computed
ultimate strength and displacement are higher than the test results (

especially the latter). The reason is as mentioned in Chapter 5 that for
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confined masonry, the ultimate strain is assumed to be 0.008 for the
analysis. During the test, the masonry at the web toe exhibited wide
cracks and the extreme vertical reinforcement suffered extensive
inclastic tension strains in the direction of loading the flange in
compression. When under reverse loading, before the masonry in the web
toe could support compression stress, it was necessary for the web
reinforcement to yield in compression to remove the residual strain and
close the cracks. During the process, there was no effective lateral support
toc the web vertical reinforcement, which exhibited lateral instability,
placing eccentric loads on the masonry and causing failure long before the

masonry reached its ultimate compression strain.

Table 7.1 lists both the analytical and experimental horizontal and
vertical displacements at the maximum responses for wall Fl. It can be
seen from the table that the theoretical results coincide well with the
measured values for horizontal displacement, including the displacement
due 1o shear. The vertical displacements of top section at each edge of the
web monitored at maximum response are listed in row 1 of the Table.
Also presented in row 2 of the table are computational results for the
same situation with the position of the one-dimensional clement in local
coordinates coinciding with the necutral axis of the cross section of the
flanged wall before cracking. It is obvious that the computed
displacement at the free end of web is larger than the measured value,
while, at the opposite end, the predicted value is smaller than the test

result.
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The explanation for the above differences is that the vertical
displacement at cach end of the web is caused by the rotation of wall
cross sections. As a consequence of variation in the ncutral axis position
resulting from cracking, the flexural response of a T-section wall may
result in axial deformation relative to the initial uncracked ncutral axis,
as shown in Fig. 7.3, which will decrease the displacement at the free end

of the web and increase displacement at the opposite end.

To consider the overall effects of variation of ncutral axis of cross
sections along the wall height, a second analysis was made taking the
neutral axis in the SCM modal equal to the mean value of compression
depths before cracking and at ultimate state. The computational results
with this average neutral axis are also presenied in row 3 which are very

close to the test results.

From the comparison between the analytical results with SCM

modal and experimental results, the following respects can be concluded:

(1) The structural component modal can give rcasonable lateral
load-displacement prediction for flanged masonry walls in the direction

parallel to the web.

(2) The computed response envelope depends on the moment-
curvature relationship applied. The quartic curve assumed between first
cracking and yielding results in better response envelope for this section
than the trilinear curve, but doecs not affect the response after yielding

significantly.
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(3) The structural component modal can also predict the vertical

displacement well, provided the position of equivalent neutral axis after

cracking

and value at ultimate state is a reasonable approximation.

is assumed properly. The mean value of uncracked cross section

Table 7.1 Displacement at Maximum Loading, Wall FI
Load Horizontal Displ. (in) Vertical Displ. (in)
(kips) Total By shecar |JJoint end | Free end
Experiment | 63.4 1.63 0.62 0¢.206 -0.275
Analysis | 66.0 1.56 0.56 0.106 -0.393
Analysis 2 | 66.0 1.56 0.56 0.236 -0.263
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7.3 Time-history Response Analyses
7.3.1 General Description

The numerical examples presented here arc responses of wall FS,
F6 and F7. Two critical runs were analyzed for each wall and compared
with the experimental results. The paramecters and details of the tests

are as follows.
Wall F5:
(1) Run #7: input with sinusoidal excitation F = 5 Hz, amplitude A

= 0.35 inch (8.89 mm, maximum acceleration 0.89 g )., shake table run
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time + = | second and data acquisition for 3 seconds. This is the last run
for sinusoidal tests during which the extreme vertical reinforcement at

the web free end was close to yield state.

(2) Run #13: input with ecarthquake record of El Centro 1940 N-§,
time factor 0.25 and displacement factor -1.0. Shake table run time was
about 8.5 seconds with 10 seconds of data acquisition. The wall reached

its maximum response during this test.

Wall Fé:

1) Run #6: input with sinusoidal excitation F = 5 Hz, amplitude A =
0.30 inch (7.62 mm, maximum acceleration 0.76 g ), shake table run time
t = 1 second and data acquisition for 3 seconds. The extreme vertical

reinforcement at the web free end yielded during this test.

(2) Run #12: input with carthquake record of El Centre 1940 N-S,
timec factor 0.25 and displacement factor -0.75. Shake table run time
was about B.5 seconds with 10 seconds of data acquisition. The wall

reached its maximum response during this test.

Wall F2:

The two runs analyzed for confined wall F7 were similar to those
for F5. The first case was also run #7 of wall F7 which had the same
shake table input and data acquisition requirement as wall F5. The second
example was run #12, for which the shake table input and data
acquisition werc identical 1o run #13 of wall F5 and the wall reached its

maximum response in the direction of the web in compression.
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7.3.2 Equations for Dynamic Response Analysis

A structure subjected to excitations at its base is shown in Fig. 7.4,
where Vg represents the ground movement and U is the displacement
vector of a multi-DOF system relative 10 the base. In our case, the
structure is simplified as a single DOF, but the all following cquation are
applicable. At any given time t, and using a time increment at, the
incremental differential equation of equilibrium can be obtained as

follows:

(M) {ab) +[Cw] {aU) + (K@) {aU} = - M {1}aV0) (7.4)

where [M],[C(t)] and [K(t)] are mass, damping and stiffness matrices
of the structure respectively. A Step-by-step integration approach with
the Wilson-8 method[24] was employed to solve the incremental equation
of equilibrium in the computer program. In our case, since time interval
was chosen to be very small comparing the natural period T of the wall
(at = 0.005 second, T = 0.11 second ), the linear acceleration
approximation was used ( i.e. © = 1), Since it is proved from the test
result that the effect of rotation of the inertia mass is not significant,
only one degree of freedom ( horizontal displacement ) was computed

reduce computation. The damping was assumed to be constant during the

computation.
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Fig. 7.4 Model for Dynamic Analysis

With linear acceleration integration approach, for each time

interval at, equation (6.4) was conducted to solve the following equation:

K@) aU( = aP() a.5)
where
Ko =Ko+ M+
R (1.6)
and
2P(1) = aP(1) + "{ffum +3 U(z)] + qa Uw 4%'— U (0] an

are called equivalent stiffness and load increment matrices respectively

in which

aP() = -M{1)(V,(t + at) - V(1)) (7.8)
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is the contribution from base excitation. Solving equation (7.5) for aU(),
the incremental velocity and acceleration can then be obtained by the

following:

ey - 3 ar -M
aU() =2 aU() - 30 TU(t) (1.9)

ali = 8- auq) - 80 - 30
at (7.10)

at?
After the incremental values are calculated, the total displacement,
velocity and acceleration at the end of time increment can be updated
and a new step can start. A computer program was written in FORTRAN

77 to carry out the analysis and is listed in Appendix ¢ for reference.
7.3.3 Analytical Resulis and Comparisons

Both experimental and analytical response displacements and
accelerations at the top mass center for runs #7 and #13 of wall F5, runs
#6 and #12 of Fé and runs #7 and #12 of F7 are presented in Fig. 7.5
through Fig. 7.14 respectively. Unfortunately, the top displacement for
wall F7 was not rccorded due to instrument problem, the comparisons for
this wall arc only for accelerations in Figs. 7.13 and 7.14. From the

comparisons, the following aspects can be noted:

» Response (o Sinusoidal Excitation: The analytical
results have a excellent agreement with the experimental results for both
displacement and acceleration, especially for walls F5 and F7. During the
forced vibration cycles (about 0.5 sec. 10 1.5 sec., because the data
recorder started earlier than the shake table in order not to lose data),

the analytical curves coincide well with the experimental curves. Afier
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the shake table stopped ( about 1.5 sec.), the natural period of the
vibration with analytical model is a little longer than the test results for

the all walls.

+ Response to the Earthquake Record: The responses during
sinusoidal input were mainly within elastic range of material response,
although the walls were cracked. To evaluate the structural component
model in the inelastic range, responses to earthquake record for these
three walls during which each wall reached its maximum response were
analyzed and compared with experimental results. From the figures, it
can be seen that the analytical responses coincide well with the
experimental curves up te the maximum response and agrecement
decreased after that. Also the agreement is a little better for acceleration

than for displacement,

« Hysteresis Loops: Figs. 7.15 and 7.16 compare the acceleration
( lateral force )-displacement hysieresis loops for runs #7 and #13 of wall
F5 between analytical and experimental resulis respectively. Considering
the complicated nature of the hysteresis phenomenon in the inelastic
range, the prediction with the analytical model is quite good and

acceptable.
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7.4 Discussions and Conclusions

The numerical examples for inelastic analysis of flanged masonry
walls proved clearly the application of the structural component model
and inelastic hysteresis loops proposed in Chapter 3. The computation
showed that the responsc is very sensitive to the assumed damping ratio
E of the structures and the shape of the hysteresis loops, especially the

yicld point on the envelope and the stiffness degradation factor A.

For run #7 of wall F5, &= 0, 0.02, 0.025, and 0.03 (keeping A = 0)
and £ = 0.02, A= 0.2 have been tried. The computation results show that
with E= 002 and A = 0, the best result was obtained. This is a little
unexpected because that from Fig. 5.8, the damping ratio mecasured
during the test is 0.032 for the direction of web in compression and 0.037

for the flange in compression, respectively. For run #13,&= 0.04 and A =

0.2 rcsulted in the response closest to the test data, much less than the

measured values of E = 0.045 for web in compression and E = 0.07 for the

flange in compression.

The skeleton of moment-curvature hysteresis loops decides the
envelope of the response and the yield point on the line is critical to the
response, meanwhile the first cracking point  does not  change the
response significantly. The analytical results of flanged masonry walls
and the comparisons with experimental results enable to draw the

following conclusions:
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(1) The inelastic structural component model developed for
flanged masonry walls can simulatc the overall nonlincar bechavior of the

structure and the formation of the plastic hinges at the wall ends.

(2) The proposed asymmetric hysteresis loops worked well for the
time-history response analysis on flanged masonry walls, and the

damping ratio § and stiffncss degradation factor A are critical to the

analytical results, and should thus be carcfully chosen.

{3) The additional longitudinal deformation of initial neutral line of
wall section due to cracking will affect the vertical displacement
distribution of top section. Taking the average value of neutral lines
corresponding to the compression zones before cracking and at the
ultimate state of wall section as the computation neurral line seems to be

a reasonable approximation

(4) Further improvement on inclastic analysis of flanged masonry
walls can be achieved through using the varying damping ratio and
stiffncss degradation factor in the two opposite loading directions instead
of fixed values and more sophisticated hysteresis Joops for shear

deformation

(5) More numerical examples, especially the masonry assemblages
which have T-section components, are neecded to cvaluate and calibrate

the analytical model developed in this report.
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8. EFFECTIVE FLANGE WIDTH OF
T-SECTION MASONRY WALLS

8.1 Introduction

Flanged masonry walls have different strength, stiffness and
ductility in the two opposite directions parallel to the web when
subjected to horizontal in-plane loads. In the direction of flange in
compression, the width of flange does not affect the behavior of the wall
significantly. Cn the contrary, when the flange is in tension, the extent to
which the flange reinforcement contributes to the flexural strength will

be subjected to shear-lag effects.

Because of shear-lag effects, the flange may not participate fully in
the action with the web , and an effective flange width is needed for
predicting actual strength and stiffness of the structures. Although the
New Zealand design codel3) provides some guidance on this effect, its
provisions arc based on the application of ACI design rules(?) for effective

width of T-beam floor, and have not been verified experimentally.

In this chapter, both theorctical and cxperimental studies on
shear-lag effects are introduced. The experimental results are from
pscudo-static tests and dynamic tests of full scale flanged masonry walls,
including one with very wide flange , as described in chapters 3, and 6 in
order to provide a data base for the theoretical studies. The theoretical
efforts include using elastic theory to solve a simplified plane-stress
problem to simulate the strain and vertical deformation distribution along

the flange and allow to extrapolatc the experimental results to a more
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useful range. Based on the results of above studies, formulas for

determining the effective flange width arc proposed in this chapter.
8.2 Experimental Results

The detail of pseudo-static and dynamic tests on full scale flanged
masonry walls can be found in chapters 5, and 6 respectively. The
arrangement of straingauges on vertical reinforcement and linear
potentiometers at lower part of the wall, which were used to monitor the
distribution  of vertical strain and deformation along the flange during

the tests is shown in Figs. 4.1 and 4.2.

Figures 8.1, 8.2 and 8.3 present the measurement of flange strains
and deformations for wall F1 at three different loading levels: before
cracking, about yield point and at maximum response respectively. The
strains of vertical reinforcement and deformation of masonry face at base
level for wall F3 ( the wall with the wider flange ) are shown in Fig. 8.4.
Unfortunately, some of the straingauges were damaged during the

grouting or afterwards.

It can be seen from the figures that for wall F1( Vh = 0.722 ), at
lower load level (p = 15 kips, prior to cracking ) there is a slight drop for
both vertical reinforcement strains and wall vertical deformation from
the flange center towards its ends. After cracking, hardly any decrcase of
vertical strain or deformation is apparent along the flange, especially at
the base level. For the wide flange wall F3 ( I/h = 1.389 ), with the

increases of width/height ratio, the sh.ar-lag cffects are more obvious
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than that for wall F5 and the ratio of vertical deformation and strain at

cnds to the center of the flange decreascs.

Table 6.3 lists the comparison of ultimate horizontal loads between
predicted values and test results for walls F1 to F8. The predicted values
were based on the plane cross section assumption, i.c. the whole flange
will fully panicipate in action with the web, including the wide flange
wall F3. The comparisons show that the predicted ultimate loads coincide
well with the experimental results ( for wall F2 and F3, the test results
arc even a little higher than the predicted ones) which indicates that the

whole flange did participate fully in action with the web in each case.

Table 6.2 summarizes the natural frequencies for wall F5 (identical
to wall Fl1 ). The predicted value was based on the gross section of the
wall and clastic modules of masonry Em=2000 ksi, shcar modules
Gm =04 Em. The coincidence of predicted frequency with the test result on
ground shows that the flange participated fully in the action with the
web, therefore it is much stiffer than the case of only rectangular section
is considered ( 5.9 Hz ). It is very important to note that the vertical
strains in the flange decrease from the web/flange intersection to is two
ends and the shape of the distribution curve looks very similar to the
solution for a becam on clastic foundation. In the following section, a
simulated analysis based on the analogy between the two phenomena is

carried out to extrapolate the experimental results to more useful range.
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8.3 Analytical Simulation

A typical flanged masonry wall subjected to horizontal loading
parallel to the web is shown in Fig. 8.5 (a). When the wall is subjected to
bending, there will be a shear flow along the intersection of the web and
flange to ensure compatible deformation of the web and flange. To
investigate the shear-lag ecffects in the flange., a separated 2-dimension
model is shown in Fig. 8.5 (b). This can be further simplified by
simulation as a beam with finite length on an eclastic foundation ( Fig. 8.5

(c) ).

Assuming a Winkler foundation, the differential equation of

equilibrium can be derived as

EILY¥ s kw=0 8.1)
dx4

where w represents the vertical displacement function, k is stiffncss of
the foundation, E and I are elastic modulus and moment of inertia of the

flange. The solution of above equation can be expresscd as

w = eP(c cos Bx +casin Bx) +¢Pr(cicos Px +cqsin Bx) (8.2)
in which
=[ K .
B=[z El @3

and ci.Cnc3andcqare constants which can be determined by the

following boundary conditions:
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=0 dw w .. P
x=0: =0, Elﬂ-!s’— I
(8.4)

x=1 Ed¥.0 Ef®.p
2 dx? dx3

The expression of w(x) is lengthy and complicated, but the general
trend of the deflection curve is to decrcase from the center towards the
ends, as shown in Fig. 8.2 (a) and the ratio of end deflection 1o center

deflection has the form of

Bl Bl
wiz - dcosh(7)eos (5

W0 " 2 4 cosh(B) + cos (Bl)

(8.5)

and the plot is shown in Fig. 8.6 {b).

To simplify expression (8.3), assume that at ultimate state, the
wall cracked at the basc and is supported on distributed vertical

reinforcement. The foundation stiffness k can be approximately expressed

as
_nA PE4t
K'_hfl"ﬁ (8.6)

In which n, As,E;and p are number, cross section area, elastic modulus and
reinforcement ratio of vertical bars respectively and hpis the height of
the vertical reinforcement in the plastic hinge zone. For the rectangular

section, the moment of inertia is

I=th3/12 8.7
If shcar deformation is considered, the equivalent stiffness of the wall
can be modified as

r=rls (8.8)
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in which F can use the cxpression in Chapier 2 as following

F= fllz- = 0.1'5(1]1)2 (8.9)

Substitute I° and K into expression (8.3), the corresponding value of I

can be calculated.

From Fig. 8.6 (b), when Bl = 1.5, the ratio of W12 10 Wp is close to 1,
which indicates that the whole flange can participate in the action
entirely. Assuming EJE = 10, hp=0-08h+6db. where dv is the diameter of

the wvertical reinforcement, then 1/h = 1.5§ can be derived. Similarly,

when pl=x, Lh = 3.43 can be obtained.

'
L]
] w
a ! ,
4 El
! l =
0 X
Vi 2 L 73 vi
v

(s) Flanged Wall (b} Two-dimensica Model {c) Beam on Elastic Foundation

Fig. 8.5 Interaction Between Flange and Web and Iis Modelling
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Fig. 8.6 Vertical Displacement Distribution
8.4 Inelastic Finite Element Analysis

A computer program using a special inelastic finite element model
for masonry assemblages developed by Seible and Kingsley[43] based on
an carliecr work by Scible and LaRovere(25) was employed 1o analyze
flanged wall F1 to investigate the vertical strain and displacement
distribution along the flange, and compare with experimental results and
values predicted by the clastic shear lag model described in Section 8.3.
Since both the structure and loads are symmetric, only half of the system
was analyzed. The clement discretion is shown in Fig. 8.7. Analysis
simulated the pseudo-static tests with monotonically increasing

displacement applied at the loading point. Measured material propertics
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were used in the analysis, with a value of 300 psi being adopied for the

aserage masonry lension strength, as found from analysis of flange

cracking, reported in Section 5.3.5.
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Fig. 8.7 Element Discretion for Flanged Wall Fl
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The calculated vertical strain and displacement distribution along
the flange at different height levels for three loading stages and
comparisons with the corresponding test results arc presented in Figs. 8.8
to 8.10 respectively. The vertical strains were taken at the Gauss points of
cach four-node clement and the distances from the base are 3, 17.4 and
31.8 inch respectively. The clement nodes chosen for wvertical
displacement were located at the central and end of flange and the
distances from the base are 0, 14.4, and 28.8 inch respectively. Three

loading stages were sclected to check the shear-lag cffects: before

cracking(P = 17.9 Kips), before first yield(P = 43.1 Kips) and at maximum

62.7 Kips).

response(P
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It can be seen from the figures that the analytical results with this
finite eclement model show the same trends for vertical strain and
deformation distribution as that of elastie analysis and test results. At
lower load level, the vertical strain and deformation decreases from the
center of the flange towards its cnd along the flange which indicates the
shear-lag effecis. After cracking, the distribution of wvertical strain and
deformation becomes even and thus the shear-lag effects is less
significant and the effective flange width would be larger after cracking

than for uncracked walls.

Before cracking, the vertical strains have reasonable good
agreement between the analytical and experimental results which can be
seen clearly from the top two cases in Fig. 8.8 {(a). The maximum vertical
strain at the ultimate state of loading also coincides well with the test
result. For other cascs, the analytical results have rather poor agreement
with the measured values . First, the onset of masonry cracking does not
coincide with the test result. In the bottom profile and center section of
the middle profile of Fig. 8.8 (a), the analysis indicated that the masonry
strains did not exceed the cracking value, where the measured strains on
vertical reinforcement clearly indicated that the masonry had already
cracked. Fig. 8.10 (a) indicates that all the vertical rebars yielded at the
base, but the analysis did not develop yielding over the whole flange
section. The predicted vertical displacements are much less than the

experimental results for all cases, except before masonry cracking.

From the above comparisons, it can be concluded that although

this inclastic finite eclement model has been shown to predict the global
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performance of masonry walls and subassemblages very welll25).143] it
needs further improvement to describe detailed behavior of masonry
structures after cracking. In this model, masonry and steel reinforcement
are treated as overlaid elements in which both materials are subjected to
identical strain field. This assumes that masonry and steel are perfectly
bonded during deformation. So bond failure and slip between steel and
surrounding masonry are not modellcd. From experimental observations,
it was evident that slip between steel and surrounding masonry at

cracked sections was significant, especially at the basc level.

The characteristics of the masonry tension model is critical to the
prediction of the vertical strains and displacement distributions along the
flange. The mode! adopted by the program wuses a linear relationship
between tension stress and strain up to tensile strength f; then
immediately drops the residual tensile capacity to 5 percent of the initial
strength. The model assumes masonry to be & homogencous material and
ignore the natural weakness section at mortar beds. As a consequence,
strength and stiffness of masonry in the direction normal to the mortar
beds will be overestimated. It should be noted that thc tension strength
of base bed joint was found to be less than at other heights of the wall,
since this was a construction joint. This was not modelled in the analytical

process and will have contribution 0 experiment/theory discrepancies.

To determine the cracked conditions, the model uses the principal
stress axes resulting in crack formation in a diagonal direction rather than
horizontal cracking at bottom half part of the flange which was the real

case observed during the tests. After the masonry cracked, the stress-
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strain relationship in the original plane (horizontal-vertical) was obtained

by |
o, Ec+E;s? O 5(E,-Epsc .
{o, }= E sH#+Ex” %(El-E’):r {ey } (8.10)
Tay sym. %(Eﬁ&,) Ty

where ¢=cos@,5=s5in@and® is the angle between the principal and
original coordinate system. Eqn. 8.10 implies that the vertical stiffness of
cracked masonry has a significant contribution from the uncracked
direction which overestimates the stiffness of cracked masonry and may
partly explain why the analytical displacements are much less than the

test results.

Nonlinear =analyses are normally carried out using either
incremental or iterative {successive approximation) methods. It is known
that the incremental procedure will increase the stiffness of the system
and introduce accumulative errors. On the other hand, the iteration
approach may lead the numerical result 10 converge to a non-real

solution.

It can be seen from the above discussion that a more sophisticated
inclastic model is needed to predict the dectailed behavior of masonry
structures due to the complicated nature of the material propertics and
construction procedure. Unevenness of the material and minor defects in
the masonry and grouting may causc carlier cracking which will affect
the strain distribution significantly. Therefore, we shculd not expect any

analytical model to predict those random behavior from local effects.
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8.5 Conclusion

From the studies above, it is clear that there is shecar-lag cffect in
the flange when the T-section wall is subjected to horizontal forces
parallel to the web. When the flange is in compression, the effects of
flange width, therefore the shear-lag effects are not significant. On the
contrary, in the direction of flange in tension, the shear-lag effects are
rather  significant  for uncracked walls and become less severe after
cracking. For the purpose of determining effective flange width, T-section

walls can be divided into three groups as follows:

1. Short flange: From Fig. 8.6 (b), it is clear that when PIS1.5

w
wp is very close to 1. Thercfore, the whole flange width will be the

effective width. In this group, I/h = 1.5 can be set as the upper limit for

this group. { the calculatad value is 1.55 )

2. Intermediate flange: When ﬂ1=1¢,“’T’vl£2.=o. the effective flange

width can be determined by an equivalent rectangular block with height
wo and the same arca as curved displacement envelope. In this case, h =
3.5 can be set up as upper limit ( the calculated valuc is 3.43 ) and the
corresponding effective flange width can approximately estimated as
2.5h. For the T-section walls with its B! yalue between 1.5 and =, the
effective flange width can be determined by interpolating between the

above two casces.

3. Wide flange: When Bl2n , the increasc of flange width will

not cause significant change in vertical displacement distwribution,
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therefore the cffective flange width in this group equals the value at

Bl = x.

Based on above analyses and the test results, following formulas
arc proposed for determining the effective flange width to predict the
strength and stiffness of T-section walls when subjected to horizontal

forces in the direction of flange in tension.

1 (Lhs1S)
. = 0.75h+0.5] (15<h<3s5) (8.11)
250h {lh235)
where le :  effective flange width

1:  width of the flange
h: height of the wall
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9. SUMMARY AND CONCLUSSIONS
9.1 Conclusions

This is the first systematic research on seismic behavior of flanged
masonry walls and the theoretical and experimental studies carried out in

this project enables 10 draw the following conclusions:
(1) General Behavior

The flanged masonry walls have strong unsymmetrical seismic
responsc in the two opposite directions paralle]l to the web. When the
flange is in compression, the wall has lower flexural strength and
stiffness, but larger displacement and ductility capacity. Meanwhile, in
the direction of flange in tension, they have higher flexural strength and

stiffness, but much less ultimate displacement and ductility capacity.

{2) Failure Mechanism

When flanged masonry walls are subjected to earthquake attacks
parallel to the web, they will fail in the direction of web in compression
due to crushing of masonry , followed by buckling of vertical
reinforcement at the free end of web foot. But in the direction of flange in
compression, the walls can still sustain the earthquake attacks and

undergo deformation.
(3) Flexural Strength and Displacement

The ultimate flexural strength of flanged masonry walls depends

mainly on the ratio of vertical reinforcement, axial load level and the
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width ratio of flange vs. web etc. and can be rationally predicted with
cross section analysis which uses the assumption of "plane cross-section”
and ecquivalent compression stress block for masonry. The displacement
at top of cantilever flanged masonry walls at yield can be calculated with
a equivalent stiffness which is based on a lincar curvature distribution
along the wall height from zero at the top to the yiclding value at the
base. The ultimate displacement can be better predicted by assuming that
the compression strain at the second mortar bed from the bottom reaches
the ultimate value due to the confinement at the bottom masonry bed

provided by the strong concreic base.
(4) Shear Strength and Displacement

Transverse reinforcement is nceded to maintain the shear strength
of the wall after shear cracking. Since shear failure is sudden and brittle,
it must not be permitted 10 happen in structures. According to the
capacity design requirements, the shear strength should be greater than
the maximum feasible flexural strength to ensure there will be no shear
failure occur. The displacement due 1o shear deformation is small before
shear cracking and becomes unsymmetrical in the two opposite directions
after shear cracking because of different shear level. In the direction of
web in compression, the displacement duc to shear at the ultimate state
can make up to more than 30% of the total displacement. To predict the
shear displacement, bi-linear equivalent stiffness proposed in Chapter 3

can be used and the result is reasonable good.
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(5) Confined Walls

The confinement on mortar beds at free end of web toc provided
by steel plates increases the ultimate compression strain of masonry in
the confined area, thercfore improves the ductility capacity and strength
of flanged masonry walls in the direction of web in compression. In our
case, the test results show that for confined walls, the ultimate
displacement increased by 50% for static tests and 25% for dynamic tests.
These values are smaller than expected because of early buckling of
extreme vertical reinforcement at free end of web foot as discussed in

Chapter 4 and Chapter §.
(6) Dynamic Response

The experimental results proved that when subjected to
carthquake attacks, in the direction of flange in tension, both unconfined
and confined flanged masonry walls will have less ductility than when
subjected to static loading, with nearly the same strength. Under dynamic
loading, the ultimate displacement may drop to 70% to 80% of the values
in static case. This is very important for designing masonry structures in
the seismic zone. The failure mechanism, however, remains the same.
There is not any significant difference in the responses of T-section
masonry walls under static and dynamic loading in the direction of flange

in compression.
(7) Natural Frequency and damping

The natural frequency ( fundamental } of flanged masonry walls

before cracking can be predicted with the gross cross section and elastic
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modulus of Eq=1000fy The damping ratio is about 0.02 for uncracked
masonry. After cracking, the frequency decreases and damping ratio
increases unsymmetrically in the two opposite directions with higher
frequency and lower damping ratioc in the direction of web in
compression. The average frequency drops to 30-40% of the initial valuc
and the damping ratio will increases to 5 - 6 % of critical dumping on

average at yielding state in the direction of web in compression.
(8) Effect of Loading History

The cxperimental results indicated that a previous loading history
does not affect the ultimate strength and ductility capacity significantly,
as long as the pre-existing condition never exceeds the ultimate strength.
Under carthquake attacks, the performance of T-section walls may differ
from each other due to their loading history and pre-existing conditions,

but the same structures will have nearly the same maximum response.
(9) Response to Arbitrary Earthquake Attacks

The test of wall F9 subjected to earthquake input at 45 degree
skew to the web showed that under arbitrary earthquake attacks, T-
section walls will have responses in the two orthogonal directions. Both
the resultant inertial force and displacement will not coincide with the
initial earthquake input direction and shear stresses caused by additional
inertial torque due to the difference between the mass center and rigid

center may be significant because of the characteristics of T-section.
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{10) Effective Width of Flange

When the flange is in tension, it usually can not participate in the
action with the web completely due to the shear-lag effects, therefore a
effective flange width is needed for predicting the strength and stiffness
of T-section walls. Formulas proposed in Chapter 7, which was based on
the theoretical and experimental results, can be used to determine the

cffective flange width for T-section masonry walls.

(11) Structural Component Model

Inelastic structural component model developed in Chapter 3 can
simulate the overall nonlincar material properties inside the flanged

masonry walls and formation of plastic hinges at the wall ends.

The numerical examples for siatic analyses in Chapter 6 show that
the model is applicable of load-displacement envelope for both horizontal
and vertical displacement predictions. The time history response analyses
show the excellent agreement with the experimental results which
indicates that the model works well in the case of dynamic and scismic

response analyses.
(12) Constitutive Modelling

The unsymmetrical hysteresis loops for flanged masonry walls
proposed in chapter 3 utilizes a tri-linear envelope and permits the
stiffness degradation and pinching can be used for time history response

analyses of flanges masonry walls. The numerical examples in Chapter 6
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show that the loops together with the structural componemt model
worked well and can give very good predictions of seismic behavior of T-

section masonry walls
9.2 Recommendations for Further Studies

The theoretical and experimental researches in this report mainly
deal with scismic bchavior of T-section masonry walls in the directions
parallel to the web. Dynamic testing of a flanged masonry wall on shake
table with carthquake input 45 degree skew to the web was also carried
out as a preliminary study on seismic response of T-section walls
subjected to arbitrary earthquake attacks. Further studies are
recommended 10 complement this research project and the possible

rescarch interests could be the following aspects:
(1) Effects of Openings

The structure investigated in this report was T-section masonry
walls without openings. T-section walls in masonry buildings may include
openings such as doors and windows. Therefore the behavior of these
walls wiil dcpvnd on the size and positions of the openings which affect
the continuity of reinforcement as well as the structure itself, cven
change the load-resistant mechanism from wall structure to a frame
system, if the openings are large enough. The behavior of T-section walls
with openings is more complicated, an further studies are necessary to

investigate their characteristic.
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{2) Buckling of Slender Walls

For slender walls, a potential preblem is buckling of the wall under
combined axial load and latcral disturbance such as carthquakes and
winds etc.. The critical lateral load will depend on the ratio of slenderness,
axial load level and constrains at the boundaries etc.. For T-section walls,
since the web can provide distributed lateral support to the flange in its
own planc and vice versa, thcoretical and experimental studies are
needed to investigate the effects of this interact between flange and web

on buckling of slender T-section masonry walls.
(3) Integrity of Masonry Buildings

One of the serious problems for masonry buildings during
carthquake attacks is its integrity. It has been found from investigating
scismic damage to masonry structures that the most common damage
modes for masonry buildings are shear failurc in wall planc and wall
collapse in out-of-plane direction due to inadequate support from
horizontal diaphragm i:oci and floor etc.) and walls perpendicular to it.
The lost of support was caused by connection failure along the
intersection between web and flange ‘or wall and floor. For masonry
structures, therc is a natural weakness along the intersections. The
effectiveness of connection depends on the block type, amount of
transversc and vertical reinforcement crossing the intcrscction and type
of connection detail adopted etc.. During both static and dynamic tests,

serious cracking between web and flange alone the wall height was
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formed. This did not cause the flange to collapse in direction of out-of-
plane because relatively heavy transverse reinforcement was provided,
linking the web and flange, and strong constraints existed from top and
base concrete slabs. More experimenial studies on different connection
detail between web and flange and wall and floor arc nceded to check the
cffectiveness of aliernative connections. The effects of lateral diaphragm
stiffness on scismic performance of masonry buildings should also be

investigated.
(4) Response o Arbitrary Earthquake Attacks

As a preliminary study on response of T-section masonry walls to
arbiirary earthquake attacks, only one wall was tested in this project. The
experiment indicated that both response resultant displacement and
ineriial force were off the initial input direction, inertial torque due to the
difference between mass center and rigid center of the cross section was
resulted. The assumption of “"plane cross-section” appeared not to be
applicable. Since real earthquake attacks are likely to happen in any
direction to the structures, seismic response of T-section to skew
excitation is more important and need further studies to understand the
rcal performance of the structures under these attacks and develop

feasible analytical method to predict the response of T-section masonry

walls.
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Appendix A

Computcr Program for Design Tables of flanged Masonry Walls

«ss4s DPROGRAM FOR FLANGED MASONRY WALL ANALYSES serww

L3 LN “RIN Pmm AARNW

dimension vp(ll).,va(9%)

character+*1l4 ma(6)

character*2l mb(6)

common ®2,bt,p,q9,pl,ep,9l

common fclf rl,e2,:2m

comnon fc2/ el,fk,ak,an,en

common jc3/ vr(6,100}

common /cd4/ ar,cu,cv(2,0:1),cv1(10,0:1),qv1(10,0:1)
common fc5/ qv(2,0:1),cq{3,0:1),at(10,0:1)

print =, 'rk,tk,zk,fm,fy,bt,zs,fh, hc,sh,ar,pd, ad’
read *,rk,tk,zk, fm,fy,bt,zs,fh, hc,sh,ar,pd,ad
print *, ‘rk=*,rk,'tk="',tk,’ 'zk=',zk, 'fm="',fm, " 'fy="', fy,
'bt=',bt,'zs=",28, 'fthe',fh,'he="* he, ‘sh=",sh,"ar=",ar,
‘pd=',pd, 'ad="',ad

g=1.0-bt

ak=1.0+rk*tk

fkark*tk/bt

an=0.5+(1.0+rk*tk*bt)/ak

ep=£fy/2.0e5
gl=(0.5~en)**2+0.083333*(1.0+rk*tk*bt*bt)+rk*tk* (en-
0.5*bt }j**2

rl=1,0+ze*fh/fm

zm=0.5/({3.040.29*fm) /{145.0*fm-1000.0)-0.002*r1+
0.75*zs*sqrt{hc/sh))

if{rl.eq.1.0) then

r2=0.9375

el=0.0018

e2=0.0025

else

r2=rl

el=0.002*rl

e2=0,008

end {if :

ma(l)}=' Icr/lgross °*

ma(2)="ML/f m.t.lwee2"

ma(3)=' wu.My/ y.Mi °

na(éd)=ma(l)

ma(S5)=ma(2)

ma(6)=ma(3)

mb(l)=' Wed in compression '

mb(2)=mb(1l)

mb(3)=mb(1)

mb(4)='Flangs in compression’

mb(5)=mb(4)

mb(6)=mb(4)

if(ar.eq.i.0) then

p-
pPl=p*rk*tk*zk
an=ad
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40

50

60

70

O o

AN [ -

call coft(0.0)

call coft(1.0)

goto 2%

end Lf

k=0

p=0.01

kek+1

vp(k)=p

3=0

i=9* (k-1)

pl=p*rk*tk*zk

do 20 an~0.0,0.4,0.05

=i+l

va(j)=an

print +,'k=",k,"j=",3§, '1+43=" ,1+]

call relt(0.0,1i+j)

call relt(1.0,i+j)

cont inue

if(p.eg.0.01} then

p=p+0.01

else

p=p+0.02

end if

if{p.1e.0.2) goto 5

opan{unitel, fila='limin.relt’',6 form='formattad',status="'new’)
if{ar.eq.1.0) goto 50

write(l,40) (ma(k),mb(k).rk,g.fy.
(va(i),i=1,9),(vpii},(vr(k,9*(I-1})+]),3=1,9),1i=1,11) ,k=1,6)
format(///////.1Tx, "Table' ,4x,al14,2x,a21,/,
25x,'1f/1lw=",£4.2,2x,'g=",£4.2,2x, 'fy=",£5.1," Mpa',//,
28x, 'Axial Load Ratioc Nu/f m.Ag',/,2x,'fy/f m',928.4,//,10¢
8.4,/,10¢8.4,/,10€8.4,/,10¢8.4,/,10f8.4,/,10£8.4,/,10f8.4,/,
10£8.4,/,10£8.4,/,10£8.4,/,10£8.4,////1//)

if{ar.aq.0.0) goto 7U

write {1,60) (i{,pd,ad,zs,fh,hc,sh,rk,tk,zk,fm, £y, g, (cv(]. L)
£31,2),(qv(),L),3=1,2),(cq(),}V,3=1,3),(at(]j, 1), §=1,10),
tevl(3.4),3=1,10),(qvi(3j,i),3=..10),1=0,1)
format{///,28x,‘'R=*,i2, 4x,'pd="',£5.3,4x, 'ad=",£5.3,/,
20x,'so=" , £5.3,4x, ' th=" ,£5.1,4x, 'he=",£5.1,4x, "sh=*,£5.1,
J,12%,'kl=",£4.2,4x,'kt=",£4.2,4x, 'kz=",£4.2,4x, 'fm=’ ,£4.1,
dx,'fy=*,£5.1,4x,'g=",€4.2,//,10x, *CURVATURE ', 2£20.5,/,
10x, "MOMENT ', 3x,2£20.5,//,10x, *COEFFICINT ', 3e15.5,//,

10x, ‘Di=', /,5f£16.5,/,5£16.5,//,10x, ‘Cv="',/,5£16.5,/,5£16.5,
//.,10n,°Qv",/,5£16.5,/,5£16.5)

print *,'The End of Calculation’

stop

und

venew Suhroutine for Result *+*#+w

subroutine relt(r,ij)

aexternal spy,spu

common e2,bt,p,qg,pl.ep,gi

common /ec3/ vr({6,100)

cn=root (Spy,”)

if(cn.eq.1.0) then

ve(3+3*r,ij)=1.0

cn=root (spu,r)

if(cn.ge.1.0) vr{3+3%r,ij)=0.0
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vr(2+3*r,ij)=aqu(cn,r)
vre(l+3vr,ij)=9.375a@-4*vr(2+43%r,i})ven/gi/e2
return

end it

vtesqy(cn,r)*{1.0-cn-0.5*bt) /ep
ve(l+d*r,ij)=9.375e-4*vt /gi
cm=root(spu,r)

vr{Z+3*r,1j)=squ(cm,r)

vr(3+3*r,ij)=e2tvt /om/vr(2+¢3%r,ij)

return

end

setsxr Punctions for P-D curve ttteew
subroutine coft(r)

axternal spy,spu

common e2,bt,p,q,pl,ep,gi

common /c4/ ar,cu,cv{2,0:1},cv1{10,0:1),qv1(10,0:1)})
common /cS/ qv{2,0:1),cq9(3,0:1),de{10,0:1)
ar=0.0

cn=root{spy,r)

cm=root {spu,r)

cvi{2, r)y~al/cm

qv{2,r)=squ(cm,r)

a=9.375e-4/gi

if(cn.eq.1.0) then

ar=1.0

ev{l,r)=0.75=cv{2,r)

cu=cv{l,r)

cm=root (spu,r)

qv(l,r)=squ(cm,r)

else

cv(l,r)=ep/(1.0-cn-0.5*bt)
qv(l,xc)=sqgy(cn,r)

end if

ar=1.0

do 10 |=1,S

cvl{i,r}=1%0.2%cv(]1,r)
cvl{i+5,r)=cv(l,r)+i*0.2*(cv(2,r)-cv(l,r))
do 20 i=},10

cuscvl(i,r})

cm=root (spu,r)

qvl{i,r)=aqu({cm,r)

do 30 1=1,10

if(i.eqg.1) then

dt(i,r)=0.33333*cvl¢i,r)

elee

taqvl(i-1,r)/qvl(i,r)
se(cvl(l,r)-evl({i-1,r))/(qvi(i,r)-qvi(i-1,r))
dt(i,r)=dt(i=1,r)*tat+0.5%(1.0-t*t)=(cvi{i-1,r)-
s*qvl(i-1,r))+0.33333*s*qvl(i,r)*(1.0=-t4+3)
end if

continue

t=0.0

do 40 i=5,10

if(de(i,r).gt.t) then

t=dt(i,r)

k=i

end Lf
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cont inue
cq(2,ry=dt{k,r)-dt(5,ry*rqvi{2,r)/qv(l,r)
eq(3,ry=evlik,r)~cv{l,r)*qv(2,r)/qvil,r)
cq(2,r)=cq{2,r)/cq(3,r)
cq(d,r)=1.0-sqre(1.0-2.0%cq(2,r))
ar=1.0

return

end

seeww Function for CN seeaw
function root(cyu,r)

x0=0.0001

yO=cyu{x0,r}

xO=x0+0.09999

1f(y0.8q.1000.0) then

print =, *NO ROOT’

root=1.0

return

end {f

yl=cyu{x0,r)

print *,"x0=',x0, ‘yls"’,yl
if(yl*y0.1t.0.0.0or.yl.eq.0.0) goto 20
yO=yl

goto 10

Xx1=x0-0.1

x2=x0

yO=cyu(xl,r)

x=0.5*({x14x2)

y=cyu(x,r)

if(y*y0.9t.0.0) xle=x
L{f8(y*yD.1t.0.0) x2=x
if(x2-x1.gt.0.001) goto 30
rootsx

print *,°'x=’ x

return

and

sasss function for Axial Forces *rwews
function pl(e)

common /cl/ rl,ri,zm
pl=533.334e'e-885888.9%e*+*3/rl
return

end

function p?(e)

common fcl/ rl,r2.zm

common /c2/ el,fk.,ak,an,en

p2=1.067*r2%((1.0+el*zn)*(0-el)-0.5*zm* (e*e-el*el))

return

end

function py{cn,r)

common e2,bt,p.qg,pl
et=1.0-cn-0.5%bt

ct=cn-0,5*bt

if{cn.le.0.5) then
py=0.5*prctect /g/et+plrrect/at
else

py=0.5*p*et /g+p*(2.0%cn-1.0) /g+pl*r
end Lf

return

end
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function pu(e2,cn,r)

common «0,bt,p,g9,pl,ep

cc=cntep/e2

ct=cn=0.5*bt

if{(cc.le.ct}) then
pus=pler+p*{ct-0.5%cc) /g

else if{cn.ge.0.5*bt/(1.C+ep/e2}) then
puse2=ple*rect /cn/ep+0.5%e2*prcrrct/g/cn/ep
else
pus-pler-p+p*(1.0-cn-0.5*bt-0.5*cc) /g
end if

return

end

function pt(e2,cn,r)

common e0,bt,p,g,pl,ep
et=]1.0-cn~0.5*bt

ccmcntap/e2

it(cc.le.et} then
Pt=pl*(1.0-x)+p*(et-0.5*cc) /g

else if{cc.le.cn-1.0+40.5*bt) then
pt=p*{cn=-0.5*bt-0.5+%cc) /g-p-pl*(1.0-r)
eloe
pt=e2*pl*(1.0-r)*et/cn/eapt0.S*e2*pretret /g/cn/ep
end if

return

end

function spy(cn,r)

common e2,bt,p,q,pl,ep

common /c2/ a&l,fk,ak,an,en
ot=]1.0-cn-0.5*bt

re=ap/et

ce=(cn-bt)*re

ct=cn*re

ak=].0+fk*r
sum=ak*an+pl*{1.0-r)+0.5*ptet /g
ti=pl(cn*re)/re

t2=p2(cnt*re)/re

if{ct.le.al) then

cont inue

if(cn.ge.bt) then

pa=tlvgk-rrfke*pl (ce)/re

alse

pm=tl+*ak

end if

continue

elese if(ct.le.e2) then

cont inua

if(ce.ge.el) then

pm=pl (@]} /re+t2=ek-r*fk*p2 (ce) /re
alse
pa=(pl(el)/re+t2)sak-r+fk*pl(ce)/re
end if

continue

else

spy=1000.0

return

end if
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spy=sum-pm-py{cn,r)

return

end

function spu{cn,r)

common @0,bt

common fc2/ el,fk,ak.an,en

common /c4/ ar,cu,cv(2,0:1),ev1(10,0:1),qv1{10,0:1)
if(ar.eq.0.0) then

e2=g0

elee

eZ=cn*cu

end if

re=a2/cn

ce=({cn-bt)*re

if(e2.qe.al) thsn

t=ipl(el}+p2(e2))/re

alse

t=pl{e2)/re

end if

ak=]l . 0+fk*r

cets(cn-1.0+bt)/cn

ceo=(cn-1.0)/cen

if{ce.ge.el)] then
pm=(pl(el}+p2(e2)*ek-r*fk*p2{ce))/re
else {f(cn.ge.bt) then
pn=t*ek-r*fk*pl(ce)/re

else

pm=trek

end if

if(cn.ge.1.0) pm=pm-pl{(cn-1.0)*e2/cn)/re
if{r.eq.0.0.and.cn.qge.1.0-bt] then
continue

if{ceo.ge.al/e2) then

po=(p2 (82)+p2 (cet*e2)*fk~-(1.0+fk)*p2{cec*el))/re
else if(cet.ge.el/e2) then
pu=(pZ({e2)+p2(cet*e2)*fk+(1l.0+fk)*(pl(el)~pl(cecte2))})/re
else if(cn.ge.1.0) then
pmst+(pl(cet*e2)*fk~(1.0+fk)*pl(ceo*s2)}/re
elas

postipl (cet*el)*fk/re

end if

continue

end if

spu=akran+pt (e2,cn,r)-pm-pu(e2,cn,r)
return

end

axxee Punction for Moments *exes

function gl(e)

common fcl/ rl,r2.zm
ql=355,56*e**3-66666.7*a**4/rl

return

end

function q2(e)

common fel/f rl,e2,zm

common fc2/ el,fk,ak,an,en
q2=1.067*r2=({0.5*(1.0+el*zm)*(e*e-0]l%e]l)-0.33333"zm (a2~
al**3))

return

end
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function qy{cn,r)

common e2,bt,p,q9,pl

ct=cn-0.5*bt

et=]1.0-cn-0.5*bt

if{cn.le.0.5) then
qy=0.33333*prct**3/g/et+plrrectrct /et

else

qy=0.3333)*ptettet /g+p*{cn-0.5)+pl*rrtct

end 1f

return

end

function qu{e2,cn,r)

common ¢0,bt,p.qg,pl,ep

ct=cn-0,5*bt

cc=cn*ap/el

ifi{cec.le.ct) then

quspl*ract+0.5%p* (ct*ct-0.33333%cctce) /g

else if(cn.ge.0.5*bt/{1.0+ep/a2})) then
qu=r*e2*pl*ct*ct/cn/ep+0.33333*pre2*ct**l/g/cn/ep
elss

qusplr*r* (0.5*bt-cn)-0.5*P*({1.0-cn-0.5*"bt}**2-cc*cc/3.0)/q
+p*(0.5-cn)

end {f

return

and

function qt(e2,cn,r)

common «0,bt,p,g9,pl,ep

et=l.0-cn-0.5*bt

ce=cntep/e

if(cc.le.et) then
qtapl*{1.0-¢r)et+0,5"p*(et*et-0.33333*corce) /g
else Lf(cc.le.cn=1.0+0.5*bt) then

qt==0.5*p* ((cn=0.5*bt ) *+2-0.33333%ce**2) /g+p*(cn-0.5)+pl
*{cn-1.040.5%bt}*(1.0-r)

alse
qt=pl*{l1.0-r)*st*et*e2/cn/ep+0.33333*pret**3%e2/g/cn/ep
and if

return

and

function sqy(ecn,r)

common e2,bt,p,g.pl,ep

common fci/ el,fk,ak,an,en

.t.l . 0'01’\‘0. s.bt

re=gp/et

ct=cntrse

ces(cn-bt)*re

ak=]1.0+fkt*r
sum=ak*an*((l.0-en-cn)*(1.0-r)+{en-cn}*r)+pl*(l1.0-r)ret
40.33333+piattet /g

tl=ql({cn*re)/re/re

t2=q2(cn*re)/re/re

if(ct.le.el) then

continue

if(cn.ge.bt} then

que=tlrek-r=fk*ql (ce)/ra/re

else

qa=tlrek

end 1f
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continue

else

cont {nue

if(ce.ge.el) then
2::31(01)/rn/ro+t2'ck-r'fk'q2(cn)/rl/ro
::;(g:(01)/rn/r-+t2)*ok-r'fk*ql(c-)/ro/ro

continue

end if

sgy=sum+qm+qy(cn,r)

return

end

function squ{cn,r)

common «0,.t

common fc2/ el,fk,ak,an,en

common fc4/ ar,cu,cv(2,0:1),cv1¢{10,0:1),q9qv1(10,0:1)
if{ar.eq.0.0) then

e2=a0

else

e2=cntcu

end if

re=a2/cn

ce=(cn-bt)*re

eks]l . 0+fk*r

ceo=({cn-1.0)/cn

cet={cn-1.0+bt)/cn

if(e2.ge.el) then

t=(ql(el)+q2(e2))/re/re

else

t=ql(e2)/re/re

end {f

if(ce.ga.al) then

qm={qgl{el)+q2 (e2)"ek-r*fk*q2(ce))/re/re

elae if{cn.ge.bt) then
qme=t*ek-r*fkrql(ce)/re/re

elme

qumet ek

end if

if(cn.ge.l1.0) gqm=gm-ql((cn-1.0)*e2/cnj/re/re
if(r.eq.0.0.and.cn.ge.1.0-bt) then

continue

if(ceo.ge.e1/e2) then
qm=(q2(e2)+q2(cet*e2)*fk-(1.0+£fx)*qZ2(cec*e2))/re/re
else if(cet.ge.el/e2) then

qm= (g2 (e2)4Q2 (cetr*a2)=fk+ (1.0+fk)*(ql{el)~-ql (ceo*el)))/re/re
else if{cn.ge.1.0) then
quet+{ql(cetve2)*fk-(1.0+fk)*ql(cac"al}))/re/re
alse

qu=t+ql (cet*a2)*fk/ra/re

end if

continue

end Lf
squ=ak*an*({(l.0-cn~en}*(l.0~r)+*(en~-cn)*r)eqt(e2,cn,r}
+gméqu(e2,cn,r)

return

ond

#4444 The End of Program +*4wew
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Appendix B

Computer Program for Time-history Analysis of flanged Masonry Walls

AN

A O o o0

essns PROGRAM FOR TIME-HISTORY RESPONSE ANALYSIS weass

PROGRAM MAIN

CHARACTER*10 FILE1,FILE2,FILE},FILE4,FILES

DIMENSION AO(2000),DV(2000},AV(2000),PV(2000},VT(2000),DB(2000)
COMMON /VS/ DUO,UO,U1,U2,V1,V2,V3, V4,V5,V6,V7,VE,V9,W0,C0,GC
DT, MK, MA, BO, 80

COMMON /VG/ GWO,GWl,GW2,GW3,GF0,Gr1,Gr2,DWC,DWY,DWU,DFC, DFY,TL
,P1,P2,DWB,DFB, PNM, PPM, PWY, PPY

COMMON /VQ/ Q0,Q1,QC,DWSs,DFS,P1M,P2H, TM

COMMON /VC/ H,H1

WRITE(*,*) °‘INPNT - WO,E,VI,H,H1,G,A,CK,MA,N,RP’

READ(*,*) WO,E.VI,H,H1,G,A,CK,MA,N,RP

DMsH**3/(1.0=E*VI)

IF(MA.EQ.1) DM=DM+H/(G*A)

GO=1.0/DM

OM=SQRT (GO /WO )

CO=2.0*CK*OM*WO

TO=6.28/0M

WRITE(*,*) 'INPNT - FILEL"

READ(*,5) FILE)

FORMAT (A10)

WRITE(*,*) 'INPI. -~ PILE2’

READ(*,5) FILEZ

WRITE(*,*) 'INPUT - FILE}’

READ(*,5) FILE3

WRITE(*,*) ‘INPUT - FILE4'

READ(*,5) FILE4

WRITE(*,*) °‘INPUT - FILES'

READ(*,5} PILES

OPEN(UNIT»1],PILE=FILE], STATUS='OLD")
OPEN(UNIT=22,FILE=FILEZ,STATUS="NEW')
OPEN(UNIT=33,FILE=FILE], STATUS= 'NEW"® )
OPEN(UNIT=d4,FILE=FILE4, STATUS="NEW")
OPEN(UNIT=55,FILE«PILES, STATUS="NEW' )

WRITE(22,10) WO,E,VI,H,H1,G,A,CK,MA,N,R¥,G0,0M,C0,TO

FORMAT (//,20X, 'THE DATA FOR CALCULATION',//,S5X, 'WO=',E12.5,5X,
‘B=',B12.5,5X,'VI="',R12.5,5X, 'H=*,R12.5,/,5X, *H1=*R12.5,5X,
‘G=*,E12.5,5X,'A=' ,E12,5,5X,'CK=" ,E12.5,/,5%, "MA=",112,5X, 'N=",
112,5x,'RP=',E12.5,///,5X, 'K="',E13.5,5X, 'W=",E13.5,5X,°C=",E13.5
.5!. 'T-'.llJ.S)

DO 15 I=1,N

READ(11.*) AO({I)

AD(I)=RP*AO(I)

WRITE(*,%) 'INPUT-GWD,GW1,GW2,GHW3,Gr0,GF1,GF2,DWC,DWY,DWU, DWL
.DFC,DFY,TL,P1,P2,DT,CT, NI, NK"’

READ(*,*) GWO,GW1,GW2,GW3,Gro,Grl1,Gr2,DWC,DWY,DWU,DWL
,DFC,DPY,TL,P1,P2,DT,CT, NJ, MK

WRITE(22,20) GW(,GW1,GW2,GW3,GF0,GF1,Gr2,DWC, DWY ,DWU,DWL
,DFC,DPFY,TL,P1,P2,DT,CT, KJ, MK

PORMAT(//.5X, 'GW0=*,E11.5,5X,"GWl=",E11,5,5X, "GW2=",E11.5,5X,
‘GW3=' ,El11.5,/,5X, 'GFO='_,El11.5,5X,'GFl=' R11.5,5X,'GF2="',E11.5,
SX,'buc="*,El1]l. S,I.SX. ‘DWYs* .811.5.51. ‘DWU=°,E11.5,5X, ‘DWLa=*,
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E11.5,5X, 'DPC=",E11.5,/,5X, 'DFY=’ E11.5,6X, 'TL=",E12.5,5K, ‘Pla"
,l12-5,5x,'Pz".llz.s,l,sx,'DT-',!I:-S,SX.'CT-',BIZ.S,SI,
‘MI=',112,5X, 'MK=",T112)

WRITE(",*) 'INPUT-QOC,Q1,QC’

READ(*,*) Q0,Q1,QC

WRITE(22,22) Q0.Q1,QC
FORHAT(//,SX,'QO",llz.s,sx,'QI-',BIQ.S,SX,'Qc-',zlz_s,
IF(DT.GE.1.0) GOTO 24

TV=CT*DT

V2=3.0/TV

V3e2,0%v2

Vi=V3/TV

Vi=0 . 5+TV

vS=v1/CT

Vé==-V3/CT

VI=1.0-3.0/CT

ve=0.5*DT

V9=DT+DT/6.0

CONTINUE

WRITE(*,*) 'INPUT-BO,PWM,DWB,DWS,PFN,DFB,DFS’
READ(*,+*) BO,PWM,DWB,DWS,PFH, DFB,DFS
WRITE(22,25) BO,PWM,DWB,DWS,PFM,DFB,DFS
FORMAT(//,5X, 'BO="',E12.5,5X, *PWK=",E11.5,5X, 'DWB=",E11.5, 5X,
‘DWS=' ,E211.5,/,5X, 'PFM="* ,E11.5,5X, 'DPFR="* E11.5,5X, *DFS=" E11.5)
TM=TL

50=0.0

UO=BO+S0O

Ul=0.0

Uz=0.0

PI=0.0

AWM=0.,0

AFM=0.0

GWO=GWO /H

GW1l=GW1/H

GUW2e=GW2 /H

GFrO=GFroO/H

GFl=GFl/H

Pl=Pl/H

P2=P2 /R

PHY=GH1

PFY=GFl

H2=H*H/3.0

DWC=DWC*H2

DWY=DWY*H2

DWU=DWU+*H2

DWL=DWL*H2

DPC=DFC*H2

DFY=DFY+*H2

DWM=0.0

DFM=0.0

IF(DWB.LT.DWC) THEN

PUMN=GHWO

DWB=DWC

END IF

Ir{DFr8.GT.DFC) THEN

PFM=GFO

DFB=DIC

END IF
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GW2=(GW2-GW1) / (DWU-DWY)

GW1={GW1-GW0 )/ (DWY-DWC)

GHO=GWO /DWC

GW3=GW3+GWO0

GPl«(GF1-GF0)/(DFY-DFC)

GFO=GPFO/D¥C

CF2=GF2+Gro

QC=QC /H

Q0=Q0*G*A/H

Ql=Q1*G*A/H

IF(DWB.LT.DWC) DWS=PWM/QO

IF{DFB.GT.DFC) DFS=PFM/QO

IF(DT.GE.1.0) THEN

GC=0.0

ELSE

GC=ADDV(V1,V2,W0,c0)

END IP

WRITE{22,26) GWO,GW1,GW2,GW3,GC,GF0,GF1,GF2, PWY, PFY,P1, P2,
QC,Q0,Q1,DWC, DWY, DWU, DWL, DFC, DFY

FORMAT(//.5X. 'GW0=" ,E11.5,5X, 'GWi=",E11.5,5X, 'GW2=",R11.5,
5X,'GW3=",E11.§,/,5X, 'GC=" ,E12.5,5X, ‘GFO=",E11.5,5X, "GFl=",
E1l1.5,5X%, ‘Gr2=',E11.5,/,5X, 'PNY=",E11.5,5X, 'PFY=",E11.5, §X,

'pPl=',E12.5,5X, P2=',E12.5,/,5X,"QC=" ,E12.5,5X, 'Q0=",B12.5,
£X,'Qls',E12.5,5X, 'DWC=",E11.5, /,5X, "DWY=",E11.5, 5X, 'DWU=",
£11,5,5X, ‘DWL=*,E11.5,5X, 'OFC=* ,E11.5,/,5X, ‘DPY=",E11.5,//)
J=1

DB(1)=BO

DV(1)=U0

AV(1)=0.0

PV(1})=0.0

VT(1)=0.0

po 10 I=1,N

IF(DT.GE.1.0) WO=-1.0

IP(I.EQ.1) THEN

DP=-WO*AQ (1) *CT

ELSE

DP=-WO* { (AO(I)-AO(I~1)}*CT+AO(I-1))

END IP

CALL STEP(GI.QI,PI,DP)

WRITR{*,*) *I*,1,'G1*,GI,'Ql',QI, PI',PL

IF(UO.GE.DWL) THEN

WRITE(*,*) 'THE WALL FAILS AT I=', I, 'UQ=', UD,'PI=*,PI
WRITE(22,28) 1,U0,U2,A0(1),PI

FORMAT (//,20X, 'THE WALL FAILS AT',/,I5,4E16.5)

END IF

AVI={U2+A0(1)})/386.0

IF(MJ.EQ.1.OR.I.2Q.1.0R.I.EQ.J*HJ) THEN

J=J+1

DB(J)=BO

DV(J) =00

AV(J)=AVI

PV(J)=PI

VT(J)=(J-1}*DT

IND IF

CALL CHO1(DWS,80,7,181)

CALL CHO2(DFS,80,I,182)
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CALL CHO1{DWB,BO,I,IB1}

CALL CHO2(DFB,BO,I,IBZ}

CALL CHOl(DWK,UO,I,ID1)

CALL CHO1{AWX,AVI,I,TAl)

CALL CHO1{PWK,PI,I,IP1)

CALL CHO2(DPK,U0,I,1D2)

CALL CHO2 (AFM,AVI,I,1A2)

CALL CHO2(PFM,PI,I,IP2)

P1lM=PWM

P2M=PTM

CONTINUE

WRITE(22,40)

FORMAT(///,20X, 'THE RESULT OF CALCULATION',///,3X,'TIME', 10X,
*DISPLA', 10X, *ACCELE', 10X, 'SHEAR', 12X, ‘DISPB’, /)

WRITE(22,45) (VT(I),DbV{I),AV(I),PV(I}),DB(I},I=1,J)

FORMAT (F7.2,4E17.5)

WRITE(22,50) DWM,ID1,DWB,IB1,AWM,IAl,PWM,IP1,

DFM,1ID2,DFB, IB2,AFM,IAZ, PPN, IP2

FORMAT(//,20X, ' THE ENVELOP OF RESPONSE',//,SX,'+DM=',£12.4,17,
/:5X, ' +DB=",E12.4,17,/,5X, " +AM=" ,E32.4,17,/,5X, "+PM=' E12.4,17,
/.SX, '-DM=*,E12.4,17,/,5X,"-DB=" ,E32.4,17,/,5KX,
‘-AM=',E12.4,17,/,5X, ~PH=",E12.4,17)

WRITE(33,55) (VT(I),DV(I),I=1,J)

FORMAT (F8.3,E16.5)

WRITE(44,55) (VT(I},~AV(I),I=1,J)

WRITE(55,60) (DV(I),-AV(I),I=1,J)

FORMAT (2E16.5)

STOP

END

sasns FUNCTIONS & SUBROUTINES #nase

FUNCTION ADDV(C1,C2,V1,V2)
ADDV=C1+V14C2+V2

RETURN

END
THRANRARNRRARARIRNANRORA R
SUBROUTINE STEP(GI,QI,PI,DP)
COMMON /VS§/ DUO,UO,U1,U2,V1,V2,V3,V4,VSs,V6,V?,V8,V9,W0,C0,GC,
DT.MK,MA, BO, SO

IF(DT.CE.1.0} THEN
DUO=DP-PI

ELSE
DUOSDP+WO*ADDV(V3,2,0,Ul,U2)+CO*ADDV(Z.0,V4,U1,U2)~P1
END 1P

GOTO(10, 20, 30) MK
GI=PORG (B0, PI,DUD)

GOTO 40

GI=FOR2(BO,PI,DUO)

GOTO 40

GI1=FOR1(BO,PI,DUO)

CONTINUE

IP(MA.EQ.1) THEN
Q1=FoORQ(50,PI,DU0)

GHsGI*QI/ (GI+QI)

ELSE

GH=GI

END IP
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50

GG=GH+GC

DUO=DUO /GG

I¥(DT.GE.1.0) GOTO 50
DU2=ADDV (V5,V6,DUO0,Ul)+V7*y2
DUl=s {DU2+U2)*VB+U1l
DUO=ADDV(1.0,2.0,DU2,U2})*V+DT*U}
Ul=pU1

U2=DU2

BO=BO+DUO*QI/ (GI+QI)
50=50+DU0*GI/(GI+QI)
PP=DUQ*GH

PI=PI+PP?

U0=U0+DUO

RETURN

END

hhbkhkhhhkhAddd kb
FUNCTION PFORG(DI,PI,DP)
COMMON /VG/ GWO,GW1,GW2,GW3,GP0,GF1,GF2, DWC, DWY, DWU, DPC, DFY,
TL,Pl,P2,DWB,DFB, PWM, PFM, PWY, PFY
COMMON /VC/ H,H1

GT (DM, PM) = (PM-PI) / {DM-DI)
RG(G1,G2)=1.0/G1+3.0%H1/G2/H
GWY=PWY /DWY

GFY=PFY /DFY
IF(DI.GT.0.0.AND.PI.GT.0.0) THEN
CONTINUE

IF(DP.LE.0.0) THEN

CONTINUR

IF(PL.LE.DI*GWY) THEN

G=GWY

ELSE

G=PI/DI

END IF

CONTINUE

ELSE IF(DI.LT.DWB) THEN

G=GT (DWB, PWX)

ELSE IF(DI.LE.DWC) THEN
G=GWD

ELSE IF(DI.LE.DWY) THEN

G=GT (DWY, PWY)

ELSE IF(DI.LE.DWU) THEN
Hl=H*(1.0=-PWY/PI)

G=RG (GWY ,GW2)

FORG=1.0/G

RETURN

ELSE

G=GH3l

END IPF

CONTINUR

ELSE IF(DI.LT.0.0.AND.PI.LT.0.0) THEN
CONTINUE

IF(DP.GE.0.0) THEN

CONTINUR

IF(PI1.CE.DI*GFY) THEN

G=GFY

ELSE

G=PI/D1

END IF
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CONTINUE

ELSE IF(DI.GT.DFB) THEN
G=GT(DFB,PPM)

ELSE IF(DI.GE.DFC} THEN
G=GFO

ELSE IF(DI.GE.DFY} THEN
G=GT(DFY,PrY)

ELSE

Kl=H*(1.0-PFY/PI)

GeRG (GPY,G¥r2)
FORG=1.0/G

RETURN

END IP

CONTINUE

ELSE IF(DI.EQ.0.0.AND.PI.EQ.0.0) THEN
CONTINUE

IF(DP.GT.0.0) THEN
G=GWO

ELSE

G=GFO

END IP

CONTINUE

BLSE I1F(DI.GE.0.0) THEN
CONTINUE
IF(DP.GE.0.0.OR.PI.CE.P24DI*GWY) THEN
G=GWY

ELSE

G=(PI-P2)/DI

END IF

CONTINUE

ELSE IF(DP.LE.0.0.OR.PI.LE.P1+DI*GFY) THEN
G=GFY

ELSE

Ge(PI-P1) /D1

END IP

FORG=G

RETURN
AREAAROARACAARRARANRN
ENTRY POR2(DI,PI,DP)
GWY=PWY /DWY

GPY'PPX/D"
IP(DI.GT.0.0} THEN
CONTINUB

IP(DP.LE.0.0) THEN
R2=PI/DI

ELSE IF{(DI.LT.DWB) THEN
R2=GT (DWB, PWN)

ELSE IF(DI.GE.DWU) THEN
R2=GW)

ELSE IF(DI.GE.DWY) THEN
HlsH* (1.0-PWY/PI)
R2=RG (GWY ,GW2)
FOR2=1.0/R2

RETURN

yXa}



ELSE IF(DI.GE.DWC] THEN
R2=GT (DWY , PHY)

ELSE

R2=GWO

END IP

CONTINUE

ELSE IF{DI.LT.0.0} THEN
CONTINUE

1F(DP.GE.0.0) THEN
R2=PI/DI

ELSE IF{DI.GT.DFB} THEN
R2=GT (DFB, PPM}

ELSE IF(DI.GE.DPC]} THEN
R2=GFO

ELSE IF({DI.GE.DFY} THEN
R2=GT(DFY, PFY)

ELSE

HisH*(1.0-PPY/PI)

R2=RG (GFY,GF2}
FOR2=1.0/R2

RETURN

END IF

CONTINUE

ELSE IF(DP.GE.C.0) THEN
R2=GWO

ELSE

R2=GFO

END IF

FOR2=R2

RETURN
(22282 X222 R XN 2R 2
ENTRY FOR3{DI,PI,DP)
GWY=PWY /DWY

GFY=PFY /DPY
IF(DI.GT.0.0.AND.PI.GT.0.0) THEN
CONTINUE

IF(DP.LE.Q.0) THEN
CONTINUE
IF(PI.GE.DI*GWY) THEM
R3=P1/DI

ELSE IF(PI.GE.DI*GW2) THEN
R3=PI/(DI*(1.0-TL)+TL"DNY)
ELSE

R3=(PI-P2)/DI

ELSE IF(DI.LT.DWB) THEN
R3=GT (DWB, PWM)

ELSE IF(DI.GE.DWU) THEN
R3=GW3

ELSE IF(DI.GE.DWY) THEN
Hl=H®(1.0-PWY/PI)

R3I=RG (GWY,GW2)
POR3I=1.0/R3

RETURN
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ELSE IF(DI.GE.DWC) THEN
R3=GT (DWY, PWY)

ELSE

R3aGWD

END IF

CONTINUE

ELSE IF(DI.LT.C.0.AND.PI.LT.0.0) THEN
CONTINUE

IF(DP.GE.0,0} THEN
CONTINUE

I¥(PI.LE.DI*GFY) THEN
R3=PI/DI

ELSE IF(PI.LE.DI*GF2} THEN
R3I=PI/(DI*(1.0-TL)+TL*DFY)
ELSE

R3=(PI-P1)/D1

END IF

CONTINUE

ELSE IF(DI.GT.DFB) THEN
R3=GT(DFRB, PFM)

ELSE IF({DI.CE.DFC) THEN
R3I=GFO

ELSE IF(DI.GE.DPY) THEN
R3=GT (DFY, PFY)

ELSE

H1=H* (1.0-PFY/PI)

R3=RG (GFY,GF2)
POR3=1.0/R3

RETURN

END IF

CONTINUE

ELSE IF(DI.EQ.0.0.AND.PI.EQ.0.0) THEN
CONTINUE

IF( DP.GE.0.0) THEN
R3=GWO

ELSE

R3I=GFO

END IF

CONTINUE

ELSE IF(DI.GE.0.D) THEN
CONTINUE
IF(DP.GE.O.0.OR.PI.GE.P2+DIAGWY) THEN
R3I=GWY

ELSE

Ri=(PI-P2)/DI

END IF

CONTINUE

ELSE IF(DP.LE.0.0.OR.FI.LE.P1+DI*GPY) THEN
R3=GFY

ELSE

R3=(PI-P1)/DI

END 1F

FOR3=R3

RETURN

END
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SUBROUTINE CHOL(CM,CI,I,K)
IF(CI.GT.CM) THEN

CH=CI

KsX

END IF

RETURN

END

(A2 28220 X 22 22222222 22 ]}
SUBROUTINE CHO2(CM,CI,I,K)
IF(CI.LT.CM) THEN

CH=C]

K=1

END 1P

RETURN

END

(L2 8322222222223 XX R 2 X2 %)
FUNCTION FORQ(DI,PI,DP)
COMMON /VQ/ QC,Q1,QC,DWS,DFS, PWM, PFM, TL
COMMON /vC/ H,H1
GT(DM,PM}=(PM-P1)/(DN-DI)
IF(DI.GT.0.0) THEN
CONTINUE

IF(DP.LT.0.0) THEN
Q=PI/DI

ELSE IF(DI.LT.DWS) THEN
Q=GT (DWS, PWM)

ELSE IF(DI.GE.QC/QO) THEN
Q=Q1

ELSE

Q=Q0

END IF

CONTINUE

ELSE IF(DI.LT.C.0) THEN
CONTINUE

IF(DP.GT.0.0) THEN
Q=PI1/DI

ELSE IF(DI.GT .DFS) THEN
Q=GT(DFS, PFM)

ELSE IF(DI.LT.-QC/Q0) THEN
Q=01

ELSE

Q=Q0

END 1IF

CONTINUE

ELSE

Q=Q0

ERD 1IF

FORQ=Q

RETURN

END

*aaws END OF PROGRAM t*ews
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