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ABSTRACT

This report summarizes the results of a research on seismic

behavior of flanged masonry walls which is listed under Task 4.1 amonl

the specific tasks under the U.S.-Japan Technical Coordinated Committee on

Masonry Research(TCCMAR).

Flanged masonry walls have special problems associated with their

material and T-section geometry, especially the stronl unsymmetrical

response in the two opposite directions parallel to the web under

earthquake attacks. The contribution of reinforcement in the flange

towards the flexural strength in the direction where the flange is in

tension will be subjected to shear-lag effects etc.. Although these

phenomena have been understood by many designers for some time, they

have not previously been systematically investigated and quantified.

, In the research described here, both experimental and theoretical

sludies were carried out to investigate the seismic behavior of flanged

masonry walls. Based on section analysis, dimensionless design chUls

and tables for flexural strength. ductility and equivalent stiffness of both

unconfined and confined T-section masonry walls have been produced.

An inelastic structural component model (SCM) for flanged

masonry walls was developed to simulate the overall behavior of a linlle

flanged wall or a T-section component in masonry assemblalel. Together

with the model, unsymmetrical hysteresis loops for f1ahled masonry

walls were proposed to allow non-linear time-history response analyses.

iv



Parallel to the analytical work, the experimental studies involved

both pseudo-static and dynamic shake table tests of full scale flanged

masonry walls. The experiments investigated the effects of various

parameters on the performance of flanged masonry walls and their real

response under earthquake attacks. The test data also provide

verifications of the: analytical models.

The numerical examples of time-history response analyses with

the SCM model are prese:nted and the comparison showed very good

agreement between the analytical and experimental results. Based on the

theoretical and experimental studies, formulas for determining the

effective flange width of T-section masonry walls were proposed. Finally,

conclusions and some recommendations for further studies are discussed.
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1. INTRODUCTION

1.1 Characterislics of Flanged Masonry Walls

Masonry, as a structural material, has been used for thousands

years and is still very popular in many countries inc)udin. the United

States. Despite this, research about masonry material properties and

structural behavior, especiany the seismic performance, is less wen

developed than for other materials, such as steel and reinforced concrete

structures. There are certain problems inherent in the prediction of the

behavior of mascnry structures and the main difficulties are seen to be

the following:

(J) Masonry does not contain a single material. It consists of three

components, namely masonry units, mortar and grout. Therefore, the

property of masonry will depend on the properties of, and interactions

between these components.

(2) The properties within masonry structures are neither

homogeneous nor isotropic. They depend on the position and direction of

the mortar beds and also the reinforcement, when used. Because of

masonry tensile cracking, slip between the steel Ind the surrounding

masonry, Ind the yielding of reinforcement, the behavior of masonry

structures is further complicated.

(3) Since masonry structures must be laid-up in-situ, the

workmanship may affect the quality Ind performance of the structures

significantly.

1



The most commonly used construction form for masonry buildings

utiliz~s structural walls. In many practical design situations. the

structural requirements for lateral strength in the two principal

orthogonal directions of masonry structures will result in intersecting

shear walls. creating structural elements of flanged shapes. such as I. T

and C section walls.

For the flanged wall shown in Fig. 1.1, of particular interests is

seismic response with the loading direction parallel to the web. because

the wall has different flexural strength. stiffness and ductility capacity in

the two opposite directions. As idealized in the figure. when the flange is

in tension. the flexural strength and post-cracking stiffness are greater

than when the flange is in compression. but the ultimate displacement

and hence the displacement ductility is greatly reduced. Clearly. the

stiffness of such a wall relative to other lateral load resisting elements

and the contribution to lateral strength will depend on the direction of

seismic attack. Although this directionality effect has been understood by

many designers for some time. the effects have not previously been

quantified.

There are other problems associated with T-section walls. Flexural

strength design will normally be dictated by the weak direction (i.e. with

the flange in compression) and web reinforcement for response parallel to

the web will be based on providing adequate flexural strength in this

direction of loading. Reinforcement in the flange will normally be dictated

by strength requirements under seismic response parallel to the flange.

2
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This reinforcement has insignificant influence on the flexural strength

parallel to the web with the flange in compression. but contributes

greatly to flexural strength in the opposite direction of loading. and may

enhance the flexural strength significantly above the level required to

satisfy design lateral force levels.

Assuming the structure to be designed for ducdle response to

earthquakes. it is the actual flexural strength that will be achieved. not

the design level. The consequence can be amplificarion of the response

shear force well above the level required to conform to code-level

loading. If this situation is not recognized by the designer. and

appropriate capacity design l4 \ measures adopted. shear failure can result.

Shear-lag effects in the flange are poorly understood. The extent to

which the flange reinforcement contributes to the flexural strength when

the flange is in tension will be influenced by shear-lag. Although the New

Zealand Design Codell ] provides some guidance on this matter. its

provisions are based on the application of ACI design rulesl21 for effective

width of T·beam floors, and have not been verified experimentaHy. Other

codes do not appear to have specific recommendations for effective flange

width. It seems probably that the extent to which the flange is effective

may depend on cracking in the plane of the flange developed by previous

inelastic response ( if any ) perpendicular to the web.

Effectiveness of the connection detail at the intersection between

the flange and web is also a matter of concern, and will depend on the

block type adopted. amount of transverse reinforcement crossing the

intersection. type of connection detail adopted etc.. Again. experimental
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research is needed to invesrigate this aspect. Testing of squat flanged

reinforced concrete walls by Paulay et aLlS) has indicated thai the

tendency for such walls to slide on the base in the absence of significant

applied axial load can result in punching shear failure, where the sliding

web punches through the stationary flange as ilJustrated in Fig. 1.2. It

may be expected that masonry walls with pre-existing planes of

weakness imposed by the mortar beds and head joints might be more

susceptible to this form of damage than reinforced concrete walls would

be. The solution suggested by Paulay et al. of using diagonal

reinforcement across the wall base to reduce slip would seem to be

impractical for hollow unit masonry construction.

1.2 Review of Relevant Research

In recent years, the behavior of masonry structures, especially

relaring to their seismic performance has received increased research

allention. The basic and important structural form of masonry buildings

is rectangular section walls which have been investigated both

analytically and experimentally in some detail.

1.2.1 Experimental Studies on Rectangular Section Walls

Experimental studies at the University of Canterbury by Priestley

of heavily reinforced squat walls[6] and slender walls£7], suhjected to in­

plane simulated seismic loading, confirmed that ultimate strength design

equations for masonry structural walls are applicable and ductile flexural

response can result. provided capacity design procedures arc applied.
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ensuring that the shear strength exceeds the maximum feasible flexural

strength.

Tests at the University of California, Berkeley by Mayes et al.[81 on

masonry piers investigated the in-plane shear failure mode. In this and

the subsequent experiments, they carried out tests of 80 specimens,

including double and single piers with height to width ratio from 0.5 to 2.

The research variables included the effects of height to width ratio, axial

load level, amount of venical and horizontal reinforcement and type of

construction and grouting, on the failure mode and ultimate strength of

masonry waH elements.

The above studies indicated that walls failing in a predominantly

shear mode exhibited more brittle behavior than those whose inelastic

reslJ.-:>ose was dominated by flexural strength. and that the flexural

strength of reinforced masonry waUs can be accurately evaluated with

simple analytical models.

Starting from 1985, a comprehensive program on masonry

research in the United States, coordinated with a parallel program in

Japan was carried out. The program. funded by the National Scien~e

Foundation, has been cOl'ducted under the auspices of the UJNR panel on

wind and seismic effects and consists of twenty eight specific tasks.

Among these, seven projects have dealt with masonry waHs, including

static and dynamic modelling and experimental studies on in-plane and

out-of-plane behavior of one, two and three story walls. A final study of •

five story masonry building is currently in the design phase and will be

6



tested in Charles Lee and Powell Structural Laboratory at the University

of California, San Diego soon.

Recent studies at the University of Colorado by Shing et aJ.lIO], U

pan of the TCCMAR program, have been concentrating on defining the

strength and ductility of masonry shear-resisting mechanisms. again with

squat rectangular section walls. They conducted a experimental program

of twenty two 6 foot square masonry wall panels, including sixteen walls

with hollow concrete blocks and six with hollow clay bricks. The study

interests included the influence of the applied axial load and amount of

vertical and horizontal reinforcement on Ihe lateral resistance, failure

mechanism, ductility and energy dissipation capacity of masonry shear

walls.

The test results of Shing et al. show that the flexural strength

increases wi th the applied axial stress and amount of vertical

reinforcement present and the shear strength dominated by diagonal

cracking increases with the amount of vertical and horizontal ueel, the

tensile strength of masonry and the applied axial stresses. However, for

the panel dimensions tested. the axial stress had a more significant

influence on the flexural strength than on the shear strength, while

flexural ductility was substantially reduced at high axial load levels.

Since brittle failure is undesirable for seismic response and also

since shear strength is difficult to calculate from first principles, a semi­

empirical formula for predicting the shear strength was proposed and

calibrated against the experimental results.

7



In-plane resistance of multi-story masonry walls[lSI and the

behavior of reclangular masonry walls under out-of-plane loads,

especially subjected to earthquake attacks have also been investigated in

the TCCMAR Program recentlyll 6. 11).

The Japanese side of TCCMAR research program cOllsists of two

categories: the Structural Test Program and Material & Construction

Program[33I. The Structural Test Program involves tests of masonry wall

columns, wall girders, 3-story planar masonry frames and a 5-story

reinforced masonry building. Meanwhile, the Material & Construction

Program involves tests of masonry units and prisms to set up standard

methods of testing and evaluating material properties such as strength

and elastic modulus for masonry. Many construction techniques, mainly

grout admixture, bonding system, joints and measures to resist frost and

salt effects are also investigated under this category. All the researches

above have been aimed at developing design and construction guidelines

for new reinforced masonry buildings.

The research on masonry walls consists of 5 tasks and 44

specimens have been tested. Teshigawara and Nishi[36,38,401 carried out a

group of experiments on diagonal compression test of masonry panels,

masonry prism compression and shear wall tests to study the correlation

of diagonal cracking and strength between diagonal compression and

combined axial load and shear. In another test program, they investigated

the seismic capacity of reinforced masonry walls under high axial load.

Arivaga and Bara(39 ) did a similar test of 28 wall panels under diagonal

compression. It was concluded from the above tests that diagonal
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cracking occurred independent of the existence, or amount of horizontal

reinforcement, but higher axial force and horizontal reinforcement ratio

increased the shear 5trcnc;'h of the wall after craclcinl.

Imai and Miyamoto[3S.37) carried out a test program to investigate

the effects of openings on seismic behavior of masonry walls. They

concluded that with openings, diagonal cracks developed at lower sheu

level from the corner of the opening to the edge of the wall and the final

failure mode could be either bending or shear failure, depending on the

relative size of the opening. Shear and flexural strength of masonry walls

with openings can be predicted by the same formula as for reinforced

concrete walls, but using masonry com pression strength instead of

concrete compression streLgth.

The effectiveness of shear enforcement in fully grouted hollow

clay masonry walls and effects of lap joint of reinforcement on flexural

strength of concrete masonry walls were investigated by Matsumura(36)

and Kubota & Murakamil41 ) respectively. Out-of-plane behavior of

masonry wall-slab and wall-subbeam subassemblages was also

investigated by Kaminosono et al. (42)

1.2.2 Theoretical Studies

(a> Constitutive Models

Parallel to the experimental studies, many analytical methods of

different levels of complexities for predicting the performance of

structural masonry walls and assemblages have been developed. In these

theoretical studies, a fundamental task has been to determine the
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relationship between stress and strain for masonry. Based on prism teslS,

axial compression stress-strain curves of masonry were proposed by

Priestley & Elder! 181 and Hart et aLl19J which can serve as material

constitutive law when analytical methods are used to analyze masonry

structures.

Hegemier et aU 2D ,21] carried out bi-axial tests of full scale

concrete masonry panels and proposed stress-strain relationship for both

compression and tension, and a failure envelope of the material under bi­

axial loading. Based on the above tests, they developed a finite element

micro model for reinforced masonry to simulate the pre- and post­

fracture behavior of joints or interfaces in assemblages with nonlinear

material properties including masonry cracking and effects of reinforcing

steel.

Hamid and Drysdale!22] proposed two separated failure criteria for

shear failure mode and tension failure mode for brick masonry. The sheu

failure criterion was based on the assumption that sliding along a single

plane of weakness is governed by a linear relationship using the Mohr­

Coulomb theory of internal friction. In the meanwhile. for tension failure.

the maximum stress theory was adopted. Motta & Damore!231 and

Priestleyl13J also suggested similar failure envelopes for concrete masonry

under bi-axial loading.

(b) Sedion Characteristics

Priestley carried out analytical studies in dimensionless form to

produce design charts predicting the flexural strengthll1 ) and ductility
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capaci ty [12) of unconfined masonry walls of rectangular section. He

showed that flexural strength was relatively insensitive to the fashion in

which the flexural reinforcement was distributed, provided the

distribution was symmetrical about the wall centerline. Ductility capacity

increased with increasing masonry compression strength, but decreased

with increasing axial load level and vertical reinforcement ratio.

(c) Finite Element models (FEM)

Recently, many researchers have been concentrating on

developing finite element models for masonry structure analyses at

different levels of cOmpkAii.y. Arturo and Abrams[24 J, in a TCCMAR

study, used an ela~tic finite element model to simulate the dynamic

response of two and three storey reinforced masonry buildings subjected

to earthquakes. A 3-dimensional element was applied to model

perforated flange walls. They examined the influence of different lateral

force distributions on normal and shear stresses in the walls and on

lateral drifts and compared the computed results with measured values

from test results.

Seible el aJ.l25 I developed a nonlinear finite element model for

analyzing in-plane reinforced concrete masonry components and

subassemblages under seismic loads, as part of the TCCMAR program. The

model was based on lower or higher order isoparametric elements in

which reinforcement and masonry are treated separately but are overlaid

and linked by compatibility requirements. The constitutive law for the

fully grouted masonry is orthogonally anisotropic with a smeared crack

theory adopted from the Vecchio & Collins model for reinforced
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concrete(32] . The reinforcement can be treated either in discrete form or

as a smeared overlay in horizontal and venical directions. The model can

predict the structural behavior from the initial undamaged conditions to

the ultimate collapse. including simulation of cracking. yielding and

crushing, and has been used to predict the behavior of single-story walls

and flanged wall subassemblages of full-scale reinforced concrete

masonry buildings. Analytical results compared favorably with

experimental results.

(d) Structural Component Model (SCM)

Although the FEM is versatile and capable of performing structural

analyses at different levels, it is time-consuming and expensive due to

the fine discrete requirement.

Another analytical method, the structural component model for

masonry has been developed by Hart et aI.l26] This is a 'macroscopic'

approach to simulate the overall behavior of the structure and requires

much less computational lillie than the ordinary FEM. So far, the response

of SCM in the form of force-deflection envelope curve for single degree of

freedom rectangular walls under monotonic incremental displacement has

been completed. Extension of the model to simulate nonlinear behavior of

complete structures under cyclic loading is in progress.

!.2.3 Flanged Wall Studies

Although fl<:nged masonry walls are more commOli in the 'real

world' than rectangular section walls, there has been surprisingly little
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research emphasis to develop an understanding of the performance of

such sections under seismic response.

Recent work by Abrams and Paulsonll41 at the University of

Illinois, Urbana/Champaign involved structural testing of simple complete

masonry structures including flanged elements. The scope of the program

did not, howe~er, allow a systematic investigation of the characteristics of

flanged walls. Apan from this there appear to have been no studies of

the behavior of flanged masonry walls. It is of interesting and concern

lhat lack of relevant experimental data on flanged wa))s extends to

reinforced concrete shear walls as well as masonry walls.

Considering the above. a preliminary study on seismic behavior of

flanged masonry walls was carried out by Priestley and Hel27]. The study

was initiated at the University of Canterbury, New Zealand and

completed at the University of California, San Diego. This study, which

formed the first phase of the more detailed program reported herein

consisted of analytical research to extend the dimensionless design chans

for flexural strength and ductility of rectangular wall, to flanged walls,

and the shake table testing of one wide-flange T-section masonry wall.

Both the theoretical analysis and shake table test clearly indicated the

unsymmetrical behavior of flanged masonry walls in the two directions

parallel to the web, as idealized in Fig. 1.1.

This preliminary study revealed some important aspects of the

properties of flanged masonry walls, such as the flexural strength,

curvature and displacement ductility capacity, equivalent stiffness Ind

damping. shear-lag in flange, shear stress and deformation in the web
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etc.. Since the theoretical analysis was limited and only one wall was

tested in this project. the more complete study described in this report

was undertaken to provide bencr understanding and quantifying the

properties of flanged masonry walls, in a form suitable to the

development of a general flanged wall structural component model.

1.3 Overview or Present Research

This report summarizes the results of a research project on

flanged masonry walls carried out as part of the US side of research

under the auspices of US-Japan Technical Coordinated Comminee on

Masonry Research ( TCCMAR). The research in this project consists of the

following aspects:

(1) Theoretical analysis to develop dimensionless design charts

and tables for flexural strength, ductility and equivalent stiffness for

unconfined and confined T-section masonry walls. The basic assumptions

and theoretical formulations are described in Chapter 2. Some selected

design chans and a numerical example for demonstrating the use of these

charts are also presented in the chapter. The compute: program which

can be used to produce the above design tables is included in Appendix A

for reference.

(2) An inelastic structural component model(SCM) for flanged

masonry walls is developed in Chapter 3. The model is formulated in such

a way as to simulate the overall behavior of a single flanged wall, or to

represent aT-section component in a masonry assemblage by connecting

it to the other elements in order to analyze the whole structure. The
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basic concepts of the mode lling, formulations of the element stiffness

matrix in local coordinates and its transformation into global coordinates

arc summarized. The element formulation includes description of

hysteresis loops for flanged masonry walls to allow non-linear time­

history response analyses to be carried out.

(3) Experimental studies were also carried out to provide

verifications of the analytical models. The work consisted of two phases;

pseudo-static tests and dynamic tests.

Chapter 4 provides a general description of the test program,

including design and construction of the specirnr-ns. The dimensions of the

walls, reinfon.:ement arrangement and test results of material propenies

are also presentd in this chapter.

The pseudo-static tests comprised four full scale flanged masonry

walls. The influence of variation of vertical reinforcement ratio, the width

of flanges, and the use of confined vs. unconfined masonry were

investigated. The test set-up. instrumentation and data acquisition

system. loading procedure and test results are summarized in Chapter S.

Chapter 6 introduces the dynamic testing program, which

consisted or five full scale flanged masonry walls tested on the shake

table. in order to check the differences in the responses under static and

dynamic conditions, and to investigate response 10 simulated earthquake

l\c,~derograms. The tests also investigate the influence of loading history

and direction as well as vertical reinforcement ratio and confinement on

the performance of flanged masonry walls. The test facilities. data



acquisition, testing procedures and results of the tests are also described

in this chapter.

(4) To compare the theoretical and experimental studies, Chapter 7

compares analytical time-history response predictions using the SCM

model developed in Chapter 3 with experimental results obtained in

Chapters 5 and 6. Some discussions and conclusions concernins the

analytical model are also presented together with the comparisons.

(5) In Chapter 8, both theoretical and experimental methods are

applied to investigate shear-lag effects in wall flange. The theoretical

studies include dasto-plastic solution and finite clement analysis with •

2-dimensional inelastic model for masonry assemblages. The

experimental data are adopte.:t from pseudo-static and dynamic tests

described in Chapters Sand 6. Based on the results of above studies,

formulas for determining the effl.<ctive flange width of T-section masonry

walls are proposed.

(6) Finally. Chapter 9 summarizes the research project and

provides concluding remarks. Some recommendations for further studies

are also proposed.
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2. FLEXURAL STRENGTH, STIFFNESS AND DUCTILITY

OF FLANGED MASONRY WALLS

2.1 Introduction

A typical flanged masonry wall and its idealized load-deflection

relationship in the two opposite directions parallel to the web are shown in

Fig. 1.1. The flexural strength, stiffness and ductility of the wall depend on

the direction of load application. The reason is as follows: with the flange

in tension, a high reinforcement tensile force with a large lever arm is

mobilized, resulting in a higher flexural strength than when the flange is in

compression. However, a consequence of the high tensile force and reduced

compression zone width when the flange is in tension is that the distance

from the extreme compression fibre to the neutTal axis, c, is much greater

than when the flange is in compression. This results in increased stiffness

of the cracked section and significantly reduced ultimate curvature ,

which can be expressed as ~u =Ec:u / Cu where ~ is the ultimate compression

strain of masonry and Cu is the depth of the compression zone.

For the purpose of designing flanged masonry walls, chans Ind

tables of flexural strength, equivalent stiffness and ductility capacity for

both unconfined and confined masonry may be produced using the

following convenient dimensionless parameters:

N =Pe/(m I.t

p =A.t/l.t

M=mlfml~t

.=~Iw
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where N. M, cP and Pe , m, CZ> are dimensionless or real axial load,

moment and curvature respectively; ASI and P arc flexural reinforcement

area and ratio respectively; (m is masonry compression strength; I. and t

are web length and thickness respectively.

2.2 Basic Assumptions

The section shape analyzed is shown in Fig. 2.1, together with

critical dimensions. Note that if the total flange length If = 0, the wall

seclion reverts 10 a rectangular wall oi section of I.., by l. The following

assumplions are made for the analysis:

(I) Plane sections of the wall remain plane up to the ultimate stale.

(2) The discrete reinforcement pattern indicated in Fig. 2.1 (a) can

be replaced by an equivalent reinforcement lamina of equal total area as

shown in Fig. 2.1 (b).

(3) Shear-lag effe~.s are ignored. Thus all reinforcement in the

flange is considered as fully effective ( note: this assumption results

directly from assumption (1) ). Shear-lag effects are considered separately

in Chapter 8, enabling the effective flange width to be used in calculation

to be considered.

(4) The thickness and local reinforcement ratio of flange and web

are equal. i.e. tr = t and Pr = P. Note that Pr is frequently not equal to P.

However, by adjusting the flange width and using an equivalent width,

the effecl of different steel ratios in flange and web can be considered.

This adjustment is exact when the flange is in tension. When the flange is
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in compression, small errors may result because of an incorrectly

calculated masonry compression zone depth. The error introduced in

strength or stiffness are usually less I%. Ductility will be affected more

significantly, but is almost never a problem when the flange is in

compression.

(5) The axial load is uniformly distributed across the T-section.

Thus, the vertical line of action of the resultant axial load passes through

the geometric center of the gross section.

t

g.L w

•
Pf

•
•
• • • •
•
•
•

(a) Actual Section (b) Equivalent Section

Fig. 2.1 Cross Section of Flanged Masonry Wall

2.3 Material Properties

The stress-strain relationship of the flexural reinforcement is

assumed to be elastic-perfect plastic. ignoring strain hardening effects.
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The stress-strain curve for both unconfined and confined masonry,

proposed by Priestley and Elder[) 8J as shown in Fig. 2.2. was employed in

the section analyses.

xf~

1.2

1.0

......
~......
Vl

Confined <3 mm Plates. p. -0.00766)

/'

0.0015 0.0025
Str ain

0.008

Fig. 2.2 Stress-Strain Curve for Masonry[) 8)

The curves in Fig. 2.2 can be represented by the foJJowing equations:

<8> For Unconfined Masonry:

When £m S; 0.0015. then

When 0.001 5 S; Em S; 0.0025, then

fm.(m [1 - Zm (~- 0.(015)]

20

(2.Sa)

(2.Sb)



(b) For Confined Masonry:

When £m ~ 0.()02 k • then

_ . [ 2tm _ em 2]
fm - 1.067 k (m OJXl2 k <0.002 k)

When 0.002 k ~ Em ~ 0.008 • then

fm.. 1.067 k (m[l - Zm (tm - 0.002 k )]

(2.61)

(2.6b)

where

and

k =1 + Ps fyh I (m (2.7)

(2.8)

In Equations (2.5a) through (2.8), the following parameters are used:

(m --- compression strength of unconfined masonry

P. --- volumetric ratio of confining steel

fyh --- yield strength of confining steel

h· --- lateral dimension of the confined core ( i.e. block width )

Sh --- spacing of confining steel (i.e. block height )

Tests on masonry prisms confined with 3 mm (0.125 inch) thick

stainless or galvanized steel plates within the mortar beds exhibit 1

changed failure mode (rom one initiated at mortar beds by venical

splitting to a shear-crushing failure largely within one course[18J. The

stress-strain curve for confined prisms has increased strength, higher

strain at peak load and a much flatter falling branch. A safe ultimAte
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compression strain for concrete masonry confined in this fashion has been

established to be 0.008[18J. It was found that the relationship described by

the above equations provided a good agreement with the experimental

data.

For masonry which is not confined adequately to change the failure

mode, a consistent formula for both unconfined and confined masonry can

be used as follows:

When Em ~ 0.0015 k, then

fm = 1.067 k (m [o.~i k ~O.~ k fJ

When 0.0015 k ~ Em ~ 0.0025 + 0.0275 (k-I) , then

where k and Zm are given by Equations (2.7) and (2.8).

2.4 Problem Formulation

2.4.1 Moment capacity

Conditions at First Yield of Reinforcement

(2.9a)

(2.9b)

The distributio'ls of strains and stresses of masonry and

reinforcement along the cross section of the flanged masonry wall at first

yield are illustrated in the left side of Fig. 2.3. At this stage, the extreme

rebar in tension just yields and the extreme fiber of masonry in

compression has not reached its ultimate strain. The equilibrium equations
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for axial forces and moments may be expressed in dimensionless form as

follows:

Pc

Lw

tr
2

(ot) Strain Distribution

____.....Ll!
(b) Masonry Stresses

~'~

(c) Reinforcement Stresses

At First Yield At Ultimate State

Fig. 2.3 Distribution of Strain and Stresses
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Axial equilibrium:

(2.10)

Moment equilibrium:

(2.11 )

Where Myn is the dimensionless external moment at first yield. The first

term in the two above equations is axial load or moment of axial load

about the neutral axis respectively. The second term is tensile force and

moment due to reinforcement in the flange. The third term is tensile force

and moment due to distributed reinforcement in the web respectively.

Pe:, Pm. Me: and Mm are forces and moments contributed by the

reinforcement and masonry in compression area respectively. Since the

internal forces in cross sections of masonry walls depend on the position

of the neutral axis, an iteration app:'oach has to be employed to solve

Equation (2.10) for cyn, which will be then substituted into (2.11) to

calculate Myn. The detail of expressions of internal forces and moments are

presented below and the foHowing dimensionless symbols are used in the

expressions.

Cyn =cy l1w

CwI=eu/lw

~=el1w

kl = lr/l.

kl =tel t

P=tellw

g =1· P
kp ==pr! p
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(2.14)

(2.15)

kA =(I. t + lrtrYI. t

=1 + kl k.

NA=Pel(mA.

P = P fyl(m

£y =f,lE.

fit =kl kt/~

£1 = Strain at maximum compression stress for maSOll1')'

£eu = Ultimate compression strain for masonry

R is a flag, when the web is in compression, set RaO; if the flange is

in compression. set R=l.

Steel Compression Force:

• If Cyn S 0.5. then

Pc: =PKpK\Kt(eyn-j}/2)RI(I-Cyn-P!2) + 0.5P(eyn-UZ)2/[g(l-Cyn_P!2)] (2.12)

Me: = PKpKIKt(cyn-Pf2)~(l-Cyn-JV2) + 0.333P(tyn_P!2)3/[g(l-eyn_P/2)] (2.13)

• If Cyn > 0.5, then

Pc: =PKpK\KtR + O.5p(l-Cyn-P/2)1g+P(2Cyn-l)/g
2Me: =PKpKIKt(Cyn-~I2)R + 0.333P(I-eyn-P/2) Ig+P(Cyn-0.5)

Masonry Compression Force

• If Cyn£yI(l-eyn-JV2) S £\ and Cyn~ p, then

Pm =(Pl(*)(I+fltR)· RftP1[·(l-P/eyn>]Hl-cyn-j}/2)1£y

Mm... (Ql(·)(l+fltR) - RfltQl[·(1-J}lcyn)]Hl-cyn-P!2)2/£"z

• If cynE,/(1 -eyn-(:V2) S £1 and Cyn < p, then

Pm =Pl(*)(1+fltR)(l-cyn-(JI2YEy

Mm=Q\(*Xl +fltR)(I-cyn-(JI2)2/Ey2
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(2.22)

(2.23)

(2.24)

(2.25)

In equations (2.16) to (2.19), the function PI( ) and QI( ) represent

Pl(.) =533.3 .2 - 8.89 x 104.3/k (2.20)

QI(·) =355.6 .3 - 6.6 xl04 .4/k (2.21)

where • :: cYII Ey I (1- c)'II_ JV2), or is specified in the ( ).

• If El < Cyn£yI(1-c)'ll-JV2) S feu and (eyn-P)£,I(1-e)'ll-JV2) ~ tlo then

Pm =(PI(tt) +P2(.)(l +fkR) - RfkP2(')(I-eyn-P!2)/ty

Mm =(Q1(£I) +Q2(·)(1 +fkR) • RfkQ2(')(I-eyn'P!2)2/~

• If£t <cynEy!(1-eyn-JV2) S £cu and (Cyn-P)£yI(I-ey.-JV2)<t:1t then

Pm ={[PI (£t)+P2(*)](1 +fk)R)-RfkPI (I) )(I-cyn-JV2)/Ey

Mm = ([QI(EI)+Q2(*)](1 +fk)R)-RfkQl(.)}(1-eyn-IJ!2)2/Ei
In Equations (2.22) to (2.25)

P2(I) =1.067k2«(1+£tZm)(I-EI)-0.SZm(I2_EI2»

Q2('} :: 1.067k2(0.S(I +EtZm)(I-Et}-0.333Zm(t3-£t3»

(2.26)

(2.27)

where • =(Cyn.p}Ey/(l-Cyn-l3/2) and k2 = 0.9375 for unconfined masonry ; k2 =

k for confined masonry, and k is defined in Eqn. (2.7). If

cynEy/(I-c",-IJ!2} >£CU, then crushing of the extreme compression fiber of

masonry occurs before the extreme tension rebar yields and no value for

M)'II exists.

In the above equations, the funclions PI and P2 will be recognized

as integrals of the masonry compression stress block to obtain Ihe tOlal

masonry compression force. QI and Q2 provide the moment of the totll

masonry stress block about the neutral lxis.

Conditions at Ultimate Compression Strain:

The disaribution of strain and stresses of masonry and

reinforcement 110ng the cross section is ilIustrlted in the n,ht side of Fi,.
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2.3. At this stagr. the extreme rebar in tension hal passed the first yield

and the extreme fiber of masonry in compression just reaches its ultimate

strain. The equilibrium equations for axial forces and moments expressed

in dimensionless form are:

KANA+Pt - Pc - Pm =0

KANA[(I-en-eun)(I-R)+(en-eun)RJ +M t +Mc: +Mm= M...

(2.28)

(2.29)

(2.30)

(2.31 )

Where Mun is the dimensionless external moment at the ultimate state. The

first term in the two above equations is axial load and moment about the

neutral axis respectively. Ph pc. Pm. Mh ~ and Mm are forces and moments

contributed by the reinforcement in tension. and the reinforcement and

masonry in the compression area respectively. Ar. with the case of first

yield, the internal forces in the cross section of masonry walls derend on

the position of the neutral axis. Again. an iteration approach has to be

employed to solve Equation (2.28) for Cwt, which is then substituted into

(2.29) to calculate M.... Details of expressions of internal forces and

moments are presented as follows:

Steel Tension Force:

• If cunE.Jteu ~ (1-cwdV2), then

PI = Pkplqkt(l-R)+P( l-eun-Il/'2-cun£y/(2E.aaWs

Mt =Pkpklkt(l-cun-P!2)(l-R)+o.SP[(l-eun-I}I2)2-eun2£,l/(3£ab)/g

• If (l-ClII\-ll/'2) ~ cJ../EaJ ~ (c...-l-J}I2), then

PI =P(cun-P!2-cw£y!(2taa»)/g-P-Pkpktkt(l-R) (2.32)

2
Ml =-PI2[(c...-J\'2> _(cun£y)2/()t;;u2»)/g+P(Cuo-112)+Plcpktkl(eun-1+p/2)(l-R)

(2.33)

• If c.JZy/£cu > (clII\-l-P!2>, then
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2 3
Mt =Pkpklka(l-c--(3I2) Ec:u(l-R)/(cunEy) + 0,333P(I<lIII-(3I2) f.cv!(Cv.t£yg)

(2.3~)

Steel Compression Force:

• If Cwi£ylEc:u S (clD.-!V2), then

Pc =Pkpk\ktR + P[cllll-P/l<un£l(2£CU»)/g

Me =Pkpk(kIR(cun-P/l) +O.5P[(cun-P/2)2<lDl:i/(3€c:u2Wg

• If Cun ~ M2(1 +£y/Ec:u))
2

Pc =Pkpk\ktEc:u(C--P/'2)R!(cunEy) + 0.5PEe:u(cun-P/2) /(cuaEyg)

Me =Pkpk\ka£cu(ClD\-P/l)~(cU"£Y) + 0.333PEeu(cun-P/l)3/(Cw1£yg)

(2.36)

(2.37)

(2.38)

(2.39)

• Then , for all other cases

Pc =-PkpklktR- P + P[I-cun-P/l-cunEyI(2~u>Vg (2.40)

Me = PkpklkICl3/2-clD\)R+ P(II2-cllll) - 0.5 P[(l-cun-l3/2)2-cun2£y2/(3Ec:u2»)/g
(2.41)

Masonry Compression Force:

For all cases except when R = 0 and ~~ I-P

• If£eu(cun-P)/clDI ~ tit then

Pm = [PI(El)+P2(Ec:u)(l+fkR)·RfkP2(X»C~u

Mm=[QI (£1)+Q2(£cu)(1 +fkR)-RfkQ2(x»)cun2/teu2

• Else, if (;\11I ~ Pthen

Pm =([(PI(El)+P2(Eeu»(l+fkR)-RfkPl(x»)CuJEc:u

Mm=([(QI(£1)+Q2(t:eu»(I+fkR)-RfkQl(x»)cllll2/Ec:u2

• Else, for all other cases

Pm =[PI (E\)+P2(Eeul)(l+fkR)CuJteu

Mm=[QI (El)+Q2(Ecu»(l +fkR)c\lll2/Ecu2
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(2.44)

(2.45)

(2.46)
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(2.48)

(2.49)

(2.50)

(2.51)

In Equations (2.44) to (2.47). x= (<:un-P>eaIc.. When R = 0 and c.. ~l-P. then

special conditions apply as follows:

• If (Cun-I)lCun ~ £JIecu. then

Pm ,., [P2(faa)+P2(y)fk""(1 +ft)P2(z)]CuJ£c:u

Mm =[Q2(~2(y)fk-(1+fk>Q2(z)Jew.21Eeu2

• Else. if (ew.-l+P>lCun ~ £1/£0, then

Pm = (P2(£CV)+P2(y)ft+(l+ft)[PI(EI)·PI(z)]}CuJraa

Mm= IQ2(£CU)+Q2(y)ft+(l+flt)[Ql(EI)-QI(z))}Cun2/~2

• Else. if Cun ~ 1 then

Pm =[P2(Ecu)+Pl(£\)+Pl(y)flt-(1+f0Pl(z)]cwJEcu

Mm=[Q2(£aJ+QI(£I)+Ql (y)fk-(1 +flt)QI(z)]c1lll2/Ecu2

• Else. for all other cases

Pm =[P2(Ecu)+Pl (£\)+Pl (y)fkJcuaJEc:u

Mm =[Q2(£CV)+Q1(£J)+Ql (y)fklcIll
2/Ec:u2

In Equations (2.48) to (2.SS)

y =(clll-l +J}>Ec:Jew.

z=(Cun-l }£cJclIII

(2.52)

(2.53)

(2.54)

(2.SS)

(2.56)

(2.S7)

Solutions of the above equations directly yield dimensionless

flexural strength. The other parameters of interests. namely Ihe duclility

factor and equivalent stiffness are then calculaled in accordance wilh Ihe

following sections.

2.4.% Curnture ductility

The dimensionless curvalure corresponding to the onset of yield

strain in the extreme tensile reinforcement is given by
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'2.S8)

And at the ultimate stale by

(2.S9)

In term of an elasto-plastic approach of the moment-curvature

relationship, the yield curvature needs to be related to the uhimate

moment rather than the reduced moment corresponding to first yield.

Extrapolating linearly, as shown in Fig. 2.4, the corrected yield curvature is

Cj)yn = cp~ M./ Myn (2.60)

Thus, the curvature dL.ctility factor can be found directly from

(2.61)

Actual

Mu

My Ela.lo-plaslic I

Firsl yield I...
~ I I
"e I I0
::;

I I

I I

I I

I I

~ '>' Curvature ~

Fig. 2.4 Moment-curvature Relationship
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2.4.3 Equivalent Stiffness

For a cantilever member subjected to a concentrated transverse

force at the free end, the distribution of moment and curvaUft along the

member after cracking are shown in Fig. 2.5. Assuming that the curvature

is linearly distributed along the height at first yield, then the stiffness

related to displacements at the top end will be

kf '" 3EIc I h3 (2.62)

Where Ie is an effective stiffness, taking into account the distribution of

curvature up the member. The actual distribution of curvature will be

nonlinear, and show local irregularities due to the effects of cracking. It

would appear that the assumed straight-line distribution from the

computed yield curvature at the member base would overestimate the

member flexibility. However, the effects of strain penetration into the

base, and tension shift, which increases curvature at the base section to

levels higher than predicted based on a simple 'plane-section' analysis

have been shown to compensate these effectsl 28 J. A linear curvature

distribution as shown in Fig. 2.5, can thus be used to predict equivalent

stiffness. Since m~ :; Ele ~, therefore

(2.63)

The stiffness ratio of cracked section to uncracked one is given by

(2.64)
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Where Ie and I, are moments of inertia for equivalent and gross sections of

the wall respectively, and the later is determined by the dimensions of the

wall section.

p

Assumed

""-I.
'"LttIJ......_

Rea1

(a) Moment (b) Curvature

Fig. 2.5 Distribution of Moment and Curvature at First Yield

Note that shear deformation will reduce the effective stiffness, so a

shear-adjusted moment of inertia can be expressed as:

(2.6'>

Where F is the ratio of shear deformation to flexural deformation. An

approximate value for F may be based on the uncracked relative stiffness.

assuming the shear stiffness is reduced by cracking in proportion to the

reduction in flexural stiffness, giving F· As/!!r =KrlK. w her e

AI. Ar. K. and Kr are displacement or stiffness at the top of cantilever wall

due to shear and bending respectively. Kr is given by Eqn. (2.62) and K.

can be calculated as K. =GAcItt in which 0 and Ac are shear modulus and

effective shear area of the cross section respectively. Assuming 0 • 0.4 E

and Awt Ac is 1.2 for rectangular section, finally we have
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(2.66)

in which A.., is the cross section area of the web. The flange is not

considered to contribute to the shear stiffness.

2.5 Design Charts and Tables

Based on the formulas described above. a computer program which

can produce the design tables of flexural strength. equivalent stiffness and

curvature ductility in dimensionless forms for both unconfined and

confined flanged masonry walls was written in FORTRAN 77 and is

included in Appendix A for reference.

Table 2.1 Parameters for The Computation

Lower Upper
Description Formulas Bound Bound Increment

Width Ratio Ir I I.., 0 2.0 0.25

Axial Load Ratio N j(mAa 0 0.4 0.05

Mechanical Rein-
forcement Ratio p fy 1(m 0.01 0.2 0.011 0.02

The parameters considered in the calculation are summarized in

Table 2.1. The reinforcement yield strength considered were fy = 275 MPa

(40 Ksi) and 380 MPa (55 Ksi). A typical masonry compression strength

used of f~16 MPa (2.3 Ksi ) was adopted for the analyses. As the results

are not sensitive to the material strength due to the dimensionless form of
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the equations. they may be used for a wider range of mechanical

properties with only minor errors.

It is also assumed that the flange and web have the same thickness

and longitudinal reinforcement ratio in the calculation. For confined

masonry. Jl8 inch (3.2 mm ) thick mortar b~d confining plates of mild

steel were u:oed. resulting in a volumetric confining ratio of 0.00785. Two

values of I ( see Fig. 2.~. 0.9S and 0.80 ) were selected to produce the

desiln tables. and values for other g may be found with adequate accuracy

by interpolating between the above two values.

A selection of the resulting data has been put in graphical form to

enable major trends to be emphasized, as shown from Fig. 2.6a to Fig. 2.16.

which can be also used for the purpose of design. For aU design charts

presented. g = 0.95. with the vertical axis was chosen to be dimensionless

axial load ratio. Graphs of moment capacity. effective stiffness, and

curvature ductility arc given for different levels of the mechanical

reinforcement ruio. From comparisons, the following trends can be

observed:

(a) Moment Capacity:

(1) Strength of reinforcement does not affect the ultimate moment

significantly. especially for the direction of loading with flange in

compression.

(2) Moment capacity increases cenerally with increasing axial load

level for the direction of loading with flange in compres:iion and the

relationship between the above two parameters is very close to linear. But
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for wide flange walls in the direction of loading with web in compression

above a cenain axial load, the moment capacity decreases with increasing

axial load due to the failure mode changing from ductile failure (tensile

yielding of reinforcement first) to brittle failure (compression crushing of

masonry first).

(3) Moment capacity always increases with increasing mechanical

reinforcement ratio. In the direction of flange in compression, the

relationship is close to linear.

(4) Confining plates on mortar beds do not affect ultimate moment

significantly for cases with the flange in compression, or with flange in

compression when flange width is small, but increase moment capacity

significantly for wider flange walls or when the mechanical reinforcement

ratio is high because horizontal confinement improves the ultimate

compression strain of masonry and can change the failure mode from

brittle to ductile.

(5) Fig. 2.15 shows the influence of flange to web length ratio on

moment capacity. It is obvious that in the direction of flange in

compression, lhe increase of flange width has little effects on ultimate

moment, but in the opposite direction. moment capacity increases with

increasing ratio of flange to web length.

(b) Effective Moment of Inertia:

(I) Effective moment of inertia is more liiensitive to the strength of

reinforcement than is moment capacity. The wall with lower reinforcement

strength has larger effective moment of inenia.
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(2) Generally, effective moment of inertia increases with increasing

axial load level in both directions. Note that the graphs show discontinuily

in the direction of web in compression. The reason is that when the axial

load reaches a certain level, the failure mode will change from ductile

failure to brittle com pression failure. In the case of brittle fail ure a

different definition of 'yield' condition applie" with m~ and~ in Eqn. (2.63)

being substituted by I1lu and Cllu. For these cases the stiffness is strongly

influenced by inelastic masonry compression stresses.

(3) As with moment capacity, the effective moment of inertia

increases with increasing mechanical reinforcement ratio.

(4) Effective moment of inertia is not sensitive to the ratio of flange

to web length.

(c) Curvature ductility:

(1) Curvature ductility decreases with increasing axial load level

and mechanical reinforcement ratio.

(2) Confining plates improve curvature ductility factor significantly

in the direction of web in compression.

(3) With the same axial load and reinforcement ratio, curvature

ductility in the direction of flange in compression is much higher than the

opposite direction as a result of the great difference in ueutral axis depth.
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2.6 An Example of Use of Design Charts

To illustrate the use of the design chans and significance of

directional characteristics of T-section walls, a specific example is worked

in the following:

Problem

Calculate the flexural strength, yield and ultimate displacement and

ductility factors for a T-section cantilever masonry wall with the following

parameters:

web length: 3.6 m (11.8 ft )

flange length: 3.8 m (12.5 ft )

wall height: 18 m (59 ft )

wall thickness: 190 mm (1.48 in )

masonry compression strength: f = 12 MPa (1140 psi)

flexural reinforcement: 0 20, diameter is 20 mm (0.187 in)

fy = 275 MPa (40 Ksi)

spacing 400 mm (15.1 in )

axial load: 1230 kN (276 Kips )

Solution

If =3.8 - 0.19· 3.6 m, t =0.19

Irl lw =1.0. g =(3.6 - 2 x 0.1 )/3.6 • 0.95

axial load ratio: Pe/(m A, =1.230/ (12 x 2 x3.6xO.19) • 0.015

reinforcement ratio: p ty ,' (m =Jt x lQ2 x21S! (400 x 190 x12 ). 0.095
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(1) Moment Capacity

With the flange in compression, using Fig. 2.7a, with axial load ratio

... 0.075, interpolating between the curves of reinforcement ratio 0.08 and

0.12, we have

Mif = 0.0865 (m I~ t

... 2.55 MNm ( 22,600 K-in)

With the web in compression, from Fig. 2.7b

Miw =0.192 (m l~ t

:: 5.67 MNm (50,200 K-in )

(2) Stiffness

With the flange in compression, from Fig. 2.IOa

Ie Ilg =0.187

I, = 1.73 m4

Ie'" 0.324 m4 (37.5 f~ )

With the web in compression, from Fig. 2.IOb

Ie I I, ... 0.308

Ie ... 0.533 m4 ( 61.6 f~ )

If the effect of shear is considered,

F ... 9 I, / (A. h2 ) ... 9 xl.73 / (3.6 x 0.19 x J82) = 0.07

(3) Curvature Ductility

With the flange in compression, from Fig. 2.13a

cp../ CIty. 50

With the web in compression, from Fig. 2.l3b

cp../ CIty • 2.0
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(4) Displacement at Yield (Elasto-plastic Approximation)

Yield displacement can be expressed as:

f:.y =Mj h2 I 3 EI

Priestley has recommended I value of Em. 1000 (m for deflection calculation

to ensure adequately high estimates of stiffness [13J, Thus with flange in

compression:

Ayr =2.55 xlS2 1( 3 xlOOO :-.12 xO.324) =70.8 mm ( 2.79 in)

Wi th web in compression,

Ayw = 5.67 x182 / ( 3 xlOOO xl2 ><0.533) = 95.7 mm ( 3.77 in )

(S) Displacement Ductility

The relationship between displacement ductility and curvature

ductility can be expressed[28J as:

JL =I + 3 ('" -I )!:E. (1 - .!:E.. )
cpy h 2h

where JL is displacement ductility factor and Lp is equivalent plastic hinge

length. Assuming

Lp =0.5 !w = 1.8 m,

then

Lpl h =1.8/18 =0.1

With the flange in compression,

JLr =1 + 3 (SO - I ) x 0.1 x (l - 0.05) =15.0

With the web in compression,

JLw =1 + 3 (2.0· 1 ) x 0.1 x ( I - 0.05 ) =1.29
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(6) Ultimate Displacement

Since Au =f1 Ay , then,with the flange in compression,

~ = 15.0 x 70.8 =1062 nun (41.8 in )

and with the web in compression.

~ - 1.29 x 95.7 =123.5 mm (4.86 in)

The results of the above calculations are summarized in Table 2.2

Table 2.2 Summary of Strength. Stiffness and Ductility
for Example Flange Wall

Flanae in compression web in compression

Flexural strength 12.55 MNm(22.600 Kin) ~.67 MNm(50.200 Kin)

Effective stiffness 0.324 m4 (37.5 ft4) 0.533 m4 (61.6 ft4)

Curvature ductility 50.0 2.0

Yield displacement 70.8 mm (2.79 in) 95.7 mm (3.77 in)

Displacement ductility 15.0 1.29

Ultimate displacement 1062 mm (41.8 in) 123.5 mm (4.86 in)
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3. AN INELASTIC STRUCTURAL COMPONENT MODEL

FOR T-SECTION MASONRY WALLS

3.1 Introduction

Reinforced flanged masonry structural walls are widely used in

construction practice. Since they have different properties (stiffness,

strength. and ductility) in two opposite directions due to their asymmetric

configuration and reinforcement, masonry cracking and steel yielding,

when subjected to in-plane loading parallel to the web, a special model is

needed to simulate the asymmetric inelastic behavior of these

components.

Fig. 3.1 (a) illustrates a typical masonry assemblage with openings.

To analyze this structure, there are three main methods which can be

employed, each at different levels of sophistication. The ordinary frame

model (Fig. 3.1 (b» uses the simple line element ( usually located at the

geometric center of th~ cross section) and rigid connection at the joints.

Typically variation of cross section along the member axis is not

considered, and the joint regions are either taken as extension of the

member , or to be infinitely rigid. As a consequence, applicability to the

deep-membered structure of Fig. 3.1 (a) is questionable.

Although the finite element method is versalile and suitable for

structural analysis at both elaslic and inelastic response levels, it is time­

consuming and expensive due to the fine discrete requirement. Fig. 3.1 (c)

shows what would be considered to be a vcry coarse mesh for analyzing

this structurc.
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Between the two methods above. the structural component

model(SCM) which divides the structure into its component level (beam.

column and joint etc. ) may be capable of realistic simulation of deep­

membered structures, provided member deformation characteristics are

carefully considered. The method would require much less computational

effon than the ordinary finite element model. but can expect to be more

realistic than the line element approach.

Fig. 3.1 (d) shows the idealization of the masonry assemblage with

structural components. The structure is divided as a system of beam

members (1), column or wall members (2) • joint members (3) and

flanged members (4), connected by corner nodes. Generally, a 4-node

plane element has 8 degree of freedom, including three rigid body

movements and five basic deformation modes, as illustrated in Fig. 3.2.

For the beam and column members of an SCM simulation it is reasonable

to assume that strain perpendicular to the principal member axis is zero

so that only axial strain. flexural and shear deformation along the

longitudinal direction are considered. As a consequence the beam and

column elements (including the flanged type 4 element of Fig. 3.1 d) have

only 6 degree of freedom. namely 3 rigid body movements and 3 basic

deformation modes(modes 1. 2 and S in Fig. 3.2). Their stiffness matrices

can be derived from the corresponding degenerated plane frame element.

Deformation compatibility of the structure is enforced through the

common nodes between the connected components. For interior joint

elements, since there are four constraints between displacements of

adjacent nodes introduced from connected beam/column elements as
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Fig. 3.1 Masonry Assemblage and its Modelling
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mentioned above, the effective degree of freedom for this element

reduces to 4, including 3 rigid body movements and one basic

defonnation mode , that of shear deformation.

In this chapter, an inelastic SCM for flanged masonry structural

walls is developed. Complete structural analysis using SCM models is

beyond the scope of this study and is considered in TCCMAR TASK

2.1(3)[ 261. For the flanged member ( type 4, Fig.3.1d ). the element has

the same basic deformation modes as a columnlbeam component, but I

special model is needed in order to simulate its asymmetric

characteristics in the two directions parallel to the web.

The model is based on the ordinary shear-flexural element and

allows the fonnation of a flexural hinge with a limited length at each end

to simulate the possibility of plastic hinges forming at the top andlor

bottom of the SCM. The stiffness matrix is derived through invening the

flexibility matrix of bending and shear deformation. An asymmetric

hysteresis loop pattern is also proposed utilizing a tri-linear envelope

with modeling of stiffness degradation and pinching effects. The skeleton

model for force-deformation is based on the strength, stiffness and

ductility calculation developed in the previous chapter. The model can be

used tD simulate the overall inelastic response of a single flanged

masonry wall, or a flanged structural component of a building subjected

to eanhquake excitation, by connecting it to the other structural

members.
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3.2 Formul.tion of the Element Stiffness M.trix

The flanged masonry wall subjected to in-plane loads parallel to

the web. as shown in Fi.. 3.3 (a). can be modeled IS • planar

shear-flexural element (Fig. 3.3 (c». The relationship between node

forces and displacements of the element in local coordinates can be

expressed as

(3.1)

or (p) = (kJ (v) (3.2)

Where (p) and (v) are node force and displacement vectors respectively

and (k) is the element stiffness matrix. as shown in Fig. 3.3 (c).

F4
f4 F3 ~3u3 v3-..

PlYI

h

6
6 FS

uS
P2Y2

dl "'-/
d2

lw lw

(a) (bl (e)

Fig. 3.3 Flanged Wall and Equivalent SCM Simulation

59



The stiffness matrix [Ie] depends on the material properties and

configuration of the element. Since flanged masonry walls consist of

different materials (masonry units, reinforcement, etc.) and the Croll

sections may cracle, yield, or develop plastic hinges at the each under

planar loads, an ordinary stiffness matrix cannot adequately describe its

complicated behavior during the different possible loading stagel. In this

section, the energy principle is employed to obtain the special element

stiffness matrix.

3.2.1 Stiffness Matrix in Local Coordinates:

<

r"\
m1 '-:-\--IT"~-

11
h

12

mz .J- '
"-"

(a) Shear-fin ural
Element

(b) Moment
Distribution

Fig 3.4 SCM Element

'Py2

(c) Curvature
Distrib UliOR

Fig. 3.4 <a> shows a column-type element with two plastic hinges,

one at each end. The equivalent plastic hinge lengths are II and 12

respectively which can be determinedl211 by

Ip =0.08 h + 6 cit.
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where db is the diameter of vertical reinforcement. In the central region

of the wall the element remains in the elastic stage and has a constant

stiffness(cracked). Note that since behavior at inelastic levels of structural

response is of prime concern, the simplification that all sections of the

wall between plastic hinges are cracked will induce only small errors. It

would, however, be straightforward to add an additional subsection of the

element represented uncracked region. The moment is linearly

distributed along the element in this case, and the curvature is assumed

as shown in Fig. 3.4 (c).

The energy principle will be used to obtain the flexibility matrix of

bending and shear deformation, then the stiffness matrix of the element

can be derived by inverting the resultant flexibility matrix. The

deformation energy of the element in Fig. 3.4 due to bending is

Ub = Ue + Up (3.4)

in which Ue and Up are contributed by elastic and plastic deformations

respectively. Since the central region of the element remains in the elastic

stage and hence M(x) = EI t(x) applies. Further, the curvature in plastic

hinge regions can be divided into two pans: elastic and plastic, and hence

elastic plastic

Where M(x), ,<x) are distribution functions of moment and elastic

curvature along the element; mil and ml2 are average moments in top and

bottom plastic hinge regions of the element respectively. Using mI· Inn
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and m2· rtlt2 and the relationship between moment and curvature, the

deformation energy can be expressed apprOldmately as

(3.6)

In which Ell and EI2 are equivalent flexural nifrness in the top and

bottom regions of the element respectively. Then, the flexibility

coefficients of the node rotation due to bending can be derived from the

following differential operation

(i, j = I, 2) (3.7)

Using the approximation of my.· m., mY2· m2, again, we have

[

.!L
= l[ 2-1] + Ell

6E1 -I 2 0
o ]

..!1...
Eh

(3.8)

in which the first pan is the normal flexibility matrix due to elastic

deformation, and the second one is due to the plastic hinges at the ends.

The flexibility matrix of shear deformation can be easily obtained

as

_ ---.l..- [1 1]
[ fs ] - OA'h 1 1
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where G and A' are shear modulus and effective shear area respectively.

Combining the two matrices above and inverting the resultant flexibility

matrix, the stiffness matrix of node rotation can be derived as

{k 12 It 2 =( [fbl + [fsl )-1

in which

_ 6EI. [2 + ~ + 12 I • ~ ]
- ha 1 - ~ 2 + ~ + 11

a =(2 + ~ + 11 )(2 + P+12 ) - (1 - ~ l
~ = 6EII GA'h2

11 =61 II I I) h

12 =61 12 I 12h

(3.10)

Adding the axial load terms into the above matrix, the stiffness

matrix of the element in local coordinates has the final form as

2 + P+ 12 1 - ~ 0

I-~ 2+~+11[Khd =6El
ha

o o

o
M
61

(3.11 )

In which A is the area of cross section for axial load.
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3.2.2 Stillness Matrix in Global Coordinate.

In global coordinB:es shown in Fig. 3.3 (b). the flanged wall has 8

degrees of freedom and lhe relalionship between lhe node forces and

displacemenlS is

where

(F)=[K] lu)

(F) =[ Fl. F2. --- FS ]T

(u) =[ UI. U2••• - U8 ]T

(3.12)

(3.13)

(3.14)

Transformation of node forces from local coordinates (p) to global

coordinate forces (F) can be established through the following matriJl

operation.

(F) =[T]T ( p J (3.IS)

where

-~ ~ -~ _1 ~ 0 ~
h d h d h h 0

(T] = -~ 0 -~ 0 ~ 1 A. .1 (3.16)h h h d h d

0 ).2 0 Al 0 - ).2 0 - Al

is termed the transformation matrix and Al= d 1/1.. A2= d2Jlw where lwo d1

and d2 are transverse dimensions. defined in Fig.3.4. Therefore. the

element stiffness matrix in global coordinates is



[K] =[T]T [It] [T] (3.17)

Eqn. 3.17 can be used for both static and dynamic analysis of

flanged masonry walls or IS I T-seetion member in masonry

assemblages. Numerical examples and comparison between the analytical

results and experimental results are presented later in Chapter 7

3.3 Hysteresis Loops for Fllnled Misonry Will.

3.3.1 Moment-Curvature

To match the inelastic structural component element developed

above. an asymmetric hysteresis loops for flanged masonry walls is

proposed in order to allow time-history response analyses to be carried

out.

Fig 3.S Proposed Moment-curvaturc Hysteresis Loops
For Flanp Muorvy Walls
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Based on the assumption of plane-cross section and the material

properties described in Chapter 2, the moment-clllVature hystt:fesis loops

for reinforced flanged masonry walls are proposed as shown in Fig. 3.S.

The loops have an asymmetric tri-Iinear envelope in each loading

direction and a falling branch when the web is in compression to simulate

compression failure of the flexural compression zone at high strain levels.

The points on the envelope are defined as

Pw1 first cracking. web in compression

Pw2 first yield. web in compression

Pw3 ultimate state, web in compression

Pfl first cracking. flange in compression

Pf2 first yield. flange in compression

The tangent stiffness in each linear segmeR[ is

ki =(Mi+l - Mil/( ~i+l - ~J (3.18)

where Mi, ~i are corresponding moment and curvature which can be

calculated by cross section analysis or using the design charts or program

in Appendices. Fig. 3.S shows a falling branch to the moment-curvature

envelope after crushing occurs at point Pw3. With the simplified moment

C'urvature section analysis developed for this study, the slope of the

falling branch can not be determined analytically. As a consequence. all

analytical prediction using this model extend only to the stage of first

crushing. The falling branch characteristics can be modelled by inelastic

finite clement methods, as reported by Seible et al[251.
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Unloading paths have a stiffness degradation factor >.. which

varies from 0 - no stiffness degradation (unloading parallel to 0 - P",2 or

o- P(2) to 1 - unloading towards the origin, until they reach the x-axis.

Reloading in the opposite direction has a pinchins effect, with all

the paths directed towards a certain point ( p", or pc, see discussion in

next section ) on the moment-axis. After returning to zero deformation,

the loading direction will either be towards the maximum previous

position or the first cracking point in the opposite direction. whichever is

larger.

3.3.2 Sheaf Derormation

y

FiS. 3.6 Hysteresis Loops for Shear

Since shear failure is undesirable under seismic response. and is

avoided by use of capacity design principles[4], and shear characteristics
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are expected to be symmetric in the two opposite directions panllel to

the web, hysteresis loops for shear deformation are assumed to have a

symmetric bi-linear envelope as shown in Fil. 3-6 Point P, on the

envelope, represents the onset of shear \:rackinl and all unloading paths

are assumed to point to the orilin.

The shear stiffness before dialonal crackinl is equal to the initial

masonry shear modulus as

_ _ Em
Go - Gm - 2(1 + v) (3.19)

in which v, GO and Em are Poisson ratio, shear and elastic moduli of

masonry res...ectively. After dialonal crackinl, the shear stiffness is

assumed to be proportional to the ratio of horizontal reinforcement in the

web and its clastic modulus. The equivalent shear modulus thus has the

form

(3.20)

where Ph and, Es are ratio and elastic modulus of horizontal reinforcement

in the web respectively.

Theoretically. point P is correspondinl to a stress state where the

principle tensile stress in the web reaches the tensile sarenlth of

masonry. Since the venical stress varies alonl the web due to bendinl, al

an averale, at the neutral line, the principle tensile stress equals to the

shear stress thus the correspandinl horizontal load can be determined.
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3.3.3 Momenl Iatercept at Zero Cunat.re o. aeverse Loadinl

In Fig. 3.S, there are IWO points p. and Pron the moment-axis

which the hysteresis loops are directed towards on reloading from an

inelastic excunioa they allow the pinchial effects damaa the reloading to

be simulated. The determination of these two poinu i. discussed briefly

as follows:

1
I I -

"(.) FIIDle in (b) Neutral (e) Web iD
CompreuioD PoSitiOD Compression

[!i ~

L::E (e)

I. J ~
(j)

es =e· O.Str

(d) Croll
Section

0) (I)

Fig. 3.7 Strain Distribution on Reloading after an Inelastic Excunion
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(a) Reloading From Web In Compression

The positions and strain distributions for the cross-section of a

flanged wall at different loading/unloading stages involvinl previous

inelastic response are shown in Fig. 3.7. In the case of the web in

compression. at the end of unloading. the moment returns to zero. but

there are still residual strains (deformation) at the base cross-section as a

consequence of inelastic reinforcement strains in the previous cycle of

response kS shown in Fig. 3.7 (c). Assuming the position of the resultant

venical loads (center of the cross section) is close to the geometric center

of the vertical reinforcement (Fig. 3.7 (d». the strains due to vertical

loads may be considered to be uniformly distributed along all the venical

rebars (Fig. 3.7 (e». The residual strains due to bending deformation can

be assumed to be linearly distributed along the web (Fig. 3.7 (f). When

loading in the reverse direction. the crack will occur (or re-open. if

cracked already) before the residual tension strains of venieal rebars in

flange are eliminated completely. Since the whole cross section is

cracked. the external moment will be carried by the vertical

reinforcement only. and the strains due to the applied moment will be

linearly distributed along the vertical reinforcement as shown in Fig. 3.7

(g).

When loading to a point where the residual strain is eliminated

at the extreme compression bar by the reverse deformation. the crack

will be closed and the stiffness of the wall should indicate a sharp

increase, as shown in Fig. 3.6. At this stage

(3.21)
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where £pt £, and £c; are venical reinforcement strains in the flange caused

by residual deformation. axial load and reverse loadir'lg as shown in Fig.

3.7 CO, (e) and (g) respectively. Since the curvature for closing the cnck

may be written as

the moment required to generate the above curvature will be

MPw = EsI.(Ep - E,) Ie

where

(3.218)

(3.22b)

Es - Elastic modulus of venical reinforcement

Is - Moment of inertia of the cross section based on vertical

reinforcement only.

(b) Reloadinl From Flanlf In Compression

When the wall is unloaded from the opposite direction • flange In

compression. the distributions of the strains along the cross-section are

similar to that in the previous case and are shown in Fig. 3.7 (h) to 0). In

this case. however. the depth of the compression zone is (gl",-e) instead of

e in the former case. The curvature and moment corresponding for clolina

the crack at the flexural end can be derived. in similar fashion to the

above as

cppr =£c; I(gl. - e) =(fp - EI>I (gl•• e)

MPf =EsI.(fp - Es> I (gl•• e)
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where gl", is the total length between the extreme venical rebus alon,

the web and the other parameters are the same as in Eqn. 3.22b.

To simplify the hysteresis loops for both cases, it is reasonable to

assume the points are on the moment-axis, i.e., the curvatures are equal

to zero or the strains at both extreme sides along the web are equal

(3.23)

Therefore, the curvature due to elastic deformation under reloading is

cp =(t; + fe)ll =Ep/ I

and the corresponding moment will be

(3.248)

(3.24b)

Note that in Equations 3.22 and 2.23, the calculated moment will

depend on the residual strain fp of the extreme rebar. When reloading

from flange in compression. fp could be much larger than the yield strain,

resulting in very high corresponding moment. Actually, under reloading,

the extreme rebar at the free end of the web may reach its yield strength

long before the residual strain is completely eliminated. Therefore, the

corresponding moment will be

M-M .!l..!!....
y <&I.-c) (2.25)

where f, is yield strength of the reinforcement and the other parameters

are the same as above. The real values for P", and Pc should be

corresponding to the smaller moment between the calculated results from

Equations 2.24 and 2.25.
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To evaluate the formulas proposed above, wan FI (for Pseudo­

static test) and F5 (for dynamic test) have been calculated with the

formulas. In the calculation, fy = 71.2 Ksi (tested result for wall Fl), Es ..

30,000 Ksi, P = 80 Kips(axial load) and Ep was assumed to be O.S and 4.0

times of steel yielding strain(0.OO2) for WIC and FIC respectively. The

shear equivalent to the critical moments of both calculated and

experimental results are listed in Table 3.1. It is seems that when

reloading from web in compression, Equation 3.24 dominates the

calculation result, but in the opposite direction, Equation 3.25 will be

applicable.

Table 3.1 Critical Shear ( Kips)

Equation Equatioll Wall FI Wan F5
3.24 3.25 (static) dvnamic'

Web in 3.8 10.9 S:4 0
comDression

Flange in
30.6 10.9 S;ll S; IS.SCompression
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4. EXPERIMENTAL STUDIES • GENERAL DESCRIPTIONS

4.1 Introduction

The single T-section wall tested in preliminary studiel(27I had

confirmed the predicted behavior in term of Itiffness. strength and

failure mode. However. as an initial pilot test. there were inevitable

problems with experimental technique and the influence of variation of

key parameters could not be considered.

In this continuing research (TCCMAR Task 4.1). a comprehensive

experimental program was carried out to investigate the seismic behavior

of flanged masonry walls. The program consisted of two phases: a pseudo­

static phase involving tests of four full scale T-section masonry walls and

a dynamic phase. involving tests of five full scale T-section masonry walls

on a shake table.

The purpose of the static tests was to investigate the influence of

the vertical reinforcement ratio, the flange width, and confinement to

the mortu beds at the web toe, on the strength. stiffness and ductility of

flanged masonry walls. The test results were also intended to be used to

provide a data base for examining and calibrating the theoretical work.

Although static testing is very useful and enables detailed observation

under controlled conditions during the testing, it does not simulate a

dynamic environment necessary to examine the real seismic response of

structures.

As the second phase of the experimental studies. the dynamic tesu

used identical specimens to the walll for Itatic tests, facilitating the
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investiguion of the influence of above parameters under dynamic

condition. It also allowed comparison of the structural response between

static and dynamic test regimes in order to investigate the reliabili~y of

predicting of seismic behavior of flanged masonry walls, using the static

analytical and experimental resuhs.

4.2 Desiln and Construction 01 the Test Units

4.2.1 Considerations of Test Unit Design

Since identical static and dynamic test units were desired, the size

and weight of all test units were limited by the loading capacity and

dimensions of the shake table. As a consequence, the effective wall height

was chosen to be 12 feet(3.66 m), which may be considered equivalent to

two story walls, since lateral forces were applied at the top of the wall in

the test, whereas the resultant seismic force in a 2 story wall would be

approximately at the mid-height of the second story, as a resuh of inenial

forces at the second floor and the roof levels. Table 4.1 defines wall

dimensions, and reinforcement for the two phases of walls. Among the

units, wall FI was considered as the basic wall and the other static walls

F2, F3 and F4(confined) were designed to have either different vertical

reinforcement ratio, different width of flange or to have confinement

plate on mortar beds at web toe in order to investigate the influences of

these parameters. Dimensions for wall Fl are shown in Fig. 4.1. As will be

seen from Table 4.1 and Fig. 4.1, the dimensions of the basic wall (Fl)

were such that the ratio of flange to web length was 2.25, and the ratio of

wall height to flange length was 1.38. These dinlensions were chosen to
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ensure highly unsymmetrical response characteristics, and to provide I

real test of shear-lag effects.

For dynamic tests, units FS, F6 and F7(confined) duplicated walll

FI, F2 and F4 respectively (wall F3 was too wide to telt on the Ihake

table ), in order to compue the results between static and dynamic teltl

as well as to check the effects of venical reinforcement ratio and

confinement on strength, stiffness and ductility of flanged masonry walls

under dynamic conditions. Walls F8 and F9 were identical to wall FS (also

wall Fl), but were tested in different ways to investigate the effects of

loading history and direction on the response of flanged masonry walls, IS

will be described in Chapter 6. The only physical difference between the

two groups is that the walls for dynamic tests were constructed two

masonry courses (sixteen inches) shoner than the static walls in height so

that the center of mass for the inenia blocks on the top of the dynamic

test units was at the correct position to maintain an equivalent wall

height of twelve feet.

In accordance with TCCMAR requirements, all walls were

constructed with 6 inch wide (nominal) concrete masonry units and were

fully grouted. Three kinds of blocks were used: namely, end closures were

either standard open-end units (block type 1) or half open-end unitl

(block type 2) on each side of flange and at the free end of web; all othen

were open-end bond beam units (block type 3), allowing transvene

reinforcement to be placed. The three block styles and their dimensionl

are shown in Fig. 4.2
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Fig. 4.2 Dimensions of Masonry Units

4.2.2 Reinforcement Arrangement

Venieal reinforcement for wall Fl. F4. FS. F7. F8 and F9 consisted

of #6 bars (19.05 mm diameter) of grade 60 steel (fy = 414 MPa) at 16

inch (406 mm) nominal centers, resulling in 6 bars in the flange and 4 in

the web (including 1 at the web-flange intersection). Over the full emu
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section, the average vertical reinforcement ratio was 0.00546. Wall F2, F3

and F6 were reinforced vertically with .4 bars (12.7S mm diameter) of

grade 60 steel at 16 inch nominal centers, resulting in an average

reinforcement ratio of 0.00248.

Table 4.1 Test Matrix for TCCMAR Task 4,1

Wall Wall Dimensions Axial Load Vertical No. in No. in
HltLhL~ (psi) Reban web Range

FI 12' It 8' 8" x 3'10" 100 16@ 16" 4 6

.Sit F2 12' It 8' 8" x 3'10" 100 M@16" 4 6i!
U) F3 12' It 16' 8" x 3'10" 100 M@16" 4 12

F4 •• 12' It 8' 8" x 3'10" 100 16@ 16" 4 6

FS 12' It 8' 8" x 3'10" 100 16@ 16" 4 6
u F6 12' It 8' 8" x 3'10" 1() M@16" 4 6'fi F7-1 12' It 8' 8" x 3'10" 100 16@ 16" 4 6g.

F8 *2 12' It 8' 8" x 3'10" 100 16@ 16" 4 6
fl)*] 12' It 8' 8" x 3'10" 100 16@ 16" 4 6

.: H=wall height. Lf=nange length •LW=web length
·1: confined
·2: Tcsaed with. single severe earthquake input

·3: skewed 4S degree to shake table axis

Vertical reinforcement WI'; continuous from the wall base to mid-

height of the wall, where it was lapped with standard laps of 40 bar

diameters. Lapping of short staner bars at the wall base was deliberately

avoided to alleviate potential bond problems in the plastic hinge region.

The vertical bars were bent with 90 degree hooks at both ends into the

top concrete slab or the bottom concrete base respectively to assure

adequate develotJrnent length. Detail of the reinforcement arrangement of

wall FI (also F4, FS t F7. F8 and P9) is illustntcd in Fig. 4.3. For wall F2

and F6, the only difference is that the diameter of the vertical
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reinforcement was '4 instead of #6. Wan F3 had twelve vertical rebars in

flange rather than six for wall F2 due to its wide flange, as illustrated in

Fig. 4.3(d).

~--

- - --....
-.. - - I
I I
I I8 in
I I
I I..

I
I

I .....: I--
strain
gauges

16 in

- - -I
~

. • roo F~ ;.

I I
I, I "'f_

I I I V
I I I ./

I
I I II

III
I -

1

VI I II
• •

'I
t I I

• III w, ,"L.,
'"

.. I

(a) Front ElevUion

vertical. -6 _16 in

(b) Side Elev.tIon

vertic.l. " .... 16 in..,
I r:i- 1
I i I

..... I I /

'" I!! /

'" /

(c) Plan (d) Crall Section of W.lI F3

Fig. 4.3 Reinforcement Arrangement. and Straingauge Loc8lions

80



Horizontal reinforcement was essentially the same in all 9 walls. In the

web, *4 (12.75 mm diameter) grade 60 steel ban were placed at 8 inch

(203.2 mID) centers over the full height of the wall. This provided a

nominal shear capacity of 81 kips (360 kN) which was greater than the

maximum expected force. Web transverse reinforcement was hooked

around the venical rebar at the free end of the web with a 1800 hook and

bent with a standard horizontal 90 degree hook into the flange at the

other end. Because of the small flue dimensions of the 6 inch block units,

the hook at free web end had to be rotated 45 degree out of the

horizontal plane. In the flange, transverse reinforcement consisted of *4

bars of grade 60 steel at 16 inch venical center. The bars were bent down

into end venical flues with standard 90 degree hooks.( see Fig. 4.3)

Wan F4 and F7 included 1/8 inch (3.175 mm) thick monar bed

steel confining plates at the free end of the web over the lower 7 mortar

beds. The confining plates were 24 inches (609.6 mm) long and cut to the

shape of the net block profile, allowing 1/4 inch (6.35 mm) for pointing.

The plates were laid into the mortar beds, which was placed in two thin

layers, one under and one over the plate. No problems were eltperienced

in laying the plates. Fig. 4.4 shows a mortar bed confining plate being

placed during construction.

4.2.3 Foundation Beam, Top Slab and Wan Construction

The walls were constructed on 12 inch (304.8 mm) thick reinforced

concrete bases with vertical reinforcement of the wall extended into the

bottom of the base and bent 90 degree horizontally to ensure adequate

anchorage (see Fig. 4.3). On the base, a pattern of PVC tubes ( 2 inch
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diameter) were cast into the concrete for tieing down the wall onlo lhe

slrong floor for the pseudo-static test or the shake table for dynamic lest.

To ensure that there would be no foundation failure, the concrete base

beam was a little over reinforced. Both the dimensions and reinforcement

arrangement are shown in Fig. 4.5.

On the: top of the wall, an 8 inch (203.2 mm) Ihick reinforced

concrete slab was cast to distribute the lateral load. As with the base, the

venical reinforcement of the wall extended into the slab and was bent 90

degree horizontally for adequate anchorage. The dimensions and

reenforcement for top concrete slab are presented in Fig. 4.6.

The construction process for each test unit consisted of the

following four steps:

(I) Constructing the wood form, placing base reinforcement and

casting the concrete foundation beam with the bottom half venical rebars

in position.

(2) Placing horizontal reinforcement and laying blocks up to about

half height of the wall, then funy grouting (leaving a length of 40 bar

diameter for lap splicing).

(3) Placing horizontal reinforcement and laying the wall to its full

height, then placing the top half vertical rebars, tieing 10 existing bars,

and fully grouting.

(4) Constructing the wood form for top slab, placin. reinforcement

and casling.
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Fig. 4.7 (a) through (d) show photos at each stage of wall

construction. The walls were constructed by certified masons to ensure

that normal stanrlard of workmanship was achieved. A special mortar mix

of cement: lime: sand = I : 0.5 : 4.5 by volume, required by TCCMAR "..as

used, and water was added by eye to obtain a mix of satisfacl\)ry

workability.

The intersection between the web and flange is a natural plane of

weakness, subjected to high shear stress and deserves special attention in

design and construction. No masonry units penetrated the flange-web

interface, but continuity of grout and horizontal reinforcement, and hence

monolithic action, was provided by removing the top half of the face shell

on the flange block at the interface. When a half unit butted against the

flange(the odd courses counted from the base), half depth saw cuts were

also made in the end face shell of the block and the top half knocked off

to allow continuity of grout and transverse reinforcement.

The walls were fUlly grouted and compacted with a pencil

insertion vibrator. Sib grout aid was added (6 pounds per cubic yard) to

compensate for concrete shrinkage. To ensure the bond between grout

and concrete base, the concrete base surface was roughened with brush,

and a clean-out ports for cleaning the mortar were cut into the block

faces at the location of each venical rebar at the bottom course (see Fig.

4.4 b). These were replaced after cleaning. A similar detail of clean-out

ports was provided at the wall mid-height, corresponding to the bottom

of the second construction lift.
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".3 Material properties

".3.1 Strength 01 M8Sonry and Its Compon~nt.

In accordance with the requirement by TCCMAR, the following

samples of mortar and Jfout were taken during the wall construction to

determine the material properties.

(1) mortar cubes 2 inch long, using a special bronze mould

(2) mortar cylinders with 4 inch height and 2 inch diameter

(3) grout cylinders with 12 inch height and 6 inch diameter

(4) grout prisms with 6 inch height and 3 inch square cross

section, using four masonry units as the mould with absorbant paper

placed between the grout and masonry surface to allow proper water

absorption by the masonry.

Three-course high stack-bonded prisms were made, using a

speciJI jig to ensure precise dimensions(30). Since the walls were laid up in

pairs simultaneously, for example FI and F2; F3 and F4 etc., one set of

materials apply to both walls of the pair. However, since the walls were

grouted sequentially and the prisms were laid up approximately half way

through the grouting process. it is possible that variation in strength

between the critical sections of the walls existtd due to variation of grout

properties through the mix. In panicular, a difference in the amount of

water absorbed by blocks from grout could be expected with time as the

grout stiffens.

Table 4.2 summarizes the material test results. Also listed in the

table is the prism strength predicted by a formula developed from
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analysis of the m~chanics of masonry compression strength[29J. This

approach relates the prism strength to the strength of its components by

the expression

(mp =0.6 a feb + 0.9 (1- a) (. (4.1)

where feb and (. are compression strength of masonry units and grout

respectively, and a is the ratio of net to gross area of the units ( in this

case, a is 0.62). It will be noted that the predicted strength is about 28~

above the measured value fmt from prism tesl for walls F3 & F4, and 17~

below the test results for both walls F6 & F7 and F8 & F9. It is nol clear

why such larger discrepancies exist for Ihese walls, but it is possible that

insufficient care was taken during construction, capping and testing of

prisms for walls F3 & F4, and grout cylinders (or walls F6 to F9.

Comparison between measured strength and strength interpreted (rom

tesl results is discussed further in Section 5.3.2.

Table 4.2 Compression Strength of Masonry
Prisms and Components(Ksi)

Fl & F2 F3 & F4 FS F6 & F7 F8 & F9

frh 2.56 2.56 2.56 2.56 2.56

(-- 3.67 2.82 3.11 1.18 2.69

(. 5.64 3.94 3.44 2.30 3.11

f_. 2.60 1.80 2.26 2.10 2.43

(mD 2.88 2.30 2.13 1.74 2.02
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4.3.2 Reinforcement Stress-strain Characteristic.

Three samples for each batch of venical reinforcing steel weu

taken and tested in a universal testing machine. The mean values of

yielding and ultimate tensile strength for each group u-e listed in Table

4-3. Also straingauges were attached to one steel bu- in each group Ind

tensile stress-strain curves were ploted during the testing. The stress­

strain curves of vertical '6 and '4 rebars are shown in Fig. 4.8 (a) and (b)

respecti vely.

Table 4.3 Tensile Strength of Reinforcement (Ksi)*

Yield strength Ultimale strengh

Wall FI& F4 ('6) 71.2 99.7

; Wall F2" F3 (14) 7S.9 117.2
.0
~

fIu
!Wall FS.7.8 &9 ('6) 68.9 107.4'c

u
>

Wall F6 (14) 62.S 97.3

All horizontal rebars 75.9 117.2

*: 1 Ksi =6.9 MPa
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5 PSEUDO-STATIC TESTS

5.1 Test Set Up and Instrume'1tation

As the first phase of the experimental studies, the pseudo-static

tests of four full scale flanged masonry walls were carried out. The walls

were tied down onto the strong floor through the holes in concrete base

with 1.25 inch DWIDAG bars. A thin layer of hydrostone was cast

between the wall base and strong floor and post-tensioning was applied

to ensure adequate friction between the base and ground during the

testing.

Lateral load was applied by a double-acting 100 kip (450 KN)

capacity hydraulic actuator reacting against a strong wall, anc' supplied

with swivel mounts at each end allowing rotation in the venical plane only

(see Fig. 5.1). Vertical load was applied by either 4 (walls FI, F2, F4) or 6

(wall F3) 5/8 inch (16 mm) high strength DWIDAG prestressing bars

anchored at the bottom of the concrete base , and stressed against the top

slab of the wall, through a stiff coil spring. The flexibility of the springs

was specially designed to have a axial compression stiffness of 6 kips/inch

(lOS I KN/M), which was about one tenth of the axial tensile stiffness of

the S/S" DWIDAG bar. The flexibility of the springs were such that the

vertical load provided by the stressed bars would remain essentially

constant during lateral displacement, despite the corresponding venical

displacement resulting from the integration of vertical strains. The level of

applied axial load was chosen to provide an essentially uniform stress of

100 psi (0.69 MPa) (including wall self weight) at the base of the wall. The
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vertical load bars were straingauged to enable actual load variations to be

monitored during testing. Fig. 5.1 shows the test set up for -~e pseudo­

static testing.

Electric resistance strain gauges were placed on both vertical and

horizontal reinforcement within the potential plastic hinge region at

location shown in Fig. 4.3. The purpose of this instrumentation was to

investigate shear lag effects in venital reinforcement, and shear forces

carried by transverse reinforcement in the web.

Masonry deformation in the lower region of the wall were

monitored with linear potentiometers (0.5 inch (12 mm) range) attached

to steel studs epoxied into holes drilled into the masonry. The bottom line

of gauges measured strains over a 4 inch (102 mm) gauge length, while

all other gauge lengths were 8 inches (203 mm). fhe locations of these

gauges are also shown in Fig. 5.1.

Other instrumentation included measurements of gross wall

deformations relative to a reference frame, as shown in Fig. 5.1. Gauges I

(10 inch LVDT), 2 and 3 (4 inch potentiometers) monitored wall

horizontal displacements at the line of lateral load application, and at 2/3

and 1/3 of the wall height. Gauges 4 and S were 1 inch potentiometers

mounted at the mid-length of the web • one on each side • to measure the

,-enical cracking at the base level and the slip between the web and

concrete base. Gauges 6 and 7 (also I inch potentiometers) monitored

vertical movement of the wall. These data were needed to fully

characterize the SCM model, which formed a main part 01 the theoretical

studies in this research project and is discussed in Chapters 3 and 7.
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At the top of the wall, th~ load cell and displacement gauge were

connected directly to a x-y recorder to plot the load-displacement curve

to allow test progress to be monitored, and all the data were recorded

and stored by a NEFF DATA ACQUISITION SYSTEM which is capable of

reading 512 channels for subsequent processing and analysis. Fig. 5.2 (a)

and (b) show wall FI ready for testing and vertical load springs on the

wall top respectively.

S.2 Test Procedure

Lateral loading was carried out under a controlled-displacement

test regime, after initial load-controlled cycles at load-levels less than

that required to induce yield of vertical reinforcement. The standard

TCCMAR test pattern[2S1 was modified somewhat to recognize the

difference in strength, stiffness and expected ductility capacity in the two

opposite loading directions.

Fig. 5.3 shows a typical loading procedure for the pseudo-static

test. Before yielding. the wall was subjected to two cycles for each load

level at 25%, 50% and 75% of the predicted first yield load in each

direction. After that. the test was controlled by displacement instead of

load. At each test level. the wall was first displaced to the desired

displacement level ( a defined multiplier of the yield displacement ),

followed by 2 cycles of lower intensity loading ( 50% and 25% of yield

load respectively), then three complete cycles repeated at the same

displacement before increasing displacement to the next level of ductility.
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Since the strength and ductility capacity of T-sections are

different in the two opposite directions, loading cycles with different

ductility factors were assigned for each direction, namely larger (2, 4, 6

etc. ) for the flange in compression and smaller steps (1.25, I.S, 2 etc. ) for

web in compression until the wall finally failed.

5.3 Observations and Test Results

5.3.1 General Behavior Observed

Before cracking ( at very early loading stage), the flanged masonry

walls behaved symmetrically in the two opposite directions parallel to the

web. Due to the unsymmetrical configuration of the T-section, initial

cracking occurred at different loadmg stages in the two opposite

directions, that is , first cracking occurred earlier in the direction of the

flange in compression than the web in compression. After cracking, the

load-displacement curves softened and as the load increased, more cracks

developed at higher sections; diagonal cracking occurre(i at mid-height of

the web due to shear and inclined cracks from weblflange interface up to

two ends of the flange also developed due to vertical shear in the flange.

During this stage, the unsymmetrical behavior of the flanged wall

became obvious. With the flange in tension, the wall has higher strength,

stiffness but less ductility than in the opposite direction when the wall

reached its first yielding in the direction of the flange in compression,

with the tension rebar yielding at the web toe, the load-displacement

curve became very flat, but the wall can still deform stably to much

higher ductility level. After yielding occurred in the direction placing the
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flange in tension. the wall finally failed as the toe of web vertically

cracked and face shell spalled off, followed by buckling of vertical

reinforcement in the area due to lack of support in the direction

perpendicular to the web.

Vertical splitting of the bottom course block at the free end of the

web typically originated at displacements of about 0.80-1.00 inch (20­

250101). It was apparent however. that a significant degree of

confinement to the bottom block was provided by the foundation pad.

This effectively delayed failure until compression strains at the level of

mortar course 2 (8 inch above the base) had reached a strain of about

0.003( see Figs. 5.4. 5.5 and 5.6 for unconfined walls). At this stage

vertical splitting developed upwards from course 2 and wa! followed by

sudden and catastrophic loss of strength due to collapse of the

compression zone. Strength typically dropped to 20-30% of the pre·

failure load without significant increase in displacement.

Wall F4. which contained mortar bed confining plates in the lower

courses of the web exhibited significantly improved behavior, compared

with the other walls, in the form of increased deflection at maximum load,

and reduced severity of load degradation following compression zone

failure. Since the seven lower courses were all confined with steel plates,

it put the failure section down to the bottom course of the wall (see Fig.

5.7), where the curvature reached its maximum value. Wall F4 failed as a

consequence of lateral buckling of th~ web following a loading sequence

where the web reinforcement had been subjected to high residual

inelastic tensile strains prior to load reversal placing the web in
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compression. Before the masonry in the web could support compression

stress it was necessary for the web reinforcement to yield in compression,

to remove the residual tensile strains and close the cracks. During the

process there was no effective lateral support to the web vertical

reinforcement, which exhibited lateral instability, placing eccentric loads

on the web and causing failure.

It is interesting to note that the walls failed in their stronger

direction at displacement substantially lower than the reversed direction.

For all four walls, the unsymmetrical characteristics of the responses

were very similar. However. the ratio of vertkal reinfor~ement, and

width of flange, can affect the strength, stiffness and ductihty of the wall

significantly in both directions. Confining plates in mortar beds of the web

toe improves the ductility of the wall in the direction of flange in tension.

The influence of above parameters will be discussed in detail in the

following sections. The observed details during four wall tests are

presented below and following abbreviations are used in the description:

WIC--- direction of loading placing the web in compression

FIC··- direction of loading placing the flange in compression

Pw --- horizontal load with WIC

Pr --- horizontal load with FIe

J.1w ··-ductility factor with WIC

~r --- ductility factor with FIC
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Wall FI <16 (".OS mm) verth:a. Reinforcement. Unconfined)

Foue.conlrolled Cnles

Prior to commencing data acquisition, an accidental load of Pr -S.l

Kips (22.7 kN) was applied, causing horizontal cracking in the web at the

base, and at the 2nd and 4th mortar beds. These crr-cks closed when the

lateral force was removed.

First cracking with the web in compression occurred at Pw = 2 0

kips(89 kN). At Pw =30 kips(l33 kN), venical cracking at the ...-eb/flange

interface was noted, and the first indication of shear inclination to

flexural cracks occurred. As the lateral force was further increased, under

WIC, further inclination of flexural cracks occurred. At Pw =40 kips( 178

kN) a flange crack developed at the 4th monar bed, with considerable

associated noise and significant drop in lateral force, as a consequence of

the release in strain energy as the flange tension force was released. It

was significant to note that the crack did not initiate at the web/flange

interface and gradually extend across the width of the flange, but

appeared to crack across the full width almost instantaneously. The

audible indication of cracking, and the associate«: irregularity in the force­

deformation curve made it possible to accurately assess the instant of

cracking, and hence by back calculation, the average flange tension stress

at which cracking occurred. At Pw =4S kips(200 leN) more significant

flexural shear cracking developed in the web.

In the reversed direction of loading (FIe), the instant of crack

formation was less precisely defined, but could still be estimated with
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reasonable accuracy. At a lateral force of Pr = 1S leips(67 leN) web cracks

had formed up to the 7th mortar bed, with cracks forming up to the 11 th

bed at Pr =18 kips(80 kN). The lateral force levels of p. -45 kips(200 kN)

and Pr =18 kips (80 kN) corresponded approximately to theoretical first

yield of the extreme tension reinforcing bars. This was confirmed by

strain measurements at Pr =18 kips(80 leN) of Es=2860 tm:, compared with

a yield strain of £y=2450 m£.

The crack pattern at this stage of testing is shown in Fig. ".4(a).

Note that the shear inclination of the flexural cracks with the web in

compression are much steeper (about 55 degree) than with the flange in

compression (about 35 de-grce). Average shear stresses, based on the

effective web area of 5.6 X 42.5 = 238 in2 (153,500 mm2) were 189 psi

(1.30 Mpa) for WIC and 75.6 psi (0.52 Mpa) for FIC respectively.

Extrapolation of displacements to the theoretical flexural strength gave

the yield displacement as

!!.yw = 0.498 inch

!!.yr = 0.813 inch

Displacemen' Con' rolled Testine

On the first displacement controlled cycle, to Jolw = 1.0 and Jolr = 2.0,

vertical cracking developed at the toe of web under WIC. The base crack

appeared to about 1/8 inch (3 mm) with F1C, and cracks at higher levels

were also wide. During subsequent cycles at this level of displacement, no

further significant cracking developed, though force and stiffness both

degraded . On cycling to Jolw=1.5 and JLr = 4.0, further flexural cracks

de~eloped in the flange at the 6th and 7th mortar beds under WIC
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loading. with significant increase in inclined shear cracking in the web.

Severe cracking in the web toe developed. and the masonry face shell

started to spall in this area. The maximum lateral force at this stage was

Pw =55 kips. or 92 percent of theoretical strength. Cracks formed under

FIC forces opened wide for a height up to the 6th mortar bed.

At J.lw =2.0 and III =6.0. the maximum strength of Pw =63.4 kips was

recorded The degradation of the web compression zone continued, with

vertical cracking and spalling extending up the bottom 3 courses. On the

fourth cycle to thi~ level of displacement. the end vertical reinforcing bar

in the web LJuckled laterally, and the web compression zone crashed, with

rapid degradation of strength. Despite this. the wall was capable of

sustaining forces in the reverse direction (Fie) with no significant

strength degradation. Fig. 5.4 (b) and (c) show the crack pattern and

failure mode of wall FI at the end of testing.

Wall [2 (#4 <12.7 mm) Vertical Reipforcement. UpcopOpcd)

[orte-toplrolled CYcles

Initial displacement reading of 0.033 inch in the direction of WIC

was noted before commencing horizontal loading. First flexural cracking

at the base of the flange with loading direction of the web in compression

occurred at Pw =20 kips. In the reverse direction of loading (FIe). base

mortar bed cracked at PI =5.2 kips. and cracks at the 3rd and 4th mortar

beds in the web occurred at P, =8.7 kips and 10.5 kips respectively. First

yield of the extreme tension reinforcing bar 'It the web toe occurred
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during first cycle of Pr = 10.5 kips at 4 yf. 0.227 inch. The crack paltern al

this stage of testing is shown in Fig. 5.5 (a).

Displacement Conlrg"ed TesUn,

On the first displacement controlled cycle. to ..... = 1.0 and ~f = 2.0.

the 3rd mortar bed of flange cracked under WIC and first yield occurred

during this cycle at Pw =37.3 kips and 4yw: 0.367 inch. In the reverse

direction of 10ading(FIC). the Sth mortar bed in the web cracked. During

subsequent cycles at this level of displacement. no further significant

cracking developed. though force and stiffness both degraded. On cycling

to ~ =1.S and ~r = 4.0. further flexural cracks developed at the 3rd and

4th monar beds in the flange at Pw = 46.2 kips under WIC loading. New

crack formed at the 7th mortar bed in the web under the loading

direction of Fie .

At ~ =2.0 and ~f =8.0. vertical cracking at web toe occurred at Pw

= 48.6 kips. During cycles of ~w = 3.0. masonry of bottom 2 counes at web

toe crashed at Pw = SO.8 kips and the end vertical reinforcing bar buckled

laterally. with rapid degradation of strength. Despite this. the wall was

capable of sustaining forces in the reverse direction (FIC) with no

significant strength degradation. Fig. S.S (b) and (c) show the crack

pattern and failure mode of wall F2 after testing.
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Wpll [3 ('4 vertiepl Reinforcement. Wide Flann. IJptopfipcdl

forc:c-toptrollcd Cules

First flexural cracking at the flange base with the web in

compression occurred at p.. =35 kips. This force was much higher than

that for wall F2 due to its wide flange. But in the reverse direclion(FIC),

the behavior was very similar. First flexural cracking at base monar bed

formed at Pr = 7 kips and the 2nd mortar bed cracked at Pr = 8.7 kips.

Displaccment Copt rolled Tcstine

On cycling ~ = 1.0 and ~r = 1.0, cracking at the 4th monar bed in

the flange formed at p.. = 54.7 kips. vertical cracking developed at the toe

of web and four inclined shear cracks were observed in the web at Pw ==

59 kips under WIC. No further significant cracking de\'elopcd in the

direction of FIC. On cycling to ~ ozl.5 and ~, - 3.0, vertical cracking at web

toe extended and more shear cracks in the web formed under WIC

loading. At p.. = 64.2 kips, inclined cracks in upper pan of the flange

developed due to shear lag effects and cracks also formed in top concrete

slab. In the loading direction of FIC. a few inclined cracks in the web were

observed at Pr .. 13.6 kips.

At ~ =2.0 and ~, =6.0, cracks formed at the 3rd and 6th mortar

beds in the flange and more inclined cracks in upper pan of the flange

developed under WIC. At J.lw =3.0. vertical cracks at web toe were

extending quickly after the maximum horizontal load p.. = 70.6 kips was

reached and masonry face shell began to spall. then suddenly the bottom

three masonry courses crashed and the horizontal load dropped to 19
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kips. Despite this. the wall defonned steadily up to Jlr • 12 in the reverse

direction (FIe) with no significant strength degradation. Fig. 5.6 (a) shows

the crack pattern of th:: wall at lower load level. and (b) and (c) show its

crack pattern and failure mode at the end of testing.

Wall F4 (<<6 <It.OS mm) vcrtical Rcjp(g[(cmept. Confincd)

Force-controlled Cydes

First flexural cracking at the base mortar bed in the flange

occurred at Pw =25 kips. 6th mortar bed and center part of the 7th mortar

bed cracked at Pw =44.8 kips. and inclined shear cracks in the web also

developed at this stage. While the horizontal load was remaining at its

peak value. a sudden cracking at 3rd mortar bed happened and the

horizontal force dropped obviously.

In the reverse direction. first flexural cracking at base level of the

web was observed at PI = 8.9 kips. The 2nd. 3rd and 5th monar beds

started to crack at Pr = 12 kips and extended obviously when horizontal

load reached 15 kips. Inclined shear cracks across the 5th through the 8th

masonry courses developed at Pc = 18 kips. During a repeated cycle. the

9th mortar bed in the web also cracked.

Displas;cment Controlled Trslinl

On the first displacement controlled cycle. to flw = 1.0 and flc = 2.0,

the 4th and 8th mortar beds in the flange cracked and inclined shear

cracks across the 3rd and 4th masonry courses in the web developed at

Pw = 49.1 kips. First vertical cracking at the toe of web and shear cracking
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between the 6th and 9th courses were observed at p... = 53.1 kips under

WIC. In the direction of FIC, more inclined cracks across the 4th and 8th

masonry courses appeared at Pr = 20.3 kips. FleJ(ural cracks at the 8th and

11th mortar beds also formed during this cycle.

On cycling to J.I.w =1.5 and ~~r = 4.0. further flexural cracks

developed in the flange at the 7th mortar bed under WIC loading, with

significant increase in inclined shear cracking at the mid-height of the

web. Severe cracking at the web toe developed. and first vertical cracking

along weblflange interface was formed at Pw =57.7 kips. In the reverse

direction, cracking at the 12th mortar bed developed and more inclined

shear cracks formed in the web at Pr = 24.4 kips under FIC.

At Ilw =2.0 and Ilr =6.0, 10th mortar bed in the flange cracked at Pw

= 63.7 kips, this is equivalent to the ultimate strength of wall Fl. And

although inclined shear cracking and vertical cracking along weblflange

interface extended significantly during this cycle. the wall sustained the

horizontal load steadily. With increasing horizontal load, flexural cracking

at the 12th and 14th mortar beds developed and more shear cracks in the

upper part of web and inclined cracking in the flange up to the top

concrete slab formed at Pw =67.2 kips. Vertical cracking at web toe began

to penetrate into concrete base and masonry face shell started to spall off.

In the reverse direction (FIC), extensive shear cracking at mid-hight of

the web developed at Pr = 25.9 kips. During second repeated cycle,

vertical cracking along weblflange interface extended severely.

On cycling to Ilw = 3 and Ilr =8, in the direction of WIC, more shear

cracks in the web developed (Pw = 68.6 kips), then the wall suddenly
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failed due to end reinforcing bar buclcling and masonry crash at the web

toe, the recorded maximum horizontal force was 70.1 kips. Fig. 5.7 (a)

shows the cracking pattern at lower load IcYcl, (b) and (c) show the crack

pattern and failure mode of wall F4 at thc end of testing.

107



(a) J.1A =0.75

'\/-<----­
.,J

-......-

(b) Immediately before Failure

-----.

- 4~ ..

..~

~

~
~~T~.~./ r=.....

, ....._---
• I • w. .

-... _' -. .

1

r A -

t

.. '"

F\
.~

(c) Toe Crushing, at End of Test

Fig. 5.4 Condition at Different Stages of Testing, Wall FI
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<a> J.l& =0.75 (b> Immediately before Fililure

(e) Toe Crushing. at End of Test

Fig. 5.5 Condilion al Different Stages of Testing. Wall F2

109



1
,

::. ......
, ",J,.,

(a) J.L4. 1 (b) Immediately before Failure

(c) Toe C:u:.hing, at End of Test

Fig. 5.6 Condition at Different Stages of Testing, Wan F3

110



(a) ~"K I

':'~?\\.
";,

.... \- \:

\ \ '
It' \ ~ Ail /
. ~ \ i .,-:-
, /,~.'. ;/\ ,-----.

./ ".

(b) Immediately before Failure

(c) Toe Crushing. at End of Telt

Fig. 5.7 Condition at Different Stages of Testing. Wall F4

III



5.3.2 Lateral Load·denection Response

The test results of lateral load-displacement hysteresis loops for

wall FI to F4 are shown in Figs. 5.8 to 5.11 respectively. All the responses

show strong unsymmetrical characteristics in strength, stiffness and

ductility in the two opposite directions parallel to the web.

At an earlier phase of the preliminary stages of testing, the

strongly asymmetric stiffness characteristics are apparent with the wall

being approximately 2.5 times stiffer with the web in compression than

with the flange in compression. With the web in compression, the loops

are rather thin, particularly on second and subsequent cycles to a given

displacement level. indicating poor energy absorption qualities. With the

flange in compression, the loops are rather fatter, particularly at the

latter stages of testing, when large inelastic strains were developed in the

web reinforcement. The very brittle failure mode is apparent in the final

stages, where the load-deflection plot drops at a very steep angle. This is

a particularly dangerous characteristics for dynamic seismic response.

Confined wall F4 exhibited more ductile load-deflection behavior and less

steeper falling branch in the direction of the web in compression than

unconfined walls.

In the direction of flange in compression, the behavior of all walls

was essentially the same, Le. lower strength and stiffness, but more

ductile. even after the walls failed in the opposite direction, they could

still sustain deflection without significant degradation of strength and

stiffness.
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In Figs. S.8 through S.ll, the lines with • are the predicted load­

displacement envelopes for ea::.h wall. In the direction of the web in

compression, the predicted ultimate strength coincided well with the

experimental results, but ultimate displacements which were calculated

by the plastic hinge theory which will be discussed later in this chapter

were much smaller than the tested results. In the opposite direction,

although the tests stopped after the walls failed, it seems that the wall

deflection could reach the predicted displacement. Discussion and

comparison of experimental results with theoretical analyses will be

presented later in this chapter.
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S.J.J Flexural Response or Wall.

The distribution of vertical strains of reinforcement of wall Fl

along the cross section at maximum response in the direction of web in

compression are shown in Fig. S.l2 and Fig. 5.13 presents the distribution

in the opposite direction after first yielding (the displacement ductility

factor ~ • 2). The measured corresponding venieal deformation of

masonry surface by the lineu potentiometers uc presented in Figs. 5.14

and 5.15. Fig. 5.16 illustrates the venical strain distribution of wide

Oange wall F3 at Pw =64.4 kips, unfortunately lot of the straingauges

damaged at ultimate state lnd can nOI be presented here. The

corresponding venical deformation of masonry surface is shown in Fig.

115



~.17. From the above figures, the following tendeacy in distribution of

vertical strains and deformation can be observed:

1. Strain distribution along the height: For wall F1, in the direction

of the web in compression, the strains of vertical reinforcement at bottom

two courses (16 inch) were almost the same. and all yielded. From the

third layer the strains started to decrease gradually. But in the direction

of flange in compression, it seemed that all bottom four courses (32 inch)

yielded which indicates that the length of plastic hinge zone for flanged

walls is also different in the two opposite directions. The vertical strains

of wall F3 showed decrease from the bottom along wall height before

reached its maximum response.

2. Strain distribution horizontally along the web: The distributiryn

of vertical strain horizontally along the web was close to linear in both

directions, but the width of compression zone, therefore the position of

neutral axis was quite different due to effects of the flange. In the

direction of web in compression, the neutral axis was about 24 inch, a

little more than 50% of the web length (Fig. S.13 (a». From Fig. S.lS (a) to

(c), the calculated position of neutral axis was 20, 21, 31, and 27 inches

respectively, the :lverage was 24.8 inch. In the opposite direction, from

Fig. ~.14, the strains of vertical reinforcement at weblflange intersection

were close to zero which indicated that the position of neutral axis was

coincided with the central line of the flange thickness, i.e. 2.8 inch. The

above results can be confirmed by the measured vertical deformation of

masonry surface in Figs. S.14 and S.lS.
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3. Strain distribution horizontally along the flange: It is clear from

both strain of vertical reinforcement and masonry deformation that at the

ultimate state of wall FI, the strains were almost the same along the

flange section which implied that shear lag effects could be ignored. But

for wide flanged wall F3 before maximum response (Figs. 5.16 and 5.17),

the effects of shear-lag was obvious. The strains at flange section

decreased from weblflange intersection towards its two ends due to this

effect. The shear-lag effects and equivalent flange width will be discussed

in Chapter 7.
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Fig. 5.12 Vertical Strain Distribution(mE), Fl, WIC, A=~llI
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(e) 16" from Base
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(b) 24" from Base

(d) 8" from Base
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Fig. 5.13 Vertical Strain Distribution(m£). Fl. FIC. ~ =2
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~
(a> Between 28" &. 20" from Base
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Fig. 5.14 Venical Deformation of Masonry(in>, Fl, WIC, A=AmIl
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5.3.4 Innuence 0' Shear on Response

tal Strains on Horizonta' Reinforcement

The strain distribution of horizontal reinforcement for wall FI and

F2 are show in Figs. 5.18 and 5.19 respectively. For each wall, three load

levels. namely before shear cracking, intermediate and ultimate state

were selected to show the variation of shear strain distribution at

different loading stages. For wall FI, the three load levels were Pw =I'

kips, 49 kips and 63.4 kips respectively, and 12 kips, 37.S kips and '0.8

kips for wall F2 correspondingly. Unfortunately shear strain of hori~ontaJ

reinforcement for wall F3 and F4 could not be presented here due to

excessive damage during construction and testing. From the above

figures, the following features of shear strains can be found:

1. Before shear cracking, horizontal reinforcement was not

mobilized, which can be proved by very low strains at this loading stage

with both walls.

2. It is obvious from comparison between Figs. 5.18 and S.19 Ihal

shear cracking with wall FI is much more severe than with wall F2 due to

its higher loading. This can also be confirmed by comparing the cracking

patterns of wall FI and wall F2 from Figs. S.4 and 5.5.

3. To estimate the shear capacity of masonry, equation S.l was

applied as

V. Vat + VI
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where v is the total shear force at the cross section, Vm and VI are shear

carried by masonry and horizontal reinforcement respectively, and

VI =AlfydJs (S.2)

in which A.. fy and s are area, yield strength and vertical spacing of

horizontal reinforcement , d is effective width of the web. The above

values in this case are 0.2 in2, 60 ksi, 8 inch and 38.8 inch respectively.

Assuming the angle between shear cracking and horizontal axis to be SS

degree, results in that seven horizontal rebars will be crossed by one

shear crack on average. Supposing that the shear crack cross from the 8th

mortar bed at web/flange inlersection (slrain 1920 m£) down 10 the 2nd

mortar bed at free end of the web (strain 346 m£), and estimaling the

unknowing strains by interpolating the measured strains, will result in

the approximate shear carried by the horizontal reinforcement VI =42.2

kips. Since the total shear v = 63.4 kips, the.. shear carried by masonry Vm

= 21.2 kips and the corresponding shear stress would be 88.S psi. Using

the same assumptions to wall F2, at the ultimate state, the shear carried

by horizontal reinforcement would be 21.5 kips and the shear carried by

masonry is given by Vm = 50.8-21.5 = 29.3 kips. In this case, the

equivalent shear stress is 122.2 psi.

Since shear in the direction of flange in compression is never a

problem, the measurement results and discussion will not be presented.
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(bl Shear DeformptioQ

Figs. S.21 through S.24 present the horizontal displacements of

four walls at their maximum responses in the direction of web in

compression. The four locations of displacement measurement were 12

feet (wall top), 8 feet .4 feet and zero from the base respectively.

The horizontal displace~ent due to shear was derived by

deducting the displacement causeJ by flexural deformation from the total

displacement measured during testing. The displacement due to flexure

was calculated as follows: From the vertical deformation of masonry

surface measured with potentiometers at both sides of the web, the

average curvature at bottom pan of the wall can be derived as

(S.3)

Assuming a liner curvature distribution from the calculated value at the

highest position to the top of the wall, as shown in Fig. S.20, the

displacement at wall top can be estimated using the equation

(S.4)

where n is the number of total potentiometers at each side, i varies from

I to n, while j varies from I to (i-I >, and all other parameters are as

shown in Fig. S.20. The calculated results for four walls are presented in

FiBS. S.21 though S.24, from which it can be seen that the distribution of

displacements due to flexural and shear deformation along the wall

height is quite different. The displacement due to rotation increased with

increase of the height faster than that due to shear deformation, and the

combined total displacement is close to linear distribution along the wall
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height. It is also noted that displacement due to shear is nOI negliJible • it

can make up to 30% of the total displacement at the ultimate state for

heavy reinforced flanged walls. Based on the gross section propenies. Ihe

displacement due to shear will be 17% of the total displacement. For wall

F2. the shear displacement was relative smaller because of its lower

horizontal force resulted from less venical reinforcement ratio.

l~

wall
H

potentio-
'de I melers side 2

1/ "- cp..-
- hi CPi r-

Eo'- I ,
G>I

1 --

SI

(a) Loca lion oC
Potentiometers

(b) Curvature
Distribation

Fig. S.20 Horizontal Displacement due to Rotation
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5.3.5 Material Properties Inferred From the Testing Results

Masonry CornprcSlign Strength

A estimate of masonry compression strength is possible by section

analysis at the wall base at ultimate strength conditions. The linear

potentiometers on the Iir.e of the web (see Fig. 5.1) allowed the position of

the neutral axis, and the reinforcement strains, to be estimated at the

wall base. Equilibrium of vertical forces enabled the masonry

compression force em to be estimated from

n

em = L fsi As! + p"
i-I

(5.5)

where fsi is the stress (negative for compression) of bar i of area Asi. n

is the number of vertical reinforcing bars and Pv is the total axial load at

the wall base.

Assuming an equivalent rectangular stress block of average stress

0.85 f~ t and extent a = 0.85 c (c = length of compression zone), the

masonry compression strength in the wall is given by

to - em
mw - 0.7225 t.e

where t is the wall thickness.

(5.6)

For the direction of loading placing the web in compression, the

depth of com pression, c, was rather large, particularly for walls F I, F3 Ind

F4. Hence f~ t could be estimated with reasonable accuracy. As Table

5.1 shows, values showed considerable variation from both predicted and
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measured prism strengths from Table 4.2. In particular, the apparent

difference in strength between walls FI and F2 should be noted. The high

strength for wall F2 must be viewed with some reserve, since the

measured depth of the compression zone was small for this wall, and

comparatively small errors in measurement of c will have large effects on

computed fm' w values. It will be shown later that wall moment

capacities predicted or. the basis of inferred wall compression strengths

agree muc.1 better with measured capacities than do those based on

prism strengths.

Table 5.1 Material Propenies (Ksi)

F 1 F2 F3 F4

(mv 2.35 3.51 2.81 3.14

f1 0.32 0.30 0.20 0.26

Em 2170 2440 1850 2270

Masonry Tensile Strength

When the walls were loaded with the flange in tension, the loads

at which various flange cracks developed were rather precisely defined

by the audible result of the release, as cracking occurred, of the

considerable amount of strain energy stored in the wide flanges. The

contin uous records of load-deflection hysteresis loops also clearly

identified the instant of cracking by a substantial drop in load without

change in displacement. E. computing the moment at the level where
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cracking occurred. it was a simple matter to back-calculate to find the

corresponding tensile stress at the instant of cracking.

Table 5.1 shows The average values of ft from 4 or S cracks

developing at different levels of the wall, but exclude the base cRck,

where bond of the grout to the wall base, rather than grout tensile

strength, governed behavior, and where the instant of crack formation

was not well defined.

The values for tension strength in the wall are surprisingly high.

It is clear that tension bond strength between mortar and concrete block

must have contributed significantly to strength. It should be noted that

the tabulated tension strength are based on the assumption that tension

stress prior to cracking was uniform across the width of the wide flanges.

In fact measurements indicated significant shear lag effects at early

stages of loading. Thus the tabulated strengths are a lower bound on

actual tension strength. It will be noted that wall F3, with the 16'- 8"

wide flange, and hence the greatest shear lag effect, has the lowest

apparent tension strength.

Elastit Modulus

A third material properly can be inferred from the telit results.

From observations of the wall lateral displacements at the early stages of

loading before cracking occurred, the elastic uncracked stiffness, and

hence modulus of elasticity can be inferred from the expression

(5.7)
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where H is the wall height. Ki is the initial stiffness( lateral load divided

by lateral displacement) and Ig and Ag are the moment of incnia and

web area of the gross (uncracked) section respectively. Eqn. S.7 assumes

the shear modules is O.4Em , and that shear lag effects are insignificant.

As a result of the latter assumption, it should underestimate Em.

particularly for the extra-width flange F3. Inspection of Table 5.1 will

show that F3 does indeed have an apparently low modules of elasticity

(about 10% below the average for the other walls) and also that wall F2.

which has a high apparent compression strength in the wall also has a

high value for Em. Related to the measured prism strength. a

stiffness/strength ratio of Em = 1000 f m' p is a good average value.

However, related to inferred strength in the wall a value of Em = 750

fm'w seems more appropriate.

It is should be noted that the value of modulus of elasticity Em is

essential for calculating the natural period of masonry structures. based

on which the seismic load applied on the structures can be predicted.

According to ACI code for masonry structures, for masonry with net area

compression strength of (m =2500 psi, the suggested modulus of elasticity

is 2.2 to 2.4 1()6 psi, therefore the average value is Em = 920 (m which

coincides well with the test results as above. According to New Zealand

code, for all masonry grades. the modulus of elasticity may be taken as 25

Gpa. Therefore for mid-strength of (m = 20 Mpa. Emlf'm = 1250 which is

much higher than the value from ACI code.
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5.4 Discussion or Testinl Rel'ults

Tables 5.2 and 5.3 summarize results from the experiments and

analytical studies, for peak response in the two loading directions.

Maximum predicted wall-base moments in the direction of the web in

compression, based on two different assumed compression strengths arc

listed in rows 2 and 4 of Table 5.2. and may be compared with maximum

experimental wall-base moments, listed in row 1. Moments Mtp in row

2 were based on an assumed ultimate compression strain of t1a = 0.003,

and masonry compression strength based on results of prism tests, as

given in Table 4.2. It will be observed from the variations in the ratios of

experiment to predicted value in row 3 that the agreement is not

particularly good. particularly for wall F3. When masonry compression

strength inferred from the strain distributions at the wall base (see Table

5.1) are used, the agreement between theory and experiment, as

evidenced by the data of rows 4 and 5 is excellent.

Rows 6-8 of Table 5.2 summarize shear strengths of the walls. It

will be seen thar the maximum shear force (row 6) corresponding to

flexural strength was, as expected, less than the shear strength capacity

based on transverse reinforcement alone (that is, ignoring any

contribution of masonry shear mechanisms). Although shear cracks of

significant width developed in all walls, no distress occurred in shear,

despite the high level of shear stress developed. For walls F3 and F4 this

was close to 300 psi(2 MPa), and should be compared with maximum

allowable shear stress permitted by the Uniform Building Code [11 of 75

psi (0.5 MPa) for wall of these proportions.
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In the direction of the flange in compression. the masonry

compression strength did not affect wall moment capacity significantly.

The moments based on both prism test and inferred masonry

compression strength were lower than the experimental results as shown

from rows 9 to 13 in Table 5.2. The reason may be the effects of strain

hardening of vertical reinforcement due to largc deformation in this

direction. It is obvious that shear strength can never be a problem in this

loading direction as shown from rows 14 to 16.

(a) Crack Pallern (b) Moment (c) Curvature

Fig. 5.25 "Tjd" Approach for Predicting Deflection
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Table S.2 Comparisons Between Analytical and Test Strength

Row Description Fl F2 F3 F~

I Mmu (eJpcrL) 9130 7315 10150 10090

2 Mtp (fm' • prism 9590 6830 711 ~ C}"l~
II, 1

c::
0 3 Mmu/Map 0,95 1.07 1."13 1.10.-en
en
Q)

~
Jfm'- wall

"" Ml - strength) 8930 7070 10080 10040c.
S
0 5 Mmu/Mtw 1.0Z 1.03 1.01 1.01u
c::.- 6 Vmu (elperi.) 63,4 50.8 70.~ 70. I

,J:J
Q)

~ , VIS (steel alone) 81.3 81.3 81.3 81.3

8 VIS .VlII( td) (Ksil 0.261 0,212 0.294 0.292

9 Mmu (eJperL) 3686 2419 2952 37....

c:: 10 Map (fm" prism H88 2128 2329 3360
,g strength)
en

Mmu/Mtpen I I 1.06 1.14 1.27 1.11cu
L..
c.

MIJfm'''' walle 12 3157 2153 2437 3B6
0 strength)

U
c:: 13 Mmu/Mlw 1.07 1.12 1.21 1.06.-
elloe I" Vmu (elperi.> 25.6 16.8 20.2 26.0c::•u: 15 Vla(Sleel alone) 81.3 81.3 81.3 81.3

16 VII .VlI( td) (tsil 0.107 0.070 0.084 0.108

•. Units: moment ~-- k-in. shear --- Kips.
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Table 5.3 Comparisons Between Analytical and Telt Displacement

Row Description FI F2 F3 F-t

I Amu (elperU 1.62 1.17 1.15 2.·H

2 4r (elperi.) 1.01 1.03 1.05 1.5"

3 lly (elperi.) 0.61 0.J.4 0."6 0.90
c::
.2 (curvature 0.60In .. &1 0.61 0.57 0.71
In

"... (plastic binae0. 5 1112 1.06 0.91 1.09 1.93
e 1\

0 ("Tid'U 6 llt3f 1.11 1.28 1.05 2.28
c:: ' \.-
.0 7 My OJO 0.23 0.33 0.33
"~

8 M • Mf • My 1.41 1.51 1.38 2.60

9 !lmDI!J.12 1.53 1.29 1.39 1.27

10 !lmDI!J.t3 1.15 0.77 1.09 0.9"

I I !lnw (el peri.) 5.0 6.0 4.0 ".0
•

12 1112 (plastic hinae 5.86 4.75 9.17 5.86

*: Flange in Compression

*2: All units are in inch
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Table 5.3 lists experimental and predicted displacements at

ultimate conditions. Row 1-3 list the experimental displacement at

maximum lateral load (Amax ) and shear (Ay ) components of Amax in

the direction of the web in compression for the four walls. The flexural

deformation Af was found by integrating the measured curvature

distribution up the wall. and the shear deformation was defined as Ay =
Amax . M. as mentioned earlier in this chapter.

Results from two commonly adopted methods for predicting

ultimate displacements are listed in rows 4 and S. Values in row 4 are

obtained by integrating the theoretical curvature distribution up the wall,

where the moment-curvature relationship is based on the plane-sections

hypothesis. This ignores shear deformations and distortion to strain

profiles across horizontal sections resulting from inclined flexure-shear

cracking. Comparison of these values with experimental displacements

Ama x indicates poor correlation, with experimental deflections at least

twice predicted values. If values from row 4, which do not include

predicted shear deformation are compared with the flexural component

of the experimental displacements (row 2), the agreement is still poor.

An alternative approach, which is often adopted to compensate in

some part for the inadequacies of integrating the curvature distribution is

to assume an elasto-plastic moment-curvature relationship. For base

curvatures CPb less than that corresponding to yield the displacement at

the level of lateral load is based on an assumed linear curvature

distribution up the wall. That is
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"t2 = -- H2 5 8u TV
3

(.)

For base curvatures greater than the effective yield curvature CI'y. a

plastic rotation

is calculated. where Lp is an equivalent plastic hinge length. The lateral

displacement at the wall top is thus

H2 ~
t\t2 = cpy 3 + ~ - CI'y) Lp (H - 2) (510)

Different researchers aetvocate different effective pla~tic hinge

lengths. The '.. alne adopted in this study is

Lp =0.08H + 6db (S.II)

where H is the height of the wall and db is the diameter of the

longi tudinal reinforcement in the wall. Eqn. 5.11 was derived from

experiments of concrete bridge piers [28] but is supponed by analytical

studies as being appropriate for shear walls. In equations 5.9 and 5.10,

'" is based on ultimate compression strains of 0.003 and 0.008 for

unconfined and confined masonry respectively. Results of deflections

based on this approach, listed in row 5 are still much lower than the

experimental maxima, but are in reasonably good aareement with

observed flexural deformation.

A third approach is summarized in rows 6-8. In this method. the

curvature distribution of method 1 (row 4) is modified to talee account of

the inclination of flexure shear craclcin.. as illustrated in Fi.. 5.25.
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Designers are familiar with the concept that steel stresses at the extreme

rebar at some position on the wall ( Fig. S.2S (a» are related to the

moment at the root of the crack ( Fig. S.2S (b». It follows that steel

strains over a length Is at the base of the wall should be essentially

constant, where Is = (d - c)tanQ and d is effective depth to extreme

tension rebar, c is J~pth of compression zone, and Q is the inclination of

the flexure shear cracks to horizontal axis. A measure of support for this

was provided from the steel strains recorded at different heights of the

flanges which showed little reduction with height over th.~ lower region

(Figs. S.12 and 5.13).

Designers account for the shift in steel strain by apportioning steel

in accordance with a moment pattern, termed the Tjd diagram, that is

displaced by an amount Is, as shown in Fig. 5.25 (b). If this approach is

valid, curvatures based on steel strains should also be displaced

vertically, by an amount equal to Is, as shown in Fig. S.2S (c). Curvature

distributions prior to yield based on this approach were used to predict

flexural displacements in row 6 of Table S.3. In addition, p1astic rotations

for the confined wall F4 were based on the measured maximum

compression strain of 0.0144 rather than the conservative design value of

0.008. Since the deflections of row 6 still do not include shear

deformation, an estimate for the latter, listed in row 7 was based on the

equation.

(S.12)
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where P = lateral load, Av = shear area (=web area), Gm .. masonry shear

modules = O.4Em, and PI = steel ratio for transverse reinforcement. Eqn.

S.11 effectively modifies the elastic uncracked-section shear deformation

on the assumption that the transverse reinforcement pro-,ides the

resistance to shear deformation after diagonal cracking develops. The

total predicted deflection for the four walls are then listed in row 8.

Comparison of the predicted displacements from methods 2 and 3

with the observed displacements, listed as ratios in rows 9 and 10

indicate that the 'traditional' approach underestimates deflection by some

30-50% but the more refined method 3 provides a close estimate of

behavior.

The predicted displacements in the direction of the flange in

compression, based on the plastic hinge theory are listed in row 12 and

the recorded experimental displacements are shown in row 11. Since the

tests for all four walls stopped without failure in this loading direction,

the comparison between these values is not proper. it seemed that the

walls still had the ability to sustain horizontal loading without significant

degradation of strength and stiffness, and the final displacements would

exceed the predicted values. Theoretically, the behavior with the flange

in compression is less sensitive to the width of flange or material

properties, and more predictable than with the web in compression.

Besides, no wall was found to fail in this direction due to its higher

ductility capacity. The comparisons Between SCM and experimental

results will be presented in Chapter 7.
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5.5 Conclusions

Results from the experiments and analyses enable the following

conclusions to be drawn:

I. The flanged masonry walls have unsymmetrical behavior in the

two loading directions parallel to the web. In the direction of web in

compression, walls had higher strength and stiffness, but much less

ductility capacity than the opposite direction. Each wall failed in the

direction of loading the web in compression and the failure was sudden

and brittle, initiated by a compression failure of the web toe.

2. Hysteretic behavior of the walls was characterized by thin loops.

particularly on repetitive loading to a given displacement level. After

yielding in the direction of flange in compression, the half-loops in that

direction became fatter indicating increased energy dissipation.

Quantitative studies on dynamic hysteretic loops and energy dissipation

rate to estimate the damping ratio will be presented in chapter 6.

3 Material properties inferred from wall response did not agree

well with results of prism tests. Ultimate compression strains measured

over the bottom 12 inch of wall greatly exceeded values suggested on the

basis of prism tests. It appears thai the foundation slab provided strong

confinement to the bottom slab, and that the critical section should be

considered to exist at the second or third monar course.

4 Wall moment capacity based on inferred from measured neutral

axis position compression strength was in excellent agreement with

measured capacity.
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S. Displacements due to shear were significant with the web in

compression. contributing up to 30% to total deflection at the ultimate

state. meanwhile based on gross section. shear displacement would be

17% of the total displacement.

6. Deflection calculations based on a modified elasto-plastic

approach which acknowledge the spread of elastic strains caused by

diagonal flexure shear cracking. agreed well with experimental values.

This approach is simple enough to use as a design approach. and was

incorporative in modifying the hysteretic model developed in Chapter 3.

7. The vertical reinforcement ratio affects the response of flanged

masonry walls significantly in both directions. With the increase of

reinforcement ratio(wall FI vs. wall F2). the moment capacity and

equivalent stiffness increases. but the ductility capacity will decrease.

especially in the direction of the web in compression.

8. Flange width has significant effects on the behavior in the

direction of the web in compression. i.e. with increasing the flange width.

the wall has higher moment capacity and stiffness. but less displacement

ductility(wall F3 vs. wall F2). In the direction of flange in compression.

the influence of the flange can be ignored.

9. Confining steel plates on mortar beds at the web toe improves

the response in the direction of the web in compres~ion substantially. It

increases the displacement ductility and improves the falling branch after

the maximum response.
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6. EXPERIMENTAL STUDIES, PART l···DYNAMIC TESTS

6.1 Introduction

The second phase of the experimental studies on the seismic

behavior of flanged masonry walls, consisted of tests of S full scale flanged

masonry walls subjected to dynamic loading on a large shake table. The

pseudo-static load tests on flanged masonry structural walls presented in

the previous chapter confirmed expected performance, including

asymmetric force/deformation characteristics, and a brittle failure mode

ill volving compression failure of the web toe.

Although static testing facilitates detailed observation of

experimental response during testing, it cannot create a realistic seismic

environment to examine the response of structures to earthquake attacks

because of the loading rate. As a continuing program, the purpose of these

dynamic tests was to investigate the following aspects.

• Examine the behavior of flanged walls under dynamic excitation.

• Check the comparative performance of identical flanged walls

subjected 10 slatic and dynamic loading.

• Investigate the effects of vertical reinforcement ratio, confinin.

plates on mortar beds at web toe on seismic response of flanged masonry

walls.
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facilities consist of a single degree of freedom shake table with its control

system and a high speed data acquisition system.

The shake table stands about 4 feet (1.22 m) high with a deck of

10 ft. x 16 ft. (3.05 m x 4.88 m) in plan dimensions (sec Fig. 6.1). The

actuator of the table has a maximum driving force of 100 kips ( 445 KN)

and a total dynamic stroke of 12 inch (305 mm). The control system

houses the electronics for the servo-loop control of the test. The system

can be operated in displacement control with an external command signal

provided from a Compaq Deskpro 286 computer equipped with a

Metrabyte DAS-20 I/O analog/digital expansion board. At present, the

displacement control histories can be one of the following:

• earthquake records or 'customized records'

• soft-start soft-stop sinusoidal waves

• standard sinusoidal waves

The data acquisition system is composed of an Apple Macintosh II

computer equ~, )~ed with a National Instruments NB-M30-16H-9 12-bit

A/D converter board. The system allows the scanning of up to 128

channels at a data sampling rate of 100 KHz.

As with the walls for pseudo-static tests, electric resistance strain

gauges (81 in total) were placed on both vertical and horizontal

reinforcement to investigate shear lag effects in vertical reinforcement

and shear forces carried by transverse reinforcement in the web.

Masonry strains in the lower region of the wall were monitored with
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linear potentiometers attached to steel studs epoxied into holes drilled in

the masonry. A further linear potentiometer was orientated in the

horizontal position to monitor slippage of the wall on the base. Other

instrumentation included measurement of gross top-of-the-wall

deformations relative to the base. Three linear potentiometers monitored

wall horizontal displacements at the line of 12 feet (center of the top

mass), 8 feet and 4 feet above the base respectively. Another 2 gauges

monitored vertical movement of the wall. All positions of the

instrumentation were the same as for the static tests, and can be found in

Figs. 4.2 and 5.1.

In addition to the above, 6 accelerometers were installed to

monitor the input and response accelerations. Two of the accelerometers

were oriented horizontally, A2 at base level and Al at the center of the

top mass. The remaining 4 accelerometers were installed vertically, with

A3 and A4 at the base level (spacing S feet) and AS and A6 at the level of

the top mass center (one at each side) to measure the rotation of both

base and the top mass during the testing (Fig. 6.1).

Since wall F9 was positioned at a 45 degree skew to the axis of the

shake table, three horizontal oriented gauges monitored the

displacements only in the wen plane. Accelerometers were arranged to

measure the horizontal input along the table axis at the base level and

honzontal translation responlle acceleration in the plane of the web at the

top; response rotations in the horizontal plane and in the plane of the web

at the top respectively. To measure these rotations, four accelerometers
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wcrc attachcd to thc sidcs of the top concretc inertia masICs at 12 feet

(3.66 m) high from the base with two accelerometers on each side.

reaction
block

actuatorshake table

masonry wall

concrete base

sprinK coil

--+-- mass blocks

- .......~~.,I--o.q.-""'T-.....,ti::=- A ~
-- AI"'::;;:I:=:;;f!....- top slab

vertical load rod 5

12

strona floor

Fig. 6.1 Dynamic T,,~i Facilities and Instrumentation

6.3 Vertical Loadine and Test Procedure

6.3.1 Vertical Loadine

Since adjustment of vertical load during testing was not feasible, a

special systcm of venical load application was designed for the dynamic

experiments and alse adopted for the pseudo-static tests in order to allow

comparison of results between the two teits. The load was applied by
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four SIS" Dwidag bars anchored at the bottom of the base and stressed

against the top slab of the wall, through 4 stiff coil springs (one for each

bar). The flexibility of the springs ensured that the axial force

maintained the required value as the wall displaced laterally and

vertically (refer to section 5.1). Measurements taken during the wall

tests showed that the system worked well and the maximum variation of

vertical loads was less than 8%. The level of applied axial force was

chosen to provide an essentially uniform stress of 100 psi (0.70 Mpa) at

the base of the wall. Thus the resultant of the vertical forces coincided

with the geometric centroid of the wall sections. Considering the top mass

and self-weight of the wall, the applied axial compression force for each

bar was 12.35 kips (54.9 KN).

6.3.2 Mass-spring System

To ensure that the specimen would respond adequately to the base

excitation, two concrete blocks (each weighing approximately 5 tons)

were made to simulate tributary building mass. The blocks were identical

with dimensions of 8'-8" x 6' x 1'-4" (2.64 m x 1.83 m x 0.41 m = length

x width x height). There were two reasons for casting two blocks

instead of one: the capacity of the travelling crane in the lab, and the

intent that they may be used separately for subsequent tests. The total

concentrated mass at the wall top, including these two blocks and top

concrete slab was 23.3 kips, plus one third of wall self weight (2.5 kips),

the resulted equivalent mass at the wall top was 25.8 kips.

The blocks were mounted on the top of the wall in such a way that

the center of the total top mass was 12 feel (3.66 m) high from the base
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and coincided with the geometric centroid of the wall lections

horizontally to ensure that their mass would produce uniform pavity at

cross sections of flanged walls. The test system with a flanged wall on the

shake table is shown in Fig. 6.2.

Fig. 6.2 A Hanged Wall on Shake Table During Testing

6.3.3 Test Procedure

The loading sequence for the first three walls CFS. F6 and F7)

consisted of the following two phases:

• Sinusoidal input test: The excitation was chosen as S

complete cycles of sinusoidal table displacement with frequency f = S Hz.
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The first two runs used very smal! amplitude input to check the natural

frequency of the wall before cracking, then the amplitude of the input

was gradually increased until the vertical reinforcements in the flange

was close to yield in tension.

• Earthquake record input test: The earthquake record used

was El Centro 1940 N-S. Since the maximum acceleration recorded is

about 0.3g which is not strong enough to cause damage to the test units, a

reduced time factor of 0.25 was applied to increase the intensity of the

input. It is well known that theoretically, for a undamped harmonic

vibration,

V :: Vo sin (mt +60 ) (6.1)

the relationship between acceleration and amplitude can be expressed as

V:: -m2vosin (wt +80 ) =_m2 v (6.2)

where vo, m and 90 are the amplitude, circular frequency and initial phase

of the vibration respectively. Equation (6.2) indicates that the acceleration

is proportional to second order of its amplitude. For a eanhquake input,

the relationship may not be so simple because of the effccts of damping

and excitation with different frequencies. But using a reduced time factor

will certainly increase the frequencies and therefore the intensity of the

earthquake input. With a time factor 0.25, the running time for the shake

table with EI Centro earthquake record during each test was about 8.S

seconds.

Also a displacement (amplitude) factor was used to adjust the

intensity of earthquake input for different tests. From equation (6.2), for
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a undamped vibration. the acceleration is proponion to its amplitude.

Again. for eanhquake input. the relationship may not be exacl1y

proportional to each other due to effects mentioned above. but should be

very close to it. The displacement (amplitude) factor for the first run was

chosen in such a way so that it would produce the same level of

acceleration at the base as for the last run of sinusoidal input. The

displacement factor was gradually increased until the wall reached its

maximum response and finally failed.

It should be mentioned that to estimate the difference of natural

frequency between on ground and on shake table. wall F5 was tested on

strong floor before moving onto the shake table. The method was very

simple. First. tieing down the wall base onto the strong floor with Dwidag

post·tensioning bars • then connecting the wall top to a fixed strong

frame with a steel wire and tensioning the wire to give a small

displacement at the wall top ( make sure it will not cause any cracking on

the wall). Finally. suddenly releasing the wall by cutting off the wire. the

wall was in free vibration and natural frequency and damping ratio can

be measured. Discussion of the test results will be presented later in this

chapter.

Data was recorded at 200 scans/sec. during the entire experiment.

The record time was 3 sec. for sinusoidal tests and 10 sec. for eanhquake

input tests. A typical testing procedure for wall FS is listed in Table 6.1.

For wall F8, only two runs were applied. First. as with the previous walll,

a very small amplitude sinusoidal input was used to check the natural

frequency and test facilities. Then, a input of EI Centro 1940 N-S
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earthquake record with a time factor = 0.25 and displacement factor 01: -

1.0 which produced the maximum response for wall FS. was applied to

investigate the effects of loading history. For wall F9. a similar test

procedure to wall FS was used. but the wall itself was positioned with 4S

degree skew to the table axis for a preliminary study on behavior of

flanged masonry walls under arbitrary eanhquake attacks.
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Table 6.1 Tesl Procedure for Wall FS

Run Input Tabl. Run Pat. Acq.
No. Timebee.) I imebee.) Comments

Om (in) Am (g)

1 0.02 0.051 1.0 3.0 For cbeckina
rr.. n

2 0.02 0.051 1.0 3.0
N
::t:
lI"\ 3 0.05 0.128 1.0 3.0

•.... -4 0.10 0.256 l.0 3.0-tlS
~ Visible crac-
'0 5 0.10 0.256 1.0 3.0 kina in FIe
Cfl
~

.5 6 0.20 0.510 l.0 3.0 Yieldina
til in FIt"

7 0.35
Severe crae-

0.890 1.0 3.0 kin, in '\V IC

8
Sb••r erae-

0.35 0.890 1.0 3.0 kina in WIC

9 0.25 0.25 8.5 10

VI 10 o.n 0.50 8.5 10
I

Z
0 11 0.25 -0.50 8.5 10
'f'
C1'- 12 0.25 -0.75 8.5 10
0

"" IMII. r••pon••...c: 13 0.25 -1.00 8.5 106) 'n '\VIC
U- 14 0.25 1.00 8.5 10 WaU failed~

in wrc:

15 0.25 1.00 8.5 10 twall collapsed
in VIle

ft (Time ed (Disp.
raclnrl '.rlnr \

Input

FIC: loading direction or nanae in compression
WIC: loading direction or web in compression
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6." Test Result. and Observation.

6....1 General Behavior Ob.erved

The details observed during tests for all S flanged masonry walll

are summarized below and following abbreviations are used for the

description:

WIC: Direction of loading placing the web in compression

FIC: Direction of loading placing the flange in compression

D: Amplitude of sinusoidal input for the shake table

A: Acceleration of sinusoidal input for the shake table

fd: displacement factor, i.e. peak displacement ratio of shake

table vs. the earthquake record

A.: Peak response acceleration with WIC

Ow: Peale response displacement with WIC

At: Peak response acceleration with FIC

OJ: Peak response displacement with FIe

Wall F5 (16 vertiCIl ReinfQrcemenl. Identlnl Ip FIl

Prelal pn Ground

The test method was as mentioned in the previous section, The

measured natural frequency was 9 Hz and the damping ratio wu 0.02.

Tesls with Sinusoidal Inpul (f = 5 Hz)

The natural frequency 7.2 was measured during the first two runl

with D = 0.05 inch and no cracking wu found after the tests.
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In the direction of the flange in compression (FIC), minor cracking

at the web base mortar bed was first noted with D :z 0.1 inch (A :: 0.26 g),

the maximum responses Dr = 0.17 inch and A, = 0.51 g were measured.

With D = 0.2 inch (A :: 0.51 g), the crack It the base expanded to the

whole cross section of the web and minor cracks at the 2nd, 3rd, 4th and

6th mortar beds in the web formed. The maximum responses Dr. 0.52

inch and Ar = 0.8S g were recorded.

During first run with 0 :: 0.35 inch (A :: 0.89 g), the above cracks

expanded and a new crack al 8th morlar bed developed. Shear cracking

in the web was first noted during second run with D :: 0.35 inch, the

corresponding responses were Dr = 0.96 inch and Af = 0.98 g.

In the opposite direction (WIC), a minor crack about 20 inch long

formed in the central Jart of base mortar bed in the flange with 0 = 0.35

inch. The maximum responses Dv.. = 0.44 inch and Aw = 1.62 g were

recorded.

Tests with EI Centro Record (Time Factor 0.25)

During run '9 ( fd =0.25) through run' 12 ( fd = -0.75), no new

cracks were observed. With fd = -1.0 (run ## 13), vertical cracking at the

web toe developed and severe shear cracks formed in the web wilh WIC.

The wall reached its maximum ultimate strength in this direction. Then,

the strength and stiffness began to degradate during the following runs

('14 and ## IS, fd :: 1.0), and the wall finally collapsed with WIC resulted

from sudden crashing of the bOllom three masonry courses at the web

toe. The wall inclined in the direction of the web in compression and was
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held by the safety strips from the top. the recorded maximum responses

were Ow = 1.35 inch and Aw = 2.48 g. But in the opposite direction, the

wall could sustain the horizontal deformation without significant strength

and stiffness degradation. Comparing with static tests, cracking during

dynamic tests was less developed, i.e. the number of cracks was less and

they expanded slower. The cracking pattern and failure mode after

testing are presented in Fig. 6.3 (a) and (b) respectively.

Wall [6 (#4 Vertical Rein(ortcmcnl, 'dentinl 10 E21

Tests with Sinusoidal 'npyl «( = 5 Hz)

The natural frequency measured on the shake table was f :: 6.9 Hz

during the first two runs with 0 :: 0.05 inch.

Minor cracking at the web base monar bed was observed with FIC

during run '4 (0 = 0.1 inch, A = 0.26 g). With D = 0.2 inch (A = O.S I g),

the crack at the base expanded to the whole cross section of the web and

a new crack formed at the 2nd mortar bed in the web. The 3rd mortar

bed cracked with 0 = 0.3 inch ( A = 0.76 g), the maximum responses Dr =
0.88 inch and AI = 0.58 g were recorded.

In the direction of the flange in compression (WIC), first crack at

base mortar bed in the flange developed during last run of sinusoidal

input (0 = 0.35 inch). The measured maximum responses Ow =0.25 inch

and Aw :: 1.03 g.

Tests with EI Centro RCtord (Time Faclor 0.25)
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In the direction of the flange in compression (FIC), cracking at 4th

mortar bed of the web developed with fd ... 0.2~. The maximum response

I>( == 0.96 inch and Ar == 0.55 g were recorded. The 7th mortar bed cracked

with fd == -0.5, and maximum responses were Dr == 2.8~ inch and A( ... 0.70

g.

In the direction of the web in compression (WIC), the 2nd and 4th

mortar beds in the flange cracked with fd = -0.25 and fd = -0.375

respectively. With fd = -0.5, cracking at 7th mortar bed developed and

the corresponding responses were Ow = 0.78 inch and Aw = 1.80 g. During

run If 12 (fd = -0.75), 6th mortar bed cracked , two shear cracks formed in

the web, and vertical cracks at bouom three masonry courses of the web

toe also developed. The wall reached its maximum ultimate strength with

Ow = 1.02 inch and Aw = 1.90 g in this direction. Then, the slrength and

stiffness began to degradate during the last run ('13, fd = 0.75), the

bottom three masonry courses at the web toe crashed and the wall

collapsed in this direction. But in the opposite direction, the wall could

sustain the horizontal deformation without significant strength and

stiffness degradation. The cracking pattern and failure mode after the

tests are presented in Fig. 6.4 (a) and (b) respectively.

Wan F7 (#6 vertical Rcjnforcement. Confined. Identln' to F4)

Tests wUb Sinusoidal hput (f = 5 Hz)

The measured natural frequency of the system during the first

two runs was f .. 7.0 Hz.

160



Responses in the direction of the flange in compression (Fie): the

base, 3rd and 4th mortar beds in the web cracked with 0 = 0.2 inch (A =

0.51 g). Cracks developed at 2nd and 5th mortar beds when 0 = 0.35

inch(A = 0.89 g), the maximum responses were Dt = 0.88 inch and At =

0.94 g which were very close to the test result of wall F5.

In the opposite direction (WIC), cracking at base monar bed in

the flange formed during the last run of sinusoidal input( 0 = 0.35 inch).

The maximum responses Ow = 0.40 inch and Aw = 1.58 g were recorded

which were also very close to the test result of wall F5.

Tests with EI Centro Reeoed <Time fulor 0.25)

In the direction of the flange in compression (FIC), no new cracks

formed during the first several Tuns. Durinr. run II 12 ( fd = -1.0), flexural

cracks at the 8th, 9t:1, 10th and 11 th mortar beds developed

simultaneously.

With WIC, the crack at the base expanded to whole cross section of

the flange during the first run with EI Centro record (fd = 0.25). When fd

reached 0.5. five minor diagonal cracb formed in the web. During run

1111 (fd = -0.75), two major shear cracks in the web developed and

vertical cracking at the web toe was found. Also flexural cracks formed at

the 2nd, 3rd and 6th mortar beds in th~ flange.

When fd reached -1.0, new flexural cracks formed at the 9th and

10th mortar beds in the flange, three major shear cracks formed in the

web and two vertical cracks developed at the web toe. The wall rea~hed

its maximum ultimate strength in this direction with Ow = 1.60 inch anJ
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Aw = 2.7S g. which were slightly larger than the test result of wall FS.

Then, the strength and stiffness began to degradate during the next two

runs <'13 and '14, fd = 1.0), and the wall finally collapsed due to sudden

crashing of the bottom masonry courses at the web toe. But the wall could

still sustain the horizontal deformation without significant strength and

stiffncss degradation. Fig. 6.5 <a) and <b) show the cracking pattcrn and

failure mode after thc tests.

Wall F8 (#6 vertical Reinforcement. Identical to F5)

Tests with Sinusoidal Input (f = 5 Hz)

The natural frequency measured on the shake table was f = 6.9 Hz

and no cracking was found afterwards.

Test with EI Centro Record (Time Futor 0.2S)

EI Centro earthquake record with fd = -1.0 was applied to the

shake table which was the same as the input when wall FS reached its

maximum response in the direction of the web in compression.

During the test, cracks at the bottom 4 mortar beds of the web

widely opened in the direction of the flange in compression. In the

opposite direction, bottom 4 monar beds in the flange cracked and

vertical cracking at web toe formed. With increasing the deformation, the

masonry face shell at web toe began to spall and suddenly the bottom 4

masonry courses crashed, resulting in collapse of the wall in this

direction. The maximum responses recorded were Ow = 1.35 incll and A"

:= 2.40 g. which were very close to the maximum response of wall FS. Fig.
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6.6 (a) and (b) present the cracking pattern in the flange and failure

mode after the tests.

Wan [9 (16 ycrtj,,1 Bcinfp[(cmen;" Identic.1 to (5)

Tests with Sinusoidal (gput (f = S Hz)

During first run ( D = 0.05 inch), rotation of the top concrete blocks

was obvious. With 0 == 0.1 inch, minor cracking at base mortar bed of the

web formed. when 0 reached 0.2 inch, more cracks in the web developed

and minor flexural cracking at base monar bed in the flange toe was

observed. Inclined cracks also formed in the web. The maximum

responses were 0. == 0.31 in., A" =1.0 g and Dr =044 in., At .. 0.69 g.

During run #14 (0 = 0.4 inch, A == 1.02 g), flexural cracks at mid­

height of the web developed. The maximum responses 0. =0.43 in., A"

==1.34g and Dr =0.75 inch, At =0.8S g were recorded.

Tests with £1 CeDt, 3 Retord (Time Factor 0,15\

During first run with earthquake record ( fd .. -0.5). more shear

cracks in the web were observed and more flexural and shear cracks in

the flange also developed. The maximum responses at this stage were Ow

== 0.88 inch. A." -=1.79g and Dr .. 1,64 inch, At. 0.94 I. When fd reached

-0.75. vertical cracks at the web toe formed with maximum responses Ow

== 1.51 inch, A." =1.92g and Dr == 2,42 inch, At. 0.96 g.

During run #17 ( fd .. -1.0), severe vertical cracks formed at the

web toe and masonry face shell began to spall. It is Obvious that the wall
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would collapse in the direction of the web in compression. Then, the test

stopped due to the safety consideration. The ~rack patterns in the web

and flange are presented in Fig. 6.7 (a) and (b) respectively.
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(a> Cracking Pattern. before Failure

(!) Toe Crushinl. &I End of Test

Fig. 6.3 Condition at Different Stages of Testing. Wall FS
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(a) Cracking Paltern, before Failure

• I

(b) Toe Crushing, at End of Telt

"QL.

FiS- 6.4 Condition al Different Slagel of Testing. Will F6
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(a> Cracking Pattern. before Failure

v·,'··· .

(b> Toe Crushing. Immediately before Failure

Fig. 6.S Condition at Different Stages of Testing. Wan F7
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(a) Cracking Pattern in the Flange

... WUI ~A.<;•• 1

c·"..... ." __L"
""p"".

I (l""r... lIl).4.: ",t,

f .. ~. ", ... 0 J~
'- OOf' I C

...- ~}f 19''''-

(b) Toe Crushing. at End of Test

Fig. 6.6 Wall F8 after Testing
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<a> Cracking Pattern in the Flange

<b) Cracking Pattern in the Web

Fig. 6.7 Wall F9 after Testing
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6.4.2 Natural Frequency and Damping

The natural frequencies of the flanged masonry walls. predicted

and measured during the tests. are listed in Table 6.2. The predicted

value was based on a cantilever model with a uniform stiffness along the

height (12 feet) and a lumped mass at the center of the top concrete

blocks. As a single DOF system. the natural frequency can be calculated

with the equation as

f=.J.... .. fX
2n VM (6.3)

in which f is the frequency. K and M present the stiffness and mass of

the system respectively. The mass included the weight of top concrete

slab and blocks and 1/3 of the self-weight of the wall, the total

equivalent mass was 25.8 kips. The stiffness was based on the gross

cross section of the flanged wall (ignoring the effects of reinforcement)

and estimated elastic modulus of masonry 2000 Ksi. Shear modulus was

assumed as 40% of the elastic modulus.
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Table 6.2 Frequencies of Flanged Masonry Walls (Hz)

Predicted Value Measurd Measured
Wall No

(J) (2) on Ground on Table

FS 9.7 8.8 9.0 7.2( ~= 0.02 )

F6 9.7 8.8 ~ 6.9

F7 9.7 8.8 ~ 7.0

F8 9.7 8.8 ~ 6.9

(I) only fleJural deformation considered

(2) both fleJural and shear deformation considered

It can be seen from the table that the measured result from

testing on ground (only wall FS was tested in this way) coincides well

with the predicted value. The test results on the shake table were about

20% lower than the former. This is expected because the flexibility of the

shake table and its supporting system (actuator. pumps. etc.) acted as an

clastic foundation instead of an absolute solid one. This reduces the

stiffness. and therefore the natural frequency of the structural system.

The measured frequency and damping ratio were derived from

the first 3 cycles of free vibration of the underdamped system after the

excitation at the shake table was stoped. as shown in Fig. 6.8. The

frequency can be calculated with equation as
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f::: n I (tl - to ) (6.4)

where n is the number of the cycles selected, to and II are beginning Ind

ending time corresponding to the time period. Assuming the equation of

underdamped free vibration have a form of

(6.S)

in which (I)::: 2n f is the circular frequency, ~ is the damping ratio and VO

is the initial amplitude of the vibration. From to to tl, the amplilude

decreased from Vo to VI due to damping, and the ratio of VI vs. Yo can be

calculated from equation (6.5) as

(6.6)

finally the damping ratio IS expressed as

(6.7)

in which VO and VI can be easily measured from displacement response

curve and n is the number of cycles considered.

Figs. 6.9 to 6.11 show the variations of natural frequency and

damping ratio with increment of displacement for walls FS, F6 and F7

respectively. It is obvious from these figures that natural frequencies of

the walls decreased with increasing the amplitude in both directions due

to masonry cracking and steel yielding. Also, the walls were stiffer in the

direction of the web in compression than in the opposile direction. On the
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contrary, the dalaping ratio of the Itructures became larger when

displacement increased. and it is higher in the diJUlioa of the flange in

compression than in the direction of the web in compression.

Time

Fig. 6.8 Underdamped Free Vibration
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Fig. 6.9 Frequency and Damping. Wall FS
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Fil· 6.10 ~uency and Dampinl. Wall F6
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Fig. 6.11 Frequency and Damping, Wall F7

6.4.3 Displacement and Acceleration Response

2 3

Figures 6.12 and 6.13 show the typical response displacement and

acceleration at the center of top mass during run " (Sinusoidal input, f •

5 Hz, D = 0.35 inch and A = 0.89 g) and'13 ( EI Centro record. time factor

= 0.25 and displacement factor = -1) for wan FS. From the plots, it is

obvious that the responses of the wall to base excitation are asymmetric

in the two directions parallel to the web. With the flange in tension, the

response displacement was less and response acceleration was larler than

when the flange is in compression, Le., it is much stiffer when flan.e is in

tension than in the opposite direction. During run '13, the wall reached

its maximum response in the direction of the web in compression and

strength and stiffness beaan to dearadate. Fig. 6.14 shows tt.e

performance of the wall in the last run (run 'IS, EI Centro record,
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displacement factor = 1) during which the wall finally collapsed in the

direction of web in compression.

The same trends can also be seen from the lest resulu of the otbcr

walls as shown in Fig. 6.15 through Fig. 6.21. Fi,. 6.15 shows the response

of wall F6 to sinusoidal input (run 16. f .. 5 Hz. D .. 0.3 inch. A -0.77 ,).

Figs. 6.16 and 6.17 present the responses of F6 to run .12 (EI Centro

record. time factor = 0.25. displacement factor .. -0.75) and run .13 (El

Centro record, time factor = 0.25, displacement factor = 0.7S). During run

'12, wall F6 reached its maximum response in the direction of the web in

compression and finally collapsed during run '13.

The performances of wall F7 in runs f7, 112 and .14 arc shown in

Fig. tU8 to Fig. 6.20 which arc corresponding to runs *1, .13 and .IS for

wall FS. Unfortunately, the top displacement was not recorded due to

instrument problem, the displacements presented in the figures were the

displacement at 8' from the base with ,auge 2 for run .7 and .12 and

displacement at 4' from the base with gauge 3 for run .14 after gauge 2

was disconnected. During run '12, wall F7 reached its maximum response

in the direction of the web in compression and collapsed in that direction

during run '14. For wan F8. only one run is presented (EI Centro record.

time factor = 0.25. displacement factor .. ·1) and the wall reached its

maximum response and collapsed in the direction of the web in

compression as shown in Fig. 6.21.
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6.4.4 Hysteresis Loops Under Dynamic Loading

Acceleration-displacement loops measured during runs '4, 117, .10

and .13 of wall F5 arc shown in Fig. 6.22 (a), (b), (c) and (d) respectively.

The loops show clearly the following trends:

• Before cracking, response is symmetric and linear in both

directions. This can be seen from '4, although the noise is significant in

the case of low load level.

Asymmetric characteristics in the two opposite directions after

cracking Le., the stiffness, strength, ductility and the damping.

• The stiffness decreases with the increasing displacement in both

directions, but it is more dramatic in the direction of flange in

compression.

• The damping ratio becomes larger when the amplitude increases

due to loop expansion, especially for the largest loop during which tirr·:

the wall reached ilS maximum response. A typical hysteresis loop and

corresponding energy dissipation rate can be calculated as shown in Fig.

6.23. The energy dissipation rate can be expressed approximately as

area ratio of the Hysteresis loop OABe vs. equivalent elasto-plastic shape

in which the slope of AE or BF equals to the initial stiffness 00. The

calculated resulls for '7, .10 and '13 at the peak response of wall FS arc

0.16, 0.19 and 0.23 respectively. For run '4, it was very difficult to

calculate because of electric noise recorded during the test. It is obvious

that energy dissipation rate increased with increment of displacement
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and when the flange is in compression, the wall has higher energy

dissipation rate than in the opposite direction.
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Fig. 6.23 Typical Hysteresis Loop and Energy Dissipation Rate

6.4.5 Ultimate Strenlth and Ductility

By comparing the test results from wall FS. F6 and F7, the same

effects of vertical reinforcement ratio and confining plates on the

strength, stiffening and ductility of flanged masonry walls as shown by

pseudo-static tests. can be observed. It is obvious that the flexural

strength increases with increase of the vertical reinforcement ratio in

both directions( wall F6 vs. F5).

Fig. 6.24 shows the comparison of force-displacement envelopes

between wall F7 (confined) and FS (unconfined). The lateral forces were

derived by multiplying the maximum response acceleration and total
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equivalent mass at the wall top (25.8 kips). It can be seen clearly that

with the flange in compression, the responses are almost the same (no

confining in this direction), but in the opposite direction (flange in

tension) the confined wall F7 has higher strength, larger displacement at

the peak load , and a flatter falling section than unconfined wall FS. Note

that from Fig. 6.24, the displacement ratio of F7 vs. F5 is 1.20 which is

much less than the value of 1.5 for wall F4 vs. FI in pseudo-static tests.

Wall F4 and wall F7 failed as a consequence of lateral buckling of the

web following a loading sequence where the web reinforcement had been

subjected to high residual inelastic tensile strains prior to load reversal

placing the web in compression. Before the masonry in the web could

support compression stress it was necessary for the web reinforcement to

yield in compression, to remove the residual tensile strains and close the

cracks. During the process there was no effective lateral support to the

web vertical reinforcement, which exhibited lateral instability, placing

eccentric loads on the web and causing failure. Therefore, the tested

ultimate displacement for Confined walls was much less than expected.
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6.4.6 Effeds of Loading history

Fig. 6.21 presents the displacement and acceleration response of

wall F8 under El Centro 1940 N-S earthquake record (time factor=O.2S.

displacement factor=-I.O). It can be seen from the figure that the wall

reached its maximum response in the direction of the web in compression

(At" =2.40 g ) and the corresponding displacement was 1.35 inch. which

was equivalent to the maximum response of wall F5 (A." -2.45 g. Ow •

1.35 inch) during run '13 ( Fig. 6.13). The maximum responses in the

opposite direction were At = 1.10 g and Dr .. 2.10 inch. Comparison with

run '13 of wall F5 (with the same eanhquake input factors), as shown in

Fig. 6.13. the responses are quite different because of previous cracks in
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wall F5, but the maximum responses (flexural strength and displacement)

are nearl)' the same.

6.4.7 Response to Skew Earthquake Input

As a preliminar)' study on response of T-section masonry walls to

skew earthquake attacks, wall F9 was tested with both sinusoidal

excitation and eanhquake record at 4S degree to the web. After run .7 (

EI Centro 1940 N-S record, time factor = 0.25, displacement factor = -1.0 ),

the test stopped without structural failure of the wall because of safet)'

consideration. At this stage severe venical cracking developed at the web

toe. Fig. 6.2S shows the positions of accelerometers which were used to

monitor the horizontal input and response accelerations during the tests

for wall F9. Among them, A2 was attached at the base level to record the

input, meanwhile AI, A3, A4 and LVDT were mounted 12 feet high from

the base to measure the responses at the top. Fig. 6.26 presents the

recorded response acceleration of A3 and A4. Fig. 6.27 presents the

response displacement and acceleration parallel to the web for run .4

(sinusoidal input, f = S Hz, amplitude = 0.4 in ) and separated translition

acceleration parallel to the flange ( 0.S(A3 - A4» and torque component (

O.S(A3 + A4 » are shown in Fig. 6.28. From the comparison, it can be seen

that a skew excitation will cause responses in the two orth~gonal

directions, i.e. parallel to the web and the flange and the maximum

response accelerations were 1.35 g and 1.75 g respectivel)'. Therefor the

direction of resultant inertial force will differ from the direction of

excitation ( S2 degree vs. 4S degree to the web in this case) due to

different stiffness and responses in the two directions. Also the skew
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excitation causes response in rotation due to the eccentricity between

mass and stiffness centers of T-sections. The response inertial torque and

maximum shear stress can be estimated as follows:

(6.8)

where: m is inertial torque, M is inertial modulus of mass, and iri is angle

acceleration. For rectangular section of the mass blocks,

M =PCa2 +b2)l3g

ro=A/b

(6.9)

(6.10)

where: P is the weight, g is gravity acceleration, a and b are half axes of

the rectangular section respectively and A is the translation acceleration

at the corresponding point. Substituting the values of P = 25.8 Kips, a =
4.33 ft. b = 3 ft, A = 0.5 g into the above equations, m = 19.9 Kft can be

obtained.

To estimate the maximum shear stress caused by the inertial

torq'le, use the formula w = tI. ht
2

for resistance of thin rectangular

sections, where: h is the length and t is the thickness of each section.

Substituting the dimensions of T-section wall into above expression, then

the maximum shear t m = re- = 0.16 Ksi. From the calculation result, the

estimated maximum shear caused by inertial torque is significant,

therefore the inertial torque in T-section walls caused by skew

earthquakes is not negligible.
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Fig. 6.29 (a) shows the location of linear potentiometers at the

base level and (b) presents the venical deformation pattern of masonry

surface measured during the test. By checking the venical displacements

at the 4 locations, it is obvious that the assumption of 'plane-section'

during the deformation is not valid. Fig. 6.30 (a) and (b) present the input

acceleration at base and response acceleration parallel to the web at top

for run 1#7 (EI Centro record, time factor = 0.25, displacement factor = -I)

of wall F9. The separated response acceleration parallel to the flange and

corresponding torque component arc shown in Fig. 6.3] (a) and (b)

respectively. For a skew earthquake input, like the case of sinusoidal

excitation, there were responses in the two orthogonal directions and

response of rotation. The maximum response acceleration parallel to web

was 1.80 g, meanwhile about 3 g in the direction parallel to the flange,

therefor the resultant response did not coincide with the direction of

input.
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6.S Comparisons Between Dynamic and Static Responses

Comparisons of load-displacement envelopes between pseudo­

static tests and dynamic tests for walls FI/FS, F2/F6 and F4/F7 are

shown in Figures 6.32, 6.33 and 6.34 respectively. It can be seen from

the curves that the dynamic response has the same feature as the

pseudo-static test. But for the identical walls, dynamic tests resulted in

less displacement at the peak load than the pseudo-static tests in the

directicn of the web in compression, with nearly the same ultimate

strength. The reason might be in that the all walls for both dynamic and

static tests failed due to brittle crushing of masonry followed by buckling

of the extreme vertical reinforcement. In the opposite direction, when the

response of the wall was governed by tension deformation of the vertical

reinforcement, dynamic tests resulted in higher strength and stiffness

due to the effects of loading rate. Note that from Fig. 6.33, the dynamic

strength of wall F6 is a little lower than the static strength of Wall F2.

This is because that the vertical reinforcement for F2 had a much higher

yield strength (75.9 Ksi) than the value of wall F6 (62.5 Ksi). (see Table

4.3)
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Table 6.3 summarizes the ultimate flexural strength and

displacement for both pseudo-static and dynamic tests. Checking the failure

mode and position of the walls. it can be found that the failure mode for

dynamic tests is the same as for pseudo-static tests.

Table 6.3 Ultimate Strength of Flanged Masonry Walls (Kips)

Pseudostatic Dynmic

Wall No. Fl F2 F3 F4 FS F6 F1 Fa

Predicted 62.0 49.1 70,0 69.7 63.6 46.4 71.8 63.6

Test Result 63.4 50.8 70.5 70.1 64.0 49.0 71.0 62.0
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6.6 Condusions

The following conclusions can be drawn from the results of the

dynamic experiments:

(l) Under dynamic loading, the flanged masonry structural walls

have the same asymmetric characteristics in the two directions parallel to

the web, and the same failure mechanism, as observed from pseudo-static

tests.

(2) The flanged masonry walls have less displacement (ductility)

and higher stiffness when subjected to dynamic loading than static

loading, with nearly the same ultimate strength in the direction of the

web in compression.

(3) The natural frequency of the flang-;;d wall decreases with

increasing amplitude. It has different values in the two opposite

directions after masonry cracking.

(4) The damping ratio of the wall increases with increasinl

amplitude. It also has different values in the two directions because of

different energy dissipation rate.

(5) The venital reinforcement ratio and confining plates have the

same effects on strength, stiffness and ductility of the structures. as

concluded for pseudo-static tests.

(6) Pre-existing cracks can alter the natural frequency and seismic

responses of the walls. but the maximum response (ultimate strength ) will
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remain almost the same provided that the pre-loading does not exceed the

ultimate strength of the structure.

(7) Skew eanhquakes cause seismic responses in the two onhogonal

directions of T-section waHs. The resultant inenial force will differ from

the direction of excitation due to different stiffness and responses in these

two onhogonal directions. Also tlae skew excitation will result in significant

inertial torque because of eccentricity between the mass and stiffness

centers in the cross section.
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7. TIME· HISTORY RESPONSE ANALYSES

7.1 Introduction

To evaluate the inelastic structural component model developed

for flanged masonry walls in Chapter 3 , time-history response analyses

for the dynamically tested walls were carried out with the model and

special hysteresis loops proposed in that chapter. The hysteresis loops

suggested were based on the pseudo-static load test results of flanged

masonry walls summarized in Chapters S. Two kinds of numerical

examples are analyzed and presented in this chapter:

• As the first step, load-displacement envelopes for the statically

tested walls were computed. The analyses used monotonic increasing load

in the two opposite directions and displacement control after maximum

loading. Wall FI and F4 (confined) were analyzed in this way and

compared with the experimental results.

• After the static analyses, dynamic time-history response

analyses of T-scction walls were performed. The walls analyzed were FS

('6 vertical reenforcement, identical to FI), F6 ('4 vertical reinforcement,

identical to F2) and F7 ('6 vertical reinforcement, confined, identical to

F4) in order to compare with the static case as well as dynamic test

results.

A special time-history computer program was written in FORTRAN

77, capable of carrying out the above analyses. For static analyses, the

flanged masonry wall was simplified as a 4-node rectangular element

with two nodes at the bottom fixed and two at the top free, as shown in
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Fig. 3.3 (b). The load was applied at the top horizontally, and both

horizontal and vertical displacements were computed and compared with

the test results.

For time-history response analyses, the wall was further

simplified to a two node cantilever column ( Fig. 3.3 (c), in local

coordinate system) in order to reduce computer time. Both sinusoidal

excitation and earthquake record input were introduced at the boltom,

corresponding to different stages of the test program, and the response

horizontal acceleration and displacement at the top of the wall were

computed and ~om?ared with the test results.

7.2 Load-displacement Envelope

7.2.1 Analysis Procedure

The T-section wall was simplified as a rectangular plane element

dimensions equal to that of the web. as shown in Fig. 3.3. As described in

Chapter 3, in the global coordinate system, the clement has 8 degree of

freedom and in the local coordmate system, a plane shear-flexural

element has only 3 degree of freedom. The analyses used an incremental

approach and for each step, a 3 by 3 element stiffness matrix was first

formed in local coordinates, then transformed to a 8 by 8 stiffness matrix

in the global coordinates where the boundary conditions were introduced

and the degrees of freedom were reduced to four. Then, the horizontal

load was applied and structural analysis was performed to calculate the

incremental displacements of the two top nodes. After the new response

node displacements had been obtained, they were added to the total
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displacements and transformed to node displacements in local coordinates

to calculate new material properties, then the stiffness matrix was

updated and transformed back into the global coordinates again. Finally, a

new increment of load (or displacement) was applied.

7.1.1 The Moment-curvalure Curve

To check the effects of moment-curvature curve shape between

the origin and first yielding on the load-displacement responses (section

after first yielding remains the same), four different curves were

assumed and evaluated as follows:

(l) Bilinear, as the initially proposed skeleton which passes

through three points: the origin, first cracking and first yielding.

(2) A parabola which passes through three points ( the origin, first

cracking and first yielding ) and has the following form:

(7.1)

in which CI and C2 can be determined by values of curvatures and

moments at the points of first cracking and yielding.

(3) A parabola which passes two points (the origin and first

yielding ) and has the initial stiffness of masonry, the equation has the

following form:

(7.2)

where C3 can be determined by (cpy, My).
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(4) A quartic polynomial which passes through the origin and fmt

yielding point and hu the form of

(7.3)

where C4 can be calculated in the same way as (3)

The computed lateral force-displacement envelope with quanic

moment-curvature curve (4) gave the best prediction, but the differences

were not significant between the four curves. The comparisons between

computed envelop~ (curve 4) and tested hysteresis loops will be

presented in the following section. For time-history response analyses,

tri-linear curve was used to reduce computer time. The shear load­

deformation relationship applied for the computation was bilinear curve

symmetric in the two opposite directions, as described in Chapter 3.

7.2.3 Comparisons Belween Compuled and Tesl Results

Walls FI and F4 were analyzed with the above structural

component model and the quartic moment-curvature curve (Eq. 7.3). The

computed load-displacement envelopes and the comparisons with the

pseudo-static test hysteresis loops are presented in Figs. 7.1 and 7.2

respectively. It can be seen that for wall FI, the predicted envelope

coincides well with the test load-displacement loops. For wall F4. in the

direction of flange in compression. the predicted envelope is very close to

the test result. but in the direction of web in compression. both computed

ultimate Slrcngth and displacement ue hiaher than the test results (

especially the latter). The reason is II mentioned in Chapter S that for
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confined masonry, the ultimate strain is assumed to be 0.008 for the

analysis. During the test, the masonry at the web toe exhibited wide

cracks and the extreme vertical reinforcement suffered extensive

inelastic tension strains in the direction of loading the flange in

compression. When under reverse loading, before the masonry in the web

toe could support compression stress, it was necessary for the web

reinforcement to yield in compression to remove the residual strain and

close the cracks. During the process, there was no effective lateral support

to the web vertical reinforcement, which exhibited lateral instability,

placing eccentric loads on the masonry and causing failure long before the

masonry reached its ultimate compression strain.

Table 7.1 lists both the analytical and experimental horizontal and

vertical displacements at the maximum responses for wall Fl. It can be

seen from the table that the theoretical results coincide well with the

measured values for horizontal displacement. including the displacement

due to shear. The vertical displacements of top section at each edge of the

web monitored at maximum response are listed in row 1 of the Table.

Also presented in row 2 of the table are computational results for the

same situation with the position of the one-dimensional element in local

coordinates coinciding with the nel:tral axis of the cross section of the

flanged wall before cracking. It is obvious that the computed

displacement at the free end of web is larger than the measured value,

while, at the opposite end, the predicted value is smaller than the test

result.
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The explanation for the above differences is that the vertical

displacement at each end of the web is caused by the rotation of wall

cross sections. As a consequence of variation in the neutral axis position

resulting from cracking, the flexural response of a T-section wall may

result in axial deformation relative to the initial uncracked neutral axis,

as shown in Fig. 7.3, which will decrease the displacement at the free end

of the web and increase displacement at the opposite end.

To consider the overall effects of variation of neutral axis of cross

sections along the wall height, a second analysis was made taking the

neutral axis in the SCM modal equal to the mean value of compression

depths before cracking and at ultimate state. The computational results

with this average neutral axis are also presented in row 3 which are very

close to the test results.

From the comparison between the analytical results with SCM

modal and experimental results, the following respects can be concluded:

(l) The structural component modal can give reasonable lateral

load-displacement prediction for flanged masonry walls in the direction

parallel to the web.

(2) The computed response envelope depends on the moment­

curvature relationship applied. The quartic curve assumed between first

cracking and yielding results in better response envelope for this section

than the trilinear curve, but does not affect the response after yielding

significantly.
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(3) The structural component modal can also predict the venical

displacement well, provided the position of equivalent neutral axis after

cracking is assumed properly. The mean value of uncracked cross section

and value at ultimate state is a reasonable approximation.

Table 7.1 Displacement at Maximum Loading, Wall FI

Load Horizontal DisDI. (in) Venical DisDI. (in)

(kiDS) Total Bv shear Joint end Free end

~xperiment 63.4 1.63 0.62 0.206 -0.27S

Analysis I 66.0 1.56 0.S6 0.106 -0.393

Analysis 2 66.0 1.56 0.56 0.236 -0.263
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7.3 Time-history Response Analyses

7.3.1 General Des~riplion

The numerical examples presented here are responses of wall FS,

F6 and F7. Two critical runs were analyzed for each wall and compared

with the experimental results. The parameten and derails of the tests

arc as follows.

WI" [5;

(1) Run '7: input with sinusoidal excitarion F = S Hz, amplitude A

= 0.3S inch (8.89 mm, maximum acceleration 0.89 g ), shake table run
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time t = 1 second and data acquisition for 3 seconds. This is the last run

for sinusoidal tests during which the extreme vertical reinforcement at

the web free end was close to yield state.

(2) Run '13: input with earthquake record of EI Centro 1940 N-S,

time factor 0.25 and displacement factor -1.0. Shake table run time was

about 8.S seconds with 10 seconds of data acquisition. The wall reached

hs maximum response during this test.

Wall F6i

I) Run '6: input with sinusoidal excitation F = 5 Hz, amplitude A =

0.30 inch (7.62 mm, maximum acceleration 0.76 g ), shake table run time

t = I second and data acquisition for 3 seconds. The extreme vertical

reinforcement at the web free end yielded during this test.

(2) Run '12: input with earthquake record of El Centro 1940 N-S,

time factor 0.25 and displacement factor -0.75. Shake table run time

was about 8.S seconds with 10 seconds of data acquisition. The wall

reached its maximum response during this test.

Wall F7i

The two runs analyzed for confined wall F7 were similar to those

for FS. The first case was also run '7 of wall F7 which had the same

shake table input and data acquisition requirement as wall FS. The second

example was run '12, for which the shake table input and data

acquisition were identical to run '13 of wall FS and the wall reached its

maximum response in the direction of the web in compression.
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7.3.2 Equations for Dynamic Response Analysis

A structure subjected to excitations at its base is shown in Fig. 7.4,

where V8 represents the ground movement and U is the displacement

vector of a multi-DOF system relative to the base. In our case, the

structure is simplified as a single DOF t but the all following equation are

applicable. At any given time t, and using a time increment At, the

incremental differential equation of equilibrium can be obtained as

follows:

(7.4)

where [M], [C(O] and [K(t)] are mass, damping and stiffness matrices

of the structure respectively. A Step-by-step integration approach with

the Wilson-8 method[24) was employed to solve the incremental equation

of equilibrium in the computer program. In our case, since time interval

was chosen to be very small comparing the natural period T of the walJ

( A t = 0.005 second, T = 0.11 second ), the linear acceleration

approximation was used ( Le. 8 = I ). Since it is proved from the test

result that the effect of rotation of the inertia mass is not significant,

only one degree of freedom ( horizontal displacement ) was computed to

reduce computation. The damping was assumed to be constant during the

computation.
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Fig. 7.4 Model for Dynamic Analysis

With linear acceleration integration approach. for each time

interval At. equation (6.4) was conducted to solve the following equation:

where

K(t) I)U(t) =AP(t>

K(t) =K(O + ...2.. M+ .J.. C
At2 I)l

(7.S)

(7.6)

and

AP(O =AP(t) +~~(t) + 3 0(0] + q3 U (t) t ~ 0 (t)] (1.7)

are called equivalent stiffness and load increment matrices respectively

in which

4P(t) =-M( 1)(\1.(t + .tat) - V'.(t»
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is the contribution from base excitation. Solving equation (7.S) for 6U{t).

the incremental velocity and acceleration can then be obtained by the

following:

• ':l • ll.tHll.U(t) =.J.- 6U(t) • 3U{t) • ret)
ll.l

ll.U(t) = lll.U(t) . .6..U(t) - 3U(t)
6t2 At

(7.9)

(7.10)

After the incremental values arc calculated. the total displacement.

velocity and acceleration at the end of time increment can be updated

and a new step can start. A computer program was written in FORTRAN

77 to carry out the analysis and is listed in Appendix c for reference.

7.3.3 Analytical Results and Comparisons

Both experimental and analytical response displacements and

accelerations at the top mass center for runs ##7 and ##13 of wall FS. runs

##6 and ## 12 of F6 and runs #17 and #112 of F7 are presented in Fig. 7.S

through Fig. 7.14 respectively. Unfortunately. the top displacement for

wall F7 was not recorded due to instrument problem. the comparisons for

this wall are only for accelerations in Figs. 7.13 and 7.14. From the

comparisons. the following aspects can be noted:

• Response (0 Sinusoidal Excitation: The olnalytical

results have a excellent agreement with the experimental results for both

displacement and acceleration, especially for walls FS and F7. During the

forced vibration cycles (about 0.5 sec. to 1.5 ~ec.. because the data

recorder started earlier than the shake table in order not to lose data).

the analytical curves coincide well with the experimental curves. After
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the shake table stopped ( about I.S sec.), the natural period of the

vibration with analytical model is a little longer than the test results for

the all walls.

• Response to the Earthquake Record: The responses during

sinusoidal input were mainly within elastic range of material response,

although the walls were cracked. To evaluate the structural component

model in the inelastic range, responses to earthquake record for these

three walls during which each wall reached its maximum response were

analyzed and compared with experimental results. From the figures, it

can be seen that the analytical responses coincide well with the

experimental curves up to the maximum response and agreement

decreased after that. Also the agreement is a little better for acceleration

than for displacerr,enl.

• Hysteresis Loops: Figs. 1.15 and 1.16 compare the acceleration

lateral force )-displacement hysteresis loops for runs #11 and #113 of wall

F5 between analytical and experimental results respectively. Considering

the complicated nature of the hysteresis phenomenon in the inelastic

range, the prediction with the analytical model is quite good Ind

acceptable.
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7.4 Discussions and Conclusions

The numerical examples for inelastic analysis of flanged masonry

walls proved clearly the application of the structural component model

and inelastic hysteresis loops proposed in Chapter 3. The computation

showed that the response is very sensitive to the assumed damping ratio

~ of the structures and the shape of the hysteresis loops, especially the

yield point on the envelope and the stiffness degradation factor A..

For run ##7 of wall F5, ~= 0, 0.02, 0.025, and 0.03 (keeping A. =0)

and ~ = 0.02. A.= 0.2 have been tried. The computation results show thai

with ~= 0.02 and A. = 0, the best result was obtained. This is a little

unexpected because that from Fig. 5.8, the damping ratio measured

during the test is 0.032 for the direction of web in compression and 0.037

for the flange in compression, respectively. For run N13, ~= 0.04 and A. =

0.2 resulted in the response closest to the test data, much less than the

measured values of ~ =0.045 for web in compression and ~ = 0.07 for the

flange in compression.

The skeleton of moment-curvature hysteresis loops decides the

envelope of the response and the yield point on the line is critical to the

response, meanwhile the first cracking y:lint does not change the

response significantly. The analytical results of flanged masonry walls

and the comparisons with experimental results enable to draw the

following conclusions:
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(1) The inelastic structural component model developed for

flanged masonry walls can simulate the overall nonlinear behavior of the

structure and the formation of the plastic hinges at the wall en<b.

(2) The proposed asymmetric hysteresis I.:>nps worked well for the

time-history response analysis on flanged masonry walls. and the

damping ratio ~ and stiffness degradation factor A are critical to the

analytical results. and should thus be carefully chosen.

(3) The additional longitudinal deformation of initial neutral line of

wall section due to cracking will affect the vertical displacement

distribution of top section. Taking the average value of neutral lines

corresponding to the compression zones before cracking and at the

ultimate state of wall section as the computation neutral line seems to be

a reasonable approximation

(4) Further improvement on inelastic analysis of flanged masonry

walls can be achieved through using the varying damping ratio and

stiffness degradation factor in the two opposite loading directions instead

of fixed values and more sophisticated hysteresis loops for shear

deformation

(5) More numerical examples. especially the masonry assemblages

which have T-section components. are needed to evaluate and calibrate

the analytical model developed in this report.
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8. EFFECTIVE FLANGE WIDTH OF

T·SECTION MASONRY WALLS

8.1 Introduction

Flanged masonry walls have different strength. stiffness and

ductility in the two opposite directions parallel to the web when

subjected to horizontal in-plane loads. In the direction of flange in

compression, the width of flange does not affect the behavior of the wall

significantly. On the contrary, when the flange is in tension, the extent to

which the flange reinforcement contributes to the flexural strength will

be subjected to shear-lag effects.

Because of shear-lag effects, the flange may not participate fully in

the action with the web , and an effective flange width is needed for

predicting actual strength and stiffness of the structures. Although the

New Zealand design coder]] provides some guidance on this effect, its

provisions are based on the application of ACI design rules[2l for effective

width of T-beam floor, and have not been verified experimentally.

In this chapter, both theoretical and experimental studies on

shear-lag effects are introduced. The experimental results are from

pseudo-static tests and dynamic tests of full scale flanged masonry walls,

including one with very wide flanse , as described in chapters S, and 6 in

order to provide a data base for the theoretical studies. The theoretical

efforts include using elastic theory to solve a simplified plane-stress

problem to simulate the strain and venical deformation distribution along

the flange and allow 10 extrapolate the experimental results to a more
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useful range. Based on the results of above studies, formulas for

determining the effective flange width are proposed in this chapter.

8.1 Experimental Results

The detail of pseudo-static and dynamic tests on full scale flanged

masonry walls can be found in chapters 5, and 6 respectively. The

arrangement of straingauges on vertical reinforcement and linear

potentiometers at lower part of the wall, which were used to monitor the

distribution of vertical strain and deformation along the flange during

the tests is shown in Figs. 4. I and 4.2.

Figures 8. I, 8.2 and 8.3 present the measurement of flange strains

and deformations for wall FI at three different loading levels: before

cracking, about yield point and at muimum response respectively. The

strains of vertical reinforcement and deformation of masonry face at base

level for wall F3 ( the wall with the wider flange ) are shown in Fig. 8.4.

Unfortunately, some of the strlaingauges were damaged during the

grouting or afterwards.

It can be seen from the figures that for wall FI( )Jh = 0.722 ), at

lower load level (p = 15 kips, prior to cracking ) there is a slight drop for

both vertical reinforcement strains and wall vertical deformation from

the flange center towards its ends. After cracking, hardly any decrease of

vertical strain or deformation is apparent along the flange, especially at

the base level. For the wide flange wall F3 ( lib = 1.389 ), with the

increases of widthlbeight ratio, the sLar-lag effects arc more obvious

230



than that for wall FS and the ratio of venical deformation and strain at

ends to the center of the flange decreases.

Table 6.3 lists the comparison of ultimate horizontal loads between

predicted values and test results for walls FI to F8. The predicted values

were based on the plane cross section assumption, i.e. the whole flange

will fully panicipate in action with the web, including the wide flange

wall F3. The comparisons show that the predicted ultimate loads coincide

well with the experimental results ( for wall F2 and F3, the test results

are even a little higher than the predicted ones) which indicates that the

whole flange did participate fully in action with the web in each case.

Table 6.2 summarizes the natural frequencies for wall FS (identical

to wall FI ). The predicted value was based on the gross section of the

wall and elastic modules of masonry Em =2000 ksi, shear modules

Gm =0.4 Em. The coincidence of predicted frequency with the test result on

ground shows that the flange participated fully in the action with the

web, therefore it is much stiffer than the case of only rectangular section

is considered ( 5.9 Hz ). It is very important to note that the venica!

strains in the flange decrease from the weblflange intersection to is two

ends and the shape of the distribution curve looks very similar to the

solution for a beam on elastic foundation. In the following section, a

simulated analysis based on the analogy between the two phenomena is

carried out to extrapolate the experimental results to more useful range.
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8.3 Analytical Simulation

A Iypical flanged masonry wall subjected 10 horizontal loading

parallel to the web is shown in Fig. 8.5 (a). When the wall is subjected to

bending, there will be a shear flow along the intersection of Ihe web and

flange 10 ensure compatible deformation of the web and flange. To

investigate the shear-lag effects in the flange, a separated 2-dimension

model is shown in Fig. 8.5 (b). This can be further simplified by

simulation as a beam with finite length on an elastic foundation ( Fig. 8.5

(c) ).

Assuming a Winkler foundation, the differential equation of

equilibrium can be derived as

E1b +Kw=O
dx4

(8.1)

where w represents the venical displacement function, k is stiffness of

the foundation, E and I are elastic modulus and moment of inertia of the

flange. The solution of above equation can be expressed as

in which

P=[..lL]1/4
4EI

(8.3)

and Cto C2, C3 and c. are constants which can be determined by the

following boundary conditions:

236



Xso: t-o, E~.-P.
dx3 2

(8,4)

x s 1- EIb-aO, Elb.o
2' dx2 dx3

The expression of wex) is lengthy and complicated, but the general

trend of the deflection curve is to decrease from the center towards the

ends, as shown in Fig. 8.2 ea) and the ratio of end deflection to center

deflection has the form of

~= 4coSh(t>coSe~)
WQ 2 + cosh(~I) + cos (~I)

and the plot is shown in Fig. 8.6 (b).

(8.S)

To simplify expression (8.3), assume that at ultimate state. the

wall cracked at the base and is supported on distributed vertical

reinforcement. The foundation stiffness k can be approximately expressed

as

(8.6)

In which n, A,.E. and P arc number. cross section area, elastic modulus and

reinforcement ratio of venital bars respectively and h,l is the height of

the vertical reinforcement in the plastic hinge zone. For the rectangular

section, the moment of inenia is

I =t h3 112 (8.7)

If shear deformation is considered. the equivalent stiffness of the wall

can be modified as
I-.-L

l+F
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(8.9)

in which F can use the expression in Chapter 2 as following

F =~ • 0.7S(h)2
AJ2 I

Substitute .. and K into expression (8.3), the corresponding value of iii

can be calculated.

From Fig. 8.6 (b), when iii = I.S, the ratio of will to Wo is close to I,

which indicates that the whole flange can participate in the action

entirely. Assuming Es/E = 10, hp • 0.08 h + 6 db, where db is the diameter of

the vertical reinforcement, then l/h • I.SS can be derived. Similarly,

when pi =Jt, lib = 3.43 can be obtained.

,
•,
t
+•,

112 112
x

112 112

CI) R&IIpd Wall (b) TWCHIimenaioe Model (e) Beam oa Elulic: Foundalioa

Fig. 8.S Interaction Between Flange and Web and Its Modelling
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web

,
6 ~l

~ + ·1
V2 V2 -0.'

(a) Venical DispllCCmenl Distribution (b) Variation of~: WIIb I5l

Fig. 8.6 Vertical Displacement Distribution

8.4 Inelastic Finite Element Analysis

A computer program using a special inelastic finite element model

for masonry assemblages developed by Seible and Kingsleyl43l based on

an earlier work by Seible and LaRoverel2Sl was employed to analyze

flanged wall FI to investigate the vertical strain and displacement

distribution along the flange. and compare with experimental results and

values predicted by the elastic shear lag model described in Section 8.3.

Since both the structure and loads are symmetric. only half of the system

was analyzed. The element discretion is shown in Fig. 8.7. Analysis

simulated the pseudo-static tests with monotonically increasin,

displacement applied at the loadin, point. Measured material properties
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were used in the analysis. with I value of 300 psi being adopted for the

'1 {erage masonry tension strength. as found from analysis of flange

cracking. reponed in Section 5.3.5.

11M-

Fig. 8.7 Element Discretion for Flanged Wall Fl
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The calculated vertical strain and displacement distribution along

the flange at different height levels for Ihree loading siages and

comparisons with the corresponding test results are presented in Figs. 8.8

to 8.10 respectively. The vertical strains were taken at the Gauss points of

each four-node element and the distances from the base are 3, 17.4 and

31.8 inch respectively. The element nodes chosen for vertical

displacement were located at the central and end of flange and the

distances from the base are 0, 14.4, and 28.8 inch respectively. Three

loading stages were selected to check the shear-lag effects: before

cracking(P = 17.9 Kips), before first yield(P = 43.1 Kips) and at maximum

response(P = 62.7 Kips).
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It can be seen from the figures that the analytical results with this

finite element model show the same trends for vertical strain and

deformation distribution as that of elastic analysis and test results. At

lower load level. the venical strain and deformation decreases from the

center of the flange towards its end alonl the flange which indicates the

shear-lag effects. After cracking, the distribution of vertical strain and

deformation becomes even and thus the shear-lag effecrs is less

significant and the l"ffective flange width would be larger after cracking

than for uncracked walls.

Before cracking, the vertical strains have reasonable good

agreement between the analytical and experimental results which can be

seen clearly from the top two cases in Fig. 8.8 (a). The maximum vertical

strain at the ultimate state of loading also coincides well with the test

result. For other cases, the analytical results have rather poor agreement

with the measured values . First, the onset of masonry cracking does not

coincide with the test result. In the bottom profile and center section of

the middle profile of Fig. 8.8 (a), the analysis indicated that the masonry

strains did not exceed the cracking value, where the measured strains on

vertical reinforcement clearly indicated that the masonry had already

cracked. Fig. 8.10 (a) indicates that all the vertical rebars yielded at the

base, but the analysis did not develop yielding over the whole flange

section. The predicted vertical displacements are much less than the

experimental results for all cases, r.xcept before masonry cracking.

From the above comparisons, it can be concluded that although

this inelastic finite element model has been shown to predict the global
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performance of masonry walls and lubassemblages very we1H2S l.143l. it

needs further improvement to describe detailed behavior of masonry

structures after cracking. In this model. masonry and steel reinforcement

are treated as overlaid elements in which both materials are subjected to

identical strain field. This assumes that masonry and steel are perfectly

bonded during deformation. So bond failure and slip between steel and

surrounding masonry are not modelled. From experimental observations.

it was evident that slip between steel and surrounding masonry at

cracked sections was significant. especially at the base level.

The characteristics of the masonry tension model is critical to the

prediction of the vertical strains and displacement distributions along the

flange. The model adopted by the program uses a linear relationship

between tension stress and strain up to tensile strength fl. the n

immediately drops the residual tensile capacity to 5 percent of the initial

strength. The model assumes masonry to be a homogeneous material and

ignore the natural weakness section at mortar beds. As a consequence.

strength and stiffness of masonry in the direction normal to the mortar

beds will be overestimated. II should be noted that the tension strength

of base hed joint was found to be less than at other heights of the wall.

since this was a construction joint. This was not modelled in the analytical

process and will have contribution ~o experiment/theory discrepancies.

To determine the cracked conditions. the model uses the principal

stress axes resulting in crack formation in a diagonal direction rather than

horizontal cracking at bottom half pan of the flange which was the real

case observed during the tests. After the masonry cracked. the stress-
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strain relationship in the original plane (horizontal-vertical) was obtained

by

(8.10)

where c = cos 8, s =sin 8 and 8 is the angle between the principal and

original coordinate system. Eqn. 8.10 implies that the vertical stiffness of

cracked masonry has a significant contribution from the uncracked

direction which overestimates the stiffness of cracked masonry and may

partly explain why the analytical displacements are much less than the

test results.

Nonlinear analyses are normally carried out using either

incremental or iterative (successive approximation) methods. 11 is known

that the incremental procedure will increase the stiffness of the system

and introduce accumulative errors. On the other hand, the iteration

approach may lead the numerical result to converge to a non-real

solution.

It can be seen from the above discussion that a more sophisticated

inelastic model is needed to predict the detailed behavior of masonry

structures due to the complicated nature of the material properties and

construction procedure. Unevenness of the material and minor defects in

the masonry and grouting may cause earlier cracking which will affect

the strain distribution significantly. Therefore, we should not expect any

analytical model to predict those random behavior from local effects.
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8.5 Conclusion

From the studies above, it is clear that there is shear-lag effect in

the flange when the T-section wall is subjected to horizontal forces

parallel to the web. When the flange is in compression, the effects of

flange width, therefore the shear-lag effects are not significant. On the

contrary, in the direction of flange in tension, the shear-lag effects are

rather significant for uncracked walls and become less severe after

cracking. For the purpose of determining effective flange width, T-section

walls can be divided into three groups as follows:

1. Short flange: From Fig. 8.6 (b), it is clear that when Pi S 1.5,

~~ is very close to 1. Therefore, the whole flange width will be the

effective width. In this group, Ilh = 1.5 can be set as the upper limit for

this group. ( the calculat-:d value is 1.55 )

2. Intermediate flange: When Pi = K. ~~ = 0, the effective flange

width can be determined by an equivalent rectangular block with height

Wo and the same area as curved displacement envelope. In this case, l/h =

3.5 can be set up as upper limit ( the calculated value is 3.43 ) and the

corresponding effective flange width can approximately estimated as

2.5h. For the T-~ection walls with its pI value between I.S and 7t, the

effective flange width can be determined by interpolating between the

above two cases.

3. Wide flange: When Pi ~ 7t , the increase of flange width will

not cause significant change in vertical displacement distribution,
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therefore the effective flange width in this group equals the value at

~I =1t.

Based on above analyses and the test results, followUa, formulas

are proposed for determining the effective flange width to predict thc

strength and stiffness of T-section walls whcn subjcctcd to horizontal

forces in the direction of flange in tension.

I

Ie = 0.75h + 0.51

2.50h

where Ie: effective flange width

I: width of the flange

h: height of thc wall

(Vb S 1.5 )

( 1.5 S l/hS 3.5 )

(lJh ~ 3.5 )
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9. SUMMARY AND CONCLUSSIONS

9.1 Conclusions

This is the first systematic research on seismic behavior of flanged

masonry walls and the theoretical and experimental studies carried out in

this project enables to draw the following conclusions:

(1) General Behavior

The flanged masonry walls have strong unsymmetrical seismic

response in the two opposite directions parallel to the web. When the

flange is in compression. the wall has lower flexural strength and

stiffness, but larger displacement and ductility capacity. Meanwhile, in

the direction of flange in tension, they have higher flexural strength and

stiffness, but much less ultimate displacement and ductility capacity.

(1) Failure Meehanism

When flanged masonry walls are subjected to eanhquake attacks

parallel to the web, they will fail in the direction of web in compression

due to crushing of masonry , followed by buckling of vertical

reinforcement at the free end of web foot. But in the direction of flange in

compression, the walls can still sustain the earthquake attacks and

undergo deformation.

(3) Flexural Strengtb and Displaeement

The ultimate flexural strength of flanged masonry walll depends

mainly on the ratio of venical reinforcement, axial load level and the
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width ratio of flange vs. web etc. and can be rationally predicted with

cross section analysis which uses the assumption of "plane cross-section"

and equivalent compression stress block for masonry. The displacement

at top of cantilever flanged masonry walls at yield can be calculated with

a equivalent stiffness which is based on a linear curvature distribution

along the wall height from zero at the top to the yielding value at the

base. The ultimate displacement can be better predicted by assuming that

the compression strain at the second mortar bed from the bottom reaches

the ultimate value due to the confinement at the bottom masonry bed

provided by the strong concrete base.

(4) Shear Strength and Displacement

Transverse reinforcement is needed to maintain the shear strength

of the wall after shear cracking. Since shear failure is sudden and brittle.

it must not be permitted to happen in structures. According to the

capacity design requirements. the shear strength should be greater than

the maximum feasible flexural strength to ensure there will be no shear

failure occur. The displacement due to shear deformation is small before

shear cracking and becomes unsymmetrical in the two opposite directions

after shear cracking because of different shear level. In the direction of

web in compression. the displacement due to shear at the ultimate state

can make up to more than 30~ of the total displacement. To predict the

shear displacement. bi-linear equivalent stiffness proposed in Chapter 3

can be used and the result is reasonable good.
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(5) Confined Walls

The confinement on mortar beds at free end of web toe provided

by steel plates increases the ultimate compression strain of masonry in

the confined area, therefore improves the ductility capacity and strength

of flanged masonry walls in the direction of web in compression. In our

case, the test results show that for confined walls, the ultimate

displacement increased by SO% for static tests and 2S% for dynamic tests.

These values are smaller than expected because of early buckling of

extreme vertical reinforcement at free end of web fOOl as discussed in

Chapter 4 and Chapter S.

(6) Dynamic Response

The experimental results proved that when subjected to

earthquake attacks, in the direction of flange in tension, both unconfined

and confined flanged masonry walls will have less ductility than when

subjected to static loading, with nearly the same strength. Under dynamic

loading, the ultimate displacement may drop to 10% to 80% of the values

in static case. This is very imponanr for designing masonry structures in

the seismic zone. The failure mechanism, however, remains the same.

There is not any significant difference in the responses of T-section

masonry walls under static and dynamic loading in the direction of flange

in compression.

(7) Natural Frequency and damping

The natural frequency ( fundamental ) of flanged masonry walls

before cracking can be predicted with the gross cross section and elastic

252



modulus of Em =1000 (m. The damping ratio is about 0.02 for uncracked

masonry. After cracking, the frequency decreases and dampina ratio

increases unsymmetrically in the two opposite directions with higher

frequency and lower damping ratio in the direction of web in

compression. The average frequency drops to 30-40% of the initial value

and the damping ratio will increases to S - 6 % of critical dumping on

average at yielding state in the direction of web in compression.

(8) Erred of Loading History

The experimental results indicated that a previous loading history

does not affect the ultimate strength and ductility capacity significantly,

as long as the pre-existing condition never exceeds the ultimate strength.

Under earthquake attacks, the performance of T-section walls may differ

from each other due to their loading history and pre-existing conditions,

but the same structures will have nearly the same maximum response.

(9) Response to Arbitrary Earthquake Attacks

The test of wall F9 subjected to earthquake input at 45 degree

skew to the web showed that ·under arbitrary earthquake attacks, T­

section walls will have responses in the two orthogonal directions. Both

thr resultant inertial force and displacement will not coincide with the

initial earthquake input direction and shear stresses caused by additional

inertial torque due to the difference between the mass center and rigid

center may be significant because of the characteristics of T-section.
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(10) Effective Width of Flange

When the flange is in tension, it usually can not panicipate in the

action with the web completely due to the shear-lag effects, therefore a

effective flange width is needed for predicting the strength and stiffness

of T-section walls. Formulas proposed in Chapter 7, which was based on

the theoretical and experimental results. can be used to determine the

effective flange width for T-section masonry walls.

(11) Structural Component Model

Inelastic structural component model developed in Chapter 3 can

simulate the overall nonlinear material properties inside the flanged

masonry walls and formation of plastic hinges at the wall ends.

The numerical examples for static analyses in Chapter 6 show that

the model is applicable of load-displacement envelope for both horizontal

and venieal displacement predictions. The time history response analyses

show the excellent agreement with the experimental results which

indicates that the model works well in the case of dynamic and seismic

response analyses.

(12) Constitutive Modelling

The unsymmetrical hysteresis loops for flanged masonry walls

proposed in chapter 3 utilizes a tri-linear envelope and permits the

stiffness degradation and pinchinl can be used for time history response

analyses of flanges masonry walls. The numerical examples in Chapter 6
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show that the loops together with the structural componeat model

worked well and can give very good predictions of seismic behavior of T­

section masonry walls

9.2 Recommendations for Further Studies

The theoretical and experimental researches in this report mainly

deal with seismic behavior of T-section masonry walls in the directions

parallel to the web. Dynamic testing of a flanged masonry wall on shalce

table with earthquake input 45 degree skew to the web was also carried

out as a preliminary study on seismic response of T-section walls

subjected to arbitrary earthquake attacks. Further studies are

recommended to complement this research project and the possible

research interests could be the following aspects:

(I) Effects of Openings

The structure investigated in this report was T-section masonry

walls without openings. T-section walls in masonry buildings may include

openiugs such as doors and windows. Therefore the behavior of these

walls win dep'..nd on the size and positions of the openings which affect

the continuity of reinforcement as well as the structure itself, even

change the load-resistant mechanism from wall structure to a frame

system, if the openings are large enough. The behavior of T-section walls

with openings is more complicated, an further studies arc necessary to

investigate their characteristic.
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(1) Bucklin. or Slender Wana

For slender walls, a potential problem is buc:tling of the wall under

combined axial load and lateral disturbance such as earthquakes and

winds etc.. The critical lateral load will depend on the ratio of slenderness,

axial load level and constrains at the boundaries etc.. For T-section walls,

since the web can provide distributed lateral suppon to the flanle in ill

own plane and vice versa, theoretical and experimental studies are

needed to investigate the effects of this interact between flange and web

on buckling of slender T-section masonry walls.

(3) Integrily or Masonry Duildin.,

One of the serious problems for masonry buildings durinl

earthquake attacks is its integrity. It has been found from investigating

seismic damage to masonry slructures that the 'most common damage

modes for masonry buildings are shear failure in wall plane and wall

collapse in out-of.pb"e direction due to inadequate support from

hvrizontal rliaphragm ~:uur and floor etc.) and walls perpendicular 10 it.

The lost of support was caused by connection failure along the

intersection between web and flange or wall and floor. For masonry

structures, there is a natural weakness along the intersections. The

effectiveness of connection depends on the block type, amount of

transverse and venical reinforcement crossing the intersection and type

of connection detail adopted etc.. During both static and dynamic tests,

serious cracking between web and flange alone the wall height wa.
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formed. This did not cause the flange to collapse in direction of out-of­

plane because relatively heavy transverse reinforcement was provided.

linking the web and flange, and strong co.,straints existed from top and

base concrete slabs. More experimental studies on different connection

detail between web and flange and wall and floor are needed to check the

effectiveness of alternative connections. The effects of lateral diaphragm

stiffness on seismic performance of masonry buildings should also be

investigated.

(4) Response to Arbitrary Earthquake Attacks

As a preliminary study on response of T-section masonry walls to

arbitrary earthquake attacks, only one wall was tested in this project. The

experiment indicated that both response resultant displacement and

inertial force were off the initial input direction, inertial torque due to the

difference between mass center and rigid center of the cross section was

resulted. The assumption of "plane cross-section" appeared not to be

applicable. Since real earthquake attacks are likely to happen i~ any

direction to the structures, seismic response of T-section to skew

excitation is more important and need further studies to understand the

real performance of the structures under these attacks and develop

feasible analytical method to predict the response of T -section masonry

waHs.



Appendix A

Computer Program for Design Tables of flanged Masonry Walls

c *.**. PROGRAM FOR FLANCED MASONRY WALL ANALYSES •••••
c
c ••••• MAIN PROGRAM •••• *

dimen.ion vp(11),v.(9)
char.cter·14 ma(6)
charaeter*21 mb(6)
common e2,bt,p,g,p1,ep,gi
common Ic11 rl,r2,&m
common le21 e1,fk,ak,an,en
common le31 vr(6,lOO)
common le41 ar,eu,ev(2,O:1),cY1(lO,O:1),qvl(lO,O:1)
common IcSI qv(2,O:1),cq(3,O:1),dt(lO,O:1)
print *,·rk,tk,~k,fm,fy,bt,~.,fh,hc,.h,ar,pd,ad'

read *,rk,tk,zk,fm,fy,bt,zs,fh,hc,sh,ar,pd,ad
print *,'rk-',rk,'tk-',tk,'~kE',zk,'fm-',fm,'fY-',fy,

6 'bt-',bt,'z.-',z.,'fh-',fh,'hc-',he,'.h-',.h,'ar-',ar,
6 'pd-',pd,'ad-',ad

g-l.O-bt
.k-l.O+rk*tk
fk-rk*tk/bt
en-O.S*(l.O+rk*tk·bt)/ak
ep-fY/2.0eS
gi-(O.S-en)**2+0.083333*(1.O+rk*tk*bt*bt)+rk*tk*(en-

6 O.S*bt)U2
rl-l-O+z.*fh/fm
zm-O.S/«(3.0+0.29*fm)/C145.0*fm-1000.0)-O.002*rl+

6 O.7S*z.*.qrt(hc/.h»
if(rl.eq.l.O) then
r2-0.937S
e1-0.0015
.2-0.0025
.1••
r2-rl
el-O.002*rl
e2-0.008
.nd i~

m.(l)-' Icr/I9ro••
••(2)-'Mi/f •• t.lw**2'
..(3)-' u.MYI y.Mi '
•• (4) (1)
..(5) (2)
..(6) (3)
mb(l)w' Web in compre••ion
mb(2)-mb(1)
mb(3)-mb(1)
mb(4)-'rlange in compre••ion'
mb(5)-mb(4)
mb(6)-mb(4)
if(.r,eq.l.O) th.n
p-pd
pl-p·rk*tk·zk
an-.d
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~5

6
40

6
6
6
6

50
6
6

60
6
6
6
6
6
6

70

c

call coft(O.O)
call coft(1.0)
goto 25
end if
k-O
paO.OI

5 k-k+l
vp(k)-p
j-O
i-9*(k-l)
pl-p*rk*tk*zk
do 20 an-O.O,0.4,0.05
j-j+l
va(j)-an
print *,'k-',k,'j-',j,'i+j-',i+j
call relt(O.O,i+j)
call relt(1.0,i+j)

20 continue
if(p.eq.O.Ol) then
pap+O.Ol
el.e
p-p+0.02
end if
if(p.le.0.2) goto S
openCunit-l,file-'limin.relt',form-'formatted',.tatu.-'new')
if(ar.eq.I.O) goto 50
write(1,40) (ma(k),mb(k),rk,g,fy,
cva(i),i-l,9),Cvp(i),(vrCk,9*(I-l)+j),j-I,9),i-l,ll),k-1,6)
format(///////,17x,'Table',4x,a14,2x,a21,/,
25x,'lf/lwa',f4.2,2x,'g-',f4.2,2x,'fY-',f5.1,' Mpa',//,
28x,'Axial Load Ratio Nu/f •. Ag',/,2x,'fy/f m',9f8.4,//,10f
8.4,/,10f8.4,/,lOf8.4,/,10f8.4,/,10f8.4,/,lOf8.4,/,10f8.4,/,
10f8.4,/,10f8.4,/,10f8.4,/,10f8.4,///////)
if(ar.eq.O.O) goto 7U
write (1,60) Ci,pd,ad,&.,fh,hc,.h,rk,tk,&k,f.,fy,g,(cvCj,i)
,j-l,2),CqvCj,i),j-l,2),CcqCj,J\,j-l,3),(dtCj,i),j-l,lO),
(cvlCj,i),j-l,10),(qvl(j,i),j-:,10),1.-0,l)
format(/II,28x,'R-',i2,4x,'pd-',f5.3,4x,'ad-',f5.3,/,
20x,' ••-',f5.3,4x,'fh-',fS.l,4x,'hc-',fS.l,4x,'.h-',fS.1,
1,12x,'kl-',f4.2,4x,'kt-',f4.2,4x,'k.-',f4.2,4x,'f.-',f4,l,
4x,'fy-',f5.1,4x,'g-',f4.2,1/,10x,'CURVATURI',2f20.5,/,
lOx, 'MOMENT',3x,2f20.5,//,10x,'OOEFFICINT',3e15.5,1/,
lOx,'Di-',/,5f16.5,/,5f16,5,//,lOx,'Cv-',/,5fI6.5,1,5fl6.5,
//,lOx,'OV',/,5fI6.5,/,5fI6.5)
print *,'The End of Calculation'
.top
.nd
***** Subroutine for Re.ult *****
.ubrautine relt(r,ij)
external .py,.pu
ca.ean e2,bt,p,g,pl,ep,g1.
ca.mon le31 vr(6,100)
cn-rootC_py,1")
ifCcn.eq.l.0) then
vrC3+3*r,lj)-1.0
cn-root(.pu,r)
ifccn.ge.I.Ot vrC3+3*r,ij)-O.O
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vr(2+3*r,ij)-.qu(en,r)
vr(1+3*r,ij)-9.37Se-4*vr(2+3*r,ij)*en/gl/e2
return
end if
vt-.qy(cn,r)*(l.O-cn-O.S*bt)/ep
vr(1+3*r,ij)-9.37Se-4*vt/gi
cm-root(.pu,r)
vr(2+3*r,ij)-.qu(ca,r)
vr(3+3*r,1j)-e2*vt/cm/vr(2+3*r,ij)
return
end

c ***** Function. for '-D curve *****
.ubroutine coft(r)
external .py,.pu
common e2,bt,p,g,pl,ep,gi
common /e4/ ar,cu,cY(2,O:1),cvl(10,O:1),qvl(10,0:1)
common /cS/ qv(2,0:1),cq(3,0:1),dt(10,0:1)
ar-D.D
cn-root(.py,r)
CIII- root ( .pu , r)
cv(2,r)-e2/CIII
qv(2,r)-.qu(cm,r)
a-9.37Se-4/g1
1f(cn.eq.l.0) then
ar-l.O
cv(1,r)-0.7S*cY(2,r)
cu-cY(l,r)
CIII- root ( .pu , r)
qv(l,r)-.qu(cm,r)
el.e
cv(1,r)-ep/(1.0-cn-O.5*bt)
qv(l,r)-.qy(cn,r)
end if
ar-1.0
do 10 i-l,S
cVl(i,r)-i*0.2*cv(1,r)

10 cVl(i+S,r)-cv(1,r)+i*O.2*(cv(2,r)-cv(1,r»
do 20 1-1,10
cu-cvl(1.,r)
CIII-root ( .pu, r)

20 qvl(1,r)-.qu(ClII,r)
do 30 1-1,10
if(1..eq.l) then
dt(i,r)-0.33333*cvl(1,r)
el.e
t-qvl(1.-1,r)/qvl(i,r)
.-(cvl(1.,r)-cvl(1-l,r»/(qvl(i,r)-qvl(i-l,r»
dt(i,r)-dt(i-l,r)*t*t+O.S*(l.O-t*t)*(CYl(i-l,r)-

6 .*qvl(i-l,r»+O.33333*.*qvl(1.,r)*(1.0-t**3)
.nd if

30 continue
t-O.O
do 40 i-S,lO
1t(dt(1,r).gt.t) then
t-dt(1,r)
k-1
end it
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c

c

40

10

20

30

continue
cq(2,r)-dt(k,r)-dt(5,r)*qv(2,r)/qv(1,r)
cq(3,r)-evl(k,r)-cv(1,r)*qv(2,r)/qv(1,r)
cq(2,r)-cq(2,r)/cq(3,r)
cq(3,r)-1.0-.qrt(1.0-2.0*cq(2,r»
ar-l.O
return
end
**.** Function for eN .*.*.
function root(cyu,r)
xO-O.OOOl
yO-cyu(xO,r)
xO-xO+0.09999
if(yO.eq.lOOO.O) then
print *,'NO ROOT'
root-l.O
return
end if
yl-cyu(xO,r)
print *,'xO-',xO,'yl-',yl
if(yl*yO.lt.O.O.or.yl.eq.O.O) goto 20
yO-yl
goto 10
xl-xO-O.l
x2-xO
yO-cyu(xl,r)
x-0.5*(xl+x2)
y-cyu(x,r)
if(y*yO.gt.O.O) xl-x
if(y*yO.lt.O.O) x2-x
if(x2-xl.gt.0.00l) goto 3D
root-x
pr int *,' x- ' , x
return
end
***** function for Axial rorce. **.***
function pI (e)
common leI I rl,r2,za
pl-S33.33·.*e-88888.9*.**3/rl
return
end
function p2 (e)
common lell rl,r2,za
common Ic21 el,fk,ak,an,en
p2-l.067·r2*C(1.0+el*za)*(e-el)-0.5*~*Ce*e-el*el»

return
end
function py(cn,r)
ca.mon e2,bt.p,g,pl
et-l.O-cn-O.S*bt
ct-cn-O.S*bt
if(en.le.O,S) then
py-O.S*p*ct*ct/g/et+pl*r*ct/et
el.e
py-0.S*p·et/g+p*(2.0*cn-l.0)/g+pl*r
end if
return
end
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function pu(e2,cn,r)
common eO,bt,p,g,pl,ep
cc-cn*ep/e2
ct-cn-O.S*bt
ifccc.le.ct) then
pu-pl*r+p*Cct-O.S*CC)/9
el.e if(cn.ge.O.S*bt/Cl.O.ep/e2) then
pu-e2*pl*r*ct/cn/ep+O.S*e2*p*ct*ct/9/c n/ep
el.e
pu--pl*r-p+p*(l.O-cn-O.S*bt-O.S*cC)/g
end if
return
end
function pt(e2,cn,r)
common eO,bt,p,g,pl,ep
et-l.O-cn-O.S*bt
cc-cn*ep/e2
If(cc.le.et) then
pt-pl*(1.O-r)+p*(.t-O.S*CC)/9
.1•• if(cc.l•• cn-l.O+O.S*bt) th.n
pt-p*(cn-O.S*bt-O.S*cC)/g-p-pl*(l.O-r)
el.e
pt-e2*pl*Cl.O-r)*.tfcn/ep+O.S*.2*p*et*.t/9/cn/·P
end if
r.turn
end
function .py(cn,r)
common e2,bt,p,g,pl,ep
common /c2/ el,fk,ak,an,.n
.t-l.O-cn-O.5*bt
re-ep/et
ce-(cn-bt)*re
ct-cn*r•
• k-l.O+fk*r
.um-ak*an+pl*(1.O-r)+O.5*p*.t/g
tl-pl(cn*r.)/re
t2-p2(cn*re)/n
if(ct.le.el) then
contin....
if(cn.g•• bt) then
~-tl*.k-r*fk*pl(ce)/r.

el••
pI-tl*.k
.nd if
continu•
• 1•• if(ct.le••2) th.n
continu.
if(c•• g•• el) then
pI-pl(el)/r.+t2*ek-r*fk*p2(c.)/re
el.e
pI-(pl(.1)/re+t2)*ek-r*fk*pl(ce)/r•
• nd if
continu•
• 1..
• py-lOOO.O
return
end if
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.py-.um-pm-py(cn,rl
return
end
function .pu(cn,r)
Cc.DOn eO,bt
cem.on /c2/ e1,fk,.k,an,en
cem.on /c4/ ar,cu,cY(2,OI1),cY1(10,011),qv1(10,OI1)
if(ar.eq.O.O) then
e2-eO
el.e
e2-c:n*cu
end if
re-e2/cn
ce-(cn-bt)*re
if(e2.ge.e1) then
t-(pl(el)+p2(e2»/re
el.e
t-pl(e2)/re
end if
ek-l.O+fk*r
cet-(cn-l.O+bt)/cn
ceo- (cn-1.0) /cn
if(ce.qe.e1) then
pm-(pl(e1)+p2(e2)*ek-r*fk*p2(ce»/re
el.e if(cn'ge.bt) then
pm-t*ek-r*fk*p1(ce)/re
el.e
pm-t*ek
end if
if(cn.qe.1.01 pm-pm-pl«cn-l.O)*e2/cn)/re
if(r.eq.0.0.and.cn.ge.1.0-bt) then
continue
if(ceo.ge.e1/e2) then
pm-(p2(e2)+p2(cet*e2)*fk-(1.0+fk)*p2(ceo*e2»/re
el.e if(cet.ge.el/e2) then
pm-(p2(e21+p2(cet*e2)*fk+(1.0+fk)*(pl(e11-p1(ceo*e21»/re
el.e if(cn'ge.l.O) then
pm-t+(p1(cet*e21*fk-(1.0+fk)*p1(ceo*e21)/re
el.e
pm-t+p1 (cet*e2) *fk/re
end if
continue
end if
.pu-ak*an+pt(e2,cn,r)-pm-pu(e2,cn,r)
return
end

c ***** Function for Mc.ent. *****
function q1(e)
cem.on Ic11 r1,r2,~

ql-3SS.S6*e**3-66666.7*e**4/rl
return
end
function q2(e)
cam.on Ic11 r1,r2,~

cam.on le21 e1,fk,ak,an,en
q2-1.067*r2*(0.S*(1.0+el*~)*(e*e-el*e1)-0.33333*&m*(e**3-

6 e1**3»
return
end
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function qYlcn,r)
cam.on e2,bt,p,9,pl
ct-cn-O.S*bt
et-l.O-cn-O.S*bt
lfCcn.le.O.S) then
qy-O.33333*p*ct**3/0/et+pl*r*ct*ct/et
el.e
qy-O.J3333*p*et*et/o+p*ccn-O.S)+pl*r*ct
end it
return
end
function quce2,cn,r)
cam.on eO,bt,p,o,pl,ep
ct-cn-O.S*bt
cc-cn*ep/e2
If(cc.le.ct) then
qu-pl*r*ct+O.S*P*Cct*ct-O.33333*cc*cc)/O
el.e ifCcn.oe.O.S*bt/Cl.O+ep/e2» then
qu-r*e2*pl*ct*ct/cn/ep+O.J333J*p*e2*ct**3/0/cn/ep
el.e
qu-pl*r*CO.S*bt-cn)-O.S*P*CC1.O-cn-O.S*bt)**2-cc*cc/J.O)/0

6 +P*CO.S-cn)
end it
return
end
function qtce2,cn,r)
common eO,bt,p,g,pl.ep
et-l.0-cn-O.S*bt
cc-cn*ep/e2
ifCcc.le.et) then
qt-pl*Cl.O-r)*et+O.S*p*cet*et-O.J3333*cc*cc)/O
el.e lfCcc.le.cn-l.O+O.S*bt) then
qt--O.S*p*Cccn-O.S*bt)**2-0.33333*cc**2)/g+p*Ccn-O.S)+p1

6 *Ccn-l.0+0.S*bt)*Cl.0-r)
el.e
qt-pl*Cl. O-r)*et*et*e2/cn/ep+O.3J333*p*et**3*e2/0/cn/ep
end if
return
end
function .qyccn,r)
common e2,bt,p,q.pl,ep
common /c2/ el,fk,ak,an,en
et-l.O-cn-O.S*bt
re-ep/et
et-cn*re
ce-Ccn-bt)*re
ek-l.O+fk*r
.ua-ak*an*CC1.0-en-cn)*Cl.0-r)+cen-cn)*r)+pl*Cl.O-r)*et

6 +O.33333*p*et*et/9
tl-qlCcn*re)/re/re
t2-q2ccn*re)/re/re
ifcct.le.el) then
continue
ifccn.qe.bt) then
~-tl*ek-r*fk*qlcce)/re/re

el.e
.,.-tl*ek
end if
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continue
e1.e
continue
if(ce·ge .e1) then
~-q1ce1)/re/re+t2*.k-r*fk*q2cce)/r./r•
• l.e
cpa-cq1 cel)/re/re+t2)*ek-r*fk*ql(ce)/re/re
end if
continue
end if
.qy-.um+cpa+qy(cn,r)
return
end
function .qu(cn,r)
cOllllllOn eO,l.ot
cOlIIIllOn /c2/ el,fk,ak,an,en
eOllllllOn /c4/ ar,eu,ev(2,O:1),evlclO,011),qvlClO,O:1)
ifCar.eq.O.O) then
e2-eO
el.e
e2-cn*eu
end if
r.-e2/cn
c.-ccn-bt)*re
ek-1.0+fk*r
c:eo-(cn-l.O)/cn
cet-(cn-l.O+bt)/c:n
1f(e2'ge.e1) then
t-(ql(el)+q2(e2)/re/re
e1.e
t-ql(e2)/r./r.
end if
ifce•• ge.el) then
qm-cqlcel)+q2C·2)*ek-r*fk*q2cce)/r./re
.1•• ifccn.g•• bt) then
qm-t*.k-r*fk*ql(ce)/re/r•
• 1••
epa-t*ek
end if
if(cn.ge.1.0) qm-qm-qlc(cn-l.0)*e2/cnl/r./re
if(r.eq.O.O.and.cn.ge.1.0-bt) then
continue
if(e8O'ge.e1/e2) then
qm-cq2ce2)+q2cc.t*e2)*fk-Cl.0+fk)*q2(ceo*.2)/re/r•
• 1•• if(cet.ge.e1/e2) then
qm-cq2ce2)+q2cc.t*e2)*fk+Cl.0+fk)*cqlcel)-qlcceo*e2»))/re/re
el.e if(cn.ge.l.O) then
qm-t+(ql(cet*e2)*fk-(1.O+fk)*ql(ceo*e2»/re/re
el.e
cpa-t+ql (cet*e2) *fk/re/re
end if
continue
end if
.qu-ak*an*«1.O-cn-en)*(1.O-r)+cen-cn)*r)+Qt(e2,cn,r)

6 +qm+quCe2,cn,r)
return
end

c ***** The Knd of Progr.. *****
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Appendix B

Computer Program for Time-history Analysis of flanged Masonry Walls

e ••••• PROGRAM FOR TIME-HISTORY RESPONSE ANALYSIS •••••
C

PROGRAM MAIM
CHARACTER.I0 PILEl,rILE2,rILEJ,rILl4,rILl5
DI~NSIOM AO(2000),DVC2000),AVC2000),PVC2000),VT(2000),DBC2000)
COMMON /VS/ DUO,UO,Ul,U2,Vl,V2,VJ,V4,VS,V6,V7,V8,V9,WO,CO.CC

6 .DT.KK.MA.BO,SO
COMMON /VO/ OWO,OWl.0W2.0WJ.OPO.OPl.0P2.DWC,DWY .DWO.DFC,Dn .TL

6 .Pl.P2.DWB.DFB. PNM,PPM.PWY. pry
COMMON /VQ/ QO.Ql.OC.DWS.DFS.PIM.P2M,TM
COMMON /ve/ H.Hl
WRITEC •• •• 'INPNT - WO.E,VI,H.HI.C.A,CX.MA.N.RP·
READC ••• ) WO.E.VI.H,HI.o,A.CX,MA.N.RP
DM.H*·3/CJ.O·E·VI.
IFCNA.EQ.I) DM·DM+H/IC*A)
CO·1.°/DM
OM.SORT (CO /WO •
CO·2.0*CIC·OM·WO
TO·6.28/OM
WRITEI·,*) 'INPNT - FILEI'
READI·.S) FILEI

S FORMAT(AI0.
WRITE 1*.·) •INPr': - rILE2'
READ(·,S) PILE2
WRITEI-.·) 'INPUT - PILIJ'
READI*,S) rILEJ
WRITEI •• ·) 'INPUT - rILE4'
READI •• S. "ILE4
WRITEI ••• ) 'INPUT - "ILES'
READI·.S. "ILES
OPENIUNIT·II."ILE·rILEl.STATUS··OLD·.
OPEN(UNIT.22."ILI.rILE2,STATUS.·NEW·.
OPEN(UNIT·J3."ILI."ILEJ.STATUS.·NIW·)
OPENIUNIT.44."ILE.PILE4.STATUS··NEW·)
OPBN(UNIT·S5.PILI.rILBS.STATUS.·NEW·)
WRITE(22,10. WO.E.VI.H.Hl.C,A.CX,MA,N.RP.CO.OM.CO.TO

10 FORMATI//,20X.·THE DATA FOR CALCULATION·.//.SX,·WO··.EI2.5.5X.
6 ·1.·.EI2.5.SX.·VI.· ••12.S.SX,·H.·,E12.5,1.5X,·Hl.·.12.S.5X.
6 ·C.· ••12.5.SX.·A.· ••12.S.5X,·CX.·,E12.S,/.SX.·MA··.I12.5X.·N·'.
6 I12.Sx.·RP.·.E12.5.///.SX.·X.·,BIJ.5,SX, ·W··.EI3.5.5X,·C.· ••IJ.5
6 .SX.·T.·.E1J.S)

DO 15 I·l.N
READCll,*) AOU.

15 AOCI).RP*AOII)
WRlTEI ••• ) 'INPUT-GWO,CW1.CW2.CWJ.crO.CP1.cr2,DWC.DWY.DWU.DWL

6 ,DFC,DrY.TL,Pl.P2,DT.CT,MJ,KK·
READ(*,*) CWO,CWl,CW2,CWJ,CFO,C"1,Cr2,DNC,DWY,DWU,DWL

6 ,DFC,DP'Y,TL,Pl,P2,DT,CT,NJ,KK
WRITE I22,20) cwo ,CWI ,GW2 ,OWl ,oro.O"l ,or2 ,DNC.DWY,DWU.OWL

6 .DFC.DP'Y,TL,P1,P2,DT,CT,NJ,KK
20 FORMAT(//,SX,·CWO.·,B11.5,51,·OWl.·,Ell.5,51,'OW2··,E11.5,SX,

6 'OW3.',El1.5,/,SX, 'crO.',E11.5,51,'0"1.',El1.5,5X.'0"2.',lll.5,
6 5X,·DNC.·.El1.5,/,SX,·DWY.·,ll1.5,5X,·OWU.·,Bll.5,5X.·DWL.·.
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6 Ell.5,SX,'~rC-',Ell.S,/,SX,'DFY-',Ell.S,SX,'TL-',E12.5,5X,'Pl-'

6 ,E12.5,SX,·P2-',E12.5,/,5X,'DT-',E12.5,SX,'CT-',K12.5,5.,
6 'MJ-',I12,5X,'MX-',I12)

NRITI(·,·) 'INPUT-go,Ol,QC'
READ(·,*) QO,Ql,QC
NRITI(22,22) QO,Ql,QC

22 FORMAT(//,SX,'OO-',E12.5,5X,'Ql-',E12.5,SX,'OC-',E12.S)
Ir(DT.GK.l.O) GOTO 24
TV-CT*DT
V2-3.0/TV
V3-2.0*V2
VI-V3/TV
V4-0.S*TV
VS-Vl/CT
V6--V3/CT
V7-1. 0-3. O/CT
va-O.S*DT
V9-DT*DT/6.0

24 CONTINUI
WRITI(*,*) 'INPUT-BO,PWM,DWB,Dws,prN,DrB,Drs'
READI*,*) BO,PWM,DWB,DWs,prN,DrB,Drs
WRITE(22,2S) BO,PWM,DWB,DWS,PFM,DrB,Drs

25 FORMAT(//,5X,'BO-',B12.5,5X,'PWM-·,Bll.5,5X, 'DWB-',Bll.5,5X,
6 ·DWS-',lll.5,/,5X,'PFM-',Bll.S,SX,'DrB-',Bll.5,SX,·Drs-·,Ell.5)

TH-TL
SO-O.O
UO-BO+SO
UI-O.O
U2-0.0
PI-O.O
AWN-O.O
ArM-O.O
awo-aWO/H
aWI-GWl/H
aW2-GW2/H
aro-arO/H
arl-orl/H
Pl-Pl/H
P2-P2/H
pwy-aWl
PFY-orl
82-H*H/3.0
DWC-DWC*H2
DWY-DWY*H2
DWU-DWU*H2
DWL-DWL*H2
Drc-Drc*H2
DrY-DPY*H2
DWM-O.O
DFM-O.O
IrCDNB.LT.DWC) THEN
PWM-GWO
DR-DWC
KIlO IP
IrCDr8.GT.DrC) THEN
PFM-oro
Dr8-Drc
KIlO II'

267



26

28

6

6
6

6
6
6

CW2-CCW2-GW1)/CDWU-DWY)
CWI-CCWI-GWO)/IDWY-DWC)
CWO-eWO/DWC
CW3-eW3*GWO
Crl-CCrl-GrO)/IOPY-DPC)
cPo-cp%rc
CP2-CP2*OrO
gc-QC/H
QO-QO*C*A/H
QI-Ql*G*A/H
IPCOWB.LT.OWC) OWS-PWH/QO
Ircor8.CT.DrC) ors-PPM/go
lr(OT.CE.l.O) THEN
GC-O.O
ELSE
CC-ADDVCV1,V2,WO,cO)
ENO IF
WRITE(22,26) GWO,GW1,GW2,GW3,CC,CFO,CF1,CF2,PWY,PFY,Pl,P2,
QC,QO,Ql,DWC,DWY,DWU,DWL,Orc,DFY
FORMAT(/1.5X, 'GWO.·,ll1.5,5X. ·CW1.·.E1I.S.SX, ·OW2••••11.5.
SX,·CW3.·,ll1.5,1,5X,·CC.'.112.5.5X, ·orO-·,ll1.5,5X,'orl-'.
111.5,5X,'cr2··,ll1.5,1,5X, ·pwys·,ll1.5,5X,'PPYs',ll1.5,5X.
·Pl-',112.5,5X,'P2-·.112.5.1,5X,'OC-',112.5,5X,·go-·,BI2.5,
5X, 'Qls',112.5,5X,'OWC-'.ll1.5,1,5X,'OWY.',Bll.S,5X,·OWU-'.
Zll.5,SX,'DWL-',Ell.S,5X,'DPCs ',Z11.S,I,5X,'OPY.',lll.S, II)
J-l
08(1)-80
DV( 1)-UO
AV(I)-O.O
PV(I)sO.O
VT(l)-O.O
DO 30 I-l,N
IF(DT.CI.l.0) WO.-l.O
IF(I.IQ.l) THIN
OP--WO*AO(l)*C"l'
BLSS
DPs-WO*«AO(I)-AO(I-l»*CT+AOCI-l»
END IF
CALL STIP(OI,QI,PI,DP)
WRITE(* ,*) 'I', I, '01' .CI, 'QI' ,QI, 'PI' ,PI
U'(UO.CI.DWL) TH."
WRIT.C*,*) 'THE WALL FAILS AT 1-'. I, 'UOs', UO.·PIs·,PI
WRIT.C22,28) I,UO,U2,AOCI),PI
FORMAT(II,20X,'TKI WALL rAILS AT',I.I5,4116.5)
END Ir
AVI-CU2+AOCl»/386.0
IP(MJ.IQ.l.0R.I.EQ.l,OR.I.IQ.J*MJ) THaN
J-J+l
D8CJ)·80
DV(J)-UO
AV(J)-AVI
PV(J)-PI
VT(J)-(J-l)*DT
END IF
CALL CHOICDNS.SO,I,ISI)
CALL CH02(DrS.SO,I,IS2)
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CALL CHOl(DWB,BO,I,IBl)
CALL CH02(DrB,BO,I,IB2)
CALL CHOl(DWM,UO,I,IDl)
CALL CHOl(AWM,AVI,I,IAl)
CALL CHOl(PWM,PI,I,IPl)
CALL CH02(DFM,UO,I,ID2)
CALL CH02(AFM,AVI,I,IA2)
CALL CH02(PFM,PI,I,IP2)
PIM-PWM
P2M-PFM

30 CONTINUE
WRITE(22,40)

40 PORMAT(III,20X, 'THE RESULT OF CALCULATIOI',111,3X,'TIMI',10X,
6 'DISPLA',10X,'ACCELE',10X,'SHEAR',12X,'DISPI',/)

WRITE(22,45) (VT(I),DV(I),AV(I),PV(I),DI(I),I-l,J)
45 PORMAT(F'.2,411'.5)

WRITE(22,50) DWM,ID1,DWB,IBl,AWM,IA1,PWM,IP1,
6 DFM,ID2,DFB,IB2,AFM,IA2,PFM,IP2

50 PORMAT(II,20X,'THE ENVELOP OF RESPONSE',11,5X,'+DM-',E12.4,I1,
6 1,5X,'+DB-·,EI2.4,I1,/,5X,'+AM-',EI2.4,I1,1,5X,'+PMa',E12.4,11,
6 1,5X,'-08-',112.4,I1,/,5X,'-DBa',EI2.4,I1,1,5X,
6 '-AM-',E12.4,11,1,5X,'-PM-',E12.4,11)

WRITI(33,55) (VT(I),DV(I),I a l,J)
S5 PORMAT(Fa.3,116.S)

WRITI(44,SS) (VT(I),-AV(I),I-l,J)
WRITI(SS,60) (OV(I),-AV(I),I-l,J)

60 PORMAT(2116.S)
STOP
END

c
C ***** FUNCTIONS' SUBROUTINES *****
C

FUNCTION ADDV(Cl,C2,Vl,V2)
ADDV-Cl*Vl+C2*V2
RETURN
END

c ••••••••••••••••••••••_--
SUBROUTINE STEP(GI,QI,PI,DP)
COMMON IVSI DUO,UO,Ul,U2,Vl,V2,V3,V4,VS,V6,V1,Va,V9,WO,CO,GC,

6 DT,MK,MA,BO,SO
IF(DT.GB.l.0) THEN
DUO-D'-PI
ILSI
DUO-DP+WO*ADOV(V3,2.0,Ul,U2)+CO*ADDV(2.0,V4,Ul,U2)-PI
END IF
GOTO(10,20,30) MK

10 GI-PORG(BO,'I,DUO)
GOTO 40

20 GI-POR2(BO,PI,DUO)
GOTO 40

30 OI-POR3(BO,PI,DUO)
40 CONTI NUB

IF(MA.EQ.l) THIN
QI-PORQ(SO,PI,DUO)
GHaQI*QI/(GI+QI)
ELSI
OHaGI
END IF
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CO-CH+GC
DUO-DUO/CO
IF(DT.GE.l.0) GOTO SO .
DU2-ADDV(VS,V6,DUO,Ul)+V7*U2
DUl-(DU2+U2)*V8+Ul
DUO-ADDV(I.0,2.0,DU2,U2)*V9+DT*Ul
UI-DUI
U2-DU2

SO BO-BO+DUO*QI/IGI+QI)
SO-SO+DUO*GI/IGI+QI)
PP-DUO*GH
PI-PHP:»
UO-UO+DUO
RET'JRN
END

c •••••••••••••••••••••••
FUNCTION FORG(DI,PI,DP)
COMMON /VG/ GWO,GWl,GW2,GW3,GPO,GP1,GP2,DWC,DWY,DWU,DPC,DPY,

6 TL,Pl,P2,DWB,DFB,PWM,PPM,PWY,PPY
COMMON /VC/ H,Hl
GT(DM,PM)-(PM-PI)/(DM-DI)
RG(Gl,G2)-1.0/Gl+3.0*Hl/G2/H
GWY-PWY/DWY
GPy-prY/Drr
IF(DI.GT.O.O.AND.PI.GT.O.O) THIN
CONTINUI
IP(DP.LI.O.O) THIN
CONTINUI
IP(PI.LI.DI*GWY) THEN
G-CWY
ELSE
G-PI/DI
END [P

CONTINUE
ELSE IP'(DI.LT.DWB) THEN
a-GT(OWB, PIIM)
ELSE IP(DI.LE.OWC) THIN
G-GWO
ELSE IF(DI.LE.OWY) THEN
G-GT (OWY , PWY)
ELSE IF(DI.LII:.DWU) THEN
HI-H· I 1.O-PWY/PI)
G-RG(CWY,CW2)
FORG-1.0/G
RETURN
ELSE
G-e1IJ
END IF
CONTINUE
ELSE IF(DI.LT.O.O.AND.PI.LT.O.O) THBN
CONTINUB
IP(DP.GE.O.O) THBN
CONTINUE
IF(PI.CB.DI·GFY) THEN
G-cry
ELSE
G-PI/DI
J:ND II'
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CONTINUE
ELSE IP(DI.GT.DPB) THEN
G-GT(DPB,PFM)
ELSE IP(DI.GE.DPC) THEN
G-GPO
ELSE IP(DI.GE.DFY) THEN
G-GT(DPY,PFY)
ELSE
HI-H·Cl.O-PPY/PI)
G-RG(GPY,GP2)
FORG-l.O/G
RETURN
END IF
CONTINUE
ELSE IP(DI.EQ.O.O.AND.PI.EQ.O.O) THEN
CONTINUE
IP(DP.GT.O.O) THIN
G-GWO
ELSE
G-GPO
END IP
CONTINUE
ELSE IPCDI.OE.O.O) THEN
CONTINUE
IFCDP.GE.O.O.OR.PI.OE.P2+DI·ONY) THEN
O-ONY
ELSE
O-(PI-P2)/DI
END IF
CONTINUE
ELSE IF(DP.LE.O.O.OR.PI.LE.Pl+DI·OFY) THEN
G-GFY
ELSE
G-(PI-Pl)/DI
END IF
FORG-O
RETURN

C ••••••••••••••••••••
INTRY FOR2(DI,PI,OP)
OWY-PWY/OWY
ory-prY/DrY
IFCDI.OT.O.O) THEN
CONTINUE
IF(OP.LE.O.O) THIN
R2-PI/DI
ILSS IrCDI.LT.DWB) THIN
R2-GT(DWB, PWM)
ELSE IPCDI.GE.DWU) THEN
R2-0W3
ELSE IFCDI.OE.DWY) THIN
HI-H·(l.O-PWY/PI)
R2-RG(GWY,OW2)
FOR2-l.0/R2
RITURII
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ILSI Il(DI.CI.DWC) THIN
R2eGT(DWY, PWY I
ILSI
R2eGWO
IND IF
CONTINUE
ELSE IF(DI.LT.O.O) THIN
CONTINUE
IP(DP.OZ.O.OI THIN
R2-PI/DI
ILSI IF(DI.CT.DPB) THIN
R2-CT(DrB,PPM)
ELSI IF(DI.CE.DFC) THEN
R2eGFO
ELSI IF(DI.CE.DFY) THIN
R2eGT(DFY,PPY)
ELSI
Hl-H-Cl.D-prY/PI)
R2-RC(CFY,Cr2)
FOR2-1.0/R2
RETURN
END IF
001I"1' I NUE
ILSE IF(DP.CI.O.O) THIN
R2eGWO
ELSI
R2-cro
END IF
FOR2-R2
RETURN

C ********************
ENTRY FORJ(DI,PI,DP)
CWY-PWY/DWY
CFY-prY/Dry
IrCDI.GT.O.O.AND.PI.CT.O.OI THIN
CONTINUE
Ir(DP.LI.O.O) THIN
CONTINUl
Ir(PI.GI.DI-OWY) THIN
Rl-PI/DI
ELSI IF(PI.CI.DI*CW2) THIN
RJ-PI/(DI-(l.O-TLI+TL-OWYI
ILSE
Rl-(PI-P2)/DI
IND Ir
CONTI NUl
ELSI IF(DI.LT.DWSI THIN
RJeGT (DWB, PWIII
ILSI IFCDI.CI.DWUI THIN
Rl-OWJ
ILSE IF(DI.OI.DWYI THIN
Hl-H-(l.O-PWY/PI)
Rl-RG(GWY,CW21
FOR)-!. O/RJ
UTURN

272



ELSE IF(DI.GE.DWC) THEN
R3-eT(DWY, PWY)
ELSE
R3-eWO
END IF
CONTINUE
ELSE IF(DI.LT.O.O.AND.PI.LT.O.O. THEN
CONTINUE
IF(DP.GE.O.O) THEN
CONTINUE
IF(PI.LE.DI*CFY) THEN
R3-PI/DI
ELSE IF(PI.LE.DI*CF2) THEN
R3-PI/(DI*(1.0-TL)+TL*DFY)
ELSE
R3-CPI-Pl)/DI
END IF
CONTINUE
ELSE IF(DI.GT.DFB) THEN
R3-eTCDFB,PFM)
ELSE IFCDI.GE.DFC) THEN
R3-eFO
ELSE IFCDI.GE.DFY) THEN
R3-CT(DFY,PFY.
ELSE
HI-H*Cl.O-PFY/PI)
R3-RC(CFY,GF2.
FOR3-1.0/R3
RETURN
END IF
CONTINUE
ELSE IF(DI.EQ.O.O.AND.PI.EQ.O.O) THEN
CONTINUE
IF( DP.CE.O.O. THEN
R3-CWO
ELSE
R3-eFO
END IF
CONTINUE
ELSE IFCDI.GE.O.O) THEN
CONTINUE
IF(DP.CE.O.O.OR.PI.CE.P2+DI*CWY) THEN
R3-CWY
ELSE
R3-(PI-P2)/DI
END IF
CONTINUE
ELSE IFCDP.LE.O.O.OR.PI.LE.Pl+DI*CFY) THEN
R3-CFY
ELSE
R3-CPI-Pl)/DI
END IF
FOR3-R3
RETURN
END

273



c *•• *****.****••*.* ••*.*.*.
SUBROUTINE CH01(CH,CI,I,~)

IF(CI.GT.CM) THEN
CM-CI
~-I

END IF
RBTURN
END

C **************************
SUBROUTINE CH02(CM,CI,I,~)

IF(CI.LT.CH) THEN
eM-CI
~-I

END IP
RETURN
END

c ••••••***** •••• * •••***.
FUNCTION PORQ(DI,PI,DP)
COMMON IVQI QO,Q1,QC,DWS,DFS,PWM,PFM,TL
COMMON IVCI H,Hl
GT(DM,PM)-(PM-PI)/(DM-DI)
IF(DI.GT.O.O) THEN
CONTINUE
IF(DP.LT.O.O) THEN
Q-PI/DI
ELSE IF(DI.LT.DWS) THEN
g-GT(DWS,PWM)
ELSE IF(DI.GE.QC/QO) THEN
Q-Q1
ELSE
g-oo
IIiD IF
CONTIIIUE
ILSE IF(DI.LT.O.O) THEN
COIITINUE
IF(DP.GT.O.O) THEil
g-PI/DI
ELSE Ir(DI.OT,DPS) THEN
g-oTCDrS,PFM)
ELSE IrCDI.LT.-QC/QO) THEN
g-Q1
ELSE
Q-OO
END IP
CONTINUE
ELSE
Q-OO
END IP
PORg-Q
RETURN
END

c
C ***** END OP PROGRAM *****
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