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CHAPTER 1

INTRODUCTION

1.1  MOTIVATION OF THE RESEARCH
1.1.1 General

It is not economically acceptable to design and build structures that will
resist earthquake ground motion excitations while maintaining elastic behavior.
The currently accepted earthquake design criterion for life safety applied to
buildings requires that the building not collapse if subjected to an earthquake
ground motion of maximum expected level. Consequéntly, the calculation of
inelastic response is of critical importance in evaluating the ability of a building to
withstand a major earthquake. Two types of performance are possible in a
concrete masonry wall: either the wall can undergo large deformations while
partially maintaining its strength (ductile behavior) or the wall can suddenly lose its
strength (brittle behavior) and potentially collapse.

The use of concrete masonry walls as an earthquake lateral force resisting
system for high rise structures requires the system be ductile. If concrete masonry
is confined, it can sustain large strain levels and suitable ductility. 1t is only recently
that studies have been performed to evaluate practical and efficient ways to

confine concrete masonry. These studies concluded that the stress-strain



relationship for concrete masonry confined with different types of confinement
schemes is different from the stress-strain relationship of reinforced concrete.

The hatural framework to describe the performance of building structures
to earthquake excitation is structural reliability theory. Historically, this discipline
started with the estimation of the probability of failure of a single structural
component based on a knowledge of the probabilities distributions of the involved
random variables. In the 1970’s a breakthrough was made in structural reliability
theory by introducing the concept of a safety index that only requires the
knowledge of the first and second moments of the random variables. It then
followed that the use of "First Order Second Moment" approach further advanced
the use of safety calibration for the development of design criteria at the element
level.

Soon it became obvious that the multi-component behavior had a severe
impact on the probability of failure of the structure. The problem of predicting the
system reliability has been formulated starting from the reliability of its components.
The system reliability theory developed, in the last fifteen years, methods for
estimating the probability of failure for structures such as frames and trusses
subjected to static loads. Structural walls are elements with more complex
behavior than the elements that constitute a truss or frame and the reliability

analysis of such walls has seldom been attempted even at the component level.



1.1.2 Basic Problems Related to Reliability Analysis of Structural Systems

Subjected to Earthquake Ground Motions

The major difficulty in estimating the probability of failure of any element or
structure subjected to earthquake shaking is created by the extremely large
uncertainty associated with the load. It is recognized that it is not possible to
accurately assess either the distribution or the moments of the random variables
associated with the ground motion excitation at a site. Even if the activity in some
potential earthquake sources may be described probabilistically with a relatively
good confidence, the uncertainty associated with the local soil ampilification is very
large.

In the current structural design practice, this shortcoming is overcome by
providing structures with critical components that do not fail in a brittle manner but,
rather, continue to deform inelastically. Meanwhile, the acceleration response of
the system in the inelastic domain decreases and the displacement response
increases. The yielding components continue to resist their yield level load while.
going through deformations that are further imposed on the structure. An
individual wall fails when its ultimate deformation or ultimate limit state is reached.
After a certain number of walls reach their ultimate limit state, collapse of the
structure fs likely to occur. The amount of deformation that the structure can
sustain from the first yield limit state to the ultimate system limit state quantifies the

available ductility of the structure. Our objective, therefore is to make sure that the



subject structure has the available ductility necessary to undergo the deformations

required. Levels of component ductility are now required in current building codes

and no conscious effort is made to produce acceptable levels of structural system

ductility.

steps:

It is proposed that the structural reliability of walls be separated into three

M
(2)

3

Determine the statistical variability of the component ductility.
Determine the statistical variability of the structural system ductility
starting from the statistics of the component ductility.

Perform a reliability analysis at the structural level introducing
earthquake load uncertainty. The limit state equations will be written

in terms of ductility demand and ductility capacity.

There are several advantages of this approach:

(0

)

The first two steps are purely structural problems where the
earthquake load is not involved. Thus, the results will have a
reasonable degree of confidence.

At the structural level, the effects of redundancy can be emphasized
separately from the system ductility. Then, the beneficial effects of
redundancy and ductility can be combined to the advantage of the
structural system. At the same time, tridimensional effects like the
variation of the axial force due to spatial ground motion excitation

can be accounted for.



(8)  Theuncertainty in response spectrum ordinates associated with local
amplification is higher for elastic systems than for the inelastic
systems. When the ductility demand increases, the uncertainty
decreases. In this finding lies the potential for a more confident
safety calibration of the seismic risk of structures.

(4) Reliability theory in general deals with low probabilities that are
associated with two major difficulties: lack of practical meaning and
inaccuracy of results when using Monte Carlo simulation. The
proposed approach shifts the domain of interest to higher

probabilities that are easier to handle and understand.
1.1.3 Objective and Importan f thi

The goal of this research is limited to the first two steps of the general
approach outlined in the previous section that are the determination of the
statistical variability of the wall ductility and the structural system ductility. The
results will be presented in a format that is specific to structural reliability analysis
and uses the safety index of ductile behavior.

The object of the study are structures consisting of flexural structural walls,
i.e. strucfural walls where the possibility of a shear mode of failure is precluded.

The importance of this research for structural engineering stems from the

need to find efficient solutions for lateral force resisting systems of new structures



as well as a confident estimation of the strength reserve incorporated in existing

structures.

1.2 STATE OF THE ART REVIEW IN STRUCTURAL SYSTEM RELIABILITY

1.2.1 System Reliability

According to the classical theory of system reliability, a structure is
considered at a fixed point in time, and the state of the structure is assumed to
depend only on the present state of its elements. Each element is assumed to be
either in a functioning state or in a failed state. A binary state indicator variable &;
is defined as equal to 1 when the i-th element is functioning and 0 when it has
failed. A state indicator variable a,, called the "structure function® is defined as a
function of 8yyees@y (Barlow and Proschan, 1875; Madsen, Krenk, and Lind, 1986).
A "cut set" is defined as a set of elements that produce the failure of the system.
A minimal cut set is defined as a cut set that does not contain any other cut set.
Similarly, a "path set" is defined as a set of elements that can assure the survival
of the system. A minimal path set is defined as a path set that contains no other
path set (Contini and Poucet, 1988). The structure function can be expressed as
a function‘ of minimal cut sets and minimal path sets. This format allows for a
systematic estimation of the probability of failure of the system. Different

expressions for lower and upper bounds of this probability as a function of the



probability of failure of the components have been proposed by Cornell (1967),
Vanmarcke (1971), and Ditlevsen (1979).

A theoretical system that has captured the attention of many researchers
was defined by Daniels (1945). The system consists of a bundle of fibers with
independently, identically distributed component strengths, a constant modulus of
elasticity and perfect equal load-sharing among the unbroken fibers. The behavior
of fibers is ideally brittle. Daniels found a recursive scheme for the determination
of the probability distribution of system strength and derived the Gaussian
distribution as a limiting distribution of system strength for an infinite number of
components.

Rackwitz and Golwitzer (1988) studied small size Daniels systems with
stochastic dependence between the different components and arbitrary force-
deformation curve. They introduced a more complex definition of component
ductility as a function of the ratio between the inelastic and elastic energy.
According to this definition, they place the components in different ductility
categories ranging from ideal brittle to ideal ductile. Calculating the reliability index
of systems with increasing number of elements shows that the ideal brittleness
corresponds to the least increase in reliability. ideal ductility provides the largest

increase in reliability index with the increasing number of elements.



1.2.2 Redundancy

One of the most ambiguous concepts in the theory of structural reliability is
redundancy. For the ordinary structural engineer redundancy is analogous with
static indeterminacy and its efficacy can be measured by the number of degrees
of static indeterminacy. It has been stated (Corotis et al., 1988), arguably, that
redundancy is a quality that represents the "availability of ordinarily not required
capacity”. In fact, the additional static indeterminacy may amount, in most cases,
to additional capacity, hence reliability, of the system. However, for certain types
of loadings (termal, differential settlement) redundancy is harmful to the system
reliability (Yao, 1988). In seismic design, the practice to provide "seismic gaps"
between sub-structures of different dynamic characteristics is a typical example of
avoiding detrimental redundancy.

If redundancy is an intrinsic characteristic of the structural system, the
effects of redundancy are different according to the type of loading. These effects
are considered beneficial if there is an increase in system reliability with respect to
the component reliability.

Attempts have been made to quantify the efficacy of redundancy using a
Redundancy Factor. Frangopol and Nakib (1991) present a series of such

redundancy measures, grouped in two categories: deterministic and probabilistic.



The emphasis is placed on estimating the capability of the structural system to
carry load after one or more of its members have failed. An example of

deterministic definition for the Redundancy Factor is

olnma

S —"
where
Qintact = ultimate strength of the undamaged system
Quamaged = ultimate strength of the system after one or more members

have failed
The probabilistic measures of redundancy effects acknowledge the

uncertainty in loads and strengths. The proposed definitions for redundancy

factors are:
R, = ﬁ
Bww
Ry = Bc-Buwm
Rs = (B c” BWM)
Be
where
Be = safety index of the intact system with respect to collapse
Bwa = safety index of the weakest member



More general definitions can be obtained by replacing the safety index of
the weakest member with the safety index of the intact system with respect to any
first member failure, 8,,,. Another alternative is offered by replacing the safety
indices with the corresponding probabilities of failure.

An important distinction made by Frangopol et al. (1991) is between the
design-oriented measures of redundancy effects and evaluation-oriented measures.
The object of latter measures of redundancy effects are the existing, damaged
structures. To account for the given damage state, 8, or 8, is replaced by the
safety index of the damaged system, 8,

De, Karamchandani, and Cornell (1989) define the Redundancy Factor as
the conditional probability of system failure given the first failure of any member.
They also define a Complexity Factor as a ratio between the probability that any
first member failure occurs and the probability of failure of the weakest member.
The Complexity factor measures the adverse system effect on the first failure event
due to the presence of more than one failable member.

Rackwitz and Golwitzer (1988) showed that Daniels systems provide the
most efficient redundancy, i.e. the highest increase in system reliability with
increasing number of elements. However, if the correlation between components
is high and/or the coefficient of variation of the load exceeds the one of strength
significanﬂy, the gain in reliability when increasing the number of elements
becomes insignificant. Apparently surprising, an increased resistance variability in

a brittle system may produce increased system reliability. In fact that happens

10



because the authors imposed a constant element safety index; in order for the
standard deviation to increase, the average element strength has to decrease and
the system reliability consequently decreases.

Cornell (1988 b) defines the "probabilistic redundancy” as the effect of the
stochastic variations of resistance of different parallel elements about a common
mean that does not permit the structure to collapse when the first member fails.
The "balancedv systems" defined as systems with elements having a common mean
load-to-capacity ratio (De, Karamchandani, and Cornell, 1989) possess a high
“"probabilistic redundancy”. The Daniels systems are the least "probabilistically
redundant" because of the load-sharing property. The probabilistic redundancy
concept will be given a special attention in this research because it is an
appropriate model for parallel systems consisting of semi-ductile elements

subjected to earthquake excitations.
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1.3 ORIGINAL CONTRIBUTION

1.3.1 General

- This research is divided into four parts. The First Part, treated in Chapter
2, studies the sensitivity of the lateral force-deformation behavior of a reinforced
concrete masonry flexural wall to the variations in material characteristics and
magnitude of the axial force. The Second Part (Chapter 4), provides a new
statement of the wall reliability problem independent of the strong motion
excitation, and solves the problem for the wall studied in the First Part. Finally, the
Third Part (Chapter 5) expands on the findings of the previous chapter to provide
a new insight into the reliability of structural systems composed of reinforced
concrete masonry walls, based on conclusions regarding the system ductility and
redundancy effects. Chapter 3 and Appendix E identify and solve a new problem

of the reliability theory: the safety index in a multistate space. . -

1.3.2 Sensitivity Analysis of a Concrete Masonry Wall with Minimum Vertical

Reinforcement
Monte-Carlo numerical simulations are performed on a concrete masonry

wall with minimum vertical reinforcement and confinement of the vertical steel using

"Confinement Combs" (Hart et al., 1987). The force-deformation relationships for

12



walls subjected to static lateral loading and an axial force applied at the top are
computed. The material characteristics of the concrete and reinforcing stegl, the
height of the plastic hinge measured from the base of the wall, and the level of the
axial force are considered as "input" random variables. A model for the stress-
strain curve of concrete masonry confined with the "Confinement Comb*” was used
to simulate the behavior in the plastic range (Sajjad, 1920).

The wall behavior depends on the material properties of the concrete
masonry and reinforcing steel as “input’ parameters and is characterized by the
following "output" parameters: yield moment and ultimate moment of the wall at its
base, yield curvature, and displacement, ultimate moment, curvature and
displacement, as well as curvature and displacement ductilities.

The study of the dependence of the output parameters to the input
parameters consists of two steps:

(1)  We establish the most likely values for the mean and coefficients of

variation of each input variable with the exception of the axial load.
Then we perform a Monte Carlo simulation for this “central case" and
determine the mean values and the coefficients of variation of each
of the output variables.

(2)  We study the sensitivity of the mean and coefficient of variation of

each output variable to variations in the means and coefficients of
variation of the input variables.

The most important conclusions are:

13



(1)

@

3)

(4)

(5)

The input parameters that introduce the highest uncertainty in the
output parameters are the axial load on the wall and, for the ultimate
displacement and displacerﬁent ductility, the height of the plastic
hinge.

As expected, higher concrete masonry maximum compressive stress
and maximum usable strain produce higher ductility, and higher steel
yield stress produces lower ductility displacement. The insensitivity
of curvature ductility to the increase in steel yield stress was less
than expected.

When axial load is large, the output parameters are more sensitive
to increases of the mean value of the concrete masonry maximum
compressive stress. When the axial load is small, the output
variables are more sensitive to increases in the mean value of steel
yield stress. This occurs because low axial load implies a ductile
limit state of yielding of the steel while a large axial load produces a
brittle limit state characterized by concrete masonry crushing, thus
governed by the compressive strength of concrete.

The output variables are insensitive to the variables of the model for
the concrete masonry stress strain curve other than maximum usable
strain.

The ultimate curvature is independent of the axial load.

14



®)

@)

Several coefficients of variations of the output parameters have a
narrow range of variation. The curvature ductility has an almost
constant coefficient of variation: 20%. The approximative values of
the coefficients of variation of yield curvature and yield displacement
are both 10% whereas for ultimate curvature the coefficient of
variation is 20%. The values for the coefficient of variation for
ultimate displacement and ductility displacement are strongly
dependent on the axial load, decreasing from a high of 26%-29% for
5% of the maximum axial load to a low of 13%-17% for 40% of the
maximum axial load.

For axial loads that do not produce brittle failure, the histograms for
curvature ductility exhibit a symmetric shape, suggesting the
possibility of fitting to a normal model, while the displacement ductility

appears to be lognormally distributed.

1.3.3 Safety Index in a Multistate Space

When the ultimate limit state is conditioned by the previous occurrence of

one or more other limit states, the safety index can not be found using the
classical First Order Second Moment solution (Hasofer-Lind). Instead of one limit
state surface in the space of normalized random variables, each condition

introduces a new surface characterizing that particular limit state. Each

15



*conditional surface" splits the ultimate limit state surface into two regions: one
region where the respective condition is fulfiled and other where it is not fulfilled.
If the design point (the closest point from the conditional surface to the origin) is
found in an undesirable region of the ultimate surface, a "false solution” could be
achieved. The "true solution" is to be found on the n-dimensional curve resulting
from the intersection of the ultimate and conditional surfaces. The problem then
becomes to find the point on the intersection curve that is closest to the origin of
the space of normalized coordinates.

In some engineering problems, the ultimate limit state can not be described
by an equation. Instead, the failure can be obtained through a certain sequence
of conditional limit states. An example is the reinforced concrete masonry column
subjected to bending and compression. Since the birittle failure has to be avoided,
the yielding of the tension steel has to occur before the crushing of the concrete
masonry. The first conditional surface is represented by the equation f,-f;=0, while
the second is €,,-€.=0. Here {; is the stress demand in the tension steel, f, is the
yield stress in the tension steel, €, is the maximum usable strain in the concrete
masonry and e, is the strain demand in the concrete masonry. If the distance to
the second surface is smaller than the distance to the first surface and the design
point is in the region where f,>f , then this is a "false solution" because there is
no concehrn associated with a ductile failure. The "true solution" is likely to be

found on the intersection of the two surfaces.

16



When the design point must be searched for on a curve rather than a
surface (like it is in the Hasofer-Lind problem), the iterative algorithms used to find
the design point cannot be used. This research identifies the problem of the failure
conditioned by the previous occurrence of several limit states and presents a new
iterative algorithm that uses Lagrange Multipliers to obtain the Design Point and the

Safety Index.

1.3.4 Reliability Analysis of a Single Flexural Wall

The theoretical framework introduced in the previous section allows for a
restatement of the reliability of a flexural wall subjected to strong ground motion
excitations. Since an estimate of the first and second moments for the parameters
of future ground motion at a certain site has an extremely large uncertainty, an
ultimate state equation that contains the load will be unrealistic. Therefore, a
reasonable way to approach the reliability of wall systems is to provide the wall
with a ductile behavior and then require limits on available ductility. From this
prospective, the reliability of the wall is viewed as the conditional probability that
ductility demand will be less than ductility capacity, given that the wall will behave
ductile. This concept leads to a two step approach:

Step (1) Determine the probability of ductie behavior and define the

associated safety index.

17



Step (2) Determine the probability that the ductility demand will be less than
the ductility capacity.

The limit state equation linking the ductility demand to the ductility capacity
should be written at the structural system level. The present approach permits this
desideratum by splitting the First Step into two tasks:

Task (1) Estimating the probabilistic distribution of the ductility capacity and
the associated safety index for individual walls;

Task (2) Estimating the probabilistic distribution of the available ductility and
the associated safety index for the structural system.

The Second Step of the problem is beyond the scope of this research.
However, in conceiving the format for the safety index to be produced within the
first step one has to bear in mind the need for compatibility to the second step
product. A comprehensive representation of the probabilistic information regarding
the available ductility should be correlated to a similar index describing the seismic
activity of a site or region.

Under conditions of large uncertainty in the level of lateral loading, it is fair
to state that a flexural wall must behave in a ductile manner to withstand a major
earthquake. This research shows that for several walls of different shapes in plan
(rectangular, T-shape, L-shape), the ultimate displacement capacity at the top of
the wall remains smaller than the displacement demand derived from a typical
design response spectrum for Downtown Los Angeles. This finding proves the

validity of the proposed approach. This research deﬁneé a "Ductility Index" as the

18



safety index of the ductile behavior. The ductility index presents several
advantages.

(1)  Unlike the classical safety index, tributary to an extremely uncertain
load, the ductility index can be estimated with reasonable accuracy.

(2)  The ductility index can be used to calibrate the design prescriptions
for flexural walls.

(8)  Since the ductility index is a comprehensive representation of the
probabilistic information regarding the available ductility, chances are
that it may be directly correlated with a similar index describing the
seismic activity of a site or region. That may lead to a long overdue
breakthrough in the seismic analysis, where the established force
concept constitutes a major obstacle to a better understanding of the
real behavior.

The Ductility Index is defined as

p-1
B, = £
0,
where
B = the expected value of ductility
g, = the standard deviation of ductility

18



The ductility p can be either the curvature ductility or the displacement

ductility. A ductility index based on displacement ductility was preferred to an

index based on curvature ductility because:

M

@)

3)

For small values of axial force, the Curvature Ductility Index results
in unrealistically high values due to the lack of invariance of the
Ductility Index to different mappings of the limit state surfaces.

The Curvature .Ductility Index is more sensitive than the Displacement
Ductility Index to variations in the statistical parameters of the input
variables.

The Displacement Ductility Index can be directly used at the
structural system level for: the estimation of the system ductility, the
possibility of constraining different walls in a building to undergo the
same displacement at a floor level, and the possibility that we can
obtain a format for the ductility capacity that can be equated with a

similar format for the earthquake ductility demand.

Besides the Ductility Index, this research defines and studies a more easily

understood measure of the brittleness of a reinforced concrete masonry wall. This

measure is the frequency of brittle behavior and it is defined as the number of

realizations that result in brittle behavior divided by the total number of realizations

in a Monte Carlo simulation. An alternate Safety Index can be defined as the

Inverse Standardized Gaussian Function of the Frequency of Brittle Behavior. This

index, although more easy to understand, has several shortcomings if compared

to the Ductility Index:

20



)] It requires the unrealistical assumption that the frequency of brittle
behavior is normally distributed.
(2) It underestimates the Safety Index, especially for coefficients of
variation of the axial load that exceed 10%.
(8) Itrequires thousands of realizations of Monte Carlo simulations when
the mean axial force is smaller than 25% of the maximum.
The case-study wall mentioned in Section 1.3.2 is used to investigate both
the Ductility Index and the Frequency of the Brittle Behavior for different values of
the parameter statistics of the mechanical characteristics of steel and concrete, as

well as the axial load.

1.3.5 Reliability of Concrete Masonry Flexural Wall Structures

The study of the ductility capacity and ductility index is expanded to the
structural systems composed of several (two to eight) flexural walls connected in
the horizontal plane with rigid diaphragms. The effects of redundancy created by
the presence of more walls working in parallel is studied. The complementary
roles of ductility and redundancy in shaping a global quality of the system -
robustness - is explored in this part of the research.

When the structure is subjected to a set of static lateral forces applied at the
story levéls where one wall reaches its yield load, a redistribution of forces among
the remaining elements results. In a seismic base excitation, the successive

yielding and/or failure of walls leads to a decrease in the level of total force input
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in the structure. Hence, a masonry multiple wall seismic resisting system is not
characterized by a redistribution of load like a Daniels System. Because of the
significant increase in the fundamental natural period of vibration, the structural
response is governed by displacement rather than acceleration. If we treat this
problem using an equivalent static approach, the structure is subjected to imposed
displacements rather than inertial forces. Under a monotonic increasing
displacement imposed equally to all of the participating walls, the walls will reach
consecutively their ultimate capacity limit state until the structure reaches its
ultimate system limit state. Thus, the structural system studied in this research fits
the definition of a balanced system when the axial load corresponding to each wall
has the same mean value and coefficient of variation. The variation of axial load
among the walls is mainly due to the randomness in live load distribution across
the floor. In the case when cross-walls are present, the simultaneous excitation
on the direction perpendicular to the walls under study may induce compression
in some walls and tension in the others. This structural system is unbalanced.
In this research, the ultimate displacement for a structural system is
considered to occur when all but the last wall have reached their individual wall
ultimate limit state. The yield displacement of the structure is defined consistently
with the vyield displacement of a bilinear model, based on a "stylized" load-
deflection curve for the structure. We define the System Ductility as the ratio
between fhe displacement of the structural system at the ultimate limit state and

the displacement of the structural system at the yield limit state.
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For the balanced systems, the redundancy can be understood as Cornell’s
probabilistic redundancy,.i.e. the effect of the stochastic variations of resistance
of different parallel elements about a common mean that does not permit the
structure to reach its ultimate limit state when the first member fails. The basic
difference between the safety index in this research as compared to the classic
safety index precludes the utilization of any of the probabilistic redundancy indices
existing in the literature as discussed in Section 1.2.2. We define the Redundancy
Ratio as the ratio between the displacement at the top of the building
corresponding to the ultimate system limit state and the displacement
corresponding to the first reaching of the ultimate limit state in a component wall.
Since the Redundancy Ratio is a random variable, its mean and coefficient of
variation characterize the probabilistic redundancy of the system.

Besides the parameters that govern the ultimate capacity of one wall (as
described in Section 1.3.2) there are additional factors that have an influence on
the system ductility and redundancy: the size of the system (the number of walls),
the covariance matrix corresponding to each material parameter distributed among
walls and the distribution and correlation of axial load among walls. To study this
influence, Monte Carlo simulations have been performed on samples of structures
consisting of two to eight walls. Each statistical sample contains 750 structures.
Because of the necessity of controlling the correlation of input variables, the
generatioh of random values requires a special attention. An original method to

minimize the sample bias and instability is presented.
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For the balanced systems, the System Ductility and the Redundancy Ratio
appear to have a contradictory character as it results from the two main
conclusions:

(1)  The mean redundancy ratio increases with the number of walls at a

much higher rate than the mean system ductility increases.

(2)  Unlike the coefficient of variation of system ductility that decreases
when the number of walls increases, the coefficient of variation of
redundancy ratio is independent of the number of walls.

According to its definition, the mean value of the redundancy ratio mirrors the
scatter in the system ductility and, apparently, it should exhibit similar features to
the coefficient of variation of the system ductility. The observation of this research
that the mean redundancy ratio increases when the coéfﬂcient of variation of the
system ductility decreases is explained by the rapport between scatter and
uncertainty and constitutes one of the most interesting findings of this research.

When the uncertainty in system ductility increases because the uncertainty
in material properties or axial loads increases, the redundancy ratio increases.
However, an increase in the number of walls without changing the statistics of the
material properties or axial load does not increase the uncertainty. The increase
in the number of walls is similar to increasing the size of a statistical sample. This
produces a more confident estimate associated with a smaller sampling variance.
This decfease in uncertainty is revealed by the decrease in the coefficient of
variation of system ductility. At the same time, the ratio of the two extremes of the

sample increases. This increase is not a consequence of an increase in
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uncertainty; in a larger sample the expected maximum is greater and the expected
minimum is smaller according to the properties of the ordered statistics. This
explains why the scatter in system ductility reflected by the redundancy ratio
increases, while the overall uncertainty in the system decreases. Hence, both
system ductility and redundancy ratio, although apparently contradictory, provide
their beneficial effects to the system behavior. We call robustness the system
quality that combines the beneficial effects of the system ductility and redundancy
to the advantage of the balanced system.

Similarly to the Ductility Index, we define the System Ductility Index (SDI) as

a function of the statistics of the System Ductility:

SDI = SD"' 1

Osp

where:

SD = the mean value of the System Ductility

ogp = the standard deviation of the System Ductility
Besides the quantification of safety with respect to ductile behavior, the
System Ductility Index fulfills the conditions for measuring the system robustness.
The results of the Monte Carlo simulations show that:
(1)  The System Ductility Index increases with the mean value of the
System Ductility and this is the beneficial effect provided by the

System Ductility.
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The System Ductility Index increases when the scatter of the System
Ductility decreases; this decrease in uncertainty is attributed to the
increase in the number of walls, and consequently to an increase in

redundancy.

Several important conclusions result from the Monte Carlo simulations:

M

@)

)

The increase in axial load produces a decrease in the mean values
of the system ductility, redundancy ratio, and system ductility index.
The coefficient of variation of system ductility increases while the
coefficient of variation of redundancy ratio decreases when the axial
load is increasing.

The increase in correlation of material properties among the walls of
the structure produces a slight increase in the coefficient of variation
of the system ductility. There is practically no effect on the mean
system ductility, while the mean and coefficient of variation of
redundancy ratio increase with the correlation only for the 40% axial
load case. However, the system ductility index decreases markedly
when the correlation increases.

The mean value of the ratio between the displacement corresponding
to structural failure and the average displacement corresponding to
any failure of a wall can measure the additional capacity of the

structure to withstand imposed displacements. Using a sufficient
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number of walls, this additional capacity varies from 8% to 19% as
a function of the axial load.

This research accords a special attention to unbalanced systems created
by the presence of T-shaped walls and the consideration of simultaneous
earthquake excitation in two horizontal directions. Both the mean value and
coefficient of variation of the system ductility resulted in large values. However, the
system ductility index is smaller than the system ductility index corresponding to
the value of the system ductility index for the weakest of the two balanced
subsystems contained in the unbalanced system, and may reach dangerously low
values. This finding has to be construed as an indicator that flanged walls may not
be a good system to use in high seismic zones. Further research is needed in this
area of flanged wall performance.

The results of this research can be used to prbvide a probabilistic back-up
for the Capacity Reduction Factors for concrete masonry codes. For example,
Hart and Sajjad (1989) recommended for masonry design an upper limit for the
design axial load of 65% of the ‘balanced axial load of the wall. According to this
research, the corresponding safety index of one wall with respect to ductile
behavior (Ductility Index) is 1.2. However, considering the robustness of the
structural system composed -of reinforced masonry walls, the corresponding
System Ductility Index results 1.75 for two-wall systems and 4 for eight-wall
systems.‘ The lower-bound value is the same as the safety index recommended
for seismic loads by Ellingwood et al. (1980). Consequently, the value of the

Capacity Reduction Factor recommended by Hart and Saijad is conservative.
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CHAPTER 2

SENSITIVITY ANALYSIS OF A CONCRETE MASONRY WALL WITH

MINIMUM VERTICAL REINFORCEMENT

21 GENERAL

The first step in the investigation of the seismic performance of concrete
masonry walls is the study of the lateral force-deformation behavior of a single wall.
The performance of the wall is characterized in this chapter by the relationship
between the walls’ overturning moment and (1) the curvature of the wall at its
base, and (2) the horizontal displacement at the top of the wall.

A wall exhibits ductile behavior if the vertical steel yields before crushing of
the masonry. If the axial force acting on the section is sufficiently large, or the
section is over-reinforced, then the vertical steel will not yield prior to the crushing
of the masonry. The ductility of a wall increases when the concrete masonry is
confined. Hart et al. (1987,1988) presented experimentally verified analytical
models that demonstrated the “ductile” performance of concrete masonry confined
with a “"confinement comb" and several other masonry confinement schemes.
Sajjad (1990) developed an experimentally verified constitutive relationship for

concrete masonry confined with a “confinement comb" and this research will use
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the Sajjad constitutive relationship. A modified version of the IMFLEX Program
(Hart, Sajjad, and Basharkah, 1990) has been used in this chapter to compute
force-deformation relationships.

In this chapter, Monte-Carlo numerical simulations are performed on a
concrete masonry wall that is one part of the lateral force resisting system of the
structure showed in Figure 2.1.1 and discussed in Appendix B. The wall is located
on Line 2. The wall under consideration is 90 foot tall, 8 inches thick and is
reinforced vertically with #4 bars located at 32 inches on center. The horizontal
shear steel is assumed to be sufficient to prevent shear failure. The vertical steel
is confined using the confinement comb. All cells in the wall are grouted.

The behavior of the wall depends on the material properties of the concrete
masonry and reinforcing steel. These properties as well as the level of the vertical
(axial) force on the wall are considered as "input" random variables. The "input"
variables are:

(1) Fr

1, = steel yield stress.

concrete masonry maximum compressive stress.

B)AC shape variables in Sajjad model (Sajjad, 1990) for the

confined concrete masonry stress-strain curve.

(4) €mu = the maximum usable strain in the concrete masonry;
this strain corresponds to a stress equal to 50% of the
maximum compressive stress.

() €q, = the ultimate steel strain.
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(5) H, height of the plastic hinge measured from the base of

the wall.

®) P axial load on the top of the wall.

The wall behavior is characterized by the following "output* variables:

(1) M, = yield moment of the wall at its base.
() o, = yield curvature of the wall at its base.
(3) d, | = displacement at the top of the wall when the vertical

steel first yields.

4 M, = ultimate moment of the wall when the masonry strain

is equal to its maximum usable strain.

5) ¢, = curvature at the base of the wall in the plastic hinge

region of the wall.

©) d, = displacement at the top of the wall when the masonry

strain is equal to its maximum usable strain.

(7) kg = curvature ductility (¢,/#,).

(8) 1y = displacement ductility (d,/d,).

The research described in this chapter studies the relationship between the
output variables and the input variables. The study is performed using the
following two steps:

Step 1 We determine the most likely or expected values for the mean

and coefficients of variation of each input variable with the

exception of the axial load. The axial load, P, is considered
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deterministic in this chapter in order to obtain a clearer picture
of the wall behavior. Then we perform a Monte Carlo
simulation study for this "central case" to determine the mean
and coefficient of variation of each of the output variables.
We also plot a frequency histogram for each output variable.
Step 2 We study the sensitivity of the mean and coefficient of
variation of each of the output variables to the means and

coefficients of variation of the input variables.
2.2 THE CENTRAL CASE

2.21 General

Table 2.2.1 gives the values used in this research for the mean and
coefficient of variation (C.0.V.) of each of the input random variables. The random
variables are considered to be uncorrelated, based on the test results presented
in Appendix A. Figure 2.2.1 shows a plot of the confined stress-strain curve used

in this research. The equations for this curve are:

f = rf,,[-Aez,,,+(el+Ae Je.] (2.2.1)

u

= f1C+(1-Qe %)) (2.2.2)

where
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€m = masonry strain

€, = strain corresponding to maximum compressive stress

fn = masonry stress

AB,C = coefficients that are function of fm and the confinement
characteristics

Equation (2.2.1) corresponds to the rising branch (0< ¢, < ¢,) and equation

(2.2.2) corresponds to the falling branch (see Figure 2.2.1).

TABLE 2.2.1
Description of input Random Variables
Probability ,
Variable Density Mean C.0O.V. | Source

Function
C Normal 0.226 30% | Sajjad, 1990
€y Normal 0.0057 15% | Appendix B
o Normal 4.1 Ksi 10% | Appendix B
f, Normal 66.8 Ksi 8.26% | Mirza, Mc.Gregor,1979
€y Normal 0.11 5% | Assumed
H, Normal 140 in 25% | Assumed

The mean values for f, and e, were derived from the results of the tests
performed at the University of Colorado (Sajjad, 1990) and the details are
presented - in Appendix B. The shape variable A is considered to be

deterministically dependent on ', according to the formula (Sajjad, 1990):
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8
4 - 48x10

2.2.3
7 (2.2.3)

The axial load P is considered to be deterministic. The six values of P
considered in this research ranged from 0 to 40 percent of Af',, where A, is the
gross cross-sectional area of a horizontal section of the wall. The load A, is
hereafter referred to as the maximum axial load. The dead load of the wall is
approximatively 2% of the maximum axial load. The balanced axial load is
approximately 40% to 50% of the maximum axial load.

A Monte Carlo simulation study was performed for 750 realizations of the
vector formed by the input basic random variables in Table 2.2.1 for each value of
P. For large axial forces and certain combinations of inpuf variables values a brittle
failure of the wall occurs. A brittle failure is defined in the next section. For the
purposes of calculating the statistics, these cases were eliminated when calculating
the statistics for the yield variables (M,, ¢,, and d,). When calculating the ductility
variables (u, and pg) in this chapter, a value of 1 was assigned in case of brittle
behavior.

The margin of error for a sample size of 750 is 1% for the mean values and

5% for the coefficients of variation.
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2.2.2. Variation of Statistics of the Output Variables with Axial Load.

This research considers the following three distinct limit states for the wall:

Limit State 1. The steel attains its ultimate strain in tension before the
masonry crushes in compression. This limit state exists when the strain in the
steel is equal to its rupture strain. This is defined to be a ductile limit state and the
steel yields prior to the wall reaching this limit state.

Limit State 2: The steel attains its yield strain in tension before the masonry
crushes in compression. The strain in the steel is less than its rupture strain. This
limit state exists when the masonry compression strain is equal to its maximum
usable strain. This is a ductile limit state.

Limit State 3: The masonry crushes in compression before the steel attains
its yield strain in tension. This limit state exists when the masonry compression
strain is equal to its maximum usable strain. This is a brittle limit state.

The variation of the output variables can be better understood if the limit
state is known for a particular level of axial force. The Monte Carlo simulation
indicates that:

(1) For the zero axial load case only Limit State 1 occurs. This situation of
such a small axial load seldom exists; however, it can be visualized for
the case of flanged walls subjected to horizontal forces in two
orthogonal directions (see Section 5.3.2) or as being representative of

a beam.
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(2) For the 2.5% axial load case, the Limit State 1 occurs in 37% of the
realizations and Limit State 2 occurs in the remaining realizations. This
is important because no brittle failures occurred.

(8) For the 5%, 10% and 20% axial load cases only the second limit state
occurs. Again this is important because it means that no brittle failures
occurred.

(4) For the 40% axial load case, Limit State 2 occurs in 92% of the
realizations while Limit State 3 (i.e. brittle behavior) occurs in the
remaining 8% of the cases.

The results of the six sets of Monte Carlo simulation are presented in Table

2.2.2 and Figures 2.2.3 through 2.2.8. The variation of mean values of the yield
and ultimate moments with the axial load is presented in Figure 2.2.3. As
expected, the mean values of yield and ultimate moments increase in magnitude
with increasing axial load. The mean ultimate moment is greater than the mean
yield moment up to 20% of the maximum axial load. The ultimate moment reduces
to a value smaller than the yield moment and its rate of increase becomes almost
flat for an axial load greater than 20% of the maximum load.

The decrease of the value of the ultimate moment below the value of the
yield moment occurs only at large strains. When the axial force is small, the
centroid of the compressive force in the masonry moves closer to the extreme
compression fiber when the deformation of the wall increases. For a large axial

force, the compression stress at the extreme fiber of the masonry starts
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decreasing rapidly after reaching compression strains greater than 0.004 to 0.005.
As a consequence, the centroid of the compressive force in masonry starts moving
in the opposite direction (i.e. away from the extreme compressive fiber and back
toward the center of the wall) in order to compensate for the decrease in the stress
at this strain. This movement reduces the lever arm between the compression and
the tension forces, producing the decrease of the ultimate moment. As shown in
Figure 2.2.2, this phenomenon does not usually occur when the maximum usable

strain is considered at the typical design code value of 0.003.

Table 2.2.2
Mean Values of Output Variables Characterizing Wall Response - Central Case
P/ M oy d M, ¢ d He Ky

Pmax || Ftk | (*10% | inch | Ftk | (*10% | Inch
(%)

0 2,308 8.9 1.7 2,574 426 | 37.7 43.3 22.2
25 || 4,354 10.9 1.9 4,780 364 | 32.3 33.6 17.3
5 J 6,215 11.7 2.0 6,824 230 | 20.8 10.8 10.4
10 9,606 13.1 2.3 | 10,439 129 | 12.3 10.0 5.5
20 ‘ 15,426 15.5 2.7 | 15,754 €9 7.3 4.5 2.7

30 || 19924 | 180 | 3.1 | 18508 46 | 56 | 26| 18
20 || 22470 | 215 | 37 | 18708 3| 49| 17| 13

The variation of mean values of the yield and ultimate curvatures with the
axial load is presented in Figure 2.2.4. Figure 2.2.5 shows the variation of the
mean yield and mean ultimate displacements. The mean values of the yield

curvature and yield displacement are much less sensitive to the magnitude of the
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axial load while the corresponding ultimate values decrease dramatically with
increasing axial load. Consequently, the mean value of the curvature and
displacement ductilities exhibit a decrease with axial load, as shown in Figure 2.2.6.
For small values of the axial load, the curvature ductility is almost twice as much
as the displacement ductility, but the difference decreases with axial load. As
shown in Table 2.2.2, the curvature ductility decreases from a value of 34 (for the
2.5% axial load case) to 1.7 (for the 40% axial load case). For the same range of
axial loads, the displacement ductility decreases from 17 to 1.4.

The dependence of the coefficients of variation (C.0.V.) of the output
variables on the axial load is shown in Figures 2.2.7 and 2.2.8 and Table 2.2.3.
The coefficient of variation of the yield and ultimate moments decrease from 8%
(for the zero axial load case) to 2% (between the 10% and 20% axial load cases)
and then increases again. This small value for the coefficient of variation (several
times smaller than any coefficient of variation of the input variables) occurs
because the parameters of the stress-strain curve for concrete masonry that
determine the moment capacity of the wall section are correlated with f, through
the force equilibrium equation. This correlation increases when the lever arm
between the compression and tension forces decreases (i.e. when the axial force
increases). On the other hand, for high axial forces f',, has a greater influence on
the moment capacity than f, (as it will be shown in Section 2.3.2). Since f;
possesses a negative correlation with some of the curve parameters, the coefficient

of variation of the moment capacity increases again for higher axial loads.
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Table 2.2.3
Coefficients of Variation of Output Variables Characterizing Wall Response -
Central Case

| % | X || % | %% %%
(0)
0 g1 | 83| 83 83 | 22224 | 95| 251
2.5 } 52| 78| 7.8 43 | 145 | 253 | 176 | 27.9
5 38| 75| 75 30 | 182 | 264 | 208 | 287
of 28| 71| 74 23 | 181 | 243 | 203 | 263
20 24 | 67| 67 33 | 181 | 200 | 202 | 219
30 63| 73| 7.3 59 | 180 | 158 | 206 | 18.0
40 84 | 106|106 | 102 | 180 | 125 | 199 | 16.8

The coefficients of variation of the yield curvature and yield displacement
decrease slightly from 8% for the zero axial load case to 7% for the 20% axial load
case, then increase to 11%.

The variation of the coefficient of variation of the ultimate curvature and
displacement is a function of the limit state. For low axial forces when the Limit
State 1 can occur, the coefficient of variation increases with increasing axial load.
For axial loads larger than 5% of maximum, the coefficient of variation of the
ultimate curvature is almost constant at 18% and the coefficient of variation of the
ultimate displacement decreases almost linearly with increasing axial load from 27%
to 13%. As a consequence, the coefficient of variation of the curvature ductility is
almost constant at 20%, while the coefficient of variation of the displacement
ductility decreases from 29% to 17%. This striking difference is due to the high
randomness of the plastic hinge height that has a paramount influence on the

ultimate displacement but has no influence on the ultimate curvature.
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The decrease of the coefficient of variation of the ultimate displacement with
the increasing axial force is extremely important for understanding the system
redundancy that will be discussed in Section 5.5. The ductility displacement d, can
be expressed as a function of the ultimate curvature ¢, height of the plastic hinge

H,, and wall height H (Park and Pauley, 1975):

2
d, = 2L (0,0, Hy(H-) 224

The product in the second term of the right hand side of Equation (2.2.4) suggests
that, supposing approximatively normal distributions for ¢,, ¢,, and H,, that the
ultimate displacement may be distributed closer to a lognormal probability density
function shape than a normal shape. If two random variables X aﬁd Y fulfill the
relationship

Y=InX (2.2.5)

and the variable Y is normally distributed, then the variable X is lognormally
distributed. The coefficient of variation of X is only a function of the standard

deviation of Y:

C.OV., = {6"%-1 (2.2.6)

If we accept the analogy between X and d, on one side and Y and ¢, on the other
side, then, according to Equation (2.2.6), the coefficient of variation of the
displacement ductility decreases when the standard deviation of the ultimate
curvature decreases. Since the coefficient of variation of ¢, is constant and the
mean of ¢, decreases when the axial load increases, the decrease of the

displacement ductility with increasing axial load can be understood.
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2.3 SENSITIVITY OF THE OUTPUT VARIABLES

2.3.1 General

A sensitivity study was performed to study which of the statistics of the input
variables has the greatest influence on the statistics of the output variables. The
values of the target mean and coefficient of variation of the five random variables
in Table 2.2.1 were one at a time increased by 20% to study this sensitivity. The
increase was performed each time by increasing one variable, while keeping the
other nine statistics for the input variables at the "central” target values. Therefore,
a 20% change in the output values indicates a linear variation. The sensitivity
study for axial force was performed for three levels of axial force: zero, 20%, and
40% of the maximum load. The percent variation in the mean value and coefficient
of variation of each output variable due to each variation in the statistics of the
input variables is shown, for each level of axial load, in Tables 2.3.1 through 2.3.6.
The percent variation is calculated with respect to the "central' case, emphasizing
the sensitivity of each mean value and coefficient of variation of the output
variables to the 20% increase in each statistics parameter of the input variables.
Figures 2.3.1 through 2.3.8 show the variation of each of these sensitivities as a

function of the axial load.
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Sensitivity of Mean Values of Output Variables

Table 2.3.1

(Axial Load = 0)

s Twloglo[wlalslale
Mean C “
C.O0V. C "
Mean €,
C.O.V. e,
Meanf_ 1 -1 -1 1 1 2 2
C.OV. f_ 1 1 -1
Mean f, | 22 | 20 | 20 | 20 | -1 A4 | 18 | -17
C.OV. f{, l 1 1 1
Mean H_ I 18 17
cov.t, |

Table 2.3.2
Sensitivity of Coefficients of Variation of Output Variables
(Axial Load = 0)

moresed | | 2l Rl Rl %] %]k
Mean C
C.0V.C
Mean ¢, -7
COV.e., | -10 2
Mean ', 1 1 3 1 1 1
C.OV.f_ 1 -6 -8
Mean f, 17 2 2 2 -2 2 -1
C.OV. 1 31 21 22 21 -4 -6 22 -3
Mean H_ ' -8 -9
C.OV. H, 20 17
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Table 2.3.3
Sensitivity of Mean Values of Qutput Variables
(Axial Load = 0.2 A_f'_)

oemsed | | Xl Rl R %] ey
Mean C
C.0V.C
Mean €, -1 21 18 21 18
C.O.V. €,
Mean f'_ 2 -3 -3 6 19 15 22 19
C.OV. f_ 1
Mean f, 5 15 15 3 -1 2 -14 -12
C.O.V. 1, 1
Mean H_ 12 12
C.0.V. H,

Table 2.3.4
Sensitivity of Coefficients of Variation of Output Variables
(Axial Load = 0.2 A&f’m)

moresed | X | Xl Rl Rl e 8|
Mean C
C.OV.C
Mean €, -5 -1 S -1
C.O.V. e, 2 16 9 13
Mean f'_, 12 4 8 5
C.OV. f_ 2 17 1 2 -1
Mean f, 5 -6 1 -5
C.OV. {, 16 20 20 2 -3 1 -1
Mean H_ 4
C.O.V. H, 11 9
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Table 2.3.5
Sensitivity of Mean Values of Output Variables
(Axial Load = 0.4 Af' )

Statistic M, ¢ d M, ?, d, i Ly

increased % | R | % | % | % | % | % | %
Mean C 1 1 1 1 7
C.OV.C
Mean €_., -2 21 14 19 19
C.OV. e, 1 7
Meanf 10 -9 -9 19 19 8 25 24
COV.f_ -1 1 1 -1 1 1
Mean f, 2 15 15 2 -1 5 -10
C.OV. {, -1 1 1 1 -1
Mean H_ | 5 11
cov.t, |

Table 2.3.6
Sensitivity of Coefficients of Variation of Output Variables
(Axial Load = 0.4 A.f')

inoremoad w 2l el Rl & lelsl%
Mean C 1 1 2 1 2
C.OV.C 1 -1
Mean €, -5 -1 7 18
C.OV. ¢, 1 15 13 7
Mean f'_ | 45 | 27 | -27 4 16 21
C.OV. ¥ l 17 12 12 19 1 1 8
Mean f, l 20 18 18 -1 -1 -4 -9
C.O.V. {, -1 10 10 -3 5 4
Mean H,_ 12
C.O.V. H, 5 4
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2.3.2 Sensitivity of the Yield Moment

The vyield moment is most influenced by the masonry maximum
compression stress (') and the steel yielding stress (f,). The sensitivity of the
mean value of yield moment (M,) to the mean values of f'; and f,, as shown in
Figure 2.3.1.a, exhibits interesting features.

*  The sensitivity to the variation of the mean value of f', increases with
increasing axial load. There is less than a 2% change for a 20%
change in the mean of ', for zero and 20% of the maximum load.
However,there is a 10% change when the axial load increases to 40%
of the maximum load.

*  The sensitivity to the variation of the mean value of f, decreases with
increasing axial load. The sensitivity decreases from 22% for zero axial
load to 2% when the axial load is 40% of the maximum load.

The sensitivity of the mean value of M, to the coefficients of variation of
these two input variables, as shown in Figure 2.3.1.b, is less than 1% and is not
significant from a structural engineering perspective.

The sensitivity of the coefficient of variation of M, to the mean values of f |
and f,, is shown in Figure 2.3.1.c. For zero axial load, a 20% increase in the mean
value ', produces a 5% increase in the coefficient of variation of M, while the
same 20% increase in f, produces a 17% increase in the coefficient of variation

of M,. This sensitivity decreases for the 20% of the maximum load but becomes
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significant for 40% of the maximum load, when the 20% increase in the mean of
fmn produces a 20% increase in the coefficient of variation of M, and a 20%
increase in the mean of f, produces a 45% decrease in the coefficient of variation
of M,.

The sensitivity of the coefficient of variation of M, to the coefficients of
variation of f, and fy, as shown in Figure 2.3.1.d, exhibits features similar to the
sensitivity of the mean of M, to the mean values of the two input variables.

* The sensitivity to the variation of the coefficient of variation of ',
increases with increasing axial load. There is low sensitivity for zero
and 20% of the maximum load but the sensitivity increases to 17% for
an axial load equal to 40% of the maximum load.

* The sensitivity to the variation of the coefficient of variation of f,
decreases almost linearly with increasing axial load from 30% for zero
axial load to near zero when the axial force is 40% of the axial load.

In conclusion, M, exhibits a significant sensitivity to f, for low axial loads and
to f, for high axial loads. The only exception to this general trend is the small
sensitivity of the coefficient of variation of M, to the mean value of f, for large axial

loads.
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2.3.3 Sensitivity of the Ultimate Moment

The ultimate moment appears to show a significant dependence on f',, and
fy. The sensitivity of the mean value of the ultimate moment (M,) to the mean
values of the four input variables (F,,, f,, C and eg,) as shown in Figure 2.3.2.3,
exhibits features that are similar to the sensitivity of the mean value of the yield
mament (M,).

*  The sensitivity to the variation of the mean value of ', increases with
increasing axial load. There is practically no sensitivity in the absence
of axial load. The sensitivity increases to 19% when the axial load is
40% of the maximum load.

*  The sensitivity to the variation of the mean value of f, decreases with
increasing axial load. The sensitivity decreases from 20% for zero axial
load to 2% when the axial force is 40% of the axial load.

*  The sensitivity to the variation of the mean value of the two variables
characterizing the inelastic behavior of concrete masonry (C and €,,,,)
is not significant.

The sensitivity of the mean value of M, to the coefficients of variation of the

four input variables, as shown in Figure 2.3.2.b, is not significant.

The sensitivity of the coefficient of variation of M, to the mean values of the

four variables, as shown in Figure 2.3.2.c, becomes signiﬁcant only for 20% of the
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maximum load, when the 20% increase in the mean f, produces a 12% increase
in the coefficient of variation of M,

The sensitivity of the coefficient of variation of M, to the coefficients of
variation of the four input variables, as shown in Figure 2.3.2.d, exhibits features
similar to the sensitivity of the mean M, to the mean values of the input variables.

* The sensitivity to the variation of the coefficient of variation of f
increases with increasing axial load. There is practically no sensitivity
in the absence of axial load. The sensitivity increases to 19% when the
axial load is 40% of the maximum load.

* The sensitivity to the variation of the coefficient of variation of f,
decreases with increasing axial load. The sensitivity decreases from
21% for zero axial load to zero when the axial force is 40% of the
maximum load.

*  The sensitivity to the variation of the coefficient of variation of the two
variables characterizing the inelastic behavior of concrete masonry (C
and e,,) is not significant.

In conclusion, M, exhibits significant sensitivity to f, for low axial loads and

to f',,, for high axial loads, while it is insensitive to the variables characterizing the

inelastic behavior of concrete masonry.
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2.3.4 Sensitivity of the Yield Curvature and Yield Displacement.

The sensitivity of both yield curvature and yield displacement to the
variations in the values of the masonry maximum compression stress () and
steel yielding stress (f,) exhibits similar features. Consequently, they are presented
together in this section.

The sensitivity of the mean values of yield curvature (¢,) and vyield
displacement (d,) to the mean values of masonry maximum compression stress
(m) and steel yielding stress (f,), as shown in Figures 2.3.3.a and 2.3.4.a, exhibits
the following features.

*  The sensitivity to the variation of the mean value of ', increases with
increasing axial load. There is no sensitivity for zero axial load. The
mean value of both ®y and d, decreases 9% for a 20% increase in the
mean ', when the axial load is 40% of the maximum load.

The sensitivity to the variation of the mean value of f, decreases slightly
with increasing axial load from 20% for zero axial load to 15% for 40%
of the maximum axial load.

The sensitivity of the mean values of ¢, and d, to the coefficients of variation
of the two input variables, as shown in Figures 2.3.3.b and 2.3.4.b, is not

significant.
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The sensitivity of the coefficients of variation of b, and dy to the mean values
of ¥, and f, is shown in Figures 2.3.3.c and 2.3.4.c. This sensitivity becomes
significant only for 40% of the maximum load, when the 20% increase in the mean
P, produces a 27% decrease in the coefficients of variation of P, and dy while the
20% increase in the mean value of f, produces a 18% increase in the coefficients
of variation of by and dy.

The sensitivity of the coefficients of variation of ¢, and dy to the coefficients
of variation of f', and fy, as shown in Figures 2.3.3.d and 2.3.4.d, exhibits features
that are similar to the sensitivity of the mean values of ¢, and d, to the mean
values of the two input variables.

* The sensitivity to the variation of the coefficient of variation of f_
decreases with increasing axial load from approximately 20% for an
axial load below 20% of the maximum load to 10% for an axial load
equal to 40% of the maximum load.

* The sensitivity to the variation of the coefficient of variation of f,
increases with increasing axial load from 1% for zero axial load to 12%
when the axial load is 40% of the maximum load.

In conclusion, Py and dy are sensitive to fy especially for low axial loads but
are sensitive to ', for only high axial loads. The only exception to this general
trend is the sensitivity of the coefficient of variation of ¢, to the mean value of f, for
large axial loads. The same exception was found previously for the sensitivity of the

coefficient of variation of My to the mean value of fy.
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2.3.5 Sensitivi f the Ultimate Curvatur

When the axial load is zero, the wall reaches its ultimate limit state when the
steel strain reaches its rupture value. As a consequence, the mean ultimate
curvature (¢,) is not sensitive to changes in statistics of the input variables. For
the same reason, the coefficient of variation of ¢, is small (approximately 2%) and
the slight variations are inconclusive because the margin of error for this sample
size is 5%. Consequently, the discussion below concerns only the 20% and 40%
axial load cases.

The sensitivity of the mean vaiue of ultimate curvature to the mean values
of the four input variables, as shown in Figure 2.3.5.a, is different from the
sensitivity of the mean value of the yield curvature (g,).

* The sensitivity to the variation of the mean value of ', is constant with
varying axial load: the mean value of ¢, increases 18% for a 20%
increase in the mean value of f'..

*  The sensitivity to the variation of the mean value of ¢, is constant with
varying axial load: the mean value of ¢, increases 19% for a 20%
increase in the mean value of €.

*  The sensitivity to the variation of the mean values of C and f, is not

significant.
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The sensitivity of the mean value of ¢, to the coefficients of variation of the
four input variables, as shown in Figure 2.3.5.b, is not significant.

The sensitivity of the coefficient of variation of ¢, to the mean values of the
four variables is shown in Figure 2.3.5.c. While the 20% increase in the mean
value of f, produces only 4% increase in the coefficient of variation of ¢,, the
sensitivity to the other three variable mean values is very small.

The coefficient of variation of ¢, is only sensitive to the coefficient of
variation of the maximum usable strain. As shown in Figure 2.3.5.d, the coefficient
of variation of ¢, increases approximately 15% for a 20% increase in the coefficient

of variation of €.

In conclusion, ¢, is sensitive only to ¢, and ', and is independent of the

axial load.

2.3.6 Sensitivity of the Ultimate Displacement

The sensitivity of the mean value of the ultimate displacement (d,) to the
mean values of the five input variables (f'y,, f,, C, €y, and H,), as shown in Figure
2.3.6.a, exhibits the following features.

*  For reasons explained in Section 2.3.5, the ultimate displacement for

zero axial load is sensitive only to variations in the plastic hinge height.
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The sensitivity to the mean value of f,,, decreases from 15% for 20%
axial load case to 8% when the axial load is 40% of the maximum axial
load.
The sensitivity to the variation of the mean value of {, decreases with
increasing axial load. The mean value of d, decreases 12% for a 20%
increase of the mean value of f, for 20% axial case load but increases
only 5% when the axial load is 40% of the maximum axial load.
The sensitivity to the variation of the mean value of ¢, decreases from
18% for 20% axial load to 14% when the axial load is 40% of the
maximum axial load.
*  The sensitivity to the variation of the mean value of H; decreases from
12% for 20% axial load case to 5% when the axial load is 40% of the
maximum axial load.
The sensitivity to the variation of the mean value of C is not significant.

The sensitivity of the mean value of d, to the coefficients of variation of the
five input variables, as shown in Figure 2.3.6.b, is not significant.

The sensitivity of the coefficient of variation of d, to the mean values of the
five variables is shown in Figure 2.3.6.c.

*  The sensitivity to the variation of the mean value of f'_ is small for zero
~ axial load but increases to 8% for the axial loads higher than 20% of the

maximum load.
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*  The sensitivity to the variation of the mean value of ¢, increases with
increasing axial load from near zero for zero axial load to 14% when the
axial load is 40% of the maximum load.

* The sensitivity to the variation of the mean value of H, is strongly
dependent on the axial load. For a 20% increase in the mean H,, the
coefficient of variation of d, decreases 8% when the axial load is zero
but}increases 9% when the axial load is 40% of the maximum load.

*  The sensitivity to the variation of the mean values of f, and C is not
significant.

The coefficient of variation of d,,, as shown in Figure 2.3.6.d, is sensitive only
to the coefficients of variation of the maximum usable strain and length of the
plastic hinge.

* The sensitivity to the variation of the coefficient of variation of €,
increases with increasing axial load from zero for zero axial load to 13%
when the axial load is 40% of the maximum load.

* The sensitivity to the variation of the coefficient of variation of H,
decreases with increasing axial load from 20% for zero axial load to 5%
when the axial load is 40% of the maximum load.

In conclusion, d, is more sensitive than ¢, to the five input variables.
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2.3.7 Sensitivity of the Curvature Ductility

The sensitivity of the curvature ductility to the variations in the values of the
four input variables exhibits features that are similar to those presented by the
sensitivity of the ultimate curvature.

As shown in Figure 2.3.7.a, the mean value of curvature ductility (u,) is
sensitive only to the mean values of £, and e,

*  The sensitivity to the variation of the mean value of ¢, is approximately
constant with varying axial load: the mean value of p,increases 20%
for a 20% increase in the mean ¢,

*  The sensitivity to the variétion of the mean value of ', increases very

slightly with the‘axial load from 22% for the 20% axial load case and
25% for the 40% axial load case.

*  The sensitivity to the variation of the mean values of C and f, is not

significant.

The sensitivity of the mean value of by to the coefficients of variation of the
four input variables, as shown in Figure 2.3.7.b, is not significant.

The sensitivity of the coefficient of variation of ., to the mean values of the
four variables is shown in Figure 2.3.7.c.

* A 20% increase in the mean f' produces a 1% increase in the

coefficient of variation of u, for zero axial load and a 8% increase for

the 40% axial load case.
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The sensitivity to the variation of the mean value of ¢, becomes

significant (7%) only when the axial load is 40% of the maximum load.

* The sensitivity to the variation of the mean values of C and f, is not
significant.

The sensitivity of the coefficient of variation of p; to the coefficients of
variation of £, f,, and eq, is strongly dependent on the axial load. As shown in
Figure 2.3.7.d, the coefficient of variation increases approximately 22% for a 20%
increase in the coefficient of variation of f, for zero axial load.

As a conclusion, g, is more sensitive to €, and f', than it is to fy.

2.3.8 Sensitivity of the Displacement Ductility

The sensitivity of the displacement ductility to the variations in the values of
the five input variables exhibits features that are similar to those presented by the
sensitivity of the ultimate displacement.

The sensitivity of the mean value of displacement ductility (u ) to the mean
values of the five input variables (f’m,fy, C, €., and Hp), as shown in Figure 2.3.8.3,
exhibits the following features.

*  The sensitivity to the variation of the mean value of ', is small for zero

“axial load and reaches 18% for higher axial loads.
* The sensitivity to the variation of the mean value of f, decreases with

increasing axial load. The mean value of py decreases 17% for a 20%
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*

increase of the mean value of f, for zero axial load but decreases only
7% for the 40% axial load case.

The sensitivity to the variation of the mean value of ¢, is small for zero
axial load. For higher axial loads, the sensitivity decreases from 17%
for the 20% axial load case to 12% for the 40% axial load case.

The sensitivity to the variation of the mean value of H, decreases from
17% for zero axial load to 4% when the axial load is 40% of the
maximum axial load.

The sensitivity to the variation of the mean value of C is not significant.

The sensitivity of the mean value of , to the coefficients of variation of the

five input variables, as shown in Figure 2.3.8.b, is not significant.

The sensitivity of the coefficient of variation of 4 to the mean values of the

five input variables is shown in Figure 2.3.8.c.

*

The sensitivity to the variation of the mean value of ' is small for zero
axial load but increases to 21% for the 40% axial load case.

The sensitivity to the variation of the mean value of f, is small for zero
axial load but reaches a 8% decrease for a 20% increase in the mean
value of f, for the 40% axial load case.

The sensitivity to the variation of the mean value of ¢, increases with

" increasing axial load from near zero for zero axial load to 18% when the

axial load is 40% of the maximum axial load.
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* The sensitivity to the variation of the mean value of Hp is strongly
dependent on the axial load. For a 20% increase in the mean Hp, the
coefficient of variation of u, decreases 9% when the axial load is zero
but increases 12% when the axial load is 40% of the maximum axial
load.

*  The sensitivity to the variation of the mean value of C is not significant.

The coefficient of variation of 4, as shown in Figure 2.3.8.d, is sensitive only

to the coefficients of variation of all the variables but C.

*  The sensitivity to the variation of the coefficient of variation of ¢, is
approximatively 7% when the axial load exceeds 5% of maximum load.

*  For a 20% increase in the coefficient of variation of H,, the coefficient
of variation of ., increases approximately 17% for zero axial load and
increases only 4% when the axial load is 40% of the maximum load.

*  The sensitivity to the variation of the coefficient of variation of ', is
strongly dependent on the axial load. For a 20% increase in the
coefficient of variation of Hp, the coefficient of variation of n4 decreases
8% when the axial load is zero but increases 8% when the axial load is
40% of the maximum load.

* The sensitivity to the variation of the coefficient of variation of f, is

- generally small. The different values between 0% and 4% increase for

different levels of axial load may be inconclusive because of the large
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margin of error for the coefficients of variation (5%) produced by this
sample size.
In conclusion, the sensitivity of u4 is generally lower when the axial load is

large. -

2.3.9 The range of values for the coefficient of variation of the output variables

After performing a Monte Carlo analysis over a large range of values for
each input variable, a good estimate of the possible range of the coefficients of
variation of the output variables can be obtained. A very interesting feature is that
several coefficients of variations of the output variables (¢y, d, ¢, and r,) have
a narrow range of variation if the zero axial load case is disregarded. The range
of values for the coefficients of variation of each output variable when the zero axial

load cases are disregarded presented in Table 2.3.7.

Table 2.3.7
Coefficients of Variation of the Output Variables
Output Variable Coefficient of Variation
M, 8% - 10%
@, 7% - 12%
d, 7% - 12%
M, 8% - 12%
=y 18% - 20%
d, 13% - 27%
Ky 20% - 22%
By 16% - 28%
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The narrow range of variations noted in Tabie 2.3.7 allows for assigning “off-
shelf' values to the coefficients of variation of several output variables, as follows.

* Yield variables (M,, ¢,, and d) and ultimate moment (M,): 10%;

* Ultimate curvature (¢,) and curvature ductility (u,): 20%.

For the yield output variables and ultimate moment, minimum uncertainty is
obtained when the axial load is 10% to 20% of the maximum axial load. For the
ultimate curvature and curvature ductility, minimum uncertainty is found for the zero
axial load case. The ultimate displacement and displacement ductility exhibit

minimum uncertainty for 40% of the maximum axial load.

2.3.10 Probability density functions for the variables of the wall capacity.

Histograms for curvature and displacement ductility at different levels of axial
load are presented in Figures 2.3.9 and 2.3.10. It is worth noting that, in general,
the histograms shape does not significantly change with the magnitude of the axial
load. There are two exceptions to this observation:

(1) For low axial load the shape of the curvature ductility histogram is

governed by the limit states described in section 2.2.1. As shown in
Figure 2.3.9, the histogram for zero axial load (where the failure occurs
due to rupture of the steel bars) is different from the histogram for the
2.5% axial load case (where the same limit state occurs with a

frequency of 37%). In the latter case, the dichotomy in the statistical
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sample produced by the two different modes of failure is mirrored by
the irregular shape of the histogram. It is difficult to explain the bi-
modal feature exhibited by the histograms obtained for 5%, 10%, and
20% axial load cases, but at least the feature is consistent for the range
of axial load that produces the second limit state only. In the case of
displacement ductility, the uncertainty in the plastic hinge length is
dominating and the limit states do not have the same discriminatory
effect.

(2) For high axial load the histograms distributions are truncated at p=1

due to combinations of input variables that result in brittle failure.

For axial loads that do not produce brittle failure the histograms for
curvature ductility exhibit a symmetric shape, suggesting the possibility of fitting a
normal probability density function model to the data, while the displacement
ductility appears to be log-normally distributed. This essential difference is
produced by the fact that small values of displacement ductility can be produced
even in the absence of the axial load. This is attributed to the random position of
the plastic hinge that only comes into play for the displacement ductility. As a
consequence, the probability density curves for uy are "squeezed" at their left tail
and constrained to reduce their spread as their mean value decreases. This
condition does not occur for curvature ductility; in absence of this squeeze, u, can
keep a constant coefficient of variation and the probability density curves can

preserve their symmetry.
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2.3.11 Conclusions regarding the sensitivity of the wall capacity.

M

()

3)

(4)

5)

All the output variables characterizing the lateral force resisting capacity
are insensitive to the variable C of the Sajjad model for the falling
branch of the confined concrete masonry stress-strain curve. However,
this conclusion may not be upheld when defining the maximum usable
strain at percentages of maximum stress that is lower than 50%. This
conclusion is very important because it allows for the characterizing of
the randomness of the post-elastic properties of concrete masonry
employing only the maximum usable strain.

The input variables that introduce the highest uncertainty in the output
variables are the axial load in the wall and, for the ultimate displacement
and displacement ductility, the height of the plastic hinge.

For zero axial load, the predominant limit state is the rupture of the steel
bars. Consequently, the ultimate output variables are only sensitive to
the plastic hinge location and the steel yield stress.

As expected, higher f', and e,,,, produce higher ductility, and higher f,
produces lower ductility displacement. The lack of sensitivity of
curvature ductility to the increase in f, was less than expected.

When the axial load is large, the output variables are more sensitive to
increases of the mean value of f . When the axial load is small, the

output variables are more sensitive to increases in the mean value of f,.
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(6)

)

(8)

This occurs because low axial load implies a ductile limit state of
yielding of the steel while a large axial load produces a brittle limit state
characterized by concrete masonry crushing, thus governed by the
compressive strength of concrete.

The mean values of the output variables are insensitive to the increase
of the coefficients of variation of the input variables. This conclusion
allows us to use constant coefficients of variation for the material
characteristics in our further research.

On the contrary to the previous conclusion, the coefficients of variation
of the output variables are sensitive to increases in the mean values of
the input variables, especially when the axial load is large. This is
attributed to the interdependence between the axial load and some of
the input variables. As an example, adding steel has almost the same
effect on ultimate capacity as increasing axial load. Consequently,
uncertainty varies with steel content (or strength) in a similar way that
it varies with axial load. The sensitivity of the coefficients of variation of
the output variables to changes in the mean values of the input
variables is sometimes higher than the sensitivity to changes in the

coefficients of variation of input variables. This is the case for the

ductility displacement when the axial load is large.

The ultimate curvature is independent of the axial load.
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(9) Several coefficients of variations of the output variables have a narrow
range of variation. A remarkable finding is that curvature ductility has
an almost constant coefficient of variation: 20%. The approximative
value for the yield curvature and yield displacement is 10% whereas for
the ultimate curvature it is 20%. The values for ultimate displacement
and ductility displacement are strongly dependent on the axial load,
decreasing from a high of 26%-29% for 5% of the maximum axial load
to a low of 13%-17% for 40% of the maximum axial load.

The above outlined conclusions are valid for deterministic axial loads and

the features of the studied wall: a minimum reinforcement ratio and an aspect ratio

of approximately 4 to 1.
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CHAPTER 3

CONSIDERATIONS IN RELIABILITY ANALYSIS OF MASONRY WALL

SYSTEMS

3.1 SECOND MOMENT RELIABILITY INDEX

Estimation of the failure probability even for simple elements is a complex
problem because it requires complete knowledge of the probabilistic distributions
of all load and resistance parameters. Any decision in selecting a particular
distribution must be justified by the accuracy to which the tails (low probability
region) of the theoretical distribution follow the real distribution. An oversight in this
regard can lead to inaccuracies that can cloud any use of probabilistic methods.
A further difficulty is the frequent inability to express the distribution of the load
effects in closed form. This naturally leads to the need of using Monte Carlo
simulations that are not suitable for estimating low probabilities of failure. In order
to avoid this tail sensitivity problem, the so called "second-moment reliability
methods" were introduced. The idea behind second-moment reliability theory is
that all uncertainties concerning the structural reliability are expressed only in terms

of expected values and covariances of the involved load and resistance
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parameters, z. By equating the load to the resistance function of the given

parameters, a limit state equation is obtained:

gz) =0 (3.1.1)
Equation (3.1.1) represents the “failure surface" (or "limit state surface") in
the (z) space of basic parameters. This leads to a unique division of the space
into a "safe set" and a "failure set". The random variable obtained by replacing the

parameters z; in the failure surface is called safety margin or limit state function:

M= g(z)

Cornell (1969) defined a reliability index 8, as the ratio of the expected value
of M and the standard deviation of M. Ditlevsen (1973) observed that, according
to this definition, 8; depends on the particular choice of failure function. To
resolve this ambiguity, Hasofer and Lind (1874) mapped the variables z; into a set
of uncorrelated, standard variables X; SO that the mean value of X; is 0 and the
standard deviation of x; is 1. They defined the reliability index 8, as the smallest
distance from the origin to the failure surface, measured in the (x;) space. The
point on the failure surface that is closest to the origin is called the "design point".

To obtain the design point and the reliability index B, the limit state

equation is rewritten in terms of the standardized variables x;:

€(X;, Xp400,X,) = 0 (8.1.2)
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We consider a point in the n-dimensional design space
0.0 0
&0 = axgxq] 7
on the limit state surface

€(E) = 0 (3.1.3)

and expand €(§) into a Taylor series about the point £, :

C(%)= E 7 {ZAX, } 6(&) (3.1.4)

k=0

where Axf = x,—xf and the partial derivatives of the current order, k , are

calculated at &, . The choice of &, should be restricted to points for which the
normal to the limit state surface is not parallel to any of the coordinate axes in

order to avoid any partial derivatives becoming equal to infinity.

If we neglect in the right hand side of Equation (3.1.4) the nonlinear terms

( k=2 ), we obtain the equation of a hyperplan that is tangent to the limit state

surfacein &, . The linear approximation €, of the limit state function € can
be written using the scalar product of two vectors:

G, = AEOTGQ (3.1.5)
where

A€y = [AXPAXS...AXD)] (3.1.6)

ENEAREA
*ax )l o), | 9xs),

(3.1.7)
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We calculate the mean and standard deviation of €, recalling that the

mean value of Xi is 0 and the standard deviation ofxi is 1.

q@o] = “507-60

[ SR

o, = (Go Go)

According to the definition

G| &G
p HLO = =
Og,

1
(G Gy)

(3.1.8)

(3.1.9)

(3.1.10)

The point &, on the limit state surface that produces the minimum value

of Bu o iscalled "design point” and the corresponding B y IS the Hasofer-Lind

Reliability Index. It can be shown (Shinozuka, 1983) that B, is the minimum

distance between the origin of the coordinates in the space of the standardized

variables x; (i.e. the expected value of the limit state function) and the limit state

surface. Rackwitz and Fiessler (1978) proposed an iterative algorithm to determine

the design point and the Hasofer-Lind Reliability Index.

The original papers by Cornell and Hasofer-Lind used the term reliability

index. Hereafter we will call this term the safety index which is the preferred term

in current structural masonry code development.
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3.2 GENERALIZATION FOR THE MULTISTATE SPACE

When the ultimate limit state is conditioned by the previous occurrence of
one or more other limit states, the safety index can not be found using the
classical First Order Second Moment solution (Hasofer-Lind). Instead of one limit
state surface in the space of normalized random variables, each condition
introduces a new surface characterizing a particular limit state. Each "conditional
surface" splits the ultimate limit state surface in two regions: a region where the
respective condition is fulfilled and one where it is not. [f the design point (the
closest point from the origin) is found in an undesirable region of the ultimate
surface, then this design point is considered to be a “false solution". The “true
solution” is to be found on the n-dimensional curve resulting from the intersection
of the ultimate and conditional surfaces. The problem then becomes to find the
point on the intersection curve that is closest to the origin of the space of
normalized coordinates.

In some engineering problems, the ultimate limit state can not be described
by an equation. Instead, the failure can be obtained through a certain sequence
of conditional limit states. An example is the reinforced concrete masonry wall
subjected to bending and compression. Since the brittle failure has to be avoided,
the yielding of the tension steel has to occur before the crushing of the concrete
masonry. The first conditional surface (G,) is represented by the equation fy-fs=0,

while the second (G,) is €,,,,-€.=0. If the distance to the surface G, is smaller than
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the distance to the surface G, and the closest point to the surface G, is found in
the region where f; > f, , then this is a “false solution” because there is no concern
associated with a ductile failure (see Figure 3.2.1). The "true solution" is likely to
be found on the curve produced by the intersection of the two surfaces. If the
distance to the surface G, is smaller than the distance to the surface G, (see
Figure 3.2.2), the true solution can be found easily on G,.

In Appendix E, the problem of the failure conditioned by several limit states
is identified. Then, a new iterative algorithm that uses Lagrange Muiltipliers to

obtain the design point and the safety index is proposed.
3.3 THE SAFETY INDEX OF DUCTILE BEHAVIOR

In Section 3.2, an example of safety index in a multistate space problem was
given for the concrete masonry wall subjected to bending and compression. Since
brittle failure has to be avoided, the yielding of the tension steel has to occur
- before the crushing of the compressed concrete. The first conditional surface is
represented by the limit state equation f,-f, =0, while the second surface is €,,-
e.=0. Unfortunately, the two equations can not be written as a function of the
input random variables in a closed form because of the complexity created by the
distribution of the reinforcing bars along the wall section. It is best to solve the
problem is to use the results of a Monte Carlo simulation. This is the purpose of

the next Chapter of this study.
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There is a temptation to simplify the problem by overlooking its multistate
character. This can basically be done by considering the unique limit state

equation

P ~ Piyanced = 0 (3.3.1)
where
P = axial load in the wall
Poaancea = @Xial balanced load in the wall

Equation (3.3.1) can be written as a function of the input parameters if the
following series of simplifications are adopted: neglecting the compression steel;
lumping the tension steel at a single location; neglecting the randomness of the
shape of the strain-stress curve, etc. The Rackwitz-Fiessier algorithm can then be
used to obtain the Hasofer - Lind safety index 8,,. For illustrative purposes, two
similar approaches are developed in Appendix C.

However, this over-simplification by violating the multistate character of the
problem can not be done without paying a heavy price. Equation (3.3.1) is written
for the situation when the steel yields simultaneously with the concrete masonry
reaching its maximum usable strain at the extreme fiber. In most cases, the strain
in the extreme steel bar is greater than the yield strain when the concrete masonry
crushes. ‘For this reason, the two approaches in Appendix C produce grossly

overestimated safety indices. This overestimation may exceed one unit of 8.
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3.4 COMPARISON BETWEEN THE DISPLACEMENT DEMAND PRODUCED
BY GROUND MOTION AND THE YIELD DISPLACEMENT FOR

CONCRETE MASONRY WALLS

The characterization of the seismic hazard for a specific building site is
usually done using response spectra whose ordinates are associated with a given
probability of exceedance during a chosen exposure time. The exposure time
commonly used is 50 years because it corresponds to the expected lifetime of
typical buildings. The response spectra used for the design of new buildings are
usually associated with a probability of exceedance of 10 percent during the 50
years exposure time. However, a better picture of the seismic hazard is obtained
by considering a "probable” expected level of response spectra during the same
exposure time. Since the probability distribution of response spectra ordinates is
not symmetrical, the extreme values at the upper end of the scale exert a strong
influence on the mean value. For this reason the median estimator is often
preferred resulting in response spectra with ordinates associated with 50 percent
probability of exceedance.

The percent of critical damping usually associated with reinforced concrete
masonry structures varies from 5 percent for small amplitudes of building motion
to 10 percent for response amplitudes at or near yielding.

The fundamental period for the structure in Appendix A can be calculated

using formulas (12-3) and (12-4) in the 1988 Edition of the Uniform Building Code
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(ICBO, 1988). Such a calculation results in a period approximately equal to 0.6
seconds. If soil structure interaction is considered as well as a certain amount of
stiffness degradation due to small cracking in the concrete masonry, it is
reasonable to believe that this period can reach 0.8 seconds before any yielding
may occur in the wall. Hart, Thurston and Englekirk (1989) have calculated the
fundamental period for the prototype structure located in Whittier using several
assumption for the stiffness degradation and found values between 0.9 and 1.1
seconds.

For the purpose of comparison we will consider in this research response
spectrum ordinates corresponding to 0.6 seconds and a damping value equal to
5 percent critical, and spectral ordinates corresponding to 1.1 seconds and 10
percent of critical damping. The displacement response spectra used in this
research were developed for a location in downtown Los Angeles by Woodward -
Clyde Consultants and the response spectra ordinates are presented in Table

3.4.1.

Table 3.4.1 Displacement Response Spectra Ordinates for downtown Los

Angeles
Probability of Spectral Ordinates (inches)
Exceedance for the
Spectral Ordinate T =06 sec T =1.1sec
‘ Damping = 5% Damping = 10%
50% in 50 years 1.25 1.73
10% in 50 years 2.56 3.53
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To estimate the displacement demand at the top of the wall for the response
spectra ordinates considered in Table 3.4.1, a participation factor of 1.4 was
considered (Englekirk and Hart, 1984). The seismic displacements demands on

the wall are presented in Table 3.4.2.

Table 3.4.2 Top of Wall Displacement Demand for a site in downtown Los

Angeles
Probability of Top Displacement (inches)
Exceedance for the
Spectral Ordinate T = 0.6 sec T =1.1sec
Damping = 5% Damping = 10%
50% in 50 years 1.75 2.42
10% in 50 years 3.58 4.94

The expected value of the displacement of the top of the wall corresponding
to the first yield of the reinforcement in the wall can be estimated using the results
presented in Chapter 2. For the wall under study with a vertical load equal to
0.1A,f", the expected value of the top displacement at yield is 2.25 inches (See
Table 2.2.2 and Figure 2.2.5).

Hart and Jaw (1991) have calculated the expected top displacement at yield
for the following three types of reinforced concrete masonry walls that have
approximately the same height as the wall studied in Chapter 2:

(1) 22'-8" long rectangular wall (like in Chapter 2);

(2) 30'-8" T-shaped wall;

(8) 45-4" L-shaped wall;
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The longitudinal reinforcement ratio for these walls was approximately twice that
used for the wall in Chapter 2. Because of the non-symmetrical section of the last
two walls, the force-displacement relationship is strongly dependent on the
direction of the horizontal force. The wall yields at a smaller load when the wall
flange is in compression compared to the case when the horizontal force is
reversed and the wall flange is in tension. The displacement at the top of each

wall at yield are presented in Table 3.4.3.

Table 3.4.3 Top Displacement at Yield (in inches) for three types of Reinforced
Concrete Masonry Walls (after Hart and Jaw, 1991)

Displacement at Top of Wall at Yield

Wall Type

Stress in Wall Flange - Deflection (in)

Rectangular 2.9
Compression 1.6

T-Shape
Tension 28
Compression 1.2

L-Shape
Tension 1.6

Hart and Jaw have also estimated the fundamental period of the building that
contains the above mentioned walls to be in the range of 1.3 to 1.5 seconds. This
would result in even greater displacement demands than those presented in Table
3.4.2.

Cofnparing the expected values of the displacement demands (Table 3.4.2)
to the expected values of the deflection at yield for different walls we can conclude

that:
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* For rectangular walls, the yield displacement (2 to 3 inches) is in the
same range with the displacement demand during the expected
strong motion earthquake. However, the yield displacement is less
than the displacement demand from a design strong motion
earthquake.

* For flanged walls, the yield displacement (1 to 2 inches) is expected
to be exceeded during the expected earthquake.

These findings as well as the high uncertainty associated with the
characteristics of a future strong motion lead to the conclusion that a reinforced
concrete masonry flexural wall can not withstand a major earthquake without
ductility. Consequently, we must consider the ductile behavior as a limit state in
assessing the safety of reinforced concrete masonry structures. This finding has
to be construed as a strong motivation for the approach proposed in the previous
section. The following sections of this chapter will study the influence of the
variation of input parameter to the frequency of the brittle behavior and will define

a "Ductility Index" as the safety index of ductile behavior.
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CHAPTER 4

RELIABILITY ANALYSIS OF A SINGLE FLEXURAL WALL.

4.1 GENERAL

The theoretical framework introduced in Chapter 3 allows for a restatement
of the reliability of a flexural wall subjected to strong ground motion excitations.
Since an estimate of the first and second moments for the parameters of future
ground motion at a certain site can not be done at this time with an acceptable
degree of confidence, an ultimate limit state equation that contains the load can
perhaps be viewed as an exercise in futility. Therefore, a reasonable way to
approach the problem must be in line with the current seismic design philosophy
that is to provide a structural element with a ductile behavior and then require limits
on available ductility. From this prospective, the reliability of the wall is viewed as
the conditional probability that ductility demand will be less than ductility capacity,
given that the wall will behave in a ductile manner. This concept leads to a two
step approach and it enables the structural problem to be separated from the
engineering seismology problem. The problem is formulated as two steps which
are as follows:

Step (1) Determine the probability of ductie behavior and define the

associated safety index.
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Step (2) Determine the probability that the ductility demand will be less than
the ductility capacity.

The limit state equation linking the ductility demand to the ductility capacity
should be written at the structural system level. The present approach permits this
desideratum by splitting the first step in two tasks:

Task (1)  Estimating the probabilistic distribution of the ductility capacity and
the associated safety index for individual walls;

Task (2) Estimating the probabilistic distribution of the available ductility and
the associated safety index for the structural system as a whole.

This chapter will be devoted to the first task while the next chapter will use
the results of this chapter in order tb fulfill the second task.

The second step of the problem constitutes a formidable task in itself and
it is beyond the scope of this research. However, in conceiving the format for the
safety index to be produced within the first step, one has to bear in mind the need
for compatibility to the second step product. A comprehensive representation of
the probabilistic information regarding the available ductility should be correlated

to a similar index describing the seismic activity of a site or region.
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4.2 INFLUENCE OF THE AXIAL FORCE ON THE BRITTLE BEHAVIOR OF

THE WALL.

The simplest measure of the brittleness of a reinforced concrete masonry
wall for a certain combination of the input random variables is given by the
frequency of the brittle behavior, i.e. the number of realizations that result in brittle
behavior divided by the total number of realizations in a Monte Carlo simulation.
According to the results of the Monte Carlo simulation presented in Chapter 2,
when the axial force on the wall is O.2Agf’m of the maximum force or less, there are
no cases of brittle behavior among the 750 realizations for each parameter
combination.

When the axial force is 0.4Af', the frequency of brittle behavior is 8.3
percent. The sensitivity of the frequency of brittle behavior to a 20% increase in
each statistical parameter of the input variables is presented in Table 4.2.1. This
sensitivity is expressed as a percent variation of the relative frequency with respect
to that of the "central case". For example, a 20 percent change in the mean value
of €., results in a frequency of brittle behavior equal to 2.4 percent and this
represents a 71 percent reduction from the central case (i.e. (8.3-2.4)/8.3 = 0.71).

We performed another sensitivity study considering one standard deviation
as a reasonable variation for each random variable mean instead of 20%. The

results are presented in Table 4.2.2.
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Table 4.2.1 Variation of the Frequency of Brittle Behavior when P=0.4A_f  and
the Base Parameters are increased by 20% from the Central Case

Frequency of Variation with
Base Parameter Statistic Changed BeBI:i:\l/ieor rézesgsg é?a;hee'
(%) (%)

Mean of €, 2.4 -71
Coefficient of Variation of ¢, 8.3 +13
Mean of ' 1.3 -84
Coefficient of Variation of ', 9.6 +16
Mean of f, 20.1 +143
Coefficient of Variation of f, 8.4 +1

" The central case frequency of brittle behavior is 8.3%

Table 4.2.2 Variation of the Frequency of Brittle Behavior when P=0.4A f  and
the Mean Values of Base Parameters are increased One Standard Deviation
from the Central Case

Percent Frequgncy Vanfatlon
Change cB)f E”tf"e with
Base Parameter Statistics Changed from ehavior | respect to
the Central
Central Case”
Case (%) %)
Mean of €., 15 4.8 -42
Mean of ' 10 4.7 -43
Mean of;fy 8.3 13.2 +60

" The central case frequency of brittle behavior is 8.3%
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The trend of the sensitivity displayed in Tables 4.2.1 and 4.2.2 was expected
(i.e. an increase in brittleness will exist when the mean of f, increases and a
decrease in brittleness will exist when the mean values of f', and ¢, increase).
However, the magnitude of this sensitivity was not expected:

* the decrease in brittleness was three to four times greater than the
increase in mean of the maximum concrete masonry strain and
strength; and
the increase in brittleness was seven times greater than the increase
in the mean value of the steel strength variable.

The sensitivity to the coefficients of variation of the input variables is much
smaller:

* the sensitivity to the variation of the C.O.V. of the steel strength (f,)

is not significant; and

* the increase of the C.O.V. of the concrete masonry strength

parameters (e, and f ;) results in a smaller increase in brittleness.

4.3 RANDOM AXIAL LOADING

The axial force in all of the research to this point was considered a
deterministic input variable. In order to examine the influence of the randomness
of the axial force on the brittleness of the wall, a new sensitivity study has been

performed. The mean value of the axial force was varied between 20% and 40%
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of the maximum axial force in 5% and then 2% increments while the coefficient of

variation was varied from 0% to 25% in 5% increments. The other input variables

were set at the “central case” values. The frequencies of brittle behavior obtained

in this sensitivity study are presented in Table 4.3.1 and Figure 4.3.1.

Table 4.3.1 Variation of the Frequency of Brittle Behavior with the Axial Load

Mean Axial Coefficient of Variation of the Axial Load
Load / Affp,
(%) 0% 5% 10% 15% 20% 25%
20 0.00% | 0.00% 0.00% 0.00% 0.13% 0.13%
25 0.13% | 0.13% 0.13% 0.13% 0.27% 0.53%
30 0.27% | 0.27% 0.27% 0.67% 1.20% 2.80%
32 0.40% | 0.40% 0.80% 1.33%. 2.80% 4.93%
34 1.20% | 1.20% 1.60% 2.67% 3.87% 7.60%
36 200% | 2.13% 3.20% 4.93% 8.67% 8.40%
38 4.00% | 4.67% 6.13% 8.47% | 11.33% | 10.53%
40 827% | 8.13% | 11.47% | 13.33% | 13.47% | 15.07%

From Table 4.3.1 and Figure 4.3.1 the following conclusions can be drawn:

*

Small coefficients of variation of the axial force (up to 10%) do not
produce a significant increase in the frequency of the brittle behavior.
For values of the mean axial force equal to 30% of the maximum
axial force the increase in the C.0.V of the axial force from 0 to 25%
produces a ten fold increase in the frequency of brittle behavior. This
compares with a two fold increase for values of the mean axial force

equal to 40% of the maximum axial force.
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* Since a reasonable increase in f, produces less than a doubling of
brittieness, the coefficient of variation of the axial force has the
greatest impact on the frequency of the brittle behavior.

The study of the frequency of brittle behavior is very important for a more
deep understanding of the "balanced design axial load”. When the basic
parameters involved in the flexural wall problem are random, it appears that the
"balanced axial load" concept requires a probabilistic definition. A possible
definition is "the expected value of the axial load for which the corresponding
frequency of brittle behavior is 50%." Examination of Figure 4.3.1 suggests that the
balanced design axial load thus defined will be a function of the coefficient of
variation of the axial load. That is, the larger the coefficient of variation of the axial
load, the smaller the balanced load. This happens because the larger coefficient
of variation of the axial load will produce a larger frequency of brittle behavior and
the 50% frequency mark will be reached for a lower value of the'mean axial load.
To estimate the balanced design axial load for a given value of the coefficient of
variation of the axial load, Monte Carlo runs should be performed for increasing
mean values of the axial load until the obtained frequency of the brittle behavior

reaches 50%.
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4.4 LIMIT STATE EQUATIONS FOR THE DUCTILE BEHAVIOR

As concluded in Section 3.4, we must consider the ductile behavior as a
“conditional limit state” in assessing the safety of reinforced concrete masonry
structures. It was shown in Chapter 3 and Appendix E that an exact solution to
this problem by considering the stress and strain equation in one wall section is
impractical. This difficulty can be circumvented by using the results of a Monte
Carlo analysis obtained for the curvature ductility (u,) and displacement ductility

(#q)- The limit state equation can be written for curvature ductility as
F= I.L¢ - 1 (4'41)

where failure exists when F = 0.

For displacement ductility it similarly follows that
F = pd - 1 (4.4-2)

The mean value of F in Equations (4.4.1) and (4.4.2) is i,-1 and 4-1, respectively.
The standard deviation of F is equal to the standard deviations of the
corresponding ductility. Under the assumption that the limit state surfaces
described by Equation (4.4.1) or (4.4.2) are smooth enough in the neighborhood
of their design point, the safety index, or hereafter called the ductility index, can

be estimated using the Cornell definition:
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By = Lo (4.4.3)

or

pa-1
By = 4 (4.4.4)
Oq

We acknowledge the fact that the adoption of the Cornell definition will produce a
safety index that will be dependent to the particular choice of the failure function,
namely Equation (4.4.1) or (4.4.2). However, this is the price to pay for avoiding
the complications of the invariant approach described in Chapter 3 and Appendix
E. Bearing in mind the fact that the 'safety index, even if invariant, has a notional
character, and its practical value is for comparison only, we can accept this
shortcoming.

Two problems arise in conjunction with estimating the safety index. The first
problem is to chose between curvature ductility and displacement ductility as a
basis parameter when defining the ductility index. The curvature ductility is always
greater than displacement ductility and the difference may be significant if the axial
force is kept at low values. Consequently, the ductility index as defined by
Equation (4.4.3) will be greater than the one defined using Equation (4.4.4),
although the risk of brittle behavior is the same. This inconsistency is due to the

lack of invariance of the Cornell Safety Index.
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The second problem lies with quantifying the "ductility" in the case of brittle
behavior. In Chapter 2, the statistics on ductility were performed by assigning the
value 1 to either curvature or displacement ductility when the brittle failure
occurred. For this reason, the estimates of mean and standard deviation of both
ductilities are accurate only for axial forces equal to or lower than 20% of the
maximum axial force, when no brittle behavior occurred. For higher axial forces,
these ductilities will be reevaluated in the next sections, after establishing a
definition for the ductility value (smaller than 1) to be assigned to each case of
brittle behavior.

The next two sections will be devoted to solving these two problems.

4.5 COMPARISON BETWEEN A DUCTILITY INDEX BASED ON
CURVATURE DUCTILITY AND A DUCTILITY INDEX BASED ON

DISPLACEMENT DUCTILITY

In order to compare the value for Ductility Index obtained using Equation
(4.4.3) with the value obtained from Equation (4.4.4), we use the statistics of the
parameters for the curvature ductility and displacement ductility obtained in
Chapter 2. The comparison is made for the cases where the axial force was zero
or 20% of the maximum axial force. In these cases, the lack of brittle behavior
allows for a straightforward use of the statistics presented in Tables 2.2.2 and

2.2.3. Table 4.5.1 presents the values of Ductility Index obtained from curvature
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ductility using Equation (4.4.3) and displacement ductility using Equation (4.4.4).
Table 4.5.1 presents the sensitivity of the Ductility Index to a 20% increase in each
statistical parameter of the input variables. This sensitivity is expressed in percent
variation of the Ductility index with respect to that of the “central case". We recall
that the mean and coefficient of variation of the random variables for the "central

case" are presented in Table 2.2.1.

Table 4.5.1 Sensitivity of Ductility Index calculated for Curvature and
Displacement Ductility when the Base Parameters are increased by 20%

B “ Axial Force = 0 Axial Force = 20% P,
ase
Parameter Curvature Displ. Curvature Displ.
Statistics v Var v v
Chan ed ar. . ar. ar.
° ol | Pelom | % | m | P |
Central 10.32 3.80 3.84 2.89
Case
Mean ¢, ‘ 10.34 0| 381 ol 4.08 6| 3.00 5
C.OV. ¢, 10.13 2| 3.80 o) 339 -12| 289| -6
Mean?_ || 1024| -1| 378] 1] 385 o| 290| 1
C.OV.f_ 10.30 0| 4.13 9| 3.76 2| 292 2
Mean f, 10.06 2| 381 0| 362 6| 280 -2
C.OV. f, 8.47| -18| 3.93 3| 3s8t| 1| 292 2

Based on the results in Table 4.5.1, the following observations can be made:
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In absence of an axial force, the Curvature Ductility Index (8,) results
in unrealistically high values. This is because the high values for the
mean curvature ductility produce a significant distortion to the Cornell
Safety Index that relies on the mean value of the original safety
margin rather than the mean value of the standard-space-mapped
safety margin in the Hasofer-Lind Safety Index. The use of the
displacement ductility Index (84) minimizes this distortion because
the displacement ductility is much smaller for low values of the axial
load.

With one exception (the increase in coefficient of variation of £)) 8,
is more sensitive than 8, to variations in the statistical parameters of

the input random variables.

The two conclusions obtained from the results in Table 4.5.1 can justify the

choice of g4 over g, for defining the Ductility Index. However, there is a more

important reason to prefer a displacement based Ductility Index. Displacement

ductility for individual walls can be directly used at the structural system level for

different purposes like:

*

estimation of the system ductility;
comparison between walls of different length in the same building;
the possibility of constraining different walls in a building to undergo

the same displacement at a floor level; and
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* comparison between the displacement ductility capacity and the
displacement ductility demand generated by a strong earthquake
motion.

The curvature based Ductility Index does not have a physical meaning
beyond the section level and can not be used for comparison with walls of different
size. For all these reasons we define the Ductility Index as the safety index with
respect to brittle behavior, based on displacement ductility and calculated with
Equation (4.4.4). This Ductility Index (DI) will be used extensively in the further

research in this chapter.

4.6 QUANTIFICATION OF DISPLACEMENT DUCTILITY CAPACITY IN THE

CASE OF A BRITTLE BEHAVIOR

In Section 2.3.10, we discussed the probability density function for the
displacement ductility. The shape of the frequency histogram appears to indicate
a log-normal model. Figure 2.3.10 presents histograms for displacement ductility
obtained for different levels of mean axial force. For small values of axial force
practically all ductility values are greater than 1. However, for large values of axial
force, the left tail of the distribution is squeezed at p =1 and the distribution
appears truncated. The possible representation for cases that result in brittle
failure is an additional Dirac Delta Function shifted to py=1. This research

proposes an analytical extension of the distribution that will spread the Dirac lump
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over the interval (0,1). This means that for each case of brittle behavior, a value
between 0 and 1 will be assigned to the displacement ductility in order to obtain
a smooth probability density function. Since in design we only are interested in
ductility values equal to or greater than one this approach seems reasonable.

Four different definitions for the analytical extension have been proposed
and tested before selecting the definition to be used in this study. One of the
definitions assumes a log-normal distribution for the displacement ductility while the
other three definitions do not impose any particular distribution.

Definition 1.

If the displacement ductility (z,) is log-normally distributed, then In(uy) will
be normally distributed. The values assigned to brittle cases will be mapped from
the interval (0,1) to the interval(-o, 0). Based on the symmetry of the normal
distribution, the analytical extension can be constructed using the median of the
normal distribution as an axis of symmetry. We selected the median rather than
mean value because the former can be determined independent of the analytical
extension.

If there are "n" cases of brittle behavior within the sample, the analytical
extension is constructed as follows;

1. The median value of In(u,) is calculated.

2. The "n" highest values for In(u,) are selected;

3. Each selected value for In(u,) is duplicated by assigning a value that

is symmetrical with respect to the median value of In(uy).
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4. The analytically extended distribution is mapped back using
exp(n(uy) =uy.
The shortcoming of this definition is that one or more values assigned to In(x ) can
be positive due to the randomness in the right tail of the distribution. In turn, a
positive value for In(u,) implies ductile behavior, in violation with the established
frequency of brittle behavior.
Definition 2.

This definition attempts to mitigate the shortcoming of Definition 1. Keeping
the same frequency of brittle behavior, this definition is constrained to violate the
assumption of log-normality of the distribution. The construction of the analytical
extension starts with the three steps of Definition 1, followed by:

4. The set of values obtained in Step 3 is shifted so that the highest

value for In(ug4) will be zero.

5. The analytically extended distribution is mapped back using

exp(In(ug)) =pg.

The violation of log-normality occurs because the distribution of In(u,) will
now not be symmetrical with respect to its median value.

Definition 3.
The values p4 assigned to the cases of brittle behavior are uniformly

distributed between 0 and 1.
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Definition 4.

The values py assigned to the cases of brittle behavior are linearly
distributed between 0 and 1. The probability density function has a zero value for
pq=0 while for u =1 the value is determined equating the area under the curve
with the frequency of brittle behavior.

The four definitions have been tested for the case with the highest frequency
of brittle behavior (Mean axial load = 40% of maximum, coefficient of variation of
the axial load = 25%) where the difference between the resuits is expected to be
a maximum. The results obtained using the different definitions are presented in

Table 4.6.1.

Table 4.6.1 Comparative results for Ductility Index using different definitions for
the analytical extension of the PDF of u,. (Mean axial load = 40% of maximum,
coefficient of variation = 25%)

Definition for the analytical extension
1 2 3 4
By 1.57 1.57 1.53 1.56
C.O.V. 4 (%) 67 76 71 68
DI 0.54 0.48 0.49 0.53

The difference between the values obtained for DI using the four different
definitions is less than 12 percent. The second definition has been selected for the
purpose of this study because it appears to be the most consistent with the main

segment of the distribution.
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4.7 VARIATION OF THE DUCTILITY INDEX WITH THE AXIAL LOAD

Using the convention established in Section 4.6 to quantify the displacement
ductility capacity for the case of a brittle behavior, we calculated the mean value
and the coefficient of variation of the displacement ductility using a Monte Carlo
Simulation approach. The simulation were performed for different values of mean
and coefficient of variation of the axial force while the mean and coefficient of
variation of the other input parameters were kept constant. The results obtained
for the mean values of the displacement ductility capacity are presented in Table
4.7.1. Figure 4.7.1 presents the variation of the mean value of the ductility
capacity against the mean value of the axial force varying from 20% to 40% of the
maximum axial force, for different coefficients of variation of the axial force. |

The variation of mean displacement ductility capacity with the deterministic
axial force was discussed in Section 2.3.8. Based on the results in Table 4.7.1 and
Figure 4.7.1 for a random axial force, several observation can be made.

* The mean ductility capacity decreases when the mean axial force

increases, as observed in Section 2.3.8.
* The influence of the coefficient of variation of the axial force is small

and is more significant for larger mean axial force when the mean

ductility is small.
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Table 4.7.1 Mean Displacement Ductility as a Function of the Expected Value

and the Coefficient of Variation of the Axial Load

Mean Axial Coefficient of Variation of the Axial Load
Load / ASf,
) 0% 5% 10% 15% 20% 25%

0 22.2 22.2 2.2 2.2 22.2 22.2

2.5 17.3 17.2 17.2 17.2 17.2 171

5 10.4 0.4 10.5 10.6 10.8 11.0

10 5.5 5.5 5.6 5.6 5.8 6.0

20 2.7 2.7 2.8 28 2.9 3.0

25 2.2 2.2 2.2 2.3 2.3 2.4

30 1.8 1.8 1.8 1.9 1.9 2.0

32 1.7 1.7 1.7 1.7 1.8 1.9

34 1.6 1.6 1.6 1.8 1.7 1.8

36 1.5 1.5 1.5 1.5 1.6 1.7

38 1.4 1.4 1.4 1.5 1.5 1.8

40 1.3 1.3 1.3 1.4 1.5 1.6
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Table 4.7.2 Coefficient of Variation of Displacement Ductility as a Function of

the Expected Value and the Coefficient of Variation of the Axial Load

Mean Axial Coefficient of Variation of the Axial Load
Load / Af'r,
) 0% 5% 10% 15% 20% 25%
0 25.1 25.1 25.1 25.1 25.1 25.1
25 27.9 28.0 28.2 28.6 29.2 29.8
5 28.7 29.4 30.8 33.0 35.8 38.8
10 26.3 27.1 291 32.3 37.4 43.6
20 21.9 23.0 25.5 29.5 36.2 49.4
25 18.9 21.0 23.7 28.2 35.3 53.2
30 18.0 19.4 22.4 27.2 34.8 57.6
32 17.4 18.9 220 27.2 34.8 65.8
34 171 18.5 21.7 26.6 34.7 63.4
36 16.9 18.2 21.7 26.8 35.9 66.7
38 17.2 19.1 21.7 32.3 441 73.9
40 16.8 18.3 23.0 50.9 64.2 78.2
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* The mean ductility capacity increases slightly when the coefficient of
variation of the axial force increases.

The results obtained for the coefficient of variation of the displacement
ductility capacity are presented in Table 4.7.2. Figure 4.7.2 presents this coefficient
of variation of the ductility capacity against the mean value of the axial force for
different coefficients of variation of the axial force.

Based on the results in Table 4.7.2 and Figure 4.7.2, several observation
can be made.

* For low coefficients of variation of the axial force, the coefficient of
variation of ductility capacity decreases slightly when the mean axial
force increases.

* For coefficients of variation of the axial force between 15% and 20%
the coefficient of variation of ductility capacity remains almost
constant up to a mean axial force equal to 36% of the maximum, and
then increases steeply with the mean axial force.

* For a 25% coefficient of variation of the axial force, the coefficient of
variation of ductility capacity increases constantly when the mean
axial force increases.

* The influence of the coefficient of variation of the axial force is
minimal for values between 0% and 10% but becomes significant for

values larger than 15%.
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*

The coefficient of variation of the ductility capacity increases with the

increasing coefficient of variation of the axial force.

The Ductility Index calculated using Equation (4.4.4) from the values in

Tables 4.7.1 and 4.7.2 is presented in Table 4.7.3 and Figure 4.7.3. Several

observations can be made.

*

A comparison with the results obtained for the frequency of brittle
behavior (Figure 4.3.1) reveals more clear trends for the Ductility
Index. The two lines corresponding to 20% and respectively 25%
coefficient of variation of the axial force do not cross any more,
indicating that the Ductility Index is not as sensitive to the sampling
of the input parametérs. At the same time, there is a clearer
distinction between the curves corresponding to 0% and respectively
5% coefficient of variatioh of the axial force than it is for the
frequency of brittle behavior.

The Ductility Index is decreasing with the increasing mean axial force.
The Ductility Index is decreasing with the increasing coefficient of
variation of the axial force.

The impact of the coefficient of variation of the axial force is a
maximum when the mean value of the axial force is between 20%
and 30% of the maximum axial force. For this range, the Ductility
Index decreases approximately 1.5 units when the coefficient of

variation of the axial force increases from 0 to 25%.
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Table 4.7.3 Ductility Index as a Function of the Expected Value and the

Coefficient of Variation of the Axial Load

Mean Axial Coefficient of Variation of the Axial Load
Load / A,
) 0% 5% 10% 15% 20% 25%
0 3.8 3.8 3.8 3.8 3.8 3.8
2.5 3.4 3.4 3.3 3.3 3.2 3.2
5 3.2 3.1 2.9 2.7 2.5 2.3
10 3.1 3.0 2.8 2.5 2.2 1.9
20 2.9 2.8 25 2.2 1.8 1.3
25 2.7 2.6 2.3 2.0 1.6 1.1
30 2.4 2.3 2.0 1.7 1.4 0.9
32 2.3 2.2 1.9 1.6 1.3 0.7
34 2.1 2.0 1.7 1.4 1.2 0.7
36 1.9 1.8 15 1.3 1.0 0.6
38 1.6 1.5 1.4 1.0 0.8 0.5
40 1.4 1.3 1.1 0.6 0.5 0.5
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4.8 THEDUCTILITYINDEX AND THE FREQUENCY OF BRITTLE BEHAVIOR

Since an analytical approach to the problem of wall reliability with respect
to the brittle behavior is impractical, the only available tool remains the Monte Carlo
analysis. This analysis can produce, for a wall of given geometric characteristics
and steel reinforcing, the expected frequency of brittle behavior as well as the
statistics of the curvature ductility and the displacement ductility.

The previous section presented the variation of the Ductility Index with the
axial force for a reinforced concrete masonry wall. A powerful feature of any
Safety Index is the ability to circumvent the lack of knowledge relative to the
probabilistic distribution of the safety margin. Moreover, the Ductility Index
contains more information than the Frequency of Brittle Behavior. However, it is
interesting to establish a link between the two values since the latter is easier to
understand because of its physical meaning.

A relationship between the two values can be established only if the
probability distribution is known. If the frequency of brittle behavior is normally

distributed, then it can be shown (Shinozuka, 1983) that:

B2 @1 - (4.8.2)
where:
forittie = Frequency of Brittle Behavior
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Frequency of Ductile Behavior

1 'fbrittle

3(8)

Standardized Gaussian Distribution Function

™
]

The Safety Index obtained under the assumption that f, .., is
normally distributed

The right hand side of Equation (4.8.1) represents the integral of the joint
density function of the random variable over the domain bounded by the hyper-
plan tangent to the limit state surface at the design point. Equation (4.8.2) shows
that the Safety Index based on the Gauss distribution (B) is slightly underestimated
when calculated using the Inverse Standardized Gaussian Function as in Equation
(4.8.2). Approximating the limit state surface in the neighborhood of the design

point with the tangent hyper-plan, Equation (4.8.2) becomes:

B =01 - o) (4.8.3)

An alternate safety index can be defined using Equation (4.8.3). However,
the Ductility Index has more credibility because no assumption on the distribution
has been implied. The only sources of distortion are equally present in the Inverse
Gauss Safety Index: the approximation of the limit state surface by the tangent
hyper-plan and the variability of the Monte-Carlo samples. Consequently, the
difference between the two indices has to be construed as the amount of
departure of the real distribution of the f_ ., from the Gauss distribution.

The Inverse Gauss Safety Index has been computed from the values of f,,

rittle

in Table 4.3.3 using Equation (4.8.3) and the results are presented in Table 4.8.1
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and Figure 4.8.1 as a function of the mean value and the coefficient of variation of

the axial load.

Table 4.8.1 Inverse Gauss Safety Index

Mean Axial Coefficient of Variation of the Axial Load
Load / Af,
’ 0% 5% 10% 15% 20% 25%

(%)
20 N/A N/A N/A N/A 3.0 3.0
25 3.0 3.0 3.0 3.0 28 2.5
30 2.8 2.8 2.8 25" 2.3 1.9
32 26 26 24 2.2 1.9 1.6
34 2.3 2.3 2.1 1.9 1.8 1.4
36 2.0 2.0 1.8 1.6 1.4 1.4
38 1.7 1.7 1.5 1.3 1.2 1.2
40 1.4 1.4 1.2 1.1 1.1 1.0

Figure 4.8.2 compares the safety index defined with the Inverse Gauss Function
(4.8.3) with the Ductility Index (4.4.4) for a deterministic axial load and for an axial

load that has a 25% coefficient of variation. Several observations can be made:
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4.9

* |n order to obtain values for the Inverse Gauss Safety Index when the
mean axial force is lower than 25% of the maximum, thousands of
realizations are required for each Monte Carlo simulation.

* The Inverse Gauss Safety Index overestimates the Ductility Index.

* For low coefficients of variation of the axial force (smaller than 5%) the
two indices present very close values. However, when the coefficient of
variation of the axial force increases, the error of considering a Gauss

distribution for f, ., becomes significant.

CONCLUSIONS

The following conclusions can be drawn for the research in this chapter:

(1) Ductile behavior is considered to be a "conditional limit state” that is
important in assessing the structural safety.

() A Monte Carlo simulation study can be used to calculate a safety
index (Cornell type) of ductile behavior.

(3) A Ductility Index based on displacement ductility is preferred to an
index based on curvature ductility because:
- for small values of axial force, the values for the index based on

curvature ductility are unrealistically high;
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4)

()

©)

the index based on curvature ductility is more sensitive to
variations in the statistical parameters of the input variables than
the index based on displacement ductility;

using an index based on displacement ductility, the van§ition
from a single-wall safety problem to the safety problem at the

structural system is easier.

An alternate Safety Index can be defined if we assume that the

frequency of brittle behavior is normally distributed. This index,

although more easy to understand, is impractical and inaccurate.

The Ductility Index decreases when the mean value or the coefficient

of variation of the axial force increases.

The Ductility Index defined in this chapter presents several

advantages:

Unlike the classical reliability index, tributary to.an extremely
uncertain load, this index can be estimated with reasonable
accuracy;

It can be used to calibrate the design prescriptions for flexural
walls;

Since it is a comprehensive representation of the probabilistic
information regarding the available ductility, chances are that it
may be directly correlated with a similar index describing the

seismic activity of a site or region.
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CHAPTER 5

RELIABILITY OF CONCRETE MASONRY FLEXURAL WALL SYSTEMS

5.1 GENERAL

In Chapter 4 we studied the ductility capacity of a single flexural wall and
defined a ductility index. In this chapter we will expand the study to structural
systems composed of several flexural walls. The ductility of the structural system
as well as the corresponding safety index will be defined and studied. A meésure
for the redundancy of the structural system will be_ proposed. Then, the
complementary roles of ductility and redundancy in shaping a global quality of the
system - robustness - will be explored.

Structures composed of reinforced concrete masonry flexural walls can be
very diverse as far as the plan layout and building elevation are concerned.
Herein, we limit our study to a particular class of structures consisting of several
(two to eight) ten-story rectangular walls connected in the horizontal plane with
rigid diaphragms. The walls are parallel and have statistically identical geometrical
and material properties.

When this structure is subjected to a set of static lateral forces applied at
the story levels where one wall reaches its yield load, a redistribution of forces

among the remaining elements results. In a seismic base excitation, the
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successive yielding and/or failure of walls leads to a decrease in the level of total
force input in the structure. Hence, a masonry multiple wall seismic resisting
system is not characterized by a redistribution of load like a Daniels System. For
example, highrise masonry buildings composed of flexural walls and rigid floor
diaphragms can have a significant increase in the effective fundamental natural
period of vibration when compared to the period in the elastic range. During
strong ground motion, the stiffness degradation in the structure can increase this
period by values up to two seconds. In this situation, the structural response is
governed by displacement rather than acceleration. If we treat this problem using
an equivalent static approach, the structure is subjected to imposed displacements
rather than inertial forces. Under a monotonic increasing displacement imposed
equally to all of the participating walls, the walls will reach consecutively their
ultimate capacity until the system reaches the ultimate structural limit state.

In Section 2.2.1 we discussed the three limit states that describe the
behavior of individual walls. Within the structure, walls may fail according to
different limit states. For example, when the mean axial load is high, some walls
may exhibit a brittle behavior while the others remain ductile. If at least one wall
behaves ductile before the structure reaches its ultimate displacement, we consider
the structural system limit state to be ductile. There are two reasons for such a

definition:-
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(1) for an individual wall, the yielding of one steel bar before the
concrete masonry crushes is enough to qualify the wall as having
ductile behavior.

(2) the single ductile wall performs, on behalf of the whole structure, the
task of dissipating energy and reducing the structural response to
the ground motion.

On the other hand, if all the walls exhibit a brittle behavior, the structural system

limit state is brittle. When the mean axial load is small, some walls may fail

according to the first limit state while the other fail according to the second limit

state. For similar reasons, we consider that this structure fails according to the

second limit state. We now define the three structural system limit states as

follows:

Structural System Limit State (1):  when all the walls fail according to the First
Limit State as defined in Section 2.2.1.

Structural System Limit State (2): if at least one wall behaves according to the
Second Limit State as defined in Section
2.2.1 before the structure reaches its ultimate
displacement.

Structural System Limit State (3):  when all the walls fail according to the Third
Limit State as defined in Section 2.2.1.

Besides the parameters that govern the ultimate capacity of one wall (as

described in Chapter 2) there are additional factors that have an influence on the
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system ductility, redundancy and robustness: the size of the system (the number
of walls), the covariance matrix corresponding to each material parameter
distributed among walls, and the distribution and correlation of axial load among
walls.

A "balanced system” is defined to be a structural system composed by
statistically identical elements that are subjected to statistically identical loads and
all elements work in parallel (De, Karamchandani, and Cornell, 1989).

The structural system studied in this research fits the definition of a
"balanced system" when the axial load corresponding to each wall has the éame
mean value and coefficient of variation. The variation of axial load among the walls
is mainly due to the randomness in live load distribution across the floor. In the
case when cross walls are present, the simultaneous excitation on the direction
perpendicular to the walls under study may induce compression in some walls and
tension in the other. This structural system is "unbalanced".

The Monte Carlo simulation is performed in this chapter for structures
consisting of two to eight walls. Each statistical sample contains 750 structures.
Consequently, for each sample, the number of generated walls is 750 muitiplied
by the number of walls in the structure. Because of the increased complexity
created by the larger number of variables as well as the necessity of controlling
their correlation, the generation of random values requires a special attention. This

problem will be discussed in Section 5.2.
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Section 5.3 will be devoted to the statistical definition of the axial loads in the
walls and the coefficient of variation of the axial loads in balanced systems. The
covariance matrix of the axial loads in unbalanced system will be evaluated.

Section 5.4 defines and studies the system ductility of balanced and
unbalanced systems of walls, while Section 5.5 attempts to clarify the extremely
difficult notion of system redundancy and quantify the redundancy effects for the
flexural wall systems.

In Section 5.6, the two attributes of the system - ductility and redundancy -
are merged into a new quality of the system: robustness. The robustness is
quantified as the System Ductility index. The beneficial contributions of system
ductility and redundancy to the robustness of the system are discussed. Section
5.7 presents the conclusions regarding the reliability of the systems composed of

concrete masonry flexural walls.

5.2 PROBLEMS REGARDING THE MONTE CARLO SIMULATIONS FOR

STRUCTURAL SYSTEMS

5.2.1 Generation of Correlated Variables
The generation of random vectors with a specified multivariate distribution

and a target correlation matrix is a difficult, often unsolvable problem. In general,

the generation of correlated variables is accomplished in two steps:
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(1)  generation of independent components according to the marginal

distributions that result from the multivariate distribution.

(@) derivation of the desired random vectors through combination

(usually linear) of independent components.

There are two possible pitfalls associated with this procedure:

(1)  The combination of independent components may alter the initial

distributions.

(2) The mean vector and the covariance matrix can be insufficient for

completely defining the multivariate distribution.

In order to avoid both pitfalls, the normal multivariate distribution is adopted
in this research. A linear combination of normally distributed variables results in
a normally distributed variable. At the same time, the normal distribution is
completely defined by the mean vector and the covariance matrix. From the
inception of this research, we made the normality assumption at the expense of
physical realism. The possible shortcoming of this assumption, namely the
occurrence of negative values for the variables, is completely remote. In
exchange, the normality assumption pays off handsomely by the possibility of
controlling the covariance.

Rubinstein and Rosen (1968) used a particular Cholesky matrix

decomposition for facilitating the structural analysis computations:

132



Al = oy’ (5-2.1)
where A is a symmetric, positive definite matrix, L is a l‘ower diagonal matrix, and
D is a diagonal matrix. This decomposition is known in the Systems Control
Theory as the “LDLT decomposition" (Mortensen, 1987). Hart (1982) uses the
LDLT decomposition to find the lower diagonal matrix L that can transforh an

uncorrelated random vector {Y} associated with a diagonal covariance matrix S,

into the correlated vector {X} with the target covariance matrix S,. If
[Sd = [aIsAIL T (5.2.2)

then the mean vector (X can be found as

& - 1y (5.2.3)

The LDLT decomposition is a particular case of the Cholesky decomposition
because it provides unique solutions for the diagonal and the lower diagonal
matrices. If the uncorrelated vector {Y} is the standard normal muitivariate (all

mean values equal to 0 and all variances equal to 1), the diagonal matrix is the unit

matrix E

[Sd = e ™ = (g’ (5.2.4)
In this case, the requirement of uniqueness of the Cholesky decomposition

becomes unnecessary and the last product in Equation (5.2.4) represents the
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general Cholesky decomposition that has an infinity of solutions. Then, the

correlated vector {X} can be obtained (Liebetrau and Doctor,1987) as:

X=[n+X (5.2.5)

The general Cholesky decomposition, easier to perform as compared to the
LDLT decomposition has been used in this research in order to generate the

correlated input random vectors.

5.2.2 Minimization of the Sample Bias and Instability

We supposed in Section 5.2.1 that the vector {Y} is perfectly uncorrelated.
This seldom happens in practice, because the univariates that are separately
generated posses a random, non-zero correlation (some coefficients of correlation
may reach 20%-30%). These input samples may produce a severe bias and
instability in the output results. The higher the number of variables and the
complexity of the problem, the higher the instability. Research has been devoted
to eliminate this instability. Several methods gained notoriety among the Monte
Carlo practitioners.

The Importance Sampling Method (Hammersley and Handscomb, 1964)
selects more sampiles in regions of the space of input variables that can produce
signiﬁcanf contribution to the probability of exceeding a certain limit state. A

correction is applied to the final results in order to reduce the bias. Unfortunately,
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this method can produce extremely biased results without the possibility of
knowing it (Cornell, 1988 a).

The Latin Hypercube Sampling (McKay, Conover, and Beckman, 1979),
uses a partition of the range of each variable into a number of equiprobable
intervals and then selects the elements of the random vector so that they belong
to subranges of different order. In fact, the intent of the method is to insure that
the space of the variables is uniformly covered according to the target multivariate
distribution.

So far, no attempt has been made to avoid the undesired correlations that
occur when the sampling is not controlled.

The problem can be solved by eliminating these correlations. In order to
perform this elimination, the following steps are taken:

(1) A number of realizations for the standard normal vector {Y} are

generated.

()  The mean vector {Y} and the covariance matrix Sy of the generated

sample are calculated.

(8)  Using the Cholesky decomposition, the matrix Sy is expressed as a

product [L][L]".

(4) A new vector {Y,} is calculated using the transform:

AR [L'v- (5.2.6)
(5) Repeat steps (2) through (4) until the greatest nondiagonal element

of the covariance matrix falls below a target tolerance.
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The final vector {Y} obtained through this iteration process has a markedly
improved representation throughout the variables’ space. Thus, the aim sought
when using the Latin Hypercube Sampling is accomplished too. As a
consequence, {Y} is free of bias and can be used in generating the input véctor
{X} according to Equation (5.2.5). For random vectors up to eight components,
three iterations are usually enough to reduce the value of the highest coefficient

of correlation below 0.1%.
5.3 STATISTICAL DEFINITION OF AXIAL LOADS

5.3.1 Axial Loads in Balanced Systems

The typical layout for a balanced system of walls is presented in Figure
5.3.1(a). The walls are parallel and have statistically identical geometricai and
material properties. The axial loads in the walls of the structure are mainly
produced by dead loads, live loads, and earthquake loads. The purpose of this
section is to evaluate a global coefficient of variation for the axial loads. This
coefficient of variation will be used in this study.

The coefficient of variation of the dead load (C, ) varies between 6% and
13% (Hart, 1982). We adopt in this research the value: Cp =12%.

The live load is composed of sustained live load (or "arbitrary point-in-time"

load) and additional load due to extraordinary crowding. As we do not consider
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FIGURE 56.3.1 TYPICAL PLAN LAYOUTS
FOR MASONRY WALL SYSTEMS
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earthquake occurrence simultaneously with crowding, the coefficient of variation
of live load will be the coefficient of variation of the sustained live load (Cg,). A
recent study indicate that, for a tributary area of 1500 to 2500 square feet, the
coefficient of variation of the sustained live load is approximatively equal to 15%
(Kanda and Yamamura, 1989). Since the particular distribution of the load across
the tributary area produces additional scatter in the load effect (Culver, 1976) we
adopt in this research a value of 30% for Cg,. Because the expected sustained
live load is approximatively 20% of the expected dead load, the standard deviation

of the sustained live load is:

0 5,=0.355L-0.06 DL (5.3.1)

where

SSL=0.2DL

The horizontal components of the strong motion earthquake excitation do
not induce axial loads in the balanced systems of walls. The vertical component
has no effect on the mean axial force, but produces additional variance of the axial
load in the individual walls as well as the covariance of the axial load among the
walls. The standard deviation of the earthquake-induced axial load is dependent
on the severity of the ground motion. We consider:

(1)  apeak ground acceleration of 0.60 g for the horizontal components;

(2) a ratio of 2/3 between the peak ground acceleration of the vertical

and horizontal components; and
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(8) a ratio of 2 between the peak and the standard deviation of the

vertical ground acceleration.

With these assumptions, the standard deviation of the earthquake-induced

axial load is:
oEQ=(O.SD_L)(—:23-)(%)=O.2_D_L (5.3.2)

Considering all the three components as being normally distributed, the

global coefficient of variation of axial load is:

{95+ 05t OEa (5.3.3)
C=1— — = 20% -~
DL+Q.20L+0

where 0 in the denominator is the mean value of the earthquake-induced axial

load.

|
i

A constant value of 20% for the coefficient of variation of axial load Will be

used in this chapter.

5.3.2 Axial Loads in Unbalanced Systems

Two possible layouts for unbalanced systems of walls are presented in
Figures 5.3.1(b) and (¢). The walls under study are parallel to the main direction
of ground motion excitation (indicated by the double, hollow arrow). Because of
the presence of cross walls, the simultaneous earthquake excitation in the direction

perpendicular to the arrow will induce compression in some walls and tension in
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others'. If the mean axial force in the walls of the balanced systemis P , the

unbalance adds «P tothe each compressedwalland -«P to each tensioned

wall, where the random variable « is the unbalance coefficient. The unbalance
affects the correlation of the axial loads of different walls in the structure. The
purpose of this section is to find the meaﬁ values and the covariance matrix of the
axial loads associated with the walls of the unbalanced system.

The random axial loads in the unbalanced system are derived from the

random axial loads in the balanced system and the unbalance coefficient:

®,= P+ aP (5.3.4)
e, = Pl - aP ' (5.3.5)
Where
i, k = indices associated with compressed walls in Equations
(5.3.4) through (5.3.15)

J = index associated with a tensioned wall

P, P = random axial loads in the balanced system

®,, & = random axial loads in the unbalanced system

Equations (5.3.4) and (5.3.5) can be used to derive the mean values of the

axial loads associated with the compressed and tensioned walls:
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5= P + ) (5.3.6)

®,=A1-«a) (5.3.7)

The covariance between ©, and ©, isthe j term in the covariance
matrix and is equal to
coV(® , )=E<(Pq+aP-P-a P)(PaP-P+a P)> (5.3.8)
It follows that |
cov(® ,0 )= couP,P)-FPo’ (5.3.9)
where o is the standard deviation of the unbalance coefficient. Similarly, for the
term of index ik in the covariance matrix we obtain
cov(P,0 )= coUP,PY+ s> (5.3.10)
If we consider the axial loads corresponding to the walls of the balanced

system to be independent random variables then it follows that we obtain
cov(P,P) = -Po? (5.3.11)

cov(®,0)) = Po> (5.3.12)
This assumption of independence produces the most interesting case for the
effects of unbalance.
To obtain the diagonal terms of the covariance matrix, we calculate the

standard deviation of the axial load for the walls of the unbalanced system
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considering that the coefficient of variation of the axial load for the walls of the

balanced system is 20%, as established in Section 5.3.1.

= 2
0= 01p.aA= 0P o = P\/0.04+o, (5.3.13)

The correlation coefficients for the axial loads among the walls of

unbalanced system then become:

by = —— e (5.3.14)
T 004402
0_2
pk = ——i——z— (5.3.15)
- 0.04+0,

The correlation coefficients of the axial loads are a function of the standard
deviation of the unbalance coefficient only. On the other hand, the mean value of
the unbalance coefficient is primarily a function of the severity of the ground motion
in the direction perpendicular to the walls, whereas the coefficient of variation of
the unbalance coefficient is a function of the coefficient of variation of material
properties of the walls in both directions. This means that the correlation
coefficients the axial loads are function of the coefficient of variation of the material

properties and the coefficient of variation of the axial load on individual walls.
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5.4 SYSTEM DUCTILITY

5.4.1 Ultimate Displacement

A wall is considered to have reached its Ultimate Limit State when the top
displacement reaches its ultimate displacement. This happens when the
compression strain at the base of the wall exceeds the maximum usable strain in
concrete masonry. In this research, the ultimate displacement for a structural
system occurs when all but the last wall have reached their individual wall ultimate
limit states. For example, a structure composed of eight walls is considered to
have reached its Ultimate Limit State when seven walls have reached their ultimate
top displacement. The primary reasons for this definition of a structural system
Ultimate Limit State are:

(1)  The end walls are the least likely to fail. These walls are more ductile
because the expected axial load is typically one half the axial load of
the interior walls.

(2)  With both end walls not yet reaching their Ultimate Limit State, the
structural system is still stable. However, when one of the end walls
reaches its Ultimate Limit State, the torsional response of the
building will become large.

Because of the randomness of the displacement at the ultimate limit state

of each wall, the expected value of the displacement at the system ultimate limit

state will increase with the number of walls. It is expected that the ultimate
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displacement of the structure is greater than the ultimate displacement of an
individual wall. However, when the structure has only two walls, the displacement
of one wall at its Ultimate Limit State will not be less than the Ultimate System
Displacement. This is a consequence of the particular character of the structural
system failure definition: the structure fails when the first wall fails. According to
a well known fact from ordered statistics, the expected value of a minimum of two
realizations of the same variables is smaller than the expected value of the variable

(Bury, 1975).

5.4.2 Yield Displacement

To quantify the structural system ductility, we need to provide a definition
for the structural system yield displacement. In Section 2 we defined the yield
displacement of an individual wall as the displacement at the top of the wall when
the vertical steel first yields.

Figure 5.4.1 presents the load-deflection response (the overturning moment
at the base against the displacement at the top) for:

(1)  three statistically identical walls; and

(2) the structure consisting of these three walls.

The load-deflection curve for the structure is obtained by summing the ordinates

of the curves corresponding to each of the three walls.
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The yield displacement of the structure should be defined consistently with
the yield displacement of the bilinear model. To achieve this, the load-deflection
curve for the structure is "stylized" as follows:

(1)  The elastic branch of the bilinear model is obtained by joining the

origin to the point on the curve corresponding to the first yielding of
a wall.

(2) The plateau of the bilinear model is a parallel to the displacement
axis and corresponds to the sum of the yield moments of the walls.
If one or more walls have a brittle behavior, the ultimate moment is
considered instead of the yield moment.

(8) The yield displacement of the structure is the point on the
displacement axis corresponding to the intersection of the two
branches of the bilinear model.

The determination of the yield displacement of several structures generated

through Monte Carlo simulations revealed that this value is very close to the
average of the smallest and the largest yield displacements of the individual walls

of the structure.

5.4.3 The Variation of the System Ductility with the Number of Walls

We define the system ductility (SD) as the ratio between the ultimate

displacement of the structural system and the yield displacement of the structural
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system. Monte Carlo simulations have been performed on samples of structures
in order to study the variation of the statistics of SD when the number of walls in
the structure varies from two to eight and the mean axial load varies from 0 to 40%
of the maximum axial load. The material properties are considered independent
among the different walls. In order to guarantee this independence, we used the
procedure described in Section 5.2.1. The coefficient of variation of the axial load
was selected to be 20% in accordance with the conclusion presented in Section
5.3.1. For each case corresponding to a certain number of walls and a certain
mean axial load, we generated 750 structures. For each structure so generated
we calculated the yield displacement, the ultimate displacement and system
ductility.

In structures where all but one wall exhibited a brittle behavior (Third
Structural Limit State according to the definition in Section 5.1), a SD smaller than
one was assigned according to the rule established in Section 4.6. Consistently
with the definition in Section 4.3, we define the frequency of the brittle structural
system behavior as the number of brittle structures divided by 750. These
frequencies have been calculated and are presented in Table 5.4.1.

For reasons explained in Section 5.4.1 the frequency of brittle structural
system behavior for two-wall buildings is greater than the frequency of brittle
behavior for a single wall (see Table 4.3.3). It is remarkably that cases of brittle

structural behavior were encountered only for two-wall and three-wall structures.
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Table 5.4.1 The Frequency of Brittle Structural Behavior as a Function of the
Number of Walls and the Axial Load

Number of Walls Axial Load / Maximum Axial Load
30% 40%
1.6% 20.5%
0.0% 6.0%

For each sample of 750 structures, the mean and standard deviation of the
SD have been estimated for each case associated with a number of walls and a
value of the axial load. The results are presented in Tables 5.4.2 and 5.4.3 and in

Figures 5.4.2 and 5.4.3.

Table 5.4.2 Mean System Ductility as a Function of the Number of Walls and

the Axial Load
Number of Axial Load / Maximum Axial Load
Walls 0% 10% 20% 30% 40%
2 18.9 4.7 2.4 1.6 1.3
3 22.0 5.5 2.7 1.8 1.4
4 229 5.9 2.9 1.9 1.7
5 23.7 6.2 3.1 2.0 1.7
6 23.9 6.5 3.2 2.0 1.8
7 24.4 6.7 3.3 2.1 1.9
8 25.1 7.0 3.4 2.2 1.2
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Table 5.4.3 Coefficient of Variation of the System Ductility as a Function of the
Number of Walls and the Axial Load

Number of Axial Load / Maximum Axial Load
Walls 0% 10% 20% 30% 40%
2 25% 27% 23% 19% 38%
3 15% 21% 19% 16% 28%
4 13% 19% 17% 15% 22%
5 12% 17% 15% 14% 20%
6 11% 16% 14% 12% 18%
7 9% 15% 14% 12% 17%
8 8% 14% 13% 12% 17%

As shown in Table 5.4.2 and Figure 5.4.2, the mean SD exhibits the

following features:

(1)  The mean SD increases from 30% to 50% when the number of walls
increases from two to eight.

(2)  The mean SD decreases dramatically when the axial force increases.

As shown in Table 5.4.3 and Figure 5.4.3, the coefficient of variation of SD

exhibits the following features:

(1)  The coefficient of variation of SD decreases when the number of
walls increases from two to eight. The smaller the axial load, the
greater is the rate of decrease in the coefficient of variation of SD.

(2) The coefficient of variation of SD increases when the axial load

increases from zero to 10% of the maximum axial load. For axial
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load between 10% and 30% of the maximum axial load, the
coefficient of variation of SD is practically constant, but increases for
the 40% axial load case.
The mean system ductility is less sensitive than the coefficient of variation
of system ductility to an increase in the number of walls but it is more sensitive to

an increase in the axial load.

5.4.4 The Variation of the stem_Ductility with the Correlation of Material

Properties among Walls

Monte Carlo simulations were performed using a building with five walls in
order to study the variation of the statistics of system ductility when we vary the
coefficient of correlation of material properties (f',, €, @nd f,) and the mean axial
load varies from 0 to 40% of the maximum load. All the nondiagonal terms of the
three covariance matrices (corresponding to each of the three input variables) have
been set up to the same value. This value was, consecutively, 0, 0.0625, and 0.25,
and 0.5625 corresponding, respectively, to 0, 0.25, 0.50, and 0.75 values for the
correlation coefficient. For instance, the covariance matrices corresponding to a

value of the correlation coefficient equal to 0.5 were

1 025 025
Sy =S, =8 =025 1 025
m mu y

025 0.25 1
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The coefficient of variation of the axial load was set to 20% based on the
conclusion reached in Section 5.3.1. For each case corresponding to a certain
correlation coefficient and mean axial load, 750 Monte Carlo simulations were
generated and we calculated the mean and standard deviation of the system
ductility. The results are presented in Tables 5.4.4 and 5.4.5 and in Figures 5.4.4

and 5.4.5.

Table 5.4.4 Mean System Ductility as a Function of the Correlation Coefficient
of Material Properties for a Five-Wall Structure

Correlation Axial Load / Maximum Axial Load

Coefiicient 0% 10% 20% 30% 40%
0.00 23.7 6.2 3.1 2.0 1.7
0.25 23.6 6.3 3.1 2.0 1.7
0.50 23.6 6.4 3.2 2.0 1.7
0.75 23.6 6.5 - 32 2.1 1.7

As shown in Table 5.4.4 and Figure 5.4.4, the mean SD remains practically

constant when the correlation coefficient increases from zero to 75%.

Table 5.4.5 Coefficient of Variation of System Ductility as a Function of the
Correlation Coefficient of Material Properties for a Five-Wall Structure (in %)

Correlation Axial Load / Maximum Axial Load

Coefficient 0% 10% 20% 30% 40%
0.00 12 17 15 14 20
0.25 12 17 16 15 22
0.50 12 19 18 . 16 26
0.75 13 22 20 18 35
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As shown in Table 5.4.5 and Figure 5.4.5, there is, in most cases, an
approximately 40% increase in the coefficient of variation of SD when the
correlation coefficient increases from zero to 0.75. There are two exceptions:

(1)  for zero axial load, the increase is small; and

(2)  for the 40% axial load case there is a larger increase in coefficient of

variation of SD.

The estimation of the correlation coefficient of the concrete compressive
strength ', among the walls of an actual structure was performed. This separate
study is presented in Appendix D. The estimation resulted in a correlation
coefficient of approximately 0.5.

In conclusion, the coefficient of variation of system ductility increases with
increasing correlation coefficient while the mean system ductility is almost

insensitive to the correlation between the material properties.
5.4.5 System Ductility of the Unbalanced Systems of Walls

Monte Carlo simulations have been performed on samples of six-wall
structures of the type presented in Figures 5.3.1 (b) and (c) in order to study the
variation "of the statistics of the system ductility when the mean unbalance
coefficient @ varies from 0.5 to 1.0, the correlation coefficient of the axial loads

among walls p varies between 0.3 and 0.9, and the mean axial load varies from 10
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to 20% of the maximum load. For reasons mentioned in Section 5.4.4, all the
correlation coefficients of material properties among walls are considered equal to
0.5. The coefficient of variation of the axial load remains 20% for the reasons
presented in Section 5.3.1. For each case corresponding to a certain value of a
(0.5, 0.75 or 1), a certain value of p (0.3, 0.5, 0.7, and 0.8), and a certain rﬁean
axial load (10% or 20% of the maximum load), 750 structures have been
generated. For each structure within one sample, the system ductility has been
calculated. The mean and standard deviation of the system ductility have been
estimated for each of the 750 structures of the Monte Carlo Simulation. The

results are presented in Tables 5.4.6 and 5.4.7 and in Figures 5.4.6 and 5.4.7.

Table 5.4.6 Mean System Ductility for a Six-Wall Unbalanced System

Axial Load = 10% of Maximum | Axial Load = 20% of Maximum
° 2=0.5 a=0.75 a=1 a=0.5 a=0.75 a=1
30% 9.8 12.7 10.3 4.9 7.0 58
50% 9.8 12.0 10.2 5.0 6.5 5.3
70% 9.7 11.5 10.0 5.1 6.0 4.8
90% 9.4 9.5 9.1 4.9 4.9 5.3

The mean SD of this unbalanced system is approximate double the SD of
a six-wall balanced system. This can be explained according to the results
obtained in Section 2.2.1 and presented in Figure 2.2.3:

(1)  The less compressed walls yield earlier;
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(2) Theyield moments of these walls are much smaller than those of the
more compressed walls and, consequently, the horizontal branch of
the bilinear model as defined in Section 5.4.2 is lowered;

(8) ltems (1) and (2) above contribute to a substantial decrease ih the
yield displacement of the structural system;

(4) the ultimate displacement of the structural system is again governed
by walls with small compressive loads and may reach much greater
values than those corresponding to the mean value of the axial load.

The very large values of the coefficient of variation of SD (up to five times

greater than the corresponding values of the balanced system) suggest that, in
case of unbalanced systems, considering the mean SD alone would be misleading.
The consequence of these findings for the reliability of the unbalanced system will

be discussed in Section 5.6.

Table 5.4.7 Coefficient of Variation of System Ductility for a Six-Wall
Unbalanced System (in %)

Axial Load = 10% of Maximum | Axial Load = 20% of Maximum
g =05 | a=0.75 a=1 =05 | a=0.75 a=1
30% 31 25 54 34 41 75
50% 31 26 55 38 46 74
70% 33 31 58 44 53 71
80% 39 47 62 54 62 82

189



W3 LSAS AIONVIVENN T1VM-9 VYV HO4d dS 40 AOD L'v'G FHNDIL
S90104 |BIXY }JO UOB|S1I0D JO "§}00D
60 L0 G0

| |

€0
0

i i

ov

XeWd%0Z=d’I=2 -0 XBWd%0Z=d'GL 0=203¢ XBWJ%O0C=d G O=X -

XBWd%Ol=dilan sk XBWJ%O=d'SL 0np—| XBWJ%Ol=d'G 0=2 o

10014

Oclt

(%) Aiong weishAg jo "A'O°

0

D
../AW&.



5.5 SYSTEM REDUNDANCY

5.5.1 General

A discussion concerning the latest developments in systems redundancy
was presented in Chapter 1. Redundancy is viewed in this research as an intrinsic
quality of the structural system, independent of loading, while the redundancy
effects are different according to the type of loading. The redundancy effects are
manifested when'the structure is subjected to earthquake loading by the gain (or
loss) in overall capacity with respect to the component capacity. An increase in
capacity from the element level to the system level will imply an increase in system
reliability.

In order to study the redundancy effects of a wall system, one has to
acknowledge the difference between the problem statement in this research as
compared to the existing literature. There are several basic differences:

(1)  The horizontal loads are absent from the equation of the limit state
surface. The vertical loads are present in this equation but their role
in the flexural behavior of the wall is more on the side of material
properties.

(2)  The ductility indices at the element and structural system level reflect
the necessity of preserving ductile behavior rather than outright

failure like in case of reliability indices.
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3) Instead of quantifying the ultimate capacity of the structural syétem
in terms of generalized force, we are interested in quantifying the
system ductility.

(4)  The structural system is subjected to imposed displacements instead
of forces.

(5)  After the failure of one wall there is no redistribution in the system,
hence the degree of static indeterminacy is almost irrelevant.

The complexity created by these basic differences, preclude the utilization
of any of the probabilistic redundancy indices existing in the literature and
discussed in Chapter 1.

A structural system composed by statistically identical elements (i.e. having
the same statistics for each geometrical or material property) working in parallel is
defined as a "balanced system." in this case, the redundancy effect can be
understood as Cornell’s "probabilistic redundancy” (Cornell, 1988 b) i.e. the effect
of the stochastic variations of resiétance of different parallel elements about a
common mean that does not permit the structure to collapse when the first
member fails.

The structural system studied in this research can be best modeled as a
"balanced system" when the axial load corresponding to each wall has the same
mean value and coefficient of variation. One limit state of interest for the structure
composed of concrete masonry walls is the ultimate displacement of each

individual wall. The greater the spread of the ultimate displacement corresponding
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to each wall of the structure about the common mean ultimate displacement, the
greater the redundancy effect because the extreme cases will govern the ultimate
displacement of the structure.

This finding would suggest that we quantify redundancy effects using the
coefficient of variation of the ultimate displacement (d,). Such a redundancy index
that is a function of the coefficient of variation of d, only would be invariant to the
number of walls in a parallel system. Since this is unreasonable, we need to find
a definition that involves directly the ordered statistics of the set of walls that
constitute the structural system. At the same time, the definition must capture the
two milestones in the load-deflection relationship of the structural system that are
present in the current deﬁnitions/of the redundancy index: the first wall reaching
its ultimate limit state and the structural system reaching its ultimate limit state.

We define as Redundancy Ratio (RR) the ratio between the displacement
corresponding to the structural system reaching its uitimate limit state and the
displacement corresponding to the wall reaching its ultimate limit state. When RR
has the minimum value of 1 (i.e. all the walls fail simultaneously), there are no
redundancy effects in the system. As RR is a random variable, its mean and
coefficient of variation characterize the probabilistic redundancy effects of the
system. The mean and coefficient of variation of RR were calculated for each
Monte Carlo sample as described in Section 5.4. The results are presented in

Sections 5.5.2 and 5.5.3.

163



5.5.2 The Variation of the Redundancy Ratio with the Number of Wall

The series of Monte Carlo analyses described in Section 5.4.3 was used to
study the variation of the Redundancy Ratio (RR) with respect to the number of
walls in the structural system. The statistics of the redundancy ratio are presented

in Tables 5.5.1 and 5.5.2 and in Figures 5.5.1 and 5.5.2.

Table 5.5.1 Mean Redundancy Ratio as a Function of the Number of Walls and

- Axial Load
Number of Axial Load / Maximum Axial Load

Walls 0% 10% 20% 30% 40%
2 1.0 1.0 1.0 - 1.0 1.0
3 1.3 1.4 1.3 1.2 1.0
4 1.5 1.6 1.4 1.3 1.1
5 1.6 1.6 1.5 1.3 1.2
6 1.7 1.8 1.6 1.4 1.3
7 1.8 2.0 1.7 1.5 1.4
8 1.8 2.0 1.7 1.5 1.4

As shown in Figure 5.5.1, the mean redundancy ratio exhibits the following
features:
(1)  The mean RR increases with the number of walls and levels off for
more than seven walls.
(2) The mean RR increases when the axial load on the wall decreases.

The only exception is observed for the zero axial load case when the
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3

mean RR is smaller than that corresponding to the 10% axial load
case. This behavior matches closely the variation of the coefficient
of variation of the ultimate displacement with the axial load as
presented in Figure 2.2.5. The explanation of this behavior has been
provided in Section 2.2.2. Because high axial load results in a higher
potential for brittle behavior, the essence of this feature is that
structural systems composed of brittle elements possess a small
value of the RR. This important property of the redundancy ratio for
balanced systems of walls confirms a similar finding obtained for
Daniels Systems (Rackwitz and Gollwitzer, 1988).

The higher the axial load, the smaller the increase in the redundancy
ratio. When the number of walls increases from 2 to 8, the mean RR
increases by 100% for the 10% axial load case but the increase is

only 40% when the axial load is 40%.

As shown in Figure 5.5.2, the coefficient of variation of the redundancy ratio

exhibits the following features:

M

(@

The coefficient of variation of redundancy ratio is essentially
independent of the number of walls.

The coefficient of variation of redundancy ratio decreases from
approximatively 25% to 15% when the axial load increases from zero

to 40% of the maximum axial load.
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Table 5.5.2 Coefficient of Variation of the Redundancy Ratio as a Function of
the Number of Walls and Axial Load

Number of Axial Load / Maximum Axial Load
Walls 0% 10% 20% 30% 40%

2 0 0 0 0 0

3 32 41 A 22 13 30
4 38 27 19 14 33
S 25 24 18 13 12
6 26 24 17 12 12
7 28 32 22 16 18
8 23 23 18 14 24

It can be observed from Table 5.5.1 that the maximum values of the mean
redundancy ratio, reached when the structure has a sufficient number of walls, is
equal to 2 for the 10% axial load case and 1.4 for the 40% axial load case. In
practice, another index of a more direct physical meaning may be useful. It is
interesting to know how much additional capacity is conferred to the system
through redundancy. This additional capacity can be investigated calculating the
ratio between the displacement corresponding to the system reaching its ultimate
structural limit state and the expected displacement corresponding to a single wall
reaching its ultimate limit state. The mean value of this ratio has been calculated
using a Monte Carlo simulation for the 7-wall system for the 40% and 10% axial
load caseé and it was equal to 1.08 and 1.19, respectively. This means that using
a sufficient number of walls we can obtain an average increase in the capacity of

the structure to withstand imposed displacements from 8% to 19%.
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5.5.3 The Variation of the R ndancy Ratio with th orrelation of Material

Properties among the Walls

The series of Monte-Carlo analyses described in Section 5.4.4 were
performed to obtain results enabling us to study the variation of the redundancy
ratio with respect to the correlation coefficient of material properties among the
walls of the structure. The statistics of the redundancy ratio are presented in
Tables 5.5.3 and 5.5.4 and in Figures 5.5.3 and 5.5.4.

As shown in Figure 5.5.3, the mean redundancy ratio is essentially
independent of the correlation coefficient of the material properties. There is an
exception for the 40% axial load case when the mean RR slightly increases with the
correlation coefficient.

As shown in Figure 5.5.4, the coefficient of variation of the redundancy ratio
is also very insensitive of the correlation coefficient of the material properties with
an exception for the 40% axial load case. In that case, the coefficient of variation
of redundancy ratio increases with the value of the correlation coefficient going

from 12% to 33%.
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Table 5.5.3 Mean Redundancy Ratio as a Function of the Correlation
Coefficient of Material Properties

Correlajtion Axial Load / Maximum Axial Load

Coefficient 0% 10% 20% 30% 40%
0.00 1.6 1.6 15 1.3 1.2
0.25 1.6 1.6 1.5 1.3 1.2
0.50 1.6 1.6 1.5 1.3 1.2
0.75 1.6 1.6 1.5 1.3 1.2

Table 5.5.4 Coefficient of Variation of the Redundancy Ratio as a Function of
the Correlation Coefficient of Material Properties (%)

Correlation Axial Load / Maximum Axial Load

Coefficient 0% 10% 20% | 30% 40%
0.00 25 24 18 13 12
0.25 25 24 18 14 13
0.50 26 25 19 15 19
0.75 25 28 22 17 33

5.5.4 Redundancy Effe f the Unbalance stems of Walls

As stated in Section 5.5.1, the probabilistic redundancy in parallel systems
is meaningful for balanced systems. In case of a slight unbalance in the system
due to differences in wall geometry or axial load the redundancy ratio can still be

defined as in Section 5.5.1. However, in case of strongly unbalanced systems as
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that studied in Section 5.4.5 the definition introduced in Section 5.5.1 can not be
used. Because of the unbalance, the coefficient of variation of the ultimate
displacement of the six walls in the system is high, but this does not provide an
additional resistance capacity. Due to cyclic nature of the earthquake loads, the
walls that are highly compressed will fail during one cycle and the other three walls
can fail in a subsequent cycle when the strong motion component perpendicular
to the walls changes the direction. This suggests a split of the unbalanced system
into two balanced subsystems. It appears that the redundancy effects of the
unbalanced system studied in Section 5.4.3 is governed by the redundancy effects
of the weakest subsystem (i.e. the subsystem with the highest axial load). The
presence of a much stronger balanced system does not help the overall

redundancy effects of the unbalanced system.

5.5.5 Discussion_on Redundancy Effects versus System Ductility for the Wall

Structures

It is interesting to compare the conclusions obtained in Section 5.5 for
redundancy ratio with those obtained in Section 5.4 for the system ductility. For
the balanced systems, the two properties appear to have a contradictory character
as it results from the two main conclusions:

(1)  The mean redundancy ratio increases with the number of walls at a

much higher rate than the mean system ductility increases.
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(2)  Unlike the coefficient of variation of system ductility that decreases
when the number of walls increases, the coefficient of variation of
redundancy ratio is independent of the number of walls.

These features are summarized in Table 5.5.5.

Table 5.5.5 The Variation of System Ductility and Redundancy Ratio with an
Increasing Number of Walls

System Ductility Redundancy Ratio

Mean Value Almost Constant Increases

" Coefficient of Variation Decreases Constant

According to its definition, the mean value of the redundancy ratio mirrors
the scatter in the system ductility and, apparently, it should exhibit similar features
to the coefficient of variation of the system ductility. Then, why does the mean
redundancy ratio increase when the coefficient of variation of system ductility
decreases ? The explanation resides with the rapport between scatter. and
uncertainty.

When the uncertainty in system ductility increases because the uncertainty
in material properties or axial loads increases, the redundancy ratio increases.
However, an increase in the number of walls without changing the statistics of the
material properties or axial load does not increase the uncertainty. The increase
in the nunﬁber of walls is similar to increasing the size of a statistical sample. This
produces a more confident estimate associated with a smaller sampling variance.

This decrease in uncertainty is revealed by the decrease in the coefficient of
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variation of system ductility. At the same time, the ratio of the two extremes of the
sample increases. This increase is not a consequence of an increase in
uncertainty; in a larger sample the expected maximum is greater and the expected
minimum is smaller according to the properties of the ordered statistics (Bury,
1975). This explains why the scatter in system ductility reflected by the
redundancy ratio increases, while the overall uncertainty in the system decreases.
Hence, both system ductility and redundancy ratio, although apparently

contradictory, provide their beneficial effects to the system behavior.

5.6 SYSTEM ROBUSTNESS

5.6.1 General

It was recognized that the ability of the structural system to survive the
loading is better represented by a new quality that has been called "robustness"”
(Corotis et al, 1988). We define as "robustness” the system quality that combines
the beneficial effects of the system ductility and redundancy to the advantage of
the balanced system. An index that can quantify robustness must fulfill the
conditions outlined in Section 5.5.5:

(1)  Increases with the mean value of SD; and

(2) Increases when the scatter of SD decreases.

In Section 4.5 we have defined the Ductility Index for a wall (DI) as the

safety index based on displacement ductility and calculated with Equation (5.6.1):

175



pr- Ba=1 (5.6.1)
Oq

Using the same theoretical background, we define the System Ductility Index (SD)

as a function of the statistics of the System Ductility (SD):

SD -1

SDI = (5.6.2)
9sp
where:
SD = the mean value of the System Ductility
Sgp = the standard deviation of the System Ductility

For the reasons similar to those delineated in Section 4.4, SDI is the safety
index of ductile structural behavior. Similar to DI, the SDI is not invariant to
different mappings of the limit state equation.

Besides the quantification of safety with respect to ductile behavior, the
System Ductility Index fulfills the conditions outlined above for measuring the
system robustness. That is:

(1)  The SDI increases with the mean value of SD and this is the

beneficial effect provided by the SD.

(2) The SDi increases when the scatter of SD decreases; this decrease

in uncertainty is attributed to the increase in the number of walls, and

consequently to increased redundancy effects.
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5.6.2 The Variation of the System Ductility Index with the Number of Walls

The series of Monte Carlo analyses described in Section 5.4.3 were
performed and they produced resuits on the variation of the system ductility index
with respect to the number of walls in the structure. The results are presented in

Table 5.6.1 and in Figure 5.6.1.

Table 5.6.1 System Ductility Index as a Function of the Number of Walls and

Axial Load
Number of Axial Load / Maximum Axial Load
Wells 0% 10% 20% 30% 40%
2 3.72 2.89 2.58 2.10 0.56
3 6.20 3.87 3.37 2.73 1.10
4 7.60 4.27 3.80 3.26 1.89
5 8.29 4.89 4.50 3.67 2.14
6 8.44 5.28 4.89 412 2.47
7 10.42 5.51 5.10 4.23 2.76
8 11.98 5.95 5.52 4.51 2.79

As shown in Table 5.6.1 and Figure 5.6.1, the SDI increases substantially
when the number of walls increases from two to eight. The rate of increase is
dependent of the axial load, as follows:

- For the zero axial load case the SDI increases more than three times

from its value for two-wall buildings.
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- For axial loads from 10% to 30% of the maximum, the SDI increases
more than twice from its value for two-wall buildings.
- For the 40% axial load case, the SDI increases five times from its
value for two-wall buildings.
The patterns of the system ductility index increase with the number of walls
is dependent of the three limit states of structural failure described in Section 5.1.
For axial loads between 10% and 30% of the maximum axial load, corresponding
to the second limit state, the curves in Figure 5.6.1 are almost parallel and closely
spaced. The curve corresponding to the 40% axial load case is parallel to the
previous curves from 4 walls to 8 walls when the system as a whole behaves
according to the Second Structural Limit State. As mentioned in Section 5.4.3, two
and three-wall structures may exhibit a brittle behavior for this level of axial load.
The relatively small values for the frequency of brittle structural behavior presented
in Table 5.4.1 are sufficient to cause the system ductility index values to be much

lower than the general trend would have indicated.

5.6.3 The Variation of the System Ductility Index with the Correlation of Material

Properties among Walls
The series of Monte Carlo analyses described in Section 5.4.4 were

performed and they produced the results for the variation of the system ductility

index with respect to the correlation coefficient of material properties among the
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walls of the structure. These results are presented in Table 5.6.2 and in Figure

5.6.2.

Table 5.6.2 System Ductility Index as a Function of the Correlation Coefficient
of Material Properties

Correlation Axial Load / Maximum Axial Load

Coefficient 0% 10% 20% 30% 40%
0.00 8.29 4.89 4.50 3.67 2.14
0.25 8.28 4.82 4.15 3.44 2.33
0.50 8.09 4.40 3.81 3.13 2.13
0.75 7.40 3.89 3.39 2.79 1.20

As shown in Table 5.6.2 and Figure 5.6.2, the SDI decreases when the
correlation coefficient of material properties increases from zero to 0.75. The rate
of decrease is practically independent of the axial load. As an average, when the
correlation coefficient increases from zero to 0.75, the SDI decreases by 25%. The
only exception is the larger decrease for the highest correlation coefficient
combined with the highest value of the mean axial load. The low value of SDI
exhibited by this case (1.20) shows how the advantages of structural behavior with
respect to the individual wall behavior can be annihilated when the high axial load

is combined with a high (but not unreasonable) correlation coefficient of the

material properties.
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5.6.4 The tem Duyctility Index of the Unbalanced Systems of Walls

The series of Monte Carlo analyses described in Section 5.4.5 were
performed and they produced the results showing the variation of the system
ductility index with respect to the variation of the mean unbalance coefficient a, the
correlation coefficient of the axial loads among walls p, and the mean axial load P.

These results are presented in Table 5.6.3 and in Figure 5.6.3.

Table 5.6.3

System Ductility Index for a Six-Wall Unbalanced System

Axial Load = 10% of Maximum | Axial Load = 20% of Maximum
° a=0.5 | a=0.75 a=1 a=0.5 a=0.75 a=1
30% 2.89 3.71 1.67 2.31 2.1 1.11
50% 2.84 3.44 1.64 2.11 1.83 1.09
70% 2.69 2.92 1.55 1.84 1.57 1.12
90% 2.36 1.89 1.43 1.47 1.28 0.89

Because of the complexity of the problem for the case of the unbalanced
wall system, the different combinations of the values of @ and mean axial load
produce SDI values with less conclusive and sometimes surprising trends. The
only expected trend is the SDI decrease when the correlation coefficient of axial

forces increases from 0.3 to 0.9. This decrease is between 15% and 50% but
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there is not a clear dependence of this rate to the unbalance coefficient or the
mean axial load.

It was expected that a larger mean unbalance coefficient a will produce a
smaller SDI. This feature was observed in most cases. The exception occurs for
¢=0.75 and 10% axial load case. However, the negative effect of a high
unbalance coefficient is felt for values of correlation coefficient of axial forces below
0.5: a mean unbalance coefficient equal to 1 can push the SDI corresponding to
the 10% axial load case below SDI values for 20% axial load with a smaller a.

It was suggested in Section 5.5.4 that the unbalanced system can be split
in two balanced systems. It is interesting to compare the range of SDI values
obtained for the unbalanced system with the SDI values presented in Table 5.6.1
and obtained for the component balanced subsystems. For example, the six-wall
unbalanced system with a=1 and 20% axial load can be split into two balanced
three-wall systems. The weakest system has a mean axial load equal to
(0.2*Psyimum + 1*0-2*P pasimum) = 0-4*Paimem While the strongest system has a
mean axial load equal to (0.2*P,0imum-1*0-2*Pnaximum) =0-  This comparison is
presented in Table 5.6.4 for the cases when the mean axial loads of each

subsystem result in values already studied for the balanced systems.
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Table 5.6.4 Comparison Between the System Ductility Index for a Six-Wall
Unbalanced System and the System Ductility Indices for the Component Three-
Wall Balanced Subsystems

Six-Wall Unbalanced System Weakest Strongest

Three-Wall Three-Wall

Balanced Balanced

Subsystem Subsystem
a P/Pmaximum | SDI Range SDI SDI
1.0 10% 1.43 to 1.67 3.37 6.20
0.5 20% 1.47 to 2.31 2.73 3.87
1.0 20% 0.89 to 1.11 1.10 6.20

As shown in Table 5.6.4, the SDI values obtained for the unbalanced system

are always smaller than the corresponding SDI values of the weakest balanced

subsystem. This clearly shows the difference between the system ductility and

system robustness. We mentioned in Section 5.4.5 that the mean SD of the

unbalanced system are much greater than the mean SD of any balanced system.

However, due to the large coefficient of variation of system ductility that can not

be associated with probabilistic redundancy effects, the robustness of the

unbalanced system is very low.
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5.7 CONCLUSIONS

In this chapter, the study of reliability of single flexural walls was expanded

to structural systems composed of two to eight flexural walls. Four main properties

of these systems were defined and studied:

M
)
3)
(4)

the frequency of brittle structural behavior;
the system ductility;
the redundancy ratio; and

the system robustness quantified by the system ductility index.

The main conclusions obtained from this research are:

(M

)

3)

4)

For a Monte Carlo study using 750 structures, no cases of brittle
structural behavior were observed for structures having four or more
walls.

The increase in the number of walls produces an increase in the
mean value of the redundancy ratio and a decrease in the coefficient
of variation of the system ductility.

The mean value of the system ductility increases with the number of
walls, but at a much slower rate as compared to the mean
redundancy ratio.

The coefficient of variation of redundancy ratio remains almost

constant with respect to the number of walls.
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€)

7)

®)

©)

(10)

The system robustness, measured by the system ductility index,

increases with the number of walls because it combines two

beneficial effects that exhibit opposite trends with respect to the

variation of the uncertainty in the system:

(@ the decrease of coefficient of variation of the system ductility,
that reduces the uncertainty; and

(b) the increase in the spread of extreme versus expected
ultimate displacement of the component walls, that increases
the uncertainty.

An increase in the axial load produces a decrease in the mean

values of system ductility, redundancy ratio, and system ductility

index.

The coefficient of variation of system ductility is smallest for zero axial

load and largest for the 40% axial load case. However, between

10% and 30% of the maximum axial load the coefficient of variation

decreases only slightly with increasing load.

In general, the coefficient of variation of redundancy ratio decreases

with increasing axial load.

The increase in correlation of material properties produces a slight

increase in the coefficient of variation of system ductility.

The increase in correlation of material properties does produces only

slight variation of the mean system ductility and mean and coefficient
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(1)

(12)

(13)

of variation of redundancy ratio (exception only for the 40% axial load
case). However, the system ductility index decreases markedly
when the material correlation increases.

The mean value of the ratio between the displacement corresponding
to structural system limit state and the average displacement
corresponding to an individual wall ultimate limit state varies, as a
function of the axial load, from 8% to 19%.

The unbalanced systems present large values for both the mean
value and the coefficient of variation of system ductility.

The system ductility index for an unbalanced system is smaller than
the system ductility index of the weakest balanced subsystem
contained in the unbalanced system, and may reach dangerously

low values.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

This research investigates the effects of system ductility and redundancy on
the reliability of the concrete masonry structures. We limited our study to a
particular class of wall structures. These structures can be modeled as balanced
systems. We introduced unbalance into the system by using a particular pattern
of vertical loading. The structural system limit states as well as the probabilistic
measures for the system ductility and redundancy effects were defined accordingly.
Then we performed Monte Carlo Simulations that used the actual geometrical and
material properties in order to obtain the System Ductility Index that we propose
as a probabilistic measure of the system robustness.

The particular class of wall structures has been chosen for the purpose of
clarity only. Consequently, this approach can be used for a much larger class of
building structures. For example, the walls of actual structures may have slightly
different geometrical properties or vertical load patterns. A small unbalance thus
created would not impose any changes in the proposed approach. For more
complex structures, several of the base definitions have to be changed but the
general approach remains valid.

One important finding in this research consists of revealing the fact that

system ductility and redundancy require a special "chemistry” in order to
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‘cooperate” for improving the safety of structures when subjected to earthquake
loading. The resulting conclusion is that balancing the structural systems should
be an important desideratum for design. A first “casualty” of this requirement will
be the use of flanged walls. However, the problem is more complex when
considering the beneficial contributions of the flanges. It is recommended that the
research presented herein be followed with an optimization study to seek out
optimal wall configurations.

This research is based on the assumption that the lateral loading is static
in nature. Such a departure from the physical reality is common to most current
research in systems reliability. Although we believe that the qualitative findings of
this research will remain valid under dynamic loading and nonlinearly dynamic
response, there are important differences to be expected from the quantitative

viewpoint. And thus, such research is recommended as the next step.

180



REFERENCES

Apostolakis G., 1978, "Probability and Risk Assessment: The Subjectivistic
Viewpeint and Some Suggestions,” Nuclear Safety, Vol 19, No. 3.

Barlow R.E., Proschan F., 1975, "Statistical Theory of Reliability and Life Testing,"
Holt, Rinehart and Winston, ed.

Bury K.V., 1975, "Statistical Models in Applied Science," John Wiley & Sons, Inc.

Contini S., Poucet A., 1988, "Fault Tree and Event Tree Techniques," ISPRA
Courses on Major Hazard Analysis, Thessaloniki, October 10-14.

Cornell C.A., 1967, "Bounds on the Reliability of Structural Systems," J. Struct. Div.,
ASCE, 93, Febr. 1967.

Cornell C.A., 1969, "A Probability Based Structural Code," Journal of the American
Concrete Institute, Vol. 66, No.12.

Cornell C.A., 1988 a, "Some Comments on Structural Systems Reliability,"
International Workshop on Structural System Reliability, Boulder, Co., September
1988, University of Colorado, Boulder, Dan M. Frangopol Editor.

Cornell C.A., 1988 b, "Discussion to Paper by Rackwitz and Gollwitzer (1988),"
International Workshop on Structural System Reliability, Boulder, Co., September
1988, University of Colorado, Boulder, Dan M. Frangopol Editor.

Corotis R.B., et. al., 1988, "Position Paper of Working Group No. 1 on Concepts
and Techniques," International Workshop on Structural System Reliability, Boulder,
Co., September 1988, University of Colorado, Boulder, Dan M. Frangopol Editor.

Culver G.C., 1976, “"Survey Results for Fire Loads and Live Loads in Office
Buildings," National Bureau of Standards Building Science Series 85, U.S.
Department of Commerce.

Daniels H.E., 1945, "The Statistical Theory of the Strength of Bundles of Threads,"
Part |, Proc. Roy. Soc., A 183.

De R.S., Karamchandani A., Cornell A.C., 1989, "Study of Redundancy in Near-
Ideal Parallel Structural Systems," Proc. of 5th International Conference on
Structural Safety and Reliability, San Francisco, California, August.

191



Der Kiureghian A., Liu P.L., 1986, "Structural Reliability under Incomplete Probability
Information,” J. of Eng. Mech., ASCE, 112, No. 1.

Ditlevsen 0., 1973, "Structural Reliability and the Invariance Problem," Research
Report No. 22, Solid Mechanics Division, University of Waterloo, Waterloo, Canada.

Ditlevsen O., 1979, "Narrow Reliability Bounds for Structural Systems," J. Struct.
Mech., 7.

Ditlevsen O., 1981, "Uncertainty Modeling," McGraw Hill, Inc.

Ellingwood B., Galambos T.V., MacGregor J.G., Cornell A.C., 1980, "Development
of a Probability Based Load Criterion for American National Standard AS8, NBS
Special Publication 577, U.S. Department of Commerce.

Englekirk R., Hart G.C. 1984, "Earthquake Design of Concrete Masonry Buildings,"
Prentice Hall, Inc., Englewood Cliffs, New Jersey.

Frangopol D.M., 1885, "Sensitivity Studies in Reliability-Based Analysis of
Redundant Structures," Proc. of 4th International Conference on Structural Safety
and Reliability, Kobe, Japan, May.

Frangopol D.M., Nakib R., 1989, “Redundancy Evaluation of Steel Girder Bridges,"
Proc. of 5th International Conference on Structural Safety and Reliability, San
Francisco, California, August.

Frangopol D.M., Nakib R., 1991, "Effects of Damage and Redundancy on the
Safety of Existing Bridges," Proc. of 3rd Bridge Engineering Conference, Denver,
Colorado, March.

Frangopol D.M., lizuka M., Yoshida K., 1991, "Redundancy Measures for Design
and Evaluation of Structural Systems," Proc. of 10th International Conference on
Offshore Mechanics and Arctic Engineering, Stavanger, Norway, June.

Fu G., Frangopol D., 1888, "System Reliability and Redundancy in a Multiobjective
Optimization Framework," International Workshop on Structural System Reliability,
Boulder, Co., September 1988, University of Colorado, Boulder, Dan M. Frangopol
Editor.

Hammersley J.M., Handscomb D.C., 1964, "Monte Carlo Methods", Methuen and
Co. Lid.

Hart G.C., 1982, “Uncertainty Analysis, Loads, and Safety in Structural
Engineering," Prentice Hall, Inc., Englewood Ciliffs, New Jersey.

192



Hart G.C., Noland J.L., Kingsley G.R., Englekirk, R.E., 1887, "Confinement Steel
in Reinforced Concrete Masonry Shear Walls," Proceedings of 4th North American
Masonry Conference, University of California at Los Angeles, August.

Hart G.C., Basharkah M.A., Zorapapel G.T., 1987, "Limit State Design Criteria for
Minimum Flexural Steel,"” Proceedings of 4th North American Masonry Conference,
University of California at Los Angeles, August.

Hart G.C., Noland J.L., Kingsley G.R., Englekirk, R.E., Sajjad N.A., 1988, "The Use
of Confinement Steel to increase the Ductility in Reinforced Concrete Masonry
Shear Walls," The Masonry Society Journal, Vol. 7, No.2, July-December.

Hart G.C., Sajad N.A.,, 1988, “R Values for Residential Concrete Masonry
Buildings," Report for the National Concrete Masonry Association, EHI Job Number
87-G147, Los Angeles, California.

Hart G.C., Sajjad N.A., 1989, "Evaluating the Ductility of Concrete Masonry Flexural
Walls," The 5th Canadian Masonry Symposium, Vancouver.

Hart G.C., Thurston S.J., Englekirk R.E., 1989, "Seismic Evaluation of a Tall
Reinforced Concrete Frame Building," ASCE Spring Convention, San Francisco,
May.

Hart G.C., Sajjad N.A., Basharkhah M.A., 1990, “Inelastic Masonry Flexural Shear

Wall Analysis Computer Program,"” NSF Grant No. BCS-8722869, Ewing, Kariotis,
Englekirk & Hart.

Hart G.C., Jaw J.W., 1991, "Seismic Response of a Tall Masonry Building," Proc.

of the Second Conference on Tall Buildings in Seismic Regions, Los Angeles,
California.

Hasofer A.M., Lind N.C., 1974, "Exact and Invariant Second-Moment Code
Format," Journal of the Engineering Mechanics Division, ASCE, Vol. 100.

Hohenbichler M., Rackwitz R., 1983, "First-Order Concepts in System Reliability,"
Structural Safety, 1, Elsevier Ed.

Hong W.K., 1989, "Development of Analytical Methods for Reinforced Concrete
Masonry Flexural Walls," Doctoral Dissertation, University of California.

International Conference of Building Officials (ICBO), 1888, "Uniform Building
Code," Whittier, California.

193



Kanda J., Yamamura K., 1988, "Extraordinary Live Load Model in Retail Premises,"
Proc. of 5th International Conference on Structural Safety and Reliability, San
Francisco, California, August.

Liebetrau A.M., Doctor P.G., 1987, "The Generation of Dependent Input Variables
to a Performance Assessment Simulation Code," Proc. of a N.E.A. Workshop on
Uncertainty Analysis for Performance Assessments of Radioactive Waste Disposal
Systems, Seattle, Wa, February.

Madsen H.O., Krenk S., Lind N.C., 1986, "Methods of Structural Safety," Prentice
Hall.

McKay M.D., Conover W.J., Beckman R.J., 1979, A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from a
Computer Code," Technometrics, 21 (2).

Mirza S.A, McGregor J.C., 1978, “Variability of Mechanical Properties of Reinforcing
Bars," J. Struct. Div., ASCE, 105, May.

Mortensen R.E., 1887, "Random Signals and Systems," John Wiley & Sons, Inc.
Park R., Pauley T., 1975, "Reinforced Concrete Structurés," John Wiley & Sons.

Rackwitz R., Fiessler B., 1978, "Structural Reliability under Combined Random Load
Sequences," Computer & Structures, Vol 9.

Rackwitz R., Gollwitzer S., 1988, "On the Reliability of Daniels Systems,"

International Workshop on Structural System Reliability, Boulder, Co., September
1988, University of Colorado, Boulder, Dan M. Frangopol Editor.

Rubinstein M.F., Rosen R., 1988, "Structural Analysis by Matrix Decomposition,”
Journal of the Franklin Institute, Vol 286, No.4.

Sajjad N.A., 1990, "Confinement of Concrete Masonry," Doctoral Dissertation,
University of California, Los Angeles.

Shinozuka M., 1983, "Basic Analysis of Structural Safety,” J. Struct. Div., ASCE,
108, March.

Vanmarcke E.H., 1971, "Matrix Formulation Of Reliability Analysis and Reliability
Based Design," Comput. Struct., 13.

194



APPENDIX A

BUILDING DESCRIPTION

The building that presents the typical features for the structures studied in
this research is located in the City of Whittier, Southern California. The lateral force
resisting system in the longitudinal direction consists of concrete exterior frames
from the Roof and the First Floor continued with reinforced concrete structural
walls between First Floor and The Basement. Figure B.1 presents a plan view of
the building. The lateral force resisting system in the transverse direction consists
of cast-in place, reinforced concrete structural walls from Roof to the Basement.
The end walls are weakly coupled (Lines 2 and 13). The length of the walls is 23'-
4", The two central walls on lines 7 and 8 are 19’-4" long. The 6% inch thick slabs
are cast-in-place. The foundations are spread footings beneath the columns and
walls.

In this research, the cast-in-place concrete walls have been replaced with
reinforced concrete masonry walls. The wall studied in Chapters 2 and 4 is

located on Line 2.
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APPENDIX B

RESULTS OF TESTS CONDUCTED AT THE UNIVERSITY OF COLORADO

ON CONCRETE MASONRY PRISMS

An experimental program was conducted at the University of Colorado
(Sajjad, 1990) to study the confinement of vertical steel in concrete masonry in a
state of compression. The program was comprised of prism testing using different
kinds of confinement configurations and was done in two series of tests. The
present research is concerned only with the "Confinement Comb" configuration
that was tested in Series B. The parameters of the concrete masonry stress-strain

curve that are of interest for this research are:

o = the maximum compressive stress
€, = the strain corresponding to the maximum compressive stress
€y = the maximum usable strain, corresponding to 50% of the

maximum compressive stress on the falling branch of the
curve.

In this appendix, the pertinent data are processed in order to obtain
estimates for the statistics of the above mentioned parameters. Two steps of
processing were performed:

(1)  Statistics for the entire sample of test results obtained from prisms

with "Confinement Combs", regardiess the block thickness.
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(2)  Statistics for sample of test results obtained from 8" thick prisms with

"Confinement Combs".

Table B.1 Results of University of Colorado Series B Tests with "Confinement

Combs"
Prism Unit o €, € mu
Series (In) (Ksi)
4.09 0.00222 0.00476
8B 6 4.72 0.00268 0.00479
4.46 0.00253 0.00350
4.22 0.00274 0.00500
oB 8 4.22 0.00279 0.00484
- 452 0.00283 0.00624
4.14 0.00259 0.00686
10B 8 4.29 0.00262 0.00677
4.32 0.00257 0.00492
3.45 0.00193 0.00801
11B 12 3.31 0.00185 0.01361
3.47 0.00205 0.00885
All series Mean 4.10 0.00246 0.00635
C.O.v. 10.56% 13.87% 39.50%
8" units only Mean 4.28 0.00271 0.00577
C.0.v. 2.79% 4.72% 15.15%

The results of tests and data processing (mean values and coefficients of
variation) are presented in Table B.1. Sajjad (1990) presents the statistics of limit

state parameters for each test series separately. His results, presented in Table
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B.2, show a strong dependency of the parameter statistics on the thickness of the
masonry block. Because of this conclusion as well as the fact that the wall studied
in Chapters 2 and 4 is 8" thick, we used in our research the statistics for €, and
€m @S they result from step (2) of the data processing. However, we used for f'
the statistics that result from step (1) because the corresponding coefficient of
variation (10%) is more realistic. Data presented in Table B.2 show that the
coefficient of variation of ¢, has the tendency of increasing with increasing mean
value of €., This conclusion will be used in Appendix C for estimating the

Capacity Reduction Factor of the Design Balanced Axial Load.

Table B.2 Statistics of Limit State Parameters for University of Colorado Series B
Tests (Sajjad, 1990)

Prism Unit f €, €mu
Series (In) (Ksi)
9B 5 Mean 442 0.0025 0.0044
C.0o.v. 7.1% 12.0% 17.2%
Mean 4.32 0.0028 0.0053
gB 8
C.0.V. 4.0% 3.6% 14.2%
Mean 425 0.0026 0.0062
10B 8
C.0.v. 2.2% 1.0% 18.2%
Mean 3.41 0.0020 0.0085
11B 12
C.0o.v. 2.5% 5.8% 38.3%

It is important to establish the correlation between the different limit state

parameters. We consider that the ', €, and ¢, values associated with each test
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are the components of a random vector X. Thus, each test generates a realization
of X. The correlation matrix of the vector X can provide information on the
correlation coefficients of the three limit state parameters. This matrix was
calculated for both steps (1) and (2). The correlation matrices corresponding to
steps (1) and (2) are, respectively

1.00 0.88 -0.75

0.89 1.00 -0.64
-0.75 -0.64 1.00

1.00 0.62 0.06
0.62 1.00 -0.14
0.06 -0.14 1.00

The first correlation matrix indicates that ', and €, are approximately linearly
related while €., has a tendency to decrease when f, and ¢, increase. The
second correlation matrix, corresponding to 8" units only provides more credible
results; it shows a relatively strong correlation between f, and €, and a lack of
correlation between ¢, and the other two parameters. The conclusions obtained
from the second correlation matrix supports the assumption of independence
between ', and e, used in generating the values of the input parameters for the

Monte Carlo simulations.
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APPENDIX C

THE AXIAL LOAD ON A WALL

C.1 GENERAL

Desirable performance criteria for concrete masonry flexural walls is
achieved when yielding of the steel occurs before the masonry crushes in
compression. This behavior allows the wall to develop a significant ductility
capacity. When the axial force acting on the section is large, the yielding of the
tension steel will not occur prior to the masonry crushing and thus the element fails
immediately after reaching its maximum strength.

A "balanced" design limit state occurs when the tension steel yields at the
same time the masonry crushes. The axial force corresponding to this balanced
design limit state represents the upper limit of compression that a section can bear
without the danger of the element failing in a brittle limit state. This axial force (P,)
is derived with the following assumptions:

(1)  The tension and compression steel produces forces which cancel

and thus produce a net axial force of zero.

(@) The compressive force on the wall can be modelled using a Whitney

Equivalent Compression Stress Block.

(8) A linear distribution of strain exists on the cross section.
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With these assumptions, the balanced axial load (P,) is a function of the
maximum usable strain (e, ), the maximum compressive force (f',bd), the steel
yield stress (f,), and the steel modulus of elasticity (E;). The equation for the

random variable Pb is:

P, = 0.72f bd—mt__
fy
€, +-——

™ E

(C.1.1)

@

The geometric variables b and d as well as the steel modulus of elasticity
E, have small coefficients of variation relative to the other variables and thus can
be considered to be deterministic. Thus, ', f, and €, are herein considered to
be independent and normally distributed random variables.

The expected value of the maximum axial capacity of the wall is

Praxo = ﬂnebd (C.1.2)
where

f mean, or expected value, of the maximum compressive

me

stress.

If we divide both sides of Equation (C.1.1) by the expected value of P, ,

we obtain
Pb fl'n emu
P - (C.1.3)
e eyt

[

Let us now define the new random variable
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R (C.1.4)

The random variable f, is a function of three basic random variables (f,, ',/

and e,,). The coefficient of variation of f, is equal to the coefficient of variation of

Py.

The investigation consists of three steps:

M

@

@)

Establish the most likely values for the mean and coefficients of
variation of each of the three basic random variables. Perform a
Monte Carlo simulation for this “"central case" and determine the
frequency histogram of f, as well as its mean value and coefficient of
variation. |
Study the sensitivity of the mean and coefficient of variation of f, to
the increase in means and coefficients of variation of f, £ /f' .., and
€mur

Establish the relationship between the capacity reduction factor ¢
and the target reliability index 8, based on the sensitivity analysis

performed in Step (2).
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C.2 THE "CENTRAL CASE"

The probabilistic distributions and the values for the mean and coefficient
of variation of f, and ¢, that are used in this "Central Case" are presented in Table
2.2.1. The variable f'/f',, is considered to be normally distributed with mean 1
and coefficient of variation equal to 10%.

A Monte Carlo simulation for 5,000 realizations of each basic random
variable was performed for the Central Case. The frequency histogram obtained
from this study suggest a distribution for f, very close to a Normal distribution.

The mean value of f, was 0.51 and the coefficient of variation of f, was 11.3%.

C.3 THE SENSITIVITY OF THE MEAN VALUE OF 1,

The mean value of {, is an important parameter that governs the ductility of
the walls. Thus, a sensitivity study is performed to evaluate the key statistics that
influence it. As a first step, the values of the mean and coefficient of variation of
the three random variables in Section C.2 were independently increased by 10%.
The increase was performed, one at a time, while keeping the cther parameters
constant. The parameter ' /f' ., is theoretically constant and equal to 1. The
percent variation in the mean value of f, due to each parameter variation is shown

in Table C.3.1.

204



Table C.3.1

Percent Change in the Mean Value of f, due to a 10% Increase in

Basic Parameter Statistics.

Basic Parameter Statistic Changed

% Change in Mean f,

Mean f, -2.8
Coefficient of Variation of f, -0.1
Coefficient of Variation of £ /T, -0.1
Mean €, 2.7
Coefficient of Variation of ¢, -0.1

It can be observed from Table C.3.1 that the mean value of f, exhibits:

(1)  areduced sensitivity (2.7 or 2.8% change for a 10% change) to the

variation of mean values of steel yielding stress and maximum usable

strain;

(2)  no engineeringly significant sensitivity to variations of the coefficients

of variation of the three random variables.

In reality, the ranges of variation of the statistics parameters are different and
it is possible that the mean value of the maximum usable strain may double the
10% change, while the assumed 10% variation in the mean value of f, is unlikely.
For this reason, a sensitivity study for the possible range of values of each of the

three random variables was performed as a second step. The ranges of values

are presented in Table C.3.2.
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Table C.3.2
Range of Values Considered for Studying the Sensitivity of f,

Variable Range of Mean Range of Coefficient of Variation

f, 65 to 69 Ksi 4% to 15%
PR 1.0 5% to 25%
€ 0.003 to 0.016 5% to 25%

When the range of values for one statistics p\arameter was swept, the other
parameters were set equal to the "Central Case" values. Monte Carlo runs for
samples of 5,000 realizations were performed for each case. The only parameter
that produces a significant variation of this mean when varying within likely limits
is the mean value of the maximum usable strain (Figure _C.3.1). The mean value
of f, increases with an increasing mean maximum usable strain and tends to
stabilize for large values of the mean of ¢,,,. The lower limit of the mean value is
0.4 for a mean value of the maximum usable strain of 0.003. When the maximum
usable strain exceeds 0.012, the mean value of f, reaches 0.6. For larger values
of the mean e, the mean value of f, tends to stabilize around the value 0.65.

The following formula is proposed for this variation:

_0.0016

- 3.1
fb = 0.689 Cmu (C 3 )
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C.4 THE SENSITIVITY OF THE COEFFICIENT OF VARIATION OF f,

The capacity reduction factor is a function of the coefficient of variation of
f, and thus a sensitivity study was performed. As a first step, the values of mean
and coefficient of variation of the three random variables of the “Central Case" were
independently increased by 10%. The percent change of the coefficient of

variation of f, due to each parameter variation is shown in Table C.4.1.

Table C.4.1
Percent Change in the Coefficient of Variation of f, due to a 10%
Increase in Basic Parameter Statistics

Basic Parameter Statistics Changed % Change in Coefficient of
Variation of f,
Mean f, 1.3
Coefficient of Variation of f, 0.1
Coefficient of Variation of £ /f' .., ~ 7.9
Mean €., -1.3
Coefficient of Variation of €, 1.8

It can be observed from Table C.4.1 that the coefficient of variation of f,
exhibits:
(1) A significant sensitivity to the change in the coefficient of variation of
the variable £, /'
(2)  Alittle sensitivity (less than 2% for a 10% change) to mean values of
steel yielding stress and maximum usable strain as well as to the

coefficient of variation of the maximum usable strain.
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(8)  Avery small sensitivity to the change of the coefficient of variation of
the steel yielding stress.

Similar to the sensitivity study performed for the mean value of f,, the second
step was carried out. The same ranges of values ‘(presented in Table C.3.2) were
used for the statistics of the parameters. Monte Carlo simulations for samples of
5,000 realizations were performed for each case. The only parameter that
produces a significant change in the coefficient of variation of f, is the coefficient

of variation of £ .. As it can be seen from Figure C.4.1, the coefficient of variation

of f, ( V) increases aimost linearly with an increasing coefficient of variation of
P Vﬂn ) . The following linear expression was fitted to this variation:

V, = 0.94V; +002 | (C.4.1)

According to the results of Monte Carlo simulations, a change in the
coefficient of variation of the maximum usable strain from 5% to 25% produces a
change in the coefficient of variation of f, from 10.3% to 13.4%. A change in the
mean value of the maximum usable strain from 0.003 to 0.016 produces a
decrease in the coefficient of variation of f, from 12.6% to 10.3%.

As described in Appendix B, the coefficient of variation of €., has a
tendency of increasing with the increasing mean value of ¢,,. A regression
analysis based upon the Least Square Method was performed and the following

analytical model was obtained:
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0.001

- a-g_ooz (042)
V., = 0-25¢

where E;, and Ve,,,, are, respectively, the mean value and the coefficient of
variation of the maximum usable strain. Consequently, if the dependency between
the mean and coefficient of variation of the maximum usable strain is considered,
the sensitivity of the coefficient of variation of f, to their joint change will almost
vanish.

According to the results of Monte-Carlo simulations, a change in mean value
of the steel yielding stress from 65 Ksi to 69 Ksi does not produce meaningful
change in the coefficient of variation of f,. The same result is obtained when

changing the coefficient of variation of the steel yield stress from 4% to 15%.

C.5 CAPACITY REDUCTION FACTOR ¢

According to Hong (1989)
$ < @075V (C.5.1)

where ¢ is the capacity reduction factor, 8 is the target safety index and V is the
coefficient of variation of P, and hence the coefficient of variation of f,. Therefore,
to calculate the capacity reduction factor ¢ for a target reliability index value 8, the
coefficient of variation of f, must be found. In this appendix, this coefficient of

variation is determined using a Monte Carlo analysis.
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As concluded in Section C.4, the coefficient of variation of f, does not
signiﬁcanﬂy depend on €., or f. Using Equations (C.5.1) and (C.4.1), the
capacity reduction factor ¢ may be expressed as a function of two variables only:
the coefficient of variation of the maximum masonry compression strength Vgﬂ
and the target safety index 8. This dependence is graphically shown as a three-

dimensional plot in Figure C.5.1. Contours of equal Vdn are presented in Figure

C.5.2. As expécted, the capacity reduction factor will decrease with increasing
safety index as well as increasing coefficient of variation of the masonry
compression strength.

Hart and Sajjad (1989) have recommended, based on reliability analysis, to
adopt an upper limit for the design axial load of 65% of the balanced axial load
where minimum specified values were used for f,. Thus, in the context of this
section, where typically the expected value would be equal to 1.3 times the
specified value, the Hart and Sajjad value of 65% corresponds to (65%)/(1.3) =
50%. This appears to be conservative based on Figure C.5.2, because for values
of ¢ = 0.5 and 8 = 3 the corresponding value of a coefficient of variation V/m
must be equal to 33%.

For example, according to Figure C.5.2, ¢ = 0.5 and V‘n = 10%

corresponds to 8 >> 3. Using the approach in Chapter 4, the normalized mean

axial load |
P
P max

- &f,=(0.5)(0.51)=0.25 (C.5.2)
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and a coefficient of variation of the axial load equal to 20% (according to the
estimation in Section 5.3.1) correspond to a Ductility Index of 1.6 (see Figure 4.7.3
and Table 4.7.3). However, considering the robustness of the structural system
composed of reinforced masonry walls, the System Ductility Index is equal to 2.3
for two-wall systems and 5.0 for eight-wall systems (see Figure 5.6.1 and Table
5.6.1). The safety index recommended for seismic loads by Ellingwood et al.
(1980) is 1.75. Consequently, the value of Capacity Reduction Factor

recommended by Hart and Sajjad is conservative.

C.6 THE HASOFER-LIND SAFETY INDEX

As suggested in Chapter 3 and Appendix E, a simplified (but inaccurate)
approach to estimating the safety index with respect to ductile behavior is to apply
the Rackwitz-Fiessler algoritm to Equation (3.3.1) or Equation (C.1.4). We
calculated the Hasofer-Lind Index corresponding to a mean axial load equal to 40%
of the maximum axial load and a coefficient of variation of the axial load ranging
between zero and 25%. The results are compared in Table C.6.1 with the
corresponding results obtained from Table 4.7.3.

The results in Table C.6.1 exhibit a difference between the two safety indices
of 0.5 to 0.8. If the approach using Equation (C.1.4) was correct, the
corresponding safety index would have been smaller than Ductility Index because

of the former index is invariant with respect to different mappings of the limit state

215



surface. Hence, the error introduced by ignoring the multistate character of the

problem is even greater than 0.5 units of safety index.

Table C.6.1
Comparison Between the Hasofer-Lind Safety Index Calculated with Equation
(C.1.4) and the Ductility Index

C.O.V. of Axial Load Safety Index

%) Equation C.1.4 Ductility Index
2.0 1.4
18 1.3

15 16 1.1

15 1.4 0.6

20 ' 1.2 0.5

25 1.0 0.5
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APPENDIX D

CORRELATION OF CONCRETE COMPRESSIVE STRENGTH AMONG

WALLS OF AN ACTUAL STRUCTURE

Standard tests on concrete cubes obtained during construction of an eight
story building in Los Angeles were used to estimate the correlation coefficient of
the compressive strength among different walls. The plan shape of the building
is presented in Figure D.1. The lateral force resisting systems in both directions
consist of reinforced concrete structural walls.

The casting of concrete was performed, for eacl'_\ story, in three stages.
Figure D.1 shows the areas of the floor plan that are associated to each stage of
concrete pouring. For each stage of pouring, two cubes were set aside for testing:
one after 28 days and the other for a later date. The results obtained on the 27
cubes tested after 28 days are used in this research.

We consider that the three values of the compressive strength associated
with each area of a given story are the components of a random vector X. Thus,
each story of the building generates a realization of X. The correlation matrix of
the vector X can provide information on the correlation coefficients of the concrete
compressive strength among the walls of this structure.

Table D.1 presents the values obtained for the concrete compressive

strength for each story and area.
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Table D.1 Test Results for the Compressive Strength of Concrete

Story Compressive Strength (psi)

Area 2 Area 3

Basement 4560 4420 4830
1 4420 3780 4470
2 4420 4820 4920

3 4600 5060 4320
4 “ 4600 4780 3800

5 4700 5390 4420

6 “ 5270 4880 4810

7 5080 5870 5870

8 IJ 8310 4760 6120

The correlation matrix of the random vector is

1.00 0.44 0.67
0.44 1.00 0.32
0.67 0.32 1.00

The correlation matrix indicates that a possible range of correlation
coefficient for this structure is 0.3 to 0.7. The average value of the three upper
nondiagonal terms is 0.48. We consider that 0.5 is a reasonable value for the
correlation coefficient of compression strength. Since similar data for concrete

masonry walls are not available, this value is used extensively in this research.
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APPENDIX E
SAFETY INDEX IN A MULTISTATE SPACE
E.1 PROBLEM SETTING

When the design point must be searched on a curve rather than a surface,
the use of Lagrange Multipliers appears to be most suitable solution procedure.
For simplicity we consider only two conditional limit states.

Consider the following optimization problem;

minimize:

y = /X T X (E.1.1)

subject to the constraints g,(X)=0 and g,(X)=0. Here X is a vector of
uncorrelated, standard random variables X=(x1,x2,...,xn)T, g,(X) and g,(X) are the
equations of the conditional surfaces in the n dimensional space of standard
random variables, and y is the distance from the origin to the point corresponding
to the random vector X. The constraints g,(X)=0 and g,(X)=0 represent the

condition that the point be on the n-dimensional curve at the intersection of
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surfaces g,(X)=0 and g,(X)=0. To solve the problem, a vector of Lagrange
Multipliers

A= (A2 T
is introduced to construct

L=yXTX +2,0,(X) + 2,8,(X

The solution X. and the Lagrange Multipliers Vector can be obtained by setting

oL _ aL
oL _oL o E.1.2
oA X (E12)

Defining the matrix G as the generalized Jacobian of functions g,(X) and g,(X) the

solution for X. is
Xt = —YGA‘ (E.1.3)

where the star subscript denoctes a solution of Equation (E.1.2) and

[ 9g,(X) 9g,(X) 1

ax, ax,
G-= : : (E14)
8g,(X) 0G,(X)
| 0X, X,
Since vy is a scalar, the Equation (E.1.3) can be also written as
GA, = -1X, (E.1.5)

Premultiplying Equation (E.1.5) by G’ we obtain
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GTGA,=—~1T-G TX, (E.1.6)

Since G'G is a square matrix, it can be inverted. Consequently, the

Lagrange Multipliers Vector is:
A_=-JY_( GTG) "GTX, (E.1.7)

it is possible to obtain a matrix equation where X. is eliminated. This can be

achieved by substituting Equation (E.1.3) into Equation (E.1.1) and thus

Yt = J( Y‘G$A t) T( YQG‘A ‘) (E.1.8)
or
ATGTG A, =1 (E.1.9)

An exact solution can not be obtained from the above equations. However,
these equations can be used to construct an iterative method to obtain a solution

for the Design Point X. and the distance y from the origin to the curve.
E.2 ITERATIVE METHOD FOR THE SAFETY INDEX
The proposed iterative method has five steps:

Step 1: - Chose arbitrarily n-2 values for the coordinates of the X.; the

remaining two coordinates result from the system of equations

g4(X+)=0 and g,(X.)=0.
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Step 2:

Step 3:
Step 4:

Step &:

Compute the scalar y using Equation (3.2.1) and the Jacobian G
using Equation (3.2.4).

Obtain the Lagrange Multipliers Vector from Equation (3.2.7).
Obtain a better estimate of X. using Equation (3.2.3).

Repeat steps 2 through 4 until convergence is achieved for the value
y. This value is the safety index. The last estimate for X. is the

solution for the Design Point.
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