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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION OF THE RESEARCH 

1.1.1 General 

It is not economically acceptable to design and build structures that will 

resist earthquake ground motion excitations while maintaining elastic behavior. 

The currently accepted earthquake design criterion for life safety applied to 

buildings requires that the building not collapse if subjected to an earthquake 

ground motion of maximum expected level. Consequently, the calculation of 

inelastic response is of critical importance in evaluating the ability of a building to 

withstand a major earthquake. Two types of performance are possible in a 

concrete masonry wall: either the wall can undergo large deformations while 

partially maintaining its strength (ductile behavior) or the wall can suddenly lose its 

strength (brittle behavior) and potentially collapse. 

The use of concrete masonry walls as an earthquake lateral force resisting 

system for high rise structures requires the system be ductile. If concrete masonry 

is confined, it can sustain large strain levels and suitable ductility. It is only recently 

that studies have been performed to evaluate practical and efficient ways to 

confine concrete masonry. These studies concluded that the stress-strain 
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relationship for concrete masonry confined with different types of confinement 

schemes is different from the stress-strain relationship of reinforced concrete. 

The natural framework to describe the performance of building structures 

to earthquake excitation is structural reliability theory. Historically, this discipline 

started with the estimation of the probability of failure of a single structural 

component based on a knowledge of the probabilities distributions of the involved 

random variables. In the 1970's a breakthrough was made in structural reliability 

theory by introducing the concept of a safety index that only requires the 

knowledge of the first and second moments of the random variables. It then 

followed that the use of "First Order Second Moment" approach further advanced 

the use of safety calibration for the development of design criteria at the element 

level. 

Soon it became obvious that the multi-component behavior had a severe 

impact on the probability of failure of the structure. The problem of predicting the 

system reliability has been formulated starting from the reliability of its components. 

The system reliability theory developed, in the last fifteen years, methods for 

estimating the probability of failure for structures such as frames and trusses 

subjected to static loads. Structural walls are elements with more complex 

behavior than the elements that constitute a truss or frame and the reliability 

analysis of such walls has seldom been attempted even at the component level. 
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1.1.2 Basic Problems Related to Reliability Analysis of Structural Systems 

Subjected to Earthquake Ground Motions 

The major difficulty in estimating the probability of failure of any element or 

structure subjected to earthquake shaking is created by the extremely large 

uncertainty associated with the load. It is recognized that it is not possible to 

accurately assess either the distribution or the moments of the random variables 

associated with the ground motion excitation at a site. Even if the activity in some 

potential earthquake sources may be described probabilistically with a relatively 

good confidence, the uncertainty associated with the local soil amplification is very 

large. 

In the current structural design practice, this shortcoming is overcome by 

providing structures with critical components that do not fail in a brittle manner but, 

rather, continue to deform inelastically. Meanwhile, the acceleration response of 

the system in the inelastic domain decreases and the displacement response 

increases. The yielding components continue to resist their yield level load while 

going through deformations that are further imposed on the structure. An 

individual wall fails when its ultimate deformation or ultimate limit state is reached. 

After a certain number of walls reach their ultimate limit state, collapse of the 

structure is likely to occur. The amount of deformation that the structure can 

sustain from the first yield limit state to the ultimate system limit state quantifies the 

available ductility of the structure. Our objective, therefore is to make sure that the 
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subject structure has the available ductility necessary to undergo the deformations 

required. Levels of component ductility are now required in current building codes 

and no conscious effort is made to produce acceptable levels of structural system 

ductility. 

steps: 

It is proposed that the structural reliability of walls be separated into three 

(1) Determine the statistical variability of the component ductility. 

(2) Determine the statistical variability of the structural system ductility 

starting from the statistics of the component ductility. 

(3) Perform a reliability analysis at the structural level introducing 

earthquake load uncertainty. The limit state equations will be written 

in terms of ductility demand and ductility capacity. 

There are several advantages of this approach: 

(1) The first two steps are purely structural problems where the 

earthquake load is not involved. Thus, the results will have a 

reasonable degree of confidence. 

(2) At the structural level, the effects of redundancy can be emphasized 

separately from the system ductility. Then, the beneficial effects of 

redundancy and ductility can be combined to the advantage of the 

structural system. At the same time, tridimensional effects like the 

variation of the axial force due to spatial ground motion excitation 

can be accounted for. 
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(3) The uncertainty in response spectrum ordinates associated with local 

amplification is higher for elastic systems than for the inelastic 

systems. When the ductility demand increases, the uncertainty 

decreases. In this finding lies the potential for a more confident 

safety calibration of the seismic risk of structures. 

(4) Reliability theory in general deals with low probabilities that are 

associated with two major difficulties: lack of practical meaning and 

inaccuracy of results when using Monte Carlo simulation. The 

proposed approach shifts the domain of interest to higher 

probabilities that are easier to handle and understand. 

1.1.3 Objective and Importance of this Research 

The goal of this research is limited to the first two steps of the general 

approach outlined in the previous section that are the determination of the 

statistical variability of the wall ductility and the structural system ductility. The 

results will be presented in a format that is specific to structural reliability analysis 

and uses the safety index of ductile behavior. 

The object of the study are structures consisting of flexural structural walls, 

i.e. structural walls where the possibility of a shear mode of failure is precluded. 

The importance of this research for structural engineering stems from the 

need to find efficient solutions for lateral force resisting systems of new structures 
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as well as a confident estimation of the strength reserve incorporated in existing 

structures. 

1.2 STATE OF THE ART REVIEW IN STRUCTURAL SYSTEM RELIABILITY 

1.2.1 System Reliability 

According to the classical theory of system reliability, a structure is 

considered at a fixed point in time, and the state of the structure is assumed to 

depend only on the present state of its elements. Each element is assumed to be 

either in a functioning state or in a failed state. A binary state indicator variable a1 

is defined as equal to 1 when the i-th element is functioning and 0 when it has 

failed. A state indicator variable a.!, called the ·structure function" is defined as a 

function of a.1' ... ,a.o. (Barlow and Proschan, 1975; Madsen, Krenk, and Und, 1986). 

A "cut set" is defined as a set of elements that produce the failure of the system. 

A minimal cut set is defined as a cut set that does not contain any other cut set. 

Similarly, a "path set" is defined as a set of elements that can assure the survival 

of the system. A minimal path set is defined as a path set that contains no other 

path set (Contini and Poucet, 1988). The structure function can be expressed as 

a function of minimal cut sets and minimal path sets. This format allows for a 

systematic estimation of the probability of failure of the system. Different 

expressions for lower and upper bounds of this probability as a function of the 
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probability of failure of the components have been proposed by Cornell (1967). 

Vanmarcke (1971). and Ditlevsen (1979). 

A theoretical system that has captured the attention of many researchers 

was defined by Daniels (1945). The system consists of a bundle of fibers with 

independently. identically distributed component strengths. a constant modulus of 

elasticity and perfect equal load-sharing among the unbroken fibers. The behavior 

of fibers is ideally brittle. Daniels found a recursive scheme for the determination 

of the probability distribution of system strength and derived the Gaussian 

distribution as a limiting distribution of system strength for an infinite number of 

components. 

Rackwitz and Golwitzer (1988) studied small size Daniels systems with 

stochastic dependence between the different components and arbitrary force­

deformation curve. They introduced a more complex definition of component 

ductility as a function of the ratio between the inelastic and elastic energy. 

According to this definition. they place the components in different ductility 

categories ranging from ideal brittle to ideal ductile. Calculating the reliability index 

of systems with increasing number of elements shows that the ideal brittleness 

corresponds to the least increase in reliability. Ideal ductility provides the largest 

increase in reliability index with the increasing number of elements. 
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1.2.2 Redundancy 

One of the most ambiguous concepts in the theory of structural reliability is 

redundancy. For the ordinary structural engineer redundancy is analogous with 

static indeterminacy and its efficacy can be measured by the number of degrees 

of static indeterminacy. It has been stated (Corotis et aI., 1988), arguably, that 

redundancy is a quality that represents the -availability of ordinarily not required 

capacity". In fact, the additional static indeterminacy may amount, in most cases, 

to additional capacity, hence reliability, of the system. However, for certain types 

of loadings (termal, differential settlement) redundancy is harmful to the system 

reliability (Yao, 1988). In seismic design, the practice to provide "seismic gaps" 

between sub-structures of different dynamiC characteristics is a typical example of 

avoiding detrimental redundancy. 

If redundancy is an intrinsic characteristic of the structural system, the 

effects of redundancy are different according to the type of loading. These effects 

are considered beneficial if there is an increase in system reliability with respect to 

the component reliability. 

Attempts have been made to quantify the efficacy of redundancy using a 

Redundancy Factor. Frangopol and Nakib (1991) present a series of such 

redundancy measures, grouped in two categories: deterministic and probabilistic. 
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The emphasis is placed on estimating the capability of the structural system to 

carry load after one or more of its members have failed. An example of 

deterministic definition for the Redundancy Factor is 

where 

= ultimate strength of the undamaged system 

Qdamaged = ultimate strength of the system after one or more members 

have failed 

The probabilistic measures of redundancy effects acknowledge the 

uncertainty in loads and strengths. The proposed definitions for redundancy 

factors are: 

where 

Pc = 

PWM = 

~c R1 =--
~WM 

safety index of the intact system with respect to collapse 

safety index of the weakest member 
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More general definitions can be obtained by replacing the safety index of 

the weakest member with the safety index of the intact system with respect to any 

first member failure, BAM' Another alternative is offered by replacing the safety 

indices with the corresponding probabilities of failure. 

An important distinction made by Frangopol et al. (1991) is between the 

design-oriented measures of redundancy effects and evaluation-oriented measures. 

The object of latter measures of redundancy effects are the existing, damaged 

structures. To account for the given damage state, BWM or BAM is replaced by the 

safety index of the damaged system, Bo' 

De, Karamchandani, and Cornell (1989) define the Redundancy Factor as 

the conditional probability of system failure given the first failure of any member. 

They also define a Complexity Factor as a ratio between the probability that any 

first member failure occurs and the probability of failure of the weakest member. 

The Complexity factor measures the adverse system effect on the first failure event 

due to the presence of more than one failable member. 

Rackwitz and Golwitzer (1988) showed that Daniels systems provide the 

most efficient redundancy, i.e. the highest increase in system reliability with 

increasing number of elements. However, if the correlation between components 

is high and/or the coefficient of variation of the load exceeds the one of strength 

significantly, the gain in reliability when increasing the number of elements 

becomes insignificant. Apparently surprising, an increased resistance variability in 

a brittle system may produce increased system reliability. In fact that happens 
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because the authors imposed a constant element safety index; in order for the 

standard deviation to increase, the average element strength has to decrease and 

the system reliability consequently decreases. 

Cornell (1988 b) defines the "probabilistic redundancy" as the effect of the 

stochastic variations of resistance of different parallel elements about a common 

mean that does not permit the structure to collapse when the first member fails. 

The "balanced systems" defined as systems with elements having a common mean 

load-to-capacity ratio (De, Karamchandani, and Cornell, 1989) possess a high 

"probabilistic redundancy". The Daniels systems are the least "probabilistically 

redundant" because of the load-sharing property. The probabilistic redundancy 

concept will be given a special attention in this research because it is an 

appropriate model for parallel systems consisting of semi-ductile elements 

subjected to earthquake excitations. 
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1.3 ORIGINAL CONTRIBUTION 

1.3.1 General 

.< This research is divided into four parts. The First Part, treated in Chapter 

2, studies the sensitivity of the lateral force-deformation behavior of a reinforced 

concrete masonry flexural wall to the variations in material characteristics and 

magnitude of the axial force. The Second Part (Chapter 4), provides a new 

statement of the wall reliability problem independent of the strong motion 

excitation, and solves the problem for the wall studied in the First Part. Finally, the 

Third Part (Chapter 5) expands on the findings of the previous chapter to provide 

a new insight into the reliability of structural systems composed of reinforced 

concrete masonry walls, based on conclusions regarding the system ductility and 

redundancy effects. Chapter 3 and Appendix E identify and solve a new problem 

of the reliability theory: the safety index in a multistate space..'. 

1.3.2 Sensitivity Analysis of a Concrete Masonry Wall with Minimum Vertical 

Reinforcement 

Monte-Carlo numerical simulations are performed on a concrete masonry 

wall with minimum vertical reinforcement and confinement of the vertical steel using 

"Confinement Combs" (Hart et aI., 1987). The force-deformation relationships for 
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walls subjected to static lateral loading and an axial force applied at the top are 

computed. The material characteristics of the concrete and reinforcing steel, the 

height of the plastic hinge measured from the base of the wall, and the level of the 

axial force are considered as "input" random variables. A model for the stress­

strain curve of concrete masonry confined with the ·Confinement Comb" was used 

to simulate the behavior in the plastic range (Sallad, 1990). 

The wall behavior depends on the material properties of the concrete 

masonry and reinforcing steel as Uinput" parameters and is characterized by the 

following "output" parameters: yield moment and ultimate moment of the wall at its 

base, yield curvature, and displacement, ultimate moment, curvature and 

displacement, as well as curvature and displacement ductilities. 

The study of the dependence of the output parameters to the input 

parameters consists of two steps: 

(1) We establish the most likely values for the mean and coefficients of 

variation of each input variable with the exception of the axial load. 

Then we perform a Monte Carlo simulation for this "central case" and 

determine the mean values and the coefficients of variation of each 

of the output variables. 

(2) We study the sensitivity of the mean and coefficient of variation of 

each output variable to variations in the means and coefficients of 

variation of the input variables. 

The most important conclusions are: 
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(1) The input parameters that introduce the highest uncertainty in the 

output parameters are the axial load on the wall and, for the ultimate 

displacement and displacement ductility, the height of the plastic 

hinge. 

(2) As expected, higher concrete masonry maximum compressive stress 

and maximum usable strain produce higher ductility, and higher steel 

yield stress produces lower ductility displacement. The insensitivity 

of curvature ductility to the increase in steel yield stress was less 

than expected. 

(3) When axial load is large, the output parameters are more sensitive 

to increases of the mean value of the concrete masonry maximum 

compressive stress. When the axial load is small, the output 

variables are more sensitive to increases in the mean value of steel 

yield stress. This occurs because low axial load implies a ductile 

limit state of yielding of the steel while a large axial load produces a 

brittle limit state characterized by concrete masonry crushing, thus 

governed by the compressive strength of concrete. 

(4) The output variables are insensitive to the variables of the model for 

the concrete masonry stress strain curve other than maximum usable 

strain. 

(5) The ultimate curvature is independent of the axial load. 
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(6) Several coefficients of variations of the output parameters have a 

narrow range of variation. The curvature ductility has an almost 

constant coefficient of variation: 20%. The approximative values of 

the coefficients of variation of yield curvature and yield displacement 

are both 10% whereas for ultimate curvature the coefficient of 

variation is 20%. The values for the coefficient of variation for 

ultimate displacement and ductility displacement are strongly 

dependent on the axial load, decreasing from a high of 26%-29% for 

5% of the maximum axial load to a low of 13%-17% for 40% of the 

maximum axial load. 

(7) For axial loads that do not produce brittle failure, the histograms for 

curvature ductility exhibit a symmetric shape, suggesting the 

possibility of fitting to a normal model, while the displacement ductility 

appears to be lognormally distributed. 

1.3.3 Safety Index in a Multistate Space 

When the ultimate limit state is conditioned by the previous occurrence of 

one or more other limit states, the safety index can not be found using the 

classical First Order Second Moment solution (Hasofer-Und). Instead of one limit 

state surface in the space of normalized random variables, each condition 

introduces a new surface characterizing that particular limit state. Each 
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"conditional surface" splits the ultimate limit state surface into two regions: one 

region where the respective condition is fulfilled and other where it is not fulfilled. 

If the design point (the closest point from the conditional surface to the origin) is 

found in an undesirable region of the ultimate surface, a "false solution" could be 

achieved. The "true solution" is to be found on the n-dimensional curve resulting 

from the intersection of the ultimate and conditional surfaces. The problem then 

becomes to find the pOint on the intersection curve that is closest to the origin of 

the space of normalized coordinates. 

In some engineering problems, the ultimate limit state can not be described 

by an equation. Instead, the failure can be obtained through a certain sequence 

of conditional limit states. An example is the reinforced concrete masonry column 

subjected to bending and compression. Since the brittle failure has to be avoided, 

the yielding of the tension steel has to occur before the crushing of the concrete 

masonry. The first conditional surface is represented by the equation fy-fs=O, while 

the second is €mu-€c=O. Here fs is the stress demand in the tension steel, fy is the 

yield stress in the tension steel, Emu is the maximum usable strain in the concrete 

masonry and Ec is the strain demand in the concrete masonry. If the distance to 

the second surface is smaller than the distance to the first surface and the design 

point is in the region where fs > fy , then this is a "false solution" because there is 

no concern associated with a ductile failure. The "true solution" is likely to be 

found on the intersection of the two surfaces. 

16 



When the design point must be searched for on a curve rather than a 

surface (like it is in the Hasofer-Und problem), the iterative algorithms used to find 

the design point cannot be used. This research identifies the problem of the failure 

conditioned by the previous occurrence of several limit states and presents a new 

iterative algorithm that uses Lagrange Multipliers to obtain the Design Point and the 

Safety Index. 

1.3.4 Reliability Analysis of a Single Flexural Wall 

The theoretical framework introduced in the previous section allows for a 

restatement of the reliability of a flexural wall subjected to strong ground motion 

excitations. Since an estimate of the first and second moments for the parameters 

of future ground motion at a certain site has an extremely large uncertainty, an 

ultimate state equation that contains the load will be unrealistic. Therefore, a 

reasonable way to approach the reliability of wall systems is to provide the wall 

with a ductile behavior and then require limits on available ductility. From this 

prospective, the reliability of the wall is viewed as the conditional probability that 

ductility demand will be less than ductility capacity, given that the wall will behave 

ductile. This concept leads to a two step approach: 

Step (1) Determine the probability of ductile behavior and define the 

associated safety index. 
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Step (2) Determine the probability that the ductility demand will be less than 

the ductility capacity. 

The limit state equation linking the ductility demand to the ductility capacity 

should be written at the structural system level. The present approach permits this 

desideratum by splitting the First Step into two tasks: 

Task (1) Estimating the probabilistic distribution of the ductility capacity and 

the associated safety index for individual walls; 

Task (2) Estimating the probabilistic distribution of the available ductility and 

the associated safety index for the structural system. 

The Second Step of the problem is beyond the scope of this research. 

However, in conceiving the format for the safety index to be produced within the 

first step one has to bear in mind the need for compatibility to the second step 

product. A comprehensive representation of the probabilistic information regarding 

the available ductility should be correlated to a similar index describing the seismic 

activity of a site or region. 

Under conditions of large uncertainty in the level of lateral loading, it is fair 

to state that a flexural wall must behave in a ductile manner to withstand a major 

earthquake. This research shows that for several walls of different shapes in plan 

(rectangular, T-shape, L-shape), the ultimate displacement capacity at the top of 

the wall remains smaller than the displacement demand derived from a typical 

design response spectrum for Downtown Los Angeles. This finding proves the 

validity of the proposed approach. This research defines a "Ductility Index" as the 
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safety index of the ductile behavior. The ductility index presents several 

advantages. 

where 

(1) Unlike the classical safety index, tributary to an extremely uncertain 

load, the ductility index can be estimated with reasonable accuracy. 

(2) The ductility index can be used to calibrate the design prescriptions 

for flexural walls. 

(3) Since the ductility index is a comprehensive representation of the 

probabilistic information regarding the available ductility, chances are 

that it may be directly correlated with a similar index describing the 

seismic activity of a site or region. That may lead to a long overdue 

breakthrough in the seismic analysis, where the established force 

concept constitutes a major obstacle to a better understanding of the 

real behavior. 

The Ductility Index is defined as 

= 

= 

jl-1 P =-
" a /I 

the expected value of ductility 

the standard deviation of ductility 
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The ductility " can be either the curvature ductility or the displacement 

ductility. A ductility index based on displacement ductility was preferred to an 

index based on curvature ductility because: 

(1) For small values of axial force, the Curvature Ductility Index results 

in unrealistically high values due to the lack of invariance of the 

Ductility Index to different mappings of the limit state surfaces. 

(2) The Curvature Ductility Index is more sensitive than the Displacement 

Ductility Index to variations in the statistical parameters of the input 

variables. 

(3) The Displacement Ductility Index can be directly used at the 

structural system level for: the estimation of.the system ductility, the 

possibility of constraining different walls in a building to undergo the 

same displacement at a floor level, and the possibility that we can 

obtain a format for the ductility capacity that can be equated with a 

similar format for the earthquake ductility demand. 

Besides the Ductility Index, this research defines and studies a more easily 

understood measure of the brittleness of a reinforced concrete masonry wall. This 

measure is the frequency of brittle behavior and it is defined as the number of 

realizations that result in brittle behavior divided by the total number of realizations 

in a Monte Carlo simulation. An alternate Safety Index can be defined as the 

Inverse Standardized Gaussian Function of the Frequency of Brittle Behavior. This 

index, although more easy to understand, has several shortcomings if compared 

to the Ductility Index: 
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(1) It requires the unrealistical assumption that the frequency of brittle 

behavior is normally distributed. 

(2) It underestimates the Safety Index, especially for coefficients of 

variation of the axial load that exceed 10%. 

(3) It requires thousands of realizations of Monte Carlo simulations when 

the mean axial force is smaller than 25% of the maximum. 

The case-study wall mentioned in Section 1.3.2 is used to investigate both 

the Ductility Index and the Frequency of the Brittle Behavior for different values of 

the parameter statistics of the mechanical characteristics of steel and concrete, as 

well as the axial load. 

1.3.5 Reliability of Concrete Masonry Flexural Wall Sfructures 

The study of the ductility capacity and ductility index is expanded to the 

structural systems composed of several (two to eight) flexural walls connected in 

the horizontal plane with rigid diaphragms. The effects of redundancy created by 

the presence of more walls working in parallel is studied. The complementary 

roles of ductility and redundancy in shaping a global quality of the system -

robustness - is explored in this part of the research. 

When the structure is subjected to a set of static lateral forces applied at the 

story levels where one wall reaches its yield load, a redistribution of forces among 

the remaining elements results. In a seismic base excitation, the successive 

yielding and/or failure of walls leads to a decrease in the level of total force input 
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in the structure. Hence, a masonry multiple wall seismic resisting system is not 

characterized by a redistribution of load like a Daniels System. Because of the 

significant increase in the fundamental natural period of vibration, the structural 

response is governed by displacement rather than acceleration. If we treat this 

problem using an equivalent static approach, the structure is subjected to imposed 

displacements rather than inertial forces. Under a monotonic increasing 

displacement imposed equally to all of the participating walls, the walls will reach 

consecutively their ultimate capacity limit state until the structure reaches its 

ultimate system limit state. Thus, the structural system studied in this research fits 

the definition of a balanced system when the axial load corresponding to each wall 

has the same mean value and coefficient of variation. The variation of axial load 

among the walls is mainly due to the randomness in live load distribution across 

the floor. In the case when cross-walls are present, the simultaneous excitation 

on the direction perpendicular to the walls under study may induce compression 

in some walls and tension in the others. This structural system is unbalanced. 

In this research, the ultimate displacement for a structural system is 

considered to occur when all but the last wall have reached their individual wall 

ultimate limit state. The yield displacement of the structure is defined consistently 

with the yield displacement of a bilinear model, based on a "stylized" load­

deflection curve for the structure. We define the System Ductility as the ratio 

between the displacement of the structural system at the ultimate limit state and 

the displacement of the structural system at the yield limit state. 
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For the balanced systems, the redundancy can be understood as Cornell's 

probabilistic redundancy, i.e. the effect of the stochastic variations of resistance 

of different parallel elements about a common mean that does not permit the 

structure to reach its ultimate limit state when the first member fails. The basic 

difference between the safety index in this research as compared to the classic 

safety index precludes the utilization of any of the probabilistic redundancy indices 

existing in the literature as discussed in Section 1.2.2. We define the Redundancy 

Ratio as the ratio between the displacement at the top of the building 

corresponding to the ultimate system limit state and the displacement 

corresponding to the first reaching of the ultimate limit state in a component wall. 

Since the Redundancy Ratio is a random variable, its mean and coefficient of 

variation characterize the probabilistic redundancy of the system. 

Besides the parameters that govern the ultimate capacity of one wall (as 

described in Section 1.3.2) there are additional factors that have an influence on 

the system ductility and redundancy: the size of the system (the number of walls), 

the covariance matrix corresponding to each material parameter distributed among 

walls and the distribution and correlation of axial load among walls. To study this 

influence, Monte Carlo simulations have been performed on samples of structures 

consisting of two to eight walls. Each statistical sample contains 750 structures. 

Because of the necessity of controlling the correlation of input variables, the 

generation of random values requires a special attention. An original method to 

minimize the sample bias and instability is presented. 
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For the balanced systems, the System Ductility and the Redundancy Ratio 

appear to have a contradictory character as it results from the two main 

conclusions: 

(1) The mean redundancy ratio increases with the number of walls at a 

much higher rate than the mean system ductility increases. 

(2) Unlike the coefficient of variation of system ductility that decreases 

when the number of walls increases, the coefficient of variation of 

redundancy ratio is independent of the number of walls. 

According to its definition, the mean value of the redundancy ratio mirrors the 

scatter in the system ductility and, apparently, it should exhibit similar features to 

the coefficient of variation of the system ductility. The observation of this research 

that the mean redundancy ratio increases when the coefficient of variation of the 

system ductility decreases is explained by the rapport between scatter and 

uncertainty and constitutes one of the most interesting findings of this research. 

When the uncertainty in system ductility increases because the uncertainty 

in material properties or axial loads increases, the redundancy ratio increases. 

However, an increase in the number of walls without changing the statistics of the 

material properties or axial load does not increase the uncertainty. The increase 

in the number of walls is similar to increasing the size of a statistical sample. This 

produces a more confident estimate associated with a smaller sampling variance. 

This decrease in uncertainty is revealed by the decrease in the coefficient of 

variation of system ductility. At the same time, the ratio of the two extremes of the 

sample increases. This increase is not a consequence of an increase in 
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uncertainty; in a larger sample the expected maximum is greater and the expected 

minimum is smaller according to the properties of the ordered statistics. This 

explains why the scatter in system ductility reflected by the redundancy ratio 

increases, while the overall uncertainty in the system decreases. Hence, both 

system ductility and redundancy ratio, although apparently contradictory, provide 

their beneficial effects to the system behavior. We call robustness the system 

quality that combines the beneficial effects of the system ductility and redundancy 

to the advantage of the balanced system. 

Similarly to the Ductility Index, we define the System Ductility Index (SDI) as 

a function of the statistics of the System Ductility: 

SDI = SD-1 
°SD 

where: 

SD = the mean value of the System Ductility 

a SD = the standard deviation of the System Ductility 

Besides the quantification of safety with respect to ductile behavior, the 

System Ductility Index fulfills the conditions for measuring the system robustness. 

The results of the Monte Carlo simulations show that: 

(1) The System Ductility Index increases with the mean value of the 

System Ductility and this is the beneficial effect provided by the 

System Ductility. 
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(2) The System Ductility Index increases when the scatter of the System 

Ductility decreases; this decrease in uncertainty is attributed to the 

increase in the number of walls, and consequently to an increase in 

redundancy . 

Several important conclusions result from the Monte Carlo simulations: 

(1) The increase in axial load produces a decrease in the mean values 

of the system ductility, redundancy ratio, and system ductility index. 

The coefficient of variation of system ductility increases while the 

coefficient of variation of redundancy ratio decreases when the axial 

load is increasing. 

(2) The increase in correlation of material properties among the walls of 

the structure produces a slight increase in the coefficient of variation 

of the system ductility. There is practically no effect on the mean 

system ductility, while the mean and coefficient of variation of 

redundancy ratio increase with the correlation only for the 40% axial 

load case. However, the system ductility index decreases markedly 

when the correlation increases. 

(3) The mean value of the ratio between the displacement corresponding 

to structural failure and the average displacement corresponding to 

any failure of a wall can measure the additional capacity of the 

structure to withstand imposed displacements. Using a sufficient 
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number of walls, this additional capacity varies from 8% to 19% as 

a function of the axial load. 

This research accords a special attention to unbalanced systems created 

by the presence of T -shaped walls and the consideration of simultaneous 

earthquake excitation in two horizontal directions. Both the mean value and 

coefficient of variation of the system ductility resulted in large values. However, the 

system ductility index is smaller than the system ductility index corresponding to 

the value of the system ductility index for the weakest of the two balanced 

subsystems contained in the unbalanced system, and may reach dangerously low 

values. This finding has to be construed as an indicator that flanged walls may not 

be a good system to use in high seismic zones. Further research is needed in this 

area of flanged wall performance. 

The results of this research can be used to provide a probabilistic back-up 

for the Capacity Reduction Factors for concrete masonry codes. For example, 

Hart and Sallad (1989) recommended for masonry design an upper limit for the 

design axial load of 65% of the balanced axial load of the wall. According to this 

research, the corresponding safety index of one wall with respect to ductile 

behavior (Ductility Index) is 1.2. However, considering the robustness of the 

structural system composed· of reinforced masonry walls, the corresponding 

System Ductility Index results 1.75 for two-wall systems and 4 for eight-wall 

systems. The lower-bound value is the same as the safety index recommended 

for seismic loads by Ellingwood et al. (1980). Consequently, the value of the 

Capacity Reduction Factor recommended by Hart and Sallad is conservative. 
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CHAPTER 2 

SENSITIVITY ANALYSIS OF A CONCRETE MASONRY WALL WITH 

MINIMUM VERTICAL REINFORCEMENT 

2.1 GENERAL 

The first step in the investigation of the seismic performance of concrete 

masonry walls is the study of the lateral force-deformation behavior of a single wall. 

The performance of the wall is characterized in this chapter by the relationship 

between the walls' overturning moment and (1) the curvature of the wall at its 

base, and (2) the horizontal displacement at the top of the wall. 

A wall exhibits ductile behavior if the vertical steel yields before crushing of 

the masonry. If the axial force acting on the section is suffiCiently large, or the 

section is over-reinforced, then the vertical steel will not yield prior to the crushing 

of the masonry. The ductility of a wall increases when the concrete masonry is 

confined. Hart et al. (1987,1988) presented experimentally verified analytical 

models that demonstrated the "ductile" performance of concrete masonry confined 

with a "confinement comb" and several other masonry confinement schemes. 

Sallad (1990) developed an experimentally verified constitutive relationship for 

concrete masonry confined with a "confinement comb" and this research will use 
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the Sallad constitutive relationship. A modified version of the IMFLEX Program 

(Hart, Sallad, and Basharkah, 1990) has been used in this chapter to compute 

force-deformation relationships. 

In this chapter, Monte-Carlo numerical simulations are performed on a 

concrete masonry wall that is one part of the lateral force resisting system of the 

structure showed in Figure 2.1.1 and discussed in Appendix B. The wall is located 

on Une 2. The wall under consideration is 90 foot tall, 8 inches thick and is 

reinforced vertically with #4 bars located at 32 inches on center. The horizontal 

shear steel is assumed to be sufficient to prevent shear failure. The vertical steel 

is confined using the confinement comb. All cells in the wall are grouted. 

The behavior of the wall depends on the material properties of the concrete 

masonry and reinforcing steel. These properties as well as the level of the vertical 

(axial) force on the wall are considered as "input" random variables. The "input" 

variables are: 

(1) f'm 

(2) fy 

(3) A, C 

= 

= 

= 

= 

= 

concrete masonry maximum compressive stress. 

steel yield stress. 

shape variables in Sallad model (Sallad, 1990) for the 

confined concrete masonry stress-strain curve. 

the maximum usable strain in the concrete masonry; 

this strain corresponds to a stress equal to 50% of the 

maximum compressive stress. 

the ultimate steel strain. 
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= 

(6) P = 

height of the plastic hinge measured from the base of 

the wall. 

axial load on the top of the wall. 

The wall behavior is characterized by the following "output" variables: 

(1) My = yield moment of the wall at its base. 

(2) ¢y 

(3) dy 

(5) ¢u 

= 

= 

= 

= 

= 

= 

= 

yield curvature of the wall at its base. 

displacement at the top of the wall when the vertical 

steel first yields. 

ultimate moment of the wall when the masonry strain 

is equal to its maximum usable strain. 

curvature at the base of the wall in the plastic hinge 

region of the wall. 

displacement at the top of the wall when the masonry 

strain is equal to its maximum usable strain. 

curvature ductility (¢u/¢y). 

displacement ductility (duldy). 

The research described in this chapter studies the relationship between the 

output variables and the input variables. The study is performed using the 

following two steps: 

Step 1 We determine the most likely or expected values for the mean 

and coefficients of variation of each input variable with the 

exception of the axial load. The axial load, P, is considered 
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Step 2 

deterministic in this chapter in order to obtain a clearer picture 

of the wall behavior. Then we perform a Monte Carlo 

simulation study for this Ncentral case" to determine the mean 

and coefficient of variation of each of the output variables. 

We also plot a frequency histogram for each output variable. 

We study the sensitivity of the mean and coefficient of 

variation of each of the output variables to the means and 

coefficients of variation of the input variables. 

2.2 THE CENTRAL CASE 

2.2.1 General 

Table 2.2.1 gives the values used in this research for the mean and 

coefficient of variation (C.O.V.) of each of the input random variables. The random 

variables are considered to be uncorrelated, based on the test results presented 

in Appendix A. Figure 2.2.1 shows a plot of the confined stress-strain curve used 

in this research. The equations for this curve are: 

(2.2.1) 

(2.2.2) 

where 
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= masonry strain 

= strain corresponding to maximum compressive stress 

= masonry stress 

A;B,C = coefficients that are function ot t'm and the confinement 

characteristics 

Equation (2.2.1) corresponds to the rising branch (0 < € m < € u) and equation 

(2.2.2) corresponds to the falling branch (see Figure 2.2.1). 

TABLE 2.2.1 
Description of Input Random Variables 

Probability 
Variable Density Mean C.O.V. Source 

Function 

C Normal 0.226 30% Sajjad, 1990 

€mu Normal 0.0057 15% Appendix B 

f' m Normal 4.1 Ksi 10% Appendix B 

fv Normal 66.8 Ksi 8.26% Mirza, Mc.Gregor,1979 

€su Normal 0.11 5% Assumed 

Hp Normal 140 in 25% Assumed 

The mean values for flm and €mu were derived from the results of the tests 

performed at the University of Colorado (Sallad, 1990) and the details are 

presented . in Appendix B. The shape variable A is considered to be 

deterministically dependent on f'm according to the formula (Sallad, 1990): 
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(2.2.3) 

The axial load P is considered to be deterministic. The six values of P 

considered in this research ranged from 0 to 40 percent of Agf'm' where Ag is the 

gross cross-sectional area of a horizontal section of the wall. The load Agf'm is 

hereafter referred to as the maximum axial load. The dead load of the wall is 

approximatively 2% of the maximum axial load. The balanced axial load is 

approximately 40% to 50% of the maximum axial load. 

A Monte Carlo simulation study was performed for 750 realizations of the 

vector formed by the input basic random variables in Table 2.2.1 for each value of 

P. For large axial forces and certain combinations of input variables values a brittle 

failure of the wall occurs. A brittle failure is defined in the next section. For the 

purposes of calculating the statistics, these cases were eliminated when calculating 

the statistics for the yield variables (My, ¢y' and dy). When calculating the ductility 

variables (1-'; and 1-'d) in this chapter, a value of 1 was assigned in case of brittle 

behavior. 

The margin of error for a sample size of 750 is 1 % for the mean values and 

5% for the coefficients of variation. 
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2.2.2. Variation of Statistics of the Output Variables with Axial Load. 

This research considers the following three distinct limit states for the wall: 

Limit State 1: The steel attains its ultimate strain in tension before the 

masonry crushes in compression. This limit state exists when the strain in the 

steel is equal to its rupture strain. This is defined to be a ductile limit state and the 

steel yields prior to the wall reaching this limit state. 

Limit State 2: The steel attains its yield strain in tension before the masonry 

crushes in compression. The strain in the steel is less than its rupture strain. This 

limit state exists when the masonry compression strain is equal to its maximum 

usable strain. This is a ductile limit state. 

Limit State 3: The masonry crushes in compression before the steel attains 

its yield strain in tension. This limit state exists when the masonry compression 

strain is equal to its maximum usable strain. This is a brittle limit state. 

The variation of the output variables can be better understood if the limit 

state is known for a particular level of axial force. The Monte Carlo simulation 

indicates that: 

(1) For the zero axial load case only Umit State 1 occurs. This situation of 

such a small axial load seldom exists; however, it can be visualized for 

the case of flanged walls subjected to horizontal forces in two 

orthogonal directions (see Section 5.3.2) or as being representative of 

a beam. 

36 



(2) For the 2.5% axial load case, the Limit State 1 occurs in 37% of the 

realizations and Limit State 2 occurs in the remaining realizations. This 

is important because no brittle failures occurred. 

(3) For the 5%, 10% and 20% axial load cases only the second limit state 

occurs. Again this is important because it means that no brittle failures 

occurred. 

(4) For the 40% axial load case, Limit State 2 occurs in 92% of the 

realizations while Limit State 3 (Le. brittle behavior) occurs in the 

remaining 8% of the cases. 

The results of the six sets of Monte Carlo simulation are presented in Table 

2.2.2 and Figures 2.2.3 through 2.2.8. The variation of mean values of the yield 

and ultimate moments with the axial load is presented in Figure 2.2.3. As 

expected, the mean values of yield and ultimate moments increase in magnitude 

with increasing axial load. The mean ultimate moment is greater than the mean 

yield moment up to 20% of the maximum axial load. The ultimate moment reduces 

to a value smaller than the yield moment and its rate of increase becomes almost 

flat for an axial load greater than 20% of the maximum load. 

The decrease of the value of the ultimate moment below the value of the 

yield moment occurs only at large strains. When the axial force is small, the 

centroid df the compressive force in the masonry moves closer to the extreme 

compression fiber when the deformation of the wall increases. For a large axial 

force, the compression stress at the extreme fiber of the masonry starts 
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decreasing rapidly after reaching compression strains greater than 0.004 to 0.005. 

As a consequence, the centroid of the compressive force in masonry starts moving 

in the opposite direction (Le. away from the extreme compressive fiber and back 

toward the center of the wall) in order to compensate for the decrease in the stress 

at this strain. This movement reduces the lever arm between the compression and 

the tension forces, producing the decrease of the ultimate moment. As shown in 

Figure 2.2.2, this phenomenon does not usually occur when the maximum usable 

strain is considered at the typical design code value of 0.003. 

Table 2.2.2 
Mean Values of Output Variables Characterizing Wall Response - Central Case 

PI My ¢y dy Mu ¢u d f..£~ f..£d u 
Pmax Ft-K (*10-6) Inch Ft-K (*10-6) Inch 

(%) 

0 2,308 9.9 1.7 2,574 426 37.7 43.3 22.2 

2.5 4,354 10.9 1.9 4,780 364 32.3 33.6 17.3 

5 6,215 11.7 2.0 6,824 230 20.8 19.8 10.4 

10 9,606 13.1 2.3 10,439 129 12.3 10.0 5.5 

20 15,426 15.5 2.7 15,754 69 7.3 4.5 2.7 

30 19,924 18.0 3.1 18,50B 46 5.6 2.6 1.B 

40 22,470 21.5 3.7 18,708 36 4.9 1.7 1.3 

The variation of mean values of the yield and ultimate curvatures with the 

axial load is presented in Figure 2.2.4. Figure 2.2.5 shows the variation of the 

mean yield and mean ultimate displacements. The mean values of the yield 

curvature and yield displacement are much less sensitive to the magnitude of the 
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axial load while the corresponding ultimate values decrease dramatically with 

increasing axial load. Consequently, the mean value of the curvature and 

displacement ductilities exhibit a decrease with axial load, as shown in Figure 2.2.6. 

For small values of the axial load, the curvature ductility is almost twice as much 

as the displacement ductility, but the difference decreases with axial load. As 

shown in Table 2.2.2, the curvature ductility decreases from a value of 34 (for the 

2.5% axial load case) to 1.7 (for the 40% axial load case). For the same range of 

axial loads, the displacement ductility decreases from 17 to 1.4. 

The dependence of the coefficients of variation (C.O.V.) of the output 

variables on the axial load is shown in Figures 2.2.7 and 2.2.8 and Table 2.2.3. 

The coefficient of variation of the yield and ultimate moments decrease from 8% 

(for the zero axial load case) to 2% (between the 10% and 20% axial load cases) 

and then increases again. This small value for the coefficient of variation (several 

times smaller than any coefficient of variation of the input variables) occurs 

because the parameters of the stress-strain curve for concrete masonry that 

determine the moment capacity of the wall section are correlated with fy through 

the force equilibrium equation. This correlation increases when the lever arm 

between the compression and tension forces decreases (i.e. when the axial force 

increases). On the other hand, for high axial forces f'm has a greater influence on 

the moment capacity than fy (as it will be shown in Section 2.3.2). Since f'm 

possesses a negative correlation with some of the curve parameters, the coefficient 

of variation of the moment capacity increases again for higher axial loads. 
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Table 2.2.3 
Coefficients of Variation of Output Variables Characterizing Wall Response -

Central Case 

PI My ¢ d Mu ¢u du f.1.¢ f.1.d 
Pmax % ~ % % % % % % 

(%) 

0 8.1 8.3 8.3 8.3 2.2 22.4 9.5 25.1 

2.5 5.2 7.8 7.8 4.3 14.5 25.3 17.6 27.9 

5 3.8 7.5 7.5 3.0 18.2 26.4 20.8 28.7 

10 2.8 7.1 7.1 2.3 18.1 24.3 20.3 26.3 

20 2.4 6.7 6.7 3.3 18.1 20.0 20.2 21.9 

30 6.3 7.3 7.3 5.9 18.0 15.8 20.6 18.0 

40 8.4 10.6 10.6 10.2 18.0 12.5 19.9 16.8 

The coefficients of variation of the yield curvature and yield displacement 

decrease slightly from 8% for the zero axial load case to 7% for the 20% axial load 

case, then increase to 11 %. 

The variation of the coefficient of variation of the ultimate curvature and 

displacement is a function of the limit state. For low axial forces when the Limit 

State 1 can occur, the coefficient of variation increases with increasing axial load. 

For axial loads larger than 5% of maximum, the coefficient of variation of the 

ultimate curvature is almost constant at 18% and the coefficient of variation of the 

ultimate displacement decreases almost linearly with increasing axial load from 27% 

to 13%. As a consequence, the coefficient of variation of the curvature ductility is 

almost constant at 20%, while the coefficient of variation of the displacement 

ductility decreases from 29% to 17%. This striking difference is due to the high 

randomness of the plastic hinge height that has a paramount influence on the 

ultimate displacement but has no influence on the ultimate curvature. 
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The decrease of the coefficient of variation of the ultimate displacement with 

the increasing axial force is extremely important for understanding the system 

redundancy that will be discussed in Section 5.5. The ductility displacement du can 

be expressed as a function of the ultimate curvature CPu' height of the plastic hinge 

Hp' and wall height H (Park and Pauley, 1975): 

(2.2.4) 

The product in the second term of the right hand side of Equation (2.2.4) suggests 

that, supposing approximatively normal distributions for CPY' CPu' and Hp' that the 

ultimate displacement may be distributed closer to a lognormal probability density 

function shape than a normal shape. If two random variables X and Y fulfill the 

relationship 

y= InX (2.2.5) 

and the variable Y is normally distributed, then the variable X is log normally 

distributed. The coefficient of variation of X is only a function of the standard 

deviation of Y: 

c.o. v. x = J eo2Y
_1 (2.2.6) 

If we accept the analogy between X and du on one side and Y and CPu on the other 

side, then, according to Equation (2.2.6), the coefficient of variation of the 

displacement ductility decreases when the standard deviation of the ultimate 

curvature decreases. Since the coefficient of variation of CPu is constant and the 

mean of CPu decreases when the axial load increases, the decrease of the 

displacement ductility with increasing axial load can be understood. 
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2.3 SENSITIVITY OF THE OUTPUT VARIABLES 

2.3.1 General 

A sensitivity study was performed to study which of the statistics of the input 

variables has the greatest influence on the statistics of the output variables. The 

values of the target mean and coefficient of variation of the five random variables 

in Table 2.2.1 were one at a time increased by 20% to study this sensitivity. The 

increase was performed each time by increasing one variable, while keeping the 

other nine statistics for the input variables at the "central" target values. Therefore, 

a 20% change in the output values indicates a linear variation. The sensitivity 

study for axial force was performed for three levels of axial force: zero, 20%, and 

40% of the maximum load. The percent variation in the mean value and coefficient 

of variation of each output variable due to each variation in the statistics of the 

input variables is shown, for each level of axial load, in Tables 2.3.1 through 2.3.6. 

The percent variation is calculated with respect to the "central" case, emphasizing 

the sensitivity of each mean value and coefficient of variation of the output 

variables to the 20% increase in each statistics parameter of the input variables. 

Figures 2.3.1 through 2.3.8 show the variation of each of these sensitivities as a 

function of the axial load. 
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Table 2.3.1 
Sensitivity of Mean Values of Output Variables 

(Axial Load = 0) 

Statistic M ¢ d Mu ¢u du ~ increased cl % % % % % 

Mean C 

C.O.V. C 

Mean €ml 

C.O.V. emu 

Mean f'm 1 -1 -1 1 1 2 

C.O.V. f'm 1 1 -1 

Mean f 22 20 20 20 -1 -1 -18 

C.O.V. fv 1 1 

Mean Hn 18 

C.O.V. Ho 

Table 2.3.2 
Sensitivity of Coefficients of Variation of Output Variables 

(Axial Load = 0) 

Statistic M ¢ d Mu ¢ du ~ increased cl % % % % % 

Mean C 

C.O.V. C 

Mean €mll -7 

C.O.V. emu -10 2 

Mean f'rn 5 1 1 3 1 1 

C.O.V. f'crL 2 1 1 1 -4 -6 

Mean f 17 2 2 2 -2 2 

C.O.V. f 31 21 22 21 -4 -6 22 

Mean Hn -8 

C.O.V. Hn 20 
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Table 2.3.3 
Sensitivity of Mean Values of Output Variables 

(Axial Load = 0.2 A f'm) 

Statistic M ¢ d Mu ¢u du ~ J..Ld 
increased ol % % % % % % 

Mean C 

C.O.V. C 

Mean €mu -1 21 18 21 18 

C.O.V. €~ 

Mean f'm 2 -3 -3 6 19 15 22 19 

C.O.V. f'm 1 1 

Mean fv 5 15 15 3 -1 2 -14 -12 

C.O.V. f 1 1 

Mean Hn 12 12 

C.O.V. Ho 

Table 2.3.4 
Sensitivity of Coefficients of Variation of Output Variables 

(Axial Load = 02 A l' ) m, 

Statistic M ¢ d Mu ¢u du ~ J..Ld 
increased ol % % % % % % 

Mean C 

C.O.V. C 

Mean €ml -5 -1 5 -1 5 

C.O.V. €m' 2 16 9 13 8 

Mean f'm 1 1 12 4 8 5 9 

C.O.V. f'm 2 3 3 17 1 1 2 -1 

Mean f 5 4 4 1 -6 1 -5 

C.O.V. f 16 20 20 2 -3 1 -1 

Mean Hn 4 1 

C.O.V. Ho 11 9 
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· I 

Table 2.3.5 
Sensitivity of Mean Values of Output Variables 

(Axial Load = 0.4 A f'..,) 

Statistic M ¢ d My ¢y dy 
~ J1.d 

increased 011 % % % % % % 

Mean C 1 1 1 1 7 

C.O.V. C 

Mean emu -2 21 14 19 19 

C.O.V. €m. 1 7 

Mean f'm 10 -9 -9 19 19 8 25 24 

C.O.V. f'm -1 1 1 -1 1 1 

Mean fv 2 15 15 2 -1 5 -10 

C.O.V. fv -1 1 1 1 -1 

Mean Ho 5 11 

C.O.V. Hn 

Table 2.3.6 
Sensitivity of Coefficients of Variation of Output Variables 

(Axial Load = 0 4 A f' ) 'c m, 

Statistic M ¢ d My ¢u dy 
~ I-Ld 

increased 011 % % % % % % 

Mean C 1 1 2 1 2 

C.O.V. C 1 -1 

Mean €m. -5 -1 7 7 18 

C.O.V. €m. 1 15 13 7 7 

Mean f'm -45 -27 -27 4 16 8 21 

C.O.V. flm 17 12 12 19 1 1 9 8 

Mean fv 20 18 18 -1 -1 -4 -9 

C.O.V. f -1 10 10 -3 5 4 

Mean Hn 9 12 

C.O.V. Hn 5 4 
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2.3.2 Sensitivity of the Yield Moment 

The yield moment is most influenced by the masonry maximum 

compression stress (f'm) and the steel yielding stress (9. The sensitivity of the 

mean value of yield moment (My) to the mean values of f'm and fy, as shown in 

Figure 2.3.1.a, exhibits interesting features. 

* 

* 

The sensitivity to the variation of the mean value of f'm increases with 

increasing axial load. There is less than a 2% change for a 20% 

change in the mean of f'm for zero and 20% of the maximum load. 

However,there is a 10% change when the axial load increases to 40% 

of the maximum load. 

The sensitivity to the variation of the mean value of fy decreases with 

increasing axial load. The sensitivity decreases from 22% for zero axial 

load to 2% when the axial load is 40% of the maximum load. 

The sensitivity of the mean value of My to the coefficients of variation of 

these two input variables, as shown in Figure 2.3.1.b, is less than 1 % and is not 

significant from a structural engineering perspective. 

The sensitivity of the coefficient of variation of My to the mean values of f'm 

and fy, is shown in Figure 2.3.1.c. For zero axial load, a 20% increase in the mean 

value f'm produces a 5% increase in the coefficient of variation of My while the 

same 20% increase in fy produces a 17% increase in the coefficient of variation 

of My. This sensitivity decreases for the 20% of the maximum load but becomes 
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significant for 40% of the maximum load, when the ~O% increase in the mean of 

f'm produces a 20% increase in the coefficient of variation of My and a 20% 

increase in the mean of fy produces a 45% decrease in the coefficient of variation 

of My. 

The sensitivity of the coefficient of variation of My to the coefficients of 

variation of f'm and fy, as shown in Figure 2.3.1.d, exhibits features similar to the 

sensitivity of the mean of My to the mean values of the two input variables. 

* 

* 

The sensitivity to the variation of the coefficient of variation of 1'm 

increases with increasing axial load. There is low sensitivity for zero 

and 20% of the maximum load but the sensitivity increases to 17% for 

an axial load equal to 40% of the maximum load. 

The sensitivity to the variation of the coefficient of variation of fy 

decreases almost linearly with increasing axial load from 30% for zero 

axial load to near zero when the axial force is 40% of the axial load. 

In conclusion, My exhibits a significant sensitivity to fy for low axial loads and 

to f'm for high axial loads. The only exception to this general trend is the small 

sensitivity of the coefficient of variation of My to the mean value of fy for large axial 

loads. 
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2.3.3 Sensitivity of the Ultimate Moment 

The ultimate moment appears to show a significant dependence on f'm and 

fy. The sensitivity of the mean value of the ultimate moment (Mu) to the mean 

values of the four input variables (f'm' fy, C and Emu) as shown in Figure 2.3.2.a, 

exhibits features that are similar to the sensitivity of the mean value of the yield 

moment (My). 

* 

* 

* 

The sensitivity to the variation of the mean value of f'm increases with 

increasing axial load. There is practically no sensitivity in the absence 

of axial load. The sensitivity increases to 19% when the axial load is 

40% of the maximum load. 

The sensitivity to the variation of the mean value of fy decreases with 

increasing axial load. The sensitivity decreases from 20% for zero axial 

load to 2% when the axial force is 40% of the axial load. 

The sensitivity to the variation of the mean value of the two variables 

characterizing the inelastic behavior of concrete masonry (C and Emu) 

is not significant. 

The sensitivity of the mean value of Mu to the coefficients of variation of the 

four input variables, as shown in Figure 2.3.2.b, is not significant. 

The sensitivity of the coefficient of variation of Mu to the mean values of the 

four variables, as shown in Figure 2.3.2.c, becomes significant only for 20% of the 
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maximum load, when the 20% increase in the mean f'm produces a 12% increase 

in the coefficient of variation of Mu. 

The sensitivity of the coefficient of variation of Mu to the coefficients of 

variation of the four input variables, as shown in Figure 2.3.2.d, exhibits features 

similar to the sensitivity of the mean Mu to the mean values of the input variables. 

* 

* 

* 

The sensitivity to the variation of the coefficient of variation of f'm 

increases with increasing axial load. There is practically no sensitivity 

in the absence of axial load. The sensitivity increases to 19% when the 

axial load is 40% of the maximum load. 

The sensitivity to the variation of the coefficient of variation of fy 

decreases with increasing axial load. The sensitivity decreases from 

21% for zero axial load to zero when the axial force is 40% of the 

maximum load. 

The sensitivity to the variation of the coefficient of variation of the two 

variables characterizing the inelastic behavior of concrete masonry (C 

and Emu) is not significant. 

In conclusion, Mu exhibits significant sensitivity to fy for low axial loads and 

to f'm for high axial loads, while it is insensitive to the variables characterizing the 

inelastic behavior of concrete masonry. 
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2.3.4 Sensitivity of the Yield Curvature and Yield Displacement. 

The sensitivity of both yield curvature and yield displacement to the 

variations in the values of the masonry maximum compression stress (f'm) and 

steel yielding stress (fy) exhibits similar features. Consequently, they are presented 

together in this section. 

The sensitivity of the mean values of yield curvature (¢y) and yield 

displacement (dy) to the mean values of masonry maximum compression stress 

(f'm) and steel yielding stress (fy) , as shown in Figures 2.3.3.a and 2.3.4.a, exhibits 

the following features. 

* 

* 

The sensitivity to the variation of the mean value of f'm increases with 

increasing axial load. There is no sensitivity for zero axial load. The 

mean value of both ¢y and dy decreases 9% for a 20% increase in the 

mean f'm when the axial load is 40% of the maximum load. 

The sensitivity to the variation of the mean value of fy decreases slightly 

with increasing axial load from 20% for zero axial load to 15% for 40% 

of the maximum axial load. 

The sensitivity of the mean values of ¢y and dy to the coefficients of variation 

of the two input variables, as shown in Figures 2.3.3.b and 2.3.4.b, is not 

significant. 
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The sensitivity of the coefficients of variation of ¢y and dy to the mean values 

of f'm and fy is shown in Figures 2.3.3.c and 2.3.4.c. This sensitivity becomes 

significant only for 40% of the maximum load, when the 20% increase in the mean 

f'm produces a 27% decrease in the coefficients of variation of ¢y and dy while the 

20% increase in the mean value of fy produces a 18% increase in the coefficients 

of variation of ¢y and dy. 

The sensitivity of the coefficients of variation of ¢y and dy to the coefficients 

of variation of f'm and fy, as shown in Figures 2.3.3.d and 2.3.4.d, exhibits features 

that are similar to the sensitivity of the mean values of ¢y and dy to the mean 

values of the two input variables. 

* 

* 

The sensitivity to the variation of the coefficient of variation of f'm 

decreases with increasing axial load from approximately 20% for an 

axial load below 20% of the maximum load to 10% for an axial load 

equal to 40% of the maximum load. 

The sensitivity to the variation of the coefficient of variation of fy 

increases with increasing axial load from 1 % for zero axial load to 12% 

when the axial load is 40% of the maximum load. 

In conclusion, ¢y and dy are sensitive to fy especially for low axial loads but 

are sensitive to f'm for only high axial loads. The only exception to this general 

trend is the sensitivity of the coefficient of variation of ¢y to the mean value of fy for 

large axial loads. The same exception was found previously for the sensitivity of the 

coefficient of variation of My to the mean value of fy. 
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2.3.5 Sensitivity of the Ultimate Curvature 

When the axial load is zero, the wall reaches its ultimate limit state when the 

steel strain reaches its rupture value. As a consequence, the mean ultimate 

curvature (¢u) is not sensitive to changes in statistics of the input variables. For 

the same reason, the coefficient of variation of ¢u is small (approximately 2%) and 

the slight variations are inconclusive because the margin of error for this sample 

size is 5%. Consequently, the discussion below concerns only the 20% and 40% 

axial load cases. 

The sensitivity of the mean value of ultimate curvature to the mean values 

of the four input variables, as shown in Figure 2.3.5.a, is different from the 

sensitivity of the mean value of the yield curvature (¢y). 

* 

* 

* 

The sensitivity to the variation of the mean value of f'm is constant with 

varying axial load: the mean value of ¢u increases 18% for a 20% 

increase in the mean value of f'm. 

The sensitivity to the variation of the mean value of € mu is constant with 

varying axial load: the mean value of ¢u increases 19% for a 20% 

increase in the mean value of € mu. 

The sensitivity to the variation of the mean values of C and fy is not 

Significant. 
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The sensitivity of the mean value of ¢u to the coefficients of variation of the 

four input variables, as shown in Figure 2.3.5.b, is not significant. 

The sensitivity of the coefficient of variation of ¢u to the mean values of the 

four variables is shown in Figure 2.3.5.c. While the 20% increase in the mean 

value of f'm produces only 4% increase in the coefficient of variation of ¢u' the 

sensitivity to the other three variable mean values is very small. 

The coefficient of variation of ¢u is only sensitive to the coefficient of 

variation of the maximum usable strain. As shown in Figure 2.3.5.d, the coefficient 

of variation of ¢u increases approximately 15% for a 20% increase in the coefficient 

of variation of € mu. 

In conclusion, ¢u is sensitive only to € mu and f'm and is independent of the 

axial load. 

2.3.6 Sensitivity of the Ultimate Displacement 

The sensitivity of the mean value of the ultimate displacement (du) to the 

mean values of the five input variables (f'm' fy, C, emu. and Hp). as shown in Figure 

2.3.6.a, exhibits the following features. 

* For reasons explained in Section 2.3.5, the ultimate displacement for 

zero axial load is sensitive only to variations in the plastic hinge height. 
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* 

* 

* 

* 

* 

The sensitivity to the mean value of f'm decreases from 15% for 20% 

axial load case to 8% when the axial load is 40% of the maximum axial 

load. 

The sensitivity to the variation of the mean value of fy decreases with 

increasing axial load. The mean value of du decreases 12% for a 20% 

increase of the mean value of fy for 20% axial case load but increases 

only 5% when the axial load is 40% of the maximum axial load. 

The sensitivity to the variation of the mean value of € mu decreases from 

18% for 20% axial load to 14% when the axial load is 40% of the 

maximum axial load. 

The sensitivity to the variation of the mean value of Hp decreases from 

12% for 20% axial load case to 5% when the axial load is 40% of the 

maximum axial load. 

The sensitivity to the variation of the mean value of C is not significant. 

The sensitivity of the mean value of du to the coefficients of variation of the 

five input variables, as shown in Figure 2.3.6.b, is not significant. 

The sensitivity of the coefficient of variation of du to the mean values of the 

five variables is shown in Figure 2.3.6.c. 

* The sensitivity to the variation of the mean value of f'm is small for zero 

axial load but increases to 8% for the axial loads higher than 20% of the 

maximum load. 
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* 

* 

* 

The sensitivity to the variation of the mean value of € mu increases with 

increasing axial load from near zero for zero axial load to 14% when the 

axial load is 40% of the maximum load. 

The sensitivity to the variation of the mean value of Hp is strongly 

dependent on the axial load. For a 20% increase in the mean Hp ' the 

coefficient of variation of dy decreases 8% when the axial load is zero 

but increases 9% when the axial load is 40% of the maximum load. 

The sensitivity to the variation of the mean values of fy and C is not 

significant. 

The coefficient of variation of dy , as shown in Figure 2.3.6.d, is sensitive only 

to the coefficients of variation of the maximum usable strain and length of the 

plastic hinge. 

* 

* 

The sensitivity to the variation of the coefficient of variation of € my 

increases with increasing axial load from zero for zero axial load to 13% 

when the axial load is 40% of the maximum load. 

The sensitivity to the variation of the coefficient of variation of Hp 

decreases with increasing axial load from 20% for zero axial load to 5% 

when the axial load is 40% of the maximum load. 

In conclusion, dy is more sensitive than ¢u to the five input variables. 
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2.3.7 Sensitivity of the Curvature Ductility 

The sensitivity of the curvature ductility to the variations in the values of the 

four input variables exhibits features that are similar to those presented by the 

sensitivity of the ultimate curvature. 

As shown in Figure 2.3.7.a, the mean value of curvature ductility (J.L~) is 

sensitive only to the mean values of f'm and € mu. 

* 

* 

* 

The sensitivity to the variation of the mean value of €mu is approximately 

constant with varying axial load: the mean value of J.L~ increases 20% 

for a 20% increase in the mean € mu. 

The sensitivity to the variation of the mean value of f'm increases very 

slightly with the axial load from 22% for the 20% axial load case and 

25% for the 40% axial load case. 

The sensitivity to the variation of the mean values of C and fy is not 

significant. 

The sensitivity of the mean value of J.L~ to the coefficients of variation of the 

four input variables, as shown in Figure 2.3.7.b, is not significant. 

The sensitivity of the coefficient of variation of J.L~ to the mean values of the 

four variables is shown in Figure 2.3.7.c. 

* A 20% increase in the mean f'm produces a 1 % increase in the 

coefficient of variation of J.L~ for zero axial load and a 8% increase for 

the 40% axial load case. 
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* 

* 

The sensitivity to the variation of the mean value of € mu becomes 

significant (7%) only when the axial load is 40% of the maximum load. 

The sensitivity to the variation of the mean values of C and fy is not 

significant. 

The sensitivity of the coefficient of variation of J1.¢ to the coefficients of 

variation of f'm' fy, and € mu is strongly dependent on the axial load. As shown in 

Figure 2.3.7.d, the coefficient of variation increases approximately 22% for a 20% 

increase in the coefficient of variation of fy for zero axial load. 

As a conclusion, J1.rp is more sensitive to € mu and f'm than it is to fy. 

2.3.8 Sensitivity of the Displacement Ductility 

The sensitivity of the displacement ductility to the variations in the values of 

the five input variables exhibits features that are similar to those presented by the 

sensitivity of the ultimate displacement. 

The sensitivity of the mean value of displacement ductility (J1.d) to the mean 

values of the five input variables (f'm,fy, C, emu' and Hp), as shown in Figure 2.3.8.a, 

exhibits the following features. 

* 

* 

The sensitivity to the variation of the mean value of f'm is small for zero 

axial load and reaches 18% for higher axial loads. 

The sensitivity to the variation of the mean value of fy decreases with 

increasing axial load. The mean value of J1.d decreases 17% for a 20% 
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* 

* 

* 

increase of the mean value of fy for zero axial load but decreases only 

7% for the 40% axial load case. 

The sensitivity to the variation of the mean value of € mu is small for zero 

axial load. For higher axial loads, the sensitivity decreases from 17% 

for the 20% axial load case to 12% for the 40% axial load case. 

The sensitivity to the variation of the mean value of Hp decreases from 

17% for zero axial load to 4% when the axial load is 40% of the 

maximum axial load. 

The sensitivity to the variation of the mean value of C is not significant. 

The sensitivity of the mean value of f.Ld to the coefficients of variation of the 

five input variables, as shown in Figure 2.3.8.b, is not significant. 

The sensitivity of the coefficient of variation of f.Ld to the mean values of the 

five input variables is shown in Figure 2.3.8.c. 

* 

* 

* 

The sensitivity to the variation of the mean value of f'm is small for zero 

axial load but increases to 21% for the 40% axial load case. 

The sensitivity to the variation of the mean value of fy is small for zero 

axial load but reaches a 9% decrease for a 20% increase in the mean 

value of fy for the 40% axial load case. 

The sensitivity to the variation of the mean value of € mu increases with 

increasing axial load from near zero for zero axial load to 18% when the 

axial load is 40% of the maximum axial load. 
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* The sensitivity to the variation of the mean value of Hp is strongly 

dependent on the axial load. For a 20% increase in the mean Hp ' the 

coefficient of variation of J.£d decreases 9% when the axial load is zero 

but increases 12% when the axial load is 40% of the maximum axial 

load. 

* The sensitivity to the variation of the mean value of C is not significant. 

The coefficient of variation of J.£d' as shown in Figure 2.3.8.d, is sensitive only 

to the coefficients of variation of all the variables but C. 

* 

* 

* 

* 

The sensitivity to the variation of the coefficient of variation of € mu is 

approximatively 7% when the axial load exceeds 5% of maximum load. 

For a 20% increase in the coefficient of variation of Hp' the coefficient 

of variation of J.£d increases approximately 17% for zero axial load and 

increases only 4% when the axial load is 40% of the maximum load. 

The sensitivity to the variation of the coefficient of variation of f'm is 

strongly dependent on the axial load. For a 20% increase in the 

coefficient of variation of Hp' the coefficient of variation of J.£d decreases 

8% when the axial load is zero but increases 8% when the axial load is 

40% of the maximum load. 

The sensitivity to the variation of the coefficient of variation of fy is 

generally small. The different values between 0% and 4% increase for 

different levels of axial load may be inconclusive because of the large 
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margin of error for the coefficients of variation (5%) produced by this 

sample size. 

In conclusion, the sensitivity of Pod is generally lower when the axial load is 

large. 

2.3.9 The range of values for the coefficient of variation of the output variables 

After performing a Monte Carlo analysis over a large range of values for 

each input variable, a good estimate of the possible range of the coefficients of 

variation of the output variables can be obtained. A very interesting feature is that 

several coefficients of variations of the output variables (¢Y' dy, CPU' and Po~) have 

a narrow range of variation if the zero axial load case is disregarded. The range 

of values for the coefficients of variation of each output variable when the zero axial 

load cases are disregarded presented in Table 2.3.7. 

Table 2.3.7 
Coefficients of Variation of the Output Variables 

Output Variable Coefficient of Variation 

My 8% - 10% 

¢y 7% -12% 

dv 7% - 12% 

Mu 8% - 12% 

¢u 18% - 20% 

du 13% - 27% 

Poq, 20% - 22% 

Pod 16% - 29% 
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The narrow range of variations noted in Table 2.3.7 allows for assigning "off-

shelf' values to the coefficients of variation of several output variables, as follows. 

* Yield variables (My, ¢y, and dy) and ultimate moment (Mu): 10%; 

* Ultimate curvature (¢u) and curvature ductility (JJ.~): 20%. 

For the yield output variables and ultimate moment, minimum uncertainty is 

obtained when the axial load is 10% to 20% of the maximum axial load. For the 

ultimate curvature and curvature ductility, minimum uncertainty is found for the zero 

axial load case. The ultimate displacement and displacement ductility exhibit 

minimum uncertainty for 40% of the maximum axial load. 

2.3.10 Probability density functions for the variables of the wall capacity. 

Histograms for curvature and displacement ductility at different levels of axial 

load are presented in Figures 2.3.9 and 2.3.10. It is worth noting that, in general, 

the histograms shape does not significantly change with the magnitude of the axial 

load. There are two exceptions to this observation: 

(1) For low axial load the shape of the curvature ductility histogram is 

governed by the limit states described in section 2.2.1. As shown in 

Figure 2.3.9, the histogram for zero axial load (where the failure occurs 

due to rupture of the steel bars) is different from the histogram for the 

2.5% axial load case (where the same limit state occurs with a 

frequency of 37%). In the latter case, the dichotomy in the statistical 
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sample produced by the two different modes of failure is mirrored by 

the irregular shape of the histogram. It is difficult to explain the bi­

modal feature exhibited by the histograms obtained for 5%, 10%, and 

20% axial load cases, but at least the feature is consistent for the range 

of axial load that produces the second limit state only. In the case of 

displacement ductility, the uncertainty in the plastic hinge length is 

dominating and the limit states do not have the same discriminatory 

effect. 

(2) For high axial load the histograms distributions are truncated at J1. = 1 

due to combinations of input variables that result in brittle failure. 

For axial loads that do not produce brittle failure the histograms for 

curvature ductility exhibit a symmetric shape, suggesting the possibility of fitting a 

normal probability density function model to the data, while the displacement 

ductility appears to be log-normally distributed. This essential difference is 

produced by the fact that small values of displacement ductility can be produced 

even in the absence of the axial load. This is attributed to the random position of 

the plastic hinge that only comes into play for the displacement ductility. As a 

consequence, the probability density curves for J1.d are "squeezed" at their left tail 

and constrained to reduce their spread as their mean value decreases. This 

condition does not occur for curvature ductility; in absence of this squeeze, J1.¢ can 

keep a constant coefficient of variation and the probability density curves can 

preserve their symmetry. 

76 



2.3.11 Conclusions regarding the sensitivity of the wall capacity. 

(1) All the output variables characterizing the lateral force resisting capacity 

are insensitive to the variable C of the Sallad model for the falling 

branch of the confined concrete masonry stress-strain curve. However, 

this conclusion may not be upheld when defining the maximum usable 

strain at percentages of maximum stress that is lower than 50%. This 

conclusion is very important because it allows for the characterizing oi­

the randomness of the post-elastic properties of concrete masonry 

employing only the maximum usable strain. 

(2) The input variables that introduce the highest uncertainty in the output 

variables are the axial load in the wall and, for the ultimate displacement 

and displacement ductility, the height of the plastic hinge. 

(3) For zero axial load, the predominant limit state is the rupture of the steel 

bars. Consequently, the ultimate output variables are only sensitive to 

the plastiC hinge location and the steel yield stress. 

(4) As expected, higher f'm and €mu produce higher ductility, and higher fy 

produces lower ductility displacement. The lack of sensitivity of 

curvature ductility to the increase in fy was less than expected. 

(5) When the axial load is large, the output variables are more sensitive to 

increases of the mean value of f'm. When the axial load is small, the 

output variables are more sensitive to increases in the mean value of fy. 
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This occurs because low axial load implies a ductile limit state of 

yielding of the steel while a large axial load produces a brittle limit state 

characterized by concrete masonry crushing, thus governed by the 

compressive strength of concrete. 

(6) The mean values of the output variables are insensitive to the increase 

of the coefficients of variation of the input variables. This conclusion 

allows us to use constant coefficients of variation for the material 

characteristics in our further research. 

(7) On the contrary to the previous conclusion, the coefficients of variation 

of the output variables are sensitive to increases in the mean values of 

the input variables, especially when the axial load is large. This is 

attributed to the interdependence between the axial load and some of 

the input variables. As an example, adding steel has almost the same 

effect on ultimate capacity as increasing axial load. Consequently, 

uncertainty varies with steel content (or strength) in a similar way that 

it varies with axial load. The sensitivity of the coefficients of variation of 

the output variables to changes in the mean values of the input 

variables is sometimes higher than the sensitivity to changes in the 

coefficients of variation of input variables. This is the case for the 

ductility displacement when the axial load is large. 

(8) The ultimate curvature is independent of the axial load. 
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(9) Several coefficients of variations of the output variables have a narrow 

range of variation. A remarkable finding is that curvature ductility has 

an almost constant coefficient of variation: 20%. The approximative 

value for the yield curvature and yield displacement is 10% whereas for 

the ultimate curvature it is 20%. The values for ultimate displacement 

and ductility displacement are strongly dependent on the axial load, 

decreasing from a high of 26%-29% for 5% of the maximum axial load 

to a low of 13%-17% for 40% of the maximum axial load. 

The above outlined conclusions are valid for deterministic axial loads and 

the features of the studied wall: a minimum reinforcement ratio and an aspect ratio 

of approximately 4 to 1. 
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CHAPTER 3 

CONSIDERATIONS IN RELIABILITY ANALYSIS OF MASONRY WALL 

SYSTEMS 

3.1 SECOND MOMENT RELIABILITY INDEX 

Estimation of the failure probability even for simple elements is a complex 

problem because it requires complete knowledge of the probabilistic distributions 

of all load and resistance parameters. Any decision in selecting a particular 

distribution must be justified by the accuracy to which the tails (low probability 

region) of the theoretical distribution follow the real distribution. An oversight in this 

regard can lead to inaccuracies that can cloud any use of probabilistic methods. 

A further difficulty is the frequent inability to express the distribution of the load 

effects in closed form. This naturally leads to the need of using Monte Carlo 

simulations that are not suitable for estimating low probabilities of failure. In order 

to avoid this tail sensitivity problem, the so called "second-moment reliability 

methods" were introduced. The idea behind second-moment reliability theory is 

that all uncertainties concerning the structural reliability are expressed only in terms 

of expected values and covariances of the involved load and resistance 
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parameters, zl" By equating the load to the resistance function of the given 

parameters, a limit state equation is obtained: 

g(z) = 0 (3.1.1) 

Equation (3.1.1) represents the "failure surface" (or "limit state surface") in 

the (zl) space of basic parameters. This leads to a unique division of the space 

into a "safe set" and a "failure set". The random variable obtained by replacing the 

parameters zl in the failure surface is called safety margin or limit state function: 

M = g(z) 

Cornell (1969) defined a reliability index Bc as the ratio of the expected value 

of M and the standard deviation of M. Ditlevsen (1973) observed that, according 

to this definition, Be depends on the particular choice of failure function. To 

resolve this ambiguity, Hasofer and Und (1974) mapped the variables zl into a set 

of uncorrelated, standard variables ~ so that the mean value of ~ is 0 and the 

standard deviation of xl is 1. They defined the reliability index BHL as the smallest 

distance from the origin to the failure surface, measured in the (xl) space. The 

point on the failure surface that is closest to the origin is called the "design point". 

To obtain the design paint and the reliability index BHL, the limit state 

equation is rewritten in terms of the standardized variables xl: 

(3.1.2) 
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We consider a point in the n-dimensional design space 

~o = [x~ x~ .. .x~] T 

on the limit state surface 

and expand (t(~) into a Taylor series about the point ~o 

~ }

k 
... 1 n a 

(t(~)= L - l:!X~- (t(~) 
k=O k I ' .. 1 ax, 0 

(3.1.3) 

(3.1.4) 

where Axf = xr xf and the partial derivatives of the current order, k , are 

calculated at ~o . The choice of ~o should be restricted to points for which the 

normal to the limit state surface is not parallel to any of the coordinate axes in 

order to avoid any partial derivatives becoming equal to infinity. 

If we neglect in the right hand side of Equation (3.1.4) the nonlinear terms 

( k~2 ), we obtain the equation of a hyperplan that is tangent to the limit state 

surface in ~o. The linear approximation (to of the limit state function (t can 

be written using the scalar product of two vectors: 

where 

T 
(to = l:! ~o Go 

G _ a(t a~ a<t [ 1 ( l]
T 

0- ( ax, lJ aX. 0··· ax. 0 
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(3.1.5) 

(3.1.6) 

(3.1.7) 



We calculate the mean and standard deviation of ~o recalling that the 

mean value of xl is 0 and the standard deviation of xl is 1. 

(3.1.8) 

(3.1.9) 

According to the definition 

1 (3.1.10) 

(G/G~2 

The point ~. on the limit state surface that produces the minimum value 

of (3 HL,O is called "design point" and the corresponding (3 HL is the Hasofer-Lind 

Reliability Index. It can be shown (Shinozuka, 1983) that (3 HL is the minimum 

distance between the origin of the coordinates in the space of the standardized 

variables Xl (Le. the expected value of the limit state function) and the limit state 

surface. Rackwitz and Fiessler (1978) proposed an iterative algorithm to determine 

the design point and the Hasofer-Lind Reliability Index. 

The original papers by Cornell and Hasofer-Und used the term reliability 

index. Hereafter we will call this term the safety index which is the preferred term 

in current structural masonry code development. 
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3.2 GENERALIZATION FOR THE MULTISTATE SPACE 

When the ultimate limit state is conditioned by the previous occurrence of 

one or more other limit states, the safety index can not be found using the 

classical First Order Second Moment solution (Hasofer-Lind). Instead of one limit 

state surface in the space of normalized random variables, each condition 

introduces a new surface characterizing a particular limit state. Each "conditional 

surface" splits the ultimate limit state surface in two regions: a region where the 

respective condition is fulfilled and one where it is not. If the design point (the 

closest point from the origin) is found in an undesirable region of the ultimate 

surface, then this design point is considered to be a "false solution". The "true 

solution" is to be found on the n-dimensional curve resulting from the intersection 

of the ultimate and conditional surfaces. The problem then becomes to find the 

pOint on the intersection curve that is closest to the origin of the space of 

normalized coordinates. 

In some engineering problems, the ultimate limit state can not be described 

by an equation. Instead, the failure can be obtained through a certain sequence 

of conditional limit states. An example is the reinforced concrete masonry wall 

subjected to bending and compression. Since the brittle failure has to be avoided, 

the yielding of the tension steel has to occur before the crushing of the concrete 

masonry. The first conditional surface (G,) is represented by the equation fy-fs=O, 

while the second (G2) is €mu-€c=O. If the distance to the surface G, is smaller than 
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the distance to the surface G2 and the closest pOint to the surface G2 is found in 

the region where fa > fy , then this is a "false solution" because there is no concern 

associated with a ductile failure (see Figure 3.2.1). The "true solution" is likely to 

be found on the curve produced by the intersection of the two surfaces. If the 

distance to the surface G2 is smaller than the distance to the surface G1 (see 

Figure 3.2.2), the true solution can be found easily on G2• 

In Appendix E, the problem of the failure conditioned by several limit states 

is identified. Then, a new iterative algorithm that uses Lagrange Multipliers to 

obtain the design point and the safety index is proposed. 

3.3 THE SAFETY INDEX OF DUCTILE BEHAVIOR 

In Section 3.2, an example of safety index in a multistate space problem was 

given for the concrete masonry wall subjected to bending and compression. Since 

brittle failure has to be avoided, the yielding of the tension steel has to occur 

before the crushing of the compressed concrete. The first conditional surface is 

represented by the limit state equation fa·fy=O, while the second surface is emu· 

€c=O. Unfortunately, the two equations can not be written as a function of the 

input random variables in a closed form because of the complexity created by the 

distribution of the reinforcing bars along the wall section. It is best to solve the 

problem is to use the results of a Monte Carlo simulation. This is the purpose of 

the next Chapter of this study. 
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There is a temptation to simplify the problem by overlooking its multistate 

character. This can basically be done by considering the unique limit state 

equation 

p - P IJaJanc:sd = 0 (3.3.1) 

where 

P = axial load in the wall 

P balanced = axial balanced load in the wall 

Equation (3.3.1) can be written as a function of the input parameters if the 

following series of simplifications are adopted: neglecting the compression steel; 

lumping the tension steel at a single location; neglecting the randomness of the 

shape of the strain-stress curve, etc. The Rackwitz-Fiessler algorithm can then be 

used to obtain the Hasofer - Und safety index J3 Hl• For illustrative purposes, two 

similar approaches are developed in Appendix C. 

However, this over-simplification by violating the multistate character of the 

problem can not be done without paying a heavy price. Equation (3.3.1) is written 

for the situation when the steel yields simultaneously with the concrete masonry 

reaching its maximum usable strain at the extreme fiber. In most cases, the strain 

in the extreme steel bar is greater than the yield strain when the concrete masonry 

crushes. For this reason, the two approaches in Appendix C produce grossly 

overestimated safety indices. This overestimation may exceed one unit of B. 
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3.4 COMPARISON BETWEEN THE DISPLACEMENT DEMAND PRODUCED 

BY GROUND MOTION AND THE YIELD DISPLACEMENT FOR 

CONCRETE MASONRY WALLS 

The characterization of the seismic hazard for a specific building site is 

usually done using response spectra whose ordinates are associated with a given 

probability of exceedance during a chosen exposure time. The exposure time 

commonly used is 50 years because it corresponds to the expected lifetime of 

typical buildings. The response spectra used for the design of new buildings are 

usually associated with a probability of exceedance of 10 percent during the 50 

years exposure time. However, a better picture of the seismic hazard is obtained 

by considering a "probable" expected level of response spectra during the same 

exposure time. Since the probability distribution of response spectra ordinates is 

not symmetrical, the extreme values at the upper end of the scale exert a strong 

influence on the mean value. For this reason the median estimator is often 

preferred resulting in response spectra with ordinates associated with 50 percent 

probability of exceedance. 

The percent of critical damping usually associated with reinforced concrete 

masonry structures varies from 5 percent for small amplitudes of building motion 

to 10 percent for response amplitudes at or near yielding. 

The fundamental period for the structure in Appendix A can be calculated 

using formulas (12-3) and (12-4) in the 1988 Edition of the Uniform Building Code 
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(ICBO, 1988). Such a calculation results in a period approximately equal to 0.6 

seconds. If soil structure interaction is considered as well as a certain amount of 

stiffness degradation due to small cracking in the concrete masonry, it is 

reasonable to believe that this period can reach 0.9 seconds before any yielding 

may occur in the wall. Hart, Thurston and Englekirk (1989) have calculated the 

fundamental period for the prototype structure located in Whittier using several 

assumption for the stiffness degradation and found values between 0.9 and 1.1 

seconds. 

For the purpose of comparison we will consider in this research response 

spectrum ordinates corresponding to 0.6 seconds and a damping value equal to 

5 percent critical, and spectral ordinates corresponding to 1.1 seconds and 10 

percent of critical damping. The displacement response spectra used in this 

research were developed for a location in downtown Los Angeles by Woodward -

Clyde Consultants and the response spectra ordinates are presented in Table 

3.4.1. 

Table 3.4.1 Displacement Response Spectra Ordinates for downtown Los 
Angeles 

Probability of Spectral Ordinates Onches) 
Exceedanceforthe 
Spectral Ordinate T = 0.6 sec T = 1.1 sec 

Damping = 5% Damping = 10% 

50% in 50 years 1.25 1.73 

10% in 50 years 2.56 3.53 
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To estimate the displacement demand at the top of the wall for the response 

spectra ordinates considered in Table 3.4.1, a participation factor of 1.4 was 

considered (Englekirk and Hart, 1984). The seismic displacements demands on 

the wall are presented in Table 3.4.2. 

Table 3.4.2 Top of Wall Displacement Demand for a site in downtown Los 
Angeles 

Probability of Top Displacement (inches) 
Exceedanceforthe 
Spectral Ordinate T = 0.6 sec T = 1.1 sec 

Damping = S% Damping = 10% 

SO% in SO years 1.7S 2.42 

10% in SO years 3.S8 4.94 

The expected value of the displacement of the top of the wall corresponding 

to the first yield of the reinforcement in the wall can be estimated using the results 

presented in Chapter 2. For the wall under study with a vertical load equal to 

0.1 Al m the expected value of the top displacement at yield is 2.25 inches (See 

Table 2.2.2 and Figure 2.2.5). 

Hart and Jaw (1991) have calculated the expected top displacement at yield 

for the following three types of reinforced concrete masonry walls that have 

approximately the same height as the wall studied in Chapter 2: 

(1) 22'-8" long rectangular wall (like in Chapter 2); 

(2) 30'-8" T-shaped wall; 

(3) 45'-4" L-shaped wall; 
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The longitudinal reinforcement ratio for these walls was approximately twice that 

used for the wall in Chapter 2. Because of the non-symmetrical section of the last 

two walls, the force-displacement relationship is strongly dependent on the 

direction of the horizontal force. The wall yields at a smaller load when the wall 

flange is in compression compared to the case when the horizontal force is 

reversed and the wall flange is in tension. The displacement at the top of each 

wall at yield are presented in Table 3.4.3. 

Table 3.4.3 Top Displacement at Yield On inches) for three types of Reinforced 
Concrete Masonry Walls (after Hart and Jaw, 1991) 

Wall Type 
Displacement at Top of Wall at Yield 

Stress in Wall Flange Deflection (in) 

Rectangular 2.9 

Compression 1.6 
T-Shape 

Tension 2.8 

Compression 1.2 
L-Shape 

Tension 1.6 

Hart and Jaw have also estimated the fundamental period of the building that 

contains the above mentioned walls to be in the range of 1.3 to 1.5 seconds. This 

would result in even greater displacement demands than those presented in Table 

3.4.2. 

Comparing the expected values of the displacement demands (Table 3.4.2) 

to the expected values of the deflection at yield for different walls we can conclude 

that: 
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* 

* 

For rectangular walls, the yield displacement (2 to 3 inches) is in the 

same range with the displacement demand during the expected 

strong motion earthquake. However, the yield displacement is less 

than the displacement demand from a design strong motion 

earthquake. 

For flanged walls, the yield displacement (1 to 2 inches) is expected 

to be exceeded during the expected earthquake. 

These findings as well as the high uncertainty associated with the 

characteristics of a future strong motion lead to the conclusion that a reinforced 

concrete masonry flexural wall can not withstand a major earthquake without 

ductility. Consequently, we must consider the ductile behavior as a limit state in 

assessing the safety of reinforced concrete masonry structures. This finding has 

to be construed as a strong motivation for the approach proposed in the previous 

section. The following sections of this chapter will study the influence of the 

variation of input parameter to the frequency of the brittle behavior and will define 

a "Ductility Index" as the safety index of ductile behavior. 
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CHAPTER 4 

RELIABILITY ANALYSIS OF A SINGLE FLEXURAL WALL 

4.1 GENERAL 

The theoretical framework introduced in Chapter 3 allows for a restatement 

of the reliability of a flexural wall subjected to strong ground motion excitations. 

Since an estimate of the first and second moments for the parameters of future 

ground motion at a certain site can not be done at this time with an acceptable 

degree of confidence, an ultimate limit state equation th.at contains the load can 

perhaps be viewed as an exercise in futility. Therefore, a reasonable way to 

approach the problem must be in line with the current seismic design philosophy 

that is to provide a structural element with a ductile behavior and then require limits 

on available ductility. From this prospective, the reliability of the wall is viewed as 

the conditional probability that ductility demand will be less than ductility capacity, 

given that the wall will behave in a ductile manner. This concept leads to a two 

step approach and it enables the structural problem to be separated from the 

engineering seismology problem. The problem is formulated as two steps which 

are as follows: 

Step (1) Determine the probability of ductile behavior and define the 

associated safety index. 
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Step (2) Determine the probability that the ductility demand will be less than 

the ductility capacity. 

The limit state equation linking the ductility demand to the ductility capacity 

should be written at the structural system level. The present approach permits this 

desideratum by splitting the first step in two tasks: 

Task (1) Estimating the probabilistic distribution of the ductility capacity and 

the associated safety index for individual walls; 

Task (2) Estimating the probabilistic distribution of the available ductility and 

the associated safety index for the structural system as a whole. 

This chapter will be devoted to the first task while the next chapter will use 

the results of this chapter in order to fulfill the second task. 

The second step of the problem constitutes a formidable task in itself and 

it is beyond the scope of this research. However, in conceiving the format for the 

safety index to be produced within the first step, one has to bear in mind the need 

for compatibility to the second step product. A comprehensive representation of 

the probabilistic information regarding the available ductility should be correlated 

to a similar index describing the seismic activity of a site or region. 
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4.2 INFLUENCE OF THE AXIAL FORCE ON THE BRITTLE BEHAVIOR OF 

THE WALL. 

The simplest measure of the brittleness of a reinforced concrete masonry 

wall for a certain combination of the input random variables is given by the 

frequency of the brittle behavior, i.e. the number of realizations that result in brittle 

behavior divided by the total number of realizations in a Monte Carlo simulation. 

According to the results of the Monte Carlo simulation presented in Chapter 2, 

when the axial force on the wall is O.2Al m of the maximum force or less, there are 

no cases of brittle behavior among the 750 realizations for each parameter 

combination. 

When the axial force is O.4Al m' the frequency of brittle behavior is 8.3 

percent. The sensitivity of the frequency of brittle behavior to a 20% increase in 

each statistical parameter of the input variables is presented in Table 4.2.1. This 

sensitivity is expressed as a percent variation of the relative frequency with respect 

to that of the "central case". For example, a 20 percent change in the mean value 

of € mu results in a frequency of brittle behavior equal to 2.4 percent and this 

represents a 71 percent reduction from the central case (Le. (8.3-2.4)/8.3 = 0.71). 

We performed another sensitivity study considering one standard deviation 

as a reasonable variation for each random variable mean instead of 20%. The 

results are presented in Table 4.2.2. 
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Table 4.2.1 Variation of the Frequency of Brittle Behavior when P=O.4Agf'm and 
the Base Parameters are increased by 20% from the Central Case 

Frequency of Variation with 

Base Parameter Statistic Changed Brittle respect to the 
Behavior Central Case * 

(%) (%) 

Mean of €mu 2.4 -71 

Coefficient of Variation of €mu 9.3 +13 

Mean of f'm 1.3 -84 

Coefficient of Variation of f'm 9.6 +16 

Mean of fy 20.1 +143 

Coefficient of Variation of fy 8.4 +1 

* The central case frequency of brittle behavior is 8.3% 

Table 4.2.2 Variation of the Frequency of Brittle Behavior when P=O.4Alm and 
the Mean Values of Base Parameters are increased One Standard Deviation 

from the Central Case 

Percent 
Frequency Variation 

Change 
of Brittle with 
Behavior respect to Base Parameter Statistics Changed from 

the Central Central 
Case * 

Case (%) (%) 

Mean of €mu 15 4.8 -42 

Mean of f'm 10 4.7 -43 

Mean offy 8.3 13.2 +60 

* The central case frequency of brittle behavior is 8.3% 
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The trend of the sensitivity displayed in Tables 4.2.1 and 4.2.2 was expected 

(Le. an increase in brittleness will exist when the mean of fy increases and a 

decrease in brittleness will exist when the mean values of f'm and €mu increase). 

However, the magnitude of this sensitivity was not expected: 

* 

* 

the decrease in brittleness was three to four times greater than the 

increase in mean of the maximum concrete masonry strain and 

strength; and 

the increase in brittleness was seven times greater than the increase 

in the mean value of the steel strength variable. 

The sensitivity to the coefficients of variation of the input variables is much 

smaller: 

* 

* 

the sensitivity to the variation of the C.O.V. of the steel strength (9 

is not significant; and 

the increase of the C.O.V. of the concrete masonry strength 

parameters (€mu and f'm) results in a smaller increase in brittleness. 

4.3 RANDOM AXIAL LOADING 

The axial force in all of the research to this point was considered a 

deterministic input variable. In order to examine the influence of the randomness 

of the axial force on the brittleness of the wall, a new sensitivity study has been 

performed. The mean value of the axial force was varied between 20% and 40% 
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of the maximum axial force in 5% and then 2% increments while the coefficient of 

variation was varied from 0% to 25% in 5% increments. The other input variables 

were set at the "central case" values. The frequencies of brittle behavior obtained 

in this sensitivity study are presented in Table 4.3.1 and Figure 4.3.1. 

Table 4.3.1 Variation of the Frequency of Brittle Behavior with the Axial Load 

Mean Axial Coefficient of Variation of the Axial Load 
Load / ~f'm 

(%) 0% 5% 10% 15% 20% 25% 

20 0.00% 0.00% 0.00% 0.00% 0.13% 0.13% 

25 0.13% 0.13% 0.13% 0.13% 0.27% 0.53% 

30 0.27% 0.27% 0.27% 0.67% 1.20% 2.80% 

32 0.40% 0.40% 0.80% 1.33% 2.80% 4.93% 

34 1.20% 1.20% 1.60% 2.67% 3.87% 7.60% 

36 2.00% 2.13% 3.20% 4.93% 8.67% 8.40% 

38 4.00% 4.67% 6.13% 9.47% 11.33% 10.53% 

40 8.27% 8.13% 11.47% 13.33% 13.47% 15.07% 

From Table 4.3.1 and Figure 4.3.1 the following conclusions can be drawn: 

* Small coefficients of variation of the axial force (up to 10%) do not 

produce a Significant increase in the frequency of the brittle behavior. 

* For values of the mean axial force equal to 30% of the maximum 

axial force the increase in the C.O.V of the axial force from 0 to 25% 

produces a ten fold increase in the frequency of brittle behavior. This 

compares with a two fold increase for values of the mean axial force 

equal to 40% of the maximum axial force. 
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* Since a reasonable increase in fy produces less than a doubling of 

brittleness, the coefficient of variation of the axial force has the 

greatest impact on the frequency of the brittle behavior. 

The study of the frequency of brittle behavior is very important for a more 

deep understanding of the "balanced design axial load". When the basic 

parameters involved in the flexural wall problem are random, it appears that the 

"balanced axial load" concept requires a probabilistic definition. A possible 

definition is "the expected value of the axial load for which the corresponding 

frequency of brittle behavior is 50%." Examination of Figure 4.3.1 suggests that the 

balanced design axial load thus defined will be a function of the coefficient of 

variation of the axial load. That is, the larger the coefficient of variation of the axial 

load, the smaller the balanced load. This happens because the larger coefficient 

of variation of the axial load will produce a larger frequency of brittle behavior and 

the 50% frequency mark will be reached for a lower value of the mean axial load. 

To estimate the balanced design axial load for a given value of the coefficient of 

variation of the axial load, Monte Carlo runs should be performed for increasing 

mean values of the axial load until the obtained frequency of the brittle behavior 

reaches 50%. 
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4.4 LIMIT STATE EQUATIONS FOR THE DUCTILE BEHAVIOR 

As concluded in Section 3.4, we must consider the ductile behavior as a 

"conditional limit state" in assessing the safety of reinforced concrete masonry 

structures. It was shown in Chapter 3 and Appendix E that an exact solution to 

this problem by considering the stress and strain equation in one wall section is 

impractical. This difficulty can be circumvented by using the results of a Monte 

Carlo analysis obtained for the curvature ductility (J.£,p) and displacement ductility 

(J.£d)' The limit state equation can be written for curvature ductility as 

F = I.L~ - 1 (4.4.1) 

where failure exists when F = O. 

For displacement ductility it similarly follows that 

F=l.Ld- 1 (4.4.2) 

The mean value of F in Equations (4.4.1) and (4.4.2) is Ji.,p-1 and Ji. d-1, respectively. 

The standard deviation of F is equal to the standard deviations of the 

corresponding ductility. Under the assumption that the limit state surfaces 

described by Equation (4.4.1) or (4.4.2) are smooth enough in the neighborhood 

of their design point, the safety index, or hereafter called the ductility index, can 

be estimated using the Cornell definition: 
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p. = ~. - 1 (4.4.3) a. 
or 

P d = 
~d - 1 (4.4.4) 

ad 

We acknowledge the fact that the adoption of the Cornell definition will produce a 

safety index that will be dependent to the particular choice of the failure function, 

namely Equation (4.4.1) or (4.4.2). However, this is the price to pay for avoiding 

the complications of the invariant approach described in Chapter 3 and Appendix 

E. Bearing in mind the fact that the safety index, even if invariant, has a notional 

character, and its practical value is for comparison only, we can accept this 

shortcoming. 

Two problems arise in conjunction with estimating the safety index. The first 

problem is to chose between curvature ductility and displacement ductility as a 

basis parameter when defining the ductility index. The curvature ductility is always 

greater than displacement ductility and the difference may be significant if the axial 

force is kept at low values. Consequently, the ductility index as defined by 

Equation (4.4.3) will be greater than the one defined using Equation (4.4.4), 

although the risk of brittle behavior is the same. This inconsistency is due to the 

lack of invariance of the Cornell Safety Index. 
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The second problem lies with quantifying the "ductility" in the case of brittle 

behavior. In Chapter 2, the statistics on ductility were performed by assigning the 

value 1 to either curvature or displacement ductility when the brittle failure 

occurred. For this reason, the estimates of mean and standard deviation of both 

ductilities are accurate only for axial forces equal to or lower than 20% of the 

maximum axial force, when no brittle behavior occurred. For higher axial forces, 

these ductilities will be reevaluated in the next sections, after establishing a 

definition for the ductility value (smaller than 1) to be assigned to each case of 

brittle behavior. 

The next two sections will be devoted to solving these two problems. 

4.5 COMPARISON BETWEEN A DUCTILITY INDEX BASED ON 

CURVATURE DUCTILITY AND A DUCTILITY INDEX BASED ON 

DISPLACEMENT DUCTILITY 

In order to compare the value for Ductility Index obtained using Equation 

(4.4.3) with the value obtained from Equation (4.4.4), we use the statistics of the 

parameters for the curvature ductility and displacement ductility obtained in 

Chapter 2. The comparison is made for the cases where the axial force was zero 

or 20% of the maximum axial force. In these cases, the lack of brittle behavior 

allows for a straightforward use of the statistics presented in Tables 2.2.2 and 

2.2.3. Table 4.5.1 presents the values of Ductility Index· obtained from curvature 
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ductility using Equation (4.4.3) and displacement ductility using Equation (4.4.4). 

Table 4.5.1 presents the sensitivity of the Ductility Index to a 20% increase in each 

statistical parameter of the input variables. This sensitivity is expressed in percent 

variation of the Ductility Index with respect to that of the Mcentral caseN
• We recall 

that the mean and coefficient of variation of the random variables for the "central 

case" are presented in Table 2.2.1. 

Table 4.5.1 Sensitivity of Ductility Index calculated for Curvature and 
Displacement Ductility when the Base Parameters are increased by 20% 

Axial Force = 0 I Axial Force = 20% P max 
Base 

I I Parameter Curvature Displ. Curvature Displ. 
Statistics 
Changed 13, 

Var. 
I3d 

Var. 
13. 

Var. 
I3d 

Var. 
(%) (%) (%) (%) 

Central 10.32 3.80 3.84 2.89 
Case 

Mean €mu 10.34 0 3.81 0 4.08 6 3.00 5 

C.O.V. €mu 10.13 -2 3.80 0 3.39 -12 2.69 -6 

Mean flm 10.24 -1 3.78 -1 3.85 0 2.90 1 

C.O.V. flm 10.30 0 4.13 9 3.76 -2 2.92 2 

Mean fy 10.06 -2 3.81 0 3.62 -6 2.80 -2 

C.O.V. fy 8.47 -18 3.93 3 3.81 -1 2.92 2 

Based on the results in Table 4.5.1, the following observations can be made: 
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* 

* 

In absence of an axial force, the Curvature Ductility Index (j3J results 

in unrealistically high values. This is because the high values for the 

mean curvature ductility produce a significant distortion to the Cornell 

Safety Index that relies on the mean value of the original safety 

margin rather than the mean value of the standard-space-mapped 

safety margin in the Hasofer-Und Safety Index. The use of the 

displacement ductility Index (j3 d) minimizes this distortion because 

the displacement ductility is much smaller for low values of the axial 

load. 

With one exception (the increase in coefficient of variation of f'm) f3 ~ 

is more sensitive than I3d to variations in the statistical parameters of 

the input random variables. 

The two conclusions obtained from the results in Table 4.5.1 can justify the 

choice of f3 d over 13~ for defining the Ductility Index. However, there is a more 

important reason to prefer a displacement based Ductility Index. Displacement 

ductility for individual walls can be directly used at the structural system level for 

different purposes like: 

* 

* 

* 

estimation of the system ductility; 

comparison between walls of different length in the same building; 

the possibility of constraining different walls in a building to undergo 

the same displacement at a floor level; and 
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* comparison between the displacement ductility capacity and the 

displacement ductility demand generated by a strong earthquake 

motion. 

The curvature based Ductility Index does not have a physical meaning 

beyond the section level and can not be used for comparison with walls of different 

size. For all these reasons we define the Ductility Index as the safety index with 

respect to brittle behavior, based on displacement ductility and calculated with 

Equation (4.4.4). This Ductility Index (01) will be used extensively in the further 

research in this chapter. 

4.6 QUANTIFICATION OF DISPLACEMENT DUCTILITY CAPACITY IN THE 

CASE OF A BRITTLE BEHAVIOR 

In Section 2.3.10, we discussed the probability density function for the 

displacement ductility. The shape of the frequency histogram appears to indicate 

a log-normal model. Figure 2.3.10 presents histograms for displacement ductility 

obtained for different levels of mean axial force. For small values of axial force 

practically all ductility values are greater than 1. However, for large values of axial 

force, the left tail of the distribution is squeezed at #J.d = 1 and the distribution 

appears truncated. The possible representation for cases that result in brittle 

failure is an additional Dirac Delta Function shifted to #J.d = 1. This research 

proposes an analytical extension of the distribution that will spread the Dirac lump 

107 



over the interval (0,1). This means that for each case of brittle behavior, a value 

between 0 and 1 will be assigned to the displacement ductility in order to obtain 

a smooth probability density function. Since in design we only are interested in 

ductility values equal to or greater than one this approach seems reasonable. 

Four different definitions for the analytical extension have been proposed 

and tested before selecting the definition to be used in this study. One of the 

definitions assumes a log-normal distribution for the displacement ductility while the 

other three definitions do not impose any particular distribution. 

Definition 1. 

If the displacement ductility (J.Ld) is log-normally distributed, then In(J.Ld) will 

be normally distributed. The values assigned to brittle cases will be mapped from 

the interval (0,1) to the interval (-co, 0). Based on the symmetry of the normal 

distribution, the analytical extension can be constructed using the median of the 

normal distribution as an axis of symmetry. We selected the median rather than 

mean value because the former can be determined independent of the analytical 

extension. 

If there are "nil cases of brittle behavior within the sample, the analytical 

extension is constructed as follows; 

1. The median value of In(J.Ld) is calculated. 

2. The "n" highest values for In(J.Ld) are selected; 

3. Each selected value for In(J.Ld) is duplicated by assigning a value that 

is symmetrical with respect to the median value of In(J.Ld). 
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4. The analytically extended distribution is mapped back using 

exp(ln(J-Ld» = J-Ld' 

The shortcoming of this definition is that one or more values assigned to In(J.Ld) can 

be positive due to the randomness in the right tail of the distribution. In turn, a 

positive value for In(J-Ld) implies ductile behavior, in violation with the established 

frequency of brittle behavior. 

Definition 2. 

This definition attempts to mitigate the shortcoming of Definition 1. Keeping 

the same frequency of brittle behavior, this definition is constrained to violate the 

assumption of log-normality of the distribution. The construction of the analytical 

extension starts with the three steps of Definition 1, followed by: 

4. The set of values obtained in Step 3 is shifted so that the highest 

value for In(J-Ld) will be zero. 

5. The analytically extended distribution is mapped back using 

exp(ln(J-Ld» = J-Ld' 

The violation of log-normality occurs because the distribution of In(J-Ld) will 

now not be symmetrical with respect to its median value. 

Definition 3. 

The values J-Ld assigned to the cases of brittle behavior are uniformly 

distributed between 0 and 1. 

109 



Definition 4. 

The values J..'d assigned to the cases of brittle behavior are linearly 

distributed between 0 and 1. The probability density function has a zero value for 

J..'d = 0 while for J..'d = 1 the value is determined equating the area under the curve 

with the frequency of brittle behavior. 

The four definitions have been tested for the case with the highest frequency 

of brittle behavior (Mean axial load = 40% of maximum, coefficient of variation of 

the axial load = 25%) where the difference between the results is expected to be 

a maximum. The results obtained using the different definitions are presented in 

Table 4.6.1. 

Table 4.6.1 Comparative results for Ductility Index using different definitions for 
the analytical extension of the PDF of J..'d. (Mean axial load = 40% of maximum, 

coefficient of variation = 25%) 

Definition for the analytical extension 

1 2 3 4 

J.£d 1.57 1.57 1.53 1.56 

C.O.V. J.£d (%) . 67 76 71 68 

DI 0.54 0.48 0.49 0.53 

The difference between the values obtained for DI using the four different 

definitions is less than 12 percent. The second definition has been selected for the 

purpose of this study because it appears to be the most consistent with the main 

segment of the distribution. 
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4.7 VARIATION OF THE DUCTILITY INDEX WITH THE AXIAL LOAD 

Using the convention established in Section 4.6 to quantify the displacement 

ductility capacity for the case of a brittle behavior, we calculated the mean value 

and the coefficient of variation of the displacement ductility using a Monte Carlo 

Simulation approach. The simulation were performed for different values of mean 

and coefficient of variation of the axial force while the mean and coefficient of 

variation of the other input parameters were kept constant. The results obtained . 

for the mean values of the displacement ductility capacity are presented in Table 

4.7.1. Figure 4.7.1 presents the variation of the mean value of the ductility 

capacity against the mean value of the axial force varying from 20% to 40% of the 

maximum axial force, for different coefficients of variation of the axial force. 

The variation of mean displacement ductility capacity with the deterministic 

axial force was discussed in Section 2.3.8. Based on the results in Table 4.7.1 and 

Figure 4.7.1 for a random axial force, several observation can be made. 

* The mean ductility capacity decreases when the mean axial force 

increases, as observed in Section 2.3.8. 

* The influence of the coefficient of variation of the axial force is small 

and is more significant for larger mean axial force when the mean 

ductility is small. 
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Table 4.7.1 Mean Displacement Ductility as a Function of the Expected Value 

and the Coefficient of Variation of the Axial Load 

Mean Axial Coefficient of Variation of the Axial Load 

Load / Agf m 

0% 5% 10% 15% 20% 25% 
(%) 

0 22.2 22.2 22.2 22.2 22.2 22.2 

2.5 17.3 17.2 17.2 17.2 17.2 17.1 

5 10.4 0.4 10.5 10.6 10.8 11.0 

10 5.5 5.5 5.6 5.6 5.8 6.0 

20 2.7 2.7 2.8 2.8 2.9 3.0 

25 2.2 2.2 2.2 2.3 2.3 2.4 

30 1.8 1.8 1.8 1.9 1.9 2.0 

32 1.7 1.7 1.7 1.7 1.8 1.9 

34 1.6 1.6 1.6 1.6 1.7 1.8 

36 1.5 1.5 1.5 1.5 1.6 1.7 

38 1.4 1.4 1.4 1.5 1.5 1.8 

40 1.3 1.3 1.3 1.4 1.5 1.6 
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Table 4.7.2 Coefficient of Variation of Displacement Ductility as a Function of 

the Expected Value and the Coefficient of Variation of the Axial Load 

Mean Axial Coefficient of Variation of the Axial Load 

Load / ~f'm 
0% 5% 100k 15% 20% 25% 

(%) 

0 25.1 25.1 25.1 25.1 25.1 25.1 

2.5 27.9 28.0 28.2 28.6 29.2 29.8 

5 28.7 29.4 30.8 33.0 35.8 38.8 

10 26.3 27.1 29.1 32.3 37.4 43.6 

20 21.9 23.0 25.5 29.5 36.2 49.4 

25 19.9 21.0 23.7 28.2 35.3 53.2 

30 18.0 19.4 22.4 27.2 34.8 57.6 

32 17.4 18.9 22.0 27.2 34.8 65.8 

34 17.1 18.5 21.7 26.6 34.7 63.4 

36 16.9 18.2 21.7 26.8 35.9 66.7 

38 17.2 19.1 21.7 32.3 44.1 73.9 

40 16.8 18.3 23.0 50.9 64.2 76.2 
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* The mean ductility capacity increases slightly when the coefficient of 

variation of the axial force increases. 

The results obtained for the coefficient of variation of the displacement 

ductility capacity are presented in Table 4.7.2. Figure 4.7.2 presents this coefficient 

of variation of the ductility capacity against the mean value of the axial force for 

different coefficients of variation of the axial force. 

Based on the results in Table 4.7.2 and Figure 4.7.2, several observation 

can be made. 

* For low coefficients of variation of the axial force, the coefficient of 

variation of ductility capacity decreases slightly when the mean axial 

force increases. 

* For coefficients of variation of the axial force between 15% and 20% 

* 

the coefficient of variation of ductility capacity remains almost 

constant up to a mean axial force equal to 36% of the maximum, and 

then increases steeply with the mean axial force. 

For a 25% coefficient of variation of the axial force, the coefficient of 

variation of ductility capacity increases constantly when the mean 

axial force increases. 

* The influence of the coefficient of variation of the axial force is 

minimal for values between 0% and 10% but becomes significant for 

values larger than 15%. 
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* The coefficient of variation of the ductility capacity increases with the 

increasing coefficient of variation of the axial force. 

The Ductility Index calculated using Equation (4.4.4) from the values in 

Tables 4.7.1 and 4.7.2 is presented in Table 4.7.3 and Figure 4.7.3. Several 

observations can be made. 

* 

* 

* 

* 

A comparison with the results obtained for the frequency of brittle 

behavior (Figure 4.3.1) reveals more clear trends for the Ductility 

Index. The two lines corresponding to 20% and respectively 25% 

coefficient of variation of the axial force do not cross any more, 

indicating that the Ductility Index is not as sensitive to the sampling 

of the input parameters. At the same time, there is a clearer 

distinction between the curves corresponding to 0% and respectively 

5% coefficient of variation of the axial force than it is for the 

frequency of brittle behavior. 

The Ductility Index is decreasing with the increasing mean axial force. 

The Ductility Index is decreasing with the increasing coefficient of 

variation of the axial force. 

The impact of the coefficient of variation of the axial force is a 

maximum when the mean value of the axial force is between 20% 

and 30% of the maximum axial force. For this range, the Ductility 

Index decreases approximately 1.5 units when the coefficient of 

variation of the axial force increases from 0 to 25%. 
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Table 4.7.3 Ductility Index as a Function of the Expected Value and the 

Coefficient of Variation of the Axial Load 

Mean Axial Coefficient of Variation of the Axial Load 

Load / A/m 
0% 5% 10% 15% 20% 25% 

(%) 

0 3.8 3.8 3.8 3.8 3.8 3.8 

2.5 3.4 3.4 3.3 3.3 3.2 3.2 

5 3.2 3.1 2.9 2.7 2.5 2.3 

10 3.1 3.0 2.8 2.5 2.2 1.9 

20 2.9 2.8 2.5 2.2 1.8 1.3 

25 2.7 2.6 2.3 2.0 1.6 1.1 

30 2.4 2.3 2.0 1.7 1.4 0.9 

32 2.3 2.2 1.9 1.6 1.3 0.7 

34 2.1 2.0 1.7 1.4 1.2 0.7 

36 1.9 1.8 1.5 1.3 1.0 0.6 

38 1.6 1.5 1.4 1.0 0.8 0.5 

40 1.4 1.3 1.1 0.6 0.5 0.5 
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4.8 THE DUCTILITY INDEX AND THE FREQUENCY OF BRITTLE BEHAVIOR 

Since an analytical approach to the problem of wall reliability with respect 

to the brittle behavior is impractical, the only available tool remains the Monte Carlo 

analysis. This analysis can produce, for a wall of given geometric characteristics 

and steel reinforcing, the expected frequency of brittle behavior as well as the 

statistics of the curvature ductility and the displacement ductility. 

The previous section presented the variation of the Ductility Index with the 

axial force for a reinforced concrete masonry wall. A powerful feature of any 

Safety Index is the ability to circumvent the lack of knowledge relative to the 

probabilistic distribution of the safety margin. Moreover, the Ductility Index 

contains more information than the Frequency of Brittle Behavior. However, it is 

interesting to establish a link between the two values since the latter is easier to 

understand because of its physical meaning. 

A relationship between the two values can be established only if the 

probability distribution is known. If the frequency of brittle behavior is normally 

distributed, then it can be shown (Shinozuka, 1983) that: 

where: 

fbrlttfe ~ 1 - ~(~) 

~ ~ ~-1(1 - f~ 

fbrittle = Frequency of Brittle Behavior 
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(4.8.1) 

(4.8.2) 



1-fbrlttl8 = Frequency of Ductile Behavior 

~(.B) = Standardized Gaussian Distribution Function 

f3 = The Safety Index obtained under the assumption that fbrittl8 is 

normally distributed 

The right hand side of Equation (4.8.1) represents the integral of the joint 

density function of the random variable over the domain bounded by the hyper­

plan tangent to the limit state surface at the design pOint. Equation (4.8.2) shows 

that the Safety Index based on the Gauss distribution (f3) is slightly underestimated 

when calculated using the Inverse Standardized Gaussian Function as in Equation 

(4.8.2). Approximating the limit state surface in the neighborhood of the design 

pOint with the tangent hyper-plan, Equation (4.8.2) becomes: 

(4.8.3) 

An alternate safety index can be defined using Equation (4.8.3). However, 

the Ductility Index has more credibility because no assumption on the distribution 

has been implied. The only sources of distortion are equally present in the Inverse 

Gauss Safety Index: the approximation of the limit state surface by the tangent 

hyper-plan and the variability of the Monte-Carlo samples. Consequently, the 

difference between the two indices has to be construed as the amount of 

departure of the real distribution of the fbrittle from the Gauss distribution. 

The Inverse Gauss Safety Index has been computed from the values of fbrittle 

in Table 4.3.3 using Equation (4.8.3) and the results are presented in Table 4.8.1 
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and Figure 4.8.1 as a function of the mean value and the coefficient of variation of 

the axial load. 

Table 4.8.1 Inverse Gauss Safety Index 

Mean Axial Coefficient of Variation of the Axial Load 

Load / Agf'm 
0% 5% 10% 15% 20% 25% 

(%) 

20 N/A N/A N/A N/A 3.0 3.0 

25 3.0 3.0 3.0 3.0 2.8 2.5 

30 2.8 2.8 2.8 2.5 2.3 1.9 

32 2.6 2.6 2.4 2.2 1.9 1.6 

34 2.3 2.3 2.1 1.9 1.8 1.4 

36 2.0 2.0 1.8 1.6 1.4 1.4 

38 1.7 1.7 1.5 1.3 1.2 1.2 

40 1.4 1.4 1.2 1.1 1.1 1.0 

Figure 4.8.2 compares the safety index defined with the Inverse Gauss Function 

(4.8.3) with the Ductility Index (4.4.4) for a deterministic axial load and for an axial 

load that has a 25% coefficient of variation. Several observations can be made: 
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* In order to obtain values for the Inverse Gauss Safety Index when the 

mean axial force is lower than 25% of the maximum, thousands of 

realizations are required for each Monte Carlo simulation. 

* The Inverse Gauss Safety Index overestimates the Ductility Index. 

* For low coefficients of variation of the axial force (smaller than 5%) the 

two indices present very close values. However, when the coefficient of 

variation of the axial force increases, the error of considering a Gauss 

distribution for fbrittle becomes significant. 

4.9 CONCLUSIONS 

The following conclusions can be drawn for the research in this chapter: 

(1) Ductile behavior is considered to be a "conditional limit state" that is 

important in assessing the structural safety. 

(2) A Monte Carlo simulation study can be used to calculate a safety 

index (Cornell type) of ductile behavior. 

(3) A Ductility Index based on displacement ductility is preferred to an 

index based on curvature ductility because: 

- for small values of axial force, the values for the index based on 

curvature ductility are unrealistically high; 
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- the index based on curvature ductility is more sensitive to 

variations in the statistical parameters of the input variables than 

the index based on displacement ductility; 

using an index based on displacement ductility, the transition 
I 

from a single-wall safety problem to the safety problem at the 

structural system is easier. 

(4) An alternate Safety Index can be defined if we assume that the 

frequency of brittle behavior is normally distributed. This index, 

although more easy to understand, is impractical and inaccurate. 

(5) The Ductility Index decreases when the mean value or the coefficient 

of variation of the axial force increases. 

(6) The Ductility Index defined in this chapter presents several 

advantages: 

Unlike the classical reliability index, tributary to _ an extremely 

uncertain load, this index can be estimated with reasonable 

accuracy; 

It can be used to calibrate the design prescriptions for flexural 

walls; 

- Since it is a comprehensive representation of the probabilistic 

information regarding the available ductility, chances are that it 

may be directly correlated with a similar index describing the 

seismic activity of a site or region. 
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CHAPTER 5 

RELIABILITY OF CONCRETE MASONRY FLEXURAL WALL SYSTEMS 

5.1 GENERAL 

In Chapter 4 we studied the ductility capacity of a single flexural wall and 

defined a ductility index. In this chapter we will expand the study to structural 

systems composed of several flexural walls. The ductility of the structural system 

as well as the corresponding safety index will be defined and studied. A measure 

for the redundancy of the structural system will be proposed. Then, the 

complementary roles of ductility and redundancy in shaping a global quality of the 

system - robustness - will be explored. 

Structures composed of reinforced concrete masonry flexural walls can be 

very diverse as far as the plan layout and building elevation are concerned. 

Herein, we limit our study to a particular class of structures consisting of several 

(two to eight) ten-story rectangular walls connected in the horizontal plane with 

rigid diaphragms. The walls are parallel and have statistically identical geometrical 

and material properties. 

When this structure is subjected to a set of static lateral forces applied at 

the story levels where one wall reaches its yield load, a redistribution of forces 

among the remaining elements results. In a seismic base excitation, the 
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successive yielding and/or failure of walls leads to a decrease in the level of total 

force input in the structure. Hence, a masonry multiple wall seismic resisting 

system is not characterized by a redistribution of load like a Daniels System. For 

example, highrise masonry buildings composed of flexural walls and rigid floor 

diaphragms can have a significant increase in the effective fundamental natural 

period of vibration when compared to the period in the elastic range. During 

strong ground motion, the stiffness degradation in the structure can increase this 

period by values up to two seconds. In this situation, the structural response is 

governed by displacement rather than acceleration. If we treat this problem using 

an equivalent static approach, the structure is subjected to imposed displacements 

rather than inertial forces. Under a monotonic increasing displacement imposed 

equally to all of the participating walls, the walls will reach consecutively their 

ultimate capacity until the system reaches the ultimate structural limit state. 

In Section 2.2.1 we discussed the three limit states that describe the 

behavior of individual walls. Within the structure, walls may fail according to 

different limit states. For example, when the mean axial load is high, some walls 

may exhibit a brittle behavior while the others remain ductile. If at least one wall 

behaves ductile before the structure reaches its ultimate displacement, we consider 

the structural system limit state to be ductile. There are two reasons for such a 

definition: . 
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(1) for an individual waIl, the yielding of one steel bar before the 

concrete masonry crushes is enough to qualify the wall as having 

ductile behavior. 

(2) the single ductile wall performs, on behalf of the whole structure, the 

task of dissipating energy and reducing the structural response to 

the ground motion. 

On the other hand, if all the walls exhibit a brittle behavior, the structural system 

limit state is brittle. When the mean axial load is small, some walls may fail 

according to the first limit state while the other fail according to the second limit 

state. For similar reasons, we consider that this structure fails according to the 

second limit state. We now define the three structural system limit states as 

follows: 

Structural System Umit State (1): when all the walls fail according to the First 

Umit State as defined in Section 2.2.1. 

Structural System Umit State (2): if at least one wall behaves according to the 

Second Umit State as defined in Section 

2.2.1 before the structure reaches its ultimate 

displacement. 

Structural System Umit State (3): when all the walls fail according to the Third 

Umit State as defined in Section 2.2.1. 

Besides the parameters that govern the ultimate capacity of one wall (as 

described in Chapter 2) there are additional factors that have an influence on the 
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system ductility, redundancy and robustness: the size of the system (the number 

of walls), the covariance matrix corresponding to each material parameter 

distributed among walls, and the distribution and correlation of axial load among 

walls. 

A "balanced system" is defined to be a structural system composed by 

statistically identical elements that are subjected to statistically identical loads and 

all elements work in parallel (De, Karamchandani, and Cornell, 1989). 

The structural system studied in this research fits the definition of a 

"balanced system" when the axial load corresponding to each wall has the same 

mean value and coefficient of variation. The variation of axial load among the walls 

is mainly due to the randomness in live load distribution across the floor. In the 

case when cross walls are present, the simultaneous excitation on the direction 

perpendicular to the walls under study may induce compression in some walls and 

tension in the other. This structural system is "unbalanced". 

The Monte Carlo simulation is performed in this chapter for structures 

consisting of two to eight walls. Each statistical sample contains 750 structures. 

Consequently, for each sample, the number of generated walls is 750 multiplied 

by the number of walls in the structure. Because of the increased complexity 

created by the larger number of variables as well as the necessity of controlling 

their correlation, the generation of random values requires a special attention. This 

problem will be discussed in Section 5.2. 
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Section 5.3 will be devoted to the statistical definition of the axial loads in the 

walls and the coefficient of variation of the axial loads in balanced systems. The 

covariance matrix of the axial loads in unbalanced system will be evaluated. 

Section 5.4 defines and studies the system ductility of balanced and 

unbalanced systems of walls, while Section 5.S attempts to clarify the extremely 

difficult notion of system redundancy and quantify the redundancy effects for the 

flexural wall systems. 

In Section 5.6, the two attributes of the system - ductility and redundancy -

are merged into a new quality of the system: robustness. The robustness is 

quantified as the System Ductility Index. The beneficial contributions of system 

ductility and redundancy to the robustness of the system. are discussed. Section 

5.7 presents the conclusions regarding the reliability of the systems composed of 

concrete masonry flexural walls. 

5.2 PROBLEMS REGARDING THE MONTE CARLO SIMULATIONS FOR 

STRUCTURAL SYSTEMS 

5.2.1 Generation of Correlated Variables 

The generation of random vectors with a specified multivariate distribution 

and a target correlation matrix is a difficult, often unsolvable problem. In general, 

the generation of correlated variables is accomplished in two steps: 
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(1) generation of independent components according to the marginal 

distributions that result from the multivariate distribution. 

(2) derivation of the desired random vectors through combination 

(usually linear) of independent components. 

There are two possible pitfalls associated with this procedure: 

(1) The combination of independent components may alter the initial 

distributions. 

(2) The mean vector and the covariance matrix can be insufficient for 

completely defining the multivariate distribution. 

In order to avoid both pitfalls, the normal multivariate distribution is adopted 

in this research. A linear combination of normally distributed variables results in 

a normally distributed variable. At the same time, the normal distribution is 

completely defined by the mean vector and the covariance matrix. From the 

inception of this research, we made the normality assumption at the expense of 

physical realism. The possible shortcoming of this assumption, namely the 

occurrence of negative values for the variables, is completely remote. In 

exchange, the normality assumption pays off handsomely by the possibility of 

controlling the covariance. 

Rubinstein and Rosen (1968) used a particular Cholesky matrix 

decomposition for facilitating the structural analysis computations: 
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[A] = [L][DJ[L] T (5.2.1) 

where A is a symmetric, positive definite matrix, L is a lower diagonal matrix, and 

o is a diagonal matrix. This decomposition is known in the Systems Control 

Theory as the "LDLT decomposition" (Mortensen, 1987). Hart (1982) uses the 

LDL T decomposition to find the lower diagonal matrix L that can transform an 

uncorrelated random vector {V} associated with a diagonal covariance matrix Sy 

into the correlated vector {X} with the target covariance matrix Sx. If 

[S,J = [L][Sy][L] T (5.2.2) 

then the mean vector 00 can be found as 

G\1 = [L1ffi 
(5.2.3) 

The LDL T decomposition is a particular case of the Cholesky decomposition 

because it provides unique solutions for the diagonal and the lower diagonal 

matrices. If the uncorrelated vector {V} is the standard normal multivariate (all 

mean values equal to 0 and all variances equal to 1), the diagonal matrix is the unit 

matrix E 

[S,J = [L][E][L] T = [LUL] T (5.2.4) 

In this case, the requirement of uniqueness of the Cholesky decomposition 

becomes unnecessary and the last product in Equation (5.2.4) represents the 
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general Cholesky decomposition that has an infinity of solutions. Then, the 

correlated vector {X} can be obtained (Uebetrau and Doctor,1987) as: 

00 = [L] {}1 + 00 (5.2.5) 

The general Cholesky decomposition, easier to perform as compared to the 

LDL T decomposition has been used in this research in order to generate the 

correlated input random vectors. 

5.2.2 Minimization of the Sample Bias and Instability 

We supposed in Section 5.2.1 that the vector {V} is perfectly uncorrelated. 

This seldom happens in practice, because the univariates that are separately 

generated posses a random, non-zero correlation (some coefficients of correlation 

may reach 20%-30%). These input samples may produce a severe bias and 

instability in the output results. The higher the number of variables and the 

complexity of the problem, the higher the instability. Research has been devoted 

to eliminate this instability. Several methods gained notoriety among the Monte 

Carlo practitioners. 

The Importance Sampling Method (Hammersley and Handscomb, 1964) 

selects more samples in regions of the space of input variables that can produce 

significant contribution to the probability of exceeding a certain limit state. A 

correction is applied to the final results in order to reduce the bias. Unfortunately, 
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this method can produce extremely biased results without the possibility of 

knowing it (Cornell, 1988 a). 

The Latin Hypercube Sampling (McKay. Conover, and Beckman, 1979), 

uses a partition of the range of each variable into a number of equiprobable 

intervals and then selects the elements of the random vector so that they belong 

to subranges of different order. In fact, the intent of the method is to insure that 

the space of the variables is uniformly covered according to the target multivariate 

distribution. 

So far, no attempt has been made to avoid the undesired correlations that 

occur when the sampling is not controlled. 

The problem can be solved by eliminating these correlations. In order to 

perform this elimination, the following steps are taken: 

(1) A number of realizations for the standard normal vector {V} are 

generated. 

(2) The mean vector {V} and the covariance matrix Sy of the generated 

sample are calculated. 

(3) Using the Cholesky decomposition, the matrix Sy is expressed as a 

product [L][L]T. 

(4) A new vector {Y1} is calculated using the transform: 

(5.2.6) 

(5) Repeat steps (2) through (4) until the greatest nondiagonal element 

of the covariance matrix falls below a target tolerance. 
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The final vector {V} obtained through this iteration process has a markedly 

improved representation throughout the variables' space. Thus, the aim sought 

when using the Latin Hypercube Sampling is accomplished too. As a 

consequence, {V} is free of bias and can be used in generating the input vector 

{X} according to Equation (5.2.5). For random vectors up to eight components, 

three iterations are usually enough to reduce the value of the highest coefficient 

of correlation below 0.1 %. 

5.3 STATISTICAL DEFINITION OF AXIAL LOADS 

5.3.1 Axial Loads in Balanced Systems 

The typical layout for a balanced system of walls is presented in Figure 

5.3.1 (a). The walls are parallel and have statistically identical geometrical and 

material properties. The axial loads in the walls of the structure are mainly 

produced by dead loads, live loads, and earthquake loads. The purpose of this 

section is to evaluate a global coefficient of variation for the axial loads. This 

coefficient of variation will be used in this study. 

The coefficient of variation of the dead load (CoJ varies between 6% and 

13% (Hart, 1982). We adopt in this research the value: COL = 12%. 

The live load is composed of sustained live load (or "arbitrary point-in-time" 

load) and additional load due to extraordinary crowding. As we do not consider 
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earthquake occurrence simultaneously with crowding, the coefficient of variation 

of live load will be the coefficient of variation of the sustained live load (CsuJ. A 

recent study indicate that, for a tributary area of 1500 to 2500 square feet, the 

coefficient of variation of the sustained live load is approximatively equal to 15% 

(Kanda and Yamamura, 1989). Since the particular distribution of the load across 

the tributary area produces additional scatter in the load effect (Culver, 1976) we 

adopt in this research a value of 30% for CSLL• Because the expected sustained 

live load is approximatively 20% of the expected dead load, the standard deviation 

of the sustained live load is: 

C1 SLL =O.3SSL=O.06DL (5.3.1) 

where 

SSL=O.2DL 

The horizontal components of the strong motion earthquake excitation do 

not induce axial loads in the balanced systems of walls. The vertical component 

has no effect on the mean axial force, but produces additional variance of the axial 

load in the individual walls as well as the covariance of the axial load among the 

walls. The standard deviation of the earthquake-induced axial load is dependent 

on the severity of the ground motion. We consider: 

(1)· a peak ground acceleration of 0.60 g for the horizontal components; 

(2) a ratio of 2/3 between the peak ground acceleration of the vertical 

and horizontal components; and 
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(3) a ratio of 2 between the peak and the standard deviation of the 

vertical ground acceleration. 

With these assumptions, the standard deviation of the earthquake-induced 

axial load is: 

- 2 1 -o EQ=(O.6DL)(-)(-)=O.2DL 
3 2 

(5.3.2) 

Considering all the three components as being normally distributed, the 

global coefficient of variation of axial load is: 

(5.3.3) 

where 0 in the denominator is the mean value of the earthquake-induced axial 

load. 

A constant value of 20% for the coefficient of variation of axial load will be 

used in this chapter. 

5.3.2 Axial Loads in Unbalanced Systems 

Two possible layouts for unbalanced systems of walls are presented in 

Figures 5.3.1 (b) and (c). The walls under study are parallel to the main direction 

of ground motion excitation Ondicated by the double, hollow arrow). Because of 

the presence of cross walls, the simultaneous earthquake excitation in the direction 

perpendicular to the arrow will induce compression in some walls and tension in 
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others'. If the mean axial force in the walls of the balanced system is P, the 

unbalance adds a.P to the each compressed wall and -a.P to each tensioned 

wall, where the random variable a is the unbalance coefficient. The unbalance 

affects the correlation of the axial loads of different walls in the structure. The 

purpose of this section is to find the mean values and the covariance matrix of the 

axial loads associated with the walls of the unbalanced system. 

The random axial loads in the unbalanced system are derived from the 

random axial loads in the balanced system and the unbalance coefficient: 

(5.3.4) 

(5.3.5) 

Where 

i k = indices associated with compressed walls in Equations 

(5.3.4) through (5.3.15) 

j = index associated with a tensioned wall 

Pi' Pj = random axial loads in the balanced system 

PI' PI = random axial loads in the unbalanced system 

Equations (5.3.4) and (5.3.5) can be used to derive the mean values of the 

axial loads associated with the compressed and tensioned walls: 
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(5.3.6) 

(5.3.7) 

The covariance between P I and P J is the ij term in the covariance 

matrix and is equal to 

(5.3.8) 

It follows that 

(5.3.9) 

where (Ja is the standard deviation of the unbalance coefficient. Similarly, for the 

term of index ik in the covariance matrix we obtain 

(5.3.10) 

If we consider the axial loads corresponding to the walls of the balanced 

system to be independent random variables then it follows that we obtain 

(5.3.11) 

(5.3.12) 

This assumption of independence produces the most interesting case for the 

effects of unbalance. 

To obtain the diagonal terms of the covariance matrix, we calculate the 

standard deviation of the axial load for the walls of the unbalanced system 
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considering that the coefficient of variation of the axial load for the walls of the 

balanced system is 20%, as established in Section 5.3.1. 

(5.3.13) 

The correlation coefficients for the axial loads among the walls of 

unbalanced system then become: 

P, = - 2 
0.04+0« 

(5.3.14) 

(5.3.15) 

The correlation coefficients of the axial loads are a function of the standard 

deviation of the unbalance coefficient only. On the other hand, the mean value of 

the unbalance coefficient is primarily a function of the severity of the ground motion 

in the direction perpendicular to the walls, whereas the coefficient of variation of 

the unbalance coefficient is a function of the coefficient of variation of material 

properties of the walls in both directions. This means that the correlation 

coefficients the axial loads are function of the coefficient of variation of the material 

properties and the coefficient of variation of the axial load on individual walls. 
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5.4 SYSTEM DUCTILITY 

5.4.1 Ultimate Displacement 

A wall is considered to have reached its Ultimate Umit State when the top 

displacement reaches its ultimate displacement. This happens when the 

compression strain at the base of the wall exceeds the maximum usable strain in 

concrete masonry. In this research, the ultimate displacement for a structural 

system occurs when all but the last wall have reached their individual wall ultimate 

limit states. For example, a structure composed of eight walls is considered to 

have reached its Ultimate Umit State when seven walls have reached their ultimate 

top displacement. The primary reasons for this definition of a structural system 

Ultimate Umit State are: 

(1) The end walls are the least likely to fail. These walls are more ductile 

because the expected axial load is typically one half the axial load of 

the interior walls. 

(2) With both end walls not yet reaching their Ultimate Umit State, the 

structural system is still stable. However, when one of the end walls 

reaches its Ultimate Umit State, the torsional response of the 

building will become large. 

Because of the randomness of the displacement at the ultimate limit state 

of each wall, the expected value of the displacement at the system ultimate limit 

state will increase with the number of walls. It is expected that the ultimate 
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displacement of the structure is greater than the ultimate displacement of an 

individual wall. However, when the structure has only two walls, the displacement 

of one wall at its Ultimate Umit State will not be less than the Ultimate System 

Displacement. This is a consequence of the particular character of the structural 

system failure definition: the structure fails when the first wall fails. According to 

a well known fact from ordered statistics, the expected value of a minimum of two 

realizations of the same variables is smaller than the expected value of the variable 

(Bury, 1975). 

5.4.2 Yield Displacement 

To quantify the structural system ductility, we need to provide a definition 

for the structural system yield displacement. In Section 2 we defined the yield 

displacement of an individual wall as the displacement at the top of the wall when 

the vertical steel first yields. 

Figure 5.4.1 presents the load-deflection response (the overturning moment 

at the base against the displacement at the top) for: 

(1) three statistically identical walls; and 

(2) the structure consisting of these three walls. 

The load-deflection curve for the structure is obtained by summing the ordinates 

of the curves corresponding to each of the three walls. 
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The yield displacement of the structure should be defined consistently with 

the yield displacement of the bilinear model. To achieve this, the load-deflection 

curve for the structure is "stylized" as follows: 

(1) The elastic branch of the bilinear model is obtained by joining the 

origin to the point on the curve corresponding to the first yielding of 

a wall. 

(2) The plateau of the bilinear model is a parallel to the displacement 

axis and corresponds to the sum of the yield moments of the walls. 

If one or more walls have a brittle behavior, the ultimate moment is 

considered instead of the yield moment. 

(3) The yield displacement of the structure is the point on the 

displacement axis corresponding to the intersection of the two 

branches of the bilinear model. 

The determination of the yield displacement of several structures generated 

through Monte Carlo simulations revealed that this value is very close to the 

average of the smallest and the largest yield displacements of the individual walls 

of the structure. 

5.4.3 The Variation of the System Ductility with the Number of Walls 

We define the system ductility (SD) as the ratio between the ultimate 

displacement of the structural system and the yield displacement of the structural 
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system. Monte Carlo simulations have been performed on samples of structures 

in order to study the variation of the statistics of SO when the number of walls in 

the structure varies from two to eight and the mean axial load varies from 0 to 40% 

of the maximum axial load. The material properties are considered independent 

among the different walls. In order to guarantee this independence, we used the 

procedure described in Section 5.2.1. The coefficient of variation of the axial load 

was selected to be 20% in accordance with the conclusion presented in Section 

5.3.1. For each case corresponding to a certain number of walls and a certain 

mean axial load, we generated 750 structures. For each structure so generated 

we calculated the yield displacement, the ultimate displacement and system 

ductility. 

In structures where all but one wall exhibited a brittle behavior (Third 

Structural Umit State according to the definition in Section 5.1), a SO smaller than 

one was assigned according to the rule established in Section 4.6. Consistently 

with the definition in Section 4.3, we define the frequency of the brittle structural 

system behavior as the number of brittle structures divided by 750. These 

frequencies have been calculated and are presented in Table 5.4.1. 

For reasons explained in Section 5.4.1 the frequency of brittle structural 

system behavior for two-wall buildings is greater than the frequency of brittle 

behavior for a single wall (see Table 4.3.3). It is remarkably that cases of brittle 

structural behavior were encountered only for two-wall and three-wall structures. 
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Table 5.4.1 The Frequency of Brittle Structural Behavior as a Function of the 
Number of Walls and the Axial Load 

Number of Walls Axial Load / Maximum Axial Load 

30% 40% 

2 1.6% 20.5% 

3 0.0% 6.0% 

For each sample of 750 structures, the mean and standard deviation of the 

SO have been estimated for each case associated with a number of walls and a 

value of the axial load. The results are presented in Tables 5.4.2 and 5.4.3 and in 

Figures 5.4.2 and 5.4.3. 

Table 5.4.2 Mean System Ductility as a Function of the Number of Walls and 
the Axial Load 

Number of Axial Load / Maximum Axial Load 
Walls 

0% 10% 20% 30% 40% 

2 18.9 4.7 2.4 1.6 1.3 

3 22.0 5.5 2.7 1.8 1.4 

4 22.9 5.9 2.9 1.9 1.7 

5 23.7 6.2 3.1 2.0 1.7 

6 23.9 6.5 3.2 2.0 1.8 

7 24.4 6.7 3.3 2.1 1.9 

8 25.1 7.0 3.4 2.2 1.9 
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Table 5.4.3 Coefficient of Variation of the System Ductility as a Function of the 
Number of Walls and the Axial Load 

Number of Axial Load / Maximum Axial Load 
Walls 

0% 10% 20% 30% 40% 

2 25% 27% 23% 19% 38% 

3 15% 21% 19% 1SOA, 28% 

4 13% 19% 17% 15% 22% 

5 12% 17% 15% 14% 20% 

6 11% 16% 14% 12% 18% 

7 9% 15% 14% 12% 17% 

8 8% 14% 13% 12% 17% 

As shown in Table 5.4.2 and Figure 5.4.2, the· mean SD exhibits the 

following features: 

(1) The mean SD increases from 30% to 50% when the number of walls 

increases from two to eight. 

(2) The mean SD decreases dramatically when the axial force increases. 

As shown in Table 5.4.3 and Figure 5.4.3, the coefficient of variation of SD 

exhibits the following features: 

(1) The coefficient of variation of SD decreases when the number of 

walls increases from two to eight. The smaller the axial load, the 

greater is the rate of decrease in the coefficient of variation of SO. 

(2) The coefficient of variation of SD increases when the axial load 

increases from zero to 10% of the maximum axial load. For axial 
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load between 10% and sao" of the maximum axial load, the 

coefficient of variation of SO is practically constant, but increases for 

the 40% axial load case. 

The mean system ductility is less sensitive than the coefficient of variation 

of system ductility to an increase in the number of walls but it is more sensitive to 

an increase in the axial load. 

5.4.4 The Variation of the System Ductility with the Correlation of Material 

Properties among Walls 

Monte Carlo simulations were performed using a building with five walls in 

order to study the variation of the statistics of system ductility when we vary the 

coefficient of correlation of material properties (f'm' € mu' and fy) and the mean axial 

load varies from a to 40% of the maximum load. All the nondiagonal terms of the 

three covariance matrices (corresponding to each of the three input variables) have 

been set up to the same value. This value was, consecutively, 0, 0.0625, and 0.25, 

and 0.5625 corresponding, respectively, to 0, 0.25, 0.50, and 0.75 values for the 

correlation coefficient. For instance, the covariance matrices corresponding to a 

value of the correlation coefficient equal to 0.5 were 

1 0.25 0.25 

St'm = S€mu = Sfy = 0.25 1 0.25 

0.25 0.25 1 
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The coefficient of variation of the axial load was set to 20% based on the 

conclusion reached in Section 5.3.1. For each case corresponding to a certain 

correlation coefficient and mean axial load, 750 Monte Carlo simulations were 

generated and we calculated the mean and standard deviation of the system 

ductility. The results are presented in Tables 5.4.4 and 5.4.5 and in Figures 5.4.4 

and 5.4.5. 

Table 5.4.4 Mean System Ductility as a Function of the Correlation Coefficient 
of Material Properties for a Five-Wall Structure 

Correlation Axial Load / Maximum Axial Load 
Coefficient 

0% 10% 20% 30% 40% 

0.00 23.7 6.2 3.1 2.0 1.7 

0.25 23.6 6.3 3.1 2.0 1.7 

0.50 23.6 6.4 3.2 2.0 1.7 

0.75 23.6 6.5 3.2 2.1 1.7 

As shown in Table 5.4.4 and Figure 5.4.4, the mean SO remains practically 

constant when the correlation coefficient increases from zero to 75%. 

Table 5.4.5 Coefficient of Variation of System Ductility as a Function of the 
Correlation Coefficient of Material Properties for a Five-Wall Structure (in %) 

Correlation Axial Load / Maximum Axial Load 
Coefficient 

0% 10% 20% 30% 40% 

0.00 12 17 15 14 20 

0.25 12 17 16 15 22 

0.50 12 19 18 16 26 

0.75 13 22 20 19 35 
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As shown in Table 5.4.5 and Figure 5.4.5, there is, in most cases, an 

approximately 40% increase in the coefficient of variation of SO when the 

correlation coefficient increases from zero to 0.75. There are two exceptions: 

(1) for zero axial load, the increase is small; and 

(2) for the 40% axial load case there is a larger increase in coefficient of 

variation of SO. 

The estimation of the correlation coefficient of the concrete compressive 

strength f'c among the walls of an actual structure was performed. This separate 

study is presented in Appendix D. The estimation resulted in a correlation 

coefficient of approximately 0.5. 

In conclusion, the coefficient of variation of system ductility increases with 

increasing correlation coefficient while the mean system ductility is almost 

insensitive to the correlation between the material properties. 

5.4.5 System Ductility of the Unbalanced Systems of Walls 

Monte Carlo simulations have been performed on samples of six-wall 

structures of the type presented in Figures 5.3.1 (b) and (c) in order to study the 

variation . of the statistics of the system ductility when the mean unbalance 

coefficient a varies from 0.5 to 1.0 , the correlation coefficient of the axial loads 

among walls p varies between 0.3 and 0.9, and the mean axial load varies from 10 
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to 20% of the maximum load. For reasons mentioned in Section 5.4.4, all the 

correlation coefficients of material properties among walls are considered equal to 

0.5. The coefficient of variation of the axial load remains 20% for the reasons 

presented in Section 5.3.1. For each case corresponding to a certain value of a 

(0.5, 0.75 or 1), a certain value of p (0.3, 0.5, 0.7, and 0.9), and a certain mean 

axial load (10% or 20% of the maximum load), 750 structures have been 

generated. For each structure within one sample, the system ductility has been 

calculated. The mean and standard deviation of the system ductility have been 

estimated for each of the 750 structures of the Monte Carlo Simulation. The 

results are presented in Tables 5.4.6 and 5.4.7 and in Figures 5.4.6 and 5.4.7. 

Table 5.4.6 Mean System Ductility for a Six-Wall Unbalanced System 

Axial load = 10% of Maximum Axial load = 20% of Maximum 
0 

ii=0.5 a=0.75 a=1 a=0.5 a=0.75 a=1 

30% 9.9 12.7 10.3 4.9 7.0 5.8 

50% 9.8 12.0 10.2 5.0 6.5 5.3 

70% 9.7 11.5 10.0 5.1 6.0 4.8 

90% 9.4 9.5 9.1 4.9 4.9 5.3 

The mean SO of this unbalanced system is approximate double the SD of 

a six-wall balanced system. This can be explained according to the results 

obtained in Section 2.2.1 and presented in Figure 2.2.3: 

(1) The less compressed walls yield earlier; 
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(2) The yield moments of these walls are much smaller than those of the 

more compressed walls and, consequently, the horizontal branch of 

the bilinear model as defined in Section 5.4.2 is lowered; 

(3) Items (1) and (2) above contribute to a substantial decrease in the 

yield displacement of the structural system; 

(4) the ultimate displacement of the structural system is again governed 

by walls with small compressive loads and may reach much greater 

values than those corresponding to the mean value of the axial load. 

The very large values of the coefficient of variation of SD (up to five times 

greater than the corresponding values of the balanced system) suggest that, in 

case of unbalanced systems, considering the mean SD alone would be misleading. 

The consequence of these findings for the reliability of the unbalanced system will 

be discussed in Section 5.6. 

Table 5.4.7 Coefficient of Variation of System Ductility for a Six-Wall 
Unbalanced System On %) 

Axial Load = 10% of Maximum Axial Load = 20% of Maximum 
p 

a=0.5 a=0.75 a=1 a=0.5 a=0.75 a=1 

30% 31 25 54 34 41 75 

50% 31 26 55 38 46 74 

70% 33 31 58 44 53 71 

90% 39 47 62 54 62 92 
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5.5 SYSTEM REDUNDANCY 

5.5.1 General 

A discussion concerning the latest developments in systems redundancy 

was presented in Chapter 1. Redundancy is viewed in this research as an intrinsic 

quality of the structural system, independent of loading, while the redundancy 

effects are different according to the type of loading. The redundancy effects are 

manifested when the structure is subjected to earthquake loading by the gain (or 

loss) in overall capacity with respect to the component capacity. An increase in 

capacity from the element level to the system level will imply an increase in system 

reliability . 

In order to study the redundancy effects of a wall system, one has to 

acknowledge the difference between the problem statement in this research as 

compared to the existing literature. There are several basic differences: 

(1) The horizontal loads are absent from the equation of the limit state 

surface. The vertical loads are present in this equation but their role 

in the flexural behavior of the wall is more on the side of material 

properties. 

(2)· The ductility indices at the element and structural system level reflect 

the necessity of preserving ductile behavior rather than outright 

failure like in case of reliability indices. 
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(3) Instead of quantifying the ultimate capacity of the structural system 

in terms of generalized force, we are interested in quantifying the 

system ductility. 

(4) The structural system is subjected to imposed displacements instead 

of forces. 

(5) After the failure of one wall there is no redistribution in the system, 

hence the degree of static indeterminacy is almost irrelevant. 

The complexity created by these basic differences, preclude the utilization 

of any of the probabilistic redundancy indices existing in the literature and 

discussed in Chapter 1. 

A structural system composed by statistically identical elements O.e. having 

the same statistics for each geometrical or material property) working in parallel is 

defined as a "balanced system." In this case, the redundancy effect can be 

understood as Cornell's "probabilistic redundancy" (Cornell, 1988 b) Le. the effect 

of the stochastic variations of resistance of different parallel elements about a 

common mean that does not permit the structure to collapse when the first 

member fails. 

The structural system studied in this research can be best modeled as a 

"balanced system" when the axial load corresponding to each wall has the same 

mean vallie and coefficient of variation. One limit state of interest for the structure 

composed of concrete masonry walls is the ultimate displacement of each 

individual wall. The greater the spread of the ultimate displacement corresponding 
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to each wall of the structure about the common mean ultimate displacement, the 

greater the redundancy effect because the extreme cases will govern the ultimate 

displacement of the structure. 

This finding would suggest that we quantify redundancy effects using the 

coefficient of variation of the ultimate displacement (du)' Such a redundancy index 

that is a function of the coefficient of variation of du only would be invariant to the 

number of walls in a parallel system. Since this is unreasonable, we need to find 

a definition that involves directly the ordered statistics of the set of walls that 

constitute the structural system. At the same time, the definition must capture the 

two milestones in the load-deflection relationship of the structural system that are 

present in the current definitions of the redundancy index: the first wall reaching 

its ultimate limit state and the structural system reaching its ultimate limit state. 

We define as Redundancy Ratio (RR) the ratio between the displacement 

corresponding to the structural system reaching its ultimate limit state and the 

displacement corresponding to the wall reaching its ultimate limit state. When RR 

has the minimum value of 1 O.e. all the walls fail simultaneously), there are no 

redundancy effects in the system. As RR is a random variable, its mean and 

coefficient of variation characterize the probabilistic redundancy effects of the 

system. The mean and coefficient of variation of RR were calculated for each 

Monte Carlo sample as described in Section 5.4. The results are presented in 

Sections 5.5.2 and 5.5.3. 
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5.5.2 The Variation of the Redundancy Ratio with the Number of Walls 

The series of Monte Carlo analyses described in Section 5.4.3 was used to 

study the variation of the Redundancy Ratio (RR) with respect to the number of 

walls in the structural system. The statistics of the redundancy ratio are presented 

in Tables 5.5.1 and 5.5.2 and in Figures 5.5.1 and 5.5.2. 

Table 5.5.1 Mean Redundancy Ratio as a Function of the Number of Walls and 
Axial Load 

Number of Axial Load / Maximum Axial Load 
Walls 

0% 10% 20% 30% 40% 

2 1.0 1.0 1.0 1.0 1.0 

3 1.3 1.4 1.3 1.2 1.0 

4 1.5 1.6 1.4 1.3 1.1 

5 1.6 1.6 1.5 1.3 1.2 

6 1.7 1.8 1.6 1.4 1.3 

7 1.8 2.0 1.7 1.5 1.4 

8 1.8 2.0 1.7 1.5 1.4 

As shown in Figure 5.5.1, the mean redundancy ratio exhibits the following 

features: 

(1) The mean RR increases with the number of walls and levels off for 

more than seven walls. 

(2) The mean RR increases when the axial load on the wall decreases. 

The only exception is observed for the zero axial load case when the 
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mean RR is smaller than that corresponding to the 10% axial load 

case. This behavior matches closely the variation of the coefficient 

of variation of the ultimate displacement with the axial load as 

presented in Figure 2.2.5. The explanation of this behavior has been 

provided in Section 2.2.2. Because high axial load results in a higher 

potential for brittle behavior, the essence of this feature is that 

structural systems composed of brittle elements possess a small 

value of the RR. This important property of the redundancy ratio for 

balanced systems of walls confirms a similar finding obtained for 

Daniels Systems (Rackwitz and Gollwitzer, 1988). 

(3) The higher the axial load, the smaller the increase in the redundancy 

ratio. When the number of walls increases from 2 to 8, the mean RR 

increases by 100% for the 10% axial load case but the increase is 

only 40% when the axial load is 40%. 

As shown in Figure 5.5.2, the coefficient of variation of the redundancy ratio 

exhibits the following features: 

(1) The coefficient of variation of redundancy ratio is essentially 

independent of the number of walls. 

(2) The coefficient of variation of redundancy ratio decreases from 

approximatively 25% to 15% when the axial load increases from zero 

to 40% of the maximum axial load. 
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Table 5.5.2 Coefficient of Variation of the Redundancy Ratio as a Function of 
the Number of Walls and Axial Load 

Number of Axial Load / Maximum Axial Load 
Walls 

0% 10% 20% 30% 40% 

2 0 0 0 0 0 

3 32 41 22 13 30 

4 39 27 19 14 33 

5 25 24 18 13 12 

6 26 24 17 12 12 

7 28 32 22 16 18 

8 23 23 18 14 24 

It can be observed from Table 5.5.1 that the maximum values of the mean 

redundancy ratio, reached when the structure has a suffiCient number of walls, is 

equal to 2 for the 10% axial load case and 1.4 for the 40% axial load case. In 

practice, another index of a more direct physical meaning may be useful. It is 

interesting to know how much additional capacity is conferred to the system 

through redundancy. This additional capacity can be investigated calculating the 

ratio between the displacement corresponding to the system reaching its ultimate 

structural limit state and the expected displacement corresponding to a single wall 

reaching its ultimate limit state. The mean value of this ratio has been calculated 

using a Monte Carlo simulation for the 7 -wall system for the 40% and 10% axial 

load cases and it was equal to 1.08 and 1.19, respectively. This means that using 

a sufficient number of walls we can obtain an average increase in the capacity of 

the structure to withstand imposed displacements from 8% to 19%. 
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5.5.3 The Variation of the Redundancy Ratio with the Correlation of Material 

Properties among the Walls 

The series of Monte-Carlo analyses described in Section 5.4.4 were 

performed to obtain results enabling us to study the variation of the redundancy 

ratio with respect to the correlation coefficient of material properties among the 

walls of the structure. The statistics of the redundancy ratio are presented in 

Tables 5.5.3 and 5.5.4 and in Figures 5.5.3 and 5.5.4. 

As shown in Figure 5.5.3, the mean redundancy ratio is essentially 

independent of the correlation coefficient of the material properties. There is an 

exception for the 40% axial load case when the mean RR slightly increases with the 

correlation coefficient. 

As shown in Figure 5.5.4, the coefficient of variation of the redundancy ratio 

is also very insensitive of the correlation coefficient of the material properties with 

an exception for the 40% axial load case. In that case, the coefficient of variation 

of redundancy ratio increases with the value of the correlation coefficient going 

from 12% to 33%. 
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Table 5.5.3 Mean Redundancy Ratio as a Function of the Correlation 
Coefficient of Material Properties 

Correlation Axial Load / Maximum Axial Load 
Coefficient 

0% 10% 20% 30% 40% 

0.00 1.6 1.6 1.5 1.3 1.2 

0.25 1.6 1.6 1.5 1.3 1.2 

0.50 1.6 1.6 1.5 1.3 1.2 

0.75 1.6 1.6 1.5 1.3 1.2 

Table 5.5.4 Coefficient of Variation of the Redundancy Ratio as a Function of 
the Correlation Coefficient of Material Properties (%) 

Correlation Axial Load / Maximum Axial Load 
Coefficient 

0% 10% 20% 30% 40% 

0.00 25 24 18 13 12 

0.25 25 24 18 14 13 

0.50 26 25 19 15 19 

0.75 25 28 22 17 33 

5.5.4 Redundancy Effects of the Unbalanced Systems of Walls 

As stated in Section 5.5.1, the probabilistic redundancy in parallel systems 

is meaningful for balanced systems. In case of a slight unbalance in the system 

due to differences in wall geometry or axial load the redundancy ratio can still be 

defined as in Section 5.5.1. However, in case of strongly unbalanced systems as 
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that studied in Section 5.4.5 the definition introduced in Section 5.5.1 can not be 

used. Because of the unbalance, the coefficient of variation of the ultimate 

displacement of the six walls in the system is high, but this does not provide an 

additional resistance capacity. Due to cyclic nature of the earthquake loads, the 

walls that are highly compressed will fail during one cycle and the other three walls 

can fail in a subsequent cycle when the strong motion component perpendicular 

to the walls changes the direction. This suggests a split of the unbalanced system 

into two balanced subsystems. It appears that the redundancy effects of the 

unbalanced system studied in Section 5.4.3 is governed by the redundancy effects 

of the weakest subsystem O.e. the SUbsystem with the highest axial load). The 

presence of a much stronger balanced system does not help the overall 

redundancy effects of the unbalanced system. 

5.5.5 Discussion on Redundancy Effects versus System Ductility for the Wall 

Structures 

It is interesting to compare the conclusions obtained in Section 5.5 for 

redundancy ratio with those obtained in Section 5.4 for the system ductility. For 

the balanced systems, the two properties appear to have a contradictory character 

as it results from the two main conclusions: 

(1) The mean redundancy ratio increases with the number of walls at a 

much higher rate than the mean system ductility increases. 
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(2) Unlike the coefficient of variation of system ductility that decreases 

when the number of walls increases, the coefficient of variation of 

redundancy ratio is independent of the number of walls. 

These features are summarized in Table 5.5.5. 

I 
Table 5.5.5 The Variation of System Ductility and Redundancy Ratio with an 

Increasing Number of Walls 

I System Ductility Redundancy Ratio 

Mean Value Almost Constant Increases 

Coefficient of Variation Decreases Constant 

According to its definition, the mean value of the redundancy ratio mirrors 

the scatter in the system ductility and, apparently, it should exhibit similar features 

to the coefficient of variation of the system ductility. Then, why does the mean 

redundancy ratio increase when the coefficient of variation of system ductility 

decreases? The explanation resides with the rapport between scatter and 

uncertainty. 

When the uncertainty in system ductility increases because the uncertainty 

in material properties or axial loads increases, the redundancy ratio increases. 

However, an increase in the number of walls without changing the statistics of the 

material properties or axial load does not increase the uncertainty. The increase 

in the number of walls is similar to increasing the size of a statistical sample. This 

produces a more confident estimate associated with a smaller sampling variance. 

This decrease in uncertainty is revealed by the decrease in the coefficient of 
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variation of system ductility. At the same time, the ratio of the two extremes of the 

sample increases. This increase is not a consequence of an increase in 

uncertainty; in a larger sample the expected maximum is greater and the expected 

minimum is smaller according to the properties of the ordered statistics (Bury, 

1975). This explains why the scatter in system ductility reflected by the 

redundancy ratio increases, while the overall uncertainty in the system decreases. 

Hence, both system ductility and redundancy ratio, although apparently 

contradictory, provide their beneficial effects to the system behavior. 

5.6 SYSTEM ROBUSTNESS 

5.6.1 General 

It was recognized that the ability of the structural system to survive the 

loading is better represented by a new quality that has been called "robustness" 

(Corotis et ai, 1988). We define as "robustness" the system quality that combines 

the beneficial effects of the system ductility and redundancy to the advantage of 

the balanced system. An index that can quantify robustness must fulfill the 

conditions outlined in Section 5.5.5: 

(1) Increases with the mean value of SO; and 

(2) Increases when the scatter of SO decreases. 

In Section 4.5 we have defined the Ductility Index for a wall (01) as the 

safety index based on displacement ductility and calculated with Equation (5.6.1): 
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i-Ld - 1 
DI= --- (5.6.1) 

Using the same theoretical background, we define the System Ductility Index (SOl) 

as a function of the statistics of the System Ductility (SD): 

SDI = SO - 1 (5.6.2) 
°SD 

where: 

SD = the mean value of the System Ductility 

o SD = the standard deviation of the System Ductility 

For the reasons similar to those delineated in Section 4.4, SOl is the safety 

index of ductile structural behavior. Similar to 01, the SOl is not invariant to 

different mappings of the limit state equation. 

Besides the quantification of safety with respect to ductile behavior, the 

System Ductility Index fulfills the conditions outlined above for measuring the 

system robustness. That is: 

(1) The SOl increases with the mean value of SO and this is the 

beneficial effect provided by the SO. 

(2) The SOl increases when the scatter of SO decreases; this decrease 

in uncertainty is attributed to the increase in the number of walls, and 

consequently to increased redundancy effects. 
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5.6.2 The Variation of the System Ductility Index with the Number of Walls 

The series of Monte Carlo analyses described in Section 5.4.3 were 

performed and they produced results on the variation of the system ductility index 

with respect to the number of walls in the structure. The results are presented in 

Table 5.6.1 and in Figure 5.6.1. 

Table 5.6.1 System Ductility Index as a Function of the Number of Walls and 
Axial Load 

Number of Axial Load I Maximum Axial Load 
Walls 

0% 10% 20% 30% 40% 

2 3.72 2.89 2.59 2.10 0.56 

3 6.20 3.87 3.37 2.73 1.10 

4 7.60 4.27 3.90 3.26 1.89 

5 8.29 4.89 4.50 3.67 2.14 

6 8.44 5.28 4.89 4.12 2.47 

7 10.42 5.51 5.10 4.23 2.76 

8 11.98 5.95 5.52 4.51 2.79 

As shown in Table 5.6.1 and Figure 5.6.1, the SOl increases substantially 

when the number of walls increases from two to eight. The rate of increase is 

dependent of the axial load, as follows: 

For the zero axial load case the SOl increases more than three times 

from its value for two~wall buildings. 
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For axial loads from 10% to 30% of the maximum, the SOl increases 

more than twice from its value for two-wall buildings. 

For the 40% axial load case, the SOl increases five times from its 

value for two-wall buildings. 

The patterns of the system ductility index increase with the number of walls 

is dependent of the three limit states of structural failure described in Section 5.1. 

For axial loads between 10% and 30% of the maximum axial load, corresponding 

to the second limit state, the curves in Figure 5.6.1 are almost parallel and closely 

spaced. The curve corresponding to the 40% axial load case is parallel to the 

previous curves from 4 walls to 8 walls when the system as a whole behaves 

according to the Second Structural Umit State. As mentioned in Section 5.4.3, two 

and three-wall structures may exhibit a brittle behavior for this level of axial load. 

The relatively small values for the frequency of brittle structural behavior presented 

in Table 5.4.1 are sufficient to cause the system ductility index values to be much 

lower than the general trend would have indicated. 

5.6.3 The Variation of the System Ductility Index with the Correlation of Material 

Properties among Walls 

The series of Monte Carlo analyses described in Section 5.4.4 were 

performed and they produced the results for the variation of the system ductility 

index with respect to the correlation coefficient of material properties among the 
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walls of the structure. These results are presented in Table 5.6.2 and in Figure 

5.6.2. 

Table 5.6.2 System Ductility Index as a Function of the Correlation Coefficient 
of Material Properties 

Correlation Axial Load / Maximum Axial Load 
Coefficient 

0% 10% 20% 30% 40% 

0.00 8.29 4.89 4.50 3.67 2.14 

0.25 8.28 4.82 4.15 3.44 2.33 

0.50 8.09 4.40 3.81 3.13 2.13 

0.75 7.40 3.89 3.39 2.79 1.20 

As shown in Table 5.6.2 and Figure 5.6.2, the SOl decreases when the 

correlation coefficient of material properties increases from zero to 0.75. The rate 

of decrease is practically independent of the axial load. As an average, when the 

correlation coefficient increases from zero to 0.75, the SOl decreases by 25%. The 

only exception is the larger decrease for the highest correlation coefficient 

combined with the highest value of the mean axial load. The low value of SOl 

exhibited by this case (1.20) shows how the advantages of structural behavior with 

respect to the individual wall behavior can be annihilated when the high axial load 

is combined with a high (but not unreasonable) correlation coefficient of the 

material properties. 
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5.6.4 The System DuctilitY Index of the Unbalanced Systems of Walls 

The series of Monte Carlo analyses described in Section 5.4.5 were 

performed and they produced the results showing the variation of the system 

ductility index with respect to the variation of the mean unbalance coefficient a, the 

correlation coefficient of the axial loads among walls p, and the mean axial load P. 

These results are presented in Table 5.6.3 and in Figure 5.6.3. 

Table 5.6.3 

System Ductility Index for a Six-Wall Unbalanced System 

Axial Load = 10% of Maximum Axial Load = 20% of Maximum 
p 

a=0.5 a=0.75 a=1 a=0.5 a=0.75 a=1 

30% 2.89 3.71 1.67 2.31 2.11 1.11 

50% 2.84 3.44 1.64 2.11 1.83 1.09 

70% 2.69 2.92 1.55 1.84 1.57 1.12 

90% 2.36 1.89 1.43 1.47 1.28 0.89 

Because of the complexity of the problem for the case of the unbalanced 

wall system, the different combinations of the values of a and mean axial load 

produce SOl values with less conclusive and sometimes surprising trends. The 

only expected trend is the SOl decrease when the correlation coefficient of axial 

forces increases from 0.3 to 0.9. This decrease is between 15% and 50% but 
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there is not a clear dependence of this rate to the unbalance coefficient or the 

mean axial load. 

It was expected that a larger mean unbalance coefficient a will produce a 

smaller SOL This feature was observed in most cases. The exception occurs for 

a=0.75 and 10% axial load case. However, the negative effect of a high 

unbalance coefficient is felt for values of correlation coefficient of axial forces below 

0.5: a mean unbalance coefficient equal to 1 can push the SOl corresponding to 

the 10% axial load case below SOl values for 20% axial load with a smaller a. 

It was suggested in Section 5.5.4 that the unbalanced system can be split 

in two balanced systems. It is interesting to compare the range of SOl values 

obtained for the unbalanced system with the SOl values presented in Table 5.6.1 

and obtained for the component balanced subsystems. For example, the six-wall 

unbalanced system with a = 1 and 20% axial load can be split into two balanced 

three-wall systems. The weakest system has a mean axial load equal to 

(0.2*P maximum + 1 *0.2*P maximum) = O.4*P maximum while the strongest system has a 

mean axial load equal to (0.2*P maximum-1 *0.2*P maximum) =0. This comparison is 

presented in Table 5.6.4 for the cases when the mean axial loads of each 

subsystem result in values already studied for the balanced systems. 
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Table 5.6.4 Comparison Between the System Ductility Index for a Six-Wall 
Unbalanced System and the System Ductility Indices for the Component Three­

Wall Balanced Subsystems 

Six-Wall Unbalanced System Weakest Strongest 
Three-Wall Three-Wall 
Balanced Balanced 

Subsystem Subsystem 

a P/Pmaximum SOl Range SOl SOl 

1.0 10% 1.43 to 1.67 3.37 6.20 

0.5 20% 1.47 to 2.31 2.73 3.87 

1.0 20% 0.89 to 1.11 1.10 6.20 

As shown in Table 5.6.4, the SOl values obtained for the unbalanced system 

are always smaller than the corresponding SOl values of the weakest balanced 

subsystem. This clearly shows the difference between the system ductility and 

system robustness. We mentioned in Section 5.4.5 that the mean SO of the 

unbalanced system are much greater than the mean SO of any balanced system. 

However, due to the large coefficient of variation of system ductility that can not 

be associated with probabilisti~ redundancy effects, the robustness of the 

unbalanced system is very low. 
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5.7 CONCLUSIONS 

In this chapter, the study of reliability of single flexural walls was expanded 

to structural systems composed of two to eight flexural walls. Four main properties 

of these systems were defined and studied: 

(1) the frequency of brittle structural behavior; 

(2) the system ductility; 

(3) the redundancy ratio; and 

(4) the system robustness quantified by the system ductility index. 

The main conclusions obtained from this research are: 

(1) For a Monte Carlo study using 750 structLJres, no cases of brittle 

structural behavior were observed for structures having four or more 

walls. 

(2) The increase in the number of walls produces an increase in the 

mean value of the redundancy ratio and a decrease in the coefficient 

of variation of the system ductility. 

(3) The mean value of the system ductility increases with the number of 

walls, but at a much slower rate as compared to the mean 

redundancy ratio. 

(4) . The coefficient of variation of redundancy ratio remains almost 

constant with respect to the number of walls. 
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(5) The system robustness, measured by the system ductility index, 

increases with the number of walls because it combines two 

beneficial effects that exhibit opposite trends with respect to the 

variation of the uncertainty in the system: 

(a) the decrease of coefficient of variation of the system ductility, 

that reduces the uncertainty; and 

(b) the increase in the spread of extreme versus expected 

ultimate displacement of the component walls, that increases 

the uncertainty. 

(6) An increase in the axial load produces a decrease in the mean 

values of system ductility, redundancy ratio, and system ductility 

index. 

(7) The coefficient of variation of system ductility is smallest for zero axial 

load and largest for the 40% axial load case. However, between 

10% and 30% of the maximum axial load the coefficient of variation 

decreases only slightly with increasing load. 

(8) In genera', the coefficient of variation of redundancy ratio decreases 

with increasing axial load. 

(9) The increase in correlation of material properties produces a slight 

increase in the coefficient of variation of system ductility. 

(10) The increase in correlation of material properties does produces only 

slight variation of the mean system ductility and mean and coefficient 
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of variation of redundancy ratio (exception only for the 40% axial load 

case). However, the system ductility index decreases markedly 

when the material correlation increases. 

(11) The mean value of the ratio between the displacement corresponding 

to structural system limit state and the average displacement 

corresponding to an individual wall ultimate limit state varies, as a 

function of the axial load, from 8% to 19%. 

(12) The unbalanced systems present large values for both the mean 

value and the coefficient of variation of system ductility. 

(13) The system ductility index for an unbalanced system is smaller than 

the system ductility index of the weakest balanced subsystem 

contained in the unbalanced system, and may reach dangerously 

low values. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

This research investigates the effects of system ductility and redundancy on 

the reliability of the concrete masonry structures. We limited our study to a 

particular class of wall structures. These structures can be modeled as balanced 

systems. We introduced unbalance into the system by using a particular pattern 

of vertical loading. The structural system limit states as well as the probabilistic 

measures for the system ductility and redundancy effects were defined accordingly. 

Then we performed Monte Carlo Simulations that used the. actual geometrical and 

material properties in order to obtain the System Ductility Index that we propose 

as a probabilistic measure of the system robustness. 

The particular class of wall structures has been chosen for the purpose of 

clarity only. Consequently, this approach can be used for a much larger class of 

building structures. For example, the walls of actual structures may have slightly 

different geometrical properties or vertical load patterns. A small unbalance thus 

created would not impose any changes in the proposed approach. For more 

complex structures, several of the base definitions have to be changed but the 

general approach remains valid. 

One important finding in this research consists of revealing the fact that 

system ductility and redundancy require a special "chemistry" in order to 
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"cooperate" for improving the safety of structures when subjected to earthquake 

loading. The resulting conclusion is that balancing the structural systems should 

be an important desideratum for design. A first "casualty" of this requirement will 

be the use of flanged walls. However, the problem is more complex when 

considering the beneficial contributions of the flanges. It is recommended that the 

research presented herein be followed with an optimization study to seek out 

optimal wall configurations. 

This research is based on the assumption that the lateral loading is static 

in nature. Such a departure from the physical reality is common to most current 

research in systems reliability. Although we believe that the qualitative findings of 

this research will remain valid under dynamic loading and nonlinearly dynamic 

response, there are important differences to be expected from the quantitative 

viewpoint. And thus, such research is recommended as the next step. 
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APPENDIX A 

BUILDING DESCRIPTION 

The building that presents the typical features for the structures studied in 

this research is located in the City of Whittier, Southern California. The lateral force 

resisting system in the longitudinal direction consists of concrete exterior frames 

from the Roof and the First Floor continued with reinforced concrete structural 

walls between First Floor and The Basement. Figure B.1 presents a plan view of 

the building. The lateral force resisting system in the transverse direction consists 

of cast-in place, reinforced concrete structural walls from Roof to the Basement. 

The end walls are weakly coupled (Unes 2 and 13). The length of the walls is 23'-

4". The two central walls on lines 7 and 8 are 19'-4" long. The 6!z inch thick slabs 

are cast-in-place. The foundations are spread footings beneath the columns and 

waifs. 

In this research, the cast-in-place concrete walls have been replaced with 

reinforced concrete masonry walls. The wall studied in Chapters 2 and 4 is 

located on Une 2. 
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APPENDIX B 

RESULTS OF TESTS CONDUCTED AT THE UNIVERSITY OF COLORADO 

ON CONCRETE MASONRY PRISMS 

An experimental program was conducted at the University of Colorado 

(Sallad, 1990) to study the confinement of vertical steel in concrete masonry in a 

state of compression. The program was comprised of prism testing using different 

kinds of confinement configurations and was done in two series of tests. The 

present research is concerned only with the "Confinement Comb" configuration 

that was tested in Series B. The parameters of the concrete masonry stress-strain 

curve that are of interest for this research are: 

f' m 

€u 

€mu 

= 

= 

= 

the maximum compressive stress 

the strain corresponding to the maximum compressive stress 

the maximum usable strain, corresponding to 50% of the 

maximum compressive stress on the falling branch of the 

curve. 

In this appendix, the pertinent data are processed in order to obtain 

estimates for the statistics of the above mentioned parameters. Two steps of 

processing were performed: 

(1) Statistics for the entire sample of test results obtained from prisms 

with "Confinement Combs", regardless the block thickness. 
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I 

(2) Statistics for sample of test results obtained from 8" thick prisms with 

"Confinement Combs". 

Table 8.1 Results of University of Colorado Series 8 Tests with "Confinement 
Combs" 

Prism 

I 
Unit 

I 
f' 

I 
e: u 

I 
e: mu m 

Series (In) (Ksi) 

4.09 0.00222 0.00476 

88 6 4.72 0.00268 0.00479 

4.46 0.00253 0.00350 

4.22 0.00274 0.00500 

98 8 4.22 0.00279 0.00484 

4.52 0.00293 0.00624 

4.14 0.00259 0.00686 

108 8 4.29 0.00262 0.00677 

4.32 0.00257 0.00492 

3.45 0.00193 0.00801 

118 12 3.31 0.00185 0.01361 

3.47 0.00205 0.00685 

Mean 4.10 0.00246 0.00635 
All series 

C.O.V. 10.56% 13.87% 39.50% 

Mean 4.28 0.00271 0.00577 
8" units only 

C.O.V. 2.79% 4.72% 15.15% 

I 

The results of tests and data processing (mean values and coefficients of 

variation) are presented in Table 8.1. Sallad (1990) presents the statistics of limit 

state parameters for each test series separately. His results, presented in Table 
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8.2, show a strong dependency of the parameter statistics on the thickness of the 

masonry block. '8ecause of this conclusion as well as the fact that the wall studied 

in Chapters 2 and 4 is 8" thick, we used in our research the statistics for €u and 

€mu as they result from step (2) of the data processing. However, we used for f'm 

the statistics that result from step (1) because the corresponding coefficient of 

variation (10%) is more realistic. Data presented in Table 8.2 show that the 

coefficient of variation of € mu has the tendency of increasing with increasing mean 

value of €mu. This conclusion will be used in Appendix C for estimating the 

Capacity Reduction Factor of the Design 8alanced Axial Load. 

Table 8.2 Statistics of Umit State Parameters for University of Colorado Series 8 
Tests (Sallad, 1990) 

I 
Prism 

I 
Unit 

I I 
f' 

I 
€u 

I 
€mu 

I 
m 

Series (In) (Ksi) 

Mean 4.42 0.0025 0.0044 
88 6 

C.O.V. 7.1% 12.0% 17.2% 

Mean 4.32 0.0028 0.0053 
98 8 

C.O.V. 4.0% 3.6% 14.2% 

Mean 4.25 0.0026 0.0062 
108 8 

C.O.V. 2.2% 1.0% 18.2% 

Mean 3.41 0.0020 0.0095 
118 12 

C.O.V. 2.5% 5.9% 38.3% 

It is important to establish the correlation between the different limit state 

parameters. We consider that the f'm' € u and € mu values associated with each test 

199 



are the components of a random vector X. Thus, each test generates a realization 

of X. The correlation matrix of the vector X can provide information on the 

correlation coefficients of the three limit state parameters. This matrix was 

calculated for both steps (1) and (2). The correlation matrices corresponding to 

steps (1) and (2) are, respectively 

1.00 0.89 -0.75 

0.89 1.00 -0.64 

-0.75 -0.64 1.00 

1.00 0.62 0.06 

0.62 1.00 -0.14 

0.06 -0.14 1.00 

The first correlation matrix indicates that f'm and €u are approximately linearly 

related while €mu has a tendency to decrease when f'm and €u increase. The 

second correlation matrix, corresponding to 8" units only provides more credible 

results; it shows a relatively strong correlation between f'm and €u and a lack of 

correlation between €mu and the other two parameters. The conclusions obtained 

from the second correlation matrix supports the assumption of independence 

between f'm and €mu used in generating the values of the input parameters for the 

Monte Carlo simulations. 
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APPENDIX C 

THE AXIAL LOAD ON A WALL 

C.1 GENERAL 

Desirable performance criteria for concrete masonry flexural waIJs is 

achieved when yielding of the steel occurs before the masonry crushes in 

compression. This behavior aIJows the waIJ to develop a significant ductility 

capacity. When the axial force acting on the section is large, the yielding of the 

tension steel will not occur prior to the masonry crushing and thus the element fails 

immediately after reaching its maximum strength. 

A "balanced" design limit state occurs when the tension steel yields at the 

same time the masonry crushes. The axial force corresponding to this balanced 

design limit state represents the upper limit of compression that a section can bear 

without the danger of the element failing in a brittle limit state. This axial force (P b) 

is derived with the folJowing assumptions: 

(1) The tension and compression steel produces forces which cancel 

and thus produce a net axial force of zero. 

(2) The compressive force on the wall can be modelled using a Whitney 

Equivalent Compression Stress Block. 

(3) A linear distribution of strain exists on the cross section. 
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With these assumptions, the balanced axial load (P b) is a function of the 

maximum usable strain (€mu), the maximum compressive force (f'mbd), the steel 

yield stress (fy) , and the steel modulus of elasticity (EJ. The equation for the 

random variable Pb is: 

emu 
Pb = O.72f",bd f. 

e +1 
mu E 

s 

(C.1.1) 

The geometric variables band d as well as the steel modulus of elasticity 

Es have small coefficients of variation relative to the other variables and thus can 

be considered to be deterministic. Thus, f'm' fy, and €mu are herein considered to 

be independent and normally distributed random variables. 

The expected value of the maximum axial capacity of the wall is 

(C.1.2) 

where 

f'me = mean, or expected value, of the maximum compressive 

stress. 

If we divide both sides of Equation (C.1.1) by the expected value of P max e , 

we obtain 

(C.1.3) 

Let us now define the new random variable 
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(C.1.4) 

The random variable fb is a function of three basic random variables (fy, f' m/f' me 

and emu). The coefficient of variation of fb is equal to the coefficient of variation of 

The investigation consists of three steps: 

(1) Establish the most likely values for the mean and coefficients of 

variation of each of the three basic random variables. Perform a 

Monte Carlo simulation for this "central case" and determine the 

frequency histogram of fb as well as its mean value and coefficient of 

variation. 

(2) Study the sensitivity of the mean and coefficient of variation of fb to 

the increase in means and coefficients of variation of fy, t'm/f'me, and 

(3) Establish the relationship between the capacity reduction factor ¢ 

and the target reliability index B, based on the sensitivity analysis 

performed in Step (2). 
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C.2 THE "CENTRAL CASE" 

The probabilistic distributions and the values for the mean and coefficient 

of variation of fy and Emu that are used in this "Central Case" are presented in Table 

2.2.1. The variable r mlf' me is considered to be normally distributed with mean 1 

and coefficient of variation equal to 10%. 

A Monte Carlo simulation for 5,000 realizations of each basic random 

variable was performed for the Central Case. The frequency histogram obtained 

from this study suggest a distribution for fb very close to a Normal distribution. 

The mean value of fb was 0.51 and the coefficient of variation of fb was 11.3%. 

C.3 THE SENSITIVITY OF THE MEAN VALUE OF fb 

The mean value of fb is an important parameter that governs the ductility of 

the walls. Thus, a sensitivity study is performed to evaluate the key statistics that 

influence it. As a first step, the values of the mean and coefficient of variation of 

the three random variables in Section C.2 were independently increased by 10%. 

The increase was performed, one at a time, while keeping the other parameters 

constant. The parameter f' mlf' me is theoretically constant and equal to 1. The 

percent variation in the mean value of fb due to each parameter variation is shown 

in Table C.3.1. 
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Table C.3.1 
Percent Change in the Mean Value of fb due to a 10% Increase in 

Basic Parameter Statistics. 

Basic Parameter Statistic Changed % Change in Mean fb 

Mean fv -2.8 

Coefficient of Variation of fv -0.1 

Coefficient of Variation of f' mlf' me -0.1 

Mean emu 2.7 

Coefficient of Variation of emu -0.1 

It can be observed from Table C.3.1 that the mean value of fb exhibits: 

(1) a reduced sensitivity (2.7 or 2.8% change for a 10% change) to the 

variation of mean values of steel yielding stress and maximum usable 

strain; 

(2) no engineeringly significant sensitivity to variations of the coefficients 

of variation of the three random variables. 

In reality, the ranges of variation of the statistics parameters are different and 

it is possible that the mean value of the maximum usable strain may double the 

10% change, while the assumed 10% variation in the mean value of fy is unlikely. 

For this reason, a sensitivity study for the possible range of values of each of the 

three random variables was performed as a second step. The ranges of values 

are presented in Table C.3.2. 
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Table C.3.2 
Range of Values Considered for Studying the Sensitivity of fb 

Variable Range of Mean Range of Coefficient of Variation 

fv 65 to 69 Ksi 4% to 15% 

f'm/f'me 1.0 5% to 25% 

emu 0.003 to 0.016 5% to 25% 

When the range of values for one statistics parameter was swept, the other 

parameters were set equal to the "Central Case" values. Monte Carlo runs for 

samples of 5,000 realizations were performed for each case. The only parameter 

that produces a significant variation of this mean when varying within likely limits 

is the mean value of the maximum usable strain (Figure C.3.1). The mean value 

of fb increases with an increasing mean maximum usable strain and tends to 

stabilize for large values of the mean of emu' The lower limit of the mean value is 

0.4 for a mean value of the maximum usable strain of 0.003. When the maximum 

usable strain exceeds 0.012, the mean value of fb reaches 0.6. For larger values 

of the mean emu' the mean value of fb tends to stabilize around the value 0.65. 

The following formula is proposed for this variation: 

_ 0.0016 

fb = 0.68e emu 
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C.4 THE SENSITIVITY OF THE COEFFICIENT OF VARIATION OF fb 

Th~ capacity reduction factor is a function of the coefficient of variation of 

fb and thus a sensitivity study was performed. As a first step, the values of mean 

and coefficient of variation of the three random variables of the "Central Case" were 

independently increased by 10%. The percent change of the coefficient of 

variation of fb due to each parameter variation is shown in Table C.4.1. 

Table C.4.1 
Percent Change in the Coefficient of Variation of fb due to a 10% 

Increase in Basic Parameter Statistics 

Basic Parameter Statistics Changed % Change in Coefficient of 
Variation of fb 

Mean fv 1.3 

Coefficient of Variation of fv 0.1 

Coefficient of Variation of f' m/f me 7.9 

Mean emu -1.3 

Coefficient of Variation of emu 1.8 

It can be observed from Table C.4.1 that the coefficient of variation of fb 

exhibits: 

(1) A significant sensitivity to the change in the coefficient of variation of 

the variable f' mIt' me. 

(2) A little sensitivity (less than 2% tor a 10% change) to mean values ot 

steel yielding stress and maximum usable strain as well as to the 

coefficient of variation ot the maximum usable strain. 
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(3) A very small sensitivity to the change of the coefficient of variation of 

the steel yielding stress. 

Similar to the sensitivity study performed for the mean value of fb, the second 

step was carried out. The same ranges of values (presented in Table C.3.2) were 

used for the statistics of the parameters. Monte Carlo simulations for samples of 

5,000 realizations were performed for each case. The only parameter that 

produces a significant change in the coefficient of variation of fb is the coefficient 

of variation of f'm' As it can be seen from Figure C.4.1, the coefficient of variation 

of fb ( V,b ) increases almost linearly with an increasing coefficient of variation of 

f'm ( VI. ). The following linear expression was fitted to this variation: 
m 

~ = 0.94VI. +0.02 
b m 

(C.4.1) 

According to the results of Monte Carlo simulations, a change in the 

coefficient of variation of the maximum usable strain from 5% to 25% produces a 

change in the coefficient of variation of fb from 10.3% to 13.4%. A change in the 

mean value of the maximum usable strain from 0.003 to 0.016 produces a 

decrease in the coefficient of variation of fb from 12.6% to 10.3%. 

As described in Appendix 8, the coefficient of variation of € mu has a 

tendency of increasing with the increasing mean value of emu' A regression 

analysis based upon the Least Square Method was performed and the following 

analytical model was obtained: 
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_ 0.001 

V = 0.258 «"",-0.002 
e"." 

(CA.2) 

where emu and ~ 
IJIII 

are, respectively, the mean value and the coefficient of 

variation of the maximum usable strain. Consequently, if the dependency between 

the mean and coefficient of variation of the maximum usable strain is considered, 

the sensitivity of the coefficient of variation of fb to their joint change will almost 

vanish. 

According to the results of Monte-Carlo simulations, a change in mean value 

of the steel yielding stress from 65 Ksi to 69 Ksi does not produce meaningful 

change in the coefficient of variation of fb• The same result is obtained when 

changing the coefficient of variation of the steel yield stress from 4% to 15%. 

C.S CAPACITY REDUCTION FACTOR ¢ 

According to Hong (1989) 

cI> < 8-O·75~ V (C.5.1) 

where ¢ is the capacity reduction factor, B is the target safety index and V is the 

coefficient of variation of Pb, and hence the coefficient of variation of fb• Therefore, 

to calculate the capacity reduction factor ¢ for a target reliability index value 13, the 

coefficient of variation of fb must be found. In this appendix, this coefficient of 

variation is determined using a Monte Carlo analysis. 
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As concluded in Section C.4, the coefficient of variation of fb does not 

significantly depend on € mu or fy• Using Equations (C.S. 1) and (C.4.1), the 

capacity reduction factor ¢ may be expressed as a function of two variables only: 

the coefficient of variation of the maximum masonry compression strength VI. 
m 

and the target safety index B. This dependence is graphically shown as a three-

dimensional plot in Figure C.S.1. Contours of equal VI. are presented in Figure 
m 

C.S.2. As expected, the capacity reduction factor will decrease with increasing 

safety index as well as increasing coefficient of variation of the masonry 

compression strength. 

Hart and Sallad (1989) have recommended, based on reliability analysis, to 

adopt an upper limit for the design axial load of 6S% of. the balanced axial load 

where minimum specified values were used for f'm' Thus, in the context of this 

section, where typically the expected value would be equal to 1.3 times the 

specified value, the Hart and Sallad value of 6S% corresponds to (6S%)/(1.3) = 

SO%. This appears to be conservative based on Figure C.S.2, because for values 

of ¢ = O.S and B = 3 the corresponding value of a coefficient of variation VI. 
m 

must be equal to 33%. 

For example, according to Figure C.S.2, ¢ = O.S and VI. = 10% 
m 

corresponds to B > > 3. Using the approach in Chapter 4, the normalized mean 

axial load 

P 
- = ~fb= (0.5)(0.51) =0.25 
Pmax 

(C.S.2) 
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and a coefficient of variation of the axial load equal to 20% (according to the 

estimation in Section 5.3.1) correspond to a Ductility Index of 1.6 (see Figure 4.7.3 

and Table 4.7.3). However, considering the robustness of the structural system 

composed of reinforced masonry walls, the System Ductility Index is equal to 2.3 

for two-wall systems and 5.0 for eight-wall systems (see Figure 5.6.1 and Table 

5.6.1). The safety index recommended for seismic loads by Ellingwood et al. 

(1980) is 1.75. Consequently, the value of Capacity Reduction Factor 

recommended by Hart and Sallad is conservative. 

C.6 THE HASOFER-LiND SAFETY INDEX 

As suggested in Chapter 3 and Appendix E, a simplified (but inaccurate) 

approach to estimating the safety index with respect to ductile behavior is to apply 

the Rackwitz-Fiessler algoritm to Equation (3.3.1) or Equation (C.1.4). We 

calculated the Hasofer-Und Index corresponding to a mean axial load equal to 40% 

of the maximum axial load and a coefficient of variation of the axial load ranging 

between zero and 25%. The results are compared in Table C.6.1 with the 

corresponding results obtained from Table 4.7.3. 

The results in Table C.6.1 exhibit a difference between the two safety indices 

of 0.5 to 0.8. If the approach using Equation (C.1.4) was correct, the 

corresponding safety index would have been smaller than Ductility Index because 

of the former index is invariant with respect to different mappings of the limit state 
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surface. Hence, the error introduced by ignoring the multistate character of the 

problem is even greater than 0.5 units of safety index. 

Table C.6.1 
Comparison Between the Hasofer-Und Safety Index Calculated with Equation 

(C.1.4) and the Ductility Index 

C.O.V. of Axial Load Safety Index 

(%) Equation C.1.4 Ductility Index 

0 2.0 1.4 

5 1.9 1.3 

15 1.6 1.1 

15 1.4 0.6 

20 1.2 0.5 

25 1.0 0.5 
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APPENDIX D 

CORRELATION OF CONCRETE COMPRESSIVE STRENGTH AMONG 

WALLS OF AN ACTUAL STRUCTURE 

Standard tests on concrete cubes obtained during construction of an eight 

story building in Los Angeles were used to estimate the correlation coefficient of 

the compressive strength among different walls. The plan shape of the building 

is presented in Figure 0.1. The lateral force resisting systems in both directions 

consist of reinforced concrete structural walls. 

The casting of concrete was performed, for each story, in three stages. 

Figure 0.1 shows the areas of the floor plan that are associated to each stage of 

concrete pouring. For each stage of pouring, two cubes were set aside for testing: 

one after 28 days and the other for a later date. The results obtained on the 27 

cubes tested atter 28 days are used in this research. 

We consider that the three values of the compressive strength associated 

with each area of a given story are the components of a random vector X. Thus, 

each story of the building generates a realization of X. The correlation matrix of 

the vector X can provide information on the correlation coefficients of the concrete 

compressive strength among the walls of this structure. 

Table 0.1 presents the values obtained for the concrete compressive 

strength for each story and area. 
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I 

Table 0.1 Test Results for the Compressive Strength of Concrete 

Story 

I 
Compressive Strength (psi) 

Area 1 Area 2 

Basement 4560 4420 

1 4420 3780 

2 4420 4920 

3 4600 5060 

4 4600 4760 

5 4700 5390 

6 5270 4990 

7 5090 5870 

8 5310 4760 

The correlation matrix of the random vector is 

1.00 0.44 0.67 

0.44 1.00 0.32 

0.67 0.32 1.00 

Area 3 

4830 

4470 

4920 

4320 

3800 

4420 

4810 

5870 

6120 

The correlation matrix indicates that a possible range of correlation 

coefficient for this structure is 0.3 to 0.7. The average value of the three upper 

nondiagonal terms is 0.48. We consider that 0.5 is a reasonable value for the 

correlation coefficient of compression strength. Since similar data for concrete 

masonry walls are not available, this value is used extensively in this research. 
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APPENDIX E 

SAFETY INDEX IN A MULTISTATE SPACE 

E.1 PROBLEM SETTING 

When the design point must be searched on a curve rather than a surface, 

the use of Lagrange Multipliers appears to be most suitable solution procedure. 

For simplicity we consider only two conditional limit states. 

Consider the following optimization problem; 

minimize: 

y = JX T X (E.1.1) 

subject to the constraints g1(X)=0 and g2(X) =0. Here X is a vector of 

uncorrelated, standard random variables X = (X1'~'" .,Xo) T, g1 (X) and g2(X) are the 

equations of the conditional surfaces in the n dimensional space of standard 

random variables, and y is the distance from the origin to the point corresponding 

to the random vector X. The constraints g1 (X) =0 and 92(X) =0 represent the 

condition that the point be on the n-dimensional curve at the intersection of 
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surfaces g1(X)=O and g2(X)=O. To solve the problem, a vector of Lagrange 

Multipliers 

is introduced to construct 

The solution X. and the Lagrange Multipliers Vector can be obtained by setting 

(E.1.2) 

Defining the matrix G as the generalized Jacobian of functions g1 (X) and g2(X) the 

solution for X. is 

x = -yGA • • 

where the star subscript denotes a solution of Equation (E.1.2) and 

ag1(X) ag2(X) 

aX1 aX; 

G= 

ag1(X) ag2(X) 

aXn aXn 

Since 'Y is a scalar, the Equation (E.1.3) can be also written as 

1 GA = --X • • y 

Premultiplying Equation (E.1.5) by G T we obtain 
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(E.1.3) 

(E.1.4) 

(E.1.5) 



GTGA =-1-G T x 
• 'Y • 

(E.1.6) 

Since GTG is a square matrix, it can be inverted. Consequently, the 

Lagrange Multipliers Vector is: 

A .. = -~ G T G) -1 G T X .. (E.1.7) 

It is possible to obtain a matrix equation where X. is eliminated. This can be 

achieved by substituting Equation (E.1.3) into Equation (E.1.1) and thus 

Y. = J ( Y. G • A.) T ( Y. G • A .) (E.1.8) 

or 

A .T G .T G .A. = 1 (E.1.9) 

An exact solution can not be obtained from the above equations. However, 

these equations can be used to construct an iterative method to obtain a solution 

for the Design Point X* and the distance 'Y from the origin to the curve. 

E.2 ITERATIVE METHOD FOR THE SAFElY INDEX 

The proposed iterative method has five steps: 

Step 1: Chose arbitrarily n-2 values for the coordinates of the X*; the 

remaining two coordinates result from the system of equations 
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Step 2: 

Step 3: 

Step 4: 

Step 5: 

Compute the scalar y using Equation (3.2.1) and the Jacobian G 

using Equation (3.2.4). 

Obtain the Lagrange Multipliers Vector from Equation (3.2.7). 

Obtain a better estimate of X. using Equation (3.2.3). 

Repeat steps 2 through 4 until convergence is achieved for the value 

y. This value is the safety index. The last estimate for X. is the 

solution for the Design Point. 

223 




