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Abstract: The analytical basis for interactive or on-line experimental testing
under simulated dyramic loads, often referred to as Pseudodynamic Testing, is
summarized in the report and implemented in a computer code PSDYN. The code is
based on the CALSD series of structural analysis programs and incorporates s set of
commands allowing not only the computation of the displacement response in a
Pseudodynamic Method but alsc linear dynamic analysis of structures using step-by-
step methods, solution of eigenvalue problems, and general matrix manipulations.
PSDYN is written in FORTRAN77 with a free-field type of input and can be used
either in batch or interactive mode. The program utilizes runtime libraries
interconnected by a common database, which allows applications on large mainframes
as well as on microcomputer systems. Examples described in the report have been run
in & VAX/VMS environment and on the CRAY X-MP. Chapter 2 describes briefly the
Pseudodynamic Test Method and summarizes the background necessary to utilize it. A
complete user's manusl for all the PSDYN commands is given in Chapter 3. In Chapter
4 two examples of a three Degrees of Freedom (DOF) structure subjected to s blast
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1. SUMMARY

» The analytical basis for interactive or on-line experimental testing under simulated

dynamic loads. often referred to as Pseudodynamic Testing, is summarized in thi; report

and impl~mented in a computer code PSDYN.

The to-e is based on the CALSD series of structural analysis programs {1] and incor-
porates a set of commands allowing not only the computation of the displacement
response in a Pseudodynamic Method but also linear dynamic analysis of structures using

step-by-step methods, solution of eigenvalue problems, and general matrix manipulations.

PSDYN is written in FORTRANT?7 with a free-field type of input and can be used
either in batch or interactive mode. The program utilizes runtime libraries interconnected
by a common database which allows applications on large mainframes as well as on
microcomputer systems. Examples described in this report have been run in a VAX/VMS

environment and on the CRAY X-MP.

Chapter 2 describes briefly the Pseudodynamic Test Mcthod and summarizes the
background necessary to utilize it. A complete user’s manual for all the PSDYN com-
mands is given in Chapter 3. In Chapter 4 two examples of a three Degrees of Freedom
(DOF} structure subjected to a blast loading and to the EI Centro 1940 (NS) earthquake

are shown.
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2. THE PSEUDODYNAMIC TEST METHOD

2.1 INTRODUCTION

In seismically active regions, buildings are usually designed to deform inelastically
under severe earthquakes. Currently, analytical methods are unable to fully predict the
complex inelastic behavior exhibited by most structural systems under seismic loading
conditions. Therefore experimental testing remains the most reliable means to evaluate

the inelastic response of structures under critical earthquake loads.

Recently, a new experimental method has been developed which attempts to com-
bine the economy and flexibility of quasi-static tests with the realism of shaking table
tests {2,3]. In this method, a computer is used on-line to determine the displacement his-
tory to be imposed on a test specimen. Conventional step-by-step integration methods are
used to calculate these displacements based on the equations of motion formulated for the
specimen. The inertial and damping characteristics of the test structure as well as the
earthquake accelerogram are numerically prescribed by the user. Since the structure’s res-
toring forces are likely to vary significantly during a test, they are measured experimen-

tally from the deformed specimen at each step in the test.

By using a direct integration method, the displacement response in each step of a
test is computed based on the measured restoring forces from the previous step and on the
prescribed inertial and damping characteristics, and then imposed on the specimen using

servo controlled hydraulic actuators.

Previous studies have shown that Pseudodynamic Testing (PDT) can be very reli-
able if appropriate test equipment and techniques are used. It should be enphasised that
the accuracy of test results depends largely on the selection of appropriate test specimens,
the determination of reaiistic discrete-parameter models and the use of reliable numerical
methods. While lumped mass structural models are most convenient to formulate and

test, it may be difficult to apply the method to structures with significant distributed
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masses. Additionally, viscous damping, strain-rate effects and the performance of loading

apparatus may all affect the results of PDT.

Also certain mechanical and numerical problems have been experienced in testing
stiff systems which have a large number of DOF. The major problems in these tests were
caused by limitations in resolution of the displacement control in servo controlled multi-
actuator systemns and the sensitivity of numerical computations to pertubations in the

experimental data.

Improved actuator-control techniques are under development at the University of
Michigan, Ann Arbor (4] to reduce displacement control errors. The propagation of exper-
imental errors in numerical computation has been investigated and methods for

artificially supressing the error effects have been developed at U.C. Berkeley |5].

As part of the U.S.-Japan Coordinated Project on Masonry Research for Earthquake
Resistant Buildings |6), efforts are under way at the University of California, San Diego,
to develop an on-line computer controlled experimental testing procedure suitable for test-
ing geometrically complex shear wall type structures with openings under simulated

seismic loads.

In the following a state of the art summary is given on PDT for discrete parameter
systems which will form the basis for new developments in on-line testing procedures of

full scale structural systems under critical earthquake loads.
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2.2 DISCRETE-PARAMETER STRUCTURAL MODEL

The equations of motion for a discrete-parameter system can be represented by a
family of second-order ordinary differential equations which can be expressed in a matrix

form as:
maf(t) + cv(t) + kd (t) = f(t) (2.1)

In this report, vector and matrix quantities are always represented by bold-faced
variables as in the equation above, where m, ¢, k, are the mass, damping and stiffness
matrices of the structure and a, v, d, f, are the acceleration, velocity, displacement and
loading vectors respectively. These equations of motion can be formulated for discrete

coordinates by the finite element method.

In the PDT the mass and damping matrices of a test structure which are assumed to
be invariable are analytically consiructed, while the restoring forces developed by struc-
tural deformations are experimentally measured. Thus, the formulation of the stifiness
matrix for the discrete structural system is not required. The viscous damping is usually
determined based on some idealized modal damping properties of a system, like for
instance the Rayleigh damping assumption (see Ref. {7]). A lumped-mass idealization can
tremendously simplify the experimental setup and the numerical formulation, and is usu-

ally empioyed in the PDT.

The resuits of PDT should closely represent the actual dynamic behavior of the test

structure as long as the higher frequency responses neglected by the anaiytical model are

insignificant.
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2.3 STEP-BY-STEP INTEGRATION METHODS

Dividing the duration T of the structural response into n time steps (At = T/n), a
step-by-step integration method is used to transform the set of differential equations of
motion (2.1) into n sets of algebraic equations. The solution in each step is a function of
the structural response in the previous step or steps. If the displacement solutior: in each
step is a function of previous step solutions only the method is considered explicit, if infor-
mation from the current time step is utilized then the method is considered implicit.
Many implicit methods are unconditionally stable while generally the explicit methods are

only conditionally stable.

One of the most general integration method in structural dynamics is the Newmark

algorithm :

m32+CV2+kd2=f2 (2-2)

d, - 4, + Atv, + A¢?

%— B] a, + fa, (2.3)

v = v+ At{(1-17)a; + qay (24)

Here the indices 1 and 2 represent respectively the solutions at the beginning and at
the end of a certain step i ( or the solutions at the time iAt and (i+1)At ). The parame-
ters § and 7 are selected by the user to achieve desirable stability and accuracy. For § =
1/4 and 4 = 1/2 the method is called constant average acceleration which is an implicit
and unconditionally stable method. When # = 0 and 4 =1/2 the method is explicit and

conditionally stable.

Since in pscudodynamic testing only the product k d, can be measured experimen-
tally, explicit methods are recommended. Although the restoring forces r, = k d; and the
displacements d, are known in each step of a test there is not sufficient information to

cumpute the instantaneous tangent stiffness k' for a highly coupled MDOF nonlinear
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system. Even if a method for determining the tangent stiffness could be devised, the
resulting values may be overly sensitive to tolerances in experimental measurements.
Furthermore the solution of nonlinear differential equations by an implicit method usually

requires an iterative procedure which can be another source of error accumulation.

Japanese researches (2,8] have found the Central Difference Method (CDM) which is
an explicit integration method the most suitable one for the PDT method. However,
Shing and Mahin |5 have shown that the basic CDM is more sensitive to experimental
errors than the Newmark explicit method or than the summed-form of the CDM. They
have also recommended a modified Newmark method which has a numerical dissipation
property and the numerical dam:ping is approximately frequency-proportional. Numerical
dissipation is very useful for supressing the spurious growth of high frequency responses
encountered in pseudodynamic tesiing of MDOF systems. Only these two methods, the
Newmark explicit and the modified Newmark, were implemented in the PSDYN program

and are presented next.

(i) The Newmark Ezplicit Method

2

d, = d; + Atv, + AT'a, (2.5)

v, = vy 4 %‘- ‘a, + a, (2.6)

[m+-—Az—t-c]a2=£¢-kd2—cv,—-A2—tca, (2.7)
r, = kd,

(¥¥) The Modified Newmark Ezplieit Method

mlz+{[1+°]k+z%m}dz=fz+[ak“rz%m]dn (2.8)



r < k dz
n = k dl
At?
dz = dl + At Vl + T.l (2.9)
Vz = Vl + ‘A2—t [.1 + .z] (2-10)

2.3.1 STABILITY AND ACCURACY

A linear elastic SDOF system is considered in the following analysis. However, the
results obtained herein are applicable to linear MDOF systems in general by means of
modal superposition. In solving the equation of motion for a free-vibration response of a
linear elastic SDOF system, a step-by-step integration algorithm can be written in a
recursive matrix form as:

xs) = A xf) (2.11)

where x|/ is a solution vector (kx1) which contains the displacement, velocity and/or
acceleration terms at the beginning of step i and x«_‘i) at the end of step i; A is called the

amplification matrix.

The numerical properties of a step-by-step algorithm can be obiained from its

corresponding amplification matrix A.
The solution at step n is obtained by applying (2.11) recursively:
x{?) = Axf® = A2xf*V) = . = Ax{V (2.12)
where x,(‘) is the initial conditions vector. |
The spectral decomposition of the amplification matrix A (k x k) gives:

A* = &J° 9! (2.13)

where

® = [$dr... 4



and
J = diag (Ah P Y sA) s
the vectors ¢, are the cigenvectors corresponding to the eigenvalues A; of the matrix A.

From Eqs. (2.12) and (2.13) the numerical solution of the free-vibration response,

the displacement at the end of step n, can be written as:
df¥) = A+ Al 4.+ R AR (2.14)

where ¢, €3, . .. ,c, are constants determined from initial conditions. For most algo-

rithms A can be formulated as a 2 x 2 or 3 x 3 matrix.

Calling p (A) = max | A;; the spectral radius of A, J" is said to be bounded when
n—oo if and only if p (A) < 1. Moreover, in order to Eq. (2.14) represent an oscillatory
response, two of the eigenvalues of A, A, 5 should be complex conjugates. The third eigen-
value Ay (if it exists) is called the spurious root since it does not have a physical meaning.

In summary, the stability conditions for an integration algorithm are:
Ay < [Ag' €1
The eigenvalues A, and A, can be represented as:
Az =A 2B = €U0 (2.15)

where i = v/~ 1 and A, B are real numbers such that (42 + B?) < 1 and

€= - M%—Bz)- (2.16)

\
1 = arctan ‘%' (2.17)

Calling 11 = TAt and substituting Eq. (2.15) into Eq. (2.14), can get:

d) =  o(-Ex T (2.18)
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The exact solution of an undamped free-vibration response is given by:

d(t) = cet (2.19)
where w is the natural response frequency.

By comparing Eqs. (2.18) and (2.19) it can be induced that physically ?npment.s
the numerical damping and & the frequency of the approximated response. Therefore, the
numerical inaccuracies of an algorithm can be measured by its numerical damping € and
by the percentage of frequency distortion (@ — w)/w or, more commonly by the percen-
tage of period distortion (T - '_l'.)/T, where T = 2x/w. These numerical properties and

the stability of both algorithms described in the previous sections are considered next:

(i) The Newmark Ezplicit Method

The Newmark explicit method has the following solution scheme for a SDOF free-

vibiation response:

2
dz = dl + Atvl -+ ATt.l

At
Vg = vy o~ —2-(!:*%)

a; = -u’dy

which can be written in a recursive form as Eq. (2.11) with:

d, d,
X = 1V v X2 =1V,
a, a;
and
Ad?
1 At T
wAL FAY  At-PAd
A - — 1-=3 > (2.20)
- -uPAL _u2a?
2
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The eigenvalues of matrix A are:

Mz = A+iB and )=0

where
A -0 (221)
B = ‘/‘_‘(—“’?‘Tﬂ—z (2.22)
Stability :

The stability conditions require that (A% + B?) <1 and that B is a real number.
Since (A2 + B?) is always equal to 1 here, the numerical stability is governed by the con-

dition that:
(PAL2-2)2 < 4 —

At 1
t € = ¢ = .
wA 2 or T - (2.23)

Accuracy :

Substituting (2.21) and (2.22) into (2.16) and (2.17) yields:

=0 (2.24)
and
- _ 1 V4 -p’At’»»—;)_’]
= Rp orctan Al | (2.25)

J

Therefore the Newmark explicit method has no numerical damping, the only source
of innacuracy is the frequency or period distortion which is a function of wAt. In Fig.
(2.1), the percenitage of period distortion (T - -T-)/T against At/T is plotted. It can be
observed that period distortion will approach sero as At/T goes to sero and that a rea-

sonably accurate solution can be obtained (less than 1% distortion) when At/T is less
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than 0.05 (At = T/20). This level of accuracy is comparable to those of the most reliable
implicit methods (see Ref. [9]).

03—
-
-
" oz}
ol
[ XN =8
0 1 | )| [ P
0.08% 0.10 018 0.20 0.2% 0.30

avT

Fig. 2.1 - Period Shrinkage by the Newmark Explicit Method

d=0l

I wat
2

Fig. 2.2 - Numerical Damping by the Modified Newmark Explicit Method



(i) The Modified Newmark Explicit Method

Based on the equations (2.8) to (2.10) the modified Newmark algorithm can be writ-

ten ip & recursive form as (2.11) with:

d, d;
x, = {4tyv, i X3 = JAt vy
and
1
1 1 ;
_ 0’ 0n? 21 n? 2
L e B LR il LR b e (2.26)
2
-n? —(l +a'ﬂ’-p —(l +a’—— %
in which ] = wAt.
Stability :
Matrix A has eigenvalues:
Mz = A2 (AZ-A)" and Ay=0
where
n2
AA=1-(1+a)—-£ (2.27)
2 2
Ay = 1-af? - p (2.28)

In order for A,, to be complex conjugates and | A 5! <1, A;, A, must satisfy
AZ < A; < 1. When A? = A, the algorithm will have a ron-oscillatory solution but the

solution will remain stable as long as A, < 1. The condition A < A, implies that:

-1+vV1-(1+a)p <N < 1 +V1-(1+a)

l1+a l+a

and A; € 1 gives:
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2 -£

o~

To obtain approximately frequency-proportional numerical damping, p should be

selected negative and a positive. Under these assumptions the stability conditions are

equivalent to:
_
Accuracy :

According to Egs. (2.16) and (2.17) the eigenvalues of A from Egs. (2.27) and

(2.28) give:
—_ - ? _
F- (1 2%" o) (2.30)
and
T - %mt&n [%] (2.31)
where
- L
A =1-(+a) > 3
and

172

2
B = ﬂ’—[(l+a)n?2+-§]

From Eq. (2.30) it can be seen that € = 0 when 0 = \/—_-5, For N2 < \/z,
a

damping is negative and the solution becomes unstable, i.e., energy is added into the

numerical solution. For @ equal to 0.1 and 0.5 , € against wAt is plotted in Fig. (2.2)
where for both curves —-QL is 0.1. It can be observed that damping increases with

increasing a. Consequently, by an appropriate combination of a and p, one can have a
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gero ot small damping for the fundamental made while having a significantly greater
damping for a higher freguenry. This characieristic is very usefui for supressing the spuri-
ous growth of higher mode responses encour: >red in pseudodynamic testing of MDOF sys-

tems.

NOTE : The stability and accuracy properties of numerical integration methods in solving
nonlinear differential equations are not very well understood due to the lack of an analyti-
cal evaluatior technique. It can be shown that unconditionally stable implicit methods
can become unstable when applied to nonlinear problems with large integration time
intervals. This is caused mainly by the fact that implicit integration methods usually
require an approximate solution procedure such as iterative correction, tangent modulus
or pseudo-force approximation when solving nonlinear equations. This problem does not
nccur when explicit integration methods are employed since a direct solution for a non-
linear equation is utilized. However, for nonlinear systems, the integration time interval
selected should always be sufficiently small so that the nonlinear behavior can be accu-
rately traced with the discretized displacements incremc.ts. The At selected for a linear
system will remain conservative if the nonlinearity is of the softening type. This is because
the effective At/T ratio will be smaller as a system becomes less stiff. The opposive will

be true for a hardening system.
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2.3.2 IMPLEMENTATION

(i) Newmark Explicit Method

Initialize:

d,, vy, 8, m, ¢, f, At

IC =1

y

Calculate:

dz = dl + Atvl + AT‘.I

Impose d; on the test structure

Measure and input the restoring forces r,

Y

Compute:

a, - m f,—r,-cv,——z-ca,

Vz = V] + %(.1*’.2’

[}

Set IC = IC +1

dl = ’.‘2 .
Vl = v:
.‘ - .z

Calculate:

2
d; = d;, + Atv, + A;—a,
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(ii) Modified Newmark Ezplicit Method

Initialize:
d,, vy, a;, m,n,f At a,p
IC=1

K]

Calculate:

2
dz = dl + Atvl + A;_.l

Impose d, on the test structure

Measure and input the restoring forces ry

K

Compute:

a, = m'[f,—(l+a)r,+ar1] + _AEtT(dl_dz)

L v, = v +—A2—t(n,+lz)

L4
5
]

5
+

Calculate:

2
dz = dl + At.V, + 'A%.l

]
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NOTE : In the flow-charts presented in the previous pages, the first two boxes correspond
to the INIT command and the last three boxes correspond to the PSEUDO command of

the PSDYN program. These commands are described in the next chapter, in section 3.2.4
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3. USER INFORMATION

3.1 PSDYN PROGRAM AND INTERACTION

PSDYN incorporates a set of commands which are described in the next section
separated into four groups according to the operation type. Each command can perform

operations on matrices formed by other commands by using the common database.

The program is designed to operate in either an interactive mode by reading input
from the terminal or in a batch mode by reading input lines (commands marked by
separators) from a file either specified by the user or from the default file INPUT. Interac-
tive mode operation will prompt for all missing data not supplied with the original com-
mand line. When in "interactive mode” all commands typed in at the screen are recorded
in the file OU TPUT. In addition, the output from a PRINT command is also written to
this file. When in "batch mode" the commands being read from the input file are echoed
1o the scrcen and the results of those commands are written into the file OUTPUT. In

this way a complete record of a PSDYN run may be kept.
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8.2 PSDYN COMMANDS

There are a few general rules that must be followed for execution of any PSDYN com-
mand. All commands are of the form:

OP M1+ M32- N=N1,N2,..

where
oP is the operation to be executed. This can be 1 to 6 char-
acters.
Mi is the name of the array or separator to be used for that

operation. Only the first four characters are read by the
program.
Ni is a set of i additional parameters.

Some of the operations have single character abbreviations. They are designated by the
single character enclosed in parenthesis. A command may require none or up to eight
matrices. The "+’ or -’ after the Mi designates the condition of the matrix after the com-
mand is executed. A '+’ means the array will be created by the command and therefore
such an array must not exist or it will be deleted. A ’-> means the matrix will be changed
in some manner by the command. If neither >+’ or -’ follows the Mi then the matrix is
unchanged after the operation. A command may or may not require any additional

parameter lists.
General input conventions are:
-A "C" in column 1 of any line denotes a comment line.

-A backslash "\" at the end of information on an input line will allow a second line

extension to a total of 160 characters.

-A colon ":" indicates the end of information on a line. Information to the right of

the colon is ignored by the program.
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-Requested data not supplied by the user will be automatically set to sero or blank

depending on the routine used.
-Real nuinbers do not require decimal points. E format is accepted.

-Arithmetic statements (+,-,*,/) may be used within the data input. The order of

evaluation is sequential.

-Input data must be separated by a "blank" or "comma".
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3.2.1 PROGRAM AND DATABASE MANAGEMENT MACRO
COMMANDS

DELETE (D) Mi-

This command deletes one or more matrices named Mi, where i=1,2,...6.

DUPDG M1 M2+

This command forms the row matrix M2 which consists of the diagonal values of the

matrix M1.

DUPSM M1 M2+4 R=R1C=C1L=L1,L2
This command forms the matrix M2 which is a submatrix of M1. The submatrix is Rl

rows by C1 columns. The submatrix starts at the location L1,L2 of the matrix M1.

HELP (H)

This command lists PSDYN’s operations.

LIST (L)

This command lists the directory of all files known to the database.

LOAD M1 R=R1 C=C1
This command loads the real matrix M1 with R1 rows and C1 columns. The matrix is

entered row-wise, one row per line.

MODIFY M1-
This command modifies any individual term of the matrix M1. This command can only

be used interactively.

RETURN
This is the last command in a separator group of a submit file. This command returns

control to the interactive mode after executing the commands following a separator.



-22.

START

This command reinitializes the database by deleting all files.

STODG M1- M2

This command stores the row or column matrix M2 on the diagonal of matrix M1.

STOP (S)

This command stops execution of the current segment and saves the database.

STOSM M1- M2 L=L1,L2

This command stores the matrix M2 as a submatrix in matrix M1. The submatrix starts

at the location L1,L2 of matrix M1.

ZERO M1+ R=R1 C=C1
This command forms the real matrix M1 which is R1 rows by C1 columns. The values of

all terms in the matrix are zero.
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3.2.2 MATRIX OPERATION MACRO COMMANDS
ADD M1- M2

This command adds the matrices M1 and M2 and stores the result in M1.

DUP M1 M2+

This command forms the matrix M2 which is the duplicate of M1.

INVERT M1-
This command inverts the matrix M1. The nverse is stored in M1. M1 must be sym-

metric and positive definite.

MULT M1 M2 M3+

This command multiplies matrix M1 times M2 and stores the result in M3.

SCALE M1- M2

This command scales all the terms of matrix M1 by the (1,1) term of matrix M2.

SOLVE M1- M2- S=S81

This command solves the set of equations M1 x = M2. The result is written back into

M1 and/or M2.
where S1 = 1 complete solution of M1 x = M2. x is retuined in M2.
= 2 triangularization of M1 only. The result is stored in M1.
= 3 forward and back substitution of M2 only. The result is stored
in M2.
SQREL M1-

This command replaces each term of the matrix M1 with the square root of the term.

SUB M1- M2

This command subtracts the matrix M2 from M1 and stores the results in M1.

TRAN M1 M3+

This command forms the matrix M2 which is the transpoee of matrix M1.
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3.2.31/0 OPERATION MACRO COMMANDS

DEFINE M1 M2 R=R1 C=Cl
This command defines the directory for a matrix stored on a disk file. This command is

only needed if the dutabase does not contain the matrix directory.

where
Mi is the matrix for which the directory is Lo be created.
M2 is the matrix vype.
M2=R if the matrix is real.
M2=] if the matrix is integer.
R1 is the number of rows in M1.
Ci is the number of columns in M1.
FILE M1

This command saves the matrix M1 in a disc file with the name "INPUT.EXT".

where INPUT is the name of the current input fiie. The default is INPUT.

EXT is the three character extension made up of the first three characters of the
name of the matrix M1.

INPUT
This command is used to change the input file for batch operation from the default file
INPUT to any other file. It can only be used from the interactive mode. It prompts for

the input file nam-.

PLOT M1 N=N1 R=R1,R2,... S=§1,82,...

This command generates a screen plot of the rows of matrix M1.

where
M1 is the matrix to be plotted.
N1 is the number of rows of N1 that are to be plotted.
Ri is the row number to be plotted from M1.
Si is the symbcl to be used for plotting row i.

There must be N1 entries for Ri and Si.

PRINT (P) M1

This command prints the matrix named M1.
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RFILE M1

This command reads into core the matrix M1 which is stored on a disk file. The database

directory must contain an entry for the matrix M1. If no entry exists, one must be crested

by the DEFINE command.

SUBMIT M1

This command starts the batch execution. It executes the commands following the M1

separutor in the input {:ie. The input file name 18 defasulted to the name "INPUT™".
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3.2.4 DYNAMIC OPERATION MACR?) COMMANDS

EIGEN M1- M2+ Ms- T=T1

This command solves the following eigenvalue problem;

K® = 2M$
where
M1 is the N by N symmetric, pasitive definite matrix K.
M2 is the N by N matrix containing the eigenvectors @.
M3 is & row or column vector containing the diagonal terms

of the matrix M. The values for the mass matrix
MUST be positive. After the operation is completed , it
contains the eigenvalues, A.

T1 is the approximate number of significant digits for the
eigenvalues. The default for T1 is 4.

The program reduces the problem to the standard iorm by the following transformation;

where

in which

' \ Y% Mii

The calculated mode shapes &, are normalized by;
eTMO -

oTK® =

The operatior uses the standard Jacobi method to solve for all eigenvalues and eigenvec-

3o =

tors.

FUNG M1 M2+ T=T1L=L1,L2
This operation forms the matrix M2, which contains values, at equal intervals, of the
function specified by the matrix M1.

where
M1 is the input function, M1 is 2 x K values of the form;

1 t oty ty bty tg tg 4
il [ A A AR A A f,
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which represents a function of the form;

f(t) bf hf

T tf! bf’ A J}t
| Vioov Vg

M2 is the output time function at equal intervals in time.

T1 is the delta time increment to be used in the matrix M2.

L1 is the number of function values to be formed in M2.
This should be < (t — t))/A ¢t + 1.

L2 ih’a ;he number of rows to be generated for the matrix

L2 = 1 for just the function values.
L2 = 2 for both the function and time values.

The matrix M2 can have two forms. If L2 = 1, M2 will be a 1 x L1 row matrix containing
the function values at time increment T1. If L2 = 2, M2 will be a 2 x L1 matrix in which

the first row contains the time value and the second row contains the corresponding func-

tion value.

INIT 1=11 M1 M2 M3 M¢+ M5 M6- M7 M8 T=T1 (P=P1,P2)

This is the initial command for the Pseudodynamic Method and it must be executed only
once. It initializes and prepares the arrays and parameters neceasary to execute the step
command PSEUDO. The array names (M1 to M8) and parameters (1,T,P) are written to
a file named INITIAL. Another file named COUNTER which contains the step ID
number (IC=1 at this stage) is created in this command. This step number will be
updated at the end of each PSEUDO operation.

The parameter | defines which step-by-step method will be used by the PSEUDO com-

mand:

I=1 Newmark Explicit Method
=2 Modified Newmark Explicit Method

when 11=2, P1 and P2 must be specified, where:
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P1 is the parameter a and
P2 is the parameter p (see section 2.3).

This command calculates the inverse of the effective mass matrix and also the displace-

ment vector at the end of the first step:

2
d, = d, + Atv, + —A—;--l

where

M1 is the name of the N by 1 displacement vector at the begin-
ning of step 1, d, (default is the null vector).

M2 is the name of the N by 1 velocity vector at the beginning of
step 1, v, (default is the null vector).

M3 is the name of the N by 1 acceleration vector at the begin-
ning of step 1, &, (detault is the null vector).

M4 is the name of the N by 1 calculated displacement vector at
the end of step 1, d,.

M5 for 11=1 — is the name of the N by N damping matrix, ¢

(default is the null matrix).

for 1=2 — is the name of the N by 1 restoring force vec-
tor at the beginning of step 1, r, (default is the null vector).

M6 is the name of the N by N mass matrix, m. After the opera-
tion is completed it gives m where:

-1
forll=1 - m" - lm +%c
forl1I=2 - m" = m"
M7 is the name of the N by 1 load distribution vector, p.
M3 is the name of the 1 by (n + 1) load multipliers matrix, f,

at equal increments At , (f=p I ).
T is the time interval At.

NOTE : Here N represents the number of DOF and n the number of steps or time inter-

vals which divide the duration T of the response, At = T/n.

PSEUDO M1-

This is the step command for the Pseudodynamic Method, where:

Mi is the name of the N by 1 restoring force vector at the end of
the current step, r,. This vector will be deleted at the end of
this operation.
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In this command the array names and parameters defined in the command INIT are read

from the file INITIAL. Also the step number (IC) is read from the file COUNTER.

By using the arrays from the previous step d,, v,, 8, [rj] and the arrays defined in INIT
c,m’, p, f, (all kept in the DATABASE) the external load forces, f; are formed and the

accelerations and velocities at the end of the current step, v, and a, respectively, com-

puted.

Next a new step is set (IC=1C+1) and the displacements, velocities, accelerations, [restor-

ing forces| updated:

dl = dz
Vl = Vz
., = .2

= !
ry = £

Finally the displacements at the end of this new step, d,, are cziculated:
2
d; = d, + Atv, + A;-—l,
These displacements d, will be imposed on the test structure and a new vector of restor-

ing forces r, will be measured and loaded into the program. PSEUDO can then be exe-

cuted again and so on.

NOTES :
1) Here | | means just to consider what is inside the brackets for 11=2.

2) For backup the arrays d,, v, &), 35, cor ry, m’, p, f are also saved on a disk file {out
of core) with the names respectively: INPUT.DI1, INPUT.VE], INPUT.ACl,
INPUT.DI2, INPUT.DAM or INPUT.RS1, INPUT.EMI, INPUT.ELD and INPUT.FOR
where INPUT is the name of the current input file (the default is INPUT).

In case the DATABASE file is lost or deleted by mistake, the arrays can be retrieved by

using the commands DEFINE and RFILE (see section 3.2.3). Then the LUP command
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(see section 3.2.2) can be used to change the array names to those specified in the INIT

command.

STEP M1- M2 M3 M¢- M3+ M6 M7 T=T1 L=L1,L2 P=P}1,P2P3
This command calculates the dynamic response of a structural system using direct step by

step integration of the following linear matrix equations of motion;

MU + CU + KU = R(t) = pF(t)

where
Ml is the name of the N by N stiffness matrix K.
M2 is the name of the N by N mass matrix M.
M3 is the name of the N by N damping matrix C.
M4 is the name of the N by 3 initial condition matrix Uy,

Up(1,1) is a vector of the initial displacements Uy,

Up(1,2) is & vector of the initial velocities U,

Up(1,3) is a vector of the initial accelerations Uy,
M5 is the name of the N by L2 matrix of calculated dis-

placements. Column i represents the displacement at
time ixL1xA t.

Mé is the name of the N by 1 load distribution matrix p.

M7 is the name of the 1 by K row matrix representing the
load multipliers { at equal time increments A t, where
K=L1*L2 + 1.

T1 is the time increment A t.

L1 is the output interval for the displacements. That is, dis-
placements will be output at each L1 time step.

L2 is the total number of displacement vectors to be out-

put. Therefore, the total time for which results will be
calculated will be L1xL2xA t.

Pl is the v value for the integration type. (default = 1/2)
P2 is the 8 value for the integration type.
P3 is the @ value for the integration type. (default = 1.0)

The use of different values of 7y, 8 and # aliows the user to select different methods of step

by step integration. The following table lists possible values.

v B 8
Newmark Average Acceleration 1/2 1/4 100
Newmark Explicit 1/2 000 1.00

Linear Acceleration 1/2 1/6 1.00
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Wilson - Theta Method (Low Damping) 1/2 1/6 1.42

Wilson - Theta Method (High Damping) 1/2 1/6 2.00
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4. EXAMPLES

4.1 EXAMPLE 1

A three-story frame structure, modelled by a lumped-mass system with 3 translational

DOF, is subjected to a triangular pulse blast-pressure as shown below:

] —_—t 1
~ 2
EEEE———— 3
AN/ Y /ASN/AY
fm (kip)

» t(s)x10"3

o
54 PP
N
'3:4
<
)

f)=pfalt) ; P=

N N =

The mass and the linear elastic stiffness matrices for this frame are:

m = (1 kips?/in) [0.0 1.5 0.0

1.0 0.0 0.0
0.0 0.0 2.0

1 -1 0
k = (600kip /in)|-1 3 -2
0 -2 5
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A dynamic analysis of this structure using the PDT method by means of the PSDYN pro-
gram is shown in this example (just the first steps are shown). Both explicit methods

described previously, the Newmark and the modified Newmark method are utilized.

The INPUT file and the OUTPUT file produced by the program are listed after each
example. The INPUT file contains the commands to be executed in the batch mode by
means of the INPUT and SUBMIT commands. In the OUTPUT file all the commands
following "**" were typed to the screen by the user in the interactive mode.

To select the time interval At the natural frequencies of the structure have to be deter-

mined which can be done using the command EIGEN; the result is:

w 145

Nz = 31.1 r&d/s

wy 46.1
Hence,

T, 0.4333

Tyt = 40.2020} s

T, 0.1363

a) Using the Newmark explicit method
- Selection of the time tnterval At
Selecting

At = 0.012 T T, Ts
TS T 361 168 114

the stability condition (2.23) governed in this case by the third natural period

(At < Ty/x) is satisfied and also a good accuracy can be achieved (2ce Fig. 2.1).
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- Viscous damping

Considering the Rayleigh damping assumption (see Ref. [7]) : ¢ = ag m + a, k and select-
ing the damping ratio in the first and second modes to be 3% of critical, the constants a,

and a, are:
ag = 0.59335 and a, = 0.00132.

The resulting damping matrix is :

1.383 -0.790 0.000
c = |-0.790 3.259 -1.579
0.000 -1.579 5.135

and the resulting damping ratio in the third mode is 3.68% .

b) Using the modified Newmark explicit method
- Selectton of At and parameters a and p :

Selecting At = 0.012s, & = 0.5 and p = —0.005 the stability condition (2.29) is satisfied:

N
£ _oa1 14v1-(1+a)p 1.336
a 1 +a

w, At = () = 0.1740
wyAt = 1, = 0.3732
(UsAt = n3 = 0.5532

Hence,

0.1 < {M, < 1.336

- Numerical damping

For a = 0.5 and p = —0.005 the resulting damping ratios given by Eqs. (2.30) and (2.31)

are :
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i) Ql = 0-1740

A =0.9798 —
B =01728 ~ [ =01746
& = 2.92%
ii) N, = 0.3732
A =08980  _
B =o03se0 — 2= 03803
& = 8.79%
i) Ny = 0.5532
A=07730  _
B - 0.5045 —+ ns = 0.5782
& = 13.85%

An analytic linear dynamic analysis can be perfomed by the PSEUDO command if
instead of the measured restoring forces r, the product of the linear elastic stiffness k by
the displacements d, is input at each step. The same response can be obtained by the
STEP command if the same algorithm, the Newmark explicit is employed. A comparison
of the two procedures is shown at the end and the plot of the first DOF displacement

response is also included.
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4.2 EXAMPLE 2

The same structure described in the first example is subjected now to the El Centro 1940

(NS) earthquake.

For seismic loading the equations of motion (2.1) become :
ma() + ev() + kd(t) = ~-mpag(t)

where a_ (t) is the ground acceleration time history from the El Centro earthquake and p

is the load distribution vector which in this case is equal to the unity vector. Hence,
f(t) = ~-ma,(t)

A dynamic analysis of the 3 DOF structure for the first 10 seconds of seismic excitation is
shown in this example. The physical properties of the frame including the viscous damp-

ing are the same adopted in the first example.

First a nonlinear analysis is performed using the PDT method by means of the INIT and
PSEUDO commands. The algorithm chosen is the Newmark explicit and the time inter-

val At selected is 0.01s.

Next an analytic linear analysis using the Newmark explicit method by means of the
STEP command is shown. The plot of the first DOF displacement response for the first

2.5s using the PLOT command is included at the end.

It should be pointed out that in this example the disk file EC40.ACC contains a (2 x

2001) matrix which has on the first row the time values at equal intervals 0.02s ranging

a
from 0 to 40 = and on the second row the El Centro accelerogram record (T'XIO’] at the

corresponding time values. The commands DEFINE and RFILE are used to put the
matrix ACC in the DATABASE file. Next the command FUNG is utilized to form the
accelerations array at equal intervals 0.01s (AT chosen). The accelerations are
transformed to in./s? by the commnand SCALE so that the displacement response will be

given in inches.
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