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ABSTRACf

Concern is with protection against natural catastrophes through financial insurance.

Development of appropriate premium rales requires consideration of a wide variety of vari­

ables entering int) the occurrence of the disaster and a broad range of scientific and statistical

investigations result. Topics discussed include: premium computation. distribution of larae

earthquakes in time, ground motion at sites. attenuation of energy with distance, dama&e

description and actual practice in various countries. Statistical considerations that arise

include: description, stochastic modelling, conditioning, spatial processes, (marked) point

processes, uncertainly estimation and robust/resistant procedures. Study of the insurance pr0b­

lem is scientifically enlightening because it requires one to focus on the whole context of the

problem; geology, seismology, earthquake engineering, damage.
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1.INTRODUcnON

. Statistics has a long involvement with problems of risk and insurance. This occurs

because of variabilities. because of uncertainties, because of estimation problems and because

of choice of loss functions. Many of the techniques of contemporary statistics appear useful

in problems of insurance. In tbis report there are considerations of: description, stochastic

modelling, conditioning, (marked) point processes. spatial processes, robust/resistant pro­

cedures and uncertainty estimation. The basic approach is via conceptual modelling and data

analysis. in contrast to a "black box" approach.

Preliminary to the problem of determining an earthquake insurance premium is that of

seismi,;,. risk assessment. Seismic risk assessment may be defined as the process of estimating

the probability that certain performance variates at a site of interest exceed relevant critical

levels. within a specified time period, as a result of nearby seismic events. The seminal paper

on the topic is Cornell (1968). Other basic works arc: Vere-Jones (1973), Lomnitz (1974),

McGuire (1974). Walley (1976), Blume and Kiremidjian (1979). - Addressing the insurance

issue forces consideration of more than a risk problem, one needs to consider the whole

sweep of geology, seismology. earthquake engineering and damage.·

Genenlly speaking the techniques employed are applicable to other environmental risks,

that is to other small probability events with substantial negative consequences.

. Much of tbis report is review of existing material. but some new scientific results are

included.' In particular an automatic method of constructing isoscisrnal maps. employing com­

mercially available software, is presented and new expresslODs relating modified Mercalli

intensity to maximum acceleration are derived. It is clear that a variety of interesting statisti­

cal and actuarial problems arist.

A general reference for the background seismology is Chapter 17 of Bullen and Bolt

(1985). Some elementary expressions for premiums are developed in an Appendix to this

report.

.-- I ~
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2. INSURANCE

Financial insurance is one means our society has devised for alleviation of disasters.

There arc two distinct formal procedures for setting premiums: first, via specific formulas

based on a conceptual model (Richard (1944), Beard et al. (1969), Freifelder (1976), Goo­

vaerts et al. (1984), Sundt (1984), Heilmann (1988), Straub (1988» and secondly, via the

black box (control theory, time series) approach (Bohman (1979), Norberg (1990), Aase

(1992». A concern in the black box approach is that the nonstationarity of the basic quanti­

ties may make it difficult to determine parameters of relationships. This report will concen­

trate on the conceptual approach.

A variety of formulas have been proposed for the determination of premiums. assuming

that a random loss may have to be compensated for. Basically a company wants income to

approximately equal outgo. The problem is sensibly focus..'\ed to two crucial components,

Smolka and Ben (1991);

- calculation of a premium commensurate with the risk,

- estimation of the size of the probable maximum loss resulting from a potential catas··

trophe.

To be specific, consider a time period of one year and suppose that the yearly possible

loss is a random amount U. (Interest considerations will be ignored.) The pure risk premium

for a year's insurance is given by

P -E{U} - ~u (1)

Because of expenses, the pure premium will have to be "loaded" and for example the prem­

ium taken to be

P - (1 + a) ~u (2)

The multiplier (1 + a) has the effect, above handling expenses, of providing some protection

against random fluctuations in loss beyond the average E {U }.
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Other premium formulas that have been suggested. and that take note of random ftuctua­

tions, are

p • J.1u + ~ou and P - flu + y03 (3)

with ~. y > O. The latter has the property of being additive for independent risks, see Straub

(1988).

A further procedure for determining premiums is to select some ICCCptable, probability

of ruin E and, supposing that a reserve of R is available, determine the premiums such that

Prob{Su > R + S,.}:II: £ (4)

where Su and S,. denote the sums of claims paid out and premiums paid in, respectively, dur­

ing the year. References to the computation of ruin probabilities are: Beard et al. (1969),

Freifelder (1976), Heilmann (1988), Grandell (1991). In the Appendix, the form of (1) - (4)

for the case of rare events is considered.

Insurance, for the particular case of earthquakes, is discussed in Straub (1913), Vcre­

Jones (1973), Lockett (1980), Grases (1986), Porro (1989) and Munich Re (1991).



3. STRATEGY

The usual approach to seismic risk assessment, defined in Section 1, is to break the prob­

lem down into basic components that may be investigated individually. This multistage

analysis requires critical investigation of four pieces: (a) sources of events, (b) intermediate

transmission of energy from the sources, (~) the locai site and (d) the particular facility of

concern. The earthquakes may be thought of as originating at points, on lines or within zones

(the geometry). They will have different sizes and occurrence times. The intermediate

transmission of the seismic signal involves attenuation of energy with distance and depends on

the media traversed. Aspects of the local site include geology and ground type. In some stu­

dies the dynamic response and resistivity of the structure of interest are modelled. The fields

of geology, geophysics, seismology and engineering are al. involved.

In a naive assessment one might postulate: (i) that there is a single source with the point

process of events Poisson of rate ~ and with earthquake magnitudes distributed exponentially,

(Prob {magnit&u:le > M} - exp{-PM}), (ii) that intensity of motion falls off with magnitude

and distance in accordance with

(5)

d being the source to site distance and noise being a normal variate with mean 0 and vari­

ance 02, and (iii) that the behavior of the stnlcture is effectively described by J. The risk

may be evaluated explicitly in thLc; case as

Prob {intensity i exceeded within time period of u}

where

It needs to be mentioned that each of these assumptions is debatable and that variants have

been investigated.
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In the insurance CtiC one needs to continue and to model the loss that could be experi­

enced. This may be done through the percent of damage likely to be experienced for I given

building type, see discussion in Section 7.

There is a need for models, for parameter estimates and for the recognition of statistical

regularities in the work.
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4. TEMPORAL ASPECf

As indicated in the previous section, some means of describing the temporal rates of

occurrence of damaging earthquakes is required. The basic series of times involved is often

modelled by a stochastic point process. A variety of specific point process models has been

suggested, see Vere-Jones (1970). When for example total damages are associated with the

earthquake times, one has a marked point process.

The following is an explicit example of the development and fitting of a point process

model. Pallett Creek is an area in Southern California lying by the San Andreas Fault. In

Brillinger (1982) and Sieh et al. (1989) the times between large seismic events there are

modelled as independent Weibull variates. A Weibull variate may be defined as follows: if x

denotes the time elapsed since the preceding event. then the hazard function

h (x) =Prob {event in (x ,x+~)ilast at time O)/~

for small 6.. has the fonn

For example. if P- 1 it i~ constant and if P > 1 it increases steadily with II. The reasonable­

ness of this assumption may be assessed by a cumulative hAZard plot, see Nelson (1972). Fig­

ure 1 provides such a plot based on the Pallett Creek data. One graphs the times between

events and checks to see if they fall near a straight line. The Weibull assumption does not

appear invalidated in this case.

A difficulty that arose for the Pallett Creek data was that in one case, it could be inferred

that an earthquake had taken place between two others. The dates of the bounding two could

be estimated directly, but the date of the event in between could not. This led to one observa­

tion t!'lat was the sum of two Weibulls. Also in fonning the likelihood, the censorship

involved in the open interval starting at 1857 and measurement error had to be taken account
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of. Details are provided in Sieh et al. (1989). The maximum likelihood estimates determined

were

a. 166.1 z 44.5 ~ - 1.50 z 0.80

The following risk estima!e was then determined

Prob {event in N!Xt year I Uut ill ISS7)

with a corresponding approximate 95% confidence interval of (0.004,0.026).
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5. SPATIAL ASPECf

After a sizeable earthquakr many measurements of consequences are made in the sur­

rounding regions. For example, strong motion seismometers will De examined to see if they

were triggered. In the case that they were, the maximum acceleration recorded will be noted.

In addition reports are received from selected observers on a verbally described scale, the

scale of modified Mercalli (MM) intensities. This scale provides 12 discrete levels of increas­

ing severity. For example the description of MMVTU reads

Damage slight in specially designed structures; cnnsiderable in ordinary substantial

buildings, with partial collapse; great in poorly built structures. Panel walls thrown

out of frame structures. Fall of chimneys, factory stacks, columns, monuments,

walls. Heavy furniture overturned. Sand and mud ejected in small amounts. Change

in well water. Disturbs persons driving motor cars.

There are certainly basic difficulties with the MM scale. An important one is that there are

not susceptible structures at every location so that possible damage there could not be

recordu1. Various aspects of the MM scale are discussed in Reiter (1990) and critical

remarks may be found in Steinbrugge and Algermissen (1990). Most workers seem to agree

however that for damage studies it is the best thing generally available. An improved scale is

suggested in Brazee (1979).

When such acceleration or intensity data are examined, there is found to be a general

fall-off in severity of effect, with distance fro=n the earthquake source, however substantial

variability and irregularity are invariably present. This may be seen in Figure 4 below.

In the case of intensity data, isoseismal maps arc prepared. The purpose of such maps is

to show the pattern of ground-shaking and associated damage. The isoseismals arc meant to

be contours of equal intensity, to bound areas within which the predominant intensity is the

same. The drawer seeks, for example, to draw a curve encircling all the MM vm values, but
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scattered VllI's will be ignored. The drawing of the contours is highly personal, ego Reiter

(1990). p. 37 states "... drawing isoseismals can be a subjective process that may lead to

different outcomes for different analysts." Bruce Bolt has emphasized to this writer a critical

aspect of existing isoseismal maps. namely they are conservative in two senses. First the indi­

cated intensity level at a location is the highest ol;e noted. Second the isoseismals themselves

are drawn as far out from the source as reasonable to include all locations with given inten­

sity.

One intention of this paper is to indicate that it is in fact possible to employ formal algo­

rithms to generate isosei.ltmals. Figure 2 presents some preliminary results for the Lorna

Prieta, California, event of 17 October 1989. This, "World Series", disaster took place near

Santa Cruz, California. It had magnitude 6.9, duration 10 seconds, and led to 63 deaths, 1300

buildings destroyed and J.9 billion dollars damage. The largest MM intensity was IX.

(Further details of the event may be found in the October 1991 number of Bull. Seismol. Soc.

America.) In Figure 2 the small triangles indicate the positions of the measurements. The

source of the earthquak~ oS marked by a hexagon.

The MM intensity data analyzed are those employed in Stover et al. (1990). There were

921 observations. The isoseismals appearing in Figure 2a were prepared via the procedure

"loess", described in Oeveland and Devlin (1988), or Chapter 8 of Chambem and Hastie

(1992). This is a local regression procedure that smooths the data in a robust/resistant

fashion. In simplest form, the "smoothed value" at the position with latitude and longitude

(x ,y) is S(x ,y) - g«x,y )18~,y) where 8~,y is the value mininimizins

1: Wi(X,y) [Ii - g«x;,y;)16)f
i

(6)

and for example g (x ,y) is a function assumed linear in 6 and x, y. The data are intensity Ii

recorded at location (Xi,Jj), for i -l,...,n. In the loess procedure

where
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W(,,) - (l_,,3y for I.. I < 1 and - 0 otItel'WiM

with J, (x ,y) the distance from (x ,y) to (x,,y,) and J (9~x ,y) the q-th smallest of these dis­

tances. One includes in (6) a prespecified fraction qln of the points, here 0.1. There is also

a robusVrrsistant variant that downweights outliers. (Details may be found in Chambers and

Hastie (1992». The smoothed values, at points on a grid, are then contoured for plotting.

The resultant Figure 2a is notably similar to the United States Geological Survey's officially

produced map, Stover et al. (1990). The spread of the MM intensities about the smoothed

values has (1 - 1.09. (The values are very scattered.) One can also obtain standard errors for

the smoothed function values.

Figure 2b pl"C$I;nts the results ot the same computations for the maximum accelerations.

In this case the data arc taken from Boore et al. (1989). There are 266 observations. The

general fall-off of strength of motion with distance from the rourcc of the earthquake is again

app:srent.

The similarity of Figures 2a and 2b is noteworthy for seismologists and seismic

engineers. These professionals have been concerned with relating Merealli intensity and max­

imum acceleration. One reason is that inun~ity estimates are available for historical eanh­

quakes for important regions. while maximum accelerations have only been recorded routinely

in the last thirty years. Contemporary seismic risk analyses are often based on acceleration

values. When acceleration data are unavailable. there is impetus to include estimates for old

events bued on MM intensities. A serious difficulty in constructing a conversion relationship

however is that, even when recorded for the same event, the intensities and accelerations are

usually measured at different places. The solution employed here is to obtain smoothed

values of both quantities at common grid locations and then fit a relationship. The smoothing

has the effect of reducing "measurement error".

Figure 3 is a scatter diagram of the smoothed acceleration values of the grid of Figure 2b

against the corresponding smoothed MM values of Figure 2a. There is a suggestion of

Ipproximate linearity with considerable scatter. Robust/resistant prediction lines of each
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variate on the other have been added. The prediction relations determined are:

In A • -8.44 + 1.04 IItIJI IV s JItIJI s VIII

iMltl - 7.71 + 0.79 In A 0.02 sA s 0.50

(7)

(8)

Here acceleration is measmed in units of r • 9SOcm Isec 2• 1ltere follows a table of predictor

and corresponding predicted values,

Table 1

[JIM A,g A,g iJIJI

8 0.89 1.0 7.7

7 0.31 0.5 7.2

6 0.11 0.25 6.6

5 0.04 0.125 6.1

4 0.01 0.063 5.5

No standard errors have been provided for these fits because in their computation, DOte would

be taken that the values at the different grid points are statistically dependenL (Standard

errors will be developed in later work.) For comparative PUrpolCS one can DOte that TrifunIc

and Brady (1975) determined the following relationship, for horizontal accelerations,

In A - -6.558 + 0.691 IJIM for IV s IIDI s X

while Bolt (1978) found

In A • -7.671 + 0.721 IItIJI

and Dowrick (1989) determined, for New Zealand,

In A - -7.772 + O.nl IIDI for IJIM 5 IX

Standud errors an: needed to _ whether these various rcbdionImp. U'C cuentiaIly
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different. It is importr..llt to have the two relationships, (7) and (8), because 00 some occa­

sions one wishes to replace A and on some occasions IMM'

An interesting question is how to indicate the uncertainty of maps like those of Figure 2.

Musmed (1984) proposes the use of a bootstrap procedure. Bootstrap procedures are dis­

cussed in Diaconis and Efron (1983), for example.

De Rubeis et al. (H92) have also proposed an objective procedure for constructing

isoseismal maps and discuss the importance of having such. Their procedure involves least

squares fitting of polynomials within circles. It does not handle outliers, downwcight points

smoothly with distance, nor provide standard errors however.
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6. ATTENUAnON

For assessing seismic risk and determining insurance premiums at a particular site, an

attenuation law like (5) above is needed.

Figure 4 is a graph of the accelerations and MM intensities of the Lorna Prieta event

plotted versus distance from the source. (In the case of the intensities, distances are taken

from Boore et at. (1989». A substantial amount of scatter is prescnt, and there is a falloff of

severity wit" distance. The smooth curves on the figures correspond to robust/resistant

smoothi.lg of the data. The cluster of high values at a distance of about lOOkrn corresponds

to the extreme motions recorded in the San Francisco / Oakland region, perhaps due to local

geology, Lomax and Bolt (1992).

It is convenient to have a particular functional form for the attenuation. One such that

has been proposed by Joyner and 800re (1981), for the maximum acceleration at distance d

for an event of moment magnitude M, is

A _ !elW e-Ttl
d

involving parameters P and y. In Brillinger (1989) a variant of this is fit to data (djj,Mj ,,4.jJ)

for J - 23 western U.S. events, the i -th having J i data values, i.e. j - 1....); and i • 1,...,1.

The model fitted is

(9)

where the Ui' Pi. Yi' ~j are independent random effects for the i th earthquake with normal

distributions and the Ejj are independent normal noise values. The relationship (9) could be

converted to one for J111M via the prediction formula (8).

Figure 5 provides the result of fitting model (9) to the Lorna Prieta acceleration data in

the manner of Brillinger (1989). The curve provides an estimate of the acceleration, for the

lorna Prieta event, at a given distance from the source.

In the analysis local site effects have been ignored since the emphasis is on damage and

on the relationship of A and J1tDI.
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7. DAMAGE

By damage is here meant economic loss caused by an earthquake. It relates to the per­

formance of structures. Most of the discussion to follow has in mind damage to insured pro­

perties. Damage is commonly described by a loss ratio that varies with the strength of shak­

ing and type of structure. For a given strength of motion a variety of damage levels are secn

to occur, necessitating the use of distributions. Dowrick and Rhoades (1990) for example

found the distribution of damage ratios in an intensity zone to be approximately lognormal.

One needs something like a motion-damage relationship or damage-probability matrix, see

Panel on Earthquake Loss Estimation Methodulogy (1989) in order to proceed. The following

is an example of loss ratios for buildings, by flsk category in percent,

Table 2

residential 0.4% 1.7% 6%

commercial 0.8% 3.5% 11%

industrial 0.1% O.7'i~ 3%
---------- 1 ---._---_ .. - --- ---~-

I
IX_X~

17% 42% I
27% 60%

11% 30%
. ._ J

These values are taken from Figure 42 in Munich Re (1991).

Specific formula~ have been proposed on occasion. Following California studies, Stein­

brugge and Algermissen (1990) suggest, in the case of pre-1940 dwellings

Y _ (O.114M + O.259)(8.534Fe-O·05389X)

where Y is loss over the deductible in percent, X is deductible in percent, M is the event's

magnitude and F is an uncertainty factor, for example 1.50. There are similar formulas fol'

other ages and types of structures. McGuire (1986) suggests
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D .. 24.7 + 17.8 logtoCA) for A > 0.041

wh(~re D is damage as a percentage of value and A is in units of g. This could be rewritten

in terms of IAtAI using the relationship (7).

Thcre is all extensivc discussion of this topic in Panel on Earthquake Loss Estimation

Methodology (1989). A difficulty in carrying out damage studies is that the data are often

propri,~tary.
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8. PARTICULAR PRACIlCE

The practice and laws of earthquake insurance vary with country and even within coun­

try. A brief description of some follows.

CalifonaitL In California some companies use thlee "territories". For example in Terri­

tory 1 (mainly Imperial County) for a frame house with a deductible of 1~ the cost of

insurance is 6.S0 dollars per 1000 coverase. There has been • State run plan, the California

Residential Earthquake Recovery Program, providing coverage for houses of 15,000 dollars,

with a deductible of 1000 doll.rs for a cost of 60 dollars/year.

IsraeL The Israeli case is detailed in Kahane (1988). The insurance is part of the

homeowners policy. The country pays reinsurance premiums on order of 15,000,000 dollars

and is said to b: "one of the largest customers of earthquake insurance in the world market"

ibid.

JiJptUL The insurance for homes is an endorsement to fire coverage. Premiums are

based on a statistical analysis, see Matsushima (1989). Historical records provided evidence

of 349 damaging earthquakes during the 48S years between 1494 and 1978. Their magnitudes

and hypocentres were estimated. The probable amount of damage that these would cause if

they occurred in the present year was estimated. The pure premium was this amount divided

by 485. Finally loadings were included. In the analysis the country was divided into five

zones. For example the rates, per thousand yen insured, for wooden buildings were 4.80 for

Zone S (Tokyo, lCanagawa and Shimon.) Reinsurance is provided by the govemment.

New ZNlhuttL The New Zealand approach changed recently. It is part of fire insurance.

For homes there is a limit of 100,000 doilars coverage at a cost of O.SO per 1000. The coun­

try has • billion dollars of reinsurance cover for 1992 for 31,698,000 dollars for claims above

1.25 billion, see EQC (1992). The New Zealand reinsurance program is thought to be the

IlJ'FIt catastrophe coverage in the worid, Steven (1992).

The foliowiD. quotes indicate some of the ft.vor of earthquake insurance pnctice.
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"The rate of premium has never been aetuarially based." Hellberg (1984)

"We are a California company so cannot offer earthquake insurance because of the risk." Cali­

fornia Casualty (1989)

"earthquake loss estimation is presently more an art than a science" Rojahn and Sharpe (1985)

"There arc surprises after every earthquake" Steinbrugge (1989)

"The calculation and enforcement of 'correct' premium rates is. of course. important in the

long term. Nevertheless, there are further economic and social factors that also influence the

rates charged eventually." Smolka and Berz (1991)

Some of the practice of reinsur.ulce companies in determining rates is described in Porro

(1989) and Munich Re (1991). The latter may be described as follows: one has Table 2 of

damage percents. For the site of interest one determines a table of annual probabilities such as

Table 3

IMJrI VI VII VIII IX X

Prob. 0.04 0.014 0.005 0.003 0.001

For residential properties this leads to a net premium of

0.4)(0.04 + 1.7)(0.014 + 6)(0.005 + 17xO.OO3 + 42)(0.001 - 0.1628%

or 1.63 per 1000 dollars coverage. Loadings would be added to this figure.



-18-

9. ornER ASPECTS

This report has so far focussed on only part of the loss estimation story. Attention has

been directed to the problems of event timings, attenuation of energy and damage laws. How­

ever in a study for a given region the particular locations of faults are needed. As an example

for the case of California see Wesnousky (1986). Magnitudes or intensities are also needed

for each fault. There are functional forms based on the lengths of faults. Attenuation laws,

like (5) and (9), are next applied followed in tum by damage laws.

Nonscientific issues arise too. Regulatory agencies are concerned with the solvency of

insurance companies. In California the concept of probable maximum loss (PML) is

employed in assessing this, see Califcmia Department of Insurance (1990). The PML is

defined as the average probable maximum monetary loss which will be experienced by 9 out

of 10 buildings in a given earthquake building class in the specified earthquake PML zone.

There are 8 such zones for California. An event of Richter magnitude 8.25 is assumed. A

yardstick sometimes employed to assess solvency is that the potential loss on one risk should

not exceed 10% of the surplus, ibid.

Insurers protect themselves by reinsurance. This is the sharing of insurance risks with

other insurers. It is used extensively for earthquakes and catastrophes. As an example of just

how extensive note that for California Zone B (Los Angeles and Orange Counties), only 26 %

of the PML is retained by the insurer of record, California Department of Insurance (1990).

However wanting reinsurance is one thing, getting it is another as Japan and New Zealand

have found on occasion.
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10. DISCUSSION

General needs of the insurance industry are discussed in Holden and Real (1990) and

Workshop Report (1990) and the practice is evolving. Both New Zealand, New Zealand

Government (1988), and the United States are involved with major changes and controversies.

In the United States case the insurance industry sponsored the Earthquake Project, a proposal

to the Federal government for a joint program in the event of a major earthquake. The

Federal Emergency Management Agency (FEMA) was not impressed and recommended

against the program. In California too the government program was viewed negatively and

the California Earthquake Recovery Program ended.

Another c1Spect of earthquake insurance is how it is treated under tax laws. One point of

dispute relates to the taxation of reserves. Kahane (1988) remarks on the "need for tax rules

allowing for larger reserves for unexpired risks".

The focus of this report has been on earthquake insurance. but the basic principles apply

to other catastrophes as well. We may mention: floods, hail, fircstorms, landslides, tsunamis,

volcanic eruptions, windstorms.

It is clear that many technically interesting problems remain for geologists, seismologists,

engineers, statisticians and actuaries.
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Cumulative Weibull hazard plot
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Figure 1. A hazard probability plot to assess the reasonableness of the WeibuU distribution

for the intervals between earthquakes at PaUelt Creek. The points plotted correspond to esti­

mates of the intervals between events. The vertical bars indicate plus and minus twice their

standard errors. If the distribution is reasonable the points should fall near a stniabt Iiae.

For reference a fitled line bas been added.
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Figure 2a. Smoothed values of the maximum acceleration at loprithmically spaced levels for

the Loma Prieta event. The triangles give the locations of the measurements.
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Figure 2b. Isoseismals obtained by employing the procedure loess of OIambers and Hastie

(1992). For example the region between the contoun 4.5 and 5.5 is meant to correspond to

an MM intensity of V. The triangles give the locations of measurements.
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Smoothed acceleration vs. smoothed MMI
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Figure 3. Corresponding smoothed values of accelerations and MM intensity on which Fig­

ures 2a and 2b were based are plotted against each other. The lines are robust/resistant

regression lines of A on IMM and vice versa.
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Max accelerations
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Figure 41. A scatter diagram of observed maximum acceleration values versus distance for the

Lorna Prieta event The curve added is robust/resistant smoothed. The data are taken from

Boore et a1. (1989).
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MM intensities
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Figure 4b. A scatter diagram of observed MM intensities versus distance for the Loma Prieta

event.
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Lorna Prieta Data
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Figure S. The data of Figure 4a with" fitted line derived under the model (9) added.
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APPENDIX

Attention will focus on a single year and a damaging event that can happen at most once

in that year. Let n denote the probability of the event's occurrence, Prob {U .. O}, and if the

event does occur, suppose the random 105.1; is L.

Define an indicator variable J that equals 1 if the event occurs and 0 if it does not. Then

the loss. U. of Section 2 may be written as U - IL. >From this one sees that

and

respectively, with the last relationship assuming thatn is sm211.

In the case that many units are involved. L will be the sum of many individual losses

and the distribution may be approximated by a nonnal. If ~.) denotes the normal cumula­

tive, then the probability of (4) is given by

For the premium rule (1), P - n....L' this beoomes

l'tft - ~(R - (t-l't)....d/cdl

which may be used to compute the probability of ruin given the reserve, R and the values of

JA.L and 0L' Altemately, for given E one can solve for the premium as follows

P - J4L + 0L <1>-1(1 - ~) - R
l't

The effects of several years operation can be studied as in Benjamin (1986).

Suppose that R - lOlLL, the yardstick proposed in Section 9, the ruin probability

becomes

This is seen to increase with the coefficient of variation 0L IJAL' The expression can be used to
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study ruin probabilities.

Other premium rules can be investigated in a similar fashion. Note that the effects of

employing estimates for parameters. rather than actual values. remains to be addressed gen­

erally.
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