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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand and
disseminate knowledge about earthquakes, improve earthquake-resistant design, and implement
seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis is on
structures in the eastern and central United States and lifelines throughout the country that are found
in zones of low, moderate, and high seismicity.

NCEER’s research and implementation plan in years six through ten (199, 1996) comprises four
interlocked elements, as showninthe figurebelow. Element I, Basic Research, iscamied outto support
projects in the Applied Research area. Element 11, Applied Research, is the major focus of work for
vears six through ten. Element 111, Demonstration Projects, have been planned to support Applied
Research projects, and will be either case studies or regional studies. Element IV, Implementation, will
result from activity in the four Applied Research projects, and from Demonstration Proects

ELEMENT | ELEMENT Il ELEMENT lii
BASIC RESEARCH APPLIED RESEARCH DEMONSTRATION PROJECTS
* Seismic hazard and + The Building Project Case Studies
ground motion = Active and hybrid control
* The Nonstructural + Hospital and data processing
» Solls snd geotechnical Components Project facilitios
enginsering » Short and medium span bridges
* The Lifelines Project q * Water supply systems in
+ Structures and systems Memphis and San Francisco
* The Highway Project Regional Studies
* Risk and relisbility * New York City
* Mississippi Valley
+ Protective and intelligent « San Francisco Bay Ares
systems
+ Societal and sconomic
studies I | J—I?
Vv v
ELEMENT IV
IMPLEMENTATION
+ Conferences/Workshops
¢ Educstion/Training courses
+ Publications
¢ Public Awarenass

Research in the Building Project focuses on the evaluation and retrofit of buildings in regions of
moderate seismicity. Emphasis is on lightly reinforced concrete buildings, steel semi-rigid frames, and
masonry walls or infills. The research involves small- and medium-scale shake table tests and full-scale
component tests at several institutions. In a parallel effort, analytical models and computer programs
arebeing developed to aidin the prediction of the response of these buildings to various types of ground
motion.
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Two of the short-term products of the Building Project will be a monograph on the evaluation of
lightly reinforced concrete buildings and a state-of-the-art report on unreinforced masonry

The protective and intelligent systems program constitutes one of the important areas of research
in the Building Project (urrent tasks include the following

|

2.

3
4

Evaluate the performance of full-scale active bracing and active mass dampers already in place
in terms of performance, power requirements, maintenance, reliability and cost.

Compare passive and active control strategies in terms of structural type, degrec of effective-
ness, cost and long-term reliability

Perform fundamental studies of hybnd control.

Develop and test hybrid control systems

Research at NCEELR on seismic applications of viscoelastic dampers to retrofit nonductile concrete

SJrames is being carried vut as a collaborative effort among researchers at the {niversity of [Hinois,
U.S. Army Corps of Engineers, the 3M Company, and the State University of New York ar Buffalo.
Presented in this report are results related to viscous and stiffness effects due to addition of the
dampers on the inelastic response of reinforced concrete frames. Verification of these results was
performed based on shaking table tesis conducted ona one-third scaled model of a three-story lightly
reinforced concrete frame.
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ABSTRACT

The addinon of viscoclastic braces i structures for vibration reduction was proposed and
implemented 1n the past decade in metal models or full-scale structures. Viscoelastic braces provide
cnergy dissipation. while the structures remains by-and-large elastic.  In reinforced concrete
structures, the seismic response (s by-and-large inelastic, which ts often accompanied by permanent
deformations and damage. The addition of viscoelastic dampers can dissipate ¢nergy at the carly
stages of cracking of the concrete elements and reduce the development of damage. With proper
selection of dampers, this damage can be substantially reduced or even chminat~d. However the
addition of viscoelastic dumpers may stiffen the structure unnecessarily producing increased inertial
forces and hase shears when subjected 1o seismic motion. The quantification of the influence of
viscous and elastic stiffness properties of dampers during the inelastic response of reinforced
concrete structures is the subject of this investigation. Maodels tor analysis of inelastic response
with damage indexing for reinforced concrete structures that include viscoelastic braces are
developed and cabibrated using experimental data produced by shaking table tests. These models
are then used to determine the vanation of expected damage in the presence of damping and quantify

the hysteretic energy dissipation along with the damping energy.
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SECTION 1
INTRODUCTION

The addition of viscoelastic braces in structures for vibration reduction was thoroughly investigated
in the past decade using metal scaled models or full-scaled structures. While the viscoelastic braces
provide cnergy dissipation through non-load bearing elements. the load bearing structure remains
hy-and-large elastic. Reinforeed concrete structures are designed to resist earthquakes by dissipating
the input energy transmitted to the structure through inelastuc deformations of the load bearing
components. The seismic response is therefore accompanied by permanent inelastic deformations
and damage. Proper selection of additional viscoelastic dampers can contribute to the energy
dissipation in the early stuges of cracking and limit the development of damage or completely

eliminate it.

Various damping devices were suggesied for use in structures to limit damage to the load bearing
structural clements. Of these devices the two more popularly used are: (i) the direct shear seismic
damper (DSSD) (Mahmoodi, 1969) and (ii) the steel plate added damping and stiffness (ADAS)
damper Scholl ,1990). Mahmoodi (1969) showed that viscoelastic dampers at appropriate locations
within the structure are effective in reducing the vibrations in tall buildings. These dampers have
proved successtul as adequate damping devices with stable engineering properties with regards to
aging in the World Trade Center Buildings (New York) and the Columbia Center Building (Seattle),
(Keel et al. 1986). A number of experimental studies have also been conducled to show the
effectiveness of these dampers in reducing the story displacements, accelerations, shear forces, and
damage to structures. Linet al. (1991) tested a 1/4-scale three story steel framed model building,
Chang et al. (1992) tested a 2/5-scale five story steel framed modei building, to name a few. These
studies show conclusive evidence that mechanical dampers, acting as non-load bearing elements,
effectively damp the vibrations in buildings caused by wind, seismic, or other forms of transient

lateral loadings. These dampers effectively dissipate the input energy to the structure by increasing
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SECTION 2

INELASTIC DAMAGE ANALYSIS OF REINFORCED CONCRETE
STRUCTURES WITH VISCOELASTIC BRACES

Inelastic analysis of renforced concrete structures to seismic or wind loadings has been the subject
of several previous developments for planar systems, such as DRAIN-2D (Kanaan and Powell,
1973). SARCF (Rodriguez-Gomez et al., 1990) and a family of analytical developments, [IDARC
(Park et al., 1987 and Kunnath et al., 1992). A recent development of the two dimensional version
of IDARC (Kunnath et al., 1992) was extended to a full three dimensional analysis of reinforced
concrete structures including space torsional behavior and biaxial bending interaction in the
structural elements, IDARC-3D (Lobo et al.. 1992). The salient features of the above analytical

model for reinforced concrele structures are:

(1) An extensive hysteretic model governed by several parameters to simulate inelastic behavior
of beams, columns, shear-walls, and braces.

(i) A distributed flexibility model that accounts for the nonsymmetric distribution of plasticity
along the members.

(iti) A variety of loading conditions including simultaneous action of static, cyclic, and random
forces and base excitations.

(iv)  Evaluation of damage progression and energy balances. The hysteretic model has the
capability of reproducing a variety of hysteretic curves by selection of three independent
parameters which control stiffness degradation, strength deterioration and pinching usually
generated by bond slip of the reinforcement during cracking (Kunnath et al., 1992).

The above analytical platform was verified using extensive simulations and comparisons with
experimental data from laboratory tests of components and structures (Kunnath et al., 1992, Bracci

et al., 1992a, 1992b, 1992¢, and El-Attar et al., 1991}. The simulations obtained are suitable to
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cither duplicate or predict actual measured behavior. Thus the analytical mode! IDARC-3D was
chosen as a base 10 develop the new models for analysis of reinforced concrete buildings with
viscoelastie dampers.

2.1 Numerical Solution for Dynamic Analysis

The inclastic analysis of structures with viscoelastic braces is done using numerical models and
direct integration techniques. The fundamental cquation of motion for numerical integration is
expressed in matrix form as:

Mii + Co + Ku = -MlIu +F, (2.1)
where M = mass matrix, C = mass proportional damping matrix, K = instantancous overall stiffness
matrix, 1= vector of ones or zeros indicating excitation in any degree of freedom. u, 0, and @ =
displacement, velocity, and acceleration vectors, respectively. &, = ground acceleration vector. and

F, = wind torces.  Equation (2.1) can be solved by a linear step-by-step dynamic analysis
procedure using the Newmark Beta constant average acceleration method, which gives an uncon-
ditionally stable solution. It can by expressed in a generalized form in terms of the incremental

forces and displacements after the inclusion of the additional stiffness and damping from the

viscoelastic braces as:

AF = K'Au 2.2)

where . 4 . .
AF =-MlAi, + AF, + M[EI'I + 2] + 2[C + AC]a

. 4 2. .
K =[FM+E[L + AC) +[K+AK]]

o aeld) IR - 1} t- 1)
Al =il -4 ", AF, =F, - F,

[y ®
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where Au = tae vector of incremental displacements, Aii, = the increment of ground acceleration,
Al =the vector of incremental wind forces. @ and ii = the velocity and acceleration at the beginning
of the time step, and  AK and AC = the matrices corresponding to the additional stiffness and
additional damping provided by the viscoelastic braces. These matrices can be obtained by line-
arization of trequency dependent viscoelastic models models of complex formulation as shown n

the following.

The gtobal equivalent viscous damping in reinforced concrete buildings seems 10 play an important
role for the elastic behavior, usually in the non-damaged state. When structures enter the inelastic
range much cncrgy s dissipated by hysteretic behavior and therefore the influence of this viscous
damping cffects 1o the total apparent damping diminishes. A proportional datping representation
used in IDARC-3D, (Lobo, 1993), accounts for the global viscous damping and produces scceptable
results both in the elastic as well as the inelastic runge. When more control on the damping in the
various modes is required. in the elastic range, the propontional damping matrix can be expressed
as:

{

C = oMM 'K} + e MM 'K)' + o,MM 'K)' + ... (2.3)

where o, 0., are proportionally factors that lead to real modes and frequencies. The first two

terms correspond to the mass and stiffness proportional damping respectively. Using an effective
critical damping ratio, &, corresponding to mass or stiffness proportional damping matrix, could
yield adequate results if the number of dampers were located uniformly throughout the structure.
This procedure provides. however, only an approximation of the damping produced by addition of
supplemental damping such as provided by viscoelastic braces, which is non proportional. In the
further modeling it is assumed that, only the lateral degrees of freedom are affected, without
influencing the damping to the rotational degrees of freedom. Non proportional viscous damping

for multi degree of freedom systems, produces free vibration response of the structure, that is
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exponentially damped atthe same frequency. butat different phase angles, resulting in non stationary
modes. This is well represented by complex eigen values and cigen vectors. Thus the use of an
equivalent critical damping ratio & 10 represent damping is only an approximation limited o

structures with evenly distributed supplemental damping.

Various atlempts were made toemphasize more realistically the influence of added damping. Instead
of the equivalent darnping approach, Caravani and Thomson (1974) suggested to define a damping
matnx that included the influence of story damping in an implicit way. Modeling of viscoelastic
braces was successfully atempied by Hanson et al., (1987). Su and Hanson (1990) modeled the
structural and hysteretic damping of ADAS devices using the Ramberg - Osgood hysteresis model
in DRAIN-2D (Kanaan and Powell. 1973). Pall et.al (1982) modelled the response of structures
with diagonal cross friction bracing using a non symmetric bilinear model, also using DRAIN-2D.
Recently Liang and Lee (1991) have expressed the damping matrix similar to the previous authors,
however the influence of modal frequencies and structural brace configurations was also included.
The mudel of viscoelastic braces used in IDARC-3D and detailed in the next section is an extension

of the models proposed by Ashour et al. (1987) and Liang et al. (1991).

2.2 Determination of Damper Properties

Viscoelastic damping material as the name implies, has two components, the viscous part or energy
absorbing part, and the elastic part or energy restoring part. Figure 2.1 shows a typical structural
maodel with supplemental viscoelastic braces which sceves as a test case for modeling and analysis

using IDARC-3D. For a single viscoelastic damper (see Fig. 2-2) subjected to a steady state har-

monic excitation. the damping force can be described by the complex relation:

F(w), = [tk () + ik(w)}x(w) (2.4)

24
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where F, = the force in the brace. &,(w)=the shear storage stiffness, k(@)= the shear loss stiffness.

and x = the displacement in the damper. Since the damping coefficient force formulation s

dependent on frequency (Liang, 1991), Eqg. (2.4) can be generalized as:
F ) = k(o)1 + in(e)x{w) (2.5)

where 1w} = the loss factor and defined as the ratio of &, (m)/k, (w). For a process governed by a

narrow band excitation the coefficients &, (w) and n(w) may be considered constant.

With this assumption and after some, manipulations of Eq. (2.5). using the definition of viscous

damping coefficient, ¢, as:

¢ = % (2.6)
The force in the damper can bhe defined:

F,(w) = (k, + iconx(w) 2.7
An inverse Founer transform applied to (2.7) produces

F,ty=kx(t) + cx(t) 2.8)

which indicates that the shear storage stiffness (k, = nk,) influences the stiffness of the brace and

the shear loss stiffness (k) influences the dampirg of the brace. Although the structure shows
vibrations in various modes, the first mode of vibration is dominant and therefore the properties of

the damper & () and 1{®) can be selected based on the significant mode without appreciable loss

of accuracy.

If the shear storage modulus (G ') is known, the stiffness &, can be obtained directly according to

the relation



ko= G Al 29)
where A 18 the total shear area of the viscoelastic material and 1 is the thickness of the viscoelastic
muaterial. Similarly & can be obtained as

k= G"Alt (2.1
when the shear loss modulus (G ) 1s known, The same stiffnesses & and &, can also be oblained
from the cyclic test hysteresis results as shown in Fig. 2-2.

2.3 Influence of Individual Damper’s Properties on the Structure Properties

The properties of cach brace using identical damping devices are incorporated in the structural

modal as increments of the stiffness, AK. and of the damping, AC, matrices:
AK = & B and AC = ¢B (2.11)

where B is a non dimensional brace location matrix that takes the following form:

" N,con', - Nyeon' B
‘ SNs 8, Nos B e N, cod' B, SN, eee' 8,
B= . : .
‘r . Nooon'9, N.cov' 8, + N,con' 8, - Nycos’ @,
[ - Nocow' B, N.cos* 8, + N, cos 8,
(2.12)

where N, = the number of dampers at the k-th story such that N, ¢ is the total damping coefficient

of all the dampers at k-th story and cos® = the inclination of each brace from the horizomal. For
unequal dampers, the value of N, may be a noninteger B can be therefore suitably modified to
reflect a variable number of braces at each floor, the variable damper properties, and the inclination

of the dampers.



The incremental matrices AK and AC are added to the dynamic equations of motion, Eq. (2.2),

within IDARC-3D. The validity of the above formulation is verified with experimental data and
used for further parametric analysis as described in the subsequent sections.

2.4 Determination of Damping Ratios

2.4.1 Equivalent Formulation of Damping Ratio

The contribution of identical viscoelastic devices to the critical damping in each mode can be
obtained using modal characteristics as ;

1 ACE, ¢ OB,

ST T oMY, - 20 oTM®,

(2.13)

where @, is the i-th modal shepe and , is the i-th modal frequency. For very simple structures

such as in Fig. 2-1 the i-th modal damping ratio can be obtained from Eq. (2.13) or as:

4
E, =c- [N,"‘coszeltbf, +'§2N1coslﬁj(¢“—¢’.v ,_,,)2] ! 20,Zm @} (2.14)

where m, is the j-th story mass and J is the total number of stories. Eq. (2.13) or (2.14) can be used

in design process for estimating the required damping property, ¢, of a typical brace such that a
desired supplemental modal damping ratio &, can be obtained. The total damping can be further

obtained including the contribution from the inherent viscous damping already existing in the

structure as:

@, ®/(C + ACYD,

&mr, = _2_¢;;'(K + AK)q)‘

(2.15)

Equation (2.15) can be expressed in terms of the individual damping ratio contributions as:
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Emr, =&, + 8.0 -0+ a.l - 0!: + ... (2.16)
Where £, is the original structural modal damping ratio ®, (®/C®,)2(®'K®,) and o, is

&'AK®/®’KP,. Note that for a small stiffness increase AK the resultant damping is the sum of

the added damping and the original one.
2.4.2 Complex Formulation for Damping Ratio
The §&;.;, computed by this process is only an approximate value of the critical damping ratio,

because of the non proportional characteristics of the damping matrix. The natural frequencies o,
and corresponding damping ratios &5, for each mode can be computed more accurately from the
set of homogeneous equations (Frazeret. al, 1946) using the total complex damping C*, and stiffness

K" matrices based on the state equation:

e ellal o wlla] Lo 21

ar:

Ay +By =0 (2.17b)

where

0 M] _ [-M 0] fa
A—[M C.}. “'[o K.]. y-[u] (2.17h)

The eign solution can therefore be obtained from:

§ = Ay (2.18)

or:



Equation (2.19) has complex roots that can be obtained as:

A = | otV

t

where lumdu, are calculated from the characteristic equation;

Ao+ 2E0A + @ =0

that yields the characteristic values:

b = Lo,

v, w‘u]—&f

The free vibration response is obtained from:

'(!) - e{,“‘, yn(O) + VI(O)E.N(DI
Y, o,

sinw,f + y.(O)cosm‘,I]

(2.19)

(2.20)

(2.21)

(2.22a)

(2.228)

(2.23)

with the natural frequencies and the equivalent damping ratios for the respective modes computed

as!

wdA = Vl
2 2
mi = iul + VJ
K,
G =

2-10

(2.24)

(2.25)

{2.26)



A comparison of the analytical predictions of equivalent damping ratios and of complex ratios to

the values obtained in experiments are given in the next section.
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SECTION 3

PERFORMANCE VERIFICATION OF ANALYTICAL MODEL IN
1:3 SCALE STRUCTURE TESTING

An experimental study ot a 1:3 scale R/C frame structure retrofitted with viscoelastic braces using
IM™ materials was carried out at NCEER [Shen, Soong, Bracci/1993]. The purpose of this

experimental study 15
§1] To observe the performance of viscoelastic dampers

(i) To validate the analytical {computational) model that make use of several simplified

assumptions.

(i)  To determune the influence of dampers on the structural components and overall structural

system.

The results of this study are used here to validate the analytical model described in the proceeding

section.

3.1 Experimental Program

A one-third scale modael of a three story lightly reinforced concrete frame building (Figs. 3.1, 3.2,
and 3.3) was previously tested under simulated base motions using the shaking table in the Seismic
Simulation Laboratory at the Staie University of New York at Buffalo (Bracci et al., 1992a and
1992b). The structure was tested using a series of simulated motions obtained from the scaled 1952
Taft carthquake, N2IE component, normalized for peak ground accelerations (PGA) of 0.05g,
0.20g, and 0.30g representing minor, moderate, and severe ground motions. The structure was also
tested with a uniform random noise (while noise) after each episode for identification purposes.
The severe base motions induced large inter-story drifts and internal damage to the columns such

that an incipient column-sidesway mecianism was apparent and leading towards a collapse situation
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(Braccr et al., 1992b). Subsequently the damaged building was  retrofitted conventionally (See
Fig. 3.1 by strengthening the tntenior columns of the building using concrete jacketing, strength-
ening the beam-column joints with a reinforeed concrete fillet, and post-tensioning the repaired
columns to 20% of their witimate axial strength as shown 1n Figs. 3.4, and 3.5,

(Bracci et al., 1992¢). The systemwas subsequently tested using the same motions as for the onginal
huilding. The performance of the repaired structure was substantially improved producing only
local damage in beams and slabs. However the complete beam-sidesway mechanism wis not near

full development, thus reducing the overall damage and collapse risk.

This damaged building served the objective for turther experimental studies of retrofit using vis-

coelastic dumpers of the direct shear type.

The building was retrofitted again by adding viscoclastic diagonal braces in the interior bay of each
frame (see Fig. 3.6) and tested by Shen, Bracei, Soong and Reinhorn. For sake of completion the
description of the test is repeated in here. The viscoelastic dampers made by 3M™ Company
Minneapolis, MN, consisted of two pads of 3M™ manufactured viscoelastic material bonded
between three steel plates and embedded in steel braces connected by steel brackets to the story
slabs (see Fig. 3.7). The brackets were located above and belew the honizontal beams strengthening

somewhat the beam-column joint over a 2" distance at each end.

Two sets of 0.5" thick viscoelastic dampers of different sizes (type A with total shear area of 35
in.* and type B with total ares of 17.5 in.*) were alternatively tested for the retrofit of the structure.
The dumpers were tested under cychic loading prior to the shaking table tests. As shown in Fig.
2.2, the storage stiffness and the loss stiffness for each test are determined, from which the other
relevant properties of the damper at a particular frequency can be calculated. The relevant properties
required for the analysis predictions of the response of the structure with viscoelastic dampers were
obtained from tests done by Shen, Soong, et al., and are listed in Table 3.1. The viscoelastic dampers

display a bchavior dependent on frequency, strain amplitude, and temperature.  Although this
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TABLE 3-1 Properues of Dumpers in Retrofitted Structure

Sheur Shear Shear Shear Damping
Storage Loss Storage Loss Loss Coefficient
Frequency | Modulus Modulus Stiffness Stiffness Factor C
f(H» G (ks) Gksi k. (kip/in) | & (kip/in) n t(kips/in/sec)
th 2 H (4) (5) (6) (7
{a} Properties of Damper A
1.0 0.182 (1.24% 12.74 17.36 1.36 2.76
1.5 0.244 0.305 17.08 21.35 1.25 2.2
20 0.294 0.366 20.58 2562 1.24 2.04
25 0.335 0.396 2345 27.72 1.18 1.76
3.0 0.345 0.431 24.15 30.17 1.25 [.60
(b} Properties of Damper B
1.0 0.199 0.259 6.97 907 1.30 1.44
1.5 0.265 0.326 9.28 11.41 1.23 1.21
20 (.300 0.395 10.50 13.83 1.32 .10
25 0.365 0.463 12,78 16.21 1.27 1.03
30 0.385 0.487 13.48 17.05 1.26 0.90

temperature dependency is the most significant, the variations in the damper properties can be
neglected in a temperature controlled environment (such as room temperature in most office

huildings and laboratories).

The frame structure was subjected to a shaking table testing schedule as shown in Table 3-2. Wide
banded (0 - 50 Hz.) white noise excitations were used for identification of the dynamic characteristics

of the structure before and after every carthquake shaking table motion. Since testing was conducied
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TABLL 3-2 Tesung Program for the Retrofitted Model with Viscoelastic Braces

Test Test Deseription VE Damper Test Label Purpose
Type
(h (2) (N (4) (5)
0. Tafit N2LE, PGA 0.20g None TE2O WO Comparison Response
00 JTaft N2IE, PGA 030 TF0 WO Comparison Response
[ White Naise, PGA 0.025g WNB VEA Identification
2. White Noise. PGA 0.025g WNC VEA ldentitication
3, Taft N21E. PGA 0.0 A TFOS_VEA Mi Eart} ]
4. White Noise, PGA 0.025g WND_VLEA Idenuification
3. (Tafi N2IE, PGA 020 g TE20 VEA | Moderate Earthquake
6. White Nuise, PGA 0.025g WNE VEA ldentification
7 White Noise, PGA 0.025¢ WNA VEB Ideatification
8, Taft N21E. PGA 0.05 TFOS_VER Mi Eartl ]
9 White Noise, PGA 0.025g B WNB_VEDB Identitication
10. White Noise, PGAQ.O25¢ WNC _VEB Idenuification
12. White Noise, PGA0.O25g WND VEB Idcatification

Note: WO indicates no dampers and _VEx indicates viscoelastic dampers of type x.

over several days, consecutive white noise excitatuons were used to validate the current dynamic

characteristics of the building. Focus on the analytical performance evaluation is drawn to tests

#3, 45, #8 and #1 1, as they arc indicative of the respanse of the building to the representative base

motions for minor and moderate earthquakes with additional stiffness and damping.

3.2 Stiffness Identification

3.2.1 Experimental Identification of Stiffness

The stiffness matrix is computed from the experimentally determined frequencies, mode shapes

and the mass at cach story level (Bracci, 1992) as

K = MOQAI'M

3-10
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TABLE 3-3 Dynamic Characteristics History of the Retrofitted Model
From Low [evel Vibratons (White Noise PGA 0.025g)

Test | Frequency Madal Shapes Stiffness Matrix Story Equivalent
Name Stiffnesses | Viscous
Damping
r ‘Du Ku kr él
(Hz.) (kip/in) (kip/in) (%)
(4) Betore Earthquake Test Taft N2IEPGA 0.20¢
T
Whire 278 \ L) ~0.86 -0.51 W82 =236 TLé W 2186 20
Holse VIR i .79 048 1,00 -2 6 1214 - 278 ZJ 2782 10
- 7 — 21822 1. ,
WHNR B \ 1675J 042 1.00 (1.RY il6 7 3327 154.5 3
Wiire f 264 ) LO0 - —086 0393l Juk9 -2382 652 2382 4.7
niose l 918 079 045 1.00 i ~ 2382 43RS =274 1 2791 1.8
N - -
WHNR C) | e gg) |V 100 -0R3 I 652 98 4046 L 125.5] 16
(b) After Earthquake Test Taft N2IE PGA (0.20g
WHNR D 1 YR Lo 086 - (.56 182.7 -2182 7 \l 218.2 6.6
1Fust) ] 11 K2 042 1.00 2182 3569 -2243 2293 26
“I O _ - N ’
tite ot 15.33 046 100 081 7Y 2293 3183 J L 200 | 14
WHNR D 1.93 100 ~O0R8  -0.59 1960 -2269 KOG 2269 8.1
(West) 798 082 03K 100 ~ 22649 3565 -233% 2338 28
Whiternerse ) _ _ o '
MLty 15 4% | .48 100 (.80 806 233 % iy 781 | LR
{¢) After Earthquake Test Taft N21E PGA 0.30g
WHNE _E | 88 LoD -083 -0.56 1681  -2053  6&Y.6 205.3 55
(Eust) 7.5 082 036 1.(%) -2053 3427 -2158 2158 1.9
Witite nes: ~ . ~215 2775
el Liagg) [\045 10 -076))l @96 -2058 2775 ) L e17) | (s
WHNR £ 173 100 -0R4 -055 1650 -2038 67.5 203.8 6.7
{West) 7 50 0.8} 036 100 -2038 3440 2178 2178 19
White noise 049 100 =076 615  -2178 27738 600 12
P




where

Q = diag(w]. 5. ......0)

]

P = mass normahzed mode shape matrix @Mo =1

Table 3-3 shows the history of dynamic characteristics of the huilding prior to the retrofit with the

viscoelastic braces { from Braccr e al., 1992¢).
3.2.2 Analytical Identification of Stiffness

The analytical stiffness matrix was computed by a standard matrix condensation of the massless

degrees of freedom of the structure. Expressing the overall stiffness matrix K without addition of

dampersin (2.1) as

<l

where subscripts o and P correspond to mass and massless degrees of freedom respectively. The

reduced stiffness matrix 1s determined as

K =K, - K KgKg, (3.3)
Reinforced concrete has a nonlinear hysteretic behavior in which the force depends on the past
history of deformations and the current state of deformation. The stiffness variations are also
memory dependent and are defined by the past as well as current state of deformation dictated by
the hysteretic activity it undergoes. In order to predict the response of buildings which have
previously experienced inelastic deformations, the hysteretic properties for all the components
would need to be updated before proceeding any new analyses. As the model was subjected to a
number of damaging base motions prior to retrofitting with concrete jacketing, the response pre-

dictions tor subsequent tests became questionable. To overcome this hurdle, a simplifying



TABLE 3-4 Analytical Versus Experimental Damping and Stiffness

Analytical Stiffness Matrix Experimental Stitfness Matrix
(kip/in) (kip/in}
() (2)

(a) White Noise, PGA 0.025 Before Earthquake Test 40

1836 =2396 700 2052 -2386 716
K=|-2396 4214 -278S5 K=|-2386 42]4 -2782
70.0 ~278S5 4300 71.6 —-278.2 4327

{b) White Noisc, PGA 0.025 during Test #1

1528 — 1848 396 168.1 -2053 696
K=[-1848% 3150 -1668 K=]-2053 3427 -2158
319.6 - 1668 2220 69.6 -2158 2775

assumption was made by which the member structural properties were determined from engineering
data by slightly modifying the gross moments of inertia such that the overall dynamic characteristics
of the building were in agreement with those obtained experimentally from the first low level
vibrations under earthquake excitation test. The identification of the stiffness matrix using this
procedure insured that the influence of the viscoelastic braces can be suitably incorporated. The

analytical sulffness matrix is compared in Table 3-4, with the one identified from experiments using

the measured praperties.
3.3 Identification of Natural Frequencies and Damping Ratios

The experimental damping ratios are estimated by the half-power method, from the story transfer
functions. The analytical damping ratios are computed from Eqgs. (2.13), (2.16) and {2.26). The
identified propenies using the two sets of dampers are listed in Table 3-5. Adding the inherent
viscous damping properties of the structure without the additional braces, the total damping ratio
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TABLE 3-5 Structure’s Properties with Viscoelastic Dampers From Strong Vibrations

[denuficd Dynamie

Retroftied Structure with Dampers

Characteristic A B
(1) (2} (3)
(a) Experimental Propertics
v 100 —072 055 ( 100 —072 056
Modal Matrix (@) 087 026 - 140 (088 024~ 100
049 —1.00 .65 1050 1.00 0.64
First Mode Frequencey. f [Hz. 2.62 213
Total Damping [Exp.] §(%%) 22.0 18.0

{b) Analytical Properties from Equivalent Dynamic Analysis

Ist. mode Freq. [{Rad[/ [He]] 15.3872.45 13.07/2.08
Added Damping' 3(%) 19.7 15.3
Total Dumpmg (%) 21.2 16.8

(<) Analytical Properties from Complex Eigenval

ue Analysis

Ist. Mode Rotational Freq. [Rad]

296 £1 1490

198411294

Ist. Mode Freq. [[Rud] / [Hz][] 1496 /238 12.94/2.06
Added Damping’ & (%) t9.4 15.1
Total Damping & 209 16.6

obtained is close to that identified from the experiment. It is observed that the damping ratios

computed analytically are slightly lower than that obtained from experiment. Fhis could be because

the energy dissipated by hysteretic dampers is not included in the analytical computations of

cquivalent dumping. Also for the range of damping in consideration, the response is not very

sensitive to the additional damping, either inherent viscous, or the inaccuracies i the determination

of the appropriate supplemental damping.

1from Eq. (2.13)
2from Eq. (2.26)
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TABLE 3-6 Analytical Versus Experimental Damping and Stiffness

Structures Propertics Retrofitted Structure with Dampers

A B

{(n (2) (3
Story Damping, ¢ Experimental 210 1.55
(kip/infsec) Analyucal (total) 207 1.60
Experimental 490 278
Story Stiffness, Analytical {dampers only) 34.0 150
K (kip/in) Analytical (total) 50.0 280

The damping properties and the stiffness of cach floor, shown in Table 3-6, werce calculated (rom
data in Table 3-1 and Eq. (2.7) and compared with those measured in the identification tests. The
properties corresponding to frequencies of 2.5 Hz and 2.0 Hz. closet o the actual 2.6Hz and 2.2Hz

for braces with dampers A and B respectively were selected for analytical evaluation.

The stiffness propenties calculated without considering the influence of the mounting brackets of
braces differ largely from those considering the influence of the brackets influence; (sce contribution
of stiffness from damper atone computed from Table 3-1 to the total stiffness in Table 3-6). The

"total” values are used in funther analysis for comparison of performances.

3.4 Memory Dependancy in R/C Members

The effect of "memory” in the inelastic properties and the sensitivity of structural response to this
memorize effect is shown in Fig. 3.1. The analysis for Test episode #5, subsequent to various other
tests (see Table 3-2), was done in two ways: (i} independently without precise knowledge of the
modified hysteretic properties of reinforced concrete members [see Fig. 3-7(a)] and (ii) in a
sequential consecutive fashion (ie. analyzing all prior episodes of testing and the current one
consecutively), such that the hysteretic properties are automatically updated [see Fig. 3-7 (b}]. It

1s evideni that the "memorization” of hysteretic properties is important and the sequential analysis
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duplicates the experimental results suitably.
3.5 Comparison of Displacement and Acceleration Time Histories
A comparison of story displacement, and acceleration. time histories for tests #3 #5 #8 und #11 are
shown in figs. Figures 3.8 through 3.15. The analytical response is in good agreement with the
expenimental response. Due to the high level of damping the inelastic response is reduced sub-
stantially and with it many of the possible errors usuvally involved in nonlinear dynamic analysis.
1.6 Damper Forces
For two dampers placed at an angle 8 with the horizontal. the component of damping in the lateral
direction 1s

Lliuh‘ml = 2(‘ COSJB (34)

and the component of additional stiffness in the lateral direction is

k.. = 2k cos'8 (3.5)

tuteral
The lateral force in the damper was computed as a combination of elastic and damping components.

The force in each damper (assuming two dampers per floor) is therefore:
ft = [kldlfrul(uf - ul l) + Cluum!(un - u.n I)]jzc056 "Or ' * ] (360)
fl = lkiurrrulul + Clumulu.!ll‘z cos® fori =1 (3bb)

where 1 = the story level.

A comparison of the forces obtained in the dampers from Eq. (3.6a) and Eq. (3.6b) to those obtained

from the experiment are shown in Figs. 3-16 through 3-19. The differences ar¢ minimal.
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3.7 Base Shears and Damper Stiffnesses

The buse shear developed in the columns 1s compared with this obtained from the experiment in
Figs. 3-20through 3-23. Only a limited inelastic response occurs in columns while energy is mostly
dissipated by the viscoelastic braces. The braces also display substantial stiffness as shown by the
sloped hysterias a Figs. 3-16 through 3-19. The stiffness calculated without considering the
influence of mounting brackets is largely different from this considering the brackets influences.
(see contribution of stiffness from damper alone computed from Table 3-1 to the total stiffness in

Table 3-4). The "total” values are used in further analysis for companson of performances.
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SECTION 4
EFFECTS OF VISCOELASTIC BRACES ON STRUCTURAL RESPONSE

The interpretation of the expennmental data requires @ good analytical model that is capable of
providinginternal information of forees, localdeformations and changes instructural chigracteristics.
The analvtical model specified and verified in the previous sections 1s uséd 1n conjunction with the
experimental results to adentify the influence of the dampers on the madification of suffness,
redistribution of internal forces and redistribution of energy dissipation between elements. The

influcnee of viscoclastic dampers is summarized as follows:
4.1 Natural Freguencies/Period

The structure with viscoelastic braces subjected to low level (white noisz) displays simultaneous
increase in frequencies and equivalent viscous damping in all modes as shown in Figs. 4-1 and 4-2
and numerically in Table 4-1. The apparent damping increased 4 times in the structure withdampers
A and 3 times n the structure with dampers B. Both types of dampers contribute to an increase in
structural stiffness and therefore areduction of the natural period that might contribute 1o an increase

of the overall base shear.

TABLE 4-1 First Mode Dynamic Characteristics During Low Level Vibration Tests

— ———
Natural Frequency (l-;)'rL Period Equivalem Viscous Damping %
th (2) (sec) (3) (4)
No dampers 1.88 ﬂr 0.53 55
With damper A 293 0.34 220
With damper B 2.54 0.39 18.0
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The Irequencies identified from the white noise tests show a higher natural frequency for both
dampers types A and B than that determined during earthquake (Test< #5 and #11, Table 3-2) from
the transfer tunchions tor the top story acceleration. The reason for these differences is in the
nunlincanty of the cracked reinforced concrete sections. At very low vibrations, pre-existing cracks
do not open and the sections behave almost like deal "gross sections”. At larger vibrations, such
as those created duning carthquakes, the cracks open thus reducing the stiffness and their "natural
trequency”. Small vanations are observed also for the equivalent damping.

4.2 Story Forces and Drifts

The inter-story drifts and story shears in the columns are substantially reduced at all floors as
tndicated 1in Table 4-2. While the deformations are reduced approximately 3 times, the shear forces
are reduced only twice. These forces are much smaller than the ultimate strength of the columns,
morcover smaller than their yielding strength (see also Bracei et. al., 19922 and 1992¢). A set of
force-deformations at the first floor for Taft earthquake motion (PGA 0.20g) (see Figs. 4-3 and
4-4yindicates that the column forees and deformations are substantially reduced. while most of the
energy dissipation (area of hysteretic loops) 1s transferred {rom the columns 10 the viscoelastic
dampers. Although some inelastic deformations are expertenced by the columns. their response 1s

substantially improved in the presence of the viscoelastic braces.
4.3 Columns Axial Forces

The addition of braces changes the load transfer pattern in the structure. Additional axial forces
will be generated in the columns by the added brace stiffness which are in phase with the other

forces from the structural stiffening system.

The axial force variation in the columns in the presence of dampers is shown in Figs. 4-5 and 4-6.
The trajectory of variation of the axial forces and moments are plotted in comparison to the failure

envelopes ona P-M interaction curve. The reduction in the moment demand (horizontal fluctuation)
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TABLE 4-2 Muaximum Meusured Story Response

Inter-Story Drifts, (in.)

Column Story Shears, (kips)

First Second Third First Second Third
tn (2) (3 (4) (3) (6) (7
(a) For White Noise Excitation
No Dampers .047 0.034 0.018 238 1.53 1.33
Damper A 0.016 0.013 (.00R 0.97 .65 0.46
Damper B 0419 0017 0.008 1.25 (g4 0.52
(b} For Taft 0.2g Excitation

No Dampers .636 0.388 .167 20.63 16.20 .71
Pamper A 0.194 0.147 0.066 7.68 5.71 4.19
Damper B 0.297 0.196 0.097 947 8.25 4.67

is quite significant with the addition of dampers. However some inclination of the trajectory is
noticed, more significantly in the {irst story columns. This indicate some variation of the axial load.
Although insignificant in this test case, increase in axial forces might lead toexceedence of capacity
envelope. Care should be taken in the design of eolumns with dampers such that the axial load/

moment demand do not intersect with the failure envelope. This could be of serious concern

especally in the design of taller structures, where the axial load gets accumulated at the base.

4.4 Energy Input

The effect of the viscoelastic dampers is more evident in the distribution of the energy input

throughout the structural system. Assuming that the energy balance (Uang and Bertero, 1990) at

each time step in any structure is:

E.+E +E,+E =E
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where £ 1sthe Kinetic energy, £, 15 the clastic/potential energy, £, isthe hysteretic energy dissipated

by the structural system, F. is the viscous damped energy. and E, is the total energy input. The
hysteretic energy (£ 1 i~ usually associated with the permanent damage in the structural system.

A reduction of this energy can result in a reduction of damage.
The addition of dampers adds another term 10 the energy balance:

E, + B+ B+ F, = E (4.2)
where Fy, is the energy dissipated by the added viscoelastic dampers and E; is the elastic-kinetic
energy (£, + £ ).

The viscoclasuce dampers alter the overall energy input balance as shown in Fig. 4-7. For the
carthquake used in the experiment (Taft 1952), shown in Figs. 4-7a.b the total input energy is
increased primarily due to stiffness increase. However the added viscoelastic dampers dissipate
the majority of this energy, leaving only a small amount of hysteretic energy to be dissipated by
the structure. In the structure without dampers, the majority of input energy is dissipated in form
of hysteretic energy by the structural components, that are actually damaged. Similar pictures are
obtained analytically for other carthquakes (se¢ Fig. 4-9), although the overall energy input may
vary depending on the match between the structural frequencies and the earthquake frequency

content.

4.5 Damage Mechanism

The amount of damage to the individual members, story levels, and overall structure from seismic
excitations can be described analytically in terms of damage indicators defined as damage indicies.
These damage indicies are used to evaluate the extent of damage on a scale representing minor,
moderate, or severe damage. Damage index models have been developed to incorporate effects of

ductility demand and low cycle fatigue or strength deterioration by Park et al. (1985}, Chung et al.
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(1987). Powell et al. (1988), and Bracci et al. (1989). It has been shown, that a combination of
deformation and strength deterioration damages provide an accurate assessment of the member
damage and of the remaining reserve capacity. Such a damage model is used here to verify the
structure performance and dampers. This model is a modified version of the Park and Ang’s model
[Kunnath et al. 1990] expressed in terms of moments and curvatures of structural members. The

expression tor this damage index 15 given by:

Dl:g"iJrBJdE

¢uil QulrM\

(4.3)

where ¢, = maximum observed curvature, ¢, = ultimate curvature, B = strength deterioration

tactor, [dE = absorbed hysteretic energy, M, = yield moment. A procedure for determining the
ultimate curvature in hoth columns and beams was propased by Bracci et al. (1989), with the damage
index formulated to vary between 0 and 1. The extent of damage to the structure 1s determined

from the following damage index table.

DI=10 Collapse

0.66 <DI <1 Severe - "lrrepairable” Damage
0.33<DI<0.60 Moderate - "Repairable” Damage
0.0 < DI <0.33 Minor - "Serviceable" Damage

The structure with viscoelastic dampers experiences a reduced number of plastic hinges and cracks
when subjected to the same earthquake motions (see Fig. 4-8). In fact, only minor cracks and some
unavoidable base column hinging can be noticed. The damage configuration (hinging) does not
indicate development of either the column-sidesway or beam-sidesway collapse mechanisms. The
actual story damage evaluated using the above model is shown in Fig 4-9. Itindicates the efficiency

of the added braces to limit the damage to less than half of that developed in the original unretrofitted

structure.
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SECTION 5

INFLUENCE OF VISCOELASTIC PROPERTIES ON SEISMIC RESPONSE. OF R/C
STRUCTURES

The 1:3 scale model structure described in the previous section is further used as the subject tn an
analytical evaluation for studying the effects of increasting cither the viscous propertics, or clastic
stiffness properties., or both of the above, for seismic retrofit of reinforced concrete structures using

viscocldastic materials,

Itis well known that increased viscous properties in an elastic structure (te. increase in the equivalent
crical damping ratio) contributes to a reduction in the dynamic response amplification as shown
inFig. 5-1a. Itis also known that a structure responding inelastically experiences a softening effect
or a reduction in its fundamental frequency (see Fig. 5-1b). The effect of increasing the viscous
properties is more drastic in an inglastic system, since i1 limits the decrease of the fundamental

frequency to a stable level not far below its elastic value {see Fig. 5-2).

Viscoelastic dampers have also a substantial contribution to the initial stiffiness of the structure.
The added stiffness supplied by viscoelastic braces increases the first mode natural frequency in an
elastic superstructure as shown in Fig. 5-3a, while the viscous properties have a small effect. In
reinforced concrete structures experiencing inelastic deformations, the additional stiffness increase
the naturat frequency, only if substantial damping is added to the structure. Otherwise the tendency
of stiffness softening during inelastic response will almost compensate for the increased stiffness
due to addition of dampers. It should be noted that while the stiffening effect may lead to beuter
control of lateral deformations, the same stiffening may lead to larger forces produced during various
ground motions. In such cases, the positive effect of added damping might be diminished by the

stiffening effect.
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The etfect of viscoelustic properties 1s best summurized in Fig. 5-4 which shows the influence of
Increasing viscous properties and stiffness on the base shear and story displacement response of
the structure. For the testiype excitation, ie Taft 1952 the base shear increases almost 3 times due
1o 40% additional stuffaess in the bracesf no viscous damping 1s added. However with the addition
of more than 12% damping, the base shear is reduced independently of the stiffness increase (see
Fig. 5-4a). It is worthwhile noting that the displacements are reduced somewhat by the stiffness
increase, but the major reduction comes from the viscous properties of the braces, that increasc the
damping. The variation of response characteristics was obtained for the 1952 Tafi ground motion.
This particular ground motion produced substantial changes in the inelastic response, more than

any other motion used in the study and theretore is being thought as representative.

It is also worthwhile noting that the change in the initial suiffness aliers the overall apparent critical
damping ratio (obtained from the free vibration "tail” of an carthquake analysis). In an inelastic
response, the hysteretic behavior generally adds to the apparentdamping. However in certain cases.
the overall critical damping is stightly decreased (see Fig. 5-5). This is due to the more erratic
response and possibly due to inaccuracies in determining the equivalent damping during the inelastic

response.
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SECTION 6
CONCLUDING REMARKS

The response of reinforced concrete structures, in general, and those that already suffered previous
damage can benefit from the strengthening using viscous or viscoelastic dampers. The addition of
substantial damping 1n many cases oftsets the negative effect that might be caused from the stiffening

of the system,

The analytical studies of reinforced concrete structures under various earthquake motions indicates
that an increase of damping toan overall ratio of 15% or larger will produce effects that will outweigh
the stiffness increase associated with viscoelastic dampers. These studies show an excellent benefit
of increasing only the viscous damping, which can be obtained using other types of dampers such

as liquid silicon dampers (Constantinou et al.,, 1992, Reinhorn et al., 1993},

The scaled model experiments and this analytical study indicate that retrofit using viscoelastic
dampers can reduce the overall response, but more importantly, can reduce the risk of developing
adamaging mechanism ncar collapse. In particular, the hysteretic energy dissipation is transferred
from the load bearing elements, such as the columns or beams, to non-load bearing devices that can

dissipate energy without damage.

This paper presents a simplified analytical model of viscoelastic braces that can be used in con-
junction with a step-by-step dynamic analysis used for reinforced concrete structures. The model

was verified by shaking table tests that emphasize the adequacy of the simplified modeling.

Finally, the analytica) platform for evaluation of damage in R/C structures with viscoelastic dampers
presented herein can also analyze more complicated damping devices that can be represented by
alternative viscoelastic or hysteretic models. Due toits step-by-step solution characteristics, variable
damping characteristics can also be considered. Dampers with such characteristics were proposed

for further improvement and control of seismic response in structures (Reinhorn et al., 1993).
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APPENDIX A

A 1-1 Reinforcement Details

The rollowing provides details of the reinforcing steel used in the model based on scale factor of 3
for gecometric length similitude. Detailed information is presented by Bracci et al., (1992a), but is
repeated here for sake of completion of this report.

The slab steel in the prototype structure was designed by the direct design method of the AC1318/83.
The design required #3 rebars at 6 in. spacing in different sections of the slab. To avoid excess
iabor in the construction of the 3-story model, a 2 in. square mesh composed of gauge 12 galvanized
wires is chosen for acceptable similitudes of strength and geometric spacing length. Since the slab
strength 1s not the main emphasis for this study, the slight disparities of slab steel placement due
to the mesh are considered satisfactory for the experiment. Figure A-1 shows the layout details for
the top and bottom reinforcing steel mesh in the slab. The longitudinal (direction of motion) and
transverse (perpendicular to the direction of motion) beam reinforcement details for the model are
shown in Fig. A-2. Figure A-3 shows the reinforcement details for the columns in the model based
on the prototype design.

A 1.2 Model Materials

The following outilines the materials used in the construction of the model. It is to he noted that
the materials used in the model are identical to materials in assumed prototype structure (Bracci et
al., 1992 a). Therefore the scale factors were appropriately developed based on the principles of
modeling the same acceleration and material.

A 1.2.1 Concrete properties

The concrete mix analysis and design was based on trial mixes from various recipes and a design
mix was established for a 28 day target strength of 3500 psi, slump of 4 in., and maximum aggregate
size of 1/2 in (#] crushed stone). Table A-1 shows the mix fornwla for a one cubic yard batch of
concrete.

The mix formulation is based on a saturated, surface dry concrete sand. The water : cement (: sand
s stone ) ratio 18 0.5 : 1.0 (: 3.0 : 3.6). The full gradation analysis of the aggregates in the concrete
mix is shown in Fig. A4.
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T'uble A-1 Mix Design Formula for the Model Concrete

Ingredient I Weight

Type [ Cement 490 b
Concrete Sand 1487 1h
#1 Crushed Stone 1785 1b
Water 242 1b
Superplasticizer 39202

Micro-Air 2907

A substantial variation can be observed in the mix strengths for the different components, even
though ail mixes had the same target strength (see Table A-2). The final strengths were very sensitive
to moisture variations in the materials and the widely varying ambient temperatures at the time of
construction. The vartation of strength versus time Ss shown in Fig. 3-5, which indicates asymptotic

stabilization of concrete strength.

Table A-2 Concrete Properties of the Model Structure

Pour Number and Location T, k £, € o
{ksi) (ksi1) (strains) (strains)
I. Lower Ist Story Columns 3138 2920 0.0020 0.011
2. Upper 2nd Story Columns 4.34 3900 0.0020 0.017
3. 1st Story Columns 4.96 3900 0.0021 0.009
4. Lower 2nd Story Column 4.36 3500 0.0026 0.014
5. Upper 2nd Story Column 182 3360 0.0022 0.020
6. 2nd Story Slab 292 2930 0.0015 0.020
7. 3rd Story Columns 337 3800 0.0019 0.020
8. 3rd Story Slab 4.03 3370 0.0021 0.012

A-7



The reinforcing steel uses anux of #11 & #12 gage wires and D4, DS annealed deformed bars. The

summary of their properties is given in Table A-3

Table A-3 Remforcing Steel Properties of the Model Siructure

Bar d, A, !, E, S €,
(in) (in") (ksi) (ksi) (ksi)
#12 ga. 0.109 0.0093 S8 29900 64 013
0.120 00113 56 29800 70
0.225 0.0400 68 31050 73 0.15
0.252 0.0500 38 31050 54 -

The D4 rebar was also annealed at different temperatures between 900" F and 1140" F 1o produce

a yield strength between 49 and 73 ksi for yield force similitude with a #6 rebar. At a temperature

of 1140" F, the average yield strength consistently rcached was 68 ksi. Based on yield force

similitude, the D4 rebur represented a #6 rebar with a yield strength of 55.6 ksi. Since a grade 40

steel has yield strengths between 40 and 60 ksi, the D4 rebar satisfied similitude with & #6 rebar.

Both the original and annealed stress-strain relationships for the D4 and DS rebars are shown in

Fig. A-6.

FIGURE A-6 Measured Representative Stress-Strain Relationships of the
Reinforcing Steel
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