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ABSTRACT 

This study proposes a reliable and computationally efficient beam-column finite element 

model for the analysis of reinforced concrete members under cyclic loading conditions that 

induce biaxial bending and axial force. The element is discretized into longitudinal steel and 

concrete fibers such that the section force-deformation relation is derived by integration of the 

stress-strain relation of the fibers. At present the nonlinear behavior of the element derives 

entirely from the nonlinear stress-strain relation of the steel and concrete fibers. 

The proposed beam-column element is based on the assumption that deformations are 

small and that plane sections remain plane during the loading history. The formulation of the 

element is based on the mixed method: the description of the force distribution within the 

element by interpolation functions that satisfy equilibrium is the starting point of the 

formulation. Based on the concepts of the mixed method it is shown that the selection of 

flexibility dependent shape functions for the deformation field of the element results in 

considerable simplification of the final equations. With this particular selection of deformation 

shape functions the general mixed method reduces to the special case of the flexibility method. 

The mixed method formalism is, nonetheless, very useful in understanding the proposed 

procedure for the element state determination. 

A special flexibility based state determination algorithm is proposed for the computation 

of the stiffness matrix and resisting forces of the beam-column element. The proposed 

nonlinear algorithm for the element state determination is general and can be used with any 

nonlinear section force-deformation relation. The procedure involves an element iteration 

scheme that converges to a state that satisfies the material constitutive relations within the 

specified tolerance. During the element iterations the equilibrium and the compatibility of the 

element are always satisfied in a strict sense by the assumed force and deformation 

interpolation functions. The proposed method proved to be computationally stable and robust, 

while being able to describe the complex hysteretic behavior of reinforced concrete members, 

such as strain hardening, "pinching" and softening under cyclic nodal and element loads. 

A new scheme for the application of element loads in flexibility based beam finite 

elements is also presented in the repon. The procedure is a natural extension of the element 

state determination algorithm and is based on the use of the exact internal force distribution 

under the applied element loads. The corresponding fixed end forces at the element ends are 

determined during iterations of the element state determination. 





Correlation studies between the experimental response of several reinforced concrete 

elements and the analytical results show the ability of the proposed model to describe the 

hysteretic behavior of reinforced concrete members. The response sensitivity to the number of 

control sections in the element and the effect of the selected tolerance on the accuracy of the 

results is discussed in a few parameter studies. 
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1.1 General 

CHAPTER 1 

INTRODUCTION 

Structures in regions of high seismic risk will not respond elastically to the maximum 

eanhquake expected at the site during their usable life. Present seismic design 

recommendations intend that buildings respond elastically only to small magnitude 

eanhquakes, but should be expected -to experience different degrees of damage during 

moderate and strong ground motions. The response of reinforced concrete (RC) buildings to 

earthquake excitations depends on several factors, such as eanhquake characteristics, soil 
// 

quality and structural properties. / 

The determination of the structural properties of a reinforced concrete building is an 

essential step in the evaluation of its eanhquake response. Typically, initial stiffness, ultimate 

capacity, and different global and local ductility demands are some of the parameters included 

in this assessment. In some cases it may be necessary-to evaluate the remaining stiffness and 

load carrying capacity of a building after a strong ground motion. A complete assessment of 

the seismic resistant design of reinforced concrete structures often requires a nonlinear 

dynamic analysis. Due to the complex interactions between the various components of real 

structures, their dynamic characteristics up to failure cannot be identified solely from dynamic 

tests of scale models. Moreover, the cost of such tests is often substantial, particularly, for 

large scale specimens. 

Historically these difficulties have been overcome by static tests on components and on 

reduced-scale subassemblages of structures under cyclic load reversals. Results from these 

tests are then used in the development and calibration of hysteretic models that pennit the 

extrapolation of the limited test data to other cases and to the dynamic response of complete 

structures. In these integrated studies several models for the nonlinear response analysis of 

reinforced concrete structures have been developed. These can be divided into three 

categories in accordance with the increasing level of refinement and complexity: 

Global models. The nonlinear response of a structure is concentrated at selected degrees of 

freedom. For example, the response of a multistory building may be represented as a system 
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with one lateral degree of freedom at each floor. Each degree of freedom has the hysteretic 

characteristics of the interstory shear-lateral drift response. Such models are useful in the 

preliminary design phase for estimating inters tory drifts and displacement ductility demands. 

The reliability of this class of model in the accurate prediction of global displacements is poor 

and the recovery of internal member forces from the limited number of degrees of freedom is 

practically impossible. 

Discrete finite element (member) models. The structure is modeled as an assembly of 

interconnected elements that describe the hysteretic behavior of reinforced concrete members. 

Constitutive nonlinearity is either introduced at the element level in an average sense or at the 

section level. Correspondingly, two types of element fonnulation are possible: (a) lumped 

nonlinearity, and, (b) distributed nonlinearity member models. 

Microscopic finite element models. Members and joints are discretized into a large number of 

finite elements. Constitutive and geometric nonlinearity is typically described at the stress­

strain level or averaged over.a finite region. Bond deterioration between steel and concrete, 

interface friction at the cracks, creep, relaxation, thennal phenomena and geometric crack 

discontinuities are among the physical nonlinearities that can be studied with this class of 

model. 

The' present study concentrates on the second class of model. Discrete finite element 

models are the best compromise between simplicity and accuracy in nonlinear seismic 

response studies and represent the simplest class of model that still allows significant insight 

into the seismic response of members and of the entire structure. Global models are based on 

too crude approximations and yield too little infonnation on the forces, defonnations and 

damage distribution in the structure. Microscopic finite elements, on the other hand, should be 

limited to the study of critical regions, since these models are computationally prohibitively 

expensive for large scale nonlinear dynamic analyses, where the model of even a simple frame 

involves hundreds of degrees of freedom. Before presenting the beam-column finite element 

proposed in this study, an overview of existing discrete models is given. 

1.2 Literature Survey of Discrete Finite Element Models 

A review of existing analytical studies relevant to the nonlinear seismic response of RC 

frames is presented in the following. A concerted effort to model and analyze these structures 

in the inelastic range of response has been under way for several years and the current state of 

the art is summarized in this short survey. Respecting a chronological order, lumped plastiCity 

models are presented first and distributed nOrilinearity models follow. Stiffness and flexibility 
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fonnulations are also reviewed and their suitability for the analysis of reinforced concrete 

members is evaluated. Finally, distributed nonlinearity models that subdivide the cross section 

of the member into fibers are presented in more detail because of their promising perfonnance 

and their relevance to the beam-column element of this study. 

1.2.1 Lumped Models 

Under seismic excitation the inelastic behavior of reinforced concrete frames often 

concentrates at the ends of girders ,and columns. Thus, an early approach to modeling this 

behavior was by means of zero length plastic hinges in the fonn of nonlinear springs located at 

the member ends. Depending on the fonnulation these models consist of several springs that 

are connected in series or in parallel. 

Elasto-plastlc component 
(1·p)k 

elastic component 
pk 

A) Parallel Model 
(Clough and Johnston 1967) 

Nonlinear rotational springs 

k ~ 
a. ~ 
A B 

Filled Inflection Point 

I: L 

FIGURE 1.1 - SIMPLE LUMPED PLASTICITY ELEMENTS: 

A) CLOUGH AND JOHNSTON MODEL 

B). GIBERSON MODEL 

The earliest parallel component element, shown in Fig. 1. la, was introduced by Clough 

and Johnston (1967) and allowed for a bilinear moment-rotation relation: the element consists 

of two parallel elements, one elastic-perfectly plastic to represent yielding and the other 

perfectly elastic to represent strain-hardening. The stiffness matrix of the member is the sum 
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of the stiffnesses of the components. Takizawa (1976) generalized this model to multilinear 

monotonic behavior allowing for the effect of cracking in RC members. The series model was 

formally introduc~ by Giberson (1967), although it had been reportedly used earlier. Its 

original form, shown in Fig. 1.1 b, consists of a linear elastic element with one equivalent 

nonlinear rotational spring attached to each end. The inelastic deformations of the member are 

lumped into the end springs. This model is more versatile than the original Clough model, 

since it can describe more complex hysteretic behavior by the selection of appropriate 

moment-rotation relations for the end springs. This makes the model attractive for the 

phenomenological representation of the hysteretic behavior of reinforced concrete members. 

Several lumped plasticity constitutive models have been proposed to date (Fig. 1.2). 

Such models include cyclic stiffness degradation in flexure and shear, (Clough and Benuska 

1966, Takeda et al. 1970, Brancaleoni et al. 1983), pinching under reversal, (Banon et al. 

1981, Brancaleoni et al. 1983) and fixed end rotations at the beam-column joint interface due 

to bar pull-out (Otani 1974, Filippou and Issa 1988). Typically, axial-flexural coupling is 

neglected. Nonlinear rate constitutive representations have also been generalized from the 

basic endochronic theory formulation in Ozdemir (1981) to provide continuous hysteretic 

relations for the nonlinear springs. An extensive discussion of the mathematical functions that 

are appropriate for such models is given by Iwan (1978). A critical issue for these models is 

the selection of parameters for representing the experimental hysteretic behavior of reinforced 

concrete members. Two basic problems are encountered: (a) the model parameters depend not 

only on the section characteristics but, also, on the load and deformation history, thus limiting 

the generality of the approach, and, (b) a consistent and rational method for the selection of 

model parameters requires special algorithms for ensuring a least squares fit between 

analytical results and experimental data. Such an algorithm is used by Ciampi and Nicoletti 

(1986) in a formal system identification method for the selection of parameters for the 

moment-curvature relation proposed by Brancaleoni er'al. (1983). 

The dependence of flexural strength on the axial load under uniaxial and biaxial bending 

conditions has been explicitly included in the modeling of beam-columns and structural walls. 

In most lumped plasticity models the axial force-bending moment interaction is described by a 

yield surface for the stress resultants and an associated flow rule according to the tenets of 

classical plasticity theory (Prager and Hodge 1951). The response is assumed to be linear for 

stress states that fall within the yield surface in which case the flexural and axial stiffness of the 

member are uncoupled and independent of the end loads. With the introduction of multiple 

yield and loading surfaces and corresponding hardening rules multilinear constitutive 

representations that include cracking· and cyclic stiffness degradation are possible for the 
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springs, as originally suggested by Takayanagi and Schnobrich (1979). 

'.:',: ..... '.' ..... [.' ............ : .•. ,.: ...•..........•. < .... ' ...•.•...•... '.J ..... >' •.... dM .. de ··~,M ) ..... '\ '. 
"d8~~ - :.-;;: ..... ' .. 
", '. ··C,',". " ••••• ', • • 

.. ·{F)· •• ~.l~j.n1~·~.2~ ••• i~.·· •••••. · .• • .•• ····:·:.·· •• ' •.••••.••••••••• 
·en~ClC~rohlc the~ry<,.( .... . 

FIGURE 1.2 - PROPOSED CONSTITUTIVE MODELS FOR NONLINEAR SPRINGS 

A lumped model is a simplification of the actual behavior that involves the gradual 

spread of inelastic deformations into the member as a function of loading history. This 

modeling deficiency was recognized in several correlation studies, particularly, those related 

to large resisting elements of flexural wall-frame structures, as described in Charney' and 

Bertero (1982) and Bertero et al ... (1984). The basic advantage of the lumped model is its 
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simplicity that reduces storage requirements and computational cost and improves the 

numerical stability of the computations. Most lumped models, however, oversimplify certain 

important aspects of the hysteretic behavior of reinforced concrete members and are, 

therefore, limited in applicability. One such limitation derives from restrictive a priori 

assumptions for the determination of the spring parameters. Parametric and theoretical studies 

of girders under monotonic loading presented by Anagnostopoulos (1981) demonstrate a 

strong dependence between model parameters and the imposed loading pattern and level of 

inelastic deformation. Neither factor is likely to remain constant during the dynamic response. 

The problem is further accentuated by the fluctuation of the axial force in the columns. 

Because of this history dependence, damage predictions at the global, but particularly at the 

local level, may be grossly inaccurate. Such information can only be obtained with more 

refined models capable of describing the hysteretic behavior of the section as a function of 

axial load. Another limitation of most lumped plasticity models proposed to date is their 

inability to describe adequately the deformation softening behavior of reinforced concrete 

members. Such deformation softening can be observed as the reduction in lateral resistance of 

an axially loaded cantilever column under monotonically increasing lateral tip displacement. 

Again more advanced models are needed in this case. 

The generalization of the rigid plastic theory concepts by Prager et al. (1951) to 

reinforced concrete column stress and strain resultant variables, such as bending moment and 

rotation, axial force and extension, limits the applicability of these models to well detailed 

members with large inelastic deformation capacity at the critical regions. For a reinforced 

concrete column section, the yield surface of the stress resultants is actually a function of a 

reference strain that couples the corresponding displacement components. This contradicts 

classical plasticity theory which does not account for deformation softening and assumes that 

the section deformability is unlimited. 

To overcome some of the limitations of classical plasticity theory in the description of 

the interaction between axial force and bending moments Lai et al. (1984) proposed a fiber 

hinge model that consists of a linear elastic element extending over the entire length of the 

reinforced concrete member and has one inelastic element at each end, as shown in Fig.!.3. 

Each inelastic element is made up of one inelastic spring at each section comer that represents. 

the longitudinal reinforcing steel and a central concrete spring that is effective in compression 

only. The five spring discretization of the end sections is capable of simulating the axial force­

biaxial bending moment interaction in· reinforced concrete members in a more rational way 

than is possible by classical plasticity theory. In Lai's model, the force-deformation relation for 

the effective steel springs follows Takeda's model, but the parameters that define the envelope 
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are established from equilibrium considerations. 

Lal'sModel 

FIGURE 1.3 - LAI'S MODEL: DEGRADING INELASTIC ELEMENT FOR REINFORCED CONCRETE 

BEAM-COLUMNS UNDER BIAXIAL BENDING AND AXIAL LOAD: 

(A) MEMBER IN FRAME; (B) MEMBER MODEL; (C) INELASTIC ELEMENT 

1.2.2 Distributed Nonlinearity Models 

7 

A more accurate description of the inelastic behavior of reinforced concrete members is 

possible with distributed nonlinearity models. In contrast to lumped plasticity models, material 

nonlinearity can take place at any element section and the element behavior is derived by 

weighted integration of the section response. In practice, since the element integrals are 

evaluated numerically, only the behavior of selected sections at the integration points is 

monitored. Either the element deformations or the element forces are the primary unknowns 

of the model and these are obtained by suitable interpolation functions from the global element 

displacements or forces, respectively. Discrete cracks are represented as "smeared" over a 

finite length rather than treated explicitly. The constitutive behavior of the cross section is 

either formulated in accordance with classical plasticity theory in terms of stress and strain 

resultants or is explicitly derived by discretization of the cross section into fibers, as is the case 

in the spread plasticity fiber models. A common assumption of these models is that plane 
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sections remain plane, such that the strains are linearly distributed over the cross section. 

Earlier beam-column models neglect the coupling between axial force and bending 

moment and, typically, consist of two cantilever elements that are connected at the fixed point 

of contraflexure of the member, as shown in Fig. 1.4 which refers to the model introduced by 

Otani (1974). In the derivation of the cantilever stiffness independent hysteresis rules are used 

for the end moment-free end displacement and for the end moment-free end rotation relation. 

To overcome some of the numerical difficulties in the element formulation, such as the lack of 

symmetry of the stiffness matrix, Otani assumed that the inelastic deformations are lumped in 

two equivalent springs at the ends of the member, thus sacrificing the generality of the model. 

The global behavior of Otani's model is derived by integration of the curvatures along the two 

cantilever components. The main limitation of this and similar models is the assumption of a 

fixed point of contraflexure in the element. 

. ·)1 Otanl's.Model I 

n·····lP.~~j~ 
_ ..... _ ... ;.7._.... . .. ~ 

10000l 
L~1 . D(M)"R(M) 

.1 . 

FIGURE 1.4 - OTANI'S MODEL: A) MOMENT DISTRIBUTION 

B) ELEMENT DEFORMATION 

C) EQUIVALENT INELASTIC ROTATIONAL SPRINGS 

In the model introduced by Soleimani et al. (1979) a zone of inelastic deformations 
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gradually spreads from the beam-column interface into the member as a function of loading 

history. The rest of the beam remains elastic. The fixed-end rotations at the beam-column 

interface are modeled through point hinges inserted at the ends of the member. These are 

related to the curvature at the corresponding end section through an "effective length" factor 

which remains constant during the entire response history. A very similar model was 

developed by Meyer et al. (1983). The flexibility coefficients of the model are identical to 

those proposed by Soleimani. A slightly different way of calculating the stiffness of the plastic 

zone during reloading is proposed and Takeda's model is used to describe the hysteretic 

moment-curvature relation. Fixed-end rotations are not taken into account in the study. The 

original model was later extended by Roufaiel and Meyer (1987) to include the effect of shear 

and axial forces on the flexural hysteretic behavior based on a set of empirical rules. The 

variation of axial loads due to overturning moments is not accounted for. Darvall and Mendis 

(1985) propose a similar but simpler model with end inelastic deformations defined through a 

trilinear moment-curvature relation. Once formed the end hinges may remain perfectly plastic 

or exhibit plastic softening or hardenirig. Perfectly plastic hinges are concentrated at a point, 

while softening and hardening hinges have a user defined, finite, fixed length that is normally 

assumed to be from 0.75 d to d, where d is the effective depth of the cross section. 

Takayanagi and Schnobrich (1979) propose to divide the element into a finite number of 

short longitudinal elements, each represented by a nonlinear rotational spring. The model is 

shown in Fig. 1.5. The properties of a segment depend on the bending moment at its midpoint 

and are assumed to be constant over the length of the segment. Static condensation is used to 

reduce this multi-spring model to a single beam-column element. Even though the nonlinear 

element behavior is eventually lumped at the end springs, this element belongs to the family of 

distributed nonlinearity models because it accounts for inelastic deformations that take place 

along the element. The multiple spring model was first used in the study of the seismic 

response of coupled shear walls, which exhibit significant variation of axial force. To account 

for the interaction between axial force and bending moment a three dimensional limit surface 

was introduced for the rotational springs. 

Filippou and Is sa. (1988) also subdivide the element in different subelements, but follow 

a different approach. Each subelement describes a single effect, such as inelastic behavior due 

to bending, shear behavior at the interface or bond-slip behavior at the beam-column joint. 

The interaction between these effects is then achieved by the combination of subelements. 

This approach allows the hysteretic law of the individual subelement to be simpler, while the 

member still exhibits a complex hysteretic behavior through the interaction of the different 

subelements. 
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FIGURE 1.5 TAKAYANAGI AND SCHNOBRICH MULTIPLE SPRING MODEL 

(A) ELEMENT MODEL; (B) BENDING MOMENT DIAGRAM; 

(C) SECfION STIFFNESS DISTRIBUTION 

The fIrst elements 'with distributed nonlinearity were formulated with the classical 

stiffness method using cubic Hermitian polynomials to approximate the deformations along 

the element. The general three-dimensional element with axial and flexural degrees of freedom 

is depicted in the local reference system in Fig. 1.6. The element without rigid body modes is 

shown in Fig. 1.7. For all elements the torsional degrees of freedom are assumed to exhibit 

linear elastic behavior and to be uncoupled from the axial and flexural degrees of freedom so 

that they can be omitted in the following presentation. For the sake of brevity the discussion is 

limited to the case of uniaxial bending about the z-axis, since the extension to the biaxial case 

is straightforward. Nodal displacements are grouped in vector q for the element with rigid 

body modes and vector q for the element without rigid body modes: 

q = {lll 112 lls 116 117 q;of 

q = {ql q2 qsf 

(1.1) 

(1.2) 

If x denotes the longitudinal axis of the member, the transverse displacement v(x) and the axial 

displacement u(x) are approximated by 
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d(x) = {U(X)} = aAx), if 
v(x) 

(1.3) 

where aAx) is a matrix that contains the cubic interpolation functions for the transverse 

displacements and the linear interpolation functions for the axial displacements 

with 

x 
"'2(X) = -

L 

The above interpolation functions can be readily extended to the biaxial bending case. 

(104) 

In the derivation of the stiffness matrix of beam and beam-column elements by the 

principle of virtual work the generalized deformations of the problem are the axial strain e(x) 

and the curvature about the z-axis X.(x). Under the assumptions that displacements are small 

and plane sections remain plane the section deformations d(x) are related to the nodal 

displacements by 

d(x) = { e(x)} = {U
1 

(X)} = a(x)· if 
X •. (x) . v"(x) 

(1.5) 

where a(x) is derived from the displacement interpolation functions according to 

_ [",~(X) 0 0 ",;(x) 0 0] 
a(x) = 0 cp~{x) cp~(x) 0 cp;(x) cp;(x) 

(1.6) 

Using the principle of virtual displacements or the principle of minimum potential energy -the 

element stiffness matrix K is the integral of section stiffnesses k(x) 

L 

K = JaT(x).k(x).a(x),dx (1.7) 
o 

where the section stiffness k(x) relates the section forces D(x) with the corresponding 

deformations d(x) 

D(x) = k(x)· d(x) (1.8) 
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FIGURE 1.6 BEAM ELEMENT WITH RIGID BODY MODES IN LOCAL REFERENCE SYSTEM 

FIGURE 1.7 BEAM ELEMENT WITHOUT RIGID BODY MODES IN LOCAL REFERENCE SYSTEM 

The section forces are the generalized stresses of the problem, i.e. the axial force N{x) and 

the bending moment .Mz(x) at section x. Thus: 

{ 
N{X)} 

D(x) = Mz{x) (1.9) 

The application of the virtual displacement principle yields the element resisting forces QR as 
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the integral of the section resisting forces DR(X) 

L 

QR = JaT(X).DR(x).dx (1.10) 
o 

Elements based on this classical finite element displacement approach are proposed, 

among· others, by Hellesland and Scordelis (1981) and Mari and Scordelis (1984). The 

formulation has been extended by Bazant and Bhat (1977) to include the effect of shear by 

means of multiaxial constitutive laws based on the endochronic theory. In this model the 

section is subdivided into horizontal layers but each layer is allowed to crack at a different 

angle that is derived from the interaction of normal and shear stress in the layer. 

The main shortcoming of stiffness-based elements is their inability to describe the 

behavior of the member near its ultimate resistance and after the onset of strain softening, 

since they are plagued by numerical instability problems for reasons to be discussed in detail 

later in this section. 

Since the curvature distribution in a member that has yielded at the ends is not well 

represented by cubic Hermitian interpolation functions, computational economy with 

improved representation of internal deformations is achieved by the combined approximation 

of, both, the section deformations, which are the basic unknowns of the problem, and the 

section flexibilities. Menegotto and Pinto (1977) interpolate both variables based on the values 

at a few monitored sections and include the axial force-bending moment interaction. The 

section flexibilities are assumed to vary linearly between monitored sections, which is 

equivalent to a hyperbolic stiffness variation. This improvement in accuracy makes the 

approach computationally attractive, since fewer sections need to be monitored and, hence, 

the number of variables that need to be computed and stored is smaller than in stiffness models 

of comparable level of discretization. 

Further improvement in element accuracy is achieved by the introduction of variable 

displacement interpolation functions. A major limitation of the classical displacement approach 

is the assumption of cubic interpolation functions, which result in a linear curvature 

distribution along the element. This assumption leads to satisfactory results under linear or 

nearly linear response. However, when the reinforced concrete member undergoes significant 

yielding at the ends, the curvature distribution becomes highly nonlinear in the inelastic region. 

This requires the use of a very fine discretization in the inelastic regions of stiffness-based 

elements. Mahasuverachai (1982) was the first to propose the use of flexibility-dependent 

shape functions that are continuously updated during the analysis as inelastic deformations 

spread into the member. In his study deformation increments rather than total deformations 
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are approximated. The section defonnation increments are written as 

M(x) = I(x), h(x)· p-l . tuJ = a(x)· tuJ (1.11) 

where ~ denotes the increment of the corresponding vector. This new fonnulation is, 

however, applied to the development of pipeline elements where the source of nonlinearity is 

geometric rather than material. 

Recent efforts to develop more robust and reliable reinforced-concrete frame elements 

have shown two parallel trends. First, deviating from the original classical stiffness method, 

researchers have focused attention on flexibility-dependent . shape functions and, more 

recently, on flexibility-based fonnulations that pennit a more accurate description of the force 

distribution within the element. Secondly, the elements are sulxlivided into longitudinal fibers, 

which has two inherent advantages: a) the reinforced concrete section behavior is derived 

from the uniaxial stress-strain behavior of the fibers and three-dimensional effects, such as 

concrete confinement by transverse steel can be incorporated into the uniaxial stress-strain 

relation; and, b) the interaction between bending moment and axial force can be described in a 

rational way. 

The flexibility approach is based on force interpolation functions within the element. 

~ypically, the element is analyzed without including the rigid body modes. In this case the end 

rotations relative to the chord and the axial differential displacement are the element 

generalized defonnations, or simply, element defonnations. The element forces and 

defonnations without the rigid body modes are shown in Fig. 1.7. Under the assumption of 

small defonnations and small displacements the element defonnations q are related to the 

element displacements if in Fig. 1.6 by the compatibility matrix. In the uniaxial bending case 

the vector of element forces without rigid body modes is 

_ (1.12) 

It is common to assume that the bending moment distribution inside the element is linear and 

that the axial force distribution is constant: In vector notation: 

D(x) = b(x)· Q (1.13) 

where b(x) is a matrix containing the force interpolation functions 

o 1 

] (1.14) 
o 

The application of the virtual force principle yields the element flexibility 
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L 

F = J bT (X)· I(x)· b(x)· dx (1.15) 
o 

where I(x) is the section flexibility matrix, such that: 

d(x) = I(x), D(x) (1.16) 

The advantage of this formulation stems from the realization that, irrespective of the 

state of the element, the force interpolation functions in Eqs. (1.13) and (1.14) satisfy the 

element equilibrium is a strict sense, as long as no element loads are applied. In other words, 

whatever material nonlinearities take place at the section level and even as the element starts 

softening when deformed beyond its ultimate resistance, the assumed internal force 

distributions are exact. 

A critical issue in flexibility-based elements is the implementation in an existing finite 

element program. Computer programs are typically based on the direct stiffness method of 

analysis. In this case the solution of the global system of equilibrium equations for the given 

loads yields the unknown structural displacements. After the element displacements are 

extracted from the structural displacements the phase of element state determination starts. 

During this phase the resisting forces and the stiffness matrix need to be determined for the 

given element displacements. The element state determination requires a special procedure in 

a flexibility-based element, since the element resisting forces cannot be derived by integration 

of the section resisting forces according to Eq. (1.10). An interesting state determination 

procedure for a flexibility-based finite element is proposed in Ciampi and Carlesimo (1986) 

and is discussed at length in Spacone et al. (1992). The section moment-curvature relation of 

this model is based on the endochronic theory presented in Brancaleoni et al. (1983). The 

element state determination is based on the section deformation residuals that result from the 

numerical integration of the section constitutive relation. The interaction between axial force 

and bending moment is not included in the latter model. 

1.2.3 Fiber Models 

The most promising models for the nonlinear analysis of reinforced concrete members 

are, presently, flexibility-based fiber elements. In these models the element is subdivided into 

longitudinal fibers, as shown in Fig. 1.8. The geometric characteristics of the fiber are its 
location in the local y, z reference system and the fiber area Ai/ib' The constitutive relation of 

the section is not specified explicitly, but is derived by integration of the response of the fibers, 

which follow the uniaxial stress-strain relation of the particular material, as shown in Fig. 1.8. 

The elements proposed to date are limited to small displacements and deformations and 
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FIGURE 1.8 FIBER ELEMENT: DISTRIBUTION OF CONTROL SECTIONS 

AND SECTION SUBDIVISION INTO FIBERS 

CHAPTER 1 

assume that plane sections remain plane. Two new tasks appear in the formulation of 

flexibility-based fiber elements: a) the element state determination, which involves the 

determination of the resisting forces for the given element displacements, and, b) the 

determination of the section flexibility f(x) that is required in the calculation of the element 

flexibility F according to Eq. (1.15). 

The basic assumption in a flexibility-based model is the internal force distribution in the 

element, which is expressed in Eq. (1.13) by the force interpolation functions b(x). In a 

consistent state determination process the section forces are determined from the element 

forces according to Eq. (1.13), followed by the computation of the corresponding fiber 

stresses based on equilibrium. The fiber strains and flexibilities are determined from the fiber 

stress-strain relations and the section deformations as well as the section flexibility are 

computed by applying' th~ virtual force principle. The determination of fiber stresses from 

section forces is, however, a statically indeterminate problem for a section with more than two 

fibers: the fiber stresses cannot be determined from the axial. force and bending moment at the 

section, since there are only two equilibrium equations in the uniaxial bending case for three or 

more unknown stresses. One possible solution is to assume a stress distribution within the 
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section, but the problem is, then, only postponed to the fiber state detennination phase of the 

algorithm, since fiber stress-strain relations are typically expressed as explicit functions of 

strain. The solution adopted in proposed models is to linearize the section constitutive relation 

and compute the section defonnations from the new .section forces and the section flexibility 

from the previous step. Fiber stresses and stiffnesses are then detennined from the fiber stress­

strain relations: The section resisting forces are computed from the fiber stress distribution and 

the section stiffness k(x) is assembled from the fiber stiffnesses. In the uniaxial bending case 

k(x) takes the fonn 

k(x) = 

,,(x) 

L,Eijib .~ 
ijib=l 

"(x) 

- L, Eijib . Aijib . YiJib 
iJib=1 

II(X) 

- L.,Eijib . ~ . Yijib 
ijib=l 

11(.1) 

L., Eijib ·Aijib . Y~ 
ijib=l 

(1.17) 

, 
The section stiffness is then inverted to yield the section flexibility I(x) = k-1(x).The new 

element flexibility F is computed from Eq. (1.15) and is then inverted to obtain the element 

stiffness K = F-1 . The remaining problem is the detennination of the element resisting forces 

from the section resisting forces along the element. Presently, this is the main challenge in the 

development of flexibility-based fiber elements. 

The first flexibility-based fiber element was proposed by Kaba and Mahin (1984). It 

follows the outline of the flexibility approach presented above using the force interpolation 

functions b(x) in Eq. (1.14) in the detennination of the element flexibility matrix. Only uniaxial 

bending is taken into account in this model. In the state detennination phase of the nonlinear 

analysis the section defonnations are computed from the element defonnations with the 

flexibility-dependent defonnation shape functions in Eq. (1.11). Due to the nonlinear behavior 

of the section,f(x), F and, consequently, a(x) change during the element defonnation history. 

The section defonnations are then used to detennine the fiber strains based on the plane 

section assumption and the corresponding fiber stresses and stiffnesses are established from 

the fiber stress-strain relation. Subsequently, the section stiffness k(x) and the corresponding 

resisting forces DR(x) are detennined by application of the principle of virtual work at the 

section. The section stiffness is inverted to yield the section flexibility f(x); Finally, the element 

flexibility matrix F is detennined with Eq. (1.15) and the increment of the element resisting 

forces llQR is established with the virtual displacement principle, 

L L 

llQR = J aT (x)· llDR(x)· dx = F-1 -J bT (x)· I(x)· llDR(x)· dx ( 1.18) 
o 0 

The integrals over the element length are evaluated by subdividing the element into equally 
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spaced slices and assuming a linear flexibility distribution between the slices. This model yields 

very promising results, but is plagued by convergence problems and is unable to describe 

element softening. The element formulation is actually based on a mixed approach, since it 

uses both deformation and force interpolation functions. Unfortunately, the element lacks 

theoretical clarity and contains several inconsistencies that cause the numerical problems. The 

first inconsistency appears in the determination of the element flexibility matrix that is based 

on compatibility considerations and the application of the virtual force principle, while the 

determination of the element resisting forces is based on equilibrium considerations and the 

application of the virtual displacement principle. The second inconsistency appears in the state 

determination process which violates the equilibrium within the element, since the distribution 

of the section resisting forces DR{x) does not satisfy the equilibrium conditions in Eqs. (1.13) 

and (1.14). Consequently, the resulting bending moment distribution is not linear and the axial 

force distribution is not uniform, as required by the force interpolation functions b(x). 

Zeris and Mahin (1988 and 1991) discuss the improvement of the original Kaba-Mahin 

model and extend the formulation to the biaxial case. The main improvement concerns the 

element state determination. Once the main program determines the nodal displacement 

increments !iq, the element updating sequence consists of the following steps: a) Eq (1.11) is 

applied at the end sections of the element to determine the section deformation increments 

.&I{O) and .&I(L); b) the correspondIng bending moments and axial forces at the end sections 

are established by means of a modified event-to-event advancement method developed by 

Zeris (1986); c) the deformations at interior sections of the element are updated with an 

iterative procedure so as to produce section resisting forces that conform to the assumed force 

distribution in the element. 

An interesting analysis of the softening behavior of a cantilever beam is discussed in 

Zeris and Mahin (1988) and is reproduced in Fig. 1.9. When a cantilever is displaced beyond 

the point of ultimate resistance, section 1 at the fixed base of the cantilever loses load carrying 

capacity and starts softening. Sections 2 through 5 along the height of the cantilever unload 

elastically in order to satisfy the internal equilibrium. Stiffness-based elements fail to trace the 

real behavior of the member, because of the assumption of a linear curvature distribution. The 

assumed curvature distribution deviates significantly from the actual distribution during 

element softening, as the sharp jump in the curvature value near the fixed end attests in 

Fig. 1.9. In this case the column has to be subdivided into several elements, but convergence 

problems are still encountered. Early flexibility elements, such as that described by Kaba and 

Mahin (1984), are also unable to trace the softening behavior of the member correctly, 

because equilibrium is not enforced along the element. 
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Even though the element proposed by Zeris and Mahin shows satisfactory perfonnance, 

the element state detennination procedure is not very clear and is derived from ad hoc 

corrections of the Kaba-Mahin model rather than from a general theory. 

FIGURE 1.9 BEHAVIOR OF SOFTENING CANTILEVER MODEL 

(A) MEMBER AND LOADING; (B) MOMENT DISTRIBUTION 

(c) CURVATURE DISTRIBUTION; (D) MOMENT<URVATURE RELATION 

1.3 Objectives and Scope 

In the literature survey great attention was devoted to fiber beam-column elements 

because of their ability to combine a relatively accurate description of the section behavior 

with the simplicity of a frame element. Three dimensional effects, such as confinement of the 

concrete by transverse and longitudinal steel, can be included in the uniaxial material behavior 

of the fibers. The interaction between bending moment and axial force can also be established 

in a rational manner by integration of the uniaxial behavior of the fibers. This effect is normally 

ignored in seismic resistant design and analysis because of the computational complexities 

involved. Recent earthquakes and several experimental studies, however, have demonstrated 

that the interaction between bending moment and axial force influences the hysteretic behavior 

of reinforced concrete members, especially, comer columns in frames and slender walls in 

coupled-wall systems. Fiber models proposed to date fail to offer a clear and reliable nonlinear 

algorithm for their implementation in the nonlinear dynamic analysis of reinforced concrete 

structures that might experience considerable local damage and panial loss of load carrying 
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capacity. 

The present study proposes a new fiber beam-column finite element along with a 

consistent nonlinear solution algorithm that is particularly suitable for the analysis of the highly 

nonlinear hysteretic behavior of softening members, such as reinforced concrete columns 

under varying axial load. The element formulation is cast in the framework of the mixed 

method, but can be equally derived with a flexibility approach. The proposed element state 

determination is based on a nonlinear iterative algorithm that always maintains equilibrium and 

compatibility within the element and that eventually converges to a state that satisfies the 

section constitutive relations within a specified tolerance. 

The main objectives of this study are: 

• to present a formal mixed method framework for the formulation of a beam-column 

element using force interpolation functions and flexibility-dependent deformation shape 

functions; 

• to introduce an innovative and numerically robust state determination procedure for 

flexibility-based beam-column elements. This procedure is based on an iterative process 

for the determination of resisting forces from the given element deformations that 

always maintains equilibrium and compatibility within the element. Even though the 

procedure is discussed in the present study in the context of a fiber beam-column model, 

it is equally applicable to any nonlinear constitutive relation for the section; 

• to discuss important numerical aspects of the element implementation in a general 

purpose analysis. program, with emphasis on the aspects that relate to the 

implementation of the element state determination procedure; 

• to extend the element formulation to include the application of element loads. This 

rather important topic has received scant attention in seismic response studies of 

reinforced concrete buildings. It is especially relevant for the extension of the proposed 

mOdel to prestressed concrete structures; 

• to illustrate with a series of examples the ability of the proposed model to describe the 

hysteretic behavior of reinforced concrete members. The response sensitivity to the 

number of control sections in the element and the effect of the selected tolerance on the 

accuracy of the results is discussed in a few parameter studies. 

Following the review of previous relevant studies in this chapter, Chapter 2 presents the 

mixed formulation of the beam-column element and illustrates the proposed nonlinear solution 

algorithm for the element state determination. Chapter 3 extends the formulation to the case 
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of a fiber beam-column element and discusses material models for the nonlinear stress-strain 

relation of the fibers. In Chapter 4 issues related to the numerical implementation of the 

nonlinear solution algorithm are discussed along with the associated convergence criteria. A 

consistent method for the application of element loads in flexibility based finite elements is 

also presented in this chapter. The response sensitivity to the number of control sections in the 

element and the effect of the convergence tolerance on the accuracy of the results is discussed 

in a few parameter studies at the beginning of Chapter 5. The validity of the proposed model 

is then established by comparing the analytical results with information from experimental 

studies. The conclusions of this study and directions for future research are presented in 

Chapter 6. 





CHAPTER 2 

FORMULATION OF BEAM-COLUMN ELEMENT 

2.1 General 

This chapter presents the general formulation of a beam-column finite element based on 

the flexibility method. The presentation is cast in the more general form of a mixed method for 

two reasons: (a) this approach illustrates better the state-determination process used in the 

nonlinear analysis algorithm, and, (b) it yields in a direct way the flexibility dependent 

deformation shape functions of the element that reduce the general mixed method formulation 

to the flexibility method used in this study. In addition, the generality of the mixed method 

allows the exploration of alternative deformation shape functions in future studies. 

In keeping with the generality of the presentation the force-deformation relation is not 

specialized at the section leveL This is deferred to the following chapter where the section 

force-deformation relation is derived from a fiber discretization of the cross section. A 

"different approach which uses the theory of classical plasticity to derive a hysteretic model of 

the section force-deformation relation is presented by Spacone et aL (1992). 

The proposed beam-column element is based on the assumption that deformations are 

small and that plane sections remain plane during the loading history. The formulation of the 

element is based on the mixed method: the description of the force distribution within the 

element by interpolation functions that satisfy equilibrium is the starting point of the 

formulation. Based on the concepts of the mixed method it is shown that the selection of 

flexibility dependent shape functions for the deformation field of the element results in 

considerable simplification of the final equations. With this particular selection of deformation 

shape functions the general mixed method reduces to the special case of the flexibility method. 

The mixed method formalism is, nonetheless, very useful in understanding the proposed 

procedure for the element state determination. 

The proposed formulation offers several advantages over previous models: 

• Equilibrium and compatibility are always satisfied along the element: equilibrium is 

satisfied by the selection of force interpolation functions and compatibility is satisfied by 

integrating the section deformations to obtain the corresponding element defonnations 

23 
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and end displacements. An iterative solution is then used to satisfy the nonlinear section 

force-defonnation relation within the specified tolerance. 

• The softening response of reinforced concrete members,. which are either poorly 

reinforced or are subjected to high axial forces, can be described without computational 

difficulties. 

In the first part of the chapter, after the definition of generalized element forces and 

corresponding element defonnations, the mixed method fonnulation of the element is 

presented. The second part focuses on the element state detennination process and the step­

by-step calculation of the element resisting forces that correspond to given element 

defonnations. These derivations are made without reference to a specific section model. This 

is deferred to Chapter 3, where the nonlinear procedure is specialized to a fiber section model. 

2.2 Definition of Generalized Forces and Deformations 

The beam-column finite element is schematically shown in Fig. 2.1. The reference frame 

for the element is the local coordinate system x, y, Z, while X, Y, Z denotes the global 

reference system. The longitudinal axis x is the union of geometric centroids of each section. 

The following convention is followed for the notation of forces,·· displacements and 

defonnations: forces are represented by uppercase letters and corresponding defonnations or 

FIGURE 2.1 GENERALIZED FORCES AND DEFORMATIONS 

AT THE ELEMENT AND SECTION LEVEL 
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displacements are denoted by the same letter in lowercase. Normal letters denote scalar 

quantities, while boldface letters denote vectors and matrices. 

Fig. 2.1 shows the element forces with the corresponding deformations. Rigid body 

modes are not included in Fig. 2.1. Since the present formulation is based on linear geometry, 

rigid body modes can be incorporated with a simple geometric transfonnation. The element 
has 5 degrees of freedom: one axial extension, qs' and two rotations relative to the chord at 

each end node, (ql, q3) and (q2' q4)' respectively. For the sake of clarity these are called 

element generalized defonnations or simply element defonnations in the following discussion. 

Q1 through Qs indicate the corresponding generalized forces: one axial force, Qs' and two 

bending moments at each end node QI' Q3 and Q2' '4, respectively. The end rotations and 

corresponding moments refer to two arbitrary, orthogonal axes y and z. The element 

generalized forces and defonnations are grouped in the following vectors: 

Q1 

Q2 
Elemen t force vector Q= Q3 (2.1) 

'4 
Qs 

ql 

q2 

Elemen t defonnation vector q= % (2.2) 

q4 

qs 

Fig. 2.1 also shows the generalized forces and defonnations at a section of the element. 

Section defonnations are represented by three strain resultants: the axial strain E(X) along the 

longitudinal axis and two curvatures Xz(x) and Xy(x) about two arbitrary, orthogonal axes z 

and y , respectively. The corresponding force resultants are the axial force N(x) and two 
bending moments Mz (x) and My (x). The section generalized forces and defonnations are 

grouped in the following vectors: 

Section force vector 
{

MZ(X)} {DI (x) } 
D(x) = M/x) = D2 (x) 

N(x) D3(x) 

(2.3) 
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Section deformation vector (2.4) 

The element formulation can be readily extended to include the torsional degrees of 

freedom, as long as these are uncoupled from the present degrees of freedom and are 

governed by linear elastic behavior. The focus of the present study is the element in Fig. 2.1, 

which describes the nonlinear behavior of frame members under arbitrary cyclic load histories 
" 

of biaxial bending and axial load. 

2.3 Beam-Column Element Formulation 

In the following the mixed finite element method is used to formulate the beam-column 

element. At this stage rio reference is made to specific interpolation functions. It is shown, 

however, that, if flexibility dependent deformation shape functions are selected, then the 

mixed method simplifies to the flexibility method. The nonlinear section force-deformation 

relation is also kept general. The force interpolation functions and the section force­

deformation relations are specialized in the next chapter for a fiber discretization of the cross 

section of the beam-column element. 

The derivation follows the two-field mixed method which uses the integral form of 

equilibrium and section force-deformation relations to derive the matrix relation between 

element generalized forces and corresponding deformations. In order to arrive at a linear 

relation, the section force-deformation relation is linearized about the present state. An 

iterative algorithm is, then, used to satisfy the nonlinear section force-deformation relation 

within the required tolerance. 

In the two-field mixed method (Zienkiewicz and Taylor 1989) independent shape 

functions are used for approximating the force and deformation fields along the element. 

Denoting with ~ increments of the corresponding quantities, the two fields are written 

fuf(x) =a(x). ~qi 

and Mi (x) =b(x). ~Qi 

(2.5) 

(2.6) 

where matrices a(x) and .b(x) are the deformation and force interpolation matrices, 

respectively. Superscript i indicates the i-th iteration of the Newton-Raphson (N-R) iteration 

loop, which is performed at the structure degrees of freedom until equilibrium between 

applied loads and internal resisting forces is satisfied (Zienkiewicz and Taylor 1989). The use 

of the superscript in the element formulation becomes necessary because of the special form of 
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the deformation interpolation functions, which are flexibility dependent. 

In the mixed method formulation the integral forms of equilibrium and section force­

deformation relations are expressed first. These are then combined to obtain the relation 

between element force and deforniation increments. 

The weighted integral form of the linearized section force-deformation relation is 

L J aDT (x)· [rui(x) - i-I (x) . Mi(x)]dx=O (2.7) 
o 

The section force-deformation relation appears in the flexibility form 

so that the resulting element flexibility matrix is symmetric, as discussed by Zienkiewicz and 

Taylor (1989). The superscript i-I indicates that at the i-th Newton-Raphson iteration the 

section flexibility at the end of the previous iteration is used. Substituting Eqs. (2.5) and (2.6) 

in Eq. (2.7) results in 

L 

OQT. J bT (x)· [a(x). L~I/ - i-I (x)· b(x)· ~Qi]dx=O 
o 

Since Eq. (2.8) must hold for any OQT, it follows that 

The expressions in square brackets represent the following matrices: 

F'-' =[! bT (X) 1'-' (X) " b(x)"dx ] 

T=[!bT(X)"Q(X)"dx ] 

(2.8) 

(2.10) 

(2.11) 

where F is the element flexibility matrix and T is a matrix that only depends on the 

interpolation function matrices. Using Eqs. (2.10) and (2.11) Eq. (2.9) can be written in the 

form 

(2.12) 

or equivalently 

(2.13) 

This is the matrix expression of the integral form of the linearized section force-deformation 
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relation. 

In the next step the equilibrium of the beam element is satisfied. In the classical two­

field mixed method the integral form of the equilibrium equation is derived from the virtual 

displacement principle 

L 

f&lT(X).[Di-1(X)+Mi(x)]-dX =&/.pi (2.14) 
o 

where pi is the vector of applied loads that are in equilibrium with the internal forces 

D i
-

1 (x) + Mi(x). Eqs. (2.5) and (2.6) are substituted in Eq. (2.14) to yield 

&/.[! aT (x).[b(x) .Q'-' +b(x)· t.{!]. dx] = f>qT·r 

Observing that Eq. (2.15) must hold for arbitrary 8qT, it follows that 

[! aT (x)· b(x)·dx lQ'-' + [t aT(x)· b(x)· dx 1 t.Q' = r 

If the notation introduced in Eq. (2.11) is used, Eq. (2.16) can be written in matrix form 

(2.15) 

(2.16) 

(2.17) 

This is the matrix expression of the integral form of the element equilibrium equations. The 

rearrangement and combination of Eqs. (2.12) and (2.17) results in 

[
_F

i

-

1 r] {!:!.Q
i
} { 0 } . rT O·!:!.qi = pi _ rT . Qi-I (2.18) 

If the first equation in Eq. (2.18) is solved for !:!.Qi and the result is substituted in the second 

equation, the following expression results 

(2.19) 

So far, the specific selection of force and deformation interpolation functions b(x) and a(x), 

respectively, has not been addressed. In keeping with the generality of the formulation the 

selection of the force interpolation functions b(x) is deferred to the following chapter. Even 

though in a mixed finite element method the deformation interpolation functions a(x) are 

completely independent of b(x), Eq. (2.11) reveals that a special choice of the deformation 

shape functions a(x) results in considerable simplification. With this simplification in mind a(x) 

are selected as flexibility dependent shape functions according to the following expression 

a(x) = /-1 (x)· b(x)· [Fi-l r (2.20) 
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These interpolation functions, thus, relate the section deformations with the corresponding 

element deformations according to 

(2.21) 

F i
-

I is the tangent element flexibility matrix at the end of the previous Newton-Raphson 

iteration. This special selection of the deformation shape functions reduces matrix T in 

Eq. (2.11) to a 3,,3 identity matrix I. This can be readily proven by substituting Eq. (2.20) in 

Eq. (2.11): 

With this choice of the deformation shape functions a(x) Eq. (2.19) becomes 

[ Fi- I r . !J.qi = P -:- Qi-I 

(2.22) 

(2.23) 

At the same time this choice of functions a(x) reduces the general mixed method to the 

flexibility method. The final matrix equation,Eq. (2.23), expresses the linearized relation 

between the applied unbalanced forces P - Qi-I and the corresponding deformation 

increments !J.qi at the element level. The element stiffness matrix is written in the form [Ft 
to indicate that it is obtained by inverting the element. flexibility matrix. The linear equation 

system in Eq. (2.23) is different from that obtained by the classical stiffness method in two 

respects: (a) the element stiffness matrix is obtained by inverting the element flexibility matrix, 

as in the flexibility method, and, (b) the state determination phase of the nonlinear analysis is 

different, as will be described in detail in the following section. 

Even though the classical flexibility method yields the same system of linearized 

equations in Eq. (2.23), the above derivation was based on the two-field mixed method for the 

following reasons: (a) the mixed method formulation yields directly the expression for the 

flexibility dependent deformation shape functions a(x) in Eq. (2.20), (b) it reveals the 

consistent implementation of the state determination process, and, (c) it is more general in 

scope allowing alternative deformation shape functions to be explored in future studies. 

Since a(x) is not independent of hex) and changes during the iterative solution process, 

as is apparent from Eq. (2.20), the proposed method corresponds to the classical flexibility 

method. Moreover, this procedure reduces to the stiffness method for the case that the section 

constitutive relation is perfectly linear. In other words, the independence between the two 

fields is not intrinsic in the definition of the shape functions, but derives from the material 

nonlinearity of the section force-deformation relation. 
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2.4 State Determination 

Most studies to date concerned with the analysis of reinforced concrete frame structures 

are based on finite element models that are derived with the stiffness method. Recent studies 

have focused on the advantages of flexibility based models (Zeris and Mahin 1988), but have 

failed to give a clear and consistent method of calculating the resisting forces from the given 

element deformations. This problem arises when the formulation of a finite element is based 

on the application of the virtual force principle. While the element is flexibility-dependent, the 

computer program into which it is inserted is based on the direct stiffness method of analysis. 

In this case the solution of the global equilibrium equations yields the displacements of the 

structural degrees of freedom. During the phase of state determination the resisting forces of 

all elements in the structure need to be determined. Since in a flexibility based element there 

are no deformation shape functions to relate the deformation field inside the element to the 

end displacements (or element deformations) this process is not straightforward and is not 

well developed in flexibility based models proposed to date. This fact has led to· some 

confusion in the numerical implementation of previous models. The description of the 

consistent state determination process in this study benefits from the derivation of the 

governing equations by the two-field mixed method. 

In a nonlinear structural analysis program each load step corresponds to the application 

of an external load increment to· the structure. The corresponding structural displacement 

increments are determined and the element deformations are extracted for each element. The 

process of finding the resisting forces that correspond to the given element deformations is 

known as state determination. The state determination process is made up of two nested 

phases: a) the element state determination, when the element resisting forces are determined 

for the given end deformations, and b) the structure state determinarion, when the element 

resisting forces are assembled to the structure resisting force vector. The resisting forces are 

then compared with the total applied loads and the difference, if any, yields the unbalanced 

forces which are then applied to the structure in an iterative solution process until external 

loads and internal resisting forces agree within a specified tolerance. 

In the present study the nonlinear algorithm consists of three distinct nested processes, 

whiCh are illustrated in Fig. 2.2. The two outermost processes denoted by indices k and i 

involve structural degrees of freedom· and correspond to classical nonlinear analysis 

procedures. The innermost process denoted by index j is applied within each element and 

corresponds to the element state determination. Fig. 2.2. shows the evolution of the structure, 

element and section states during one load increment ~p; that requires several Newton-
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Raphson iterations i. 

FIGURE 2.2 SCHEMATIC ILLUSTRATION OF STATE DETERMINATION ATTHE 

STRUCTURE, ELEMENT AND SECTION LEVEL: k DENOTES THE LOAD 

STEP, i THE STRUCTURE NEWTON-RApHSON ITERA nON AND j THE 

ITERATION FOR THE ELEMENT STATE DETERMINATION 
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. In summary, the superscripts of the nested iterations are defined as follows: 

k denotes the applied load step. The external load is imposed in a sequence of load 

increments ~p:. At load step k the total external load is equal to P: = p:-I + ~p: with 

k= l, ... ,nstep and P~ = 0; 

i denotes the Newton-Raphson iteration scheme at the structure level, i.e. the structure 

state determination process. This iteration. loop yields the structural displacements pk 

that correspond to applied loads P;; 

j denotes the iteration scheme at the element level, i.e. the element state determination 

process. This iteration loop is necessary for the determination of the element resisting 

forces that correspond to element deformations qi during the i-th Newton-Raphson 

iteration. 

The processes denoted by indices k and i are common in nonlinear analysis programs 

and will not be discussed further. The iteration process denoted by the index j, on the other 

hand, is special to the _beam~column element formulation developed in this study and will be 

described in detail. It should be pointed out that any suitable nonlinear solution algorithm can 

be used for the iteration process denoted by index i. In this study the Newton-Raphson 

method is used. The selection of this method for iteration loop i does not affect the strategy 

for iteration loop j, which has as its goal the determination of the element resisting forces for 

the given element deformations. 

In a finite element that is based on the stiffness method of analysis the section 

deformations are obtained directly from the element end deformations by deformation 

interpolation functions. The corresponding section resisting forces are determined 

subsequently from the section force-deformation relation. The weighted integral of the section 

resisting forces over the element length yields the element resisting forces and completes the 

process of element state determination. 

In a flexibility-based finite element the first step is the determination of the element 

forces from the current element deformations using the stiffness matrix at the end of the last 

iteration. The force interpolation functions yield the forces along the element. The first 

problem is, then, the determination of the section deformations from the given section forces, 

since the nonlinear section force-deformation relation is commonly expressed as an explicit 

function of section deformations. The second problem arises from the fact that changes in the 

section stiffness produce a new element stiffness matrix which, in tum, changes the element 

forces for the given deformations. 
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These problems are solved in the present study by a special nonlinear solution method. 

In this method residual element deformations are determined at each iteration. Deformation 

compatibility at the structural level requires that these residual deformations be corrected. 

This is accomplished at the element level by applying corrective element' forces based on the 

current stiffness matrix. The corresponding section forces are determined from the force 

interpolation functions so that equilibrium is always satisfied along the element. These section 

forces cannot change during the section state determination in order to maintain equilibrium 

along the element. Consequently, the 'linear approximation of the section force-deformation 

relation about the present state results in residual section deformations. These are then 

integrated along the element to obtain new residual element deformations and the whole 

process is repeated until convergence occurs. It is imponant to stress that compatibility of 

element deformations and equilibrium along the element are always satisfied in this process. 

The nonlinear solution procedure for the element state determination is schematically 

illustrated in Fig. 2.3 for one Newton-Raphson iteration i. In Fig. 2.3 convergence in loop j is 

reached in three iterations. The consistent notation between Figs. 2.2 and 2.3 highlights the 

relation between the corresponding states of the structure, the element and the section, which 

are denoted by uppercase Roman letters. 

At the i-th Newton-Raphson iteration it is necessary to determine the element resisting 

forces for the current element deformations 

qi = qi-I + llqi 

To this end an iterative process denoted by index j is introduced inside' the' i-th Newton­

Raphson iteration. The first iteration corresponds to j= 1. The initial state of the element, 

. represented by point A and j=O in Fig. 2.3, corresponds to the state at the end of the last 

iteration of loop j for the (i-I) Newton-Raphson iteration. With the initial element tangent 

stiffness matrix 

and the given element deformation increments . 

llqj=1 = llqi 

the corresponding element force increments are: 

llQj=1 = [Fj=ot .6qj=1 
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The-section force increments can now be determined from the force interpolation functions: 

/illj=1 (x) = b(x). ~Qj=l-

FIGURE 2.3 
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With the section flexibility matrix at the end of the previous Newton-Raphson iteration 

the linearization of the section force-deformation relation yields the section defonnation 
increments Mi=I(X): 

Mi=I(X) = li=o(x). MJi=\x) 

The section deformations are updated to the state that corresponds to point B in Fig. 2.3: 

d i=l(X) = di=O(x) + ~di=l(X) 

According to the section force-deformation relation, which is here -assumed to be 

explicitly known for simplicity's sake, section deformations d i=l(X) correspond to resisting 

forces Dt1(X) and a new tangent flexibility matrix li=l(x) (Fig. 2.3). In a finite element based 

on the stiffness method the section resisting forces Dk=l(X) would be directly transformed to 

element resisting forces Qi=l thus violating the equilibrium along the element in a strict sense. 

Since this is undesirable, a new nonlinear solution method is proposed in this study. In this 

approach the section unbalanced forces are first determined 

Dt=l(X) = Di=I(X)_ Dr (x) 

and are then transformed to residual section deformations ri=l(x) 

r i=1 (x) = li=1 (x)· v:.,=1 (x) (2.24) 

The residual section deformations are thus the linear approximation to the deformation error 

made in the linearization of the section force-deformation relation (Fig. 2.3). While any 

suitable flexibility matrix can be used in calculating the residual deformations, the tangent 

flexibility matrix used in this study offers the fastest convergence rate. 

The residual section deformations are integrated along the element based on the virtual 

force principle to obtain the residual element deformations: 

L 

si=l = J bT (x)· ri=l(x)· dx 
o 

(2.25) 

At this point the first iteration j= 1 of the corresponding iteration loop is complete. The final 

element and section states for j= 1 correspond to point B in Fig. 2.3. The residual section 
deformations ri=l(x) and the residual element deformations Si=1 are determined in the first 

iteration, but the corresponding deformation vectors are not updated. Instead, they are the 

starting point of the remaining steps within iteration loop j. The presence of residual element 

deformations Sf=l violates compatibility, since elements sharing a common node would now 

have different end displacements. In order to restore the inter-element compatibility corrective 
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forces equal .to -[ Fi=1 r . Si=1 must be applied at the ends of the element, where FJ=1 is the 

updated element tangent flexibility matrix detennined by integration of the section flexibility 

matrices according to Eq. (2.10). A corresponding force increment -b(x)· [Fi=1 r . Si=1 is 

applied at all control sections inducing a defonnation in~ement _/i=l(x).b('x).[pJ=lr ·S}=I. 

Thus, in the second iteration j=2 the state of the element and of the sections within the 

element change as follows: the eiement forces are updated to the value 

QJ=2 = QJ=1 + ~ Qi=2 

where 

. ~ Qi=2 = -[ Fi=1 r . si=1 

and the section forces and defonnations are updated to the values 

. IJi=2 (x) = Di=1 (x) + mi=2 (x) 

and 

where 

m i=2 (x) = -b(x) . [ Fi=1 r . Si=1 

Mi=2(X) = r i =1 (x)- /i=I(X)' b(x)· [FJ=1 r . Si=1 

The state of the element and the sections within the element at the end of the second iteration 

j=2 corresponds to point C in Fig. 2.3. The new tangent flexibility matrices /i=2(X) and. the 

new residual section defonnations 

ri=2(x) = /i=2(X)' D£=2(X) 

are computed for all sections. The residual section defonnations are then integrated to obtain 

the residual element deformations Si=2 and the new element tangent flexibility matrix Fi=2 is 

detennined by integration of the section flexibility matrices /i=2(X) according to Eq. (2.10). 

This completes the second iteration within loop j. 

The third and subsequent iterations follow exactly the same scheme. Convergence is 

achieved ,when the selected cO~1Vergence criterion is satisfied, as discussed in more detail in 

Chapter 4. With the conclusion of iteration loop) the element resisting forces for. the given 

deformationsqi are established, as represented by point D in Figs. 2.2 and 2.3. The Newton-

Raphson iteration process can now proceed with step i+ 1 . 

It is important to point out that during iteration' loop j the element deformations qi do 
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not change except in the fIrst iteration j= 1, when increments 6qi=l = /1qi are added to the 

element defonnations qi-I at the end of the previous Newton-Raphson iteration. These 

defonnation increments result from the application of corrective loads /1P~ at the structural 

degrees of freedom during the Newton-Raphson iteration process. For j> 1 only the element 

forces change until the nonlinear solution procedure converges to the element resisting forces 

Qi which correspond to element defonnations qi. This is illustrated at the top of Fig. 2.3 

where points B, C and D, which represent the state of the element at the end of subsequent 

iterations in loopj, lie on the same vertical line, while the corresponding points at the control 

sections of the element do not, as shown in the bottom of Fig. 2.3. This feature of the 

proposed nonlinear solution procedure ensures displacement compatibility at the element ends. 

The proposed nonlinear analysis method offers several advantages. Equilibrium along 

the element is always strictly satisfied, since section forces are derived from element forces by 

the force interpolation functions according to Eq. (2.6). Compatibility is also satisfIed, not 

only at the element ends, but also along the element. In fact, in the expression for the section 

defonnation corrections 

Mi (x) = ri-\x) - 1'-1 (x)· h(x)· [Fi-I r . sj-I 

the second term satisfIes Eqs. (2.20) and (2.21), which express the relation between section 

and element defonnations by means of shape functions a(x). The residual section 

defonnations ri-I(x), however, do not strictly satisfy this compatibility condition. It is possible 

to satisfy this requirement by integrating the residual defonnations r j
-

I (x) to obtain si-I and 

then using the defonnation shape functions a(x) to calculate the section deformation 

increments as a(x)· Si-l. Since this is, however, rather ineffIcient from a computational 

standpoint, the small compatibility error in the calculation of residual section defonnations 

r j
-

I (x) is neglected in this study. 

While equilibrium and compatibility are satisfIed along the element during each iteration 

of loop j, the section force-deformation relation and, consequently, the element force­

deformation relation is only satisfIed within a specifIed tolerance when convergence is 

achieved at point D in Fig. 2.3. In other words, during subsequent iterations the element 

forces approach the value that corresponds to the imposed element deformations, while 

maintaining equilibrium and compatibility along the element at all times. This approximation of 

the force-deformation relation in the proposed nonlinear analysis method is preferable to the 

approximation of either the equilibrium or the compatibility conditions of the element, 

particularly when considering the uncertainty in the definition of constitutive relations for 

reinforced concrete structures. 
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2.5 Summary of Nonlinear Solution Algorithm 

After the description of the element state determination process in the previous section a 

step-by-step summary of the computations is presented below. The summary focuses on a 

single iteration i at the structural degrees of freedom, because the innovative aspect of the 

present study is the process of element state determination. The rest of the nonlinear solution 

algorithm follows well established methods, such as the Newton-Raphson method selected in 

this study. Alternative solution strategies can be implemented without additional effort, since 

these are independent of the "element state determination. The relation of the Newton-Raphson 

iteration· to the nonlinear solution of the entire structure is illustrated at the top of Fig. 2.2, 

which also shows the relation between the overall solution strategy and the element state 

determination process with corresponding states denoted by uppercase Roman letters. Fig. 2.3 

shows in detail the evolution of the state determination process for an element and 

corresponds to steps (4) through (13) in the following summary. The flow chart of 

computations for the entire solution algorithm is shown in Fig. 2.4, while the flow chart of 

computations for the element state determination is shown in Fig. 2.5. 

The i-th Newton-Raphson iteration is organized as follows: 

(1) Solve the global system of equations and update the structural displacements. 

At the i-th Newton-Raphson iteration the structure stiffness matrix K:-1 at the end of the 

previous iteration i-I is used to compute the displacement increments ~pi for the given 

load increments ~P~ which represent the unbalanced forces from the previous iteration. 

Ki-I . ~pi = ~pi 
s " E (2.26) 

(2.27) 

(2) Calculate the element deformation increments and update the element deformations. 

Using matrix Lele , which relates structural displacements with element deformations, the 

element deformation increments !!JJi are determined: 

Ani = L . ~pi 
~ .Ie (2.28) 

(2.29) 

Note that matrix Lei. is the combination of two transformations: in the fIrst 

transformation the element displacements in the global reference system p are 

transformed to the displacements q in the element local refer~nce system. In the second 

transformation the element displacements q are transformed to element deformations q 
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by elimination of the rigid-body modes. 

FIGURE 2.4 FLOW CHART OF STRUCTURE STATE DETERMINATION 

As discussed in Section 2.4, the new element defonnations qi do not change until the 

following (i+ 1) Newton-Raphson iteration. The remaining operations of the nonlinear 
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solution algorithm make up the element statedetennination process which establishes 

the element resisting forces for the given element defonnations qi . 

(3) Start the element state determination. Loop over all elements in the structure. 

The state detennination of each element is perfonned in loop j. The index of the fIrst 

iteration is}= 1. 

(4) Determine the element force increments. 

The element force increments I!!..Qj are detennined with the element stiffness matrix K j-I 

at the end of the previous iteration in loop} 

(2.30) 

When}= 1, KO = K i
-
I and I!!..ql = 4qi where i-I corresponds to the state of the element at 

the end of the last Newton-Raphson iteration. When}> 1 I!!..qj is equal to the residual 

element defonnations of the previous iteration, as detennined in Step (13). 

(5) Update the elementforces. 

(2.31) 

When}= 1, QO = Qi-I where i-I corresponds to the state at the end of the last Newton­

Raphson iteration. 

(6) Determine the section force increments. Steps (6) through (11) are performed for all 

control sections (integration points) of the element. 

The section force increments Wi (x) are detennined from the force interpolation 

functions b(x). Subsequently,. the section forces D(x) are updated. 

Wi (x) = b(x) . I!!..Qi 

Dj (x) = Dj-I (x) + wj (x) 

(7) Determine the section deformation increments. 

(2.32) 

(2.33) 

The section defonnation increments I!!..Li(x) are detennined by adding the residual 

section defonnations from the previous iteration. r i- I (x) to the defonnation increments 

caused by the section force increments Wj(x). The latter are detennined with the 

section flexibility matrix / i-I (x) at the end of the previous iteration in loop j. 

When}= 1, rO(x) = O. 

Mi (x) = r i - I (x) + /j-I(X)' Wi (x) 

d j (x) = d j
-

I (x) + &Ii (x) 

(2.34) 

(2.35) 
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(8) Determine the tangent stiffness and flexibility matrices of the section. 

Assuming for simplicity that the section force~deformation relation is known explicitly, 

the tangent stiffness matrix k i (x) is updated for the new section deformations d i (x). 

This stiffness matrix k i (x) is then inverted to obtain the new tangent flexibility matrix 

Ii (x) of the section. 

(2.36) 

(9) Determine the section resisting forces. 

The resisting forces D~(x) are determined for the current deformations di(x) from the 

section force-deformation relation. 

(10) Determine the unbalancedforces at the section. 

The section unbalanced forces Dt(x) are the difference between the applied forces 

Di (x) and the resisting forces D~(x). 

(2.37) 

(11) Determine the residual section deformations. 

The section unbalanced forces and the new section flexibility yield the residual section 

deformations ri (x) 

ri (x) = Ii (x)· D&<x) 

(12) Determine the element flexibility and stiffness matrices. 

(2.38) 

The element flexibility matrix Fi is formed by integration of the section flexibility 

matrices Ii (x). This matrix is then inverted to obtain the element tangent stiffness 

Fi; [IbT(x)"r(X)"b(X)"dx] 

Ki=[Fir 

(13) Checkfor element convergence. 

(2.39) 

(2.40) 

a) If the unbalanced forces at all element sections are sufficiently small, the element is 
considered to have converged. After setting Qi = Qi and Ki = K i the process 

continues with step (14). 
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~D(x)= b(x)· 6Q 
~d(x) = r(x) + f(x)- ~D(x) 

D(x) = D(x) + ~D(x) 
d(x) = d(x) + 6d(x) 

k(x) 

f(x) 

~(x) 

new section tangent stiffness matrix 
new section tangent flexibility matrix 

section resisting force vector 

section unbalanced force vector ~(x) = D(x) -~(x) 

r(x) = f(x)-Du(x) 

CHAPTER 2 

FIGURE 2.5 FLOW CHART OF ELEMENT STATE DETERMINATION: THE SECTION 

CONSTITUTIVE RELATION IS ASSUMED TO BE EXPLICITLY KNOWN 
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b) If some sections have not converged, the residual element deformations sj are 

determined by integration of the residual section deformations r j (x). 

(2.41) 

At this point j is incremented to j+ 1 and a new iteration begins in loop j. In this case 
6qj in Eq. (2.30) is replaced with 6qj+! which is set equal to - sj 

(2.42) 

and steps (4) through (13) are repeated until convergence is achieved at all sections of 

the element. 

(14) Determine the resisting forces and the new stiffness matrix of the entire structure. 

When all elements have converged, the i-th step of the Newton-Raphson iteration is 

complete. The element forte vectors are assembled to form the updated structure 

resisting forces 

II 

i ~ T ( .) PR = ~Lele' (! de (2.43) 
ele=l 

where n is the total number of beam-column elements in the structure and the subscript 

ele is added as a summation index. The new structure stiffness matrix is formed by 

assembling the current element stiffness matrices 

(2.44) 
ele=l 

At this point the structure resisting forces P~ are compared with the total applied loads. 

If the difference ~P~, which is the structure unbalanced force vector, is not within the 

specified tolerance, i is incremented to i+ 1 and the next Newton-Raphson iteration 
begins. Steps (1) through (14) are repeated after replacing ~P~ with LW~+l = LW~ until 

convergence takes place at the structure degrees of freedom. 

A graphical overview of. the entire nonlinear analysis procedure is presented in Figs. 2.4 

and 2.5. Fig. 2.4 provides an overview of the entire process with the nesting of the individual 

iteration loops and does not differ from conventional nonlinear analysis schemes. The new 

features of the algorithm are introduced in the element state determination phase, which is 

singled out for presentation in Fig. 2.5. Since all integrations along the element in Eqs. (2.39) 

and (2.41) need to be performed numerically, an additional iteration loop over all control 

sections of the element is introduced in this diagram. The actual numerical implementation is 
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deferred to Chapter 4. 

In the interest of clarity the above presentation of the nonlinear analysis procedure refers 

to an explicit section. defonnation relation. The following chapter addresses the 

implementation of this algorithm in the context of a fiber beam-column element. In the latter 

case the section force-defonnation relation is not explicitly known, but is derived from the 

stress-strain relation of the fibers that the section is divided into. 
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REINFORCED CONCRETE FIBER BEAM-COLUMN ELEMENT 

3.1 General 

In the previous chapter a beam-column element was formulated based on the flexibilitY 

method of analysis. For clarity of presentation the section force-deformation relation was 

assumed explicitly known, but no further details about the constitutive model were discussed 

in order to demonstrate the general character of the proposed method. In this chapter the 

proposed method is specialized to a beam-column element composed of longitudinal fibers for 

which the section force-deformation relation is established by integration of the uniaxial 

stress-strain behavior of the fibers. 

The element is based on the assumption that plane sections remain plane and normal to 

the reference axis during the deformation history. This leads to a simple ge<?metric relation 

between section generalized deformations and fiber strains. The nonlinear character of the 

element derives entirely from the nonlinear fiber stress-strain relations (material nonlinearity). 

The element formulation is based on the formal framework of the mixed method, as described 

in the previous chapter. The deformation interpolation matrix has the same flexibility 

dependent form as discussed in Chapter 2, while the force interpolation matrix is selected to 

represent linear bending moment and constant axial force distribution along the element. This 

form is exact when no element lo~ds are present. The latter case is dealt with in Chapter 4, 

where a procedure is proposed for the consistent inclusion of element loads in the context of 

the flexibility method. 

The fiber element state determination is identical to the procedure presented at length in 

Chapter 2. In the fiber beam-column element, however, the section force-deformation relation 

is only implicitly known as a function of the stress-strain relation and the deformation history 

of the fibers. Correspondingly, a few steps need to be added to the procedure in Section. 2.5 

for the section state determination, which determines the section force and new tangent 

stiffness matrix for the given section deformations. 

Following a definition of new variables that the discretization of the cross section into 

fibers introduces, the material models for describing the hysteretic behavior of the fibers are 

45 
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discussed. Subsequently, the element state detennination for the fiber section model is 

presented in detail and the chapter concludes with a brief summary of the entire nonlinear 

analysis algorithm, with highlights of the new steps that are introduced by the fiber . . . . 

discretization of the cross section. 

3.2 Model Assumptions 

The fonnulation of the fiber beam-column element is based on the assumption of linear 

geometry. Plane sections remain plane and nonnal to the longitudinal axis during the element 

defonriation history. While this hypothesis is acceptable for small defonnations of elements 

composed of homogeneous materials, it does not properly account for phenomena which are 

characteristic of reinforced concrete elements, such as cracking and bond-slip. The effect of 

cracking and tension stiffenil'1g can be included in the model by an appropriate modification of 

the stress-strain relation of reinforcing steel or concrete according to the smeared crack 

concept of finite element analysis. This effect is only significant in the pre-yield phase of 

response and can be neglected in studies which focus on the hysteretic behavior under large 

inelastic defonnationreversals. By contrast, the contribution of bond-slip to the element 

deformations increases with the magnitude and number of loading cycles. The inclusion of 

bond-slip deformations in an element that· is based on section behavior is a challenging 

problem, whiCh is beyond the scope of the present study. Shear effects are also neglected, 

which is a reasonable approximation for medium to large span to depth ratios of the member. 

From the assumption that plane sections remain plane and nonnal to the longitudinal 

axis, all"fiber strains and stresses act parallel to this axis. Since the reference axis is fixed, this 

implies that the geometric centroids of the sections fonn a straight line that coincides with the 

reference axis. If an element does not comply with this hypothesis, it should be divided into 

subelements that connect the centroids of the selected sections. 

The accuracy of the element response and, consequently, that of the entire structure are 

affected by the mesh selection, that is the number of sections used in the discretization of a 

given member, and by the number of fibers in a section. A large number of fibers certainly 

gives better results, but computational cost increases with it, since the history variables 

necessary to track the hysteretic behavior of each fiber must be stored at each iteration. The 

selection of the optimum number and location of fibers and the optimum number of 

integration points along the element axis is beyond the scope of this study. 
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3.3 Generalized Forces and Deformations 

The fiber beam-column element is shown in Fig. 3.1 in the local reference system x, y, z; 

It is divided into a discrete number of cross sections. These are located at the control points of 

the numerical integration scheme used in the element formulation. In this study the Gauss­

Lobato integration scheme is used, since it allows for two integration points to coincide with 

the end sections of the element, where significant inelastic deformations typically take place. 

More details on the integration scheme are provided in Chapter 4. Each section is subdivided 

into n(x) fibers. n is a function of x to'account for the fact that the longitudinal reinforcement 

can vary along the element. For the sake of clarity the dependence of n on x is not explicitly 

carried through the equations in the remainder of this chapter. 

FIGURE 3.1 FIBER BEAM-COLUMN ELEMENT IN THE LOCAL REFERENCE SYSTEM: 

SUBDIVISION OF CROSS SECTION INTO FIBERS 

The generalized element forces and deformations and the corresponding section forces 

and deformations are those defined in Section 2.2 and shown in Fig. 2.1. These are grouped in 

the following vectors: 

Elemen t force vector 

Elemen t deformation vector 

Q Q n QS}T 
2 3 lo4 (3.1) 

(3.2) 
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Section force vector D(x) = {::~:~} 
N(x) 

(3.3) 

Section defonnation vector d(x) = {~:~:~} 
c;(x) 

(3.4) 

Two more vectors are introduced to describe the state of the fibers at each section. 

These contain the strains and stresses of the fibers and are written in the following fonn 

Fiber strain vector (3.5) 

Fiber stress vector (3.6) 

(J "(x,y,,, z,,) 

In the fiber state vectors x describes the posIlIon of the section along the longitudinal 
reference axis and Yifib' Zijib refer to the fiber position in the cross section, as shown in Fig 3.1. 

Following the hypothesis that plane sections remain plane and nonnal to the longitudinal axis, 

the fiber strain vector and the section defonnation vector are related by the simple matrix 

relation 

e(x) = l(x)' d(x) (3.7) 

where lex) is a linear geometric matrix as follows 

-Yl Zl 1 

lex) = -Yijib zifib 1 (3.8) 

-Y" z" 1 

More complex fonns of the£ompatibility matrix lex) could be used to account for the effects 

of shear and bond-slip, but this is beyond the scope of this study. 
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3.4 Fiber Constitutive Models 

The nonlinear behavior of the proposed fiber beam-column element derives entirely 

from the nonlinear behavior of the fibers. Thus, the validity of the analytical results depends 

on the accuracy of the fiber material models. Since the present study is limited to the 

hysteretic behavior of reinforced concrete members and the effect of bond-slip is neglected, 

only two material models are required: one for concrete and one for reinforcing steel. The 

element formulation simplifies the task of material model selection to uniaxial behavior, which 

is thoroughly studied and well established to date. Three-dimensional effects on material 

behavior can be included into the uniaxial model by appropriate modification of the 

parameters that define the monotonic envelope. This is imponant in the case of concrete, 

where confinement by transverse and longitudinal reinforcement has a significant effect on the 

stress-strain behavior. 

The models used in the present study are those discussed in Filippou et a1. (1983). While 

the reinforcing steel model in Filippou et al. (1983) remains one of the most accurate and 

convenient to use, many improved confined concrete models have been proposed in the last 

ten years (Mander et a1. 1988, Sheikh and Yeh 1990). Still, the model used in this study offers 

a good compromise between simplicity and accuracy and remains an excellent choice for the 

hysteretic behavior of concrete. Comparisons between analytical and experimental results in 

Chapter 5 demonstrate that for RC beam-column elements under small axial loads the 

concrete material model shows satisfactory accuracy. In any case the modular program 

architecture that underlies the proposed beam-column element allows for the easy exchange of 

material models and a more extensive material library will be developed in the near future. 

It is important to note that both stress-strain models are explicit functions of strain. This 

is a significant feature of the material models in connection with the proposed fiber model, 

where fiber strains are determined from section deformations according to Eq. (3.7). The 

stress determination only involves a function evaluation based on the current fiber stress and 

strain and the given strain increment. This reduces the computational effort considerably 

relative to material models that are not explicit functions of strain, such as the well-known 

Ramberg-Osgood steel model. 

3.4.1 Steel Stress-Strain Relation 

The reinforcing steel stress-strain behavior is described by the nonlinear model of 

Menegotto and Pinto (1973), as modified by Filippou et a1. (1983) to include isotropic strain 

hardening. The model is computationally efficient and agrees very well with experimental 



50 

results from cyclic tests on reinforcing steel bars. 

The model, as presented in Menegotto and Pinto (1973) takes on the fonn 

where 

and 

• b • (l-b)·c· 
0' = . c + 1/R 

.. (l+c
oR

) 

• c- c, c =---''-

• 0'-0', 
0' =--'-

0'0-0', 

CHAPTER 3 

(3.9) 

(3.10) 

(3.11) 

Eq. (3.9) represents a curved transition from a straight line asymptote with slope Eo to 

another asymptote with slope E1 (lines (a) and (b), respectively, in Fig. 3.2). 0'0 and Eo are the 

stress and strain at the point where the two asymptotes of the branch under consideration 

meet (point A in Fig. 3.2); similarly, 0', and E, are the stress and strain at the point where the 

last strain reversal with stress of equal sign took place (point B in Fig. 3.2); b is the strain 
hardening ratio, that is the ratio between slope E1 and Eo and R is a parameter that influences 

the shape of the transition curve and allows a good representation of the Bauschinger effect. 
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FIGURE 3.2 MENEGOTTO-PINTO STEEL MODEL 
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As indicated in Fig. 3.2, (Eo, 0'0) and (E" 0',) are updated after each strain reversal. 

R is considered dependent on the strain difference between the current asymptote 

intersection point (point A in Fig. 3.3) and the previous load reversal point with maximum or 

minimum strain depending on whether the corresponding steel stress is positive or negative 

(point B in Fig. 3.3). The expression for R takes the form suggested in Menegotto and Pinto 

(1973) 

R=Ro-~ 
£lz + ~ 

(3.12) 

where ~ is updated following a strain reversal. Ro is the value of the parameter R during fIrSt 

loading and ~, £lz are experimentally determined parameters to be defined together with Ro. 
The definition of ~ remains valid in case that reloading occurs after partial unloading. 
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FIGURE 3.3 DEFINITION OF CURVATURE PARAMETERR 

IN MENEGOTTO -PINTO STEEL MODEL 

Some clarification is needed in connection with the set of rules for unloading and 

reloading which complement Eqs. (3.10) and (3.11), allowing for a generalized load history. If 

the analytical model had a memory extending over all previous branches of the stress-strain 

history, it would follow the previous reloading branch, as soon as the new reloading curve 

reached it. This would require that the model store all necessary information to retrace all 

previous reloading curves which were left incomplete. This is clearly impractical from a 
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computational standpoint. Memory of the past stress-strain history is, therefore, limited to a 

predefined number of controlling curves, which in the present model include, 

1. the monotonic envelope, 

2. the ascending upper branch curve originating at the reversal point with smallest E value, 

3. the descending lower branch curve originating at the reversal point with largest E value, 

4. the current curve originating at the most recent reversal point. 

Due to the above restrictions reloading after partial unloading does not reJOIn the 

original reloading curve after reaching the point from which unloading started, but, instead, 

continues on the new reloading curve until reaching the envelope. However, the discrepancy 

between the analytical model and the actual behavior is typically very small, as discussed in 

detail by Filippou et al. (1983). 

The above implementation of the model corresponds to its simplest form, as proposed in 

Menegotto and Pinto (1973): elastic and yield asymptotes are assumed to be straight lines, the 

position of the limiting asymptotes corresponding to the yield surface is assumed to be fixed at 
all times and the slope Eo remains constant (Fig. 3.2). 

In spite of the simplicity in formulation, the model is capable of reproducing well 

experimental results. Its major drawback stems from its failure to allow for isotropic 

hardening. To account for this effect Filippou et al. (1983) proposed a stress shift in the linear 

yield asymptote as a function of the maximum plastic strain as follows: 

O"SI = ~ . (Emax - Q4J 
O"y Ey 

(3.13) 

where Emaz is the absolute maximum strain at the instant of strain reversal, Ey , 0" yare, 

respectively, the strain and stress at yield, and ~ and Q4 are experimentally determined 

parameters. The model used in this study was implemented without the isotropic strain 
hardening option. For this case the parameter values are: Ro = 20, ~ = 18.5, ~ = 0.15, 

~ = 0., Q4 = O. With the exception of the last two parameters the values used are those in the 

original model of Menegotto and Pinto (1973). 

3.4.2 Concrete Stress-Strain Relation 

In order to compute the concrete stress in each layer, a material law describing the 

concrete stress-strain relation under arbitrary cyclic strain histories is needed. There is some 

uncenainty as to the influence of the concrete model on the overall behavior of RC members 
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subjected to bending and small values of axial force. Some investigators have concluded that a 

crude concrete model suffices to accurately predict experimental results. This might be true in 

the case of monotonic loading and cyclic loading that is restricted to small excitations. It is not 

true, however, in the case of severe cyclic loading. The results of this study indicate that the 

strength deterioration of RC members under large cyclic excitations depends largely on the 

capacity of confined concrete to sustain stresses in the strain range beyond the maximum 

strength. This requires the use of a refined concrete model. 

The model implemented in this study is summarized below: 

The monotonic envelope curve of concrete in compression follows the model of Kent 

and Park (1973) that was later extended by Scott et al. (1982). Even though more accurate 

and complete models have been published since" the so-called modified Kent and Park model 

offers a good balance between simplicity and accuracy.' 

In the modified Kent and Park model ~he monotonic concrete stress-strain relation in 

compression is described by three regions: 

where 

Eo =0.OO2K 

K=1+ P.!y/t 

I: 
Z= 0.5 

3 + 0.291: + 0.75 fK - 0.OO2K 
1451: -1000 Psv--;;: 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

eo is the concrete strain at maximum stress, K is a factor which -accounts for the strength 

increase due to confinement, Z is the strain softening slope, £' is the concrete compressive 

cylinder strength in MPa (1 MPa = ,145 psi), ~/t is the yield strength of stirrups in MPa, Ps is 

the ratio of the volume of hoop reinforcement to the volume of concrete core measured to 

outside of stirrups, h' is the width of concrete core measured to outside of stirrups, and Sh is 

the center to center spacing of stirrups or hoop sets. 
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In the case of concrete confined by stirrup-ties, Scott et al. suggest that E .. be determined 

conservatively from the following equation: 

(3.18) 

To account for crushing of concrete cover the strength in a cover layer is reduced to 0.2 f: 
once the compressive strain exceeds the value of E~, which in this study is set equal to 0.005. 
The tensile strength of concrete is neglected in the model, since it only influences the response 

of a RC section during cycles prior to yielding. 

The following rules govern the hysteretic behavior of the concrete stress-strain relation 

(Fig. 3.5): 

1. Unloading from a point on the envelope curve takes place along a straight line 
connecting the point Er at which unloading starts to a point Ep on the strain axis given by 

the equations 

Ep =0.145.(Er J2 +0.13.(~J 
Eo Eo Eo 

2 = 0.707· (~- 2J+ 0.834 
Eo Eo 

for (:}2 
for· (:}2 

(3.19) 

(3.20) 
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where Co is the strain level corresponding to the maximum stress in compression. 

FIGURE 3.5 HYSTERETIC CONCRETE STRESS-STRAIN RELATION 

Eq. (3.19) was proposed by Karsan and Jirsa (1969) and relates the normalized strains 

on the envelope with the strains at the completion of unloading through a quadratic 

formula. Since Eq. (3.19) exhibits unreasonable behavior under high compressive strain 

conditions, Eq. (3.20) is added to the model so that the unloading modulus of elasticity 

remains positive under high compressive strains. 

2. The concrete stress is equal to zero for strains smaller than the strain at complete 

unloading (open crack) since the tensile resistance is neglected in this study (Fig. 3.5). 

3. On reloading in compression the stress is zero as long as the strain is smaller than the 

strain at complete unloading (open crack). Once the concrete strain becomes larger than 

that value, reloading continues along the previous unloading path (Fig. 3.5). In reality 

unloading and reloading follow nonlinear paths which together form a hysteresis loop. 

This was neglected here for reasons of simplicity, since it has a minor influence on the 

hysteretic response of the member. 

The proposed hysteretic behavior of concrete in compression does not account for the 

cyclic damage of concrete. The importance of this effect on the hysteretic behavior of RC 

members merits further study, but is beyond the scope of the present report. 
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3.5 Fiber Beam-Column Element Formulation 

The fiber beam-column element is formulated within the same framework of the mixed 

finite element method used in Section 2.3. The element deformation field is represented by the 

flexibility dependent shape functions defined in Eqs. (2.20) and (2.21). The force field is 
selected so that the two bending moment fields Mz(x) and My{x) in Fig. 2.1 are linear and the 

axial force field N(x) is constant. This selection results in a matrix for the force interpolation 

functions given by 

(~ -1) (~) 0 0 0 

b(x) = 0 0 (~ -1) (~) 0 (3.21) 

0 0 0 0 1 

where b(x) relates the force distribution D(x) along the element to the element generalized 

force vector Q according to 

and Mi(x) =b(x). ~Qi - (3.22) 

The bending moment and axial force fields are exact when no element loads are present. 

. Element loads can be included in the initial stage of the analysis by modifying the 

corresponding bending moment and axial force distributions, so that they are exact for the 

particular loading case. This case and its numerical implementation will be presented in more 

detail in Chapter 4. 

The final matrix equation relating the applied unbalanced element forces P - Qi-l to the 

unknown element deformation increments Ilqi is equivalent to Eq. (2.23) 

(3.23) 

where the superscripts denote the corresponding Newton-Raphson iteration. 

The element state determination follows the steps presented in Section 2.4. Since the 

section force-deformation relation is no longer explicit but depends on the stress-strain 

behavior of the fibers some additional steps become necessary. When the section force­

deformation relation is explicitly known the new tangent stiffness of the section k j (x) can be 

directly computed for the given section forces Dj (x) and defonnations d j (x), as described in 

Sections 2.4 and 2.5. In the case of the fiber model the geometric matrix l(x) in Eq. (3.8) is 

first used to obtain the fiber strain increments for the given deformation increments Mj (x) 

following the hypothesis that plane sections remain plane and normal to the longitudinal axis 
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l!.£j (x)= l(x)' Adj (X) 

The fiber strains are then updated to the new value 

ej(x)= ej-1(x)+l!.£j(x) 

The new stress (J'~b and tangent modulus E~b of all fibers are determined from the 

appropriate fiber stress-strain relation: the fiber stresses are then grouped in vector Ej and the 
tangent moduli are written in a diagonal matrix E~,.. By calling A a diagonal matrix with 

entries the areas Ai/ib of all fibers and using the section compatibility matrix l(x) of Eq. (3.8) 

well established structural analysis concepts yield the new section tangent stiffness matrix 

which after carrying out the multiplication results in 

,.(~) 

- L Eftu, . Ai/ib . Yifib 
ifib=l 
,.(x) 

L E~b . Ai/ib . zijib 

i/ib=l 
,,( .. ) 
LE~'~b 

i/ib=l 

(3.24) 

The new ,section tangent stiffness matrix k j (x) is then inverted to obtain the new section 

tangent flexibility matrix f' (x). Similarly, the section' resisting forces Dk(x) cannot be 

obtained directly from the section force-deformation relation as in Chapter 2, but are 

determined by summation of the axial force and biaxial bending contribution of all fibers as 

follows 

(3.25) 

or, after carrying out the multiplications 

" 
- L(J'~b . ~b . Yi/ib 

i/ib=l ,. 
Dk (x) = L (J'~b . Ai/ib . Zi/ib 

iJib=l 

" L (J' ~b • Aifib 
ifib=1 

It is important to point out that all section matrices and vectors are computed with 

respect to a fixed section reference system which coincides with element axes y and z. This 

choice simplifies the computational effort. The origin of this reference system (x,O,O), shown 

in Fig. 2.1, does not necessarily have to coincide with the neutral axis of the section. Since the 
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position of the neutral axis changes during the analysis, using the neutral axis as reference 

would require the determination of its position at each element iteration, as discussed by Zeris 

and Mahin (1991). The section flexibility matrix and the section deformation vectors need to 

be transformed to the element coordinate system before determining the element flexibility 

matrix and the residual element deformations by integration. Similarly, the section forces 

calculated by the force interpolation functions refer to the element system and should be 

transformed to the local. reference system before proceeding with· the section state 

determination.· To simplify these transformations between element and section variables and 

noting that the selection of a section reference system is arbitrary, it is expedient to select a 

readily available reference system for the section such as the y and z axes. Consequently, the 

neutral axis at a section need never be computed. 

. 

section ' 
sec 

.( for ifib = 1 ,number of fibers in section sec 

... . .. 
fiber deformation increment vector tle(x) = I(x) ·tld(x) 

update fiber deformation vector e(x)= e(x) + tle(x) 

fiber tangent Young modulus Elan 

fiber reSisting stress 0 

I 

next/fib 

FIGURE 3.6 FLOW CHART OF THE SECTION FIBER STATE DETERMINATION 

The steps relevant to the fiber state determination are illustrated in Fig. 3.6. The flow 

chart of the element state determination in Fig. 2.5 is now completed by introducing the chart 

of Fig. 3.6 into the box denoted by section constitutive law in Fig. 2.5. The rest of the element 

state determination procedure agrees with the steps described in Sections 2.4 and 2.5. The 

complete element state determination is summarized in the following section, with no further 

comments regarding the steps that were already discussed in Chapter 2 and only minor 

comments concerning the steps for the section state determination. 
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3.6 Summary of the Fiber Beam-Column Element State Determination 

During the structure state determination, each Newton-Raphson iteration i is organized 

as follows: 

(1) Solve the global system of equations and update the structure displacements. 

(3.26) 

(3.27) 

(2) Compute the element deformation increments and update the element deformations. 

6qi = Lei • . .1.pi 

qi = qi-I + Ilqi 

(3) Start the fiber beam-column element state determination. 

Set)=] 

(4) Compute the element force increments . 

.1.Qj = K j-I . 6qj 

(5) Update the element forces. 

(6) Compute the section force increments. 

m j (x) = h(x)· .1.Qj 

n j 
(x) = n j

-I (x) + m j (x) 

(7) Compute the section deformation increments. 

Mj (x) = jj-I (x)· m j (x) + rj-I(x) 

d j (x) = d j- I (x) + Mj (x) 

(8) Compute the fiber deformation increments. 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

Following the assumption that plane sections remain plane and normal to the reference 

longitudinal axis and that no bond-slip take~ place, the section compatibility matrix l(x) 

is used to obtain the fiber strain increments Il£j (x) from the section deformation 

increments Mj (x). The fiber strains are then updated 

.1.e(x) = l(x)· M(x) 

e j (x) = ej-I(x) +.1,ej (x) 

(3.36) 

(3.37) 



(9) Computejiber stresses and tangent moduli. 

Using the fiber material models in Section 3.4, the stresses a~b (x'Yj' Zj) and tangent 

moduli E~b (x) of all fibers are computed from the stresses a~~ and strains £~-~ at the 

previous step j-l and the current fiber deformation increments Ll£~b 

(10) Compute the section tangent stiffness and flexibility matrices. 

Using the tangent moduli E~b(X) of all fibers the new section tangent stiffness matrix 

k i (x) is computed: 

11 11 11 

L i 2 EiJib . A;Jib . YiJib L E~b . A;Jib . YiJib . ZiJib - LE~b' Aq;b' YiJib 
iJib=! iJib=1 jJib=1 

11 11 11 

k i (x) = LE~b ·AiJib 'YiJib 'ZiJib L i 2 . EiJib . A jJib . ZiJib LE~b ·AiJib 'ZiJib (3.38) 
iJib=! iJib=1 jJib=1 

11 11 11 

- LE~b ·AiJib 'YiJib L E~b . AiJib . ZjJib L E/fib . A jJib 
iJib=! jJib=! iJib=! 

where n is the total number of fibers at the section and A jJib is the fiber area. The stiffness 

matrix is then inverted to obtain the new section flexibility matrix ji (x). 

(3.39) 

(11) Compute the section resisting forces. 

The section resisting forces D~(x) are computed by summation of the axial force and 

biaxial bending moment contributions of all fibers 

11 

- L (J~b . AiJib . Y iJib 
iJib=1 

11 

D~(x) = L (J~b . A jJib . ZiJib 
iJib=1 

11 

L (J~b . A jJib 
iJib=1 

From here on the element state determination is identical to Section 2.5. 

(12) Compute the section unbalancedforces. 

D{(x) = Di (x) - D~(x) 

(13) Compute the residual section deformations. 

ri (x) = ji (x)· D{(x) 

(14) Compute the element flexibility and stiffness matrices. 

(3.40) 

(3.41) 

(3.42) 
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~~~~----------------------------------------------------------~. 

FI ~ [l bT(X).jl(X).b(X)'dx] 

Ki=[Fir 
(15) Checkfor element convergence 

a) If the element has converged, set Qi = Qj and Ki = K j , then go to step (16); 

b) If the element has not converged, compute the residual element deformations 

Sl ~ [1 bT (x).rl(X)'dx] 

(3.43) 

(3.44) 

(3.45) 

then increment j to j+ 1 and set D. qj+! = - sj. Repeat steps· (4) through (15) with 

D. qj+! until element convergence is reached. 

(16) Compute the structure resisting forces and the new structure stiffness matrix. 

If all elements have converged, the Newton-Raphson iteration i is complete. 

n 

p~ = LL:le . (Qlle (3,46) 
ele=! 

n 

K; = LL:le . (Ki)ele ·Lele (3.47) 
ele=! 

If convergence at the structural level is achieved, apply a new load increment, otherwise 

continue the Newton-Raphson iteration process. 
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NUMERICAL IMPLEMENTATION OF BEAM-COLUMN ELEMENT 

4.1 General 

A discussion of some of the issues involved in the numerical implementation of the fiber. 

beam-column element in a general purpose computer program is presented in this chapter. The 

element was first implemented in a stand-alone computer program. After successfully testing 

its performance, the element was adapted to the finite element program FEAP developed by 

Professor R. L. Taylor at the University of California, Berkeley and described in Zienkiewicz 

and Taylor (1989 and 1991). The present report focuses on the numerical aspects of the stand 

alone program and briefly discusses some differences in the numerical strategies between the 

stand alone program and the implementation in FEAP. 

The stand-alone program is a special purpose program for the analysis of frames 

composed of fiber beam-column elements. The input data contain information concerning the 

geometry and material properties of the structure as well as information about the applied 

loads, which include both nodal and element loads. Nodal loads can be constant or time­

varying, in which case they are applied in a sequence of steps. Element loads are constant and 

are applied with the constant nodal loads at the beginning of the analysis. 

The nonlinear solution algorithm is divided into three nested loops. The first and' 

outermost loop consists of the sequence of load steps that the applied load is divided into. The 

second loop consists of the Newton-Raphson solution procedure that is necessary within each 

load step for determining the structural displacements that result from the total applied load. 

This loop is also referred to as structure state determination. The third and innermost loop 

consists of the element iteration process that is necessary within each Newton-Raphson 

iteration in order to compute the element resisting forces that correspond to given element 

deformations. This loop is also referred to as element state determination. 

In order to better illustrate the three nested loops the notation in the previous chapters is 

extended so that every variable now carries information about the load step number, the 

current Newton-Raphson iteration and, when necessary, the current element iteration. This 

information is represented by three different superscripts on the variable: consistent with the 
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notation in the two previous chapters, k refers to the load step, i to the Newton-Raphson 

iteration scheme and j to the element iteration loop. This notation is particularly useful in the 

numerical implementation of the nonlinear solution algorithm, which is summarized in 

Appendix A. 

After a brief discussion of the notation and the numerical scheme for the integration 

along the element axis, the problem of defining a convergence criterion, both, at the element 

and at the structure level is discussed. Different alternatives are explored outlining their 

advantages and disadvantages. The criteria used in the stand-alone program are based on 

unbalanced forces, both, at the structure and at the element level, while program FEAP uses 

an energy criterion at the structure level, so that a corresponding criterion is adopted at the 

element level. 

The procedure for including element loads in the model is presented next. An initial 

force distribution that is in equilibrium with the applied element loads is assumed first. The 

corresponding residual element deformations are used to start the element iterations that will 

ultimately yield the fixed-end moments for the applied element loads. Rigid body modes are 

then added in order to include the shear forces due to the element loads. The resulting end 

moments and shear forces do not generally satisfy equilibrium at the structural nodes, because 

no nodal forces were originally applied to the structure in connection with the element loads. 

The resulting end moments and shear forces contribute to the unbalanced nodal loads that 

need to be applied with opposite sign at the structural nodes in order to restore equilibrium. 

This step concludes the first Newton-Raphson iteration for the element load application. If the 

element is elastic, no further iterations are required within the element and the resulting end 

moments constitute the fixed-end moments for the applied element loads. If the element 

undergoes inelastic behavior under the application of element loads, the iterations of the 

element state determination phase of the algorithm converge to the fixed-end forces of the 

elemeilt. 

Two alternative methods for including the shear forces are presented. One is 

implemented in the stand alone program and the other is used in program FEAP. A simple 

example of a linear elastic cantilever with uniformly distributed load is used to illustrate the 

process of element load application. 

A brief discussion of the application of the nonlinear algorithm to the state 

determination of softening elements concludes the chapter. A simple system of two springs in 

series is used to illustrate how well the proposed algorithm works for softening elements. 
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4.2 Preliminary Considerations 

The implementation of the fiber beam-column element evolved over two stages. A stand 

alone computer program was developed fITst in order to test the element performance. In the 

second stage the element was implemented in the finite element program FEAP. In this report 

the computational considerations concerning the general implementation of the element rather 

than the specific details for the two numerical implementations are discussed. 

In both implementations the input data consist of the geometry description and material 

properties of the structure. From the geometric viewpoint the structure is an assemblage of 

beam-column elements connected at nodes so that the nodal degrees of freedom, grouped in 

vector p, are the basic unknowns of the problem. The element deformations q are related to 
the structure degrees of freedom p through a constant compatibility matrix Lde • Each element 

is subdivided into several control sections and each section is composed of a number of fibers. 

The number of sections and their locations depends on the integration scheme and the desired 

level of accuracy. The number of fibers in a section depends on the geometric and material 

properties of the section and on the level of detail sought in the section representation. Each 

fiber is characterized by its area, material type and position with respect to the section 

reference system (Fig. 3.1). The origin of this local system is the-geometric centroid of the 

section. The union of the geometric centroids of the section defines the longitudinal axis of the 

element x. The material behavior of the element depends entirely on the fiber stress-strain 

relation of the fibers, which follow the confined and unconfined concrete as well as reinforcing 

steel models of Section 3.4. Different concrete and steel material types can be specified for the 

fibers by varying the values of material parameters. 

External loads can be applied to the structure in the form of nodal forces or element 

loads. Incremental static loads can be included in the analysis with the introduction of a 

fictitious time scale. In general, all constant loads are applied at the beginning of the analysis, 

while incremental loads are applied in a sequence of steps k=l , ... , nk. Two different methods c 

are used for the application of nodal forces and element loads. Following classical structural 

analysis methods nodal loads are assembled in the global force vector PE • Element loads are 

included in an element load vector Wand a new method for incorporating these loads within a 

flexibility-based beam element is described in Section 4.5. 

The nonlinear analysis algorithm is organized in four modules corresponding to the 

different discretization levels of the structure. The four modules refer to structure, elements, 

sections and fibers. The vectors and matrices that represent the basic variables within each 

module are summarized in Table 4.1. 
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During the structural analysis phase each module is called with a set of given data and 

the module computes and returns the desired variables, as summarized in the flow charts at 

the end of Chapters 2 and 3. In the structure module the applied force increments constitute 

the given input data and the solution algorithm returns the incremental and total displacements 

of the structure, the corresponding resisting forces and the current stiffness matrix. In the 

element module the total and incremental element deformations represent the input data and 

the solution algorithm returns the corresponding element resisting forces and the current 

stiffness matrix. In the section module the output contains the section flexibility f(xJ rather 

than the section stiffness k(x) in order to underline -the flexibility-based nature of the algorithm 

that is proposed for the element state determination. The input and output variables for the 

four modules are summarized in Table 4.2. 

P p cK 

Q q F,K 

D(x) d(x) k(x), f(x) 

E(x) e(x) E/Q1I 

TABLE 4.1 VECTORS AND MATRICES DEFINING THE STATE OF EACH MODULE 

Total deformations q 
Deformation increments, Ilq 

Force increments W(x) 

Total strains e(x) 
Strain increments &>(x) 

Total displacements p 
Displacement increments ~p 

Resisting forces PR 

Stiffness K 

Resisting forces Q 
Stiffness K 

Residual deformation r(x) 

Flexibility f(xJ 

Resisting stresses E(x) 
Stiffness E,oll 

TABLE 4.2 INPUT AND OUTPUT DATA FOR EACH MODULE 



CHAPTER 4 67 

The .nonlinear solution algorithm is organized in three nested computational loops. 

Loads are applied in a sequence of load steps, that are indicated by superscript k, so that each 

load increment is denoted by vector .6.P;. The total applied load PEis equal to the sum of load 

increments .6.P;, i.e. 

Because of nonlinear structural behavior, a linearization is introduced about the present state 

of the structure and an iteration scheme is needed to compute the structure displacements pol: 

that result from the imposed forces pol: = p.I:-l + .6.p.I: at each load step. To this end the 

Newton-Raphson algorithm is used in the stand alone computer program and in program 

FEAP, even though alternative strategies are available in the latter and can be implemented 

easily. Another index i is introduced for the iterations of the Newton-Raphson solution 

method. Finally, a third iteration loop is needed within each Newton-Raphson iteration in 

order to determine the element resisting forces for the given element defonnations qi. 

Correspondingly, a third superscriptj is introduced. 

From this discussion it is clear that two nested loops are needed within each load step k 

in order to obtain a converge<;i solution at the struct,ure degrees of freedom. The solution 

algorithm is such that, at the converged state, equilibrium and compatibility are strictly 

satisfied within the elements, while all section states satisfy the section force-deformation 

relation within the specified tolerance. 

A special notation is introduced to trace the evolution of each variable during the 

nonlinear analysis. Vectors and matrices are denoted by three superscripts corresponding to 

the three iteration loops. For example, the notation for the element force vector Q is 

where k indicates the load step, i the Newton-Raphson iteration and j the element iteration. It 

should be pointed out that element, section and fiber variables carry all three superscripts, 

whereas structure variables do not carry the superscript j, since they do not change during 

element iterations. For example, the structure displacement vector and the element force 

vector are written 

The only exception to this rule is the element deformation vector q, which does not carry the 

index j because it is not affected by the element iteration loop (Fig. 2.5). 
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The numerical implementation of the beam-column element in a finite element program 

follows very closely the procedure outlined in Chapters 2 and 3. In addition, it requires the 

introduction of an incremental vector for each vector that varies during the iterations. For 

instance, (Mpl r is the change in the structural displacement increments at the i-th Newton-

Raphson iteration, whereas (~pk)i -denotes the total structural displacement increment during 

the k-th load step, which is updated using 

(~plr = (~pkrl +(8~pkr 

where (~pk y=o = O. Once convergence is reached at the structure degrees of freedom, the 

superscript i is dropped and the total displacement increments simply become ~pk, while the 

total structural displacements are updated to the value 

pk = pk-l + ~pk _ 

Similarly, (( MQkn
i 

is the change in the element force increments m the j-th element 

iteration, and ((~QkrY is the total element force increment during the i-th Newton-Raphson 

iteration, which is updated using 

((~Qkrr = ((~Qkrrl +((8~Qkrr 

where (( ~Qk r f = ( .1Qk r 1 
and (( ~Qk n° = O. When convergence is reached in the element 

iterations, the superscript j is dropped and (( ~Qk r r becomes (~Qk r. Similarly, when 

convergence is also reached at the structure degrees of freedom, superscript i is dropped and 

(.1Qk Y becomes .1Qk. At this point the element forces are updated using 

with QO = o. 

It should be noted that, the change in vector increments, denoted by symbol 8~, is only 

used to update the corresponding vector increments and total vectors during the iterations, 

and, therefore, does not need to be stored. 

The summary of the nonlinear solution algorithm was already presented at the end of 

Chapters 2 and 3 with a notation that did not use all superscripts for the sake of clarity. 

Appendix A contains a more detailed summary of the solution algorithm with an outline of the 

updating procedure and a brief discussion of some implementation issues. 
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4.3 Numerical Integration 

All integrals in the element formulation are evaluated numerically with the Gauss-Lobato 

integration scheme that is based on the expression 
L m 

1= J !(x)·dx = L wh • !(x/.) (4.1) 
o h=l 

whereh denotes the monitored section and wh is the corresponding weight factor. The Gauss-

Lobato scheme with m integration points permits the exact integration of polynomials of 

degree up to (2m-3). This procedure is superior to the classical Gauss integration method, 

when it is important to include m the integration the end points of the element. Since inelastic 

behavior in beam-column elements often concentrates at the ends of the member, the 

monitoring of the end sections of the element offers advantages from the standpoint of 

accuracy and numerical stability. 

4.4 Definition of Tolerance 

The nonlinear solution algorithm in this study is based on a set of linear matrix relations 

that are repeatedly applied until convergence is achieved. Theoretically, this occurs when the 

applied loads are perfectly balanced by the internal resisting forces of the elements. 

Numerically, however, such perfect balance is either impossible or too expensiv~ to attain. In 

a nonlinear solution algorithm it is normally accepted that convergence is reached when some 

control parameters, such as the unbalanced forces, are smaller than a specified threshold or 

tolerance. Norms or absolute values of these variables may be selected as control parameters 

as many studies to date have discussed. Different control parameters are selected for the stand 

alone program than for the implementation of the element in program FEAP, where the choice 

of tolerance parameters is limited by the main program. 

In the stand-alone program two different iteration algorithms are used: the first is 

implemented at the structure level and is the well known Newton-Raphson scheme, while the 

second is used at the element level, as described in the previous chapters. Correspondingly, 

two convergence controls are needed. In this study the unbalanced forces at the structure 

degrees of freedom and at the control sections of the element are selected as control 

parameters. Two types of tolerance are defined: the first is an absolute force bound and the 

second is a relative force bound defined as a fraction of the corresponding total applied force. 

The unbalanced force is compared with the largest of the two bounds. This choice derives 

from the consideration that the absolute tolerance is too restrictive for large applied loads, 
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while the relative check may be too severe for small loads. Since the stability of the proposed 

solution algorithm is not affected by the size of the load step increments, the selected 

convergence criteria are not overly restrictive in the extreme case of very small or very large 

load steps. In the following the convergence criteria at the element and at the structure level 

are discussed separately. 

(a) Element convergence. Convergence at the element level is achieved when all monitored 

sections have converged. Section convergence is reached when all section force 

unbalances fall within the absolute or relative tolerance. Three generalized forces, two 
bending moments Dt(xh ), D2 (Xh ) and the axial force D3(Xh ) are defined at each 

monitored section h, as shown in Fig. 2.1. Two element tolerance values are defined for 

all elements. These are called: 

EAT = Element Absolute Tolerance 

ERT = Element Relative Tolerance 

ERT and EAT are related to the corresponding structure tolerances SRT and SAT 

through a scale factor that is selected by the user, as will be discussed later in the section. 
At every element iterationj three different section tolerance values SeT,,(xh) are defined: 

Se7;,(xh) = max { EAT xL, (( D:(xh) rr x ERT} n = 1,2 

SeT,. (xh ) = max { EAT, ((D:(Xh)rr x ERT} n = 3 

where L is the element length: In the computer program an element counter EC is 

introduced to monitor the number of force unbalances that are smaller than the 

corresponding tolerance. During the element iterations the counter is first initialized to 

zero and is then incremented by one every time a section force satisfies the section 

tolerance, i.e. 

Element convergence is reached when all monitored sections have converged, or, in 

symbols when 

EC = 3m => element convergence 

where m is the number of monitored sections in the element. At this point iteration loop j 

is complete. After all elements converge the element state determination is complete and 
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the program checks for convergence at the structure level. 

(b) Structure convergence. Convergence at the structure level is reached when all nodal 

unbalanced forces are smaller than the corresponding tolerance. The convergence check 

is similar to that adopted for the element. Absolute and relative tolerances are specified 

in the input data: 

SAT = Structure Absolute Tolerance 

SRT = Structure RelativeTolerance 

SRT is typically assigned a value of 0.01, while SAT depends on the type of problem to 

be solved. For each degree of freedom ndof a tolerance measure is computed 

ndof = 1, ... ,maxdof 

where maxdof is the total number of unconstrained degrees of freedom. A structure 

counter SC is introduced to monitor the number of converged degrees of freedom. This 

counter is initialized to zero at the beginning of every Newton-Raphson iteration i and is 

incremented by one every time a structure unbalance force is smaller than the 

corresponding tolerance, i.e. 

(P;ndof r ~ StT ruin! ::::> SC = SC + 1 

Structure convergence is reached when the counter is equal to the total number of 

unconstrained degrees of freedom, that is: 

SC = maxdof ::::> structure convergence 

When the structure converges, the Newton-Raphson loop is complete and the next load 

increment is applied. 

Structure and element tolerances are related by a tolerance factor TF, such that 

EAT=TFxSAT 

ERT=TFxSRT 

The default value for TF is 1. As TF becomes larger, the number of element iterations j 

decreases and in the limit tends to 1. Conversely, as TF gets smaller, the number of iterations j 

increases. When load increments are small, few Newton-Raphson iterations are needed to 

achieve convergence at the structure level, because only small stiffness changes occur within 

each load step. There is, therefore, no need to be overly restrictive during the element 
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convergence check and factor TF can be larger than 1 with typical values ranging from 5 to 

10. On the other hand, when load increments are large, significant stiffness changes may take 

place within a load step and several Newton-Raphson iterations are needed to converge to the 

solution. In this case it is important to trace closely the force-deformation relation at the 

element level by selecting a TF value close to 1. In other words the TF factor controls the 

relation between the number of iterations) within each Newton-Raphson iteration i and the 

total number of Newton-Raphson iterations within a load step. 

- . The convergence criteria in program FEAP are different. At the structure level the work 

(energy) increment is chosen. as the convergence control parameter. Convergence of the 

Newton-Raphson iteration algorithm is reached when the ratio between the current work 

increment and the initial work increment is smaller than a specified tolerance. With the 

adopted notation the structural convergence criterion is: 

{[(~p;rr .(O~pky} 

{[(~p;Yr .(o~pkr} 
~ Stol (4.2) 

Typically, Stol is assigned the value of 10-16 by default. This convergence scheme is part of 

the FEAP program and is completely independent of the present application. More details on 

the convergence criterion can be found in Zienkiewicz and Taylor (1989 and 1991). 

In the implementation· of the beam-column element in program FEAP the same 

convergence criterion is used to check convergence within the element iteration loop. The 

value of the work increment for the current element iteration) is compared to the work for the 

first element iteration, i.e. )=1. In symbols: 

{[( (MQ' n'T (( Mq' l'Y) 
{[((MQ'nT(Mq')'} 

(4.3) 

Typically, Etol is assigned the value of 10-16 by default. This criterion has a clear advantage 

over that used in the stand-alone program, since it controls, both, unbalanced forces and 

residual deformations. This is quite significant when the element reaches its peak resistance 

and its stiffness matrix becomes ill-conditioned. In this case the unbalanced forces may be very 

small while the element residual deformations are still large. Consequently, the element 

iterations, which are based on residual deformations, should not stop. Energy is the only 

measure which accounts for, both, unbalanced forces and residual deformations. 
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Another significant difference between the element convergence criterion in the stand 

alone program and that in program FEAP is that in the former case element convergence is 

based on section convergence, while· in the latter convergence is entirely based on element 

forces and deformations, implicitly assuming that convergence at the element degrees of 

freedom implies section convergence. To validate this assumption another convergence 

criterion was also introduced in the implementation of the element in FEAP. In this third 

criterion convergence is also checked at the section level by measuring the energy increment 

rather than the unbalanced forces. In this case convergence is achieved when the following 

" condition is satisfied: 

I {[ ((r'(x;~lr)'J' . ((k'(x;,Jr)i . ((r'(x;=lr)i} 

I {[({Iid'{X;,~ln' r . ((k' (x; = llY . ({Iid'{X;,~Jr)'} 
:5 Etal (4.4) 

In the test phase of the element implementation the convergence criteria in Eqs. (4.3) and 

(4.4) proved equally effective. Consequently, the convergence criterion in Eq. (4.3) that is 

only based on the energy at the element level is selected in this study, since it leads to shoner 

calculation times. 

4.5 Application of Element Loads 

A new method for the application of element loads in the context of a flexibility based 

beam-column element is presented in this section. In the linear elastic range, both, stiffness 

and flexibility methods yield identical results, so that well established methods for the 

calculation of equivalent nodal forces based on displacement shape functions can be used. In 

the nonlinear range, however, different methods need to be used in the two cases. The'method 

proposed in this study follows the nonlinear solution algorithm for applied nodal loads. In the 

stand-alone program only uniform loads are included in the element. These are applied during 

the first load step corresponding to k=l. In program FEAP different element load distributions 

can be included. 

The application of element loads is more complex than that of nodal loads, since it 

requires the explicit inclusion of rigid-body modes. Rigid-body modes have not been 

considered so far, because they are not necessary for the element formulation. They are 
implicitly included in the transfonnation matrix Lele in Eqs. (2.28), (2.43) and (2.44), which 

"transforms the element displacements p from the global reference system to the element 
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deformations q in the local reference system. Transverse element loads induce shear forces in 

the element that can only be accounted for by the inclusion of rigid-body modes. The effect of 

rigid body modes in the application of element loads can be included in different ways. In_ this 

section the original implementation in the stand-alone program is described; with a brief 

discussion of the method used in program FEAP. 

The procedure for the application of element loads consists of the following steps. For 

simplicity the structure is assumed to be at an initial unstressed state, with unstressed elements 

and sections and no nodal loads present. The bending moment and axial force diagrams that 

result from the application of element loads on a statically determinate simply supported beam 

are imposed as incremental forces at the sections of the unstressed element without rigid lxxiy 

modes. These section forces induce section deformations that are integrated along the element 

to yield the corresponding element deformations. The latter violate the compatibility condition 

at the structure level that element displacements and deformations be equal to zero for zero 

extemalloads. ~orrective forces need to be applied at the member ends to restore the element 

deformations to zero, exactly as is the case in the algorithm of the nonlinear element state 

determination. For nonlinear element behavior under the applied element loads the iterations 

continue within the element until convergence is achieved. Upon convergence the element 

resisting forces are computed and the equilibrium is checked at the structure degrees of 

freedom. Since no external loads are present, the element resisting forces violate the 

equilibrium at the structure degrees of freedom and their nodal equivalents must be applied 

with opposite sign to the structure. These nodal forces are, thus, treated as structure 

unbalanced loads. From this point on the procedure is identical to the application of nodal 

loads. For nonlinear .behavior under the applied element loads Newton-Raphson iterations are 

necessary to reach the converged state of the structure. At the end of the initial load step the 

bending moment distribution in the elements is not linear, since it results from the 

superposition of the generally nonlinear force distribution for the applied element loads with 

the linear bending moment distribution due to nodal load corrections. If no nodal loads are 

applied to the structure in the fIrst load step, the final state of the structure is one with zero 

nodal forces but non-zero nodal displacements due to the applied element loads. 

Rigid-body modes are important in the application of element loads. The beam-column 

element without rigid-body modes is shown in Fig. 2.1. When the rigid-body modes are 

included, five additional degrees of freedom appear, as shown in Fig. 4.1, with the relevant 

forces Q and displacements q expressed relative to the local reference axis. The rigid-body 

modes are added before checking convergence within the Newton-Raphson iteration i. From 

equilibrium considerations Q is first expanded to Q and then the forces at the additional 
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degrees of freedom due to element loads are added to Q . The inclusion of rigid body modes 

is illustrated with a simple example later in the section. 

While the discussion about element loads is limited in this report to the case of a 

uniform load over the entire element and a single concentrated load at distance Xp from the 

left support, the proposed method is general and can be readily extended to other load types 

and distributions. In the uniform load case the element loads are grouped in a vector 

consisting of the load per unit length in the x, y and z directions: 

(4.5) 

The sequence of steps for the application of element loads is presented here with the 

numbering scheme of Appendix A. The inclusion of element loads in the analysis procedure is 

accomplished in the ftrst load step, i.e. for k=l. For the sake of clarity it is assumed that no 

other external loads act on the structure in the ftrst load step. A summary of the steps that 

need to performed in addition to those ill Appendix A for the inclusion of element loads is 

given below. 

(1) Start of the analysis. 

Set k=l. 

(2) Start of Newton-Raphson iterations. 

Set i=l. 

y 

FIGURE 4.1 BEAM-COLUMN ELEMENT WITH RIGID BODY MODES 



76 CHAPTER 4 

(3) Solve the global system of equations and update the structure displacement increments. 

For k=1 and i=1, there are no external load increments applied to the structure, so that 

ipi=O 

(p~r = 0 

(8.1plr = 0 

(4) Compute the element deformation increments. 

The change in the element displacement increments (M.qt)i is computed from Eq. (A.3) 

and the element defonnation increments (L\{lr are updated according to Eq. (A.4). 

For k=1 and i=1, (M.qI)1 = O. 

(5) Start the element state determination. 

Set)=1. 

(6) Compute the change in the elementforce increments. 

(7) Update the elementforce increments and the element resisting forces. 

(8) Compute the section force increments. 
. I . 

In the general case the section force increment ((8L\D(X)k)') is computed with 

Eq. (A.9). 

When k=1, i=1 and )=1! the section force increments due to the applied element loads 

are computed. by 

(4.6) 

where bg(x) is a force transfonnation matrix that relates the applied loads W to the 

element forces in a beam without rigid body modes. Details about bg (x) are provided 

later in the section. 

(9) Compute the change in the section deformation increments. 

The change in the section defonnation increments (( 8&t (x) r r is computed according 
. j • 

to Eq. (A.12) and the section defonnation increments (( &t (x»),) are updated with 

Eq. (A.l3). When k=1, i=1 and )=1, the section defonnation increments ((&t(X»)'f 
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are not updated so that (( .&t (x) n 1 = O. 

(10) Compute the fiber deformation increments. 

(11) Compute the fiber stresses and current tangent moduli. 

(12) Compute the section tangent stiffness andflexibility matrices. 

(13) Compute the section resisting forces. 

(14) Compute the section unbalancedforces. 

(15) Compute the residual section deformations. 

The residual section defonnations ((rl(x)Y)J are computed with Eq. (A.21). 

77 

When k=1, ;=1 and j=1; the section unbalanced forces are zero and the residual section 
1 1 

deformations ((rl(x)n are equal to the section defonnation increments ((&ll(x)n due 

to the applied element loads in Eq. (4.6): 

(4.7) 

The section defonnations ((Mdt (x) f)1 are considered part of the residual section 

deformations, since they are not compatible with the end deformations of the element 

that are equal to zero according to step (4). 

(16) Compute the element flexibility and stiffness matrices. 

(17) Check/or element convergence. 

When i = 1 and j= 1 , the convergence criterion is not satisfied. 

a) Convergence is achieved:" the rigid body modes are added to the element resisting 

forces using equilibrium considerations: (Q"Y ~ (Q"( The effect of element loads 

is then superimposed 

(4.8) 

where tg is a transformation matrix that depends on the element loads Wand is 

specified later. 

Go to step (18). 

b) Convergence is not achieved: compute the residual element deformations ((s"YY 
according to Eq. (A.24), incrementj by 1, and go to step (6). 



78 CHAPTER 4 

(18) Compute the structure resisting forces and the new structure stiffness matrix. 

The structure resisting force vector is detennined by assembling the element force 

vectors (Q l Y that contain the rigid-body modes. 

(19) Compute the structure unbalance/orces. 

(20) Check/or structure convergence. 

(21) Update force and deformation vectors and complete step k=l. 

(4.9) 

Since no nodal loads were included in this summary, the analysis consists of just one 

load step k=l. If time varying nodal loads were included, the analysis would involve additional 

load steps, with only the fIrst step affected by the application of element loads. The discussion 

was also limited to time independent element loads that are applied during the fIrst load step 

k=l. For time dependent element loads the above procedure should be repeated at every load 

step k. 

The force transformation matrices b,(x) and tg in Eqs. (4.6) and (4.8), respectively, 

depend on the element load vector W. In the unifonn load case W is given by Eq. (4.5) and 

the transformation matrices are: 

t T = g 

o 

bg(x) = 0 

L-x 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 

0 

0 

L 
-x(x-L) 
2 . 

o 
o 

0 0 
L L 

-- --
2 2 

0 0 

o 
L 
-x(L-x) 
2 

o 

0 0 

0 0 

L L 
-- --

2 2 

(4.10) 

-L 

0 (4.11) 

0 

In the case of a concentrated load at a distance xp from the left node of the beam the element 

load vector W contains the load components relative to the three local axes: 

W=[p .. py P.r (4.12) 

The corresponding transfonnation matrices bg (x) and tg are: 
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0 (~-l}X 0 

bg (X) = 0 0 (1- X{}x 

1 0 0 

0 (~ -1}Xp 0 

bg (x) = 0 0 (1- ~}Xp 
0 0 0 

00000 0 0 o 
o t; = 0 0 0 0 0 (i -1) (- i) 

o 0 0 0 0 o o 

for 

for 

o 
o 

o ~ x < xp 

xp ~ x S L 

-1 

o 
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(4.13) 

(4.14) 

(4.15) 

The procedure for the application of element loads is now illustrated for the case of a 
linear elastic cantilever in Fig. 4.2 under a uniform load Wy acting in the y direction. The 

structure has three degrees of freedom at the tip of the cantilever. The element is linear elastic 

with uniform cross-section and, thus, uniform section stiffness. 

tff!l!f!f!f!l! 

L .. 

FIGURE 4.2 CANTILEVER WITH UNIFORMLY DISTRIBUTED LOAD 
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For the applied loads and for linear elastic behavior the axial displacement P3 is zero and 

only two degrees of freedom, PI and P2' need to be included. Figs. 4.3 and 4.4 show the 

change of the bending moment and shear force distribution in the element as the iterations for 

load step k=l progress. 
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In the very fIrst element iteration, corresponding to k=1, i=1 and j=1, the parabolic 

bending moment diagram corresponds to a uniform load on a simply supported beam 

according to Eq. (4.6). The corresponding section deformations are transformed into residual 

deformations using Eq. (4.7). The section deformations are integrated along the element using 

Eq. (A.24) to yield the residual element deformations, which become the element deformation 
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increments for the following iteration, corresponding to k=l, i=l and j=2. The element 

defonnations are transfonned into element force incremerits with Eq. (A.6). For a linear 
elastic element the element force increments are the well known fixed end moments wyL

2 /12. 

At this point the element has converged and its bending moment diagram corresponds to that 

of a beam that is fixed at both ends. In order to inclu~e the rigid body modes according to 
Eq. (4.8) two vertical forces wy Lj2 are added to the element resisting forces Q and 

equilibrium is checked at the structure level. Since no external loads are applied to the 
structure, an unbalanced moment of wy L2 /12 and an unbalanced shear force of wy Lj2 now 

act at the free end of the cantilever. These need to be applied as nodal forces with opposite 

sign in the next Newton-Raphson iteration corresponding to k=l and i=2 in order to restore 

equilibrium at the structure degrees of freedom. During the first element iteration of the new 

Newton-Raphson iteration, i.e. for k= 1, i =2 and j= 1, a linear bending moment distribution is 

added to the existing moments in the cantilever, as shown in Fig. 4.3. Since the can~lever is 

linear elastic, element convergence is reached immediately. Because convergence is also 

reached at the structural level, the analysis is complete. The final bending moment diagram is 

the well known parabola shown at the bottom of Fig. 4.3. The evolution of all element and 

structural vectors for this example is given in detail in Appendix B. 

. The selected example is very simple, since the element is linear elastic and has a uniform 

cross section. The proposed procedure for the application of element loads is, however, 

general and can be applied for any material behavior and for any distribution of element loads. 

In the general case of nonlinear material behavior and non-uniform cross section properties of 

the element more iterations at the element and structure level are necessary for satisfying the 

equilibrium and compatibility requirements under the applied element loads. 

The same procedure is also used in the implementation of the beam-column element in 

program FEAP, but the rigid body modes are included in a different way. In the stand alone 

program, no forces due to element loads are applied at the structure degrees of freedom, so 

that on convergence no forces act at the structural nodes. In other words the element loads 

are treated as an initial force distribution. In program FEAP the shear forces that result from 

the applied element loads when the rigid body modes are included according to Eq. (4.8) are 

applied as forces at the structure degrees of freedom. The remainder of the process is identical 

to that described previously, except that Eq. (4.8) is now bypassed. This alternative scheme is 

more similar to the procedure that is typically followed in a stiffness-based element where 

element loads are transformed into equivalent nodal loads. 

In the implementation of this procedure in program FEAP for the linear elastic 
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cantilever under uniform load the element has non zero end deformations (( MQI)')I during 

the fIrst iteration (k=l, i=l and j=J) caused by a vertical force of (p~y =- wyL/2. The 

parabolic bending moment diagram for a simply supported beam under a uniform load is then 
1 

added to the linear diagram that results from the non zero end deformations (( MQI f) . This 

minor change facilitates the implementation of the element load ,Procedure in an existing finite 

elemerit program. 

4.6 Material S9ftening and Unloading in Reinforced Concrete Members 

The nonlinear solution procedure that is proposed in the present study is particularly 

suitable for modeling the softening behavior of reinforced concrete members. Even though the 

algorithm is described here with reference to a fiber beam-column element, the procedure can 

be used in structural members with any continuous nonlinear or piece-wise linear section 

force-deformation relation. Spacone et al. (1992) discuss the implementation of the method in 

the context of a differential moment-curvature relation. The method can also be extended to 

the nonlinear analysis of other types of systems. The extension of the theory to systems made 

up of several components in series and/or in parallel suitable for the nonlinear analysis of 

prestressed concrete members with bonded or unbonded, internal or external tendons is the 

subject of another current study. 

In the discussion about softening it is important to underline the distinction between 

softening of the entire structure and softening of certain members in a stiffening structure. 

Softening of the entire structure is very difficult to simulate from a numerical standpoint and 

the general Newton-Raphson method is not suitable for the task. Special iterative strategies, 

such as the arc-length method, or ad-hoc procedures, such as displacement control analysIs, 

should be used in this case, but such discussion is beyond the scope of the present study. 

The state determination process of the nonlinear analysis of a structure involves the 

application of end displacements on the structural elements. Consequently, tracing the 

softening response of elements under displacement control conditions is computationally 

easier than tracing the softening response of the structure. Even so, element softening is a very 

challenging numerical problem and there is growing interest in the development of a reliable 

solution method, especially for the response analysis of reinforced concrete structures under 

strong ground motions. Element softening plays an important role in the assessment of global 

and local ductility demands of structures under intense ground shaking when some members 

might reach their capacity and start experiencing strength softening. While force redistribution 
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might lead to an increase of the lateral load capacity of the structure, the defonnation ductility 

demand of softening members might be so high, that partial or total collapse will take place 

before the structure reaches its lateral load capacity. 

From a theoretical standpoint the flexibility method is ideally suited for modeling the 

softening behavior of reinforced concrete elements. When an element exhibits strain softening 

at the end sections, the moments decrease along the element and non-softening sections 

unload to satisfy equilibrium. Since in the absence of element loads the moment distribution 

along the element is always linear, this behavior is captured by the flexibility method. Such 

softening and unloading behavior is much harder to represent with a classical stiffness-based 

two-node element in which the curvature distribution is assumed linear. In such case several 

elements are needed to approximate the actual nonlinear curvature distribution and numerical 

difficulties can, nonetheless, arise as discussed in Section 1.2.3 and Fig. 1.9, which is 

excerpted from Zeris and Mahin (1988). A comparison of the two types of element 

fonnulation is presented in Spacone et al. (1992). 

The application of the proposed solution algorithm to the case of a softening element is 

first discussed from a theoretical standpoint and, subsequently, illustrated with a simple 

. example. For the sake of simplicity superscript k that denotes the current load step js omitted 

in the following discussion. The discussion starts when the structure is at the beginning of 

Newton-Raphson iteration i and with the assumption that. the stiffness matrices K i
-

I of all 

elements at the end of the last iteration are positive definite. At the stan of the new iteration 

the defonnation increments tlqi are imposed on the elements and the resulting. element force 

increments (MQi)j . are convened to section force increments (Mli(x)Y through force 

interpolation functi?ns. The section force increrrie~ts (Mf)i (x) Y cause section defonnation 

increments according to Eq. (A .12) which are added to the previous section defonnations to 

yield the new total defonnations (di (x) y. Consider the case that upon completion of the 

section state detennination for the new total defonnations (di(x)Y one section exhibits 

softening, so that its stiffness changes from posi tive definite (ki (x) y-l to negative definite 

(ki(X)y. The unbalanced forces (MJ~(x»)j are positive, while the residual section 

defonnations 

are negative. The element stiffness is updated with Eqs. (A.22) and (A.23). Assuming that the 

entire element stiffnes~ has also changed from positive definite (Ki)j-l to negative definite 

(KT and that Eq. (A.24) also returns negative residual defonnations (SiY at the element 
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ends, it is concluded from Eq. (A.6) that the new force increments (MQi)j+l are also negative. 

The element has, thus, detected the fact that, under the new deformations qi, it can resist a 

smaller force than that predicted with the stiffness of the previous converged state. The 

negative unbalanced forces at the element ends are convened to negative se,ction force 

increments (Mli (x) )j+l based on the force interpolation functions and the corresponding 

section deformation increments (Mdi(X))j+l are obtained with Eq. (A.12). At the section that 

exhibited softening in the previous iteration j the sign of the deformation increments depends 
on the size of the positive increments (/(x))j . (DMi(x))j+l relative to the negative residual 

deformations (ri (x) y. In either case it is important to note that the section resisting force is 

reduced. 

Once the element converges, it is very likely that the current element stiffness matrix is 

negative definite. The structure stiffness matrix is assembled from all element stiffness 

matrices and another load increment is applied to the structure. Since the structure stiffness 

matrix is still positive definite, the structure is capable of resisting a higher load, even though 

one element is softening. The new deformation increments llqi+l at the element ends give rise 

to negative force increments in the softening element as a result of the multiplication of the 

negative stiffness matrix Ki with positive deformation increments llqi+l. Thus, the softening 

element continues to unload, while the hardening members now resist a greater ponion of the 

applied load increment. At the same time the softening element contributes a larger ponion of 

the deformation of the structure. 

This brief description underlines the fact that no special steps need to be taken for the 

treatment of softening elements in the proposed analysis method. Within the algorithm the 

transition from a positive to a negative element stiffness matrix does not have to be detected 

and, both, positive and negative deformation increments, deformation corrections, force 

increments, unbalanced forces, and, finally, stiffness and flexibility matrices at the section as 

well as at the element level can be accommodated. Consequently, unloading of elements is 

also treated without requiring a reduction of load step size or special computational steps. 

The advantage of the proposed method in the analysis of softening systems can be best 

illustrated with a simple example that is shown in Fig. 4.5. It consists of two extensional 

springs connected in series. Spring A is linear elastic, while spring B is bilinear elastic so-ain 

softening. In a series model the system deformation is the sum of the component 

deformations, while the element forces are equal to the force applied on the entire system. For 

the two spring system and with the notation of Fig. 4.5 these conditions can be written as: 

Q=DA =DB 
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q = qA +qB 

It can be readily seen that the system flexibility F is the sum of the spring flexibilities, i.e.: 

F = fA + fB 
It is interesting to note the similarities between a series system and the beam-column 

element that is proposed in the present study: the equilibrium condition Q = DA = DB amounts 

to a constant force distribution within the two spring element and is equivalent to Eq. (2.6) 

which defines a linear bending moment and a constant axial force distribution for the beam-

, ,column element. Similarly, the deformation of the two spring element is the sum of its com­

ponents much like the deformations of the beam-column element are obtained by integration 

of the section deformations. To complete the analogy the analysis of the two spring system is 

performed for a given deformation increment Dq, for which the corresponding resisting force 

increment DQ is sought. Since the example is limited (0 the analysis of a single displacement 

increment and the behavior of the system is piecewise linear, there is no need for the use of 

superscripts k and i. An analysis summary is given in Fig. 4.6 with only two element iteI"a:tions 

needed for convergence. Appendix C contains the complete solution process. 

FIGURE 4.5 " A SIMPLE SOFTENING ELEMENT: TWO SPRINGS IN SERIES 

At the completion of the iterative analysis process the equilibrium and the compatibility 

of the system are strictly satisfied, as is the case for the proposed beam-column element. The 
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force-displacement relation of the component springs is also strictly satisfied because of the 

piecewise linear nature of the constitutive relation. This is not the case, however, in a 

nonlinear system where the constitutive relation can only be satisfied within a specified 

tolerance. 
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FIGURE 4.6 FORCE-DEFORMATION HISTORY IN THE SPRING SYSTEM 

It is interesting to note that the proposed analysis method does not need to detect the 

displacement level that corresponds to the stiffness change of the second spring. This is 

different from the procedure followed in the event-to-event solution strategy where each 

stiffness change needs to be traced in the search for the solution. While tracing each stiffness 

change may give a better estimate of the system response, the number of events required to 

reach convergence can be very large for a system with many components, such as a reinforced 

concrete column with several control sections and many fibers in each section, In this case the 

computation by an event-to event strategy becomes prohibitively expensive. Moreover, it is 

often advantageous, both, from a physical and a computational standpoint to specify 

continuous constitutive relations for which an infinite number of events would have to be 

accepted in an event-to event solution strategy. 





5.1 General 

CHAPTERS 

APPLICATIONS 

A series of examples are presented in this chapter to demonstrate the ability of the 

proposed element to describe the hysteretic behavior of reinforced concrete beams and 

columns under imposed cyclic load and defonnation histories. The analytical results in this 

chapter are obtained with the stand alone program BEAMCOL whose numerical 

implementation was discussed in the previous chapter. 

When experiments are conducted, loads are applied to the specimen in a controlled 

fashion and the resulting displacements and deformations are measured. Typically, members 

that exhibit a relatively high stiffness are tested by controlling the force applied on the 

specimen. Once significant damage and stiffness deterioration of the specimen sets in, the test 

is continued under displacement control, whereby the applied forces are carefully adjusted in 

order to produce a given displacement history. In the numerical simulation of experiments a 

single method of load application has to the used for the entire analysis, since most finite 

element programs do not permit changes in the boundary conditions during the analysis. 

Numerical simulations under force control provide good results when the member stiffness is 

high, but fail to trace the nonlinear behavior near the ultimate strength of the member and the 

post-peak: response. For this reason the numerical simulations in this chapter were conducted 

under displacement control. 

Three tests have been selected for the verification of the proposed beam-column 

element. The tests comprise two reinforced concrete cantilever beams and a reinforced 

concrete beam-column. The first beam is selected for the study of the moment-curvature 

behavior of a single section and for the study of the effect of different tolerance measures and 

displacement increments on the accuracy of the analytical results. The second specimen is a 

cantilever beam under uniaxial bending and the third specimen is a cantilever column that was 

subjected to a constant axial force in combination with uniaxial and biaxial bending, both, 

monotonic and cyclic. For each test the geometry and the material characteristics of the 

specimen as well as the parameters of the material models for concrete and reinforcing steel 

are given. The material parameters are obtained from available experimental information from 

89 
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coupon or concrete cylinder tests. Finally, the load and displacement history of the specimen 

and the boundary conditions used in the analysis are also specified. 

The chapter concludes with a parameter study of the third specimen, the cantilever 

column. This study aims at investigating the sensitivity of the proposed model to the number 

of control sections within the column, both, in the presence and in the absence of an axial 

compressive force. It is important in this regard to establish whether the analytical results 

converge to the actual solution as the number of control sections in the column increases and, 

if so, to determine the smallest number of column control sections that yield sufficiently 

accurate results. 

5.2 Moment-Curvature of a Section 

Kaba and Mahin (1983) proposed a nonlinear method for describing the hysteretic 

behavior of reinforced concrete sections as was briefly discussed in the literature survey of 

Chapter 1. Their model is compared with the experimental response of a concrete cantilever 

beam tested by Kent (1969). The same experimental results are used here to test the validity 

of the beam-column element proposed in this study. The geometry of the specimen and the 

geometry of the cross section as well as the discretization used by Kaba and Mahin, are shown 

in Fig. 5.1 and summarized in Table 5.1. The material parameters for the concrete and­

reinforcing steel models are summarized in Tables 5.2 and 5.3, respectively. 

r 
.~ ........ I_· ___.----.,--'1 • 

]00* 

1 element 

4SeC~omi . 

Material Type and Number of Fibers 

o Unconfined Concrete: 4 • 2 • 2 + 10 .2 

I>::}:::l Confined Conerele: 12 .2 

_ sreel:4 

z 

FIGURE 5.1 STRUCTURE DISCRETIZATION FOR KENT BEAM # 24 
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kent Beanf#24 .. . ..• 
....... 

...... "-.-:~ .. . . ' .... ~ ••. <...... ... ........... ..Q 

number of beam-column elements = 1 

Length of Element = 100 in. I Nu mber of Sections = 4 

Number of fibers 

Section type Unconfined Confined Steel Total 
Concrete Concrete 

I 18x2 12x2 4 64 

TABLE 5.1 KENT BEAM #24 DISCRETIZATION 

: ............. COncrete proPerties ..': 
..... 

Concrete type Ec [ksiJ f: [ksiJ Eo E" 

.•... Unconfined (I) 3605 -6.95 -0.0027 -0.00292 
. 

Confined (I) 3605 -6.95 -0.0027 -0.03810 

TABLE 5.2 MATERIAL PROPERTIES OF CONCRETE 

•••••••••••• 
Steel Properties 

. 

I . 

>Steeltype Es [ksiJ Iy [ksiJ Strain hard. ratio 

Steel tyPe r (I) 29,000 48.4 0.0042 

TABLE 5.3 MATERIAL PROPERTIES OF STEEL 

The cantilever beam is loaded with a vertical load at the free end and the moment­

curvature relation at the built-in section is studied. Fig. 5.2 shows, both, Kent's experimental 

results and the analysis with the ~odel of Kaba-Mahin. This example is also selected for the 

study of the effect of tolerance measures and size of displacement increments on the accuracy 

of the analytical results. 

In the examples presented in this chapter the structure and element tolerance are 

identical, which implies TF = 1, where TF is the parameter introduced in Section 4.4 to relate 

the structure with the element tolerance. Consequently, the general term tolerance will be used 

in the remainder of the chapter. Three sets of tolerance values have been selected in the 

analysis of Kent's cantilever beam in Fig. 5.1. Recalling from Section 4.4 that EAT and ERT 

stand for Element Absolute Tolerance and Element Relative Tolerance, respectively, the three 
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sets of tolerance values are defined in the following table: 

Tolerance definition 

small EAT = 1 kip ERT = 0.01% 

medium EAT = 100 kips ERT= 1% 

large EAT = 1000 kips ERT= 10% 

r50r---------------,-------------------__ ~ 

100 

·roo 

-1.8 

P=o. 

- ThtocelicaJ « Kent's resul~ 

• ExperimlllW 

1.2 -0.6 0 0.6 1.2 1.8 2.4 

CURVATUR E (IO-l r ad lin) 

, 

FIGURE S.2 MOMENT-CURVATURE RELA nON FROM KENT'S EXPERIMENT 

AND KABA-MAHIN ANALYSIS (KABA AND MAHIN 1983) 

Fig. 5.3 shows the moment-curvature history obtained with program BEAMCOL. The 

results show very good agreement with those presented in Fig. 5.2. These results are obtained 

with a small load step size and with the three sets of tolerance values defined above. Small and 

medium tolerance values yield very similar results while a large tolerance value produces a 

slight overestimation of section strength. In a parallel parametric study on the effect of size of 

displacement increment it· is observed that the accuracy of the results is not particularly 

affected by the tolerance value for small and medium step size corresponding to displacement 

increments of 0.05 in. and 0.5 in. at the cantilever tip, respectively. For a large step size, 

which corresponds to only four load steps per half cycle, a small tolerance has to be imposed 

to achieve convergence. 
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Fig. 5.4 shows the effect of displacement step size on the moment-curvature relation for 

a small tolerance. As the load step size increases, the number of element iterations per load 

step also increases. A measure of the algorithm efficiency is the total number of element 

iterations for a particular load history. For small load steps the total number of element 

iterations is large, even though only one or two iterations are needed for convergence in each 

step. In this case the total number of element iterations is essentially proportional to the 

number of load steps. As the load step size increases, more iterations are needed for 

convergerice in each load step. This increase in the number of iterations in each load step is, 

however, not proportional to the corresponding increase of load step size, since not every 

load step involves significant nonlinear behavior and since the force unbalance decreases 

exponentially in the proposed algorithm. Consequently, the total number of iterations 

decreases with increasing load step size and, thus, leads to a more economic analysis. 

Unfortunately, this gain in economy is outweighed by numerical problems of solution flip-flop 

and lack of convergence in a few steps in the case of medium or large tolerance values under a 

large displacement increment. Thus, the selection of the appropriate tolerance value and load 

step size requires skill and experience or- an intelligent, automatic load step subdivision 

algorithm. The need to accurately trace the load-deformation behavior of a structure imposes 

considerable restrictions on load step size, so that this issue loses much of its significance in 

practical cases. 

5.3 Uniaxial Bending of Cantilever Beam 

An extensive series of tests on rectangular and T -shaped reinforced concrete beams was 

conducted by Ma, Bertero and Popov (1976). The rectangular beam denoted as R-l is used in 

the correlation studies. The geometry of the specimen and the discretization of the cross 

section are shown in Fig. 5.5. The relevant geometric data are summarized in Table 5.4, while 

Tables 5.5 and 5.6 contain the material parameters for the concrete and reinforcing steel 

models, respectively.· These parameters are derived from available experimental information 

from coupon and concrete cylinder tests. In simulating the behavior of confined concrete the 

model by Scott et al. (1982) was used. In this model the degree of confinement depends on 
the volumetric ratio of transverse reinforcement relative to the confined concrete core Ps 

which for beam R-I was estimated at 0.60%. In the study of the hysteretic behavior of the 

cantilever beam the model consists of two elements: a beam-column element for the cantilever 

itself and a very stiff linear spring that is oriented in the load direction at the free end of the 

cantilever for the analysis under displacement control. 
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o Unconnned Concrete: 

10.2 + 2.2 + 2.2 + 2.2 

Confined Concrete: 

16.2+2.2+2.2 

_ Sleel: 3+4 

FIGURE 5.5 STRUcruRE DISCRETIZATION FOR BEAM R-l 

•••••••••••••••••••••••• ....•. 
·..CantileverBesmR~1 

• ••• 
..... / ...... 

Number of beam-column elements: 1 

Length of Element = 71 in. I Number of Sections = 10 

Number of fibers 

Section type Unconfined Confined Steel Total 

Concrete Concrete 

I 16x2 20x2 7 79 

TABLE 5.4 BEAM R-l DISCRETIZATION 

. ... •.• . ConcrfJte Properties •• .................•.. 

... . ... . ... 

C()ncrete type Ec [ksi] t: [ksi] Eo E" 
. 

.. Uriconfiried 3980 -5.07 -0.00200 -0.003 

6····(00· ···onm 3980 -5.43 -0.00214 -0.069 

TABLE 5.5 CONCRETE MATERIAL PROPERTIES 

. Steel PropertieS 

Es [ksi] /y [ksi] Strain hard. ratio 

Steel type 1 . . • ·29,000 66.5 0.0085 

TABLE 5.6 STEEL MATERIAL PROPERTIES 
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FIGURE 5.6 EXPERIMENTAL TIP LOAD-DISPLACEMENT RELATION 

FOR BEAM R-1 (MA ET AL. 1976) 
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FIGURE 5.7 ANALYTICAL LOAD-TIP DISPLACEMENT RELATION FOR BEAM R-1 

In the numerical simulation of the experiment the displacements measured at the tip of 

the cantilever are imposed on the model by applying a force that is the product of the end 

displacement with the large stiffness of the linear spring. The selected tolerance values for the 

analysis are EAT = 0.01 kip and ERT = 1 % and the tip displacements are imposed in 
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. The displacements at the rip of the cantilever are caused by flexural defonnations, shear 
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defonnations, bond-slip between concrete and reinforcing steel and the rotation at the built-in 

section due to reinforcing bar pull-out from the column stub. The proposed model, however, 

"only accounts for flexural defonnations. As a result, the analytical results in Fig 5.7 deviate 

from the experimental data in Fig. 5.6. The discrepancy is small before yielding at the built-in 

section of the cantilever takes place, but increases in the post-yield cycles and is particularly· 

notable during reloading in the "pinching" of the experimental hysteretic behavior due to shear 

and bond-slip. 

The analytical and experimental moment-curvature relation near the built-in section of 

the cantilever are compared in Figs 5.8 and 5.9. The agreement is much better in this case, 

since the other sources of inelastic defonnation do not affect the hysteretic section response 

that much. 

5.4 Uniaxial and Biaxial Bending of a Column under Axial Compression 

A series of columns that were subjected to different load histories of uniaxial and biaxial 

bending under constant axial force were studied by Low and Moehle (1987). The geometry of 

the two column specimens that were selected for the correlation studies is shown in Fig. 5.10 

which also shows the geometry of the cross section as well as the discretization used in the 

analytical studies. The relevant geometric data are summarized in Table 5.7. 

D 

-
Unconllned Concrete: 
4.8+4.4+11.4 

Conlroed Concrete: 16. 12 

Steel: 4 + 6 

FIGURE 5.10 STRUClURE MESH FOR LOW-MOEHLE SPECIMEN COLUMNS #1 AND #2 

The model consists of a single beam-column element that contains two different types of 

section in accordance with the amount of transverse reinforcement in the specimen. The lower 
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half of the column has a volumetric ratio of transverse reinforcement relative to the confined 
concrete core p. equal to 2%. This corresponds to section type I. The upper half of the 

column has a volumetric ratio of transverse reinforcement relative to the confined concrete 

core p. equal to 1.3% and corresponds to section type II. The material parameters for the 

concrete and reinforcing steel models are summarized in Tables 5.8 and 5.9, respectively. 

These parameters are derived from available experimental information from coupon and 

concrete cylinder tests. In simulating the behavior of confined concrete the model by Scott et 

aI. (1982) was used . 

.. ,<. 
l.o"'~MoehleSpecimens #1 and #2 .. 

. . 

. " . ." - -, - . 

Number of beam-column elements: 1 

Length of Element = 20.25 in. I Number of Sections = 4 

Number of fibers 

Section type Unconfined Confined Steel Total 
Concrete Concrete 

I and II 4x8+15x4 16x12 10 294 

TABLE 5.7 Low-MOEHLE SPECIMEN COLUMNS #1 AND #2 DISCRETIZATION 

The tolerance values selected for the analysis are EAT = 0.01 kip and ERT = 1 %. The 

numerical simulations are conducted under displacement control and the lateral tip 

displacements along the y and z axis are imposed in increments ranging from 0.01 to 0.04 in. 

The first comparison involves Low and Moehle specimen #1. The loading of this 

specimen consists of a cyclic lateral force along the weak axis z . at the free end of the 

cantilever and an axial compression of 10 kips that is kept constant during the experiment. 

The analytical and experimental results for specimen #1 are compared in Fig. 5.11, which 

shows the lateral force versus tip displacement response of the specimen in the z-direction. 

The agreement between experimental and analytical results is good even though the model is 

clearly stiffer than the specimen, particularly, in the early stages of the hysteretic response. 

The stiffness discrepancy at the very early response stage can be attributed to the initial 

cracking of the specimen due to shrinkage and temperature. The discrepancy in hysteretic 

behavior under large displacement reversals, on the other hand, can be attributed to the 

significant effect of bond-slip and pull-out of the longitudinal reinforcing bars from the 

foundation. Since the numerical simulations are conducted under displacement control this 

effect is only evident in. the "pinching" of the hysteretic response and the earlier loss of 

strength of the specimen relative to the rhodel. . 
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Ec [ksi] Ie' [kSi] EO 

3700 -5.30 -0.00200 -0.0119 

3700 -6.53 -0.00246 -0.3710 

3700 -6.11 -0.00231 -0.2330 

TABLE 5.8 CONCRETE MATERIAL PROPERTIES 
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Steel' type' 
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·Steel Properties 

Es [ksi] Iy [ksi] 

29,000 64.9 

29,000 64.4 

29,000 73.1 

.. '. 
. ,', 

Strain hardening 

ratio 

0.0067 

0.0038 

0.0050 

TABLE 5.9 STEEL MATERIAL PROPERTIES 
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FIGURE 5.11 TIP LOAD-DISPLACEMENT RELATION IN THEz-DlRECTION FOR 

LOW-MOEHLE SPECIMEN #1: EXPERIMENTAL AND ANALYTICAL RESULTS 
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The second comparison involves Low and Moehle specimen #2. The loading of this 
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specimen consists of a cyclic lateral force acting at 45 degrees relative to the principal y and z 
axes of the specimen at the free end of the cantilever and an axial compression of 10 kips that 

is kept constant during the experiment. Figs. 5.12 and 5.13 compare the analytical with the 

experimental results in terms of the hueral force versus corresponding tip displacement 

response in the y-direction, strong axis bending, and z-direction, weak axis bending, 

respectively. For specimen #2 the p-~ effect is taken into account by modifying the computer 

results to include the effect of lateral displacements on the bending moments at the base of the 

cantilever. In this case the fixed-end rotation at the base of the column is rather small and 

accounts for only 4% of the maximum tip displacement. The agreement between experimental 

and analytical results is good even though the model is clearly stiffer than the specimen, 

particularly. in the early stages of the hysteretic response. The stiffness discrepancy at the very 

early response stage can be attributed to the initial cracking of the specimen due to shrinkage 

and temperature. The discrepancy in hysteretic behavior under large displacement reversals, 

on the other hand, can be attributed to the significant effect of bond-slip of the longitudinal 

reinforcing bars along the height of the column. Since the numerical simulations are conducted 

under displacement control this effect is only evident in the "pinching" of the hysteretic 

response and the earlier loss of strength of the specimen relative to the model. 

Low-Moehle specimen #2 is used in several parameter studies to investigate the 

sensitivity of the analytical results to the number of control sections in the element. The model 

is subjected to monotonic uniaxial strong axis bending under, both, force and displacement 

control loading conditions and the load-tip displacement response is shown in Figs. 5.14 

through 5.16. 

Fig. 5.14 shows the load-tip disphtcement response of the cantilever beam under 

monotonic bending moment. The results show that the element flexibility increases as the 

number of control sections decreases. The fewer the number of integration points, the more 

significant becomes the contribution of the section at the built-in end to the flexibility of the 

element. Since in a cantilever beam that is loaded at the tip, the section at the built-in end 

undergoes the largest inelastic deformation, the tip displacement increases with the reduction 

in the number of control sections. The results for eight and ten integration points are 

indistinguishable indicating convergence to the analytical solution of the problem. For four 

and six integration points the results show very good agreement with the response obtained 

with ten integration points. The maximum force discrepancy is 5% and 2% for four and six 

integration points, respectively. For only two integration points a maximum force discrepancy 

of 20% is observed . 

. Fig. 5.15 shows the load-tip displacement response of the cantilever beam under 
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monotonic bending moment and a constant axial compression of 75 kips. The analytical 

results are obtained under displacement control in order to trace the loss of column strength 

when the unconfined cover concrete spalls. The column softening is described well with at 

least four integration points in the element. With two integration points the initial response is 

more flexible and the yield strength is underestimated. 

8 
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o 
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UNDER UNIAXIAL BENDING TO THE NUMBER OF CONTROL SECTIONS 

Fig. 5.16 shows the response of the same cantilever column under the same loading 

history, but without the effect of confinement for the concrete that is enclosed by stirrup-ties. 

Even though the loss of strength is sudden and more abrupt in this case, the analytical results 

agree very well for cases with at least four integration points in the column. For two 

integration points the initial response is more flexible, while for two and three integration 

points the post-peak response deviates significantly from the other cases. 
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Another analytical study is conducted on specimen #2 in order to study the effect of a 

varying axial force on the hysteretic behavior. Unfortunately, no experimental data are 

available for this case. The confinement of the core concrete is reduced, so that the ultimate 

concrete strain E" is now equal to 0.12. The same displacement history is now imposed in 

both principal directions y and z with the tip displacements reaching a maximum value of 

+0.96 in. and -0.96 in. In theC axial direction x the force fluctuates about an average 

compression value of 75 kips and reaches extreme values of 105 kips and 45 kips in 

compression. Thus, while the member is loaded under displacement control conditions in the y 

and z direction, the axial force is controlled in the x-direction. 

The imposed loads and displacements change at the same rate: the displacement increment in 

the y and z direction is equal to 0.05 in., while the force increment in the x direction is equal to 

1.5 kips. The selected convergence tolerance values are: in absolute terms EAT = 0.1 kip and 

in relative terms ERT = 1 % . The analytical results are shown in Figs. 5.17 through 5.19 and 

demonstrate the ability of the model to describe the complex response of the member without 

numerical problems, even under a complex load history of cyclically varying axial force and 

biaxial bending. 
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CONCLUSIONS 

The objective of this study is to develop a reliable and computationally efficient beam­

column finite element model for the analysis of reinforced concrete members under cyclic 

loading conditions that induce biaxial bending and axial force. The element is discretized into 

longitudinal steel and concrete fibers such that the section force-deformation relation is 

derived by integration of the stress-strain relation of the fibers. At present the nonlinear 

behavior of the element derives entirely from the nonlinear stress-strain relation of the steel 

and concrete fibers. The element fonnulation is based on bending moment and axial force 

distribution functions that satisfy the equilibrium along the element, and, thus, requires a 

flexibility based state determination algorithm for the computation of the stiffness matrix and 

resisting forces of the element. The model does not consider relative slip between fibers, 

which are assumed to be perfectly bonded, so that plane sections before deformation remain 

plane. 

The proposed nonlinear algorithm for the element state detennination is general and can 

be used with any nonlinear section force-defonnation relation. The procedure involves an 

element iteration scheme that converges to a state that satisfies the material constitutive 

relations within the specified tolerance. During the element iterations the equilibrium and the 

compatibility of the element, are always satisfied in a strict sense by the assumed force and 

deformation interpolation functions. The number of element iterations required to reach 

convergence depends on the element stiffness and on the tolerance that is selected for the 

problem. In general, a very small element tolerance involves a large number of element 

iterations. By contrast, a larger element tolerance requires a large number of iterations at the 

structure level in order to achieve convergence at the structural degrees of freedom. The 

proposed method proved to be computationally stable and robust, while being able to describe 

the complex hysteretic behavior of reinforced concrete members, such as strain hardening, 

"pinching" and softening under cyclic nodal and element loads. 

A new scheme for the application of element loads in flexibility based beam finite 

elements is also presented in the report. The procedure is a natural extension of the element 

state determination algorithm and is based on the use of the exacUntemal force distribution 

under the applied element loads. The corresponding fixed end forces at the element ends are 
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determined during iterations of the element state determination. The presence of element loads 

is important in the study of the effect of gravity loads on structures undergoing lateral load 

reversals. 

Compared with similar stiffness based beam-column elements, the proposed model 

offers three major advantages: (a) with the use of the exact force distribution function along 

the element fewer elements are needed to discretize a structure, (b) element softening can be 

dealt with without numerical difficulties, and, (c) the application of element loads is rather 

straightforward with the use of the exact internal force distribution function under the given 

element loads. The element belongs to the family of flexibility based elements, but 

distinguishes itself by the general and clearly formulated state determination process that relies 

on the same equilibrium and compatibility conditions used in the formulation of the element 

stiffnes~ matrix ,and does not resort to ad hoc approximations and special solution strategies to 

avoid numerical difficulties. Compared with fiber beam-column elements that are based on the 

event-to-event solution scheme, the proposed model is more general, since it is not limited to 

piecewise linear force-deformation relations. It is also more efficient in the analysis of large 

structures that may experience a very large number of events during severe cyclic loading, 

since it does not require tracing of every stiffness change in the structure. 

Comparisons between the results of the proposed model with experimental data show 

very good correlation,especially, for cycles that induce small to average damage in the 

members under investigation. Since the shear deformations are not included in the proposed 

beam-column element, the selection of specimens for testing the validity of the model is 

limited to cases with negligible contribution of shear deformations to the overall response. 

Under very large inelastic deformations the model exhibits higher resisting forces than those 

measured in the experiment. This is predictable, since the model does not include several 

important effects in the material models of the constituent fibers, such as the effect of C;yclic 

damage on the unconfined and confined concrete response, the buckling of the longitudinal 

reinforcing bars and the effect of shear and bond-slip of reinforcing bars on the state of 

damage of the member. Moreover, the model does not account for the fixed end rotation due 

to reinforcing bar pull-out from the base of the specimen. Under imposed displacement 

conditions the bar pull-out has a slight effect on the load carrying capacity of the specimen, 

but it affects significantly the ,reloading stiffness and the energy dissipation capacity of the 

specimen. 

The proposed element that is now clearly formulated and implemented in the stand 

alone computer program BEAMCOL offers several opportunities for future studies: 
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• The effect of more sophisticated material models for unconfined and confined concrete 

as well as for reinforcing steel on the local and global hysteretic response of reinforced 

concrete members needs to be studied. The present study is limited to rather simple 

constitutive models,' which lack important features, such as the effect of cyclic damage 

on the concrete stress-strain relation, the buckling of reinforcing steel, etc. 

• Parametric studies are required to establish the sensitivity of the element response to the 

number of integration points (control sections) in the member. The case studies in this 

report are conducted under displacement control and show that; while the load­

displacement response is well represented with as few as 3 integration points, the section 

moment-curvature response is very sensitive to the number of integration points. This 

has very important practical ramifications, since it is the local response, such as steel and 

concrete strains at the most critical section, that will detennine the failure of the element. 

Thus, modeling guidelines are needed for the selection of the number of integration 

points in order to predict with confidence curvature and rotation ductility demands and 

plastic hinge lengths in reinforced concrete members. 

• Second order effects, such as those arising from P-.6. actions, should be included in the 

element in order to study the importance of overturning moments under the large lateral 

sways caused by strong ground motions. 

• The effect of fixed end rotations due to reinforcing bar pull-out from foundations and 

bearn-column joints should be included in the model by modification of the behavior of 

the end sections or by the addition of special hinge elements at the beam ends. 

• The reinforcing bar slip relative to concrete is also important along the element, 

particularly, for members with insufficient development length, lap splices, etc. The 

rational inclusion of this effect in the section constitutive relation is a challenging task 

that requires further study. 

• The proposed element does not account for deformations due to shear and torsion. It is 

presently not clear whether these effects can be included in a rational way in a fiber 

beam-column element, but the subject merits further study. 

• The proposed element enhanc.ed with the new method for the inclusion of element loads 

is suitable for the analysis of prestressed concrete members. These can be modeled as a 

group of prestressing tendons that are connected in parallel with the proposed reinforced 

concrete beam-column element. Such an element is the subject of a current study. 

• The proposed nonlinear solution algorithm is generally applicable. Its implementation in 
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elements with different nonlinear section force-defonnation relations should be explored. 

Similarly, the extension of the algorithm to systems that are composed of a combination 

of several springs in series and/or in parallel should be studied. 

• The implementation of the proposed beam-column element in a general fmite element 

computer program for the nonlinear static and dynamic analysis of large structures is a 

very important task. The implementation of the element in the finite element program 

FEAP is presently complete. It is . only briefly discussed in this study and will be the 

subject of a future report. Topics to be addressed in this future study include parametric 

studies for the development of modeling guidelines for the nonlinear analysis of 

reinforced and prestressed concrete structures under earthquake excitations and the 

exploration of different nonlinear solution strategies within the framework of program 

FEAP. 

• Starting from the existing capabilities of the finite element program FEAP with respect 

to nonlinear solution strategies and pre- and post-processing utilities, an integrated 

computer environment for the nonlinear static and dynamic analysis of reinforced and 

prestressed concrete structures needs to be developed .. This analysis package should 

encompass elements with different levels of complexity, from simple linear elastic 

elements to very sophisticated nonlinear 3-D finite elements, and should allow for their 

seamless integration within the same nonlinear structural model. 
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APPENDIX A 

SUMMARY OF SOLUTION ALGORITHM 

The numerical procedure for the stand alone computer program is summarized here in a 

series of steps that parallel those at the end of Chapters 2 and 3. While the summaries at the 

end of Chapters 2 and 3 were limited to a basic description of the sequence of steps for the 

sake of clarity, this appendix contains the detailed numerical implementation of the procedure 

with the state of each variable within the nested iteration process denoted by superscripts 

according to the notation introduced in Section 4.2. The steps of the algorithm are also 

illustrated in Figs. A.I-A.4: 

(1) Start the analysis. 

Setk=1 

(2) Start the Newton-Raphson iterations. 

Set i=1. 

(3) Solve the global system of equations and update the structure displacement increments. 

Using the unbalanced force vector (p~y-l and the structure tangent stiffness matrix 

(K!)i-l from the previous Newton-Raphson iteration i-1, the change in the structure 

displacement increments (06pk r is computed from the solution of the linear system of 

equations 

(A. I) 

The unbalanced force vector (p~ y-l is obtained as the difference between total applied 

loads and total resisting forces at the conclusion of the previous Newton-Raphson 

iteration i-1 in step (19). When k=1 and i=1, (p~ t = 6Pi. The tangent stiffness matrix 

(K!y-I is based on the state of the structure at the end of the previous Newton-Raphson 

iteration and is detennined in step (18). When i=1, two alternatives exist: 

k= 1.' The initial tangent stiffness K~ is detennined by imposing a very small 

defonnation increment on the sections ()f all elements. The fiber material modules 

return the initial tangent modulus of elasticity Era" from which the section, element 

and, finally, the structure stiffness is assembled. For the proposed concrete model, 

115 
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which has zero stiffness in tension, the initial tangent modulus always corresponds 

to the initial tangent stiffness in compression. 

k> 1: The structure stiffness is equal to the tangent stiffness at the end of the last load 

step k-1, that is (K:t = K:-I; 

The structure displacement increments (O~pky are added to the displacement increments 
i-I-

(~pk) at the end of the previous Newton-Raphson iteration i-I to obtain the 

displacement increment (~pk r for iteration i. 

(~pkr = (~pkrl +(o~pkr (A.2) 

When i=1, (~pk)O is initialized to zero. 

(4) Compute the element deformation increments. 

Using the compatibility matrix L e1e the change in the element deformation increments 

(Otll/)i is computed from the structure displacement increments (O~pky: 

(A.3) 

The element deformation increments are updated for iteration i:, 

(A.4) 

When i= 1, (&/ t is initialized to zero. Note that the element displacement increments 

do not change during the element iteration loop j. 

(5) Start the element state determination. 

Setj=1. 

(6) Compute the change in the elementforce increments. 

Two cases are possible: 

j=1: ((O~Qinl is obtained from the change in the element displacement increments 

(o~'l Y for the current Newton-Raphson iteration i using the element tangent 

stiffness matrix (Ki(1 at the end of Newton-Raphson iteration i-1 

(A.5) 

j>1: ((O~Qirr is obtained from the residual element deformations ((lry-I at the end 

of iteration j-/ and the corresponding element stiffness matrix 
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(A6) 

(7) Update the elementforce increments and the element resisting forces. 

With the change in the element force increments ((o~Qtyr, the element force 

increments (( ~Qk r r1 

are updated for iteration): 

(A.7) 

o 
When i=1 and}=], ((~Qt)l) is initialized to zero. 

The current element resisting forces are obtained by adding the element force increments 

to the resisting force vector QH at the end of the converged load step k-]: 

(A8) 

(8) Compute the section force increments .. 

The change in the section force increments is computed with the interpolation function 

b(x) and the corresponding force increments are updated 

((om\X)rr = b(X),((o~Qtrr 

((MJt(X)rr = ((mk(x)y)j-l + ((OMJt(X)n
j 

o 
When i=1 and}=], ((MJt(x)n is initialized to zero. 

Update the current section forces 

When k=1, Dt-1(x) = O. 

(9) Compute the change in section deformation increments. 

(A.9) 

(A 10) 

(All) 

The change in section deformation increments (( o~dt (x) r r is obtained by adding the 

effect of the change in section force increments ((omt(X)yr to the residual section 

deformations at the end of the }-1 iteration: 

(AI2) 
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The section defonnation increments are then updated: 

(A. 13) 

o 
When i=1 and)=1, ((~dl:(x)r) = O. 

(10) Compute the fiber deforma"tion increments. 

The change in fiber defonnation increments is computed with the section compatibility 

matrix lex) and the defonnation increments are updated 

((06tl(x)rY =1(x)'((OMI:(x)rY 

((~el:(x)rr = ((6el:(X)r(1 + ((o~k(X)rr 

The fiber defonnations are updated: 

o 
When i=1 and)=1, ((~ek(x)n = O. 

(11) Compute fiber stresses and update the tangent modulus of the fibers. 

(A. 14) 

(A.15) 

(A.16) 

For the current fiber deformations ((ek(X)rY the fiber material modules return the new 
" J 

fiber stresses ((Ek(x'Yi/ib,Zifib»)') and the updated tangent stiffness modulus of the fibers 

((E!II(X'Yifib,lifib)y)J. 

(12) Compute the section tangent stiffness and flexibility matrices. 

i J 
The updated tangent modulus of the fibers (( E1: II (x, Yifib' Zifib»)) is used in the calculation 

of the current section tangent stiffness matrix 

11(:» 

L (EA )ifLb . Yi~b 
ifib=1 

11(:» 

- L(EA)iflb . Yifib' lifib 
iflb=l 

11('>:) 

- L,(EA)iflb . Yifib 
iflb=l 

11(:» 

- L (EA)ifib' Yifib' Zifib 
ifib=l 

11(:» 

L(EA)ifib . Z~b 
ifib=l 
11(:» 

L(EA)ifib' Zi/ib 
ifib=1 

11('>:) 

- L(EA)i/ib' Yiflb 
ifib=l 

11('>:) 

L(EA)ifib'lifib 
ifib=l 

11(:» 

L(EA)ifib 
ifib=l 

(A.17) 
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with 

n(x) is the total number of fibers in the section. The section stiffness matrix is then 

inverted to yield the current section flexibility matrix: 

(A.18) 

(13) Compute the section resisting forces. 

The section resisting forces are determined from equilibrium between the fiber stresses 
, j 

(( a
k 
(x, Yijib' Zi/ib) n and the section resisting forces . 

.. (x) , j 

- I((ak(x'Yi/ib,Zi/ib»)'} . Aijib · Yijib 
ijib=! 

.. (x) , j 

I((ak(x'Yijib,Zijib»)'} . Ai/ib' Zijib 
ijib=l 

.. (x) , j 

I((ak(x'Yi/ib,Zi/ib»)'} . Ai/ib 
ijib=l 

(14) Compute the section unbalancedforces. 

(A.19) 

The section un balanced forces are the difference between applied loads and resisting 

forces: 

(A.20) 

Check whether the unbalanced force vector satisfies the specified section tolerance. 

(15) Compute the residual section deformations. 

(A.21) 

(16) Compute the element flexibility and stiffness matrices. 

The element flexibility matrix is obtained by numerical integration of section flexibilities: 

(A. 22) 

where m is the number of monitored sections in the beam-column element x .. scc the x­

coordinate of the section in the local reference system and w/lSCC the corresponding 

weight factor. The element stiffness matrix is obtained by inverting the flexibility matrix. 
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. (A.23) _ 

(17) Checkfor element convergence. 

Element convergence is achieved when all section unbalanced forces satisfy the specified 

section tolerance. Two cases are possible: 

a) If convergence is achieved go to step (18) 

b) If convergence is not achieved then compute the residual element deformations 

(A. 24) 

incrementj by 1 and return to step (6). 

(18) Compute the structure resisting forces and update thestructure stiffness matrix. 

When all elements have converged, the i-th Newton-Raphson iteration is complete. The 

structure resisting forces (p;r are detennined by assembly of all element resisting forces 

(Q
k )i according to the expression .1. 

(p; r = I L:I • . (Qk t. (A.25) 
.1.=1 

The structure tangent stiffness matrix is updated by assembly of the element stiffness 

matrices: 

(Kk)i - ~ LT (Kk)i L 
s - £.J .1.' .1.·.1e (A.26) 

.1.=1 

(19) Compute the structure unbalancedforces. 

The structure unbalanced forces (p~ r are the difference between total applied loads p; 
and total resisting forces (p; r : 

(A. 27) 

where P; is detennined from the total applied load at the en'd of load step k-J and-the 

current load increment 

(A.28) 

For k=] P~ = O. 

(20) Checkfor structure convergence. 

If the unbalanced forces at the structure level satisfy the specified tolerance,· 
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convergence is achieved. Correspondingly, two cases are possible: 

a) If convergence is not achieved, increment i by 1, return to step (3) and stan the 
next Newton-Raphson iteration; 

b)· If convergence is achieved, load step k is complete. Go to step (21). 

(21) Update force and deformation vectors and start new load step. 

All force and deformation vectors are updated by adding the vector increments for load 

step k to the corresponding total forces and deformations at the end of load step k-l: 

pk = pH +~pk 

qk(X) = qk-I(X)':" ~qk(X) 

dk(x) = dt-J (x) + Mk(X) 

update Et-J(x) to Ek(X) 

ek (x) = et-J(x) + ~ek(x) 

At this point, two cases are possible: 

a) k=kn. The entire external load PE was applied and the analysis is complete. 

b) k<kn. Increment k by l. Compute the new structure unbalanced force vector 

(p~t = p: - p;-I 

and return to step (2) 

(A. 29) 

(A. 30) 

(A.31) 

(A. 32) 

. (A.33) 

This summary refers to the stand alone implementation of the fiber beam-column 

element and differs in several points from the implementation in program FEAP. The updating 

of the variables in program FEAP follows more closely the summaries in Sections 2.5 and 3.6 

and the corresponding figures. The convergence criteria, both, at the element and at the 

structural level are also different, as discussed in Chapter 4: the stand alone program checks 

element convergence by monitoring the unbalanced section forces. Similarly, convergence at 

the structure level is checked by monitoring the unbalanced forces at the global degrees of 

freedom. In program FEAP, both, at the structure and at the element level convergence is 

checked by monitoring the work increments. The latter method is more general and is 

particularly suitable for structures near the ultimate load capacity, as discussed in Section 4.5. 

The steps of the nonlinear solution algorithm are illustrated in. Figs. A.I-AA. Fig. A.I 

depicts the load-displacement history at the structure level. The structure is subjected to three 

load step increments ~p:. Three Newton-Raphson iterations are performed within each load 
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step to reach convergence to a structure state that satisfies equilibrium and compatibility. 

Figs. A.2, A.3 and A.4 depict the corresponding force-deformation histories at the element, 

section and fiber levels, respectively. Each figure contains two curves. The curve at the top 

shows the compiete load history, while the curve at the bottom highlights the second load step 

k=2. Special marker symbols denote the state of the structure, the element, the section and the 

fiber. A circle denotes a converged state at the structure level. A square denotes a converged 

state at the element level. A diamond denotes a non converged intermediate element state that 

satisfies equilibrium and compatibility within the element, but violates the section force­

deformation relation. Diamond markers are replaced by squares at the end of every Newton­

Raphson loop i, and squares are replaced by circles at the end of every load step k. Squares 

and circles appear at all levels, i.e. at the structure, element, section and fiber level. Diamonds 

only appear at the element, section and fiber levels, since they refer to iteration loops within 

the element. 

-:- cP~5' f - t - -1 
.' " (P~)' 

" 1 • - - -, - -' - - - - - (P~)' 

./' :: 1 .... I I I 

'- - -: - - - -: - -: - - - - - - - -

] i=3 

] i=2 

] ,=, 

1 ______ ~....----'--~-----:......~ 
(0,0) , : (.5,ip')' , 
~ 

p 

. (6p')' '(&1p')' , 
I ·1 .' 

(&p')' .; .: (.56p')' 
'p', (6p')' = 6p' 
1 .1 .. , 

I· Structure I 
p' 6p' 

• 
p' 

] k=3 

k=2 

l·=, 

FIGURE A.I EXAMPLE OF FORCE-DISPLACEMENT HISTORY AT THE STRUCTURE LEVEL 
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·Element 

'1 

. ' 

A) THREE LOAD STEPS 

I detail of load step k=2 •• 1 

((MQ')')' 

;=3 [- -: I ~ ~ Un· «j~t:(~ 
(( ""')')'((""')'I~ 1 ' , I"<!')' 

j
((.xf)')j ((.xr)')'. (~ ) AQ' 

~ 
j=2 
j=3 
j=4 

j=1 
;=2 

J J -'r ---J ----1 
;(Mq'~; 
( ')' (0&1)' .' I &i. I _ 

, (&It .; 
, 

(Mq'j' , . , 

(0,0) 

Ok: Joadstep 
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NeWton~R~hson 

<> j :elementitElration·· ... 

B) DETAIL OF LOAD STEP k=2 

FIGURE A.2 FORCE-DEFORMATION HISTORY AT THE ELEMENT LEVEL 
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D(z) 

f 
-D'(z) - - - - - - - - - - - - - - - - -•• ;."--"~ 

4D1(Z) 3 ......... I 

Ii(z) = (Ii(z») - - - - - - - - .;r.r-" - - - - - + ' 
(D'(z»)' - - - - - - .-.d -, - - - -f I : 

.- I I l 
) ,'" (.w'(Z» , 

Mt'(Z) (D'(z») - -.">~~ -.- : -:-(J~~l(z»J 
• I I I 1 

DI (z) - - - i- --'- -- ~ - ! - - -. , 
/ . 

] ;=3 

] ;=2 
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FIGURE A.3 FORCE-DEFORMATION HISTORY AT THE SEcrION LEVEL 
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E(x) 

E](x) 

E2(X) = (E\x)Y 
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FIGURE A.4 FORCE-DEFORM A nON HISTORY AT THE FIBER LEVEL 
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It is important to nore that force and deformation vectors are not updated at the end of 

every Newton-Raphson iteration when all elements have converged, but at the end of every 

load step when convergence is reached at the structure level . The updating process is very 

important for the fiber constitutive relations. The fiber resisting force and tangent modulus is 
computed based on the total strain at the previous converged load step £k-l (X"SClC' Yi/ib' zi/ib) and 

the current total strain increment (( .1£k (X"SClC' Yqib' Zqib»)i t This procedure guarantees the path­

independence of the nonlinear solution algorithm and has the advantage that in the case of 

non-convergence the analysis can be restarted from the previous converged load step with a 

smaller increment. The same updating procedure is used, both, in program FEAP and in the 

stand alone program. 
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APPLICATION OF A UNIFORMLY DISTRIBUTED LOAD 

ON A LINEAR ELASTIC CANTILEVER 

The computational steps involved in the simple example in Section 4.5 are presented in 

this appendix. The linear elastic cantilever beam with a uniformly distributed vertical load is 

shown in Fig. 4.2. Figs. B.l and B.2 are similar to Figs 4.3 and 4.4 but contain more 

information on the evolution of the variables during the solution process. With the notation of 

Chapter 4 superscripts denote the iterations at the structure and element level: k indicates the 

load step, i indicates the Newton-Raphson iteration at the structure level and j indicates the 

element iteration. Stiffness and flexibility matrices do not carry any superscripts in this 

example, since they do not change for a linear elastic element. The flexibility-based solution 

algorithm used in the example is described in Chapters 2 and 3. 

The application of a uniformly distributed load on a linear cantilever beam involves the 

following sequence of computational steps: 

k=1 

;=1 

j=1 

t1pi = 0 

{Pb f = 0 

(Ot1pl r = 0 

(0t1t/)1 = 0 

((0t1Q1nl 

= K.({0t1t/)I)1 =0 

({t1QI)1 f = 0 
1 

({Qln = 0 

((MD'(x))'f ;b,(X).w;[i x(x-L) 0 oJ 
((MD'(L/2))')' ;[ - i L' 0 oJ 

1 1 

((Mi(x)n = 0+ ((OMi(x)f) 
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FIGURE B.l CANTILEVER UNDER UNIFORMLY DISTRIBUTED LOAD: 

BENDING MOMENT HISTORY 
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j=2 

1 , 

((Di(X»),} = O+((MJ'(X)Y) 

((D'(L/2»)')' + '; L' 0 oJ 
((SM'(X»)')' = f(X)-((SM)'(X)r)i 

1 

((!1d1(x»)I) =0 

since the element is linear elastic 

((D~(X)n' = ((Dl(X»)')' 

((Db(X)y)i = ((Dl(X»),)1 _((D~(X»)')1 =0 

((r 1(x)ff =f(X)-((Db(x)yf + ((SM'(x)f)' = ((SM1(x»)lf 

the element has not converged, compute (( Sl Y f 
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FIGURE B.2 CANTILEVER WITH UNIFORMLY DISTRIBUTED LOAD: 

SHEAR FORCE HISTORY 
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since the element is linear elastic 
2 2 

((D~(x)n = ((D1(X)n 
2 

((Db(X)y) = 0 

((rl(X)Y)2 =f(x)o((Db(X)y)1 =0 

the element has converged 

(Q1y=[_W/! wyI! 0 0 0 0 0 0 0 O]T. 
12 12 

(-1)1 (-1)1 [ wyI! WyL2 . wyL _ W2yL 0 0 o]T. Q = Q +lgoW= ---u- 12 0 0 0 --2-

j=J 

( 1)1 _ - (-1)1 _[WyL2 WyL]T 
PR - L 0 Q - 12 -2. 

(Pb f = pi -(PkY = 0- (Pk)1 = [_ WyL2 WyL]T 
12 2 

K 0 (OL\pl )2= (Pb )2 
(L\pl t = (L\pl Y + (OL\pl)2 = 0 + (OL\pl)2 

(&lql)2 = ~ o (&lpl)2 . 
(L\ql)~ = (L\ql Y + (OL\qI)2 

1 - 1 [ 5w L2 W L2 ]T 
((OL\Q1)2) = K o ((OL\qI)2) = ----rt- ---t2 0 0 0 

((8Q')')' ~ (8Q')' + ((MQ')')' ~ [- w;L' 0 0 0 or 
1 1 [ wI! ]T ((QI )2) = 0 +((L\QI )2) = -T 0 0 0 0 

. 1 I 

((OL\D1(X))2) = b(x)o((OL\Q1)2) 

((O<W'(L/2))'j' ~[~ L' 0 or 
((Mi(x»)2)1 = (W1(x)Y + ((OMi(x»)2)1 
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((D1(x)t)1 = 0+ ((Mi(x»)2f 

((D'(L/2»)'f = [i L' 0 or 
((orut(X})2f = 0+ f(x), ((OMi(x})2Y 

((~dl(X»)2f = (M1(x)f + ((OM,(x»)2f 

since the element is linear elastic 

((D1(x»)2f = ((DI(X»)2y 

((Db(X»)2f = 0 

((rl(x»)2)1 = 0 

the element has converged 

(-1)2 [. W yL2 W L wyL Q = --- 0 0 0 0 --'1- --

2 2 2 o 0 oJ 
(-1)2 (-1)2 [ WyL2 Q = Q + 18 . W = --2- 0 0 0 0 -wyL 0 0 0 

(p~)2 = L . (Q 1)2 = 0 

( 1)2 2 ( 1)2 Pu = PE - PR =0 

the structure has converged 

vector update 
pi = po + ~pl = ~pl 

ql(X) = qO(x)+ ~I(X) = ~ql(X) 
dl (x) = dO(x) + ~dl (x) = ~dl(X) 

update EO(x) = 0 to EI(X) 

el(x) = eO(x) + ~el(x) = ~1(X) 

end of the analysis 

APPENDIXB 
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APPLICATION OF SOLUTION ALGORITHM 

TO A SIMPLE SOFTENING SYSTEM 

The nonlinear solution algorithm for the element state determination is illustrated here 

with the aid of the simple system of two extensional springs in series shown in. Fig. 4.5. One 

spring is linear elastic, while the other is linear elastic-strain softening. As discussed in Chapter 

4, the eqUilibrium and compatibility of the two spring system leads to the following relations: 

Q=DA =Da 

In this illustrative analysis a single deformation increment ~q is applied and the 

corresponding resisting force increment ~Q is sought. Consequently, there is no need for the 

use of superscripts k and i and only superscript j that describes the sequence of element 

iterations is sufficient to represent the evolution of the system variables. Superscript i is only 

used once to indicate that the element deformations are updated. Since the system is assumed 

to be initially unstressed, the initial state is characterized by: 

Qj=o = 0 

d~ = d~ =0 

f~ = fa.el 

The steps for the nonlinear analysis of the two spring element are illustrated in Fig. 4.6. First, 
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the deformation increment /lq is imposed. This increment remains unchanged during the 

iterations in order to satisfy the compatibility requirement. The total deformation of the 

element is updated 

qi=1 = qi=O + /lqi=1 = 0 + !lfJ = !lfJ 

and the element iterations start: 

j=1 Based on the initial element stiffness KO a first estimate of the element force increment 

/lQI due to /lq is computed and the deformation increments caused by this force in the 

extensionaL springs are determined: 

i1.,i = f O 
·ml A A A 

Update the spring deformations and forces and determine the new spring flexibilities 

d~ = d~ + M~ + r~ = /ld~ 

d l dO A...II' ° Ad l 
B = S + LlUB + rB = U B 

i~ = is,pl 

where rO are the initial residual deformations of the springs which are equal to zero. 
Compute the spring resisting forces D~ and D~ and the corresponding unbalanced 

R R 

forces: 

D~ = D~ -D~ 
U R 

, Compute the residual spring deformations rl and r~ 
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j=2 

rl =fl·Di =0 u 

I J"I DI 
rB = JB' Bu 

.~ 

Update the element flexibility and stiffness matrices: 

FI - J"I +J"l 
- JA JB 

Check for element convergence: spring B has a significant force unbalance, and, 

consequently, the element has not converged. Compute the residual element deformation 

Sl: 

Start a new element iteration. With the residual element deformation at the end of the 

previous iteration j=] compute the new element force increment 

.1Q2 = -KI . Sl 

Update the spring deformations and forces and determine the new spring flexibilities: 

d~ = d~ + M~ + r~ = d~ + ~d~ 

d 2 dl A,/2 I 
B = B + LlUO + rB 

Ii = IB,pl 

Compute the spring resisting forces D~R and D~R and the corresponding unbalanced 
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forces: 

D~ =D~ -D~ =0 
U R 

D~ = Di - DB2 = 0 
U R 

Compute the residual spring defonnations r;' and ri 

r;' = 11· D~ = 0 
U 

ri =Ii .D~ =0 
U 

Update the element flexibility and stiffness matrices: 

p2 =11 + Ii 

APPENDIXC 

Check for element convergence: both springs have zero force unbalance, and, 

consequently, the element has converged and this simple analysis is complete. 
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