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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand and
disseminate knowledge about earthquakes, improve earthquake-resistant design, and implement
seismic hazard mitigation procedures to minimize toss of lives and property. The emphasis is on
structures in the eastern and central United States and lifelines throughout the country that are found
in zones of low, moderate, and high seismicity.

NCEER’s research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elements, as showninthe figure below Elementl, Basic Research, is carried out to support
projects in the Applied Research area. Element 11, Applied Research, is the major focus of work for
years six through ten. Element 111, Demonstration Projects, have been planned to support Applied
Research projects, and will be either case studies or regional studies. Element IV, Implementation, will
result from activity in the four Applied Research projects, and from Demonstration Projects.

ELEMENT 1 ELEMENT Il ELEMENT Il
BASIC RESEARCH APPLIED RESEARCH DEMONSTRATION PRQJECTS
» Seismic hazard and » The B.ilding Project Case Studies
ground motion * Active and hybrid control
» The Nonstructural + Hospital and data processing
* Soils and geotechnical Components Project tacilities
sngineering s Short and medium span bridges
+ The Lifelines Project C * Water supply systems In
» Structures and systems Memphis and San Francisco
» The Highway Project Regional Studies
+ Risk and reliability s New York City
* Mississippi Valley
+ Protective and intelligent = San francisco Bay Area
systeams
¢ Societal and economic
. {1
N Vv
ELEMENT IV
IMPLEMENTATION
+ Conferences/Workshops
o Educstion/Training courses
* Publications
= Public Awareness

Research tasks in the Nonstructural Components Project focus on analytical and experimental
investigations of seismic behavior of secondary systems, investigating hazard mitigation through
optimization and protection, and developing rational critenia and procedures for seismic design and
performance evaluation. Specifically, tasks are being performed to: (1) provide a risk analysis of a
selected group of nonstructural elements, (2) improve simplified analysis so that research results can
be readily used by practicing engineers; (3) protect sensitive equipment and critical subsystems using
passive, active or hybrid systems; and (4) develop design and performance evaluation guidelines.



The end product of the Nonstructural Components Project will be a set of simple guidelines for
design, performance evaluation, support design, and protection and mitigation measures in the form
of handbooks or computer codes, and software and hardware associated with innovative protection
technology.

The protective and intelligent systems program constitutes one of the important areas of research
in the Nonstructural Components Project. Current 1asks include the following:

1. Evaluate the performance of full-scale active bracing and active mass dampers already in piace
in terms of performance, power requirements, maintenance, reliability and cost.

2 Compare passive and active control strategies in terms of structural type, degree of effective-
ness, cost and long-term rehiability,

3. Perform fundamental studies of hybrid control.

4. Develop and test hybrid control systems

The work presented in this reportis aimed @i developing a simple yel accurate procedure for seismic

analysis and destgn of secondary systems. Considerable gaps exist hetween the state-gf-the-research
and the state-of-the-practice in this area and the attempt here is lo incorporate recent research
results intv the development of practical design and performance evaluarion procedures jor
secondary systems. An energy-based approach is developed for this purpose. It is shown that this
approach facilitates the examination of basic dynamic characteristics of primary-secondary systems
of engineering imterest, thus leading to a simple procedure for the analysis and design of secondary
systems under seismic loads.
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ABSTRACT

The dynamic anualysis and design of secondary systems have been extensively studied over the
last two decades, resulting in a better understanding of their general dynamic characteristics. One
of the currentchallenges tor researchers is 10 develop simple yet accurate procedures incorporating
these research results and wranster them into the development of practical design and performance

ev.luation procedures. This is the basic thrust of this report.

Statistical energy analysis has been proven to be a powerful tool in the dynamic analysis
of complex systems involving interaction effect between acoustic field and structure.  In this
report, such a tool is systematically introduced to simplify the analysis and design procedures of
sccondary systems. This investigation starts out with the identification of special problems and
assumption verification associated with the extension of its application. The relation between
power flow transmitted from one system te another and energies stored in two systems coupled
by a conservative element is naturally extended to non-conservatively coupled systems which are
commonly encountered in civil engineering. The concept of dissipative and penetrating power flow
is developed to characterize the dissipating and transmitting properties of the coupling element.
The relationship developed in a generic system is then applied to a simple primary-secondary
system to investigate the general behavior of power flow and energy guantities. Their equivalence
to the conventional response variables such as relative displacement and absolute acceleration is

demonstrated analytically as well as through numerical examples.

For a general complex system in which many high-frequency modes are excited by the
external excitation, a simple procedure in statistical energy analysis is directly applicable. For
intermediate cases commonly en¢ountered in civil engineering where a few low-frequency modes
in primary-secondary system are excited by external forces, a mean-square condensation method is

developed to condense the number of degrees of freedom step-by-step through energy equivalence
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before und after condensation. Closed-form formulations used in the condensation process are
derived so that response calculations can be expedited.

The power flow and energy analyses wre further extended to a class of complex primary-
secondary systems for which the interaction effect between difterent branches of the secondary
system is thoroughly studied: optimum damping of the secondary system is recognized as in
the simple primary-secondary system and the dynamic characteristics of multi-tuned primary-
secondary systems are investigated. The exact solution for this class of complex systems can also
$erve to assess many types of approximated schemes proposed in the past.

A decoupling criterion for the dynamic response of secondury systems is systematically
established. The question about which response characteristics (primary or secondary) are more
sensitive to the decoupling action is frst raised and studied. The ¢onservative domains in which
non-interaction analyses give rise o overestimated results for different systems are investigated and
compared under different conditions. Sufficient conditions for dynamic decoupling of secondary

systems are also developed in this report.
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SECTION 1
GENERAL INTRODUCTION

The dynamic behavior of complex structural systems such as one or more light secondary
systems {S-system) attached to a2 heavier primary system (P-system) in a seismic environment has
been an active research topic during the last twenty years. As a result, a better understanding of
their general dynamic characteristics has been reached. On the other hand. practical regulations
and design cades in this area are still ar a crude stage where the static-equivalent lateral force
methodology is still being used to design an S-system and the amplification factor due to flexibility
of the S-system has not been properly taken into account, Therefore, one of the challenges for
rexearchers is to simplify the abundant research results obtained in the past and transter the new
technology to practical design tevels {87].

For a preliminary design, only preliminary data on S-systems are available at the time when
a design engineer seeks 4 reasonable or even optimal design of anchorages hinking the S- with
P-systems and attachment configurations. These limited information prevent the engineer from
doing a detailed analysis for a specific response quantity of interest. A comprehensive dynamic
analysis of combined primary-secondary systems (P-8 system) is thus not only uneconomical
but also impossible. Consequently, the conventional floor response spectrum approach as well
as its various modification by including interaction and non-classical damping effects has found
extensive applications.

The procedure to calculate maximum response quantities of S-systems using floor response
spectrum is basically deterministic although random vibration analysis is often involved in the
interim to establish the relation between floor response spectrum and ground response spectrum.
It may be reasonable to interpret the floor response spectrum as an average maximum response
within certain design period and earthquake randomness has therefore been impiied. On the other
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hand, uncertainties associated with structural parameter variations and those of the foundation (if
the seil-structure interaction is of concern) can not be incorporated into the deterministic analysis.
These uncertatnties will have a significant influence on the behavior of P-§ systems, especially in
the tuned case. The situation becomes even worse when higher modes in a4 complex system are
not neghigible in the response calculation, Under these circumstances. classical modal anulysis
is incapable of incorporating uncertainties arising from seismic input and structural parameters.
Based on these observations, statistical analysis can be considered as a good aliernative,

Statistical energy analysis (SEA). developed in the early 196Us, has its extensive applications
in the sound-structure interaction environment. Its application was extended to structure-structure
interactions among which electronic package vibration was initially studied. This powerful tool
was introduced in [45] 1o the analysis of P-S systemns excited by white noise. Further research on
the application of this basic principle incorporating the characteristics of both earthquake inputs
and P-8 systems is clearly warranted.

For the purpose of this study, both P- and S-systems are defined as viscously and proportionally
damped. linearly elastic systems. All parameters of an S-system such as mass, stiffness and damping
are considered to be much smaller than the corresponding parameters of the P-system. The S-
system is supported by the P-system in an arbitrary manner which is in turn anchored to a rigid
base subjected to random excitations. These excitations are considered throughout this report as

broad-band stochastic processes with unity power spectral density except for specified cases.

1.1 Objectives

The major motivation in this study is to apply statistical energy analysis to the dynamic
analysis of P-S systen:s. Special problems (assumptions) associated with the application in this
particular field are identified and evaluated in detail. It appears that SEA can be directly applied
to the dynamic analysis of a stiff S-system attached to a structure when excitations have rich high
frequency components so that the dynamic respenses of high frequency modes are appreciable.
Since these conditions are not satisfied in most civil engineering problems, an approximate method
derived from SEA is motivated. Consequently, a whole framework of energy based analysis of
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P-S combined systems is developed to cover all the cases encountered in civil engineering.

There is no doubt that the ultimate impact of the energy principles mentioned in the preceding
paragraph rests with their applicability in practical engineering. Relationship between energy and
power flow on the one hand and relative displacement and absolute acceleration on the other is
first established for a simple P-§ system. This is then extended to one class of complex systems
for which interaction cffects berween different branches of the S-system, multiply tuned and
non-classical damping effects, are precisely evaluated. For general P-S systems, a simple yet
accurate approach referred to as mean-square condensation is developed and errors associated
with these formulations are qualitatively evaluated through illustrative examples as well as the

decoupling analysis presented in a separate section,

1.2 Organization

The investigation presented here is composed of nine sections whose interrelationships can be
best described by Fig. 1-1.

In Section 2, extensive literature surveys both for the dynamic analysis of P-S systems and
for the development of SEA ure presented. Emphasis for the P-S system analysis is placed
on the decoupling criteria and combination rules which are directly related to the research
presented herein, as well as the key papers 1o help us better understand the fundamental dynamic
characteristics involved in P-S§ complex systems. For the second part, attention is paid to the
fundamental development of SEA for the convenience of civil engineers.

Section 3 deals with the issues related to the applicability of SEA in earthquake engineering.
In particular, energy equipartition assumption between modes are verified under the excitation of
ground displacement and acceleration.

Decoupling criteria (sufficient conditions) of coupled P-S systems for different response
quantities under various excitations are studied in Section 4. Comparisons between various
decoupling criteria are made to demonstrate the ultimate behavior of sufficient conditions proposed
here and detailed analysis of conservatism involved in the non-interaction analysis is presented in
an intcractive graph between the mass ratio and the frequency ratio. This study provides a basis
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for the assessment of different approximate approaches used for evaluating the S-system response.

In Section S, a fundamental relation between power flow transmitted from one oscillator o
another and energies stored in two individual oscillators is established, which is central to the
development of SEA. The definition of power flow between conservatively-coupled systems is
extended in a consistent way 10 non-conservatively coupled systems commonly encountered in
civil engineering. The power flow is divided into penetrating and dissipative parts on physical
ground; the first part corresponds to the power flow between conservatively-coupled oscillators
whereas the second represents the dissipated power in the connection. lts direct application to
simple P-S systems is followed in Section 6 to examine the basic dynamic characteristics of P-§
systems of engineering interest from the viewpoint of power flow and energy representations.

In Secnion 7, further applications of the fundamental relation developed in Section 5 to a class
of multi-degree-of-freedom (MDOF) P-§ systeris are examined to determine the exact selution of
dynamic respanse of both P- and S-systems. These exact results are obtained by transforming the
MDOF P-S system into a series of subsystems with a small number of degree-of-freedom (DOF),
tfor exampie, 2-DOF systems for which the fundamental relation is valid.

Seciion 8 deals with the most commonly-encountered cases in civii engineering, in which
a few low modes of the P-§ system play an essential part in the dynamic response of P- and
S-systems. Due to relative low sensitivity of these modal properties to a small variation in structural
parameters, the power flow and energy defined in Section S are adopted here through individual
members instead of their population. [t is on this basis that the mean-square condensation approach
is developed.

In Section 9, the basic procedure and characteristic of previously developed approaches are

summarized and future research directions are indicased.
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SECTION 2
LITERATURE SURVEY

2.1 Dynamic Analysis and Design of S-System

A large amount of effort has been devoted over the last two decades to the development of
methods for seismic analysts and design of S-svstems which are anchored or artached 10 heavier
P-systems. These efforts were motivated mainly by increasing utilization of critical S-systems
such as mechanical and electrical assemblages as well as piping systems in nuclear power plants
and industrial facilities. In many siruations, these systems are valuable themselves und play a vital

role in safeguarding the supporting structural mtegrity.

2.1.1 Classification of S-Systems

A variery of S-systems, forming a part of and/or supported by a structure, are categorized in
[63] into three groups based on their invoivement in the structure, 1.e., structural elements,
nonstrucrural components {architectural components), and equipment.

Srrucsural elements are defined as portions of a structure having a stmotural function.
Included are structural walls, diaphragms, and penthouses.

Nonsrrutural components are portions of a structure not baving a strucrural function.
Nenstructural exterior or interior walls and panitions, omaments and building appendages,
suspended ceilings, erc., are in this category.

Equipment consisting of mechanical, plumbing, and electrical assemblies include but are not
Immited to: (a) chimney, stacks and towerss; (b) machinery; (¢) boilers, pressure vessels, tanks,
pumps, motors, cooling towers, control panels, and standby power equipment; (d} piping, conduit
and ducts.

From the connection propenty point of view, they can be divided into the following wo
groups:

Rigid Attachment. In this group, an S-system is rizidly connected to its supporting P-

system. The effect of the S-system on the P-system is only an increase of vibrational period and
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the small S-system can be designed separately 10 withstand the equivalent static force generated
from earthquakes.

Flexible Attachment. An S-system is often designed in such a way that it is attached to
the P-system through some flexible elements which are supposed to isolate the vibrational energy
trom the P-system. Due 1o dynamic characteristics of the S-system, the dynamic response of the
S-systemn is most often imerrelated with the frequency characteristics of the supporting system.

Most practical codes such as [96] employ the equivalent static force design with discrimination

under distinct attachments described above.

2.1.2 Damage Pattern of S-Systems in Building

Damage in S-systems has generally been caused by earthquake-induced motions with excessive
deformation and stresses. From post-earthquake investigations in the field, it can be observed that
any particular component of the S-system undergoes cither one or both of two different types of
actions, namely, (a) change of shape forced by the overall deformation of its supporiing building
(P-system) as a whole, such as the wall set within the structural frame; (b) vibrational response of
the component excited by the structural motions, such as mechanical and electrical equipment [56].
Corresponding to these actions damage in S-systems during earthquakes can be distinguished into
two different effects — relative displacement effects and vibration effects.

Relative Displacement Effects. The relative displacement effects on the S-system behavior
can be qualitatively described in terms of overstress and impact actions. An S-system whose
movement is subjected to the restraint of the P-system will experience crushing and cracking
during strong earthquakes and generate overstress. In many cases, any gap existing between
adjacent elements (S-systems) will be widened or narrowed repeatedly, leading 10 impacting effect
(pounding effect) between the S-systems.

Yibrational Effects. A structure subjected to scismic loads will experience a severe motion
which in wrn excites the S-system attached to the suucture. The damage due to the vibration
can be any combination of overstresses, excessive deflections, impact of adjacent elements and
instability.
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Based on the observation of possible patterns that an S-system will expenience during moderate
or strong earthquakes. there i1s no doubt that it is destrable to consider potential damage reduction
in any structural or even architectural detailing design for the S-system. Beyond that, however,
dynamic or equivalent stanie design of individual element is necessary, which 1s the scope of this

report.

2.1.3 Current Practice in Response Calculation and Design
As reviewed in [14]. floor response spectrum and combined P-8 system analysis are the two

basic approaches currently used in practical design to analyze the dynamic response of S-systems.

2.1.3.1 Floor Response Spectrum Approach

Design of an S-system by floor response spectrum (FRS), as many design codes recommend
[5,100], is consistent with P-system design by ground response spectrum and is thus easy 1o be
accepted by professional communitiers. In this method, the dynamic response of the P-system at
the support point of an S-system 1s determined hrst with the absence of the 5-system and then
adopted as an input to calculate the maximum response of a fictitious single-degree-of-freedom
(SDOF) oscillator with varying period and damping ratio, namely, FRS. In muitiple supported
cases. the envelop of Hoor response spectra at all supporting locations is considered as the design
response spectrum for the 3-system. As one can see, this code-specified approach allows the
dynamic analyses of P- and S-system: to be performed separately, which is usually referred to as
an uncoupled analysis.

Accounting for uncertainties in structural parameters as well as earthquake input and its
propagating media properties [2], a design FRS is obtained by broadening spectrum peaks of
the calculated FRS. A suggested method for a quantitative determination of peak broadening
associated with the structural frequencies is proposed in [98], in which variations of structural
frequencies with each significant uncertain parameter such as soil modulus or material density
are first calculated and then combined together to obtain the total frequency variation by the
commonly-used square-root-of-the-sum-of-squares (SRSS) rule.
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Since FRS method provides a simple procedure for response calculations of S-systems, it
has been widely wsed by engineering practinoners and applied in their professional partcipations.
However, the method may produce serivus inaccuracies when frequency of the S-system is tuned
to one or more frequencies of the P-system. In these toned cases. design code for nuclear power
plant allows a combined analysis of P-S systems in the time domain to incorporate the interaction

cttect between the P- und S-system.

2.1.3.2 Combined P-S System Approach

In this approach, an S-system is considered us an integral part of a P-S structural sysiem.
Both modal anulysis and direct integration method in the conventional sense are thus quite
straightforward. A few deficiencies associated with this approach include: (@) large number of
degrees of freedom that will make the combined analysis uneconomical or even impossible: (b)
numerical inaccuracy due to the fact that P- and S-systems have quite dissimilar orders of structural
parameters; (c) incapability of capturing the consuuction process of the P- and §-system, ie..
P-systemn is always designed prior to the S-system. At the time of designing the P-system, only
tentative information on the S-system is available. which is in favor of describing P- and S-systems
by their individual frequency characieristics in nature; and (d) re-analysis of the whole P-8 system

subjected to any modification 1n the S-system alone.

2.1.3.3 Dynamic Decoupling Criteria

As seen from the preceding paragraphs, the FRS method is obviously more atractive than the
combined P-§ system approach. Therefore, it has always been given first priority in engineering
designs. The limitation of this approach is often described as the dynamic decoupling ¢riterion of
S-system. A simple design criterion was employed in [98] to decide whether the FRS approach
is acceptable or not as shown in Fig. 2-1. in which R,, and A_ are defined as mass ratio and
frequency ratio between the 8- and P-systemn. They are often considered as indices of interaction

and tuning degree between P- and S-systems. respectively.
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2.1.4 Recent Development
2.1.4.1 General Characteristics of P-S System

Although there are a variety of differemt forms and characteristics, some of the basic
dynamic characteristics of P-3 systems are common. These general characteristics, which
constitute the topics of intensive studies in the past, are summarized in the followings.

1. General Anachmen: Configuration. An S-system can be supported by a P-sysiem at any
arbitral locations or even at the base of the P-§ system duectly.

2. General Resonance Characterisrics. Any number of frequencies of the §-system may be
in any manner tuned or nearly tuned with the P-system.

3. Dynamic Interacrion. In general, P- and 5- systems interact with each other, especially
when the modal masses of the S-system are not negligible and its frequencies are tuned with the
P-system.

4. Dynamic Correiations. Both modal correlation and correlation berween multiple suppon
excitations can not be ignored in the dynamic analysis of the S-system under certain conditions.
The correlation between pseudo-static and dynamic components of the S-system response, the
division complying with conventional code-specified method 5], can not be neglected, either.

5. Non-Classical Damping. Even though each subsysiem has proporional damping
characteristics, their combined P-S system may have non-proportional damping. The effect of this
damping characteristic ont the behavior of the S-system becomes significant when the damping
difference berween the P- and S- systems increases, panicularly if two subsystems are tuned.

All of the above five characteristics are generally interrelated n their effect on the dynamic
response of an S-system. However, the dynamic interaction between P- and S-systems may be the
most important characteristic, the neglect of which will substantially facilitate the analysis and
design of the S-system and yet involve potentially the greatest amount of error in the S-system

analysis.



2.1.4.2 Decoupling Criteria

As shown in Fig. 2-1, the decoupling criteria in [48,67.98] are characterized by abrupt
discontinuities, which lack sufficient justification. A much more rational approach was investigated
in [29] 10 develop the relationship between R, and K,,. To extend this approach to MDOF P-§
Systems, a subjective expression was proposed to evaluate the modal mass, which led to arguments
of {26). While this criterion is usually considered to be a necessary condition for atlowable response
error of a coupled system, this has been found not to be sufficient. Based on the abuve two points,
an analysis of response error due to decoupling by the response spectrum approach was conducted
and a new expression for modal mass was thus introduced in [26.27]. The dynamic characteristics
of 2-DOF equipment-structure systems was also studied in [34] to arrive at a decoupling criterion

by perturbation approach

&
Rm<<’(4+?)6pgx (Z-U

in which &, = (& + £,)/2, €, and €, are damping ratios of the P- and S-system, respectively; ¢ is
a tolerable error for mean-square displacement of the S-system and 8 = 2(1 - R.)/{1 + R.) is a
tuning parameter. This criterion has been further applied to evaluate the error due to the neglect of

imeraction effect in the response calculation of general MDOF P-S systems [37].

2.1.4.3 Dynamic Response Calculation of Singly-Attached S-System

Analysis Without Interaction. The FRS approach is 2 powerful too! to calculate the dynamic
response of S-systems in non-interaction analysis. Among carlier research works in this realm,
direct generation procedures for FRS were developed in [8,39] based on the concept that the
maximum acceleration of an S-systermn may be approximated as an amplification of either (a)
the ground response spectrum or (b) the peak acceleration of the floor at which the S-system
is supported. When the first mode representation of a structural system is acceptable, the first
approximation is more accurate for small R, while the second more accurate for large R.. For
MDOF P-systems, the conventional SRSS combination rule has been incorporated, which appears
to be much more conservative than those of time history approach. Thus, this approach has
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not been widely applied 1n the industry. An alternate approach based on Fourier transform was
developed in [11.71}. Random vibration theory was also employed to establish the relationship
berween FRS and ground response spectrum [74.75.103].

Aill of these methods have been shown 10 give reasonable accuracy for SDOF systems
with relatively small mass and frequency that 15 not tuned into any frequency of the P-system.
Otherwise, the error generated by neglecting the imeraction effect will consistently make the
methods unacceptable. A guantitative evaluation of these errors was pertormed in [16.39,751.
Since the inherent tuning characteristics in the P-§ system will make many formulations derived
in the above yield infinite results. the pertectly tuned system was treated separately in [62, 76].
However, these results continue to ignore interaction and are inaccurate for nearly tuned sysiems.
The error involved 1n the anatysis without interaction increases rapidly as mass ratio R, increases

and frequency ratio R, approaches unity as shown in Fig. 2-1.

Analysis With Interaction. Under this categary, extensive rescarch to generate FRS with
interaction effect have been conducted during the past decades. A simple 2-DOF system
is employed in [16] 10 compute the exact root-mean-square (RMS) response to a stationary
excitation. Far MDOF P-systems, analytical methods were presented in [90] for the calculation of
exact eigenproperties of combined P-8 systems by solving a nonlinear algebraic equation. These
methods can be effectively applied to both light and heavy equipment.

In other studies, approximaticns are made to simplify the analysis of the combined system.
An MDOF P- and S-system was reduced 10 a series of 2-DOF subsystems and their responses were
calculated in terms of 2-DOF response spectra [61]. A notion of effective mass ratio to obtain
approximate mode shapes and frequencies of the P-S system was used in [58,60]. Although these
methods have sound theoretical basis, a certain level of accuracy has to be satisfied 1o obtain good
approximations for the combined system response in the formulations of modal properties and

combination rule of modal response quantities [105].

Most of the research in this category have been carried out using the perturbation method
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The small parameters (perturbed parameters) are the mass. stiffness, and damping terms of the 5-
system [69]. With the knowledge of the relative orders of different small parameters, a tned 2-
DOF system was accurately analyzed and closed-forms expressions for the frequency
characteristics were obtained. Other research using the maodal approach to the analysis of P-S
systerns includes those of [17,68,70,105]. In this method, the frequency characteristics of a
combined P-S system are first obtained and then adopted to calculate the modal responses of the
S-system which are further combined with certain rules to come up with the total response of the
S-system. More thorough analyses using perrurbation theory were conducted 1o obtain the modal
frequency parameters of complex P-S systems, including all the inherent problems [34,36]. A
more formal and systematic perturbarion scheme has also been developed in [76].

Moedal Combination Rule. A statistically-based SRSS rule has extensively been applied in
the dynamic analysis of traditional strucrures with well-spaced natural frequencies [15]. For a
complex P-S system, however, this rule basically fails to give an accurate prediction of the S-
system response from the modal responses including the interaction effect. The effect of cross-
correlation between closely-spaced modes of the combined P-3 system has been studied in [108].
They proposed a more rational combination rule in certain cases, namely, compiete quadratic
combination (CQC). These two rules were further mixed in the response analysis of P-S systems
in [85], using CQC 1o combine all the modal correlation effect in each direction and using SRSS
1o combine the directional correlation for multi-directional carthquake excitations. In order to
account for the so-called “missing mass™ effect [64], an altemative SRSS rule was suggested to
caiculate the seismic design response [77]. They utilized a mode acceleration method instead of
mode displacement method to reduce the “missing mass”™ error due to truncation of the higher
frequency modes in the response calculation [78]. The seismic input in such a case, however, has
to be described by relative acceleration and velocity response spectrum instead of the
conventional pseudo-acceleration spectrum.

A great improvement about the combination rule has been achieved in {25,29-31]. They
divided the response of any mode into a damped periodic and rigid parts which are combined by



SRSS and algebraic sum rules. respectively. The idea behind this approach is thar. beyond a
certain “rigid” frequency, all the modal responses are perfectly correlated and should be combined
by algebraic sums while, for modes with intermediate frequencies. the correlation herween the
dainped response and the rigid response varies from zero to one. This correlation factor (O,.),

defined as rigid response coefficient. is approximately calculated by

0, w<o

log ((0/0)“’)

log (0@ 7™My’

1, o' <
w (2.2)

where the frequencies @ and @' are related 1o the spectral response characteristics; they are

expressed as

S
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@ = — 2.3
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3
in which §___ and S, are the maximum spectral acceleration and velociry; W™ is the “rigid”

84]
2. 4)

frequency. To avoid the involvement of multiple spectra consideration, a full zero period
acceleration was applied to globally compute the rigid part response [23].

For a multiply-supported S-system such as a piping system, the required combination rule is
much more complex. It usually involves the modal and multiple-suppon correlations [3].

Non-Classical Damping Effects. A general P-S system is non-classically damped in nature
due to differences that exist between the damping characteristics in the P- and S- systems. Hence,
the damping matrix of the combined sysiem can not be diagonalized by rormal modes of the
undamped system. The neglect of off-diagonal terms of the resulting damping matrix in the modal
space will induce significant errors in response computations in some situations. Errors in
response calculation of 2-DOF non-classically damped structures by neglecting the off-diagonal

damping terms were analyzed in [107]. It was indicated thar the resulring errors are significant
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only when 1/R. (cp/¢, : ¢, and ¢, are damping coefficients of the P- and S-systems, respectively) is
less than 10-% in this case. A criterion for neglecting the non-classical damping effect in the tuned

case was developed in |34] as

8% < (162 4 Ry) (2.5)

in which # is a non-classical damping parameter which is defined as

b= ({p" is_) L (2.6
R/ R,

In nearly tuned cases, there is no simgple criterion yet under which non-classical damping
is negligible. A more comprehensive parametric study of an SDOF ¢quipment attached to
a classically damped MDOF structure has been made in [110]. Other works approximately
accounting for non-classical damping effect in the response calculation of S-systems have also

been done [28.33,87].

2.1.4.4 Dynamic Response Calculation of Multiple-Supported S-System

The uncoupled analysis of a multiple-supported S-system is more complicated in computation
than that of singly-attached S-system when ume history analysis 1s adopted. However, analysis
with FRS will gencrate additional problems in this case, namely, (a) conventional FRS can not
carry the phase information between different supports to which an S-system is connected; (b) one
more level of combination of maximum responses due to different support excitations is required,
resulting in 2 more complex combination rule as mentioned before.

The response analysis of S-systems with FRS in terms of its individual support motions with
heuristic procedures for combination have been performed in [1,73,104]. This subjective nature
of combination can not properly account for important effects such as cross-correlations between
modal responses as well s support excitations, which will lead to erroneous prediction of the total
response as demonstrated in [106]. A random vibration approach was also developed to analyze
multiple-supported S-systems, including the cross-correlation effect [9.10.47.8CG]. Following the
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standard practice in industry [5]. an analytical formulanon for seismmc analysis of these complex
systems has been developed by decomposing the response of an S-system into “inertial” or
“dynamic” effects and effects due to “relative seismic suppont displacemnents™ or “pseuda-static
mation”. The seismic input in this approach is defined in wrms of auto and cross pseudo-
accelerarion and relative velocity FRS.

Regarding the application of perturbation theory, the same methodology can be used and the
same procedures can be followed in this general cases as in singly-antached systems to obtain the
frequency characteristics of the combined P-§ system. These frequency characteristics in the case
of two separate SDOF S-systems have been employed 1o develop cross-oscillator cross-floor
response spectrum (CCFS), an extension of the conventional FRS that takes into account
correlations berween support excitations and berween modal responses as well as other general
dynamic characteristics identified in Section 2.1.4.1. As in the conventional FRS analysis, the
CCFS method consists of two main steps: (a) evaluation of CCFS in terms of ground response

spectrum; and (b) evaluation of S-system response by modal combination in terms of CCFS.

2.1.5 Further Research Needs

As pointed out in [14,83], several areas deserve more résearch attentions:

Effect of Inelastic Behavior of P-system. Engineering stuctures may behave inelastically
under the actian of severe earthquakes. The effect of yielding in the P-system on the input to the
S-system was first studied in [50]. Recently, lincar and nonlinear response of structures and
equipment subjecied to California and Eastern United States earthquakes have been investigated
in [94]. The response characteristics of inelastic 2-DOF P-S system was also studied in [38].
However, this scarce information is not sufficient to provide a good understanding of the seismic
characteristics of multiply-supported piping systems attached to nonlinear structures.

Optimization and Protection. One direct way to mitigate the potential seismic damage o
S-systems is to enhance their dynamic performance through optimization in their placement
within a P-system or in their support design as dw.nonstrated in [46).

A variety of passive control devices can be incorporated intc a P-system to dissipate
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supplemental energy and thus reduce its dynamic response. which isolates the inpu energy from
the S-system. Viscoelastic damper is one of such devices that has been demonstrated by numerical
analyses as well as by experiments to be effective in upgrading the strucrural performance [114].
The seismic input to an S-systermn can also be reduced by isolating either the P-system or the S-
systems directly. Such isolation can be installed at the hase of the P-sysiem or under a floor
{41,95}.

Codes and Standards., A berter understanding of the dyvamic behavior of S-systems has
been gained with significant progress over the last few years. A major thrust now has been 1o
develop a framework which captures the imponant findings or dynamic characteristics of P-S
systems but can be readily applied to improve sunple design piocedures in practice [87]. The first

step toward this goal has been achieved in [88]).

2.2 Development of Statistical Energy Analysis (SEA)

In general, conventional vibration analyses of mechanical and structural systems subjected
to various environmemtal loads such as earthquakes are conducted for a few lower modes as these
modes receive almost all the energy generated by external loads. However, a complex system
such as 2 P-S combined assemblage often possesses multiply runed modes between the P- and S-
system as listed in Section 2.1.4.1. Moreover, frequencies of these resonant modes are sometimes
over the higher range due to the designers’ prior knowledge about detuning the low frequency
modes between the P- and the 5- system as well as their tuncation of higher modes in
synthesizing the total response. The existence of closely-spaced modes in the individual P- or S-
systems further adds complexity to these rypes of problems. Modal parameters of higher modes
are characterized by uncertainties and so are the dynamic response attributed to these modes. The
resonance frequencies and mode shapes of these modes show great sensitivity to details of
geometry and construction. This means that the system can realistically be represented only by a
statistical model.

If there is a reason for statistical approach stemming from the nature of the dynamic

problems, there is equal motivation from the viewpoim of application. As indicated in Section
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2.1.3.2, only emative design information is available about S-systems when structural engineers
are faced with making response estimations at a given stage of preliminary design.  These
estimations are required to qualify the S-system and to design appropriate attachements, the
amount of damping, and auachment configurations. Highly detailed analyses with specific
knowledge of geometric configuraton, construction and lpading environment are impossible.
At this stage, simpier statistical estimations of response to external loads that preserve a rough
parameter dependence are appropniaie to the designer’s needs.

It is relevant 10 mention here that some of the dynamic characteristics associated with a P-§
system are actually beneficial from a statistical paint of view. The very large number of degrees
of freedom, for example, tends 1o smooth out the fluctuations in response prediction. The tuning
eftect and closely-spaced mode eftect can also reduce the variation of predicted response because,
in these cases, modal energies will concentrate in a narrow frequency band. These properties
assure that a statistical vibrational analysis would be attractive in this particular field under certain

circumstances.

2.2.1 A Brief Historical Survey

Staustical encrgy analysis was originally developed by Lyon and Smith in the 1960s. Lyun
calculated the power flow between two lightly and linearly coupled resonators subjected to
independent white noise sources in the first part of [53]. It was found that the power flow between
two conservatively-coupled oscillators is proportional 1o the difference of average modal encrgies
of the two oscillators, which formed a fundamental relationship in the further development of SEA
framework.

Smith [86] independentdy calculated the response of a resonator excited by a diffuse, broad
band sound field, and discovered that the sysiem response reached a limit when radiation damping
of the resonator exceeded its internal damping. Moreover, this limit due to the reaction of the
sound field was independent of the precise value of the radiation damping.

In the second part of {53], they studied the power flow between two multi-modal systerus

2-14



and explained that the Smith’s limiting vibration amounted to an equality of energy between the
resonator and the average modal energy of the sound field.

Lyon’s work for two weakly coupling resonators was extended to general coupiing conditions
{72.97]. They defined the uncoupled systems as the blocked ones. meaning that the other system
was held fixed while the system being considered was allowed 1o vibrate. The two-system theory
was also extended in [20) o develop predictions from energy distribution for three systems coupled
in tandem. The vibrational energy wansmission in three-element structures was further investigated
in [54].

SEA theory originally applied in the acoustic field, specifically the sound-structure interaction
problem, was utilized to predice the energy transmission between structure-structure systems [52].
Involved in the SEA formulation are modal density and coupling loss factor. Their evaluation
under various interacting connections between systems is the key to the application of SEA. The
plate-edge admittance related to the structural coupling loss facior was calculated in [21]. Modal
density prediction is not as difficult as the calculation of coupling loss factors as demonstrated in
(32].

SEA is developed 1o grasp the gross features of a complex system with little information
available in a preliminary design. The question of uncertainty quantification will therefore be raised
by practical engineers. The vaniance of dynamic responses of a system with structure-structure
interaction was evaluated in [52), where relatively few modes participate in the energy sharing
process.

Attempts 1o better understand the theoretical basis for SEA and the limiting effect with its
assumptions on the range of applications have been made by many investigators. Among them,
the most notable efforts to elucidate implications of the SEA model in terms of classical vibration
analysis were made in [111-113]. The power flow prediction by SEA was compared with an
“exact” calculation within a high frequency range in [66] and a good agreement has been obtained
between them. Rayleigh's classical approach was applied in [106] to the swdy of vibration of
systems with a finite number of degrees of freedom to probe the regions of applicability of SEA.
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The research objective is twofold: one is to show how the classical approach can yield the exact
results of {52] as well as an interesting extension; the other is 10 see wider conditions under
which the necessary assumptions associated with SEA are approximately satisfied. The connection
between classical modal analysis and SEA was also investigated in {19,43]. It was shown that
results of SEA can be obtained by studying the asymptotic behavior of classical modal analysis
for a general structural system.

While the SEA model for conservatively-coupled subsystems is well developed, it has been
recently extended 10 include non-conservative coupling between subsystems by incorporating
cffecis of coupling element in the loss factor terms. The power Aow berween two non-
conservatively coupled oscillators subjected to broad-band stochastic forces was first derived in
{91) and was shown to be not only proportonal to the energy difterence of the two oscillators, but
also dependent on the energy absolute values. Due to dissipative effect in the connection element,
the absolute values of power flows in each direction are generally not identcal. A different
definition or power flow between two non-conservatively coupled oscillators has been introduced
in J22]. With the advent of theoretical research on this issue, the experimental measurement
for loss factors attributed to the non-conservatively coupled elements have recently been made
[42,91,93]. For instance, the coupling damping of non-conservatively-coupled cylindrical shells
was estimated.

All the previous work are mainly focused on the steady state power flow relationship between
linearly-coupled subsystems. The energy flow relation in the transient state has been studied in
[44] and its theoretical prediction was in good agreement with the measured result for the case of
two plates coupled through a force transducer. The steady-state power balance equations of SEA
was also extended in [65] w include unsteady excitations and responses. The resulnng first-order
linear differential equations are analogous to those encountered in unsteady heat conduction. The
assumption of linear coupling has been eliminated in the work of {40,59]. For certain classes of

nonlinear systems, the same formulas of input power as in the linear system hold.
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2.2.2 Framework of Statistical Energy Analysis

It is supposed here that readers in civil engineering are not quite familiar with SEA. A
general procedure is presented n thus secnion for theu convenience. For further detailed

information, readers are referred to the most autharitative book in this area [55].

2.2.2.1 Fundamental Formuliation of SEA

The basic relation of SEA is established by studying the power flow from one oscillator tc
another which are coupled together by a conservarive element as shown in Fig. 2-2. The two
nscillators are subjected to independent broad-band stochastic forces. Power flow is defined as the
rate of energy flow between two oscillators whuch 1s probably best described as a radiation energy
from the viewpoint of one oscillator. The power flow is found to be proporional to the difference

of eneraies stored n each oscillator [55]. 1.e.,

P,=0a(E -E,) 2.7)
in which Py, E, and E, are the time-averages of the power flow from oscillator 1 10 2, toral energies
stored in oscillators 1 and 2, respectively. The proportionality constamt @ is positive definite and
symmetric in system parameters.

Equation (2.7) plays an essential role in the SEA development. It links the power flow
berween two oscillators 1o the measurable variable, snergy, through a constanmt coefficient
independent of environmental vibration sources. By comparing Eq. (2.7) with the equation
governing the heat conduction problem, one can find that the power flow relation is analogous to
the heat conduction probiem in which the thermal energy flows from the higher to the lower

temperarure level.

2.2.2.2 Power Flow Between Two Multi-Modal Subsystems

When two subsystems consist of multi-modal oscillators. relations similar to Eq. (2.7) can be
derived. For a complex system with N, modes for subsystem ] and N, modes for subsystem 2 over
a finite range of frequency AW, the modal interaction between these modes of the two subsystems

can be described by Fig.2-3. In order to develop a simple power flow relation for this complex
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Fig. 2-2 Two Osciliators Coupled Through a Spring
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Fig. 2-3 Modal Interaction Between Two Subsystems
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system, several assumptions have to be made, namely, (2) The natural frequency of each mode is
assumed to be uniformly distributed over the frequency range AW This implies that each
subsystemn is a member of a population of systems that are physically sunilar: (b) All modes in a
subsystem are equally energetic and their amplitudes are incoherent.

Under these assumptions, the power flow between mode m of subsystem 1 and mode n of

subsystem 2 can be expressed as

‘Pmn = amn(El,m"EZ.n) (2.8
where (1, is the proponionality factor @: and E,, and E,, are the modal energies of subsystems I
and 2. They can be represented by E,/N, and E, /N,, respectively.

The 1otal average power flow from subsysiem 1 1o 2 then becomes
E, Ez)

Pp = O‘NxNz(ﬁ‘l*sz

= o, (NE; - Ns,Ey) 2.9

in which E, and E, are the total energies stored in subsystem 1 and subsystem 2 and Q is the
average proportionality constant of 0, over the frequency range A. If only a spring coupling is

applied between the two subsystemns, its expression can be written as

T Kz/(ﬂz
@ =5 .10)
and thus
5T, K/ w? E, E, .
2= 399 Re/N) (Aw/N,) \N, " N, @1

in which @, is the central frequency over frequency band AW®; X%,” represents the frequency
shift of the combined system from individual subsystems produced by stiffness coupling alone.
The quantity (X*/*)(AW/N,XAGY/N,)] is a measure of the strength of power flow. The coupling

loss factors T}, and T}, for subsysterns 1 and 2 can be expressed by

Ny, = GNy/© @2.12)

Ny = AN/ 2.13)
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Obviously, we have a basic relation

MmNy, = ATy, 214

in which n=AW/N, (1 =1,2) 1s the modal density of subsystem /.

2.2.2.3 Power Balance Equations

After evaluating the power flow between two subsysterns in Eq. (2.11), we can formulate the

power balance equation as follows

(d 5
pi”" = ‘Pl ”S>+P1§ f:]Sl

<

: diss) 3
A T Y 2.16)

in which the dissipated power P,4%*) of subsystemn i can be wrirten as a function of kinetic energy:

P 2 20 mE" .17
For a weak-coupling case, the kinetic encrgy of subsystem i is approximately equal to the
potential energy. i.e.,

(dess)
i

P = Q)CT‘I'EE (2.18)
Upon substituting Eqs. (2.10) and (2.18) into (2.15) and (2.16), two algebraic equations govemning

cnergy parameters can be implemented. They are

(in
P = (4 0 E -y 0., (2.19)

PZ‘"') = -n,0E +(N,+7,)0E, (2.20)
Solving the above equations for E, and E, sirnultaneously gives rise to the final solutions of

interest,
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SECTION 3
MODAL ENERGY DISTRIBUTION UNDER
EARTHQUAKE LOAD

3.1 Introduction

As discussed in Section 2.2.2.2, one of the rwo assumptions involved in SEA is energy
equipartition among all modes within a certain frequency interval, which has been justified in the
application ro sound-structure interaction problems. It is the major objective of this section 1o
investigate whether thus assumption is still true in the case of structural systems under the

excitation of earthquake loads.

3.2 Modal Energy Distribution Under Ground Acceleration Input

3.2.1 Equation of Motion of Continuous Shear-Beam
For simplicity, a laterally lecaded multi-story building in Fig. 3-1(a) with uniform story
height, stiffness and weight is treated as a contnuous shear beam as shown in Fig. 3-1(b}). The
governing equation of motien for this beam can be formulated by following the procedure of [15].
a—‘-):;x(s, f) —mf]hzé-;;x(s. N =%, (0 G
in which x(s1) is the relative displacement at position s with respect to the base; @,=(12El/mh?)'*

=(12El/mh*)'? is a frequency constant of shear beam; m is a pseudo-mass densiry along the

height; and El and h are story rigidity and story height, respectively, as shown in Fig. 3-1(a).

3.2.2 Free Vibration

The base input ¥ g (7}in Eq. (3.1) is set to zero for the analysis of free vibration. The natural

frequency and mode function of the shear beam can be expressed as [15]

_ n(2k-1)

W, = 5y (3.2)
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TM(2k~-1) s

X, (s) = sm§L 5 N 3.3)
k=123, .. N)
in which N represents the number of story.
3.2.3 Forced Vibration
Displacement x(s.1) can he expanded as a summation of mode functions;
N
x{sty = T X (s5)g,(n) (2. 4)

1=

Upon substituting Eq. (3.4) into Eq. (3.1) and multiplying both sides of the resulting equation by
X.(s) and then integrating over the total height of the shear beam, the following simple equation

can be obiained:

() + 25,0,45 (1) + 0l q, (1) = =T,%, (1) @.5)
Nkh
J X, (s)ds
_ 0 _ 4 ,
o= m X = T 3.6)
[ X (s)ds
[H]

In Eq. (3.5), the proponional damping term 28, ,¢; (7) has been introduced 1o represent energy

dissipation in the shear beam.

3.2.4 Modal Energy Evaluation of Continuous Shear-Beam

The average kinetic energy of the -th mode due to a white noise input X (1) with power

spectral density S, can be expressed as

Nh = ns. I?
1_ .2 mNh Xk

EX = ~mX2(s) {g;) ds = —— - L (3.7
k [j) 2k k 4 251,‘“1

Here, superscript & in brackets denotes the kinetic energy.
Consequently, the rario of kinetic energies between the k-rh mode and the first mode can be

expressed as
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£Y  TEo,
EI‘T’ = —I‘? Eﬁk (3.8
which can be further simplified by introducing Egs. (3.2) and (3.6) and assuming & =constant. i..,

£} I

- = T 3.9

EY O (2k-1)
Equation (3.9) means that kinetic energy of a lower mode is always larger than that stored in
a higher mode, a result thar agrees with our imuition. However, the rate of energy ratio reduces
substantially when the mode order increases as demonstrated in Table 3-1. Also observed in this
table is that the energy ratio will be larger than 0.9 when the mode order is beyond thiry,
indicating that at least 10% error in the enetrgy ratio for two neighboring modes is involved in the
assumprion of equal modal energy when a thiry or lower multi-story building is considered. In
contrast, when energy differences between r number of consecutive modes are limited to less than

10%, the number of stories must be greater than &, which can be obtained by solving

3

2k, - 1
[2(k0+r—l)—l) =09 3-10)

or

ko = Inr{27.98r-27.48} (3.11)

in which Int{x} represents the minirmsm integer greater than x. When r=5, k=113, meaning that a
113-story building or lower can not generaie any five consecutive modes whose differences in
kinetic energy remain less than 10%.

Up to this point, a conclusion can be drawn that the equal modal energy assumprion is
generally not acceptable for structures under the action of ground acceleration. In other words,
individual mode actions are significant, especially for a few lower frequency modes. However, the
modal energy ratio shown in Eq. (3.9) ts a function of only mode order or is independent of
structural parameters. This implies that group treatment of modal energies can still be effective

when the exact energy relation between different modes has been incorporated. Nevertheless, this
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analysis is based on an idealized continuous shear-beam model and extension of this result imo
discrete multi-stery buildings requires further justification. In what follows, conditions under

which this extension is successful are investigated.

3.2.5 Natural Frequency Characteristics of Discrete Shear-Beam

Recalling the discrete model of the N-story building in Fig. 3-1(a), the equation of motion

can be written in matrix form

MX(n+CX (1) +KX (1) = ~Me X (1) (3.12)
in which
m | L2k —k

. m } D=k 2k -k
EY . :;1 & | . _..k [

. | ‘ 1

| m 1‘ ~k 2k -k ]

] m ] k|

‘ X = {xl,xz,.,..x,,}r
and damping matrix C is assumed to be proportional to the mass and stiffness matrices; ¢, is an

earthquake input index vector and is taken to be {1, 1, ..., 1}7 in this case. k(=12EI/h%) in the
above is the interval stiffness of one story.
For the purpose of evaluating frequency characteristics, the damping and force terms in

Eq.(3.12) are neglecied and the displacement vector X (r) is substituted by

X = ibs'm(ot (3.13)

which gives rise to the characteristic equarion
(K-o'M)¢ =0 (. 14)
Subsequently, natural frequencies of the shear-beam can be determined by solving the

equation



or

in which A=@%/®,*

A simple determinant operation on Eq. (3.16) leads 1o

‘K"‘DE.M =0 (3.15)
2-A =1
-1 2-4 -1
-1 . =10 3. 160
L] -1
-1 2-A -1
-1 1-4
NxN
Iy = (1_;");!\/—1"}!\!-’2 (3.17)
C2-A -1
7 ol 2-A -1
N-_\ -1 ) -] ,
: -1 2-A =1
f -1 2-Xx:
! 'NxN

From any standard mathematical manual or table, one can find the solution of the banded

determinant ;N which can be expressed as

in which

2-a Y A=0 or A=4
(N+1) (—2—) .
(.18

N+1 N
al-p! otherwise

a-h '

a= %(2-—?«.-9-4(2—2&)2—4) 3.19)

b= %(z-x-‘/(z-x)z—«;) (3. 20)
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It is easy to check that A=0 and A=4 are not solutions of Eq. (3.16). Consequemly. Eq. (3.17)

can be rewritten as
1 [(l—l}(aN—bN)— (@t op )

Iy = a-b
and Eg. (3.16) becomes
(1-2) @ -b%)y - (@ =" = 0
Let 2-A=2co0s8, g and b in Egs. (3.19) and (3.20) can be expressed as

6
¢

LT

a
b=
and Eq. (3.21) is then changed to

2j[(2cosB-1) sin (N6) =sin (N - 1)6] = 0

or

6 2N+1

smicos 5 6=0 (3.2

In the above, j=(-1)'” is a complex unit and sin(8/2) can not be equal to zero. Eq. (3.22) 1s thus

equivalent to

COS*ZMQ = 0
2
with the sotution of
2k-1
- 33
8, IN+T" G.23)
k=12,...N)

Therefore, eigenvalue (A, ) can be expressed as

2
A = io-; = 4sin"9—‘t (3.24)
@
The modal vector _41& can be obtained from Eq. (3.14) with @, in place of (. 1.e.,
9, (N) =1
o, (N=-1) = 1-A,
0,(1) = (2=A)9,(i+1) =0, (1+2)

(3.25)
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3.2.6 Modal Energy Evaluation of Discrete Shear-Beam
Modal energy of the &-th mode corresponding to Eq. (3.7) can be formulated as

AT ns. I~
o I 7 ik m.r1 Atk
EN = 50,M0, e = 50,0, 55— (3.26)
£ 2528 2-4ETT
in which
r
?‘.ga
Fk = - (3-27)
%9
The modal energy ratio of interest can be finally expressed as
(k) T 2
E, oo I aw
Ee % 1k 59 ;3 28)

el ol T} 5,
Comparing Eq.(3.28) with Eq. (3.8), one can see that the only difference between them lies
in the additional factor in the former equation.
Meodal energy ratios of discrete and continuous models are compared in Fig. 3-2, indicating
that, for the N-story building. the first N/2 number of modal energies can be approximated by
those of structure-free model (continous model). Together with the observation that modal

energy ratio is always less than unity. especially for lower order of modes, this approximarion can

greatly facilitate the calculation of otal energy stored in the structure.

3.3. Modal Energy Distribution Under Ground Displacement Input
3.3.1 Modal Energy Evaluation of Continuous Shear-Beam

The equation of motion of the continuous shear beam in this case is exactly the same as Eq.
(3.1) except thas the right-hand force is changed 1o UJOZX'(I)&S-II) and the absolute displacement
representation of x(s,1) is employed. All the frequency characteristics obtained in the previous

section are therefore applicable. Participation factor (I',), however, is altered to
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Nh
[ X, (5) 8 (s~ h)ds

r,=2" = 2 X (h 3.2
K= NP = vpc (2.29;
f Xz (s)yds
0
and Eq. (3.5) becomes
G (1) +25,0,4, (1) +0iq, (1) = I]wf,xg(r) (3.30)

The ratio of modal energies can then be expressed as

E;k) rz élml _ Xf(h) )
E(k) r:;- kmk X?(h) 2k-1

(3.3])

for constant modal damping ratio. It is noted thar the energy ratio in this case is a function of both
the number of stories of the building and mode order, but remains independent of strucrural

paramerers.

3.3.2 Modal Energy Evaluation of Discrete Shear-Beam
The right-hand side of Eq. (3.12) in this case becomes e,m ngg {t) inwhich ¢,={1,0,0, ...,

0}T. The participation factor is therefore changed to

¢, (1)
I, = tT
%%
and modal energy ratio can be calculated from Eq. (3.28).

(3.32)

The modal energy rarios of the discrete model agree very well with those of the continuous
mode! as shown in Fig. 3-3. This measis that modal energy relation of the N-story building under
the action of base displacement can be accurately calculated by Eq. (3.31). Further observation on
Fig. 3-3 shows that the modal energy ratio is approximately eaual to unity for a great number of

modes which justifies the energy equipartition assumption.

3.4 Acceleration Input vs. Displacement Input

Figs. 3-2 and 3-3 show comparisons of modal energy ratio between discrete and continuous
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models under acceleration and displacement inputs. respectively. Both their variation pattemns and
their comparisons with corresponding models are quite different. These can be interpreted as
follows:

(1). Under acceleration inpur, pamicipation factor decreases as the mode order increases.
Thus, rogether with frequency effect. results in a consistent reduction of modal encrgy as the order
of mode goes up. On the other hand, panticipation factar of first (N+ 1 )/2 modes increases with the
mode order under the action of displacement input, whose effect on modal energy is oftset by the
modal frequency. The combination of these effects leads to a much wider plarform on the plot of
modal energy ratio vs. mode order and a possibility that more energy in higher modes could be
generated than that in lower modes as illustrated in Fig. 3-3.

(2). Effective seismic force distributions on a structure subjected to ground acceleration are
different for discrete and continuous models as shown in Fig. 3-4(a). The larger the number of
stories of the structure, the more uniforrn the seismic force distribution on the structure which
asympiotically approaches the continuous model. The increasing accuracy of energy calculation
in a building with larger number of stories can be clearly seen in Fig. 3-2 while a large
discrepancy of energy in higher modes between discrete and continuous models still exists due to
different distributions and probably the so-called “wavecontaminated” effect when a wave
propagates along a series of discretc meshes. ui contrast, the effective seismic forces on both
discrete and continuous models of the structure due to ground displacement are exactly the same.
Energy ratio of the continuous model depends on number of stories as shown in Eq. (3.31), which
is attributed to the variation of acting position of the forces with respect to the total height of the

structure,

3.5 Conclusions
It can be observed from the preceding sections that the modal energy relation between lower

modes of a structure excited by ground acceleration can be modelled approximately by 2
structure-free relation in Eq. (3.9). However, the assumption of equal modal energy basically
fails.
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Modal energies of a strucrure subjected to ground displacement can accurately be substituted
by those of corresponding continuous model. In addition, the equipartition assumption of modal
energy. which 1s of major concern here, still holds for a great number of modes with intenmediate
frequencies. The ground displacement input is therefore preferable in the application of SEA
discussed in Secuon 2.2, This can also circumvent the difficulties encountered due 1o comrelated
inertia forces exerting on P- and S- systems when ground acceleration input is employed.

It 1s worthwhile to mention that, in principle, the relative displacement sepresentation of
motion of a structure subjected to ground acceleration and absolute displacement representation
for the same structure subjected 10 ground displacement are interchangeable. A large discrepancy
happens due to the incompatibility between input acceleration and input displacement. In the
previous examples, both ground acceleration and displacement are assumed 10 be white noise
which is obviously not compatible. To look at this from a different angle, one may conclude that
what really matters abour the assumption of energy equipartition is the frequency content in the
vibrational source since the absolute displacement representation for a structure under white noise
is nothing but the relative displacement representation for the same structure under ground
acceleratior: described by a stationary stochastic process with a power spectral density
proportional to the fourth power of frequency. For example, results in the study of [24] showed

that the response varies little with structural frequency.
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SECTION 4

DECOUPLING OF S-SYSTEM FOR DYNAMIC
ANALYSIS

4.1 Introduction

A decoupled analysis is always prcferred in the dynamic analysis of P-S systems due 1o
many reasons. Not only does a coupled analysis likely involve intensive compautational effort, it
also can be numerically difficult to solve due to dicsimularities in structural parameters of the P-
and S- systems. In practice, design of a P-system often precedes the design of an S-system and
they may be underntaken by different designers. Decoupling in the analysis of P-S systems thus
requires minimum communication between different design teams and avoid many of the
intervening problems.

A decoupling criterion for S-systemn analysis can be justified if the interaction effect is
negligible between the P- and S- systems whose parameters are covered by the criterion. A small
variation of frequency calculation of the P-system is often considered to be a necessary condition
for this insignificant interaction effect on responses, which has also been raken to be a sufficient
condition in practice. However, it was indicated in [26] that a small change in frequency does not
assure response error from an uncoupled analysis to be within the same tolerance and is therefore
not sufficient. In fact, careful re-examination on resulis of [26,29] will lead to the conclusion that
the frequency decoupling criterion is not necessarily covered by response decoupling criterion,
either. That is to say, an exact displacement response of the P-system can be obtained by an
uncoupled analysis even though the frequency change due to interaction cffect is significant.
Nevertheless, considering the frequency decoupling criterion as a necessary condition is on the
conservative side in the sense that the permissible domain in the R_— R, plane for decoupling is
reduced.

Past investigations on this issue mainly focused on the decoupling effect on the frequency

characteristics or response of the P-system. The influence of so-obtained criterion on the response

4.1



of the S-system has seldom been studied. The only preliminary invesrigation on the S-system
behavior due to decoupling was conducted in [34}. However, the perturbation theory for obtaining
the decoupling critenion in Eq. (2.1) limus its application 10 light S-systems. In this section, a
sufficient condition for uncoupled analysis of S-systems is defined as one that limits the etror
involved in the determination of the maximum dispiacement under harmonic loads. This
candition is then compared to decoupling criteria for various response quantities of interest under
different inputs. While emphasis is placed on the decoupling effect on the S-system response, the
decoupling criterion for the P-system response is also presented for comparisen. The issue related
to response calculation of which system (8 or P) is more sensitive to the decoupling action is first
investigated.

It is also relevam to S-system design since the developed criterion will help us berter
understand approximations involved in the derivation of computarional schemes for the response

caiculation of S-systems.

4.2 Dynamic Decoupling Based on Maximum Response
4.2.1 Equations of Motion
Consider a 2-DOF P-S system as shown in Fig. 4-1. The equations of motion of the system

can be formulated as follows:

m‘,’f;+c:(i‘,-—x‘,) +k,(,rs—xp) =0 @1

mX, + e (X, = X,) +ep (K= X,) +h(x,—x,) +k, (x,-x,) =0 4.2)

in which m, c, k, are the mass, damping coefficient and stiffness of subsystem i (i=p, s),
respectively, and x,, x, and x, represent absolute displacement of the S-system, the P-system and
base. When the relative displacements of the P- and S- system with respect to their supports are

introduced, i.c., z=x,-x, and y,=x -x,, Egs. (4.1) and (4.2) become

m,;-’s+c,z':+lt_,z,+mxjip = —m‘;\‘g 4. 3)

mpyp+cpyp+kpyp—clz',—k,z_' = —my¥, (4.4)
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I @I rwiz 4V, = X, (4.5
3 . 2. = = 2. —_— ¥
)P+2§pm{,_\p+wp_\,, R, (25,07 + 0z = =X, (4. 6)

in which a number of new parameters are introduced. £ and (), are the damping ratio and

frequency of subsystem i {i=p. s); R, 15 the mass ratio. They are defined as

fr— —

'k ik
o, = |2, w = £ 4.7)
Ny Fooxm,
c c
5 P
= - —, = (4. 8)
;‘ 2m.w §P Zm},mp
m.f
R, =-— {4.9)
My

4.2.2 Harmonic Solution

When X, = &, displacements of the S- and P-sysiems can be respectively eéxpressed as
7, = Z,e"”' and y=Y & By substituting these into Eqs. (4.5) and (4.6), the displacement

amplitudes Z, and Y, can be obtained and written as

11 2

Z, =~ (5 +@%) (4.10)

3 D H,
Y = —lu +R_(jw2t @ +m2)ji @1
4 DL”: m sTe T )

in which D can be expressed as

1

D= - 2 + @ 4.
A, R, 0" J02§ & +0¢) (4.12)

When R, is equal to zero, Eqgs. (4.10) and (4.11) degenerate into

1 1 3
Zom e (@ )
50 DO (Hp + ) 4.13)
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Y , = —l ! 4.14)

* = D,A,
and Eq. (4.12) becomes
D, = l— 4. 15)
0 H;Hp )
Here, H, is the transfer function of subsystem / alone, which can be written as
1
H, = (4. 16)

0! - o’ +j02L o,
( i=p, s)
The ratios of displacement amplitudes of the S- as well as the P-system with and without

interaction can be fonmulated as follows:

z.r DO
o= 4. 17
Z.r() D ( ’
YP Dy : 2
?; = -,5[1+Rm(jm2§:mx+ms)ﬂ;] 4. 18)
4.2.3 Sufficient Conditions
The sufficient conditions for dynamic decoupling are defined as
t! b |
maxi_‘_[—l} =e 4.19)
@ ]tZIO; ;
for the response calculation of the S-system and
\l y
maxl_li’ - 1' =¢ 4.20)
@ || ¥ o0l

for the response calculation of the P-system, where e is the tolerance error.

It is noted that multiple solutions of Egs. (4.19) and (4.20) for Z, and Y, may exist as
demonstrated in the plots of maximum magnitudes of IZ/Zl-1 and {Y,/Y4l-1 vs. R in Figs. 4-2 (a,
b), R.(=m./(,) being frequency ratio berween the S- and the P-system. For a specified mass ratio
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R.. required here are the frequency ratios whose differences from unity are the minimum or
maximum. For example, when e=0.2, R, =0.005. §,=0,05 and E,P=O.01‘ frequency ratios R,and R,
in Fig. 4-2(a) are required frequency ratios.

The sufficient conditions calculated from Egs. (4.19) and (4.20) for different damping
combinaions of the P-S system and different tolerance errors are presented in Figs. 4-3(a-c) and
Figs. 4-4(a-c), respectively. It can be observed that the rotal damping (F,j—é,) has a significant
influence on the sufficient conditions, The larger the total damping. the icoser the restrictions to
the selection of R, and R, When the total damping is kept constant, the effect of individual
damping (&, or i,,) on the conditions for the S-system response calculation is insignificant whereas
its effect on the conditions for the P-system is different. The larger the damping of the P-system
(S-system), the looser the restricuon for a stiff S-system (P-system). The effect of the suff S-
system on the behavior of the P-system is basically one of adding a small mass to the P-system so
that the frequency of the P-sysiem is slightly modified. Consequently, larger damping (E_,,,) relieves
the sensitivity of rcsonant amplitude to the smail frequency modification and aileviates the
restriction for an uncoupled analysis. The effect of a relatively soft S-system on the dynamic
response of the P-system 15 to slightly modify the force exerting on the P-system as expressed in
£q.(4.6). A larger damping (§,) reduces the relative movemem between the S- and P-systems so
that modification to the exciting force is suppressed.

Regarding to the issue of which system (S or P} is more sensitive to the decoupling effect,
frequency variations of both systems are reviewed first. The characteristic equation can be imple-

menied by setting D in Eq. (4.12) equal to zero and neglecting damping terms, giving

RY - (1+Rm+Riz)R§+l_;z =0 @.21)
in which R= Q/w,.

Two positive values of R, can be obtained from the above equation, which are conesponding
to the frequencies (£2) of the combined P-S system. If decoupling is required, one of the

frequencies has to be close to @, or R,? can be written as 14€, where € is a small quantity. By
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substituting {1+£) for R, in Eq. (4.21), the following interactive equartion berween R and R, can

be obtained:

€
Ro = Tvoe=F,

(4.22)

A similar formula has been reported in [26] for small variations of frequency §2 with respect

1o (0, which is rewritten as follows:

€{l+¢)

R = —
£+ (l+€)Rm

4.23)

gt

For a 10% variation in frequency, R,*=(110.1)°=1.21, 0.81. Then, the small quantity € is
taken 1o be 0.21 or -0.19. The vanations of R,, with mass ratio (R,) for both the P- and S-systems
are plotted in Fig. 4-5. It can be seen that the natural frequency variation of the S-system controls
decoupling of a stiff S-system whereas the variation of P-system controls decoupling of a fiexible
S-system.

Back to the question about sensitivity of responses to decoupling effect, a conclusion can be
drawn based on the comparison between Fig. 4-3 and Fig. 4-4 that the response of a stiff S-system
artached to a relatively flexible P-systemn is mor. sensitive to the decoupling action especially
when damping ratio (§,) decreases as demonstrated in the comparison of Fig. 4-3(b) and Fig. 4-
4(b). Otherwise, the response of a P-system supporting a relatively flexible $-system is more
vulnerable to the variation of interaction effect. These results are consistent with the frequency
variation of the S- and P-systems due to decoupling action.

It is instructive to compare the above analysis with the previous work of [26]. The present
analysis takes into account all the dynamic characteristics such as runing effect, non-classical
damping, etc. involved in a P-S system as listed in Section 2.1.4.1. In contrast, one mode
approximation has been taken in the response calculation of [26) and the spectral displacement
was assumed 10 not change significantly at the frequencies of the uncoupled P-system and the
coupled P-S systemn. The one mode representation for a 2-DOF system will lead to an erroncous

result when frequencies of the S- and P-systems are nined, cases that initiated intensive research
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activities in the past. In addition, the assumprtion of invariant spectral displacement took for

granted that the damping charactenstics of the combined P-S system remain proponional and

modal damping ratio is independent of decoupling action which contradicts the results of {34).

4.3 Dynamic Decoupling Based on Energy Parameters

Response quantities such as energy (or its mean-sguare value) are of major concern in this

report and therefore the decoupling effect on such parameters is of interest.

4.3.1 Decoupling Effect on Root-Mean-Squarc (RMS) Displacement

The mean-square displacements of the S- and P-systems under the excitation of white noise

can be formrulaied as

i

S; J izs (w) =2dm

‘hqu
]

: 2
S;‘L,‘Yp(w) dw

and their correspending mean-square values without interaction take the fonms

0l = 8 [ Zolw) Mo

o0

2 o 2
Toa = S5 J ¥po(w)?dw
Then, the dvnamic decoupling criterion with tolerable error ¢ can be defined as
c
LA It =e

%
for the response calculation of the S-system and

{
Gp B

—=-1l =8
Op0
for the response calculation of the P-system.
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Plots of R,—R,, obtained from Eq. (4.28) for different sets of damping ratios are presented
in Figs. 4-6(a-c). It can be observed that infiuences of damping in the S- and P-systems on the
response etror due to neglect of interaction are qualitatively the same as the cases discussed 1n
Section 4.2. This is particularly evident for small mass ratios. The larger the toral damping, the
smaller the error invelved in non-interaction calculation of response of the S-sysiem. Except for
very flexible S-systems, the results computed from uncoupled procedures are generally on the
conservative side.

The decoupling criteria for the calculation of the P-system response are shown in Figs. 4-
7(a-¢). Unlike maximum response of the P-system excited by harmonic loads, mean-square
responses under the action of broad-band acceleration appear 1o be peculiar. The larger total
damping dees not necessarily mean a small amount of error involved in the response calculation.
In contrast, the damping ratio of the P-system itself seems to have a predominant effect on the
response. In comparison with Fig. 4-7(a), Fig. 4-7(¢) demonstrates that an S-system with smaller
damping attached to the same P-system will alleviate the interaction effect. This may be in pan
because the power flow (will be discussed in next section) conuibuted by the interaction action

becomes smaller for a lightly damped S-system.

4.3.2 Decoupling Effect on Root-Mean-Square Acceleration

Acceleration response may be of great concem in practice when high precision instruments
are installed or occupant comfert in high-rise buildings is 2 major factor in design considerations.
The decoupling influence on this quantity is then of practical significance itself. The comparison
of decoupling effect on displacement and acceleration will shed more light on the sensitivity of
low and high frequency responses 1o the interaction.

The acceleration amplitudes «f S- and P-systems subjected to harmonic load can be formu-

lated from Eqs. (4.5) and (4.6) as

1

. : 1
—0HZ+T) +1 = 5 (0280 +0]) (5 +o?) (4. 30)

P
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—wiY, 4+ 1= %ﬁp(i w?) (431)
By following the same procedure from Eq. (4.24)10 Eq. (4.27). formulas similar to Eqs. (4.28) and
{4.29) can be found in place of acceleration for displacement quantities. The effect of interaction on
mean-square acceleration response of the S-system is approximately the same as the displacement
r=sult described by Eq. (4.28) due to light damping. The prevailing role that damping ratio €, plays
in the displacement response of the P-system remains unchanged in the acceleration response as
shown in Figs. 4-8(a-¢). However, acceleration vanations due to interaction action for different
dampings are consistently demonstrated to be not as sensitive as the displacement variations,
implying that feedback from the §- to the P-system is more vulnerable to low frequency than high
frequency components. Furthermore, non-interaction solution for acceleration of the P-system
is always on the conservative side in the practical range or R, and R_. a characteristic that 15
different from displacement response of the P-system but quite similar to that of the S-system.
From the mathematical point of view, these relative relations among displacement response of
the S-system, acceleration response of the P-system, and displacement response of the P-system
reflect the fact that the numerators of total ransfer functions of the S-system displacement and
the P-system acceleration to ground aceeleration are independent of the mass ratio whereas the
numerator of the P-system displacement transter tunction is a function of the mass ratio as shown
in Egs. (4.10), (4.11), and (4.31). For this reason. the absolute acceleration ratio of the P-system
subjected to a harmonic load with and without interac .un is exactly the same as displacement ratio
of the S-system as given in Eg. (4.17) and so is its sufficient condition of decoupling as discussed

in Section 4.2.3.

4.3.3 Dynamic Decoupling for MDOF P-S System
The results obtained in the preceding sections can be extended to MDOF P- and MDOF
S-systems by following the procedure of {26,27]. In what follows, only dynamic decoupling of an
4-25
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SDOF $- and one mude representation of an MDOF P-system 1s discussed as an indication of the
application to SDOF §- and MDOF P-systems.

Consider an SDOLT S-system attached to the top of the same multi-story building (P-system)
as discussed in Section 3. The equauons of motion for the SDOF S-system and first mode
representation of the P-system are exactly the sume as Egs. (4.5) and (4.6) except that the
right-hand side of the second equation includes a participation factor due to toad distribution on
the mult-story building. This factor 1s taken here from Eq. (3.6) for simplicity. ie., Ty = 4/7.
The decoupling criterion for such a system is plotted in Fig. 4-9. The comparison between this
figure and Fig. 4-7(a) assures the applicability of decoupling criterion generated from a simple

P-§S system.

4.4 Conclusions

From the preceding discussions, some conclusions can be drawn about the decoupling issue of
S-systems. Sufficient conditions for decoupling under ditferent damping combinations of the P-5
systemn have been proposed to assure that any selection of £, and &, on the left-hand side of the
sufficient condition will have the error induced by interaction less than the value designated in the
sufficient condition. Total damping of S- and P-systems plays an important role in reducing the
error brought about from interaction for both systems. For a constant total damping, an increase
in P-system damping can not sigruficantly change the error in the calculation of the 8-system
response but can reduce the error in the response of the P-system supporting a relatively stuff
S-system. The displacement response of an S-system {P-system) is generally more sensitive to the
interaction effect than that of a relatively flexible P-system (S-system).

The conservative ranges in the R, - R_ plane for the §- and P-systems, within which uncoupled
calculation of the mean-square displacement is overestimated, are on different sides of their own
exact solutions (e = 0.0) but may overlap in a certain range. This suggests that any selection of R,
and R.., which assures the design of the P-system by uncoupled analysis on the conservative side,

may underestimate the respanse of the S-system. This point should be noted in practical design.
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For a certain tolerable error, uncoupled calculation of mean-square displacement of the P-
system under broad-band input should be limited to a small domain in the R, - R_ plane, whereas

those of the S-system displacement and P-system acceleration could be much more flexibie.
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SECTION 5

POWER FLOW AND ENERGY BALANCE BETWEEN
NON-CONSERVATIVELY COUPLED OSCILLATORS

5.1 Introduction

As indicated in Sectiont 2.2.2.1, the concept of power flow is the foundation of SEA. For
conservatively coupled osciltators, SEA hus given two fundamental relationships (551: (1) Without
energy dissipation in the joint element between two subsystems, the total average power flow
from subsystem 1 to the coupling element is equal to the average power flow from subsystem [ to
subsystem 2 and the power flows in two oppasite directions have the same absolute value; (2) The
average power flow from oscillator 1 to oscillator 2 is directly propurtional to the difference of the
average vibrational energies as shown in Eq. {2.7).

In practice, however, mechanical and structural systems composed of many subsystems with
spring and damping connections are usually dealt with, in which non-conservative couplings are
involved. Therefore, the conventional SEA technique cannot be directly applied and further studies
on the extension of SEA to non-conservatively coupled cases are needed.

The power flow between non-conservatively coupled oscillators has been investigated in
122,91} who gave different definitions for it. In {91], power flow is defined as P = Re{FioV5 ),
in which vy is the complex conjugate of the velocity of oscillator 2 in the frequency domain
and F,; denotes the force that acts on oscillator 2 due to the motion of oscillator 1. There exist
two inconsistencies in this definition: (1) In expressing the interaction force Fyg, oscillator 2 is
considered to be fixed so that interaction between the two oscillators is neglected; and (2) The
velocity of oscillator 2 is involved. This appears to be contrary to conventional power flow
definition. These two deficiencies result in a contradiction in the derivation of the power balance
equations and some of the numerical results are not reasonabte on physical ground.

In [22], the expression for the interaction force has been improved, but the definition of power
flow is basically the same as in [91]. Therefore, the contradiction in power balance equations
continues to exist and inconsistencies remain.
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Additionally, both references [22.91] assume that the potential energy stored in each oscillator
is approximately equal to its kinetic energy. This may not be true when the coupling spring
stiffness is greater than the two spring stiffnesses of the oscillators, which will be verified by
numerical results in this section. Moreover, it has been pointed out that the power flow is not only
proportional 1o the difference between the average energies of oscillators but also to the vibrational

energies themselves, ie.,

P12 = “(P:I - h‘z) + ﬁE; + .}[L‘z

This relationship 1s formed with arbitrariness in {22,917 because the two independent inputs cannot
be uniquely expressed by the three arguments (£, £, £; ~ £2). This may in part explain the reason
why the coefficient « behaves quite differently in relation to the coupling element o5 from these
two references.

In this section, an auxiliary system with a variable coupling spring K between the mwo
oscillators is designed so that the concept of power flow between two conservatively coupled
oscillators can be directly extended 10 the non-conservative case. As K approaches infinity in
the limit, the auxiliary system approaches the non-conservatively coupled case and a consistent
expression for power flow from oscillator 1 can be formulated. The system considered here is
generic in order to reach a general relation between power flow and energy which can be served
as a fundamental formulation in the SEA framework for non-conservatively coupled systems and

a starting point in the application w complex P-S systems.

5.2 Equations of Motion and Power Flow
In order to follow the formulation associated with conservatively coupled oscillators, a spring
element with spring constant A is inserted between one of the masses and the non-conservative
coupling elements as shown in Fig. 5-1{a) or 5-1(b). In the limiting case when K — «, the
configuration of the two non-conservatively coupled oscillators results as shown in Fig. 5-1(c).
The configuration shown in Fig. §-1(a) is used for the derivation of power balance equation
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for oscillator 1. As one sees. one more degree of freedom is introduced due 10 the presence of K

and the equarions of motion are

M+ o X+ (| + Ky —Kxy = f (5.1
MaXa ot (O 4 Cq) Xo+ (ko h3) Xy = Cyxy = A=t {5.2)
Xy + (b + K)xy— ¥y ~Kx = kaxy = 0 (5 3

where m, and m, are. respectively, the masses of oscillators 1 and 2 with associated spring
constants k. and k. and damping coefficients ¢, and ¢,. The coupling elements are represented by
k. and c.. The excitations f, and f, acting on, respectively, m, and m, are assumed to be
uncorrelated wide-band stationary processes. In Eqs. (5.1)-(5.3). %, and x. represemt the
displacements of the two oscillators while x. denotes the displacement at the interface between K
and (K. ;).

Upon multplying Egs. (5.1)-{5.3} by x,. ¥, and X, respectively, and taking statistical

average of both sides of the resulting equations, the above equations become

my G4 Y+ AT+ (k4 K) (i) = K g = (R4) (5.4)
Mo (o k) # (0ot C3) (0304 (hy k) (Xady) = 03 (Hdy ) = kg (0aa) = {(fady) (5.5)
el (R + K) () = 3 (i) = K (0 ay) = &y iy = 0 5.6

where the symbol < . > denotes mathematical expectation.
J1 1s well known that, for steady-state response te a stationary mput.

(xx)=0 and () =0 (i =1,213)

Equations (5.4)-(5.6) thus reduce to

O s N g
=Ky = () (5.7

(Catc2) () =3 0axy) = ky (rydn) = (o) (5.8)
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By summing Eqs. (5.7)-(5.9}, the total power balance equation for the system has the form

LAY+ e AR+ ea (= K30 5) = (A%, )+ (fada) (.10

Equation (5.7) is the power balance equation for oscillator 1; but, for oscillator 2 with

element (k,. ¢,). the power balance equation is

e+ a{ (Ka— 230 D)= K(a ha) = (faha) (511

The power flow trom oscillator 1 is then
P,=~lim KQO.i)= lm KX (5 12y
12 K = oo { 3 l> K 300 1 3>

5.3 Formulation of Power Flow P,

Upon substituting x =X e and t£=F ¢ imo Eqs. (5.1)-(5.3), the equartions of motion in e

frequency domain take the forms

[-m @ +jwc;+ (k,+K) X, ~KX, = F, (5.13)
[- ma@? 40 (cy+cy) + (ky+43) [ Xa = (hy+jwey) Xy = Fy (5. 14)
Jor Xo+ (i + Ky X, - KX - (k3+jmc3)X: =0 (5.15)

whose solution can be represented by

X, =H j(0)F +H () F, (5.16)
Xi= H(0)F +Hyy (0)F, (5.18)
where
1 nd 2 . TK . - . “!..
H(w) = 5{(m5—m +jmA,) ;;—+7\,21(V+j(1)}1) —(V+jour}
L _
1 K _
Hu (w) = H:[((D) = Bm‘“ﬁkzl(v"'jwp)
H =] 2 _wl4jeon) | Foaa op) e
n(w) = 5 { (0] -w" +jo l)[m; pVHjoU) — (v+jou) -}



1K 2 o~
Hy(w) = 5;1“”5“”'*-"053’

1. . R, - . . K
Hy(w) = 5'~11("+qu} (1)]“(0'4'](1)51—7\.11{\'4-.}[9)“) +;,};

D = K| {07 -0 +j@A)) (0] - 07+ joA,) = (v+jop) 7]
+dmymy (v + Jop) 1] = 07408, = Ry (V4R ] [0F - ©F +jod, -k (v jop) |

In the above, a number of new parameters are introduced and they are defined by

¢+, Cx¥ @y : .
A = —Fn—-'. A= —'—;1 - blocked damping parameters of oscllator 1 and 2:
! i 2
T+, &y + & _
w = | — @, = ————:  blocked frequency of oscillator 1 and 2;
Poonom oyom
Oy i
W= f:: coupling damping parameter;
ML
ks A
Ve o coupling spring stiffness paramerer;
~'/m] 2
m,
A= i — (i,j = 1,2 ):mass ratio.
Ny
The power flow P, as defined by Eq. (5.12) can now be found by performing the contour
mtegration

Py = lim [joK[Hs (@) H " (0)S,+Hyp (0)H s (0)S,]aw 5.19)

-3 00
in which H", () is the complex conjugate of H,(®) (i=1,2) and S, and S, are the power spectra of
excitations f,(t) and f.(1), respectively. The integral in Eq. (5.19) can be carried out and P,, can be

explicitly written as



Ayl
P = Ay nEy, - (] - ;5] ){ (V2= @ Ep,+ (a+B)Ey ] (5 20
i
in which
AIA:’ - AlAz o o lad
o = ——Q—\'*(A)+A2). B= ——Qﬁ—p'(A]ms-fA:m;-zpv}
_ A8 1 2 A 5 o AR
Y, = o M (A’mj +A W - 2pv) + 2P (@ —w)) + ;
{(.j = 1,2)
0 = AIAZj(wf-mg )T+ (A A (A 0]+ A 0] - 2uv) ) +v2(A1+A3)2

—HT(A, AL (A I+ A WD~ 2uv) +2uv | (A @+ A,07 - 2uv) ~ (A 0] +A.03) ]
where E,=1S,/m,A, and E,=7tS,/m.A, are the average total encrgies of the corresponding blocked
oscillators.

In the same fashion, Fig. 5-1(b) can be used to derive the power flow from oscillator 2,
which can be written as

AU
l-'\[(Tﬁ -u)E2b+(ﬂ+B)E]h} (5.2
A,

Py = A uE,, ~ (1 -

5.4 Input Power and Total Stored Energy
Other quantities of interest such as input power to each oscillator and 1k total energy stored
in each oscillator can be similarly expressed explicitly. The input powers to oscillators 1 and 2

are, respectively,

Pp= Jim (f1) = AEy, (5.22
n = Jim 2) 220 '

The potential energies of the oscillators are

2 1
E, = 5 (k +ky) “i)nm(xﬁ =5

1 1
v = 5 C12E1b+il)3152h (5.24)



! . 3. I I
E:P - i(kz—*—L‘)Kthm("i) = §C2I52h+iDleIh 5. 25

and their Kinetic encigies are

1 . 2 1 1 .
£y = é’"lxh_’,“w(*'l) = 540kt 38k, (5.26)
_ 1 . 2 ) IB F on
E, = imﬁxli"m<“3> = §A2]E2b+§ 2E (.17
Here, )
(f)" ’ ol ) ! -
C'} = ——57 { fA'+AJ) (" 2(1]} +Aj) -+ (Ale +A!w' —2}_{\1)

4 2 2 . 2
o) 14.; +Aj°{, + 2pV + (A‘+AJ.)/ (Af.Aj Lf L]

+ N 3 - T T
W W - V-
v
wla, v? {Aimf+Ajwf+2uv+(A'+Aj)(A,.A/*uz)}
D = - (A +A) + - 5 S
p = g 844 P

AA - 2,2 2 -
Aj= L] = )"+ (8,+4) (B0 +A0])]

1] Q

A
-a {p‘(Al.w;-f-Ajw; - 2pv) = v (A + AJJ +2uv [m;-—m]' +A; (A,+Aj) 1}

A
By = 5V (4,+4) +pF (A0l+ 800 -2uv) ]
(ij = 1.2)

The average toral energies of the oscillators are

Ey = Ey+Ey, = AL+ By Ey, 5.28)
Ey=Ey By, = A By +BpEy, 5.29)
in which
L 1 L I
A, = i(AfJ+C'f)‘ BU = §(Br‘;+Du)

By solving Eqs. (5.28) and (5.29) simuitaneously, the average total energies of the blocked

oscillators can be expressed as functions of average total energies of the two coupled oscillators as



E ‘1'11E1 _B‘HJE'\
= ot =t e (5. 30,
b A 12‘4 2] -B x:B 21

A’EZEZ - B'IQEI

E’) = — ; ; - (5.31,
FOA A - BB,
Similarly, power flows P,. and P,, can also be determined from E, and E, as
Pp=w, g -apk, (.32
Py = an by -0y Ky (5.33
where
(a~y VA + (a+B) B,
Q=G TR R
i A”AJ’-B”B it
o =g ATV BT (0PI
" ' A A, ~B B
An
=1- 3= 534
c; A’- ( )
Y= e
i L B - ;"}';}‘L/A,‘
(hj = 1L2 jzi)
Finally, the actual dissipative power due 16 damping element ¢, can be expressed by
£y = l}i“w“,?((x?.-)‘}) )= Kh_r’n“f's((h"/‘z) ?
= GlElb+G2b‘zb = G.IE] +G'2E2 (535)

where

Gi= s tras P

EL
L GAuCGEy
bAA-BE,
(,y =12 JEi)
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5.5 Special Cases

It is inssouctive to consider rwo special cases and point out the important differences that

exist berween “4e results following this approach and those of [22,91].

Case 1. When ¢, = jm;m, W = 0, the system reduces to one involving conservatively

coupled oscillators. One obtains

AIAZ 2 + b
o = —er—V'(Aiﬁ-Al), B=0 ¥,=0 v,,=01C, =80 =10
and P,; and P, as given by Eas.(5.20) and (5.21) reduce to
Vi(A +4,)
- — - (E,-E,) (5.36)

Ppp= N T -
(@) -l T4 (A +4,) (4,0 + A0}

and
P, = -P, (5.37)

These are consistent with the conventional results obtained for conservatvely coupled oscillators.

Case 2. Consider the case in which ¢,=¢,=0 and k,=0. Thus,

V=0, A = A0 4, = Aop @ = pio]-af)’

and
P.= P = AE, (5.38)
Py = Py = Mk, (5. 391
On the other hand, the formulations of {22.91] would lead to, in this case
A1112 " 3 7

Pp,= ——é—p‘(Alm§+A2m;)(Elb+E%) 15. 40)

Py = PIZ (5.41)
and

Po=-Fy= —A;’Egb G423
£5.43)

In comparison with Eqs. (5.40)-(5.43), Eqs. (5.38) and (5.39) are more straightforward and
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physically reasonable in the sense that (a) the coupling connmection ¢, is the only element
dissipating energy from input forces so that both P, and P.. should be positive i this particular
case, and (b) power flows P,. and P,, cannot be equal unless the input powers from the two

oscillators are equal. This is true even for the case of two identical oscillators,

5.6 Dissipative Power and Penetrating Power Flow

Equation (5.35) shows that power dissipation takes place at the non-conservarive coupling
connection. Hence, it becomes an important issue when power flow is considered in the case of
non-conservatively coupled oscillators. In what follows, dissipating power and penetrating power
flow are defined and these will become important concepts in the development of paower balance
equations.

The dissipative power due o coupling elemrent ¢,, P, 1s defined in Eq. (5.35), wk i canbe

found from the power flow equation

'
PL,=-P{ =P, (5. 44)

-

or

Py = PL+P, = G E +GE, (5.45)
On the other hand, the amount of power penetrating the coupling connection and flowing

form oscillator 1o oscillator 2 is

(le-Pﬁl) (5. 46

Clearly,

k k
Py =Py (5.47)
which indicates the behavior of power flow through a conservative connection.
When ¢,=0, P,'=0 and Eq. (5.44) gives

Ppo= =Py



whick is Case 1 in Section 3.5. When k,=0, however, P,* and P_*' do not vanish, as seen from
Case 2,
A (k 1 1
P’ = Py = 3 (Pu—Py) = 5 (P=Pp)

The pencirating power is equal to zero only when input powers to the two oscillators are equal.

5.7 Power Balance Equations

For the system shown in Fig. 5-1(a), it follows from Egs. (5.7) and (5.11} that the input

powers to the oscillators are given by

(5. a8
P, = 2’_711(13‘15“+P12
Py o= 2M,0,E, + P P, (5.49)
where the internal loss factors 1|, and M, are
(‘l (‘2
W= om’ Ny = w,m,
Similarly, for the system shown in Fig. 5-1(b), the corresponding eguarions are
Pl! = 21}1@;5“"'});:) “le (5.5

Since Eqs. (5.48)-(5.49) and Egs. {5.50)-(5.5]) represent the power balance of the same system as
K-—>o, only two of these equati:as are independent. Egs. {5.48) and (5.50) are chosen for their
simplicity. Furthermore, when k, is »:mall as compared with k, and k,. E,=2E,, and E;=2E, which

will be verified in the numerical examples. Hence, the power balance equations can be written as

Pp=meE +Pp, (5.52)

Py = ny0,E,+ Py (5.53)
which have exactly the same forms as those for the conservatively coupled system. Furthermore,

the introduction of penetrating power flow and dissipative power leads to

Py = (n,+N,)©E +0,0E,+PY (5. 54
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{k}
Py, = “b*'“21}“)2534’“1:("151""}721 (555

where the dissipative factors, 1), and T,,. due to the coupling damping elemem are

G G,
e = 55 2 = 34
<, 2
. (k) y _ 1 1
with Pla =-Fy = slo, v By~ sla,+a,,)E,
s =

It is noted that the dissipative factors defined here are different from the coupling loss factors

given for conservatively coupled sysiems.

5.8 Numerical Examples and Discussions

In this section, the properties of power flow between non-conservatively coupled oscillators
are presented and discussed through numerical examples. They also help to verify the rationale
behind the power flow formulation developed in the preceding sections. In what follows, four
cases are discussed with their defining parameters given tn Table 5-1.

Case 1. As k, varies, the ratios of power flows P,; and P,, to the total input power P(=P+P,)
are functions of ),/(3,. as shown in Figs. 5-2 and 5-3. It is observed that these power fiows are
sensitive 10 /0, when it approaches one. This is especially noticeable when the bandwidths of
the oscillators become small.

In comparison with the results of [22], more s*zaightforward and convincing results are
obrained in this section. As ¢, increases, the energy dissipated in the connecting element plays a
more and more impoentant role in energy diswribution and more of the energy will flow into the
connection and this will lead to the posirive and progressive power flows for P,, and P,,, which is
clearly demonstrated in Figs. 5-2 and 5-3. The rate of power flow increment, however, gradually
becomes smaller as ¢, hecomes larger. At the same time, ¢, modulates the peak magnitudes of both
P, and P,, within a small range around ®,/w.=1.

Case 2. Consider the case in which only one of the two strongly-coupled oscillaiors with
large bandwidths is excited. The ratios associated with power flow, P,,/P, and with the penetrating

power flow, P,,*)/P, are respectively presented in Figs. 5-4 and 5-5 with the corresponding energy
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ratio £,/E: shown in Fig. 5-6. Figures 5.4 and 5-5 confirm the insensitivity of P,./P and #,3'/P
t0 w1 /w> In systems with strong connection elements. This becomes more obvicus when coupling
damping ¢y increases. Except for the range with frequency ratios less than one. Fig. 5-6 shuws
that an increase in damping 3 will reduce the ratio of vibrattonal energies of two oscillators. This
suggests the possibility that energy propagates through coupling damping element into oscillator 2,
indicating that the damping element not only dissipates energy but also affects power flow between
the two oscillators,  Furthermore. the combination of F,/F; and #,/P presents an important
feature, which is quite different from results observed in conservatively coupled systems, namely.
a positive power flow 7z does not automatically lead to the conclusion that £, is greater than
£, and vice versa. In order 1o explain this phenomenon more effectively. the energy dissipation
percentage Gl= G E/{G1E + GoE2) is calculated and is shown in Fig. 5-7. As shown in this
figure, G will become greaier than one when o, /.- goes from values smaller to those greater than
one. This suggests that the damping element dissipates a part of the vibrational energy transmitted
£ om oscillator | while propagates the restinto oscillator 2. A conclusion can then be drawn that a
damped joint element may trunsmit energy from the excitation-driven oscillator to the other while
it dissipates energy and that the “cause and effect” relation between - and Fi/F. no longer holds
because the dissipative energy in the coupiing elem2nt is a function of the frequency rano. The
higher the value ., /- takes, the more energy the coupling element absorbs from oscillator 1. This

will lead to the situation where E, is smaller than £5.

Case 3. Figure 5-8 is produced when ¢ varies between 0.125 and 1.0 with a set of fixed
frequency ratios. This diagram shows a completely different feature from that of [22] in that £y,
changes in direct proportion to ca. This further confirms the con-iusion drawn from case 2 and this

difference results from the differert definitions used for power dow in this section in {22].

Case 4. This special case consists of a variable spring connection and is designed to examine
the accuracy in approximating the energy {F) stored in the oscillators by twice the kinctic energy
(2E:). The relation between kinetic energy percentage in oscillator 2 ( £/ E) and connecting spring
stiffness (&,) is shown in Fig. S-9. It is observed thal the kinetic energy percentage approaches 0.5
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Fig. 5-3 Power Flow P,,/P vs. Frequency Ratio @, /), (case 1)
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as k4 decreases, indicating that twice the kinetic energy is a good approximation of the vibrational
energy in the oscillators in this case. However. the stiffness of the connecting spring should be
limited to the smaller of the two spring stiffnesses. Furthermore, the larger the connecting damping

{ca), the worse the accuracy of this approximation.

5.9 Concluding Remarks

Power flow relations for non conservatively coupled oscillators have been established by
considering the system as a limiting case of two conservatively coupled oscillators. As the deriva-
tiens and numerical examples show, this approach provides a physically consistiemt formulation
of power flow and eliminates the need for any subjective cheice of a definition of power flow
through a damaged connecting ¢lement. Furthermore, the introduction of penetrating power flow
and dissipative power gives more insight into the physical problem. Although the absolute values
of power flows in the two directions are not the same in general, the penetrating power flows
developed in this section are always identical.

[t is seen that systems with non-conservatively coupled oscillators are not reversible in general.
The absolute values of power flows in the two directions are therefore not identical even when the
two oscillators are tuned. The direction in which power flows varies with the relative magnitude
of P, and Pi°. When only one of the two oscillators is excited, the increase in coupling damping
may attract more energy from the directly driven oscillator and transfer energy to the other when
~1/wz exceeds unity For this reason, the properties of the indirectly driven oscillator define an
upper limit of the vibrational energy which changes with «3.

Since the development presented herein is consistent with the power flow formulation of
conservatively coupled systems, extensions 10 multi-modal non-conservatively coupled oscillators

can be made when the knowledge of mode distributions is provided [93].
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SECTION 6

POWER FLOW AND ENERGY IN P-S SYSTEMS WITH
NON-CONSERVATIVE COUPLING

6.1 Introduction

With the exception of the nuclear industry, static lateral force requirements remain to govern
performance evaluation and design guidelines for P-8 systems [87]. The S-system in this situation
is assumed so respond to the excitation independent of the P-system. Therefore, dynamic
characteristics of P-S systems such as tuning, attachment configuration and non-classical damping
can not be taken into accoum. Antempts to incorporate P-S system imteraction into the analysis
have pointed to the need to develop simple and yet accurate procedures [82]. It is the purpose of
this section 10 demonstrate that the concept of power flow and energy can lead 10 simple
procedurws for the analysis and design of S-systems.

In Section $, relationship berween power flow and energy of a genevic 2-DOF system has
been formulated. Although this could be @ realistic model for a piping system with subsystem
interaction [49], the most commonly encountered case in civil engineering s the one with an S-
system attached to a P-system as shown in Fig. 4-1. In this section, this system is considered and
it serves as a simplest application of power low and energy concept to the dynamic analysis of P-

§ coupled systems.

6.2 Formulation of Power Flow and Energy
The equation of motion of simple system shown in Fig. 4.1 has been formulated in Egs.(4.1)

and (4.2} and rewritten here for convenience

mx +cx +kx =cx, - k:"p =0 {6.1)
mp.'t‘P+ (cp+c_,)ip+ (kP-l- k,)xp~c,x',-klxs = fP = cpi'g-l-kpxg 6
It is noted that Fig.4-1 described by the above equations is a special case of Fig. 5-1(¢), when both

c; and k, as well as f.(t) arz set 1o zero. All the formulations developed in Section 5 for power flow,
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input power, and kinetic energy are therefore applicable in this simple case. They can be written
as follows when proper substitutions of structural parameters have been made.

Power flow transmitted from P- to S- system:

Py = (25 0 R R Re~a)E, (6. 3)
Input power to the P-system:

P, =28 o (14R,RR)E,, (6. 4)
Here,
o= T {Ry (RRy— 1) +2R; [2ER; (Ry +Ry) — 1] +R, RiR}  (6.9)

> 2
= 4E20iR, { Rg[(l—Ri,) +4E2 (14 RR ) (R + R 2 )

+RpRo LRy + Ry) 2+ 4E2RIR , (Ry + Ry) + 2ReRy (RL~1)] + RLRGR: } ®.6)

in which R,=E /€, and E,.=ntS,/Im 28 w,(1+R,R.R,)] are, respectively, the ratio of damping ratios

of §- and P- system and the average total energy of the corresponding blocked P-system subjected

10 a broad-band stochastic process with power spectral density S, i.e., the P-systemwith x, = 0
and X, = 0.

For the P-§ system under investigation, the ravio of kinetic to potential energy does not

converge to 0.5 as discussed in Section 5. Hence, instead of the total energy, the kinetic energy is

chosen here to describe the dynamic behavior of the P-S system, which takes the form

1

EP‘ = QAEPb 6.7
]

E." = EBEPb (6. 8)

for the P-system and the S-system, respectively. Here,

4%2“]6

4o ,,Qp "’{Rg(R -1 +4E}R§R (1+ReR,) (Rg+R,) +R,, [RIR, (RE-1)?



+R5, (14 ReR,) +4E2RER, (14 ReR,) (Ry+R) T+ RLRRL (LA RR) ) 6.9

4820k R ., )
B= 2L ___[R (1+RR,) +4E°R{ (R +R,) + R R.R:) (6. 10
0 w 3 pEE o

Degenerated from Eq. (5.49), the dissipative power defined in Eq. (5.35) can be calculated
by

P, = c (X, —ip)z) 6. 11)
6.3 Power Flow as a Respanse Variable
The dynamic petformance of an S-system is commonly characterized by its relative
displacement with respect (o the P-system and by its absolute acceleration. In this section, the
relationship between power flow and these two response variables is established, showing that
power flow can be used as an appropriate response variable.

Recalling from Eq. (6.1), the absolute acceleration of the S-systern can be expressed as

L 2 — > o Y
X = of (x, - x) +28 w, (X, = %) 6.12)
For the steady-state response corresponding to the Gaussian stationary input f(t), cross

correlation ( (xp -x) {:i‘P ~ X,) ) vanishes. Hence, the mean-square absolute acceleration is

(¥7) = of((x,~x,) ) + 45202 ((%,~ 1) %) (6.13)
However, from Eq. (6.11),

P P
. _ 2 = _ps = ps
((x,-3)%) c. " Eanm (6. 14)
Therefore,
P20
63 = oX(x, - x )+ ——P,, (6.15)

3

which is the relation between power flow and absolute acceleration X, and relative displacement

(X,-X,)-
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6.4 Illustrative Examples and Discussions

In this section, the propernties of power flow transmitted from the P- 1o the S- sysiem as well
as the energy of cach systemn are presented and discussed through numerical examples. They also
help to verify the similarity between power flow and energy on the one hand and absolute
acceleration and relative displacement on the other in the sense that both sets of pararneters can be
used to describe dynamic properties of the P-§ system. In what follows, two cases are discussed
with their defining parameters given in Table 6-1.

Case 1. The power flow transmitted from the P-sysiem is shown in Fig. 6-1 and energies of
the P- and 8- systems are shown in Figs. 6-2(2) and 6-2(b). From these plots, one can easily see
the tuning effect, an inherent behavior of P-S systems, which is also refiected by the absolute
acceleration and relative displacement shown in Figs. 6-3 and 64. As frequency ratio R,
approaches zero, the P-S system will converge to the P-system and, therefore, the kinetic energies
of the P- and §- systems are (.5S/c, and zero, respectively. On the other hand, when R,
approaches infiniry, the coupling connection becomes rigid and, therefore, the kinetic energies of
the P- and S-system will approach 0.5%S/c(1+R,) and 0.5TSR_/c(1+R,), respectively. For
example, when R_=0.01, their asymptoric values are 0.155 and 0.00155, respectively, which can
be observed from Figs. 6-2(a) and 6-2(b). In addition, when R_ increases, power flow from the P-
system will likewise increase as demonstrated in Fig. 6-1. Consequently, the kinetic energies of
the P- and 5- systems decrease and increase, respectively.

One of the features 1o be observed is that the power flow and the kinetic energies of the P-
and S-system are almost symmetrical about the tuning point within a certain bandwidth and the
runing effect is always located at R_,=1, which can not be found from the absolute acceleration and
the relative displacement shown in Figs. 6-3 and 6-4. This may be attributed to the unbiased
frequency characteristic of kinetic energy quantitics whereas acceleration and displacement are in

favor of high and low frequency components, respectively.



TABLE 6-1: Parameter Values Used in Numerical Examples

s =
m, k, < S,
case R. R, R,
Ns*/m N/m Ns/m m¥s®
(1) (2) (3} “) (5) (6) h &)
1 4 2500 10 1.0 v 04 v
2 4 2500 2 1.0 v v 05

Note: v means vaniable
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Case 2. The power flow and energies of the P- and S-system are shown in Figs. 6-5, 6-6(a)
ang 6-6(b) while the absolute acceleration and relative displacement are shown in Figs, 6-7 and
6-8. As one can observe from Fig. 6-5, power flow transmitted from the P-system increases
with the damping ratio of the S-system at first and then becomes less sensitive to it {or this case,
Accordingly, the kinetic energy of the P-system decreases and then almost maintains a constant,
However, the kinetic energy of the S-system has a minimum as the damping ratio £, varies. This
property is useful for design purposes since it provides an optimum solution for £, which has been
demonstrated earlier in [46,51,57]. This phenomenon can also be observed from the behavior of
the absolute acceleration.

As &, increases, the phase angle of the relative displacement between the P- and S-sysiems
becomes larger and, therefore, its mean-square value always decreases as shown in Fig. 6-8. This,
however, is not so for the absolute acceleration of the S-systein due to its relation with the relative
displacement and relative velocity between the P- and S-system as shown in Eg. (6.12). This
behavior can also be proved from Eq. (6.15), in which < (r, ~ #,)? > decrcases monotonically

while power flow P, increases with £,.

6.5 Power Flow and Energy of the Simple P-8 System Under Ground
Acceleration Input

It is customary to assume a simple P-§ system in Fig. 4-1 subjected to giound acceleration.
The equations of aotion of such a system for relative displacement representation z,(¢) and y,(t)
of the S- and P-system have becn established in Eqs. (4.3) and (4.4). 1t is immediately recognized
that inertia forces due to ground acceleration on two subsystems are perfectly correlated, a property
that prohibits the direct application of formulations developed in Section 5. However, Egs. (4.3)
and (4.4) can be transformed into the generic form for the system delincated by Fig. 5-1(c) under
certain conditions as follows.

Multiplying Eq. (4.4) by m, and Eq. (4.3) by m,, and then subtracting the first equation from

the second, we obtain
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Assuming Re = A_ and z, = 2,1 /R, Eq. {4.4) and (6.16) become

m, . m
aia+ ~————Lk,z, ~ —Ceplp ~ —kpyp = 0 (6.16)
1, my

. 1
myiay + {1+ Rm)c,z,; + (1 + R )kazar ~ ]T(c,y,, + k,yp) =0 (6.17)

. . 1 . .
mpip + Cplip + kpyp ~ ‘ﬁ.:_('-‘szal +kyza) = —mpiy (6.18)

The above equations can be used to represent the generic system in Fig. 5-1(c) when the following

system parameters are defined:

ki = (1 - R R )kp, k3:<l+iim~R%)k,.

¢1 = (1 = R Ry )ep, to = (1 + By — _1_) e,

)
£

and the following condition is satisfied:

1
Rmfaﬁl-FRm

k3 =

1
= ﬁ_;k‘

€3 = Cy

&l

(6.19)

Power flow and energy can thus be calculated from Eqgs. (5.32) and (5.33) as well as power

balance equations in Egs. (5.54) and (5.55).

6.6 Design Considerations of P-S Systems

In design practice, coupling spring and coupling damping coefficient are of interest. The main

desigh objective for the P-S system is to minimize the kinetic energies of the P- and 5-system under

the action of external 1pads. To reach these goals, trade-offs between them should be conducted

since tuning may produce minimum kinetic energy of the P-system but maximum kinetic energy

of the S-system. Detuning is often necessary to limit the response of the P- and S-systems within

allowable levels. Damping, however, can be taken at its optimum value for the S-system design
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because the kinetic energy of the P-system is not very sensitive to it as explained in the preceding

section.

6.7 Discussions

1t has been shown that the concept of power flow and energy can be convenienty utilized in
the analysis and design of simple P-S systems through the establishment of a fundamental relation
between the power flow and energies of the P- and S-system with damping-coupled connection.
Analysis has shown that power flow is closely related to the absolute acceleration of the S-system
and the relative displacement between the P- and S-system. Numerical examples also demonstrate
the equivalence between them in representing the dynamics of ¥'-S systems and the optimum
solution of the damping connection. Furthermore, considerations based on information on the

kinetic energics of P- and S-systems provide another useful approach to the design of P-S systems.
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SECTION 7
AN EXACT SGLUTION FOR A CLASS OF MDOF
P-S SYSTEMS

7.1 Introduction

In Section 6, the concept of power low and energy developed in Section § was applied to the
study of a simple P-S system. However, more complex systems are often involved in practice and
thus it is of practical interest to consider its application to more complex systems. Sections 7 and
8 are devoted to this wopic. This section is designed to aim at an exact evaluation of frequency
characteristics and response of a certain type of complex systems, namely, MDOF P-system with
an S-system consisting of many branches with identical structure but different weight. This
analysis can also help to evaluate the accuracy involved in various approximate schemes, to betier
understand the dynamic characteristics of multi-runed P-§ systems and to study the imeraction
effects among equipment installed in a building which has not been explored in the past. The mass
of the S-system in this procedure does not have to be small as usually assumed in the development

of a variety of schemes.

7.2 Equations of Motion of MDOF P-S System

Consider an »,-story building with each floor supporting a branch of the S-system as suown
in Fig. 7-1(¢a). The n, number of branches are of identical frequency characteristics with differemt
total weights. each having #,-DOF as shown in Fig. 7-1(b).

The equations of motion of the system in Fig. 7-1 can be expressed as

Koo Xp _ 6y 7. 1)
K, X, F

in which the subscripts p and s are associated with the DOF of the P- and S- systems. The
displacement vectors X p and X denote. respectively. the absolute displacernents of the P- and S-

systems. The vector X is of dimension », and X | is of dimension n, x n_, n, being the number of

p
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branches of the S-system with #,-DOF in each branch. Submatrices K op and ¢ pp €D be

decomposed into

- 10 15 P
Kpn =K, +KPP (7.2)
=0 e 7.3
'CPP - PP +§PP ¢ !

In the above, {s"',z’ and ¢ ;,;’ are stiffness and damping matrices of the P-system alone, K ;;’ and

g‘;; are the extra stiffness and damping of the P-system contributed by the 5-system. For the
system under consideration, they can be expressed as functions of mass matrix A » of the P-

systern alone as

(1]

K, =pk M, (7.4)

3
PP

in which p represents the ratio of the S-system mass directly attached to the buiding floor to the

= pC”Mp 1.5

floor mass. This is assumed to be constant over the height of the butlding in this section.
For clarification purposes, all the remaining matrices are explicitly written out in the

following:

() (23

("’) :
=tss ~ s
L - . -

in which the stiffness and mass mauices of each branch of the S-system alone can be furnther

expressed as

(1) > () A7
!(” = pm,‘pKn’ M; = pm,pM.ﬁ
The cross stiffness submatrix between P- and S- system can be described as
s 1 2 (ny
.KP; = -pkls{m\pi( ) m:pl( : n'p! g }



and

- K7
-h(p - -K‘p!
in which
00 0
lru = 1 0 _ 0 — I.rh o (,‘ =1, Al ”_p )
60 o ¢ 0o
For the P-system alone:
m, ki.ﬂ+k’p L:p
Mp o e R thp e
MP - : : K}"I’ - "k;‘p ‘
m e
np —k"'p k",i’ ]
For each branch of the S-system:
m,, btk ke
m koo ky o+ kg R
M, = K, = —hyy
_ _’Z'n s
T —l:.nlj Ln N

In this formulation, m__ is set to be one without loss of generality. The damping matrices

~ - - 0 -
_(,‘,;’ and € have exactly the same structure as stiffness matrices K !‘,P and K . respectively.

7.3 Frequency Characteristics of Individual Systems
The frequency characteristic equarton for each branch of the S-system on the fixed base can

be formmulated as follows:

(K -o'Mpe =0 7.6



The solution of the above equation gives n, number of frequencies w, and mode vector ¢ which

constitute the sriffness matrix in the modal space. Thev can be presented by

}PS = {?u ?JJ - 9 }

~ M5
The mode matrix ¥ is orthogonal with respect to the mass matrix. 1.e.,
‘PT}V]A‘P = }:
MY =1

in which [ is the unit matrix of dimension n_xn_.

The total stiffness matrix in the modal space and the mode matrix for the integrated S-svstemn

can be written as

[T

| Y.sem,,

(7. 10y

(7. 11)

In this section, the total response of the S-system is partitioned into the pseudo-static and

dynamic components as in {9,1047], which is also consistent with the design philosophy

suggested by ASME Boiler and Pressure Vessel Code {5]. That is
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TRV} rid
£ = X7 +X,

in which superscripts p and d denote “pseudo-static” and “dynamic’’ components of the
displacement. The pseudo-static displacement results from the movement of the P-system, which

can be easily obrained by setting the forces associated with the mass and damping matrices equal

10 zero in Eq. (7.1) and written in the form of

X |
R O S % (7.12)
KK, x7 0
or
(¥
X, X, (7.13)
— 1
T =-K K, (7. 14)

Here. 7, is a transformation matrix that transforms a unit displacement of the P-system into the

static displacement of the S-systern. This matrix can be expanded as

- ) | (7.1%)

inwhich { = {L.1,...1}7 |
The masses of the S-systern are lomped into the corresponding fioors in the P-system to
determine the frequency characteristics of the P-system. Consequently, its mass and siiffness

matrices become

rl‘grfM 7']7|
M = 21 "F | =M +TTMT (1.16)
SR A 1
‘irr R Ealls
- DK, Kl T T
KFP = Tr SKPP Kpsif ‘ - KPP+KpsZ.1+I1Ksp+T|KuII (7.17)



Afrer introducing Eq. (7.15) and other matrices defined before, Eqs. (7.16) and (7.17) can be

simplified to

M, = (1 +pT mM)MP (7. 18)
P=

v - (¢
Kpp = Kpp 7.19)

The frequency characteristic equation for the P-system can then be expressed as

(Epp-w'M)0 =0 7. 209

whose solutions are #, number of frequencies w, and mode vector ¢, and the sriffness matrix in
Zip

the modal space and mode matrix are given by

p
a% ‘
:p i
= 7.21
D, ’ ( }
I
’:
o
ap
= 22
'd)l’ {?Ip ‘.pzp Pn,p} 7.22)
where the modal matrix Q)p satisfies the orthogonal condition
MO =1 7.23
Fppp T fp (7.23)
in which lp is the unit matrix of dimension n, x n,,.

It is noted that. in the situation under investigation, damping matrix CPP = _C;;‘,’ as is the
case for stiffness matrix X e Furthermore, the structure of mass matrix 97!}, is exactly the same as
MP so that participation of lumped masses from the S-system does not change the damping
structure of the P-sysiem, i.e., C,, is proportional to matrices M, and K, if ¢ s is proportional

to matrices M o and K ;,;:’ of the P-system alone.

7.4 Group Analysis of P-S System in Modal Space
Let the displacement vector be expressed by
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Wl

P o=

I = g (7.24)

e e
le 5D

- r
T®
K] ~l=p 5

xu::

LS

By substituting Eq. (7.24) into Eq. (7.1) and pre-multiplying both sides of the resulting
ecnation by ®7, the tollowing equatrons in the modal space are obtained after muroducing the

orthogonal conditions:

- T‘ . . —"
R N
M, d 8 A4 Mg F

in which [, 1s the unit matiix of dimension n n xn n.. A and A are damping matrices of the
P- and S-systems in the modal space which are diagonal when the individual P- and S-systems
alone are proportionally damped. The coupling mass matrix Mjp and force vectors Fand F',

can be calculated by

M,=0MT & = [n,] (7. 26)

Py o= om0, (DWW L Gk =12 ) (7.2
T ) -

F,=®NF,~T F) 7. 28)

F,=oF, (7.201

In the above, the first and second indices in the coupling mass matrix denote the building floor and
mode order of the building. respectively. It is noted here that m =0 when ¢&,p(i) = (. This
means that the &-rh mode of the P-system has no contribution to the dynamic response of a branch
of the S-system attached to the i-r# floor.

For simplicity of derivation, Eq. {7.235) is expanded in the form of a mode of the P-system

and a branch of the S-system. That is,

[3

. . 3 --T .. - .
qu+Akqup+0)kquP+ T mg, = Fy, (7.30)
w1
"’
g(;+"Asg|'s+§2§gu+ z i’—?:!qlp = f‘l: (73l)



Before we go further to simplify above equations. the following matrix notations are intro-

duced:

(1) A diagonal mairix expanded from a vector is denoted as

diag (V) = H"m],,_,, (7.32)

o

in which V77 1S the r-14 element of vector V' of dimension ».

(2). A positive definite and diagonal matrix 1o the s-rh power is denoted as

[diag(V)1* = (V7)) (7.33)
in which "'"' is a positive real value and s is any real number.
Pre-multplying diag( 71, ) on both sides of Eq. (7.31} and summing up all the terms with

index i, we obtain

a a g g n’ : o — . “
gkx + éi‘(gkj + Q;gl's + ’z ( b3 dl(lg (Enl" ) A )ql}" = f ks (7.34)
=1 No= ]
8
-&ks = Z d[ag (iﬁli') _q” (7.35)

P= ]

s

f"“ =3 dlag(lﬁ,k)f'

3
Furthermore, the vector in the brackets of Eq. (7.34) can be simplified as

"

T diag (F,) 0, = T pm6,, ()0, (Ddiag (¥ D (¥ D = ¥§,
3 r= 1

~ 3
¢= 1

0
¥ = "“_",,"‘*d"aél(fp;] D&Y D (7.36)

I+p ¥ m,
l=1

in which the orthogonal condition in Eq. (7.23) has been introduced and &, is the Kronector delta

function defined by
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0 =k
3, = , (7.37)

1
Consequently, £gs. (7.30) and (7.34) become

~ 2 T: - v -
Gip ¥ Akqup+wkqup+[ 95 = Ftp (7.38)

oo 8,9, X0, + ¥y = F7y, (7.39)

Up to this point, the nfn,+1)-DOF svstem in Fig. 7-1(a} has been grouped into n, number of
(n,+1)-DOF subsystems, each representing one mode of the P-system. When #, 15 not greater than
three, the dynamic response of the subsystems subjected 1o white noise can be analytically
cvaluated by employing the integrations listed in Appendix A.

It is desirable to convert Egs. (7.38) and (7.39) into ones that are symmetric in subsystem’s
parameters so that this subsystem in the modal space can be durectly modelled by a new physical
system. From the orthogonal condition in Eq. (7.9), we know that vector ¥ defined in Eq. (7 36)
actually consists of the squares of the panticipation factors of any branch of the S-system in Fig. 7-
1(b) subjected to ground acceleration and therefore its elements can not be zero in this case. Based

2

on this observation, pre-muliiplication of matrix [diag (¥)1 BT Eq. (7.39) will give an

equivalent equation. That is,

1 3

(diag (¥)] * (4, + 8,4, + g, +¥4,,) = [dlag(¥)) *F",,
Noting that [diag (¥)] ' 7, A,.and 2} are all diagonal matrices and the multipi.cation of two

diagonal matrices is commutable, the above equation can be written in the form of

1

q,,+ 8,9, + R+ [diag(¥)] "¥i,, = F",, (7.40)
and Eq. (7.38) becomes

i
dl’p +Akqup +mi‘pql‘p +-I-T [d’ag (._\?) ] : -él’s = F“p (7. 41)
in which

7-10



g,, = ldiag (¥)]

3

t

é)cs (1.4

3

F" oo = ldiag(¥)) °F",

However, | ) |

(diag (P)] * P = [diag(¥)] * |diag (P)]] = [diag(¥)}°!

1}

The substitution of this result into Eq. (7.41) leads ro the equation

1

kp {7.43)

Gup+ Akqup + (;)i_qup +¥7 [diag (¥)] 'Egrh = F

Equations (7.40) and (7.43) are the final formulas that can be employed to calculate the

modal dynamic response of the P-S system. The two levels of transformation from Egs. (7.30) and

(7.31) to Egs. (7.40) and (7.43) are illustrated in Fig. 7-2 in the case of a 2-DOF P-system and a
(2 x 2) -DOF S-system, which helps us better understand the preceding procedure.

In the physical space, dynamic displacement of the S-system (X ;d‘ ) or relative

displacement of any branch of the S-system with respect to its supporting floor in this particular

case can be expressed as

r R
% f}‘sq[:/,ﬁ;mw ‘
cid i . i
3: ) =g)s.q:= E : (7. 44)
!
!L:ysgn’s/ pm",ﬂ !
and its i-rh subvector for a branch of the S-system artached to the i-r# floor is
X = 1w, (7.45)
i \/E;";p-. s34
or
g, = Jom, ¥;'x" (7.46)

Recalling Eqs. (7.35) and (7.42), we can express modal displacement vector (§ i) 5
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Fig. 7-2 Hlustration of Two- Level Transformation
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n

~»

= [diag(¥)]

= pldiag (¥)] *diag (¥ Y \_‘ ,P¢kp(h2\';"‘ (7. 47)

In the above derivation. Eqgs. (7.27) and (7.40) have been introduced. Expanding displacement

ody . .
vecior X, 1n anew way. e,

(ah

x4 = ¢ LK, (=1 2 ...n) 7. 48)

)

w !a‘j A

and substiuting 1t inte Eq (7.47), we have

!

4, = plaiag(¥)] "dlag(‘i’ WL ome i Eoo, X
l=a =1
1
p - 15 -1 - ey
= —— D diag(¥)] *diag (¥ HY]'X, (7 49)
l+p E ﬁI.'s
=1
or
"1
1+P ): 1'?1“ !
B = ¥ ldiag (¥ D) g (901, .50

In addition. substituting Eq. (7.36) for ¥ gives rise 10

[ERE

tasug (¥7'1)) 7 diag ()]

o ——————

41—

P (diag (¥ D17 diag (diag (¥ D) (¥ )]

'
l
¥
A

1+PE’"1;

N Is

R ;
= e |diag(¥;' D" [(a'rag(fpJ Nyl
Ih‘PZmi;

% I=1



[ op
— (7.51)

n <

1+ .r7zs
'\‘ PZ !

Iz

Eq. (7.50) then becomes

(7.52)
and the dynamic response of the i-th branch of the S-system can be calculated from Eg. (7.48).

In the derivation of Eq. (7.51), we take the sign of element of vector ¥/ for the square root
value of diag (¥) . This does not affect the frequency characteristics and dynamic response of
the P-S system since the product of [diag (_@) ] Y% and q ks is independent of the sign

convention.

7.5 Illustration of Two Transformations

To assure the appropriateness of the proposed procedure, the two transformations described
in Egs. (7.35) and (7.48) must guarantee that the equations before and after the transformations
are equivalent, i.e., the transformations matrices must not be singular. This is demonstrated below.

Eqs. (7.35) and (7.48) can be rewritten in the matrix form of

g, (7.53)
(7.54)
in which
T, = [diag(m)] = [Jpm,, @, () diag (¥;'D ]
T, = (9,0 4]
in what follows, we wish to illustrate that the determinants of T, and T, are not equal to zero. As

a matter of fact, 7, and 7, have the same structure and therefore only T, is demonstrated in the

following.
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The determinant ‘T, is defined by

=3

0, (0 o, (LI ¢ (I
7, = 0, DL e (B e, ()

0, ()L 6, iyl e, (n) ]

m;;mii . Q,j;”_”pmzs

- - ) ¥ 1 F

= I¢‘P(])] . tb:;: (z\l‘ ' sz’~1)p(2)l$
(1) S (RN 3
R T A L

|n'—1} L by

>

~n(n -2 SRR -1 noe o tn, -1
= (¢, (1)) o] ) (1) SHCNARRNS DA K
oh

Here, new coefficients ¢ ip (i) can be expressed in the recursive form, i.e.,

. ’ln
{1)) (7.55)
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Qkp (1) = (=1 2, .., n, i) 17.56)

(i+1) |
and ¢;£’ (7)) = 4’&;;“) represents the mode value of the k-14 mode of the P-svstem at the i-rh
floor.

In order to assure nonzeroness of :T, , all the factors in Eq. {7.55) must be finite and
nonzero, i.e., 0:;’ (1) # 0 and §¢:;’ (1), < oo, After a series of tedious derivations. the following

relations hold:

4, (D) 6, (1)
0,02 0,,(2)

o (1) =

ip (1.57)
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and so on. It can be observed that ¢
dimension of the “principal” submatrices in mode matrix gbp as shown in Eq. (7.39) and this »

obviously finite but not equal to zero.

7.6 Dynamic Response of §-System
The dynamic responses of an S-system with each branch of dimension less than four can be

analytically calculated from the integration formula in Appendix A, For the simplest case with ,

equal w one, Ey. (7.48) becomes

"» o T+p ™
54 = g (D3 = d’bf 9,004 60

[ =1

in which Eq. (7.52) has been introduced and ' = 1 has been recognized in this case.

The mean-square displacement and velocity can then be formulated as

l+ " n,
()7 = f};g T T 0,00, (Db .61
i= 14 =1 .
A t+p ™ ™ P
)y = PSS e (e D G .6
p i= ke r r

from which one can see that the mean-square values and covariances between modal responses
are required. These can be obtaned as follows.
In general, Egs. (7.40) and (7.43) can be expressed for rwo modes of the P-system as

follows:



4,45, 4,10 4,p+'3i't'2,A\ =L fu (7.63

i /g
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and
fhp“‘ﬁ‘,pfhp*'w;pqu*"'}f{h =TI, ftn (7. 65
o 2“3+A52;hﬂnfc‘;‘.s+rﬁtjkp =T, fio (7. 661
in which m = ;—E—f‘
vi+p

When the base displacement anput to the P-system is considered, I' =", =(. Power flow
transmitted from the P-syvstem to the S-system through one mode and energies stored in the mode
n this cage can be calculated by referring 1o {53] For more general systems with correlated inputs
in Eqgs. (7.65) and (7.66). same form of the power balance equation can be oblained as given In
Eqgs. (2.15) and (2.16). Bu1, the expressions for inpur power and energies (mean-square values)

take different forms. They are
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in which §, is the power spectral density of broad-band stochastic process f(t).



For the calculation of covariance between any two modes, the transfer function approach as
used in Section 5 is emploved. After manipulaing a series of mathematcal derivations, the

covariance between any two modes described by Egs. (7.63)-17 661 can be forrulated as

r Ty
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r
) = § f oo e e = 70
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in which
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] . :

e
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The 'mtegrand in Eq. (7.70) can be resolved nto partial fractions as
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where the coefficients of the partial fractions. a. ... a,:b,. ..., b, . are obtained from the soiution
of the simultanzous equations
W.U="°p (7.7

where matrix W, and vectors {7 and P are defined as
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d, ( I=0 1,2 3,4) =d; inEq. (7.72) when B and w,, are, respectively, replaced by
Ayand o,

Equation (7.70) then becomes
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which can be analytically evaluated as shown in Eq. (A.2). Here, the coefficients B ,..., B, and

3
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For calculation of the velocity covariance between mode 7 and mode & of the P-system. the
procedure is exactly the same except that vector £ should be re-arranged into
P=\{P. P P P P . P. P P

[ : 4

PL=P, . Po=0  (1=0,1234.56)

7

The absolute acceleration for this simple case can be expressed as

. Sdi 2 , )
v, = —Ayx w1, (/= 1.2, ..., n[,)

%) R}

and 1ts mean-square value takes the form

()= ATy et (g 7 7

7.7 Nlustrative Examples and Analyses
In this section. three examples are presented 1o Ulustrate the interaction effects between
different branches of the S-system, the effect of the number of degree-of-freedom of each branch
on the dynamic responses of the S-system. the existence of optimum damping in the S-system to
minimize 11s dynamic responses such as absolute acceleration. Frequency characteristics of the
coupled P-S system are also studied and employed to indicate the possibility of uncoupled

analysis.

7.7.1 Exampi:e 1: Interaction Effects Between Different Branches of S-System

A uniform two-story buiiding supporting two oscillators as shown in Fig. 7-3a) is
designated as example siructure 1. The mass (m,) and stiffness (k) of the building (P-system) are
assumed to be 1750789 kg and 350236220.5 kN/m, respectively, and the damping matrix 1s
considered to be propoertional to the stiffness matrix in this example. The ratio between mass of
one oscillator 1o floor mass (m,) is kept at 0.] while damping ratios of the oscitlator and the first
mode of the P-system are assigned to be 0.05. The natural frequencies of the P-system
considering a lumped S-system mass can be found 1o be 26,356 radfsec and 69.000 rad/sec,
rzspectively. Three types of loads which include the load on the S-sysiem (either one of
oscillators), displacement input and acceleration input are sketched in Fig. 7-3(b). All the external

excitations in the three types of loading schemes are assumed to be broad-band stochastic
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processes with unir power spectral density. Mean-square values of relative displacements of the §-
system with respect to the P-system and displacement of the P-svstem are tabulated in Tables 7-1
- 7-3 when the frequency of the oscillator (w)) takes values 1.0, 26.356, and 69.000 rad/sec.
Except for the displacement input, x,, (i=1.2) represents the relauve displacement with respect to
the base. It can be observed from Tables 7-1 - 7-3 tha ((x, - X, *) and (.rip} under the action
of load on the S -system are exactly the same as ({x, - .\'!P}z) and (.\'fp\/ under the action of
load on the S.-system which agrees with our intuition. ({(x  ~ X ) *)and ((x, - X, > under
the excitation of load either on the S,- or on the §.- system are almost of the same order for tuned
cases as presented m Tables 7-2 and 7-3 whereas those are quite different for the detuned case as
given in Table 7-1. In fact, §,-system {or §;-system) almost remains still when S.-system (or S -
system) 15 subjected to a broad-band random force. This is because the vibration-propagating
medium (P-system) is not excited appreciably for the detuned case. When the displacement and
acceleration inpui through the base are considered. the mean-square displacements of the S;- and
S.- systems are of the same order for both tuned and detuned cases. Moreover, the mean-square
displacement under the acceleration input generally decreases with the increase of frequency of

the S-system due 1o direct loading on the S-system.

7.7.2 Example 2: Optimum Damping of S-Svstem

A six-story building to which six oscillators arc  ached is presented in Fig. 7-4, which is
designated as example structure 2 in this section. Each story has the same mass (m,) of 1.0 kip.s*/
in (= t.8x 10" kg) and interval stiffness (k,)of 5000 kips/in ( =9x 10 N/m) . The six identi-
cal oscillators are characterized by mass ratio {p) between mass of one oscillator and floor mass,
frequency (® ) and damping ratio (& ). The frequencies and mode vectors of the P-system
alone are given in Table 7-4.

Frequency Characteristics and Non-Classical Damping Effects. Although frequency
characteristics of the coupled P-S system are not required to calculate the dynamic response of the
S-sysiem as demonstrated in Section 7.6, they can help us better understand general dynamics of

the complex P-§ system considered here. The frequency characieristic equation can be easily
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TABLE 7-1: Mean-Square Displacements of Example 1 (@ =1.0 rad/sec)

Load on S-system Displacement | Acceleration

s, s, input input
(1) {2) (3) (4) (5)
Xy X, P> 1.0249x107 | 1.2976x 10 [ 4.0907<10°7% | 31.4826
AR, Ry > 2976x10% | 1.0250x107 | 9.6047x10"° | 31.5168
<x3, > 2.5926x 10716 | 2.5962x 101 | 4.1274x 10 | 7.4517x 107
<x*, > 25962x 10" | 1.0377x10°F | 9.3266x 107 | 1.9356x 1072

TABLE 7-2: Mean-Square Displacements of Example 1 (¢ =0, =26.356 rad/sec)

Load on S-system 4
oac on Sy displacement | Acceleraton

S, S, Input mput
(1) (2) 3 4) (5
<X, K, 1> 3.8950x 1077 | 1051910 | 1.9477x10° | S.5031x 107
<Ky Xp) 5> 1.0519x 107 | 28807x 1077 | 4.5654x 10 | 1.2632x 107
<x3,> 2.647x 1014 4.9689x 107 | 2.5474x 10" | 5.3935% 10
<x*> 4.9689x 1074 | 1.3495x 10" | 5.1691x 1071 | 1.3833x10°

TABLE 7-3: Mean-Square Displacements of Example 1 (0 =0 ,,=69.000 rad/sec)

-Syst . .
Load on 5-system Displacement | Acceleration

S, s, input ihput

1 (2) 3) (4) (5}

<Ry R V> 1.3820x 10 | 3.0746x 107 | 3.9941x 10" | 4.8726x 10

<(Xy~Xy,)%> 3074610 | 1.8053x 107 | 1.6360x10° | 7.6269x103

<5 > B.7479x 10" | 1.3906x 10 | 3.9696x 101 | 6.0959x 10

<@t> 1.3906x 10°'% | 3.4303x 10 | 9.0857x 107" | 2.3645x 10
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fornlated from Eags. (7.65) and (7.66) with the absence of damping and extemal force terms. i.e..

wip—Qz -m @

oo 0 (7.74)
Cem? -2 9 0
which gives the following natural frequencies and mode vectors:
@, I ©, 9y L,
—= ~;’+12F;( . +l) -4 (l-n") — 7. 75
2 -~ s 2 ! 2 s
OJkP ‘(1 -m) 7‘-‘)"_’7 "\. mkp "ka,
- T
Q
- - 1- -
w, .
Pus = ,,A__L’" 1 (i =12) (7.76)
Cup _
M-
®;,

The non-classical damping effect between the P- and the $- system under consideration can be

described by an indicator defined as

T .
‘(P“ 'As 0':(01;5

' (pi‘lq 1 ;0 A“p_ fp‘P b
(‘] = e ! (7 77)

P S
‘7' P 8, 0 9 O B 0 9
N\ Py 1‘0 Bip Pip I\ Pup 1_0 A Rt

which can serve as a generalization of indicators defined in [34,89]. This defumtion can be easily
applied to measure the damping coupling strength between any two modes of a complex system.
Moreover, the indicator 1s represented by a dimensionless number ranging from zero to one which
may provide a natural scale to compare the degree of non-classical damping effect on the dynamic
response of a complex system.

The frequency ratios calculated from Eq. (7.75) and non-classical damping indicaior from
Eq.(7.77) are presented in Figs. 7-5 and 7-6. It can be observed that frequencies (£2) of the

combined P-S system gradually deviate from their individual frequencies (w, and ., ) as mass
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TABLE 7-4: Natural Frequencies and Mode Vectors of P-System

1st 2nd 3rd 4th Sth 6th
mode mode mode mode mode maode

(1) ) 3 (4) (5) (6) 7
frequency 17.046 | 50.140 | 80362 | 105872 | 125224 | 137.350
v | Istfioor | 0.1327 | +0.3678 | -0.5187 | +0.5507 | -0.4565 | +0.2578
| 2ndfioor [0.2578 | +05507 | 03678 | 01327 | +0.5187 | 04565
t | 3rdfloor | 0.3678 | +0.4565 | +0.2578 | -0.5187 | -0.1327 | +0.5507
C [ath floor | 04565 | +0.1327 | +0.5507 | 402578 | 03678 | -0.5187
S [ Sthfioor |0.5187 |-0.2578 | +0.1327 | +0.4565 | +0.5507 | +0.3678

6th ficor | 0.5507 | -0.5187 | -0.4565 | 03678 | -0.2578 | -0.1327
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ratio {p) increases. indicating increased wteraction between two systems. This is especially
evident in the runed case. In addition, careful examination will show that frequency varianon of
the P-system (S-system) is more obvious than that of the relatively flexible S-system (P-system). a
result which coincides with the decoupling cnterion based on frequency change as shown in Fig
4-5. This implies applicability of the decoupling criterion developed in Section 4 w a complex
system,

It can be observed from Figs. 7-6(a-c) that the 2-DOF svstem under mvestigation 1s
classically damped when frequency ratio (@, /v, }is equal 1o the ratio of damping ratios (£, /3, )
which has been indicated in {34}, Furthermore. the non-classical damping indicator ¢, defined in
Eq.(7.77) increases with the parameter 8 defined in Eq.(2.6) Unlike parameter 8. the indicator ¢,;
is independent of mass ratio {p) only in the tuned case. The inclusion of mass ratio in the
expression of ¢, can make the wndicator itself become a good cnterion for evaluating non-
classical damping effect. For a constant ¢,,, the smaller the mass ratio. the larger the paramerer &
and therefore the error nvolved in the calculation of dynamic response without taking nto
account the non-classical damping effect. This result can be inferred from [34]. A comparison
between Fig, 7-0(a) and Fig. 7-61¢) demonstrates the reversibility of indicator ¢ . about frequency
ratio {o, /o, ) and ranio of damping ratios (£, /S, ). This can easily be explained by recalling the
physical system that Eqs. (7.65) and (7.66) describe. i.e., for a constant m. substitutions of W, /W,
and §_ %, for o, /w,, and § £, only exchange the structural parameters between these
oscillators.

Mean-Square Response of S-System. When the example structure is subjected 1o an
acceleration input, mean-square displacements of all branches of the S-system are shown n Figs.
7-7 and 7-8 for various frequencies (u)J_') and for various mass ratios (p) , respectively. While
the mean-square displacements generally decrease with the ncrease ot @ . tuning effect around
natural frequencies of the P-system alone can be clearly seen. Figure 7-8 shows that mean-square
displacements of the S-system with a fixed frequency are rapidly reduced as mass ratio (p)

INCcreases.
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A series of paramerric studies on the effect of damping. mass rano, and frequency ratie on
the absolute acceleration response have been accomplished and the results for oscillators attached
to the third and sixth floors are presented in Figs. 7-9 - 7-11. All the figures demonstrate that vari-
ations of mean-square accelerations of the S-svstemn at two fioors with damping of the S-system
are generally the same. indicating that contribution from one mode (in the P-system) tuned or
nearly tuned with @ is significant. In other words, energy is mainly concentrated in one mode of
the P-system due to the distribution of oscillators at all building floors. From Figs. 7-9(a. b). one
can further observe that, with cernain damping (£ ) . the mean-square acceleration can be mini-
mized as in the case of the stmple P-§ system discussed in Section 6. A small damping increment
of the S-sysiem has more significant influences on the mean-square response than the correspond-
ing damping change in the P-system as demonstraied in Figs. 7-10¢a, b). As one can expect.
damping in the S-system significanty reduces the acceleration response in the mned case while

the reduction in detuned cases is relatively small as shown in Figs. 7-11(a, b).

7.7.3 Example 3: Effects of Number of DOF and Mass Distribution in a Branch
of S-System on Response

The same six-story buillding in example 2 is employed here. The six oscillators attached to
the building, however, are substituted by six 2-DOF branches as shown in Fig. 7-12. When the
fundamental frequency designated in the figure varies, the mean-square displacements of the first
and top masses of all branches of the S-system are shown in Figs. 7-3(a, b) with mass ratio (p) of
0.1 and damping ratios of 0.05 for both the P- and the S- system. It can be seen that response
variations of the first and top masses of different branches are consistent. This confirms the results
observed in example 2 that energy in the P-system is basically stored in one predominant mode.
By comparing Fig. 7-13(b} with Fig. 7-7, one can further see that relative variations of the mean-
square displacement with frequency (@ ) for single- and two- DOF subsystems of each branch
arc conststent but the magnirudes of the response in Fig. 7-7 are generally less than those in Fig.
7-13(b) due o the distributed mass effect. The distribution of mass tends to reduce the effective

modal mass, which in wm increases response of the S-system as demonstrated in Fig. 7-8. A
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Fig. 7-12 One Branch of $-System in Example 3
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comparison between Fig. 7-14 and Fig. 7-8 further confirms the above analyses. All these results
clearly support the statement that 2 SDOF representation of one uvniform branch of the S-system
is a good approximation in the complex system under investigation. Based on this observation,
the analytical model considered in this section can be reasonably extended to cases with different
aumber of DOF but same fundamental frequency characteristics in each branch of the S-system.
Mean-square displacements of the top mass in each branch of the 8-system shown in Fig.
7-1(b) are plotrcd in Figs. 7-15 and 7-16(a,b) as a function of mass ratio (A = my,/m,,] between
the top and the first masses of the S-system. In the first figure, frequencies of the S-system (w1,
and w,,) are tuned to the fundamental and second mode frequencies of the P-system alone while, in
the remaining figures, they are equal to the first two frequencies of the P-system with the lumped
S-system mass, respectively, as given in Table 7-5. The latter case is referred to as nearly tuned
case here. For the same mass ratio {1}, there exist two sets of stiffness distributions that generate
two identical frequencies of the S-system but different mode vectors. Stiffness constants (k,, and
%»,) for these two sets of distribution are also presented in Table 7-5. Figures 7-15 and 7-16(a)
show the results for the first set of stiffness distribution and Fig. 7-16(b) for the second set of
stiffness distribution. Comparison between Figs, 7-15 and 7-16({a) demonstrates quite different
characteristics for the tuned and nearly-tuned cases in the sense that there exists an optimum
value of » which minimizes the mean-square displacements of the S-systern in nearly-tuned case.
However, for the second set of stiffness distribution, mean-square displacements of the S-system
are monotonically decreasing as shown in Fig. 7-16(b). The above analyses indicate that a
preliminary design with mass ratic (1) around 0.7 will generate the minimum response in the

S-system corresponding to the first set of stiffness distribution.

7.8 Conclusions

The dynamic response calculation of a class of complex P-§ systems defined in this section has
been grouped into many subsystems with a small number of DOF so that the closed-form solution
of power flow and energy quantities can be obtained under the action of broad-band stochastic
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TABLE 7-5

: Frequencies of S-System Under Different Mass Distribution

A 0.1 0.5 07 1.0 13 0 15 16
(1) (2) (3) (4) (5} (6) (7) (X)
w, {16179 15895 15759 |15561 |15370 | 15246 | 15.186
w, {47591 |46.756 |46.354 145771 45210 44847 | 44668
k. | 291834 | 407.959 | 470998 | S76.085 | 704985 | 822089 | 906871
K.P 1203238 | 676.939 | 793,406 | 380.88% | 890.719 | 853.374 | 812,120
K. 223562 | 2030.82 | 1926.84 | 1761.78 | 1575.89 | 142229 | 1319.70
K, % 1265304 | 135986 | 193940 | 288.043 | 395470 | 493.253 | $58.070

7-45



()Xl()‘: 1 AN Tatatory <o Indatan — = S awry

" T Ak siery T S aen 7T @hostory

Mean-Square Displacement of Top Mass

Fig. 7-15 Mean-Square Displacement of Top Mass (Tuned Case) vs. A:
p= O.l,ép =5, =005

7-46



Mean-Syquare Displacement of Top Mass

EX YT

Fig. 7-106¢a) Mean-Square Displacement of Top Mass (Nearly Tuned Case) vs A

Stiffness Distribution 1, p= 0.1,@}7 = gs = 0.05

7-47



4x 107!
@
x| )
2 "* - oy oW Dnd ciory W 3ed stry
g k3 A gk soen P S story RS Gt swory
. ,
Y 91¢)
=]
§
= 1
w
9]
ct |
B 2x107
A
g i
3
=
lay
s )
£ 1x10
<
=
00
Du

Fig. 7-16(b) Mean-Square Displacement of Top Mass (Nearly Tuned Case) vs. A:
Stiffness Diswibution 2, p =01, EJF = F,: = 0.05

748



forces. Based on the comprehensive studies on the complex system, the following conclusions can

be drawn:

(1)

)

(3)

4)

(5)

Interaction effect between different branches of an S-systern is nol significant unless they are

tuned to the frequencies of the P-system supporting the S-system.

An © system consisting of many uniform MDOF branches can be approximately represented by
an S-system consisting of many SDOF branches. The introduction of nonuniform distribution
of structural parameters (mass and suffness) into the S-system can minimize mean-square

displacement of the §-system which is nearly tuned to the P-system.

Dynamic response of an S-system such as mean-square acceleration can be mirimized by an
appropriate selection of its damping characteristics, which has been found in a simple system

discussed in Section 6.

Mean-square displacement generally decreases with an increase of frequency of the S-system

and mass ratio between 8- and P-systems (for constant frequency).

Energy in the S-system is mostly generated by one mode of the P-system whose frequency is
close to that of the S-system. For this reason, the energy distribution along different branches

basically follows that particular mode shape of the P-system.
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SECTION 8

MEAN-SQUARE CONDENSATION METHOD FOR THE
DYNAMIC ANALYSIS OF S-SYSTEMS

8.1 Introduction

As surveyed in Section 2. perturbation techmiques have been extensively employed to develop
modal properties of coupled P-S systems based on their uncoupled properties. It is thus an
mprovement over traditional uncoupled analyses by taking into account the dynamic interaction
effect on the modal propenies and dynamic response of the 3-system. Hawever. the appropriate
application of perturbation theory 1s based on a good understanding of the relative orders of ull the
small gquantities involved in the P-S system such as mass ratio, tuning parameter, damping ratio,
etc., which usually requires expertise evaluations. Any improper idenufcation of these quantities
will result in an erroneous conclusion or lead to unstable schemes. For instance, the perturbation
scheme may be unstable when the structural damping ratio is of the same order of or less than  that
of the conngction berween the P- and S- system but has not been recognized as a small parameter.

A simpler procedure which captures the coupling effect was discussed in [45] based on the
statistical energy analysis. This procedure was used in a coupled analysis of simple P-S systems
such as one with a SDOF P- and 2 SDOF S-system with conservative connection. For the general
case of non-conservatively coupled systems, a consistent formulation of power flow between
these systems as well as energies stored in individual systems has been developed in Section 5. Thus
formulation shows the equivalence of power flow transmitied from a P- to an S-system and energy
of thz S-system on the one hand, and absolute acceleration of the S-system and relative
displacement of the S-system with respect to the P-system on the other. This procedure leads to
the exact dynamic response of simple P-S systems as discussed in Section 6 and some special rypes
of complex systems as presented in Section 7. in practice, however, general MDOF models are
often necessary which points to the need for extending the basic formula developed for a stmple

case to more general situations.
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In this section. a practical coupled analysis in the modal space is presented for general MDOF
P-§ systems in which the modal propenies of individual P- and S-systems are involved and the
MDOF P-system (more than 3-DOF) is substituted by a 3-DOF system. which 1s then condensed

into a 15-2P model based on energy equivalence of the S-system

8.2 Basic Formulation
The equations of motion of an arbitrarily combined P-§ system as shown m Fig. #-1(a) can

be wntten as

MX () +CX () +KX (1) = F(1) (8. 1)
where
oo
M= "F (8.2)
0 M,
© r
K= "¢F 5’" (8.3)
_K:p K:s
c Cc
C: <~ pp o~ ps (8.4)
C,, C

In the above, subscripts p and s represent the P- and S-system. respectively, A and M, are mass
matrices of these systems; matrices K, and C, j (i,j=p.s) are stiffness and damping matrices
between system / and systern . respectively: and £ (f) and X (+) denote the external excitation
and displacement vectors in the Newtonian reference frame.

Although Eq. (8.1) describes the motion of the P-S system in a broader sense than Eq. (7.1),
they are formally similar. Consequently, in the same fashion as in Section 7, Eq. (8.1) can be
transformed into governing equations of motion in the modal space. In order to avoid vnnecessary
repetition, only the key steps toward this goal are stated in the following.

The secondary mass 1s considered to be fixed at the attachment points on the P-system to

determine its decoupled frequency characteristics while taking into account inertia coupling of the
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(a) Physical Space (b) Modal Space

Fig. 8—1 Pnmary and Secondary Systems



P- and S-systems. Thus, the modal properties of the decoupled P- and S-systems can be calculated

by solving the following characteristic equations:

(—mes“}'Ka.s“Pa =0 (8.5

Yo

(~o M, +K,)0 =0 (8. 6)

-3

mr which the modal vectors cb‘ and Qp are normalized to unity modal masses. M, and K

effective mass and stiffness matrices associated with the P-sysiem when the effect of the S-svstem

inertia is raken into account; they have the explicit forms

Ml’zMP+~T1rM.le {87
- v —1 ‘
KPP - brp Kp_\-f\.\s !(Ap (8. 8)

where superscript T denvtes matrix transpose and 7 is a transformation matrix that transforms

static displacement of the P-svstem into that of the S-system. Obviously, 7 can be expressed as

T, =K K 8.9)

Soss s Sp

The displacement vector X can  then be decomposed into

X= -

r (g”\ftb (8. 10)
ne e ¢ "F |

Y r‘e ,Q

K
Upon substituting Eg.(8.10) into Eq.(8.1) and then pre-multiplying SDT on both sides. the equations

of motion of the P-S system n the modal space take the form

r - -

T .- . . B

: AD ¢ T

IP M*P‘ (?”)+ oy (g”)-r o [g”) = (SDPFI‘} (8.1
:Mép [5 (.{5 ) 0 ‘-AS_ ..qj 0 w ~qJ v 0

- w -

-t

which corresponds to the P-S system in the modal space as shown in Fig. &-1(b) when the P-system
is the only one directly subjected to excitation £ . representing the displacement input as discussed
in Section 3. In Eq.i8.11), [p and / are identity matrices of n x n and m x m dimensions,

. B . . 2
respectively. M, = & M T,gDP 1s a coupling mass matrix between the P- and S-system; g);

Spatyd

and g)f are diagonal stiffness matrices of the P- and S-systems; A, and A are diagonal
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damping matrices whose elements are A, = 25,4, and A, = 26w, in which £ and ¢, are damping
ratios of the P- and S-systems, respectively; 9o and g, are displacement vectors in the modal
space: and ¢, and ¢, are modal matnices of the P- and S-systems,

In the derivation of the above equations, one assumption is made, ie., CopT1 +Cpa = 0. This
is true only when single attachments of S-systems such as the ones discussed in the preceding
sections are considered. For the case of multiple-supported S-systems, this assumption implies
that damping of the S-system is in direct proportion to its stiffness.

It is seen from Eq. (8.11) that, due to the introduction of transformation matrix T,, the coupled
P-8 system with non-conservative coupling has been transformed into a conservativeiy-coupled
P-§ system in the modal space but with mass coupling. Further observation shows thatEq. (8.11]is
symmetric in the characteristic paramesers of the P- and S-system so that the problem encountered
in the dynamic analysis of the P-§ system (one attached to another} using the SEA method [109)
has been litted. Statistical energy analysis is now directly applicabie to the analysis of dynamic
respanse of the P-8 systems {45]. When » = m = 1, Eq. (8.11) degenerates into the simple case

Gelt) + Apgplt) + wigplt) + 1a5,§.(0) = fplt) (8.12)

Gal(t) + Augull) + wigalt) + mppiplt) = 0 (8.13)

The relationship between power flow (7.} from the P-system to the §-system and the kinetic
energies (£,°, E) of the P- and S-systems has been approximately formulated in [53] and

modified here to give the exact expression

Py = 20(ESP ~ ELX)) (B.14)

in which the proportional constant « can be expressed as

- m2, [Apwd + 8,0 + A A, (Apw] + 4,2)]
(1 = m3p) [(wd - wi)? +{Bp + A)(Bp? + Asad)]
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8.3 Energy of P-S System with Closely Spaced Modes

A simpler case in which a MDOF P-§ system can be analyzed via statistical energy analysis is
one where their modes are closely spaced. In this case, the assumptions made in Section 2.2.2.2
are appropriate and power flow transmitted from the P- to the S-system can be implemented by
following the SEA framework discussed in Section 2.2.2.

The energy flow between mode i of the S-system and mode j of the P-system is represented by
Eq. (8.14), in which £}’ and E{*' are respectively substituted by constant mode energies £.°'/n
and £{*)/m. When averaged over the ensemble of systems, Eq. (8.14) becomes

‘ EO g
Pitl=nca>» |2 - 2. 8.16
ps n m { )

where < o >= mml,w?/(24w) is the averaged proportional constant over frequencies, with ..
representing the central frequency over frequency band of the external load.
When all the modes in the P-S system are considered, the total power flow from the P- 10 the

S-system can be expressed by

(k) (k)
2 s :
Pps=2nm<a > ( = - ) = Apawc BN - 4 gpe FLY) (8.17)

where 26, =m < a > fu.and 26,, =nr < a > fw, are the éoupling loss factors which can be related
to some conventional parameters such as junction impedance.
We may now use Eq. (8.17) to calculate the energies of the P- and S-systems by considering

the energy balance equation of each individual system as formulated in Section 2.2.2.3, ie.,

4£ach£H + 4&3;"#:5},") e 4&ancE§,H =0 (8»18)
4w BV + 46paw B — b upw ELF) = P (8.19)
which give the solutions
E(’I) = fp‘ Pfg‘n) (820)
y (&9 + 590)(50 + fap) - Eapfpa 4Wc
(in)
E* §a+&op P (8.21)

P T (Ep + &pa)(e + p) — Laplps e
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where P"" is the input power from the P-sysiem. From Eqs.(8.20) and (8.2}), one can easily
observe that the kinetic energy of the S-system is always less than that of the P-system when m=n.

As one can see, P-S systems with many closely-spaced modes can be readily analvzed.
Dynamic properties of the S-system such as its relative displacement or absolute acceleration can

be inferred from Eqgs. (8.17) and (8.20) as discussed in Secuion 6.

8.4 Response of P-S System With Sparsely Spaced Modes

A more impontant case. and more commonly encountered in practice, is one where » ang
take imermediate values and the modal frequencies of the P-S system are sparsely distributed. In
this case, individual modal contributions to the dynamic response of the S-system are expected 10
be significant and thus the assumprtions made in Secrion 2.2.2.2  are no longer valid. Hence,
statistical energy analysis can not be apphed in the strict sense. However, we can still use power
fiow and energy concepts on an individual modal basis.

Originally. 1t was intended 1o develop an approximate relation between power fiow
transmitted from one mode in the P-system to another in the S-system and modal energies stored
in the P- and §- systems. However. it was found that such a relationship is difficult to develop if
not impossible due to: (1) All the modal forces acting on the P-system are perfectly correlated; (2)
Frequency properties of lower modes are sensitive 10 the parameter variations so that such a
relationship (if exists) could be vulnerable to structural parameter changes. For these reasons, a
mean-square condensation procedure has been proposed based on the equivalence of total power
flow from the P- to the 5- systemn instead of power flow between two modes from P- and S-

systems, respectively.

8.4.1 SDOF S§-System and 2-DOF P-System (1S-2P Model)

If we consider the SDOF P-system and SDOF S-system as the simplest case, the next in
complexity is one with a SDOF S-system and a 2-DOF P-system. In the procedure proposed in this
section, the response behavior of this coupled sysiem is essential for generating knowledge of the

dynamic characteristics of general MDOF P-S systems. which is analogous to the representation
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of a MDOF system by a 2-DOF model in the traditional analysis of combined svstems
When m and n are set 10 be one and two, respectively, Eq.(8.11 1 degenerates ime the 18-2P

model represented by Fig. §-2(a).

2

3/1,7*31,.‘?1,,"'“’1;)‘1“)'*'”’1;74"3 = ~I*],j(r) (8.2
. 2 o 13
Gop + B Gop+ Wy G TG, szf (1) (8. 23

gorAg,+wig +mp g, +m g, =0 (.24

By following the procedure in Section S. the displacement amplitude under unit-amplitude

harmonic load f(t) can b= shown to be

el Do) 8=

s 42 2
V=Hw (m™ H +m7ypH, )

i which H,, H,,. and H,, are transfer functions of the SDOF system waith frequencies . w . and
W, respectively.
The mean-square vejocity of the S-system (or power flow from the P- 10 the S- svstem i ths
case) can be expressed as
o

E =5 [0 Q(w) “do = E; +E,T7 +2ET, T (8. 26)

Ay

in which E,, E, and E. are the mean-square velocities (energy parameters} of the S-svstem. the 8-
system with l‘zp = 0 and the S-system with I‘IP = 0, respectively: E. is one-half of the correlated
term of the §-system mean-square velocity. Their explicit expressions can be found by referring to
Eq.(A.3) and they are

_nS, B)"A\+B," A+ B4,

S S SR S (i=1,2.3) (8.27)
Co C,4,-CiA,+C A,
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Fig. 8-2 Condensation Process from 15-2P Model to 1s-1P Model
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Here, 8, is the power spectral density of the common factor fi1) in the external excitarion. which is
omitted in Fig. 8-2.

The mean-square velocities E, and E. as well as energy correlation EAE,E.)** are shown in
Figs.8-3(a, b) as functions of frequency ratios w,/w, and ®,, w,. It can be observed that E, and E.

enerally do not vary appreciably when w /w and w, /o, deviates from unity. The same
g y Y app b ¥
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phenomenon happens to the energy couselation EAE E,)* as far as (,,/(0, varies outside the range
berween unity and  ®,/0,. These observations imply insensitivity of E;, E, and EAEE,)** 10 the
frequency ratio 10,/(0, under certain circumstances, which indicates the possibility of condensation
of any two modes far away from ,. On the other hand. the energy correlation becomes strong
when (3, lies between M, and ©,,. This is especially true when ®,, is detuned with M,. These
observations form the basis of the mean-square condensation method to be developed below. Fig.
8-3(b) also shows that energy correlation does not change significantly when mass coupling m,,
varies.

The two modes of the P-system incorporated in the 15-2P model can be precisely condensed
into one mode if some physical parameters such as the mean-squarte velocity of the S-system are
exclusively of interest. In this sirmation, equivalence of mean-square velocities of the S-system
from the 15-2P model and the 1S-1P model results in an equivalent external force ﬁI‘l Pf (1) (B
is a modification factor) as shown in Fig. 8-2(b), whose contribution 1o the mean-square velocity

of the S-system is equivalent to the I’ ;f (¢) and T, Pf (1) inthe 15-2P model, i.e.,

(Ey) = (E)) (8.28)

15-2P model ~ 1§~ 1P model

For the general case (n > 2), it is expected that an MDOF P-system can be condensed into a
two-DOF P-system in a similar way. From the power balance equation of the P-S system [13], one
can see that kinetic energy of the 5-system or power flow from one subsystem to another would be
the rmost important parameter. Together with potential energy, this is aiso an essential parameter 1o
evaluate the secondary system performance if Gaussian excitation is considered. Based on these
observations, the mean-square velocity (or kinetic energy) of the S-system is considered as a major
paramerer on which the equivalence between the MDOF P-system and the two-DOF P-system is
based.

As a rule, two modes of the P-system whose frequencies are farthest from the frequency of

the S-systern should be condensed into one mode first. However, when the 1S-2P model is used,

the dynamic interaction effect of the remaining modes of the P-systern on the condensation can not
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be taken into account. This means that a solid cut has been made between the two modes of
the P-system and che rest, which is not expected to be satisfactory as indicated in the numerical
evaluation of the 1S-2P model. In what follows, one more mode of the P-system is added to the
18-2P mocel to form a new 18-3P model as shown in Fig. 8-4(c). The new mode functions
as an adjustment element which reflects the energy exchange between the two modes of the
P-system in the 158-2P model and the remaining modes. Whenever one condensation step is being
accomplished, three modes of the P-system have been condensed into two modes or the 1S-3P
model is transformed into the 15-2P model. The equivalence condition for these models can be
readily established by following Eq. (8.28), i.e.,

(Ea)15-3P modet = (Es)i5-2P mocel (8.29)

8.4.2 The Mean-Square Condensation Method (MSC Method)

Modes of a general P-system are divided into two groups in the MSC method, i.c., predominant
and residue groups. The predominant group consists of three consecutive modes of the P-system,
the middle mode of which is selected by the following sample criterion:

2
W,
1- :‘22 (8.30)
L

min
T

if the frequency wyp, determined by Eq. (8.30) is neither equal to wy, nor equal to wp,. Otherwise,
the three consecutive modes in the predominant group are chosen as the first three or last three
modes of the P-system. All the residue modes of the P-system are condensed into their closest
predominant modes.

An immediate question to be posed here is whether the 1S-3P model including three
predominant modes of the P-system by ncglecting all the residue modes of the P-system is
sufficient to represent the total dynamic response of the 8-system. Numerical evaluations of a
ten-story shear building demonstrate that this treatment is not satisfactory. Thus, methods of
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accounting for the remaining modes are needed and this is accomplished in this secdon through
mean-square condensation.

In order to simplify the illustration of the method, a flexible SDOF S-system with an n-DOF
P-system (1S-nP model, w, = v11,) is considered in the following analysis as shown in Fig. 8-4(a).
In this case, three predominant modes of the P-system can be easily determined from Eq. (8.30)
as the first three modes. Figure 8-4(a) indicates that a one-point input to a physical structure such
as an earthquake ground displacement leads to n perfectly correlated inputs to an &-DOF P-system
in the modal space. In ilie next paragraph, only one mode condensation process is illustrated and
the remaining residue modes of the P-system can be condensed in the same fashion.

Like the 1S-2P model, we ¢an condense exactly the n-DOF P-system into an (n ~ 1)-DOF
P-system based on the equivalent mean-square velocity of the §-system. Similarly, the (n —1)-DOF
of the P-system in Fig. B-4(b) can finally be condensed into a SDOF P-system. However, this
recursive process is impractical because it requires the solution of the 15-nP mode! which is of
interest here. In the MSC method, every step to condense one DOF of the P-system is executed
through a simplified 1S-3P mode! and its associated 15-2P model in Figs. 8-4(c) and 8-4(d),
respectively. The recursive process stops when only three predominant modes of the P-system
determined by Eq. (8.30) are left. All the other quantities of interest such as displacement and
acceleration of the S-system can be determined directly from this condensed 1S-3P model. The
approximation in this method is uniquely introduced when the first (n-2)-DOF of the P-system is
simply substituted by one equivalent mode e {from Fig. 8-4(a) to Fig. 8-4(¢)) and the equivalent
mode is reversed into (n —2)-DOF of the P-system after mode n of the P-system has been condensed
{(from Fig. 8-4(d) to Fig. 8-4(b)). Herc, mode a is the onc whose frequency is farthest from
w, compared to the rest and mode » — 1 is the next to it. In contrast, mode e is an artificial one
whose effect on the response of the S-system is supposed to be approximately equivalent to the
substituted (n - 2)-DOF P-system as far as the modification factor (5, and 4,) in the condensed
18-2P model ir Fig. 8-4(c) are concerned. The formulation for calculating artificial frequency w,,

and its associated parameters A, mo, and T, can be simply implemented as described below.
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8.4.3 Determination of Parameters (o .4, .m,.T ) Associated with the
Artificial Mode

As in Eq. (8.25) for the 15-2P mode), amplitude of 3-system in the frequency domain for a

general 15-(1-2)P model can be expressed as
- b
~-H, W’ Z m, I“p ip
Q = i= F (8.31)

4 2
1-Hw i)-:lmlpH

indicating that amplitude of the S-system for the 15-(n-2)P model would he identical 1o that of au

artificial [S-1P model if

m,, T, H, ‘-‘:1 m, U H, (8. 32)

n-—Z

m",PH“, = 'PHfP (R.33)

i=1]

in which m,_, I , and H, are mass coupling coefficient, participation factor and transfer
P ep ep

function of the anificial mode corresponding to - r ip and H,.p of mode /. Unfortunarely, the
above equations can not be satisfied for all exciting frequencies (w). In what follows, the
artificial parameters m o r ' va and App are divided into two groups: (1) m,, andI™ .p and (Z)mcp

and A, The mass coupling coefficient and participation factor (m,,, I, ) are simply selected in

ep

such a way that Egs. (8.32) and (8.33) hold when w approaches infinity, i.e.,

{,._2 n

= 3T m, 8. 34)
Nl:-'l

2 m L, m,, (8. 35)

i=1
Wwhile the frequency and damping coefficient (@, .4, ) can be determined based on the least-square
principle, i.e.,
[ , n=-2 R 2 a0 \ 2
Jagim®eoH =~ 3 m i H ) do+ jbo’{m,}, e E '";p ipflip| 0~ minimum (8.36)
i=1 f —co

-—n
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in which g, and b, are weighting factors. However, they are implicitly involved in the resulting
equations. For the sake of simplicity, the following criteria are employed instead. That is,

j )_j (m,, T, ) H,, e = ](m,prfp) H,, do 8.37)
—oal =}
= 2'"‘2 - o - -
fo T (m, I ) H, dw = j’co'(mepl‘gp; H,, Ydw (8. 38)
- i=1 —o0

Solving Eqs. (8.37) and (8.38) simultaneously gives rise 1o

-2 (m, r ) a-2(mI )°

0, = [T —%% i (8.39)
Ni=1 p i=1 Awww
n-2 n2(m,T )

A¢P=Z;( r)/z—-A—— (8. 40)

1 i=1 wp
Numerical calculation for a few weighted-average schemes of ®_, A, m_, I, independent

of ,. shows that the mean-square response of the S-system is insensitive 10 these choices.

8.4.4 Solution Properties
By substituting B, T _ 1), and B, r,, forT' and I, in Eq (8.26), the analytical procedure

to determine the modification factors (B, and B,) in the 15-2P model in Fig. 8-4(d) can be
developed, giving

2 2
El n-1)pP1 +E,T, B+ 2E. Ty, T,B8, = E, (8.41)

in which E_is the mean-square velocity of the condensing 1S-3P model, ie., (E)) 15 4P in Eq.
(8.29). For a general system, E,, E, and E, are all positive. Furthermore, (E;*-E,E,)<0 becausc E,
> 0. From the mathematical point of view, the trajectory that Eq.(8.41} describes is an ellipse in the
p—3B, plane. Any point on this ellipse represents one solution of B, and B,,which indicates that
the MSC solution exists but is not unigue. In order to obtain one unique solution, the condensation
process should be imposed on the mode whose frequency is farthest from ,. A good selection
of B, and B, mightbe aneby taking B, =1.0 when its maximum B, (=(E, E/(E, E,-E;*))*%)



is greater than one and B, is set to be B, otherwise. Foragiven B, two solutions for B, exist,
whichever closer to one is the solution. [t is worth noting that the closed-form expression of E, in
the 1S-3P model has also been formulaied so that the comiputation of modification factors in each
step is surprisingly expedient.
8.4.5 Summary of the MSC Procedure
The MSC procedure for a general 18-nP model can now be summarized as follows:
{1). Find out frequencies (w,, W,<w) < . <0,) ofindividual S- and P-systems as well
as participation factors of the P-system (1 Hpr Vo o V) and mass coupling coefhicients
(m[p,mzp, e mnp) .
(2). Select three predominant modes of the P-system based on Eq.(8.30) and let their frequencies

be o, <m‘.p<m

(i~1p (i )p

(3). Condense all modes of the P-system whose frequencies are larger than Weiynyp into mode
(i + 1), starting out with mode # as shown in Fig. 8-4 (condensation step I=1). Every circle
fromFig. 8-4(a) — Fig. 8-4(¢) — Fig. 8-4(d) — Fig. 8-4(b) condenses one mode of the
P-system.

(a). Calculate mep,Aep,mcp and ! DY Eas. (8.34,8.35,8.39 8.40) for the first (n-7-1) modes of
the P-system. Together with modes (n-1) and (n+ 1-1}, the artificial mode ¢ forms three
modes of P-system in the 1S-3P model at this step which is then condensed into its asso-
ciated 1S-2P mod:! with modification factors 5, and B,. The artificial mode ¢ is lastly
reversed imo the first (n-1-1) modes with B2F ip 852 new participation factor for mode &
{k=12,..., n-I-1) and Byl nenp for mode (n-1). Consequently, the 18-(n+1-1)P sysiem
has been condensed into a 18-(a-DP system,

(b). Repeat siep (a) with J+7 in place of 7 until 7 is equal to #-i-{. The original 1S-nP system
is then condensed into 15-(1+1)P system.

{4). Condense all modes of the P-sysiem whose frequencies are smaller than @, _p), IO mode

)
(i-1). starting out with mode 1 (condensation step I=1).

{a). Calculate o, Aep, m,, and1’ e by Eqgs. (8.34,8.35,8.39,8.40) for the last (i-/) modes of the
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condensed P-system. Together with modes £ and 7+, the artificial mode ¢ forms three
modes of the P-system in the 15-3P model at this step, which is then condensed into its
associated 15-2P model with modification factors §, and f3,. The artificial mode ¢ is lastly
reversed into the last (i-f) modes with 3,1 'kp as a new partictpation factor for mode &

(k=2+13+1..... i+1) and ﬁll' for mode {1+ 7). Consequently, the condensed 18-

I+ 1yp
(142-D)P system has been further condensed into a 1S-(i+1-DP system.

(b). Repear step (a) with /+/ in place of / until ! is equal 10 {-2. As a resalt, the 18-3P system
with three predominant modes of the P-system is established.

(5). Calculate the dynamic response of the S-system and assess its dynamic performance from the

condensed 1S-3P system with three predominant modes of the P-system.

8.4.6 Convergence as Mass Ratio (m/m,) Becomes Small

When the mass ratio between the S- and P-systems becomes very small, the following
relatons hold: (1) w,’s  are kept constant since the stiffness of the S-system are taken to be
proportional to the mass of the same system; (2). ©,’s approach @,’s which are the frequencies
of the P-system without the S-system; (3). M sp becomes proportional to the suare root of the
mass ratio; I approaches 1‘(") which consists of the participation faciors when the S-system
vanishes.

As the mass ratio decreases, the effect of the P-modes whose frequencies are far from  ®,
usually becomes negligible compared to the remnaining modes. The final three P-modes left after
the condensation process has been completed contribute almost all the energy 1o the S-system due
to the tuning effect. Numerical experimentation in Fig. 8-5(a) shows that the rate of convergence
15 good in the tuned case. For the detuned case, however, the converged value may deviate from
the exact one as shown in Fig. 8-5(b). This is partially because the energy correlation becomes
strong as illustrated in Fig. 8-3(b). In facy, ali the parameters such as damping of the P- and S-
systems, mass ratio, modal participation factor of the P-system as well as frequency ratio
mentioned above will contribute to energy distribution of the S-system. In the detuned situation,

the frequency ratio scems no longer to be a major parameter in energy distribution and criterion in
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Eq. (8.30) can not adequately provide three representative modes.

8.5 Numerical Verification

In this section, two ilustrative examples are presented and discussed 10 examine the accuracy
and efficiency of the MSC method. While mean-square velocity spectra in the modal space are
shown in the following examples, the total response of the MDOF S-system can be combined
using any justified rule as summarized in Section 2,1.4.3. The excitation f(1) resulted from the
support displacement in the P-system is considered as a broad-band stochastic process with

spectral density of 1.0.
8.5.1 Example 1. SDOF 5-System and MDOF P-System

A ten-story uniform shear building with mass. stiffness. and modal damping coefficients as
shown in Fig. 8-6 is considered. Two attachment positions of the equipment are studied, ie., one
on the Sth-floor and the other on the top floor. In this study, two values of the secondary mass are
chosen. They are 925 kg and 46300 kg, which correspond to mass rarios (equipment to floor mass)
of 0.53% and 26.4%, respectively. The mean-square velocity spectra of the S-system are presented
in Figs. 8-7(a-d). Compared with the integrarion results (dashed lines in Fig. 8-7), the MSC
method predicts very well response spectra of the S-system, especially when the mass ratio is smatl
(Fig. 8-7(a) and Fig. 8-7(c}). In panicular, the mean-square velocity cormesponding to the tuned
case in which the S-system frequency is tuned to one of the frequencies of the P-system is predicted
very well. Even when the mass ratio reaches 26.4%, the relative variations of the response specira
of the S-system produced by integration and the MSC method agree well. This is especially
imponant in the preliminary design. The switch of three fundamenral modes, when O, varies. is
responsible for a few discontinuity points in the mean-square spectra. From the 15-3P model after
the condensation process has been done, one can easily calculate other parameters of interest such
as relative displacement and absolute acceleration. The mean-square displacement spectra of the
S-system is shown in Fig. 8-8, from which one can observe that the accuracy compared to the
integration results is better than the mean-square velocity spectra due to the effect of so-called low-

pass filter.
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By comparing the mean-square velocity spectra shown in Figs. 8-7(a) and 8-7(c), one can
observe that the S-system will obtain more energy  the low frequency range for the top-floor
configurarion than for the Sth-floor configuration. This implies the involvement of more high-
order modes of the P-system for the 5th-floor attachment and illustrates the importance of
antachment position in the S-system design. For this reason, the mean-square velociry specira for
the top-floor attechrment are generally mare accurate than the other as demonstrated in Figs. 8-7(a-
d).

One of the most attractive features associated with the MSC method is its computational
efficiency. The CPU time required to caiculate the response of the S-system by the method is a
linearly increasing function of the number of DOF of the P-system and independent of @,. On
the other hand, integration method needs much more time to reduce the relative error of the
adjacent two steps when one more DOF of the P-systemn is introduced. Moreover, the CPU time
required is related to the position of ), with respectto ®, (i=1,2,...,n). In this example, the
integration method required ten to thirty times of CPU needed to execute the MSC procedure,

which is an important factor in practical design.

8.5.2 Example 2. MDOF S-System and MDOF P-System
The technique developed in the preceding section can be casily extended to MDOF  S-

systems. Conventional static condensation should be carried out 1o absorb all modes in the §-
system except @, before the technique can be applied. When the P-system is the only one
subjected to excitation, the static response of any mode in the S-system, ®, (i=1.2,....m), is equal
to zero.

A six-story building with two secondary masses is considered herein to examine the accuracy
of the method regarding to attachiment configurations. Each story has the same mass of 1.0 kip
s°/in (= 1.8x10° kg) and interval stiffness of 5000 kips/in (= ox108 N/m) as discussed in Section
7.1.2. Three different connecting configurations are considered in this example. Except for Model
B, two secondary masses have the same mass of 0.1kip s*/in(= 1.8x10% kg) and connecting stiff-

ness k,. In Model B, two secondary connecting stiffness are taken as k, and 4k, respectively, to
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avoid tuning in the S-system itself. For all three models, five percent of critical damping for both
P- and S-system 1s assumed.

The modal mean-square velocity of the S-system for three different attachment configurations
are shown in Figs. 8-9(a-c). 1i can be seen that the modal responses of the S-system produced by
the MSC method and the integration method agree well, especially when the relative response
variations are of interest. It can also be observed that the first modal response plays an important
role for all three models except for the one with two separate secondary masses in which the
second-mode response 1s about the same as the first-mode response 1 the low frequency range.
This results from the fact that frequency of the second mode in the example is twice that of the first

mode which is tuned to the frequencies of the P-system.

8.6 Application in Practical Design

As demonstrated in the preceding section, the method developed herein is quite efficient in
calculating the response of S-systems. The previous examples have already shown the potential
application in preliminary design abourt selecting the attachment configuration. The optimum
selection of the S-system frequency can be easily made from the mean-square velocity spectrum.
Another useful design information pertains to the amoum of damping needed to further mitigate
vibration of the S-system. Figuie 8-1{ presents the mean-square velocity versus the damping ratio
of the S-system which is arached to the fifth floor of the P-system in the first example. It is
observed that no optimum damping ratio exists for the tuned case as discussed in [46]. An efficient
damping ratio in this case can be simply chosen as the one with an appropriate trade-off between

high sensitivity of response of the S-system and economical considerations.

8.7 Discussions

The mean-square condensation method proposed in this section has been shown to be an
efficient way to calculate the dynamic response of S-systems under broad-band exciations. It can
be categorized as a coupled analysis of P-8 systems while the modal properties of individual

subsystems are used so that there is no difficulty in numerical calculation.  Unldike the perturbation
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scheme, there is no need 1o divide the general P-S system into wned and detuned cases here.
Furthermore, calculation in the tuned case, of particular imerest in most practical designs, is more
accurate than that in the detuned case. The frequency characteristics of the combined system is not
required ro calculate the dynamic response of the S-system. Since all the processes involved in
this method are analytical calculations using explicit expressions, the participation of more DOF
of the P-system does not significantly increase the calculation and stable solutions can always be
obtained for arbitrarily specified P-S configurations and frequency characteristics of the S-system.
Although numerical results in this paper are presented in the form of mean-square
displacement and velocity of the S-system when the P-system is subjected to base displacement
input, the expectation of maximum response which is more pertinent to practical design can be
obtained by muitiplying the obtained root-mean-square response by the peak factor When
nonstationarity of seismic loadings has to be considered, the condensation process develaped for
the case of white noise input can be still effective but the condensed 15-3P system should be
subjected to the nonstationary seismic loading.
For further refinement of this method, the expressions of ®,, .A,, . m, and T, in Eqgs.
{8.34,8.35,8.39,8.40) may be related to the frequency of the S-system so thar the dynamic interac-

tion effect at this level can be taken into account.
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SECTION 9
CONCLUDING REMARKS

9.1 General Remarks on This Study

The work reported in this report is aimed at developing simple yet accurate approaches for
the dynamic analysis and design of S-systems. The energy balance principle (SEA for complex
systems) is shown to be a good candidate, which is certainly manageable in practical designs.
The fundamental principle for all the closed-form formulations developed in this swdy is to
appropriately substitute the energy transfer between two simple systems itypically, SDOF P- and
SDOF S-systems) for the calculation of energy flow transmitted from one subsystem to another in
a very complex P-8 system. Therefore, all the procedures suggested here are basically developed
for coupled analyses in which general characteristics listed in Section 2.1.4.1 have been inherently
taken into account. Frequency charactenistics of individual P- and S-systems are incorporated
into the analyses so that the analysis procedure for dynamic response can be simplitied and
the computational efforts can be considerably reduced for complex systems. Furthermore, the
unnecessary error involved in the course of response calculation due to the contaminated frequency

characteristics of the coupled P-8 system can be totally suppressed.

While statistical energy analysis has been shown to be a powerful technique to analyze the
sound-structure interaction effect, it becomes less effective in the analysis of interaction effect
between two structures subjected to earthquake loads as the relatively low excitation frequencies in
this case generate a few low normal modes of P-S systems that store most of the generated energy.
Based on this observation, an approximate approach, namely, the mean-square condensation
method, has been developed by incorporating power flow and energy concepts at the level of
individual members instead of statistical population. Analytical and numerical verification for
the method demonstrates the efficiency and accuracy associated with these simple procedures.
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Consequently, they can be used to conduct a performance study in a preliminary design or to
qualify an S-system under seismic loads. An important feature about the mean-square condensation
methend is that calculated responses of an S-system tuned to its supporting System are usually more
accurate than those of the detuned system.

Finally, the exact solution for a class of complex P-S systems has been obtained by grouping a

general P-S system into many subsystems with small numbers of degree-of-freedom.

9.2 Further Research Directions

9.2.1 Nonstationary and Finite Frequency-Band Inputs

The external loads in this investigation are assumed to be broad-band stochastic processes. In
reality, however, earthquakes are nonstationary and of finite frequency-band. The nonstationarity
usually suppresses the dynamic response of long period systems [76] whereas the effect of finite
frequency-band is much more complicated, depending on the relative variations between the
excitation frequencies and system frequencies. These topics, especially the latter, deserve further

attention.

9.2.2 Nonlinear Systems

As mentioned in Section 2.1.5, a P-system and/or an S-system may behave inelastically
under strong earthquakes. Consideration of these nonlinear behaviors in the response calculation
certainly is important in order to develop a practical model for design. In a weak nonlinear situation,
cquivalent linearization techniques can be used to solve the nonlinear systems by a substituted
linear systemn for which all the formulations derived in this report are applicable. Otherwise, the
transfer function procedure applied in the derivation basically fails and new formulations need to

be developed in the time domain.

9.2.3 Dynamic Responses of S-System Due to Its Own Disturbance
The performance of rotating S-systems attached to a structure has recently been studied by
Singh and Suarez [84]. The speed at which these systems rotate may be very high. Subsequently,
these systems themselves generaie a few high frequency modes of the coupled P-S system within
9-2



small frequency band, a property that fits well with the fundamental assumption in SEA. Therefore,

SEA is expected to have promising applications in these cases.
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Appendix A
INTEGRATION FORMULAS

In this appendix, definite integrations of a class of functions have been carried out and listed
below. All the roots of /, (w) (i = 2,4,6,8) are assumed in the upper plane.
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(PREX-1SS197). This report s avarfable only through NTIS (s address given above)

"Practical Considetations for Structural Comtrol: System Unvertamty, Sysieim Timne Delay and Truncation of
Small Comred Forees,” IN. Yang and A, Akbarpour, 810,87, (PRR8-16373K).

"Maodal Analyses of Nonclassicatly Damped Structural Systems Using Canonal Transtormation,” by LN
Yang, 8. Surkan and F.X. Long. 9727/87, (PBE8-187851).

"A Nopstetionary Seluuon in Kandem Vibranon Theory,” by LR Ked Horse and 1MD. Spanos, 112/K7,
(PBR8-1637d6)

"Horizomal Impedances for Radially Inhomogencous Viseoelashic Soil Layers,” by AN, Veletsos and KW,
Dotson, 10/15/87, (PBYB-150859).

"Seismic Damage Assessment of Reinloreced Concrete Members,” by Y 5 Chung, €. Meyer and M.
Shwnosuka, 1OAYRT, (PRRE-1SUR6T). This report i avanluble only through NTIS {sec address griven aboves.

"Active Suuciural Conwol m Cvil Enguecting,” by TT. Soong, VIHRT (PRRE-1RTIIR).

"Verneal and Torstonal Impedances tor Radially Inhomogencous Viscoclaste Sonl Layers,” by KW, Dotson
and A S Veletsos, 12/R7, (PRBR-IR7TRA).

"Procecdings from the Symposium on Sewinie Huzards, Ground Motions, Suib-Laquetacuon and Engineening
Practice n Eastern North America,” October 20-22, 1987, edited by K.H. Jacoh, 12/87. (PB8R-188115)

"Report on the Whittier-Narows,  Cabforni,
Pantehe aml A Rewhorn, 11/87, (PBR8-187752)
given above).

Earthquake  of  Oxctober 1, 19877 by ]
Thrs report s available only through NTIS (sce address

“Design of a Modular Program for Transient Nonlinear Analysts of Large 3-D Buidding Stwcwres” by S
Srivastav and J.F. Abel. 12/30/87, (PB88-1R7950),

“Second-Year Program n Research, Education and Technotopy Transfer,” 37888, (PRES-2194R0)).
“Workshop on Sewmme Computer Analysis and Uesign of Buildings With Ineracuve Graphics,” by W,
McGusre, JF. Abel and C.H. Conley, 1/18/88, (PBRR-187760),

"Optimal Contresl vt Nonlinear Flexable Structures.” by 1N Yang, F.X. Long and D. Wong. 1/22/88, (PB83-
213772

“Substructuning Techmgues in the Time Doman for Prmary -Secondary Structural Systems,” by G ). Manahs
and G. Juhn, /1(/8% (PB88 213780)

“Ierative Scismic Analysis of Primary-Secondary Systems.” by A. Singhal, L D. Lutes and P.D. Spanus,
2/23/88. (PBRK-21379K).

"Stochastic Finite Element Expansion for Random Media,” by P.D. Spancs and R. Ghancm. 3/14/88, (PB88-
213806)
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“Combining Structural Optimization and Swuctwral Conol,” by F.Y. Cheng and C.P. Paawlides. 1/10/88.
(PB38-213814)

"Seisrme Performance Assessment of Code-Designed Structures,” by HH-M. Hwang, J-W. Jaw and H-J. Shau,
3/20/88, (PRRR-219427%;.

"Reliabihty Analysis of Code-Designed Structures Under Natural Hazards,” by HH-M. Hwang, H. Ushiba
and M. Shinozuka, 2/29/88, (PBRB-229471).

“Seismic Fragility Analysts of Shear Wall Structures,” by J-W Jaw and HH-M. Hwang, 4/30/88, (PBRY-
102867).

“Base Isolation of a Multi-Story Building Under a Harmonie Ground Monhion - A Companisan of Performances
of Various Systems,” by F-G Fan. G. Ahmadi and 1.G. Tadjbakhsh. 5/18/88. (PBY9 122238

"Seismic Floor Response Spectra for a Combined System by Green's Functions,” by FM. Lavelle, L A
Bergman and P.LY. Spanos. §/1/88. (PRRY-102875).

" A New Solution Technigue for Randomly Excited Hysteretic Structures,” by GQ. Cujand Y K. Lin, 5/16/8%,
(PR&9-102883).

"A Study of Radiation Damping and Soil-Suuciure  Interacuon  Effects in
by K. Weissman. supesvised by JLH. Prevast, 5/24/8R. (PB8Y-144703).

the  Centnifuge,”

"Parameter ldentification and Implementaton of a Kinematic Plasuciy Model for Foctional Soils,” by J.H.
Prevust and D.V. Griffiths, 10 be published.

"Two- and Three Dimensional Dynamic Fimte Element Analyses of the Long Valley Dam,” by D.V. Griffiths
and L.H. Prevosi. 6/17/88, (PRE9-144711).

"Damage Assessment of Renforced Congrete Structures 1n Eastern United Siates.” by A M. Rewshum, M I
Seidel. 5.K. Kunnath and Y.). Park. 6/15/88. (PB89-122220).

"Dynamic Compliance of Vertically Loaded Strip Foundatwons in Multilayered Viscoelastic Soils.” by S.
Ahmad and A.S.M. [sral. 6/17/88, (PBR3-102891).

"An Expenmental Study of Seismic Structural Response With Added Viscoelastic Dampers,” by R.C. Lin.
Z. Liang, T.T. Soong and R.H. Zhang, 6/30738. (PB89-122212). This report is available only through NTIS
(see address given above),

"Expenmental Invesugation of Pnmary - Secondary System Interaction.” by G.D. Manolis, G. Juhn and AM.
Remnhorn, $/27/88. (PB8Y-122204).

“A Response Spectrum Approach For Analysis of Nonclassically Damped Swuctures,” by J.N. Yang, S.
Sarkam and F.X. Long. 4/22/88, (PBBS-102909).

"Seismic Inleraction of Syuciures and Soils: Stochastic Approach,” by A8, Veletsus and AM. Prasad,
7/21/88, (PB8%-122196),

"Identification of the Serviceabuity Limut State and Detection of Seismic Struciural Damage.” by E.
DiPasquale and A.S. Cakmak, 6/15.88, (PB89-122188). This report is available only through NTIS (see
address given above).

"Multi-Hazard Risk Analysis: Case of a Simple Offshore Structure,” by B.K. Bhartia and E.H. Vanmarcke.
T21/88, (PBR9-145213).
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"Automated Seismic Dwsign of Reinforced Concrete Buildings,” by Y.S. Chung. €. Meyer and M. Shinozuka.
7/5/88. (PB8Y-122170). This report 1s available only through NTIS (see address given above).

“Experimental Study of Active Control of MDOF Structvres Under Seismic Excitations,” by L.L. Chung. R.C.
Lin, T.T. Soong and A M. Rewnhorn, 7/10/88, (PB8Y-122600).

"Earthquake Stmulation Tests of 8 Low-Rise Metal Structure,” by J .8, Hwang, K.C. Chang, G.C. Lee and R L.
Keter, 8/1/88, (PB8Y-102917).

"Systemns Study of Urban Response and Reconstruction Due (o Catastrophic Earthquakes.” by F. Kozin and
H.K. Zhou, 9/22/48, (PB9)-162348).

"Seismic Fragiity Analysis of Plane Frame Structures,” by HH-M. Hwang and Y. K. Low, 7/31/88, (PR&Y-
131445).

"Response Analysis of Stechastic Structures.” by A. Kardara. C. Bocher and M. Shinozuka, 9/22/88 (PR8Y-
174429).

“Nonnonmal Accelerations Due o Yielding m a Primary Swucture,” by D.C.K. Chen and L.D. Lutes, 9/19/88.
{PB89-131437).

"Design Approaches for Sotl-Structure Interaction,” by A S. Veletsos, A M. Prasad and Y. Tang. 12/30/88.
(PB89.174437). This report is available only through NTIS (see address given above),

" A Re-evaluation of Design Spectrz for Seismuc Damage Control,” by C.J. Turkstra and A.G. Tallin, 11/77/88,
(PB89-145221).

"The Behavior and Design of Noncontact Lap Sphices Subjected 10 Repeated Inelastic Tensile Loading.” by
V.E. Sagan. P. Gergely and R.N. White. 12/8/88, (PB89-163737).

“Sesmic Response of Pile Foundations,” by $.M. Mamoon, P.K. Banerjee and S. Ahmad. 11/1/88, (PB8§9-
145239),

“"Modeling of R/C Building Structures With Flexible Floor Diaphragms (IDARC2).” by A M. Remnhom, 5.K.
Kunnath and N. Panahshahi, 9/7/88, (PB8$-207153).

"Solution of the Dam-Reservoir lnteracuon Problem Using a Combinauon of FEM. BEM with Pamicuiar
Integrals, Modal Analysis. and Substructuring,” by C-8. Tsa, G.C. Lee and R L. Ketter, 12/31/88, (PB89-
207146).

"Optimal Placement of Actuators for Structural Control,” by F.Y. Cheng and C.P. Pantelides, 8/15/88, (PBB9-
[62846).

“Teflon Bearings in Aseismic Base Isolation: Experimental Studies and Mathematical Modeling,” by A,
Mokha, M.C. Constantinou and A M. Reinhorn, 12/5/88, (PB89-218457). This report is available only through
NTIS (see address given above).

“Seismc Behavior of Flat Slab High-Rise Buildings in the New York City Area," by P. Weidlinger and M.
Ettouney. 10/15/88, (PB90-145681).

“Evaluation of the Earthquake Resistance of Exisuing Burldings tn New Yotk City,” by P. Weadlinger and M.
Ettouney, 10/15/88, to be published.

“Small-Scale Modehing Techniques for Reinforced Concrete Structures Subjected 10 Seismic Loads,” by W.
Kim, A. El-Anar and RN. White, 11/22/88, (PB89-189625).
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“Modeling Strong Ground Mouon from Multiple Event Earthquakes.” by G.W. Ellis and A8, Cakmak,
10/15788, (PB89-174445).

“Nonstationary Models of Seismic Ground Acceleration.” by M. Grigoriv. S E. Ruiz and E. Rosenblueth.
7/15/88, (PBBY-189617).

"SARCF User’s Guide: Scismic Analysis of Reinforced Concrete Frames," by Y.S. Chung. C. Meyer and M.
Shinozuka, 1 1/9/88, (PB89-174452).

"Furst Expert Panel Meeting on Lisaster Research and Planning.” edited by J. Panlelic and J. Swyle. 9/15/88,
(PB89-1744&(1).

"Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismig Response of Steel
Frames.” by C.Z, Chrysostomou, P. Gergely and J.F. Abel. 12/19/88, (PB89-2083R3).

"Reinforced Concrete Frame Component Testing Facility - Desiga, Construction, Instrumentaton and
Operation.” by S.P. Pessiki. C. Conley. T. Bond. P. Gergely and R.N. Whate, 12/16/88, (PB89-174478).
"Effects of Protecuve Cushion and Sou! Compliancy on the Response of Eqmpment Within a Seismically

Excited Building,” by 1. A. HoLung, 2/16/BY, (PB8%-207179).

"Statistical Evaluation of Response Modification Facwrs for Remnforced Conrete Structures,” by HH-M
Hwang and I-W. Jaw, 2/17/89. (PRR9-207187).

"Hysterenie Columns Under Random Excitauon,” by G-Q. Can and Y K. Lin, 1/9/89. (PB89-196513),

"Experimental Study of “Elephant Foot Bulge® Instability of Thin-Walled Metal Tanks,” by Z-H. Jisand R.L.
Kener, 2/22/89, (PB8Y-207195).

“Experiment on Performance of Buried Pipelines Across 5an Andreas Fault.” by ). Isenberg. E. Richardson
and T.U. O'Rourke. 3/10/89, (PB8Y-218440). This report is available only throngh NTIS {see address given
above).

"A Knowledge-Based Approach to Structural Design of Earthquake-Resistant Buildings,” by M. Subramani,
P. Gergely, CH. Conley, I.F. Abel and A.H. Zaghw, 1/15/89, (PBB9-218465).

“Liquefacion Hazards and Their Effects on Buried Pipelines,” by T.D. O'Rouske and P.A. Lane, 2/1/89,
{PB89-218481).

"Fundamentals of System ldenufication in Structural Dynamics,” by H. Imai, C-B. Yun, O. Maruyama and
M. Shinozuka, 1/26/89, (PB89.207211).

“Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buned Lifelines in Mexico,” by
A.G. Ayala and MJ. O'Rourke, 3/8/89, (PB39-207229),

"NCEER Bibliegraphy of Earthquake Education Materials,” by K.E K. Ross, Second Revision. 9/1/89, (PB90-
125352).

"Inelastic  Three-Dimensional Response Anaiysis of Reinforced Concreie  Building
Structures (IDARC-3D), Part [ - Modeling.” by S.K. Kunnath and A M. Reinhom, 4/17/89. (PB90-114612).

"Recommerded Maodifications 1o ATC-14,” by C.D. Poland and J.O. Malley. 4/12/89, (PB90-108648).
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"Repair and Strengthening of Beam-w-Column Connections Subjected o Earthquake Loading,” by M.
Corazao andd A.J. Durrani, 2/28/89, (PBYO-1008R85).

“Program EXKAL2 for Identification of Structural Dynamic Systemns,” by Q. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka. 5/19/89, (PRO()- 1(00R77).

"Respunse of Frames With Bolted Semi-Rigid Connections, Part 1 - Expenmental Study and Analytical
Predicuons.” by P.J. DiCorso, AM. Reinhorn, J.R. Dickerson. 1.B. Radziminsks and W.L. Harper. 6/1/89, wo
be published.

“"ARMA Monte Carlo Simulation in Probabdistic Suuctural Analyss.” by P.D. Spanos and M.P. Mignolet,
/10489, (PBY0-109893)

"Prelimmnary Proceedings from the Cooference on Disaster Preparedness - The Place of Earthguake Education
in Our Schoals,” Edited by K E.K. Ross, 6/23/89, (PRYU-108606).

“Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Educabon i Our
Schools.” Edited by K.E.K, Ross. 12/31/86. (PBB0-207895). This report is available only through NTIS (see
address given above),

"Muludimensional Models of Hysteretic Matenal Behavior for Vibrauen Analysis of Shape Memory Energy
Absorbing Devices, by EJ. Graesser and F.A. Cozzarelh, 6/7/89, (PBY0-164146).

“Nonhinear Dynamic Analysis of Three-Dimensional Base [sulated Struciures (3D-BASIS).” by 8. Nagarajaiah,
A.M. Reinhorn and M.C. Constantinou, 8/3/89, (PBH)-161936). Thix report 1s available only through NTIS
(see address given abuve),

“Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints,” by F.Y. Cheng
and C.P. Pantelides, 8/3/89. (PBY0-120445).

"Subsurface Conditons of Memphis and Shelby County.” by K.W. Ng. T-S. Chang and H-HM. Hwang,
7126189, (PRY0O-12(437).

"Seismic Wave Propagation Effects on Straight Jointed Bunied Pipelines,” by K. Ethmadi and M.J. O'Rourke,
8/24/89. (PBY0-162322).

"Warkshop on Serviceability Analysis of Water Delivery Systems,” edited by M. Grigoniu, 3/6/89, (PB90-
127424).

"Shaking Table Study of a 1/S Scale Stee!l Frame Cumposed of Tapered Members,” by
K.C. Chang. 1.S. Hwang and G.C. Lee, 9/18/89, (PBYO-160169).

"DYNALD: A Computer Progsam for Nonlinear Seismic Site Response Analysis - Technical Documentation,”
by Jean H. Prevost, 9/14/89, (PB90-161944). This report is available only through NTIS (see address given
above).

“1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Proiection,” by
AM. Reinhom, T.T. Sveng. R.C. Lin, Y.P. Yang. Y. Fukao, H. Abe and M. Nakai, 9/15/89, (PB90-173246),

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element
Methods.” by P.K. Hadley, A. Asiat and A.S. Cakmak. 6/15/89, (PB90-145699).

“Statistical Evalustion of Deflection Amplification Facwors for Reinforced Concrete Sauctures,” by HH.M.
Hwang, I-'W. Jaw and A L. Ch'ng, 831789, (PB90-164633).
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“Bedrock Accelerations in Memphis Area Due to Large New Madrwd Earthquakes.” by H.H.M. Hwang, C.H.S.
Chen and G. Yu, 117789, (PBYO-162330)).

“Seismic Behavior and Response Sensitivity of Secondary Structural Systems,” by Y Q. Chen and T.T. Soong,
H/23/89. (PBYD-164658).

“Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems,” by Y. Thrahim, M.
Grigoriv and T.T. Svong. 11/10/89, (PBY(-161931).

“Proceedings from the Second U.S. - Japan Workshop on Liguefaction, Large Ground Deformation and Their
Effects on Lifelines. September 26-29. 1989." Edued by T.D. O'Rourke and M. Hamada. 12/1/8%, (PBY0-
209388).

"Deterministic Mode] for Seismic Damage Evaluation of Renforced Conerete Structures.” by J M. Bracar,
AM. Reinhorn, ).B. Mander and 8$.K. Kunnath, 927,89.

“On the Relayon Berween Local and Giobal Damage Indices,” by E, Dilasguale and 4 S. Cakmak. 8/15/89,
(PBYO-173865).

"Cychic Undrained Behavior of Nonplastic and Low Plasticity Silts,” by AJ. Walker and H.E. Stewan,
1126/89, (PRY0-1B3518).

“Liquefaction Polenual of Surficial Deposits in the City of Buffaio, New York,” by M. Budhu. R. Giese and
L. Baumgrass, 1/17/89, (PB9Y0-208455).

“A Deterninistic Assessment of Effects of Ground Motion Incoherence,” by A S. Veletsos and Y. Tang,
TS89, (PB9O-164294),

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping,” July 17-18, 1989, ediled hy RV
Whitman, 12/1/84, (PB%)-173923).

“Seismic Effects on Elevated Transit Lines of the New York City Transit Authority,” by C.1. Costantino, C A
Miller and E. Heymsfield, 12/26/89, (PB50-207887).

“Centrifugal Modeling of Dynamic Soul-Structure Interaction,” by K. Weissman, Supervised by 1 H. Prevost,
5/10/89, (PBY-207879).

"Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment,” by I-K. Ho and
AE. Aktan. 11/1/89. (PB90-251943).

"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco,” by
T.D. O'Rourke, H.E. Stewart, F.T. Blackburn and T.§. Dickerman, 1/90, {PBY0-20£596).

"Nonnormal Secondary Response Due to Yielding i a Pimary Structure,” by D.C.K. Chen and L.D. Lutes,
2/28M0), (PBS(O-251976).

"Earthquake Education Materials for Grades K-12,” by K.E.K. Ross, 4/1690, (PB91-251984).
"Catalog of Strong Motion Stations in Eastern Nogth Amenica,” by R.W. Busby, 4/3m0, (PB%0-251984).

"NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sun3),”
by P. Friberg and K. Jacob, 3/31/90 (PB90-258062).

“Seismic Haz.rd Along & Crude il Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake,”
by HHM. Hwang and C-H.§, Chen, 4/16/90(PB%0-258054).
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3/15/90, (PBY1-108811)

"Pulot Swudy on Sersmic Yuinerability of Crude (1 Transmission Systetns,” by T. Anman, R. Dobry. M.
Grigonu, F. Kozin, M O'Raurke. T. O'Rourke and M. Shinozuka, 52580, (PBIL-108837).

"A Program to Generate Site Dependent Tune Histories: EQGEN,” by G.W. Elhis, M. Snmivasan and A.S.
Cakmak. 13050, (PR91-108829).

" Active Tsolation for Seismic Pratection of Operating Rooms,” by M.E. Talbott, Supervised by M. Shinozuka,
6/8/9, (PB91-110205).

"Program LINEARID for Wentification of Linear Structural Dynamic Systems,” by C-B. Yun and M.
Shinoruka, 6/25/490, (PRY1-110312).

“"Two-Ihimensional  Two-Phase  Elasto-Plastic  Seismic Earth  Dams,”
Yiagos, Supervised by 1.H Prevost, 620/90, (PB91-110197).
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“Secondary Systems m Base-Isolated Structures: Expenmental Investigation. Stochastic Response and
Stochastic Sensitivity,” by G.D. Manolis. G. Juhn, M.C. Constantinon and AM. Reinhorn, 7/1890. (PBY1-
110320),

“Seismic Behavior of Lightly-Reinfurced Concrete Column and Beam-Column Joint Details.” by S.P. Pessiki,
CH. Conley, P. Gergely and R.N. White, 8/22/90, (PB1-108795).

"Two Hybrid Control Systems for Building Structures Under Strong Earthquakes,” by JIN. Yang and A
Daniclians, 6/29/90, (PB91-125393).

"Instantaneous Opitmal Contro) with Acceleration and Velocity Feedback,” by I.N. Yang and Z. L1, 6/29/90,
(PB91-125401).

“Reconnaissance Report an the Nohemn Tran Earthquake of June 21, 1990, by M. Mehrain, 10/4260), (PB91-
125377

"Ewvaluation of Liquefaction Potential in Memphis and Shelby County,” by T.S. Chang, P.S. Tang, C.S. Lee
and H. Hwang. 8/1080, (PB91-125427).

"Expenimental and Analytical Study of a Combined Sliding Disc Bearing and Hehcal Steel Spring Isolation
System,” by M.C. Constaniinou, A.S. Mokha and AM. Reinhorn, 10/4/90, (PB91-125385).

"Experimental Study and Aialytical Prediction of Earthquake Response of a Shding Isolation System with
a Spherical Surface.” by A 5. Mokha, MC. Constantinou and A.M. Reinhorn, 10,11/90, (PB91-125419).

"Dynamic Interaction Factors for Floating Pike Groups,” by G. Gazetas, K. Fan, A. Kaynia and E. Kausel,
9/10/90, (PBY1-170381),

“Evaluation of Seismic Damage Indices for Reinforced Concrete Structures,” by S. Rodriguez-Gomez and
A S. Cakmak, 913090, PB91-171322).

"Study of Site Response at a Selected Memphis Site,” by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh,
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