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ABSTRACT

The stability of a concrete gravity dam against sliding along the interface be

tween the dam base and the foundation rock must be assured in a seismic safety

evaluation. For this type of evaluation, a new numerical method is used to com

pute the earthquake response of gravity dams, including base sliding. The hybrid

frequency-time domain procedure accounts for the nonlinear base sliding behavior

of the dam and the frequency-dependent response of the impounded water and the

flexible foundation rock.

The results of a parameter study of typical gravity dams show how the earth

quake-induced sliding is affected by the different characteristics of the ground motion

and dam system. Gravity dam monoliths may slide downstream, depending on the

coefficient of friction for the interface zone and the peaks in the earthquake ground

acceleration record. Although the dam remains stable after the earthquake, base

sliding displacements may produce damage in the interface zone.

The cases investigated demonstrate that it is necessary to include the effects

of dam-foundation rock interaction to obtain realistic estimates of the base sliding

displacement for a dam. The assumption of rigid foundation rock overestimates the

base sliding displacement. The sliding displacement is sensitive to the value of the co

efficient of friction for the interface zone, especially for moderate to tall dams. Water

compressibility and reservoir bottom absorption affect the base sliding displacement

of dams on rigid foundation rock, but they are less important for dams on flexible

foundation rock. Although base sliding may be interpreted as an isolation and damp

ing mechanism for the dam, it has little effect on reducing the maximum stresses in

the monolith.
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Chapter 1

INTRODUCTION

Concrete gravity dams are important structures that are constructed to retain

large quantities of water in a reservoir. The safety of a dam during severe load

conditions, such as due to earthquake ground motion, must be verified because of

the catastrophic consequences of a sudden release of the reservoir. One potential

failure mode of a concrete gravity dam during an earthquake is extensive cracking

and deformation in the zone between the base of the dam and the foundation rock.

The interface zone is often a weak link in the transfer of seismic forces between the

foundation rock and the dam monoliths. Failure of the zone can result in a relative

displacement between the dam and the foundation rock, a displacement which is often

called a base sliding displacement.

The earthquake safety evaluation of a dam involves many aspects, one of which

is verifying that the dam will remain stable during and after an earthquake, in the

sense that the base sliding displacement is not excessive. The traditional check of

sliding stability involves computing a factor of safety against sliding based on a friction

model of the interface zone and equivalent static loads that represent the dynamic

effects of an earthquake on the dam. It has been observed that a static stability

criterion is not appropriate for evaluating the base sliding displacement of a dam due

to oscillatory and transient ground motion [Zhang and Chopra, 1991].

The development of mathematical models which are able to predict the earth-
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quake response of concrete gravity dams, including interface zone deformation, is a

complex problem. Since the dam-foundation rock interface is a complicated zone,

for which it is difficult to collect data about, it is common to use a friction model

for earthquake analysis [Danay and Adeghe, 1993]. The problem is also complicated

because the response of the dam depends on interaction between the dam and com

pressible water, and between the dam and the flexible foundation rock region.

1.1 Studies on Sliding Response of Gravity Dams

To account for the dynamics of dam systems during an earthquake, various

analyses of the base sliding response of concrete gravity dams have been performed.

Leger and Katsouli [1989] studied the stability of concrete gravity dams using a

finite element formulation for the dam, water, and foundation rock, and gap-friction

elements to model the sliding at the base interface. The response was computed for a

short time (3 sec) and the results indicated that the nonlinear behavior of the dam

foundation rock interface reduced the seismic response of the dam. Using the sliding

block concept introduced by Newmark [1965], Danay and Adeghe [1993] developed

an empirical formula, based on a statistical regression of many simplified dynamic

analyses, for estimating the seismic slip of concrete gravity dams. The impounded

water was assumed incompressible in this study, and the dam-rock interface was

modeled by gap-friction elements. The study was restricted to short dams of height

less than 60 m. Chopra and Zhang [1991] studied the sliding response of gravity dams

on rigid foundation rock using a simplified model. Base sliding was shown to be more

important than rocking of the dam in the cases considered.
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Danay and Adeghe [1993], and Chopra and Zhang [1991], provided several

methods to estimate the earthquake-induced base sliding displacement of gravity

dams. The scope of results, however, are limited because the models did not include

important factors, such as dam-foundation rock interaction and water compressibility.

Leger and Katsouli [1989] included dam-foundation rock interaction, although water

compressibility was not considered. Since these factors may have an important effect

on the base sliding displacement, the present study includes dam-water interaction,

with water compressibility and reservoir bottom absorption, and dam-foundation rock

interaction.

1.2 Modeling of Dam Systems

There are several strategies for modeling and computing the nonlinear earth

quake response of dam-reservoir-foundation rock systems, including base sliding. It is

generally accepted that long dams respond to strong earthquakes as two-dimensional

monoliths. In this study, tensile cracking and other nonlinear material behavior of the

dam concrete are not included in the model. The arbitrary geometry and idealized

linear elastic properties of a monolith are conveniently represented by a finite element

discretization.

The interface zone between the dam base and the foundation rock is very

complex. Rigorous modeling of the interface zone would require a sophisticated con

stitutive model that represents the cyclic behavior of the concrete and foundation

rock and the actual interface conditions. Another approach is to consider the inter

face as a discrete joint between the dam monolith and the foundation rock region.
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Joint elements at the interface may be used to approximate the behavior of the con

tact materials in a finite element analysis [Toki, Sato, and Miura, 1980]. Models

using nonlinear gap-friction contact elements between the dam and foundation rock

surface follow this approach [Leger and Katsouli, 1989]. An even simpler approach

is to assume that the force-displacement relationship at the interface is governed by

a friction model [Chopra and Zhang, 1991]. The advantage of the friction model is

that it does not require detailed information about the constitution of the concrete

and rock materials, but rather only an effective friction coefficient and cohesion force

for the interface zone.

As for the water domain, it can be discretized by finite elements or boundary

elements, with a choice for the response variable such as pressure [Saini, Bettess, and

Zienkiewicz, 1978] or potential of velocity or displacement [Zienkiewicz, Paul, and

Hinton, 1982]. However, these approaches require solving unsymmetric equations of

motion. Staggered or partitioned solution algorithms, in which each domain is solved

separately, can also be used [Park and Felippa, 1980].

Another formulation uses the displacement of the water as the response vari

able [Bathe and Hahn, 1979; Fenves and Vargas-Loli, 1988]. The advantage is that

the fluid elements can be easily coupled to the dam elements and the equations of mo

tion are symmetric. A time dependent radiation boundary condition is necessary to

approximate the large upstream extent of the impounded water. Recent work [Tsai,

Lee, and Ketter, 1990] has resulted in a time domain radiation boundary condition

that can be used with a small discretized region of the water.

The water domain can be, alternatively, represented as continuous medium.
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The frequency-dependent hydrodynamic pressures are computed in the frequency

domain to account for the compressibility of water and reservoir bottom absorption.

This formulation has been extensively used for the linear analysis of concrete gravity

dams in the frequency domain [Chopra, 1967; Chopra, Chakrabarti, and Gupta 1980;

Fenves and Chopra, 1984a]. The response of the fluid can also be computed by a

convolution integral in the time domain, using the unit impulse functions for the

water. The efficiency can be increased by recursive evaluation of the unit impulse

functions [Wolf and Motosuka, 1989].

The foundation rock introduces flexibility and damping into the dam system.

The energy dissipation arises from material damping and radiation damping. The

foundation rock region can be modeled by finite elements or boundary elements, but

again the radiation damping can be only approximated in the time domain. An

alternative approach widely used is to consider the foundation rock as an viscoelas

tic half-plane for the computation of dam-foundation rock interaction effects in the

frequency domain.

1.3 Methods of Analysis

Direct time integration methods [Newmark, 1959] are used to solve nonlinear

equations of motion in which the properties of the system are independent of the

excitation frequency. When the frequency-dependent characteristics of the hydrody

namic pressure and foundation rock interface forces are included in the linear analysis

of dams, a frequency domain solution is preferable. For nonlinear models, such as

due to base sliding, a frequency domain solution is not possible because the forces are
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nonlinear functions of the past and present state of the system, so the superposition

used in frequency domain analysis is not applicable. Thus, the step from linear to

nonlinear models has a major consequence: the powerful frequency domain technique

is no longer directly applicable. A time domain procedure is necessary to evaluate

the nonlinear forces.

Several related iterative approaches have been used for the solution of nonlinear

systems with frequency-dependent properties:

• The force correction method [Stricklin and Haisler, 1977] has been modified for

frequency domain analysis of offshore structures [Lima and De-Lima, 1986].

• The alternating frequency (AFT) method [Cameron and Griffin, 1989] has been

used to solve problems involving friction. The convolution integrals and con

vergence are evaluated in the frequency domain, and the nonlinear forces are

evaluated in the time domain.

• The hybrid frequency-time domain (HFTD) approach [Kawamoto, 1983] has

been applied for the solution of soil-structure problems [Darbre and Wolf, 1988].

In this approach, the equations of motion are solved in the frequency domain,

including the frequency-dependent properties, and the nonlinear forces are eval

uated in the time domain.

The hybrid frequency-time domain procedure is used in this study to compute

the nonlinear earthquake response of gravity dams including sliding at the base. The

nonlinear terms in the equations of motion are linearized, and the linearized equations,
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including the frequency-dependent terms due to dam-water interaction and dam

foundation rock interaction, are solved in the frequency domain. Since the unbalanced

forces are a function of the current state of the system, it is necessary to iterate to

obtain a solution that satisfies the force-displacement relationship for the interface

zone. The HFTD method has been applied for the nonlinear earthquake analysis of

simplified models of concrete gravity dams [Fenves and Chavez, 1990].

1.4 Objective of Study

The first objective of this study is to develop the HFTD procedure for com

puting the nonlinear sliding response of concrete gravity dams during earthquakes.

The model includes dam-water interaction, with water compressibility and reservoir

bottom absorption, and dam-foundation rock interaction. The dam is modeled using

finite elements, the water reservoir is modeled as a continuous, inviscid and compress

ible medium, and the foundation rock is modeled as a viscoelastic half-plane.

The second objective is to perform a detailed analysis of the earthquake re

sponse of a typical dam, Pine Flat, using the numerical procedure. The purpose of

the case study is to investigate how the ground motion, foundation rock flexibility,

and the coefficient of friction influences the base sliding of the dam and other response

quantities.

The third objective is to perform a extensive parameter study on typical con

crete gravity dams to further investigate how the sliding displacement is affected by

other parameters, such as height of the dam, water compressibility, reservoir bottom

materials, and modulus of elasticity of concrete.
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1.5 Organization of Report

Chapter 2 describes the gravity dam model considered in this study. Assump

tions regarding the model, particularly the characteristics of the dam-foundation rock

interface are presented.

Chapter 3 presents the formulation of the analysis procedure to compute the

earthquake response of the dam-water-foundation rock system including sliding at

the interface. The computational procedure is based on the hybrid frequency-time

domain (HFTD) method, in which the equations of motion are solved in the frequency

domain and the determination of the sliding state is performed in the time domain.

Chapter 4 presents the implementation of the HFTD procedure including the

algorithm for the iteration. It presents the idea of time segmentation to improve

convergence of the solution.

Chapter 5 presents a detailed case study of the earthquake response of Pine

Flat dam including base sliding. The effects of a range of properties for the dam and

foundation rock and various earthquake ground motions on the response of the dam

are investigated.

Chapter 6 presents a parameter study of the base sliding displacement of typi

cal concrete gravity dams using a simplified dam model. The influence of the ground

motion, water compressibility, coefficient of friction, modulus of elasticity of concrete,

reservoir bottom absorption coefficient, and foundation rock flexibility, on the base

sliding of dams with a range of heights is investigated.

Chapter 7 presents the conclusions regarding the influence of parameters that

affect the earthquake-induced base sliding response of concrete gravity dams.
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Chapter 2

IDEALIZATION OF THE DAM SYSTEM

2.1 Introduction

Conventional concrete gravity dams are constructed as monoliths separated

by vertical expansion joints. For the large amplitude motion expected during strong

earthquakes, the shear forces transmitted across the joints are small compared with

the inertia forces and the monoliths will tend to vibrate independently [Rea, Liaw,

and Chopra, 1975]. Consequently, a two-dimensional model of individual monoliths

can be used to determine the response of long concrete gravity dams for moderate to

strong earthquakes.

The idealized concrete gravity dam monolith considered in this study is shown

in Figure 2.1. The two-dimensional monolith with rigid base is supported by flexible

foundation rock and impounds a reservoir of compressible water. The dam is allowed

to slide along the interface between the dam base and the foundation rock. The

base interface with the foundation rock may be inclined, although this entails an

approximation of the domains. Sliding of the dam is the only source of nonlinearity

in the system. Other nonlinearities, such as concrete cracking, opening and sliding of

joints, and water cavitation are not represented in the model.

The system is subjected to horizontal and vertical components of free-field

earthquake ground motion acting at the base of the dam. The free-field ground accel-
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eration is assumed to result from vertically propagating shear waves in the foundation

rock, so kinematic interaction effects with the dam are neglected. Static loads, such

as hydrostatic pressure, dead weight, and uplift forces, exist prior to and during the

earthquake.

The interface between the dam monolith and the foundation rock region is

a complex zone of shear keys, grout curtains, and roughened surfaces. Modeling

the complex dam-foundation rock interface in an earthquake analysis would require

a very detailed finite element model. In this study a simpler approach is adopted.

The interface is assumed to be a straight surface in the two-dimensional model with

the resistance to sliding governed by the Mohr-Coulomb law for friction resistance.

This type of model allows quantification of the effects of sliding during an earthquake

without requiring a detailed modeling of the interface zone.

Sliding occurs when the base shear force exceeds the shear strength of the

base-foundation rock interface. Sliding of the dam along the interface is the domi

nant motion compared with rocking of the dam. Rocking of the monolith under the

seismic loading is not considered in this study because rocking effects are small com

pared with the motion of the dam due to sliding. A preliminary study by Chopra and

Zhang [1991], using a simplified model for gravity dams, showed that a dam slides

downstream before it rocks because of the large hydrostatic force acting in that di

rection. Even when rocking is initiated, the rotation is small because of the relatively

small height-to-width ratio of gravity dams.

The assumption of a rigid dam base at the interface with the foundation rock

is appropriate for computing the earthquake response of concrete gravity dams be-
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cause the base deformations have little influence on the dam response [Fenves and

Chopra, 1984a]. The foundation rock surface extends to infinity in the downstream

and upstream directions. When the interface is sloped, the model has discontinu

ities between the foundation rock and water domains. The discontinuity between the

foundation rock and the bottom of the reservoir can be neglected provided that the

angle of inclination, {3, at the interface is small.

2.2 Dam Domain

The monolith is modeled using plane stress finite elements, allowing represen

tation of a general geometry, and linear elastic, orthotropic material properties. The

upstream face of the dam should be vertical, or near vertical. This condition is nec

essary because the hydrodynamic pressure acting on the dam is computed assuming

the upstream face is vertical. The base of the dam is assumed rigid, and it should

be straight, or near straight, at the angle of inclination, {3. Under this condition, a

single sliding displacement represents the sliding motion of the dam at the interface.

2.3 Water Domain

The water impounded in the reservoir is idealized as a two-dimensional domain

extending to infinity in the upstream direction. The water is treated as an inviscid

and compressible fluid. The upstream face of the dam is assumed vertical and the

reservoir bottom is assumed horizontal for computing the hydrodynamic pressure.

Because of water compressibility, the hydrodynamic pressure is dependent on the

excitation frequency.
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The bottom of a reservoir consists of highly variable layers of bedrock, silt

and other sedimentary materials. The effect of the reservoir bottom materials has

been the subject of several recent investigations. A simplified analysis, which neglects

the coupling between the foundation rock and reservoir [Fenves and Chopra, 1984a],

assumes that the reservoir bottom materials are accounted for by the wave reflection

coefficient, a. In the absence of experimental data, a wave reflection coefficient of 0.9

for newer dams and 0.7 for older dams having more sediments has been recommended

[Chopra, 1988].

Other models [Lotfi, Roesset, and Tassoulas, 1987; Bougacha and Tassoulas,

1991] represent the sediments as a soft, nearly incompressible, viscoelastic solid. In a

recent study by Humar and Chandrashaker [1992], a rigorous model was used to rep

resent the fluid-foundation rock effect including coupling between the dam-foundation

rock and the rock below the reservoir. It was concluded that the simplified approach

with the wave reflection coefficient is fairly accurate. This approach is used in the

current study.

2.4 Foundation Rock Domain

The inclusion of dam-foundation rock interaction introduces flexibility at the

base of the dam and provides additional damping mechanisms, through material

damping and radiation. The foundation rock is idealized as a homogeneous, isotropic

and viscoelastic half-plane for the purpose of computing the impedance functions

that characterize the dam-foundation rock interaction. The half-plane idealization of

the foundation rock region is only approximately correct for dams with an inclined
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base because of the discontinuities at the surface. It is assumed, however, that this

approximation is still applicable for dams with a base having a small angle, (3, of

inclination.

The impedance matrix for a viscoelastic half-plane is computed by using the

apJ?roach by Dasgupta and Chopra [1979]. Other approaches [Wolf and Darbre, 1984;

Alarcon, Dominguez, and Cano, 1980] use boundary element methods and Green's

functions to analyze the problem. A layered soil or a hybrid modeling of a single-layer

can be also used [Zong and Penzien, 1986].

2.5 Sliding Interface Characteristics

A Mohr-Coulomb friction model is used to model the behavior of the sliding

interface between the dam base and the foundation rock surface. The sliding resis

tance at the interface depends on a cohesion force, the coefficient of friction, and the

time varying normal force. As mentioned previously, dam rocking and uplift are not

considered in the model. The possibility of water intrusion into open cracks at the

base, which could lead to additional forces, is also not considered.

In reality, the cohesion force varies along the interface because the contact

conditions between the dam and the foundation rock surface change during sliding.

In the analysis, however, the cohesion is represented by a constant equivalent value,

which may represent an average value between the cohesion force when there is no

sliding, and the cohesion force for large values of sliding displacement. An assumption

of zero cohesion represents the fact that little cohesive resistance can be expected

during large earthquake-induced sliding of a dam.
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The coefficient of friction is influenced by the contact conditions, direction and

velocity of motion, and magnitude of the ground excitation [Zadnik and Paskalov,

1992]. A constant equivalent coefficient of friction is used in this study. Selection of

an appropriate value for this coefficient of friction is difficult because of the complex

nature of the interface zone. Values between 0.7 to 1.2 have been recommended

[Chopra and Zhang, 1991; Danay and Adeghe, 1993] for use in seismic evaluation.

The normal forces are distributed along the base. They include the gravity

forces, uplift forces, and time-varying normal forces due to the dynamic response. For

the Mohr-Coulomb model, only the resultant normal force at the base is needed to

determine the sliding state of the dam.
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Figure 2.1. Dam-reservoir-foundation rock system with interface plane for sliding atthe base.





17

Chapter 3

FORMULATION OF THE ANALYSIS METHOD

3.1 Introduction

The equations of motion for the dam-water-foundation rock system are for

mulated in this chapter, based on the substructure approach. Figure 3.1 shows the

three substructures and the sliding interface. The equations of motion include the

frequency-dependent hydrodynamic forces acting on the darn and the darn-foundation

rock interaction forces. The sliding of the darn along the foundation rock surface pro

duces additional inertia forces on the darn and introduces nonlinear behavior into the

otherwise linear model.

The solution of the nonlinear equations of motion with frequency-dependent

forces is computed using the hybrid frequency-time domain (HFTD) procedure

[Kawamoto, 1983; Darbre and Wolf, 1988]. The chapter presents the application

of the iterative procedure to the solution of the equations of motion for the darn

system.

3.2 Equations of Motion for the Dam

The equations of motion for a finite element discretization of the darn with a

rigid, but sliding, interface at .the base are:
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Figure 3.1. Substructures in dam-water-foundation rock system and sliding interface.
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(3.1)

(3.2)

The initial condition are "at rest"; the displacement and velocity are zero at time

zero. As derived in Appendix B, equation 3.1 represents the equilibrium of forces for

the nodal points of the dam above the base, and equation 3.2 represents equilibrium

for the entire dam including all forces acting at the base. The quantities used in the

equations of motion are defined-in the following categories.

Response Quantities

• The vector U contains the time varying nodal point displacements relative to

the rigid body motion of the dam base:

U = [Uf U; Uf ...... U:

in which Ut and U1 are the x- and y-components of displacement for node i,

and n is the number of nodes above the base.

• The vector U J contains the rigid body displacements of the foundation rock

surface relative to the free-field ground motion:

U J = [Uf Uf e]T

where Uf ' U'j and e are the x-displacement, y-displacement, and rotation,

respecti vely.
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• The vector Ug(t) contains the specified x- and y-components of the free-field

ground acceleration at the foundation rock surface:

• Us{3( t) is the sliding displacement of the dam base relative to the foundation

rock surface along the interface plane. It is positive when the dam slides in the

downstream direction. Us{3(t) is the sliding acceleration.

Dam Properties

• M, C and K are the mass, damping and stiffness matrices of the dam associated

with the nodes above the base. The mass and stiffness matrices are symmetric

and they are evaluated by standard finite element procedures. The damping

matrix is expressed as a function of the stiffness matrix in the frequency domain,

as will be shown later, to represent hysteretic damping in the dam.

• R is the influence matrix for rigid body motion of the dam about the center of

the base:

where IX and 1Y are vectors containing unit values for the DOF in the x-direction

and y-direction, respectively; and h contains the displacement components due

to unit rotation about the center of the base.

• The matrix M t contains the total translational mass and the rotational inertia

of the dam about the center of the base. This matrix is not diagonal because
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the center of the base is not the center of mass for the dam. This matrix is

defined in Appendix B as follows:

(3.3)

where Mdd, M bd , Mdb, and Mbb are the sub-matrices of the mass matrix for

the dam, and R d and Rb are the sub-matrices of the influence matrix R for the

DOF in the dam (d) and on the base (b).

Interaction Forces

• The vector P(t) are the equivalent nodal forces for the hydrodynamic pressure

acting on the dam. The upstream face of the dam is assumed vertical, so

only the x-components for the nodes in contact with water are nonzero. The

hydrodynamic forces are computed in the frequency domain by considering the

water domain substructure.

• The dam-foundation rock interaction forces, F f(t), at the base of the dam are:

where FJ(t), FJ(t), and Mf(t) are the forces in the x- and y-directions and

moment about the center of the base, respectively, as shown in Figure 3.2 (a).

For flexible foundation rock, the interaction forces are expressed as a function

of the foundation displacements, U f, in the frequency domain.
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Figure 3.2. Forces at the base of the dam.

(h) BASE FORCES IN '11!E INTERFACE COoRDINATE SYSTEM FOR
SLIDING IN THE DoWNSTREAM DIRBcnON
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Inertia Forces due to Sliding

• The vectors Fad and F ab are the inertia forces of the dam due to sliding at the

interface. Fad is the vector of inertia forces for nodes above the base, and F ab is

the resultant inertia force at the base. These forces are a function of the sliding

acceleration, Ua{3(t), in the interface plane:

where T {3 = [cos,8 sin,8 of is the transformation between acceleration in the

interface plane and in the x-y coordinate system.

3.3 Sliding Condition

The inertia forces due to sliding depend on the sliding acceleration, Ua{3(t) ,

which is one of the unknown quantities in the response analysis, Thus, an additional

equation is required to determine this acceleration. The approach used in this study

assumes that the forces at the interface satisfy the Mohr-Coulomb law.

Given the dynamic forces at the base of the dam, F J(t), defined in the x-y

coordinate system, the components of the forces in the interface plane are:

where V{3(t), N{3(t), and M{3(t) are the shear force, normal force, and moment, as

shown in Figure 3.2 (b). The shear force, V{3(t), is positive when the dam slides in
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the downstream direction; the normal force, N{3(t), is positive in compression. With

this sign convention the transformation matrix Tis:

[

Cosf3 Sinf3 0 ]
T = Sinf3 -Cosf3 0

o 0 1

Considering the total shear and normal forces, VJ{t) and Nh{t), at the interface,

the Mohr-Coulomb law relates them by:

VJ(t) = e(t) [c + jlN~(t)] (3.4)

where the cohesion force, c, and the friction coefficient, jl, are specified properties of

the interface. The quantity e{t) defines the direction of the sliding. It is +1 when

the dam is sliding in the downstream direction, -1 when the dam is sliding in the

upstream direction, or zero when the dam is not sliding. The interface forces, VJ(t)

and N~(t), include the static resultant forces, V{3,st and N{3,sh due to hydrostatic,

uplift, and other static loads on the dam.

3.4 Reduction of Degrees-of-Freedom

The response of gravity dams to earthquake ground motion is dominated by a

few modes of vibration. A Rayleigh-Ritz procedure is used to reduce the number of

degrees-of-freedom to a small number of generalized coordinates. The displacement

of the dam, U, relative to the base is expressed as linear combinations of Ritz vectors:

(3.5)
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where q; contains J Ritz vectors and Z is the vector of time-varying generalized

coordinates:

The Ritz vectors can be computed in J steps to represent the inertia, stiffness,

and earthquake loads for the dam [Wilson, 1982]. The procedure generates mass

orthogonalized vectors that most participate in the response to the free-field ground

motion. The impounded water is not included in the generation of the Ritz vectors,

and the foundation rock flexibility has no effect because of the assumed rigid base of

the dam.

Substituting equation 3.5 into equations 3.1 and 3.2 and premultiplying equa-

tion 3.1 by q;T gives the reduced equations of motion:

where M*, C* and K* are the generalized mass, damping and stiffness matrices of

the dam, respectively; and the matrix L gives the participation of the Ritz vectors in

rigid body motion of the dam base:
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The Ritz vectors are orthonormalized such that the generalized mass, M*, is the

identity matrix. The generalized stiffness matrix, K*, is a symmetric full matrix. The

generalized damping matrix, C*, will be defined to represent frequency-independent

hysteretic damping.

3.5 Hybrid Frequency-Time Domain Procedure

The hybrid frequency-time domain (HFTD) procedure [Kawamoto, 1983; Dar-

bre and Wolf, 1988] is used to solve the nonlinear and frequency-dependent equations

of motion, equations 3.6 and 3.7. The solution procedure can be divided into three

stages: (a) linearization of the equations of motion, (b) solution of the linearized

equations in the frequency domain, and (c) state determination in the time domain.

Iteration over segments of time is required to converge to the exact solution.

3.5.1 Linearization

The inertia forces, F sd and F sb, due to sliding are nonlinear functions of the

response. Given the sliding acceleration history, [r!~l(t), for iteration k, the k + 1

estimate of the inertia forces due to sliding is:

(3.8)

(3.9)
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3.5.2 Solution

Substituting equations 3.8 and 3.9 into equations 3.6 and 3.7 gives the lin

earized equations of motion for the k +1 estimate of the response:

M*Z[k+ll +C*Z[k+ll +K*Z[k+ll +LU)k+11=

-LUg(t) - LT{irl;l(t) + -q,T[pg(t) + p~kl(t) + p~~+11(t)1

LTZ[k+11+ M tU)k+l1+ F~+11(t) =

-MtUg(t) - MtT/i.il;l(t) +RT[Pg(t) + p~kl(t) + p~~+ll(t)l

(3.10)

(3.11)

The k + 1 estimate of the hydrodynamic force vector, p[k+l1(t), has been written as:

where Pg(t) is the hydrodynamic force due to free-field ground acceleration; p~kl(t) is

the hydrodynamic force due to the sliding acceleration for iteration k; and p~~+ll(t)

is the hydrodynamic force due to deformation of the dam and foundation rock for

iteration k + 1.

The linearized equations of motion will be solved in the frequency domain.

3.5.3 State Determination

The base forces must be computed to determine the sliding state. For this

purpose, equation 3.11 is rearranged and the base forces can be computed as follows:

(3.12)
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where the base forces excluding the sliding inertia forces are:

F[k+tl(t) = _LTZ[k+tl(t) - MtU~+tl(t) - MtUg(t)

+RT[Pg(t) + p~kl(t) + p~~+tl(t)] (3.13)

The components of the force F~+11(t) in the interface plane are obtained by

premultiplying equation 3.12 by TT:

(3.14)

where V[k+tl(t), N[k+11(t), and M[k+l1(t) are the shear force, normal force, and moment

at the interface due to all effects except sliding:

(3.15)

my, mN, and mM are masses that represent the inertia forces at the interface plane

due to unit sliding acceleration. They are defined as follows:

Applying the Mohr-Coulomb law from equation 3.4 for iteration k + 1 gives:

(3.16)
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The sliding acceleration that satisfies the Mohr-Coulomb law is obtained by

substituting the terms for shear and normal forces from equation 3.14 into equa-

tion 3.16:

tW+ll(t) = [Vlk+l1(t) +V/3,stl- e1k1(t) [c + Jl(Nlk+tl(t) + N/3.st)]
s/3 mR(t)

where the effective mass, mR(t), resisting sliding acceleration is:

(3.17)

mR(t) = mv - ms(t)

The term ms(t) represents the change in effective mass (change in normal force) due

to sliding acceleration.

The function e1k1(t) defines the sliding status of the dam. This qua~tity is

evaluated by considering the equilibrium of forces at the dam interface at each time

step. During the non-sliding phase, the sliding acceleration, US /3(t), is zero, and

e1k1(t) = O. The dam slides when the total shear force at the base exceeds the

resistance at the interface:

(3.18)

and the direction of sliding is given by:

(3.19)

The sliding ends when the sliding velocity is zero, U!~+ll(t) = 0, and at that time

e1k+l1(t) = O. The sliding velocity is computed by integrating the sliding acceleration.
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3.6 Frequency Domain Solution

Equations 3.10 and 3.11 contain frequency-dependent terms due to hydrody-

namic forces, P g, P 8 and P z, and dam-foundation rock interaction forces, F f. There-

fore it is necessary to transform the equations of motion to the frequency domain for

computing the k + 1 estimate of response.

The transformation of the response and force quantities is accomplished by

using the Fourier transforms:

Gc(w) = l Tp
Gc(t)e-iwtdt

Gc(t) = ~100

Gc(w)eiwtdw
211" -00

(3.20a)

(3.20b)

where Tp is the duration of the response including the quiet zone. Gc(t) and Gc(w)

represent any response quantity and its transformation, respectively.

3.6.1 Dam Substructure

The frequency-domain form of equations 3.10 and 3.11 is:

[-w2M* + (1 + i17)K*] Z[k+l1(w) - w2L(J~+l1(w) =

-Ll\(w) - LT/lJ:~(w) +q,T[I\(w) +plk1(w) + p~~+ll(w)]

_w2LTZ[k+l1(w) _ w2M tDJk+1l(w) + F~k+ll(w) =

-Mti\(w) - MtT/3U:~(w) +RT[Pg(w) +plk1(w) + p~~+ll(w)]

(3.21)

(3.22)

where Z[k+ll(w) is the transform of the generalized displacements; (J~+ll(w) is the

transform of the foundation displacements; Ff (w) is the transform of the forces at

the base due to dam-foundation rock interaction; and Pg(w), plk1(w), p~~+ll(w) are



31

the transforms of the hydrodynamic forces. Hysteretic damping in the dam is modeled

by a frequency-independent, stiffness proportional damping factor, "I, so we* = T/K*.

3.6.2 Foundation Rock Substructure

At the rigid foundation rock surface, the relationship between the foundation

displacements, U J,6(w), and interaction forces, F J,6(w), in the interface coordinate

system are represented by a complex frequency-dependent impedance matrix, K J,6(w):

(3.23)

The foundation rock is modeled as a homogeneous, isotropic, and viscoelastic half

plane to compute the the impedance matrix, K J,6(w) [Dasgupta and Chopra, 1977].

The constraint of a rigid base gives an impedance matrix with the three rigid body

modes for the foundation rock interface. Figure 3.3 shows the frequency-dependent

terms in the impedance matrix.

In the x-y coordinate system, the relationship between the base interaction

forces, F J(w)' and foundation displacements, U J(w), is:

(3.24)

where the impedance matrix in the x-y coordinate system is:

(3.25)
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Figure 3.3. Impedance functions for rigid base on viscoelastic half-plane (rlJ = 0.10).
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and the transformation matrix is:

[

Cosf3 Sinf3 0]
T J = -Sinf3 Cosf3 0

001

3.6.3 Water Substructure

The hydrodynamic forces on the dam are defined in the frequency domain. For

iteration k + 1, theforces are:

(3.26)

As indicated in equations 3.21 and 3.22, p1k+tl(w) is premultiplied by "(IT and R T in

the equations of motion. The transformed hydrodynamic force vectors are defined in

Appendix C as follows:

(3.27a)

(3.27b)

(3.27c)

(3.27d)

(3.27e)

(3.27J)

The complex-valued matrices Blllz(w) and BIIIJ(w) are the added mass and damping

due to deformation of the dam and foundation rock, respectively; the matrices BRz(w)
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and BRf(W) represent the added mass and damping due to rigid body displacements of

the dam and foundation rock. The complex-valued vectors B l1Ig (w), B l1Is (w), BRg(w),

and BRs(w) are added loads due to free-field ground motion and sliding at the base.

3.6.4 Dam-Water-Foundation Rock System

Substituting equation 3.24 and equation 3.27 into equation 3.21 and 3.22,

and expressing the free-field ground motion vector in terms of its components, the

equations of motion for the entire system are:

The response vector Xlk+ll(w) is:

The dynamic stiffness matrix, S(w), is symmetric and defined as:

(3.28)

S(w) = [ -w2M* + (1 + i1])K* +w2
B I1I z(w) -w

2
L +w2B l1If (w) ]

_w2LT +w2B Rz(w) -w2M t +Kf(w) +w2B Rf (W)

The load vectors LX(w), LY(w), and V(w) are:

-L11 + B01 (w)

-L21 +B02 (w)

-LJ1 + BoJ(w)

-Mm + Boo(w)

-Mt21

-Mt31 + Boo
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-L12 +B y1 (w)

-L22 +B y2 (w)

-Mt12 +Bya(w)

-Mt22

-Mt32 + By(J

-Mtl2

-Mt22

-Mt32

where the coefficients Lij and Mtij are components of Land M t defined previously;

and Boo(w), BO(J(w) , Boj(w), By(J(w), and Byj(w) (j = 1, .. , J), are complex-valued

functions that are components of BlI'g(w), BRg(w), BlI's(w), and BRs(W). ,

3.7 Summary of Solution Procedure

The HFTD procedure requires iteration in the frequency domain and in the

time domain. The important steps and equations are:
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• Solve the linearized equations, equation 3.28, in the frequency domain to deter-

mine generalized displacements of the dam and foundation displacements:

• Evaluate the forces at the sliding interface in the time domain:

the base force vector F[k+l1(t) is in the x-y coordinate system.

• Evaluate the sliding acceleration:

ir!~+Il(t) = [V[k+l1(t) +V13 .&t] - e[kl(t) [c + JL(N[k+Il(t) + N13.&t)]
ffiR(t)

• Determine the sliding direction:

A p()sitive value indicates sliding in the downstream direction. The dam will

change from sliding to non-sliding phase when the sliding velocity, ir!~+Il(t) = 0,

and at that step e[k+Il(t) = O.

The implementation of the steps in the solution procedure is detailed in Chapter 4.
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Chapter 4

IMPLEMENTATION OF THE SOLUTION PROCEDURE

4.1 Introduction

The hybrid frequency-time domain (HFTD) procedure is used to solve the

nonlinear, frequency-dependent equations of motion governing the earthquake sliding

response of a dam-water-foundation rock system. Each iteration for the solution

involves three stages:

• Linearization of equations of motion: the nonlinear system is linearized by

transferring the nonlinear inertia forces due to sliding to the right-hand side of

the equations of motion.

• Solution of the linearized equations of motion in frequency domain: the lin

earized equations of motion are solved in the frequency domain to account for

the frequency-dependent effects of dam-water interaction and dam-foundation

rock interaction.

• State determination in time domain: the Mohr-Coulomb law is applied to de

termine the sliding response. The sliding acceleration, which produces the non

linear force, is evaluated at each time step.

The three stages are repeated until convergence of the solution is achieved for

the total duration of response. The HFTD procedure converges in a time progressive
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manner. The iterative procedure is performed for one segment of time until con

vergence is achieved in that segment. The number of iterations, and therefore the

computation time, is influenced by the number of segments, the length of segments,

and by the extent of the nonlinear response.

A large part of the computation and storage involves evaluating the complex

valued frequency response functions due to hydrodynamic terms and the computation

of frequency response functions. An interpolation procedure is used to reduce the

storage of the frequency response functions. For nonlinear problems, the interpolation

procedure must be performed at each iteration to compute the frequency response

functions for all frequencies, so there is little reduction in computation time.

4.2 Segmentation of Time

The iterative solution of equation 3.28 and the Fourier transform of the re"

sponse functions gives the displacement history X1k+11(t). Early applications of the

HFTD procedure exhibited slow convergence of the solution [Kawamoto, 1983]. Ob

servation of the iterates show that convergence begins at time zero (t = 0) and

progresses in time with each iteration. This has led to a procedure in which the total

duration of response is divided into segments of time and the solution is obtained

over one segment at a time [Darbre and Wolf, 1988]. After convergence is achieved in

a segment, the solution proceeds to the next segment. The segmentation procedure

is illustrated in Figure 4.1. The following is necessary in the implementation of the

segmentation approach:
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• A quiet zone, as shown in Figure 4.1(a), is appended to the free-field ground

acceleration histories to satisfy the initial conditions in the frequency domain

solution. The length of the quiet zone is determined from the fundamental

frequency and damping for the dam system.

• The unbalanced forces are the inertia forces due to the sliding acceleration. A

. transition function must be appended to these forces, as shown in Figure 4.1(b),

to avoid suddenly unloading the system at the end of a segment causing large

oscillations in response due to the sudden change in load. The transition func

tion used in this study is based on a sinusoidal shape function [Darbre and Wolf,

1988].

• The response is computed for the complete history, but only the response in

the current segment is updated. Dam displacements and sliding accelerations

obtained from converged solutions of previous segments are not changed. An ex

ample of the updating of displacements in an iteration is shown in Figure 4.1(c).

The estimate of the unbalanced force for the first iteration in a segment in

fluences the number of iterations required to achieve convergence. From experience

with application of the method, the fastest convergence is obtained by setting the

unbalanced force to zero for the first iteration, implying there is no sliding for the

segment.

The Fourier transforms are computed over the entire duration of response (in

cluding the quiet zone). Other approaches have been devised so as to avoid the use of

the quiet zone. A recent study uses the so-called exponential window method for this
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for first iteration,
k=O, is zero
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Figure 4.1. Hybrid frequency-time domain procedure for iterative solution of segment

i + 1.
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purpose [Kausel and Roesset, 1992]. When the frequency response functions are eval

uated by interpolation, however, small errors in the computation of the interpolated

functions produce large errors in the solution, rendering the technique ineffective.

4.3 Stability Criterion

A necessary condition for the convergence of the HFTD procedure is based

on the concept of spectral stability. This condition, formulated by Darbre and Wolf

[1988], is the stability criterion for the HFTD procedure. The criterion requires that

the spectral ratio, o-(w), must be less than unity, where the spectral ratio is defined

by:

o-(W) = max[Aj(w)]

in which Aj(W) are the eigenvalues of the matrix:

So(w) is the elastic stiffness matrix of the system, and S(w) is the dynamic stiffness

matrix of the dam system, defined previously. Since the material properties are

elastic, So(w) = S(w), theoretically the spectral ratio is always zero and the HFTD

procedure is expected to converge. From the practical point of view, however the

sliding acceleration produces highly nonlinear force components, and it is necessary

to use relatively short segments for an acceptable rate of convergence. Stability of the

HFTD approach is also confirmed by the study performed by Trujillo [1982] for the

force correction method [Stricklin and Haisler, 1977], which is similar to the HFTD

procedure.
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4.4 Convergence Criteria and Accuracy of Solution

The criteria for terminating the iterations in a segment affects the accuracy of

the solution. The convergence criteria adopted in this study involve the generalized

displacements of the dam, foundation displacements, and sliding acceleration. Con-

vergence for a segment is achieved when the maximum difference between successive

iterations of the response quantities is less than a tolerance at every time step in the

segment. Thus the iteration terminates when:

(4.1a)

(4.1b)

(4.1c)

in which the error function [.0.A], for A representing either Zj, Uj or Us!], is defined

as:

IAlk+11{t) - A[kl(t)1
[.0.A{t)] = max IAlk+ 11(t)1

and fzj, fIl, and f s{3 are the specified tolerances, and j = 1,2, .... , J.

A further check of accuracy of the solution is performed at the end of the

solution procedure by computing the energy balance for the system. Appendix E

gives the energy balance equations that are used for this purpose. The equation that

must be satisfied is:
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where E i is the input energy to the system due to ground motion, E., EJ, and Ed

represent the energy and work due to sliding displacement, foundation displacement,

and dam deformation, respectively.

4.5 Solution of Linearized Equations

The vector containing the generalized displacements and foundation displace-

ments is computed from equation 3.28, as follows:

where yl(w) is the frequency response function for unit harmonic motion base accel-

eration. It is obtained from the solution of:

l=x,y,s (4.3)

To minimize storage, the frequency response functions, Yl(w), are computed

for a few frequencies, and the responses for other frequencies are obtained by interpo-

lation. The interpolation scheme is summarized in Appendix D [Tajirian, 1981; Fok

and Chopra, 1985J.

4.6 Evaluation of Base Forces

The base forces for iteration k + 1 are evaluated in the frequency domain

and then transformed to the time domain. The interface forces from equation 3.15,
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expressed in the frequency domain, are:

where the transform F[k+tl(w) comes from equation 3.13:

(4.4)

;; ;; [kl
[-Mt +BRg(W)]Ug(w) +BRs(w)T~Us~(w) +

T ;; [k+tl ;; [k+tl
[-L + BRz(w)]Z (w) +[-Mt +BRf(W)]U f (w) (4.5)

After rearranging terms, equation 4.4 can be expressed as:

{

V[k+tl(w) }
JV[k+l1(W) = A;(w)U;(w) + A;(w)U;(w) +
M[k+tl(w) .

;; [kl ;; [k+tl
As(w)Us~(w)+ Ax(w)X (w) (4.6)

The matrices A;(w) and A~(w), the first two column vectors of the array TT[-Mt +

BRg(w)], are the base forces due to harmonic ground acceleration in the x- and y

directions, respectively. The matrix As(w) = TTBRs(w)T~ contains the base forces

due to harmonic sliding acceleration. The matrix Ax(w) contains the base forces

due to harmonic dam deformation and foundation displacement. These matrices are

(4.7a)

(4.7b)
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Tn Boo(w) cos f3 ]
A,,(w) = T 1ZBoo(w) cos f3

T33Boo(w) cos f3
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(4.7c)

(4.7d)

where the coefficients MTiJ and Tij are individual elements of the matrices TTMt and

T, respectively. The matrices A~(w), A~(w), A,,(w), and Ax(w) are evaluated by the

same interpolation procedure used for the frequency response functions.

Equation 4.6 can be modified by using equation 4.2 to express the acceleration

X=!k+II( ) . f d I . d l'd' I' £. •vector, w.' III terms 0 groun acce eratlOn an s I Illg acce eratlOn lor IteratIon

k. After performing this substitution the following equation for the base forces is

obtained:

(4.8)

where the vectors Cx(w), Cy(w), and Cs(w) are defined as:

Cy(w) = A~(w) - wZAx(w)YY(w)

Cs(w) = As(w) - wZAx(w)YS(w)

(4.9a)

(4.9b)

(4.9c)

The use of equation 4.8 to calculate the interface forces is very convenient during the

iterative HFTD procedure. All terms in this equation are known at the beginning

of the computation and remain unchanged, except for the transform of the sliding

acceleration, U:~, which is the only function that must be computed and updated in

each iteration.
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4.7 Fourier Transforms

The transformations between frequency domain and time domain are per-

formed in discrete form, using response values computed at M discrete points over

the period Tp • The maximum frequency that is represented in the transformation is

W max = %.t' where b.t is the time interval. The following notation for the discrete

Fourier pair transform is used in the specification of the solution procedure:

1 M-l
I DF[G] == Gm = M L Gre-2i1rmr/M

r=O

M-l
DFT[G] == Gr = L Gme2i1rmr/M

m=O

m = O,I, .... ,M-l

r = 0,1, .... , AI - 1

A efficient Fourier transform package, FFTPACK [Swarztrauber, 1985]' is used in the

implementation. The program computes and saves the exponents at the beginning

and uses them for each transformation, providing considerable savings in computa-

tion.

4.8 Algorithm for the Solution Procedure

This section presents the algorithm for the solution procedure. The total du-

ration of response is divided into segments. The functions C/(w), defined in equation

4.9, are computed prior to the beginning of the iterative solution.

The solution procedure for a segment i + 1, given the computed solution for

segment i, proceeds as follows:
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1. Initialize solution for segment i +1.

(a) Transform the components of ground acceleration to the frequency do-

main. Even though the ground acceleration is constant, it is convenient

to evaluate the transformation for segment i +1 with a subsequent quiet

zone of zeroes:

1= x,y

(b) The sliding acceleration for the segment is initialized to zero: U!~(t) = o.

(c) Initialize the counter for iteration: k = O.

2. Increment iteration counter: k = k + 1.

:-

3. Compute the Fourier transform of the sliding acceleration:

4. Compute displacements.

(a) Compute the displacements for iteration k+1, in frequency domain, using

equation 4.2:

The frequency response functions, YX(w), YY(w) and YS(w), are evaluated

using the interpolation procedure.

(b) Transform the displacements for iteration k + 1 to the time domain:
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5. Compute interface forces.

(a) Compute the base forces m the frequency domain according to equa-

tion 4.8:

(b) Transform the base forces to the time domain:

{

V[k+l1(t) } { y[k+l1(w) }
N[k+Il(t) = DFT[ R[k+l1(W) ]

M[k+l1(t) M[k+Il(w)

6. Dam initiates sliding phase.

(a) When the dam at a given step is in the non-sliding phase, e[k1(t) = 0,

compute the total shear force at the base of the dam and the friction

resisting force:

V [k+11 () - [N[k+l l() N ]friction t - c + Il t + {3,st

(b) Apply the Mohr-Coulomb law to determine if the dam will start to slide.

If the total shear force is greater than the resisting friction force:

Iv,t[k+Il(t) I > IV[k:t"l,l (t)1
{3 - fnchon

then the dam slides and the direction of sliding is given by:
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7. Dam continues in sliding phase.

(a) The dam is in the sliding phase when e[kl(t) = ±1. A new estimate of the

sliding acceleration is computed using equation 3.17:

ii[k+ll(t) = (V[k+1l(t) + VP,st) - e[kl(t) [c + Jl(N[k+11(t) + Np,st)]
s{J mR(t) .

(b) The dam will continue sliding, e[k+1l(t) = e[kl(t), and the sliding velocity

and sliding displacement are obtained by integration of the sliding accel-

eration. A linear variation of sliding acceleration between time steps is

assumed for this calculation.

8. Dam returns to non-sliding phase.

(a) When the dam is in the sliding phase, it is necessary to check if sliding

stops, according to sliding velocity. If the sliding velocity does not change

sign between two consecutive steps, then the dam continues in the sliding

phase. If there is a change in sign or if the sliding velocity is equal to zero,

then the dam has changed from sliding to a non-sliding phase.

(b) This change in state occurs between two time steps. Since the calculation

is performed only at discrete steps, the stick condition can only be enforced

approximately. The approach used to determine the change in the sliding

state is shown in Figure 4.2. When the dam stops sliding, the sliding

velocity at that step is assumed to be zero. The sliding acceleration is

corrected for this condition, and the sliding displacement is obtained by

integrating the sliding velocity.
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Figure 4.2. Change of state from sliding to non-sliding according to sliding velocity.



51

9. Check of convergence.

(a) Apply equation 4.1 to compute the error functions for the solution, and

check the convergence at each time step.

(b) If convergence has not been achieved, go to step 2 for the next iteration.

The calculations for the next iteration begin with the step where conver

gence was last achieved in the current segment.

(c) If convergence has been achieved for all time steps within the segment,

start the solution for the next segment at step 1.

4.9 Computer Program

A computer program, EAGD-SLIDE, implements the solution procedure for

the earthquake-induced sliding response of concrete gravity dams including the dam

water interaction and the dam-foundation rock interaction. The program is available

from the National Information Service for Earthquake Engineering (NISEE). 1

All input data are in free-format. Input includes properties of dam, reservoir,

foundation rock and parameters for the application of the HFTD procedure. The out

put includes time histories of dam displacements, time history of sliding displacement

and interface forces, time history of energy quantities. Maximum response quanti

ties, including maximum principal stresses in the dam and time of occurrence, are

also evaluated.

1NISEE, 404A Davis Hall, University of California at Berkeley, Berkeley, CA,94720.
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Chapter 5

EARTHQUAKE RESPONSE OF PINE FLAT DAM

5.1 Introduction

The analysis procedure presented in Chapters 3 and 4 is used to compute the

earthquake response of Pine Flat dam. The emphasis of this study is the nonlinear

response of the dam due to sliding at the base. Previous studies have investigated

the linear response of this dam [Fenves and Chopra, 1984a, 1984b]. The purpose of

the current study is to: (a) demonstrate the applicability of the HFTD procedure

for evaluating the earthquake response of concrete gravity dams, including the effects

of dam-water interaction, dam-foundation rock interaction, and sliding at the dam

foundation rock interface; and (b) determine how sliding affects the response of a

typical concrete dam.

Various cases of the dam system subjected to selected ground motions are

considered to show the influence of the parameters on the sliding response of the

dam, such as: the number of Ritz vectors used in the solution, the value of the

coefficient of friction, the foundation rock flexibility, and the angle of base inclination.

The influence of different ground motions and the influence of the amplitude of the

ground acceleration on the response of the dam are also considered.
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5.2 Properties of Pine Flat Dam

Pine Flat dam is a 561 m (1840 ft) long concrete gravity dam near Fresno,

California. The tallest of the thirty-seven monoliths is 122 m (400 ft) high, and

each monolith is 12 m (40 ft) to 15 m (50 ft) wide. The tallest monolith has a

typical cross section for gravity dams. A two-dimensional, plane stress finite element

idealization for the monolith is shown in Figure 5.1. The model consists of 36

nine-node quadrilateral elements and 171 nodes.

The angle of inclination at the base, (3, is 0° for most of the cases studied,

although it is changed to 5° sloping downstream and _5° sloping upstream, as shown

in Figure 5.2, for studying the influence of the base inclination on the sliding response.

The cohesion force at the base is assumed to be zero and the coefficient of friction

varies from 0.8 to 1.2. These values represent the friction properties at the interface

as recommended in previous studies [Danay and Adeghe, 1993; Chopra and Zhang,

1991].

The dam concrete is assumed to be isotropic, homogeneous and elastic with

the following properties: modulus of elasticity = 22.4 GPa (3.25 million psi), unit

weight = 24.3 kN1m3 (155 pef), and Poisson's ratio = 0.2. A constant hysteretic

damping factor of 0.10, which corresponds to 5 percent of critical viscous damping at

resonance, is used to model the energy dissipation in the dam.

The foundation rock is idealized as a homogeneous, isotropic, viscoelastic half

plane with the following properties: Poisson's ratio = 0.33, unit weight = 25.9 kN1m3

(165 pef), and hysteretic damping coefficient = 0.10. The modulus of elasticity for
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Figure 5.1. Finite element idealization of tallest monolith of Pine Flat dam.
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Figure 5.2. Inclination of dam base.

the foundation rock is varied to consider the effects of the foundation rock flexibility

on the dam response. The following ratios between the modulus of elasticity of the

concrete dam, Eed, and the modulus of elasticity of the foundation rock, E fr , are used:

Efr / Eed = 00, 4, 1, 0.25. The first case corresponds to a dam with rigid foundation

rock, and the last case is a very flexible, although not untypical, foundation rock.

The impounded water has a depth of H = 116.2 m (381 ft) and the following

properties: unit weight = 9.8 kN/m3 (62.4 pef), wave velocity = 1440 m/sec (4720

ft/sec). The wave reflection coefficient for the reservoir bottom materials is Q' = 1

for most of the cases (rigid reservoir bottom), but a value of Q' = 0.9 is used for the

cases subjected to vertical ground motion. The resultant uplift force at the base is

evaluated assuming a triangular distribution of internal pressure from 1.14 MPa (24

ksf) at the upstream face to zero at the downstream face. To account for drainage

only 40 percent of the resultant uplift force is considered in the earthquake analysis.
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5.3 Earthquake Ground Motions

The primary ground motion used for the evaluation of the earthquake re

sponse of Pine Flat dam is the Taft record, S69E horizontal and vertical components,

obtained at the Lincoln School Tunnel in the 1952 Kern County earthquake. This

ground motion contains a wide spectrum of frequencies and it has been used for many

studies of concrete gravity dams [Chopra, Chakrabarti, and Gupta, 1980; Fenves and

Chopra, 1984a]. The second ground motion is the EI Centro record, SOOE component,

obtained in the 1940 Imperial Valley earthquake. This record has been widely used

for the analysis of many structures. It has large velocity pulses that may affect the

sliding of a dam. Another ground motion used is the Pacoima record, S16E com

ponent, recorded at Pacoima dam during the 1971 San Fernando earthquake. This

record contains a large peak acceleration which can induce sliding of a dam. Table 5.1

lists the earthquakes used in the study and Figure 5.3 shows the acceleration histories

normalized with respect to their individual peak accelerations.

A large peak ground acceleration does not necessarily produce a large response

of a structure. In the case of dam sliding, however, the value of peak acceleration

Table 5.1. Ground motion records and peak ground accelerations.

Ground Motion Component Peak Acceleration (g)

Taft S69E 0.18

Taft VRT 0.11

EI Centro SOOE 0.35

Pacoima S16E 1.17
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Figure 5.3. Ground acceleration records, normalized to individual peak ground ac
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determines whether sliding initiates and the amount of sliding displacement [Chopra

and Zhang, 1991]. For most of the analysis, the horizontal components of ground

motion are scaled to a peak acceleration of OAg, which is a typical value for moderate

to strong earthquakes. The vertical component of Taft ground motion is scaled to

a peak acceleration of 0.26g, which is two-thirds of the scaled horizontal peak accel

eration. Additional analysis are performed using the 869E component of the Taft

ground motion scaled to a peak acceleration of 0.6g to study the influence of the

ground motion amplitude on the response of the dam.

5.4 Analysis Parameters

The analysis is performed using a time step of 0.01 sec. This time step is

adequate for the nonlinear sliding analysis, and it is comparable to time steps used

for analysis of the linear response. The response is computed for the first 20 sec of

each ground motion. A quiet zone of 20046 sec is appended to the first 20 sec of the

acceleration data for a total duration of 40.46 sec. This corresponds to 212 = 4096

time steps for the discrete Fourier transforms. The maximum frequency represented

is 50 Hz which is beyond the frequencies included in the processed ground motion

acceleration records.

The total duration of response is divided into segments of equal length. Each

segment consists of 20 time steps. The convergence of the solution is relatively fast

using these short segments. The normal force is assumed to be constant during the

determination of siding state, so the change in normal forces due to dam deformation

is not considered. This is necessary to ensure convergence of the solution for all cases.
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5.5 Cases Analyzed and Description of Response Quantities

The tallest monolith of Pine Flat dam is analyzed for several cases to evaluate

the effects of: (a) the number of Ritz vectors used in the solution procedure, (b)

the earthquake ground motion and its amplitude, (c) the coefficient of friction, (d)

the flexibility of the foundation rock, (e) the vertical component of ground acceler-

ation, and (f) the angle of inclination, (3, at the base. Dam-water interaction with

compressible water is included for all cases. Empty reservoir cases are not presented

because the dam with empty reservoir does not slide for q,ny of the ground motions

and parameters considered. The cases analyzed and the maximum values of responses

are summarized in Tables 5.2, 5.3, and 5.4.

The response results consist of time histories of displacements, forces, and

energy quantities, and contours of maximum principal stresses. For each case, time

history responses are presented for:

• Horizontal displacement of dam crest with respect to the base, indicating the

level of dam deformation.

• Sliding displacement at the interface, Usf3 (t). Sliding displacement is positive in

the downstream direction.

• Base shear force, V.a(t). Sliding initiates when the base shear force exceeds the

friction resistance at the base.

• Eccentricity ratio for base forces, which is defined as:

. Mf3(t)/N.a(t)
eccentricity ratIO = - B /2
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Table 5.2. Cases for earthquake analysis of Pine Flat dam on rigid foundation rock

and maximum values of response. Peak ground acceleration is OAg for horizontal

ground motion and 0.26g for vertical ground motion.

Parameters Maximum Response

J Base Stress Stress

Ground Ritz Dam slide upstream downstream

Motion Q' (3 J.l vect. def. disp. face face

(0) (mm) (mm) (MPa) (MPa)

Taft-S69E 1.0 0 1.0 1 79 116 6.0 5.0

1.0 0 1.0 5 80 124 5.0 5.0

EI Centro-SOOE 1.0 0 1.0 1 67 58 5.0 3.5

1.0 0 1.0 5 74 58 5.0 4.0

Pacoima-Sl6E 1.0 0 1.0 1 77 36 5.0 5.0

1.0 0 1.0 5 83 32 5.0 5.0

Taft-S69E 1.0 0 0.8 5 64 291 5.0 4.0

1.0 0 0.9 5 73 187 5.0 4.0

1.0 0 1.0 5 80 124 5.0 5.0

1.0 0 1.2 5 86 38 6.0 5.0

1.0 0 00 5 87 0 7.0 5.0

Taft-S69E 1.0 5 1.0 5 75 53 5.0 7.0

1.0 -5 1.0 5 76 201 5.0 4.0

Taft-S69E 0.9 0 1.0 5 78 115 5.0 5.0

Taft-VRT 0.9 0 1.0 5 48 0 3.5 3.5

Taft-S69E, VRT 0.9 0 1.0 5 80 112 6.0 5.0
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Table 5.3. Cases for earthquake analysis of Pine Flat dam on flexible foundation rock

and maximum values of response. Peak ground acceleration is OAg.

Parameters Maximum Response

J Base Stress Stress

Ground Ritz Dam slide upstream downstream

Motion E fr / Ecd 0' (3 J1. vect. def. disp. face face

(0) (mm) (mm) (MPa) (MPa)

Taft 00 1 0 1.0 5 80 124 6.0 5.0

S69E 4.00 1 0 1.0 5 80 113 5.0 4.0

1.00 1 0 1.0 5 76 38 4.5 3.0

0.25 1 0 1.0 5 94 3 3.0 2.5

Taft 0.25 1 0 0.8 5 93 62 2.0 2.5

S69E 0.25 1 0 0.9 5 93 21 2.5 2.5

0.25 1 0 1.0 5 94 3 3.0 2.5

0.25 1 0 1.2 5 98 0 3.0 2.5

0.25 1 0 00 5 98 0 3.0 2.5
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Table 5.4. Cases for earthquake analysis of Pine Flat dam on flexible foundation rock

and maximum values of response. Peak ground acceleration is 0.6g.

Parameters Maximum Response

J Base Stress Stress

Ground Ritz Dam slide upstream downstream

Motion Efr / Ecd a f3 J.l ved. def. disp. face face

(0) (mm) (mm) (MPa) (MPa)

Taft 1.00 1 0 0.8 5 107 502 5.0 5.0

S69E 1.00 1 0 1.0 5 103 168 5.0 5.0

1.00 1 0 1.2 5 113 64 6.0 5.0

Taft 0.25 1 0 0.8 5 128 228 2.5 4.0

S69E 0.25 1 0 1.0 5 140 56 3.5 4.0

0.25 1 0 1.2 5 140 7 4.0 4.0
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When the absolute value of this ratio exceeds one it means that the resultant

base force is outside of the base and the dam will start rocking. A ratio greater

than +1 indicates rocking about the heel, and a ratio less than -1 indicates

rocking about the toe of the dam.

• Energy quantities, as defined in Appendix E, show the energy balance between

the input energy and the work performed due to sliding of the base, displacement

of the foundation, and dam deformation. The energy balance identifies the

sources of dissipation of energy and verifies the accuracy of the solution.

The contours of maximum principal stresses do not include stresses due to the

static loads. The stress contours are used to evaluate the effects of the parameters

on the dynamic response only.

5.6 Response of Dam on Rigid Foundation Rock

The response of the dam on rigid foundation rock, E fr / Ecd = 00, shows the

influence of basic parameters on the response: number of Ritz vectors, angle of base

inclination, vertical ground motion, and coefficient of friction. The peak horizontal

ground acceleration is scaled to OAg, and the peak vertical ground accelerations is

scaled to O.26g for these analysis.

5.6.1 Influence of Number of Ritz Vectors

The dam is analyzed using one and five Ritz vectors to investigate the influence

of the number of Ritz vectors on the computed response of the dam to the Taft S69E
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ground motion. As shown in Figures 5.4 and 5.5, the crest deformation time history

and the base sliding time history are similar when one and five vectors are used.

The maximum crest displacement is the same for both cases, but the maximum base

sliding displacement is 7 percent greater when five vectors are used compared with one

vector. The higher modes produce some additional base shear force and sliding, but

do not affect significantly the dam deformation. Figure 5.10(a) shows that the analysis

with one vector slightly overestimates the maximum principal stresses compared with

the analysis including five vectors.

The response of the dam subjected to the El Centro SOOE ground motion is

shown in Figures 5.6 and 5.7. The maximum crest deformation is 10 percent greater

when five vectors are included compared with one vector, but the base sliding dis

placement is the same for both cases. Sliding can be interpreted as an isolation

mechanism that reduces higher modes participation. For this ground motion, how

ever, the sliding is small, so the higher modes of vibration are not isolated and tend

to contribute more to the deformation of the dam. The maximum principal stresses

also increase slightly at the upstream and downstream faces when five vectors are

used instead of one, as shown in Figure 5.10(b).

The response of the dam subjected to the Pacoima S16E ground motion is

shown in Figures 5.8 and 5.9. The maximum crest deformation is comparable to the

deformation observed for the Taft and EI Centro ground motions, but the base sliding

displacement is significantly less. The maximum crest deformation is 8 percent greater

when five vectors are used compared with one vector. The larger crest displacement

occurs during the first 8 sec of response, when there is no sliding, so the contribution
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Figure 504. Response of Pine Flat dam with rigid foundation rock, horizontal in
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motion with peak ground acceleration = GAg. One Ritz vector is used in the analysis.
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Centro, ground motions with peak accelerations = OAg. Static effects not included.
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of higher modes to the deformation of the dam is important. Contrary to the other

cases, however, the base sliding displacement is slightly greater when one vector is

used. The sliding occurs around 8 sec, near the time of the large pulse in the ground

motion, otherwise the response is linear. Although not shown, the maximum stresses

are the same in both cases.

These results indicate that higher Ritz vectors slightly affect the response of

the dam. The differences in maximum dam crest deformations are on the order of 7

to 10 percent, depending on the ground motion. In general, the higher mode vectors

tend to increase, although slightly, the sliding at the base. Therefore, five Ritz vectors

will be used for the other cases.

5.6.2 Influence of Ground Motion

The characteristics of the ground motion affect significantly the sliding re

sponse of the dam. The response of the dam for the three ground motions, Taft

S69E, El Centro SOOE and Pacoima S16E, is shown in Figures 5.5, 5.7 and 5.9.

As shown in Figure 5.11, the base sliding due to the Taft ground motion is

greater, by almost a factor of two, than the sliding due to the EI Centro ground

motion, and it is three times greater than the sliding due to the Pacoima ground

motion. Taft produces larger sliding displacement because of the greater number of

acceleration peaks over the long duration compared with the other records. Several

sliding events occur at these peaks. El Centro produces sliding events that occur in the

first 5 sec of response, when the ground motion is strongest. Pacoima produces two

sliding events at around 8 sec, corresponding to the the large acceleration pulse in the
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record. For all cases sliding accumulates in the downstream direction. Because of the

few peaks in the EI Centro and Pacoima records, the dam does not accumulate large

base sliding displacement. The maximum crest deformation and maximum stresses

are approximately the same for the three ground motions.

The input energy for the Taft ground motion is greater than the input energy

for the EI Centro and Pacoima ground motions, as shown in Figure 5.11. The input

energy is an important parameter to evaluate the influence of the ground motion

in the response of structures lUang and Bertero, 1988], so it is expected that Taft

ground motion produces the largest base sliding displacement of the dam: Therefore

this ground motion is used to study in more detail the earthquake response of Pine

Flat dam.

The eccentricity ratio for the base forces indicates the possibility of rocking of

the dam during the earthquake. Taft produces three peaks with absolute values close

to unity, as shown in Figure 5.5, although only one peak is greater than unity (at 8

sec), indicating initiation of rocking at this one instant of time. EI Centro produces

smaller eccentricity ratios and therefore the dam does not rock. Pacoima ground

motion produces a large eccentricity ratio when the dam starts sliding and remains

small thereafter.

5.6.3 Influence of the Coefficient of Friction

The most important parameter affecting the sliding of the dam is the value of

the coefficient of friction, Il. Figures 5.12, 5.13, 5.5 and 5.14 show the time history

responses of the dam with JJ = 0.8, 0.9, 1.0, and 1.2, respectively. Figure 5.15 shows
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the linear response without sliding (J.L = 00).

The maximum crest deformation increases almost linearly with the coefficient

of friction, from 64 mm for J.L = 0.8 to 86 mm for J.L = 1.2. The crest deformation for

J.L = 00 (no sliding) is 87 mm. The maximum principal stresses, shown in Figure 5.16,

increase at the upstream and downstream faces of the dam with larger values of J.L,

as expected, because dam stresses depend on the deformation of the dam.

The base sliding displacement is very sensitive to the coefficient of friction.

Sliding initiates at early stages for smaller coefficients of friction. For J.L = 0.8 the

sliding initiates at 3 sec, and for J.L = 0.9 and 1.0, sliding initiates at 4 sec. The

maximum sliding displacement of the dam decreases nonlinearly with the increase of

the coefficient offriction, from 291 mm for J.L = 0.8 to 38 mm for J.L = 1.2. The sliding

displacement for J.L = 0.8 is one and one-half times that for J.L = 0.9, and more than

twice that for J.L = 1.0. For J.L = 1.2 there are two small sliding events between 6.5

to 8 sec, and the response is very similar to the linear response of the dam shown in

Fig 5.15. A slight decrease in the coefficient of friction may produce a large increase

in the sliding displacement. For example reducing J.L from 1.0 to 0.9, increases the

sliding displacement by about 50 percent.

The eccentricity ratio (in absolute value) for the base forces decreases almost

linearly with the value of J.L. The eccentricity ratios for J.L = 0.8 and J.L = 0.9 are less

than one. There is one peak close to one for J.L = 1.0 at 8 sec, and various peaks

near one for J.L = 1.2. Thus rocking is not important for any of the cases with a peak

ground acceleration of OAg.
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Figure 5.12. Response of Pine Flat dam with rigid foundation rock, horizontal in

terface, Q = 1, Jl = 0.8, subjected to the horizontal 569E component of Taft ground

motion with peak ground acceleration = OAg.



Figure 5.13. Response of Pine Flat dam with rigid foundation rock, horizontal in

terface, a = 1, J.I. = 0.9, subjected to the horizontal S69E component of Taft ground

motion with peak ground acceleration = OAg.



79
f-o"'"

100

~1z
~~ 0

~~
oEil::co -100

300E
ClS

~ffi
~~ 150
UlU

~j
ale.

til

0 0

50.0

~~
til Ul 0.0
Ul U
til ~< 0
al "-

-50.0

1. 00
~~
~~
~fi:
O~ 0.00

~:
~fi:

-1. 00Ul

6.00

~ Ei
6
>< 3.00Cl
In
aJ Es

0.00
0 5 10 15 20

TIME (sec)

Figure 5.14. Response of Pine Flat dam with rigid foundation rock, horizontal in

terface, a = 1, J.l = 1.2, subjected to the horizontal S69E component of Taft ground

motion with peak ground acceleration = OAg.



80
e--' 100

~!
U z
:il

0
0~~

~i::co
-100

300e
to:}S

~ffi
@~ 150
tIlU
~j
l:ll6;

Q
0

50.0

.~ ~

: El 0.0
CIl Cl::< 0
l:ll "'-

-50.0

~~
1.00

~f2
0.00o tIl.... ~

~:
e fi

-1. 00tIl

6.00

~
>- 3.00 Es+Edto:}

~
ffi

0.00
Es

0 5 10 15 20

TIME (sec)

Figure 5.15. Response of Pine Flat dam with rigid foundation rock, horizontal in

terface, a = 1, Jl = 00, subjected to the horizontal S69E component of Taft ground

motion with peak ground acceleration = OAg.



81

4

5

Fig~re 5.16. Envelope of maximum principal stresses (in MPa) in Pine Flat dam

with rigid foundation rock, horizontal interface, a = 1, subjected to the horizontal

S69E component of Taft ground motion with peak ground acceleration = OAg. Static

effects not included.
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The input energy is similar for J1. between 0.8 to 1.0, and slightly increases for

J1. = 1.2. A large percentage of the input energy is due to deformation of the dam,

Ed. The energy dissipated by sliding of the dam,. Es , is much less and it is almost

not affected by the value of the coefficient of friction. For these cases, sliding is not

an effective energy dissipation mechanism. An increase of the sliding displacement

with a decrease in J1. reduces dam deformation and the maximum principal stresses.

Therefore, the sliding of the dam on rigid foundation rock can be interpreted as an

isolation mechanism for the dam.

5.6.4 Influence of the Angle of Interface Inclination

The sliding displacement of the dam is affected by the angle, (3, of the interface

because the inclination affects the static normal force and shear force. The responses

of the dam are shown in Figures 5.17 and 5.18 for two values of (3. The crest de

formation for (3 = 5°, sloping downstream, is larger than the crest deformation for

(3 = -5°, sloping upstream, although the maximum crest deformation for both cases

is almost the same.

The base sliding displacement is considerably affected by the value of (3. The

maximum base sliding for (3 = 5° is almost four times that for (3 = -5°. When

the angle of inclination is _5° (sloping upstream) there is a component of gravity

force that contributes to the base shear force in the downstream direction, inducing

additional sliding downstream.

The maximum principal stresses, shown in Figure 5.19, are slightly less for the

case of the dam sloping upstream ((3 = _5°) because of smaller deformation of the
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Figure 5.17. Response of Pine Flat dam with rigid foundation rock, angle of interface

= 50, Q' = 1, Jl = 1, subjected to the horizontal S69E component of Taft ground

motion with peak ground acceleration = OAg.
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S69E component of Taft ground motion with peak ground acceleration = OAg. Static

effects not included.
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dam from the isolation effect of sliding. Similarly, the tendency to rock is less for the

dam sloping upstream (/3 = _5°) than for the dam sloping upstream (/3 = 5°).

5.6.5 Influence of Vertical Ground Motion

The response of the dam to vertical ground motion is computed to evaluate its

significance on the sliding response of the dam. Figure 5.20 shows the response of the

dam when it is subjected to the Taft S69E horizontal component of ground motion,

Figure 5.21 shows the response due to the vertical component of the Taft ground

motion, and Figure 5.22 shows the response of the dam subjected simultaneously to

the horizontal and vertical components of the Taft ground motion. The reservoir

bottom coefficient is 0: = 0.9 for these three cases.

When the dam is subjected to the horizontal component of ground motion

(peak acceleration = OAg), the maximum crest deformation is 78 mm. The maximum

crest deformation for vertical ground motion alone (peak acceleration = 0.26 g) is 48

mm. The maximum crest deformation is 80 mm considering both components of

ground motion, simultaneously. The history of crest displacements to the individual

components are not in phase, so the contribution of the vertical ground motion to

the total response is not large. The principal stress contours for the three cases are

shown in Figure 5.23. The stresses increase with the vertical ground motion, which

has been shown for the linear response of gravity dams [Fenves and Chopra, 1984a].

As for sliding, the maximum base sliding displacement due to horizontal ground

motion is 115 mm. The dam does not slide due to the vertical ground motion only.

The maximum base sliding due to the combined vertical and horizontal components



Figure 5.20. Response of Pine Flat dam with rigid foundation rock, horizontal in

terface, a = 0.9, Jl = 1, subjected to the horizontal S69E component of Taft ground

motion with peak ground acceleration = O.4g.
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Figure 5.21. Response of Pine Flat dam with rigid foundation rock, horizontal inter

face, a = 0.9, it = 1, subjected to the vertical component of Taft ground motion with

peak ground acceleration = 0.26g.
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Figure 5.22. Response of Pine Flat dam with rigid foundation rock, horizontal inter

face, a = 0.9, Jl. = 1, subjected to the horizontal S69E and vertical components of
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of ground motion is 112 mm, showing that for this case the vertical ground motion

has little effect on sliding. Since the responses to the ground motion components are

not in phase, the maximum values of response occurs at different times.

The vertical ground motion also has little effect on the initiation of rocking of

the dam. Rocking under vertical ground motion alone is not likely to occur. As for

the input energy due to vertical ground motion, it will be mostly dissipated through

dam deformation.

5.7 Response of Dam on Flexible Foundation Rock

5.7.1 Influence of Foundation Rock Flexibility

The response of the dam to the S69E Taft ground motion, with a peak ground

acceleration of OAg, for Il = 1 and different levels of foundation rock flexibility is

shown in Figures 5.24 to 5.26. The flexibility of the foundation rock reduces the

sliding response of the Pine Flat dam.

The crest deformation for E fT / Ecd = 4, shown in Figure 5.24, is similar to

the crest deformation for the dam on rigid foundation rock (Figure 5.5). There are

few differences in displacements and for practical purposes a foundation rock with a

moduli ratio E fT / Ecd = 4 can be considered rigid. For more flexible foundation rocks,

EfT / Ecd = 1 and EfT / Ecd = 0.25, the dam crest displacement, shown in Figures 5.25

and 5.26, increases slightly as the moduli ratio EfT / Ecd decreases and the system

becomes more flexible. The maximum crest deformation varies between 76 mm for

EfT / Ecd = 1 and 94 mm for EfT / Ecd = 0.25. The crest displacements are influenced
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by dam-foundation rock interaction, because the flexibility of the foundation rock re

duces the fundamental resonant frequency of the system and adds additional damping

mechanisms.

The sliding of the dam with a moduli ratio E fr / Ecd = 4 is similar to the sliding

of the dam on rigid foundation rock. There are six sliding events in the downstream

direction. The last one occurs at 15 seconds. The maximum sliding displacement

is 113 mm, which is 10 percent less than that of the dam on rigid foundation rock.

The maximum sliding for E fr / Ecd = 1 decreases by a factor of three to 38 mm. The

base sliding displacement decreases substantially as the foundation rock becomes more

flexible because the increase in effective damping due to energy radiation and material

damping of the foundation rock reduces the base shear forces. There are only three

sliding events and the last sliding occurs at 7 sec. There is very small sliding for the

case of a very flexible foundation rock with a moduli ratio E fr / Ecd = 0.25.

The decrease in sliding and base force is due to the large energy dissipation of

the flexible foundation rock, as shown by the histories of energy terms in Figures 5.24

to 5.26. For a flexible foundation rock, E fr / Ecd = 0.25, the energy dissipated by

the foundation rock is almost 80 percent of the total input energy transmitted to the

system. However, for a stiff foundation rock, Efr / Ecd = 4, 70 percent of the energy

is dissipated by damping of the dam.

The envelopes of maximum principal stresses are shown in Figure 5.27. The

maximum stresses for E fr / Ecd = 4 are equal to the stresses for a dam on rigid

foundation rock. The maximum stresses decrease as the foundation rock becomes

more flexible for the reasons discussed previously.
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Figure 5.27. Envelope of maximum principal stresses (in MPa) in Pine Flat dam

with flexible foundation rock, horizontal interface, a = J, Jl = 1, subjected to the

horizontal S69E component of Taft ground motion with peak ground acceleration =

OAOg. Static effects not included.



97

The maximum eccentricity ratio of base forces decreases almost linearly as the

foundation rock becomes more flexible. For E fT / Ecd = 4, there is one peak value of

the eccentricity ratio close to unity at 8 seconds. For E fT / Ecd = 1, the maximum

eccentricity ratio is less than 0.9, and for E fT / Ecd = 0.25 the maximum eccentricity

ratio is 0.75. For this ground motion the dam will not rock when the dam is supported

on a flexible foundation rock.

5.7.2 Influence of the Coefficient of Friction

The responses of the dam on a flexible foundation rock with a moduli ratio

E fT / Ecd = 0.25 and different values of the coefficient of friction are shown in Fig

ures 5.28 to 5.30. The crest dam deformation history is very similar for the different

values of the coefficient of friction. The maximum crest deformation varies between

93 mm for /l. = 0.8 to 98 mm for /l. = 1.2.

The sliding of the dam on flexible foundation rock is very small compared with

the sliding of the dam on rigid foundation rock. For /l. = 0.8 there are two sliding

events and the maximum sliding displacement is 62 mm. For /l. = 0.9 there is only

one sliding event and the maximum sliding displacement is 21 mm. For /l. = 1 there

is little sliding, and for /l. = 1.2 there is no sliding. Although the sliding of the dam

on flexible foundation rock is a nonlinear function of /l., the coefficient of friction is

less important for a dam on flexible foundation rock because energy dissipation in the

foundation rock reduces the response and limits the base shear force causing sliding.

The eccentricity ratios vary slightly with the different values of /l.. The maxi

mum ratios (absolute value) increase almost linearly from 0.6 for /l. = 0.8 to 0.8 for
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Taft ground motion with peak ground acceleration = OAg.



Figure 5.29. Response of Pine Flat dam with flexible foundation rock, E fr / Ecd = 0.25,

horizontal interface, a = 1, '" = 0.9, subjected to the horizontal S69E component of

Taft ground motion with peak ground acceleration = OAg.
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Figure 5.31. Envelope of maximum principal stresses (in MPa) in Pine Flat dam with

flexible foundation rock, E fr / Ecd = 0.25, horizontal interface, a = 1, subjected to

the horizontal S69E component of Taft ground motion with peak ground acceleration

= O.4g. Static effects not included.
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J1. = 1.2. Therefore the dam will not rock for these cases. The maximum stresses,

shown in Figure 5.31, which depend on the dam deformation, increase slightly with

the value of J1..

5.8 Influence of Amplitude of Ground Acceleration

The peak ground acceleration is an important factor in the sliding response

of the dam. Increasing the peak acceleration induces larger sliding displacement of

the dam. The responses of Pine Flat dam to the S69E Taft ground motion with

a peak ground acceleration of 0.6g and three values of the coefficient of friction,

J1. = 0.8, 1.0, and 1.2 on flexible foundation rock with moduli ratios of Efr / Ecd = 1

and Efr/Ecd = 0.25 are shown in Figures 5.32 to 5.34, and in Figures 5.37 to 5.38,

respectively.

The crest displacement increases as the moduli ratio decreases and the system

becomes more flexible. The maximum crest deformation varies between 107 mm to

113 mm for EfrfEcd = 1, and between 128 mm to 140 mm for Efr / Ecd = 0.25.

The crest deformation for the dam subjected to the Taft ground motion with a peak

ground acceleration of 0.6g is about 40 percent greater than the deformation for the

dam subjected to Taft ground motion with a peak acceleration of OAg. Thus, the

increase in maximum crest deformation varies almost linearly with the increase in

peak ground acceleration.

The base sliding displacement is more sensitive to the amplitude of the ground

acceleration. For the Pine Flat dam on flexible foundation rock with a moduli ratio

Efr / Ecd = 1 the sliding initiates around 3 sec for J.l = 0.8 and around 4 sec for J.l = 1.0
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and 1.2. The maximum base sliding displacement for Jl = 0.8 is 502 mm, a large value

because for this moduli ratio the foundation rock is relatively rigid and the response

is very dependent on the value of the coefficient of friction. For larger values of Jl,

the sliding displacement decreases to 168 mm for Jl = 1.0 and to 64 mm for Jl = 1.2.

For the dam on flexible foundation rock with a moduli ratio EfT/Ecd = 0.25,

the amplitude of the ground acceleration is still important, although due to the flexi

bility of the foundation rock, the base sliding displacement is smaller compared with

the case when E fT / Ecd = 1. For Jl = 0.8, the maximum base sliding displacement

is 228 mm, almost four times that of the dam subjected to the same ground motion

with a peak acceleration of O.4g. For Jl = 1.0 the base sliding displacement is reduced

to 56 mm, and for Jl = 1.2 there is almost no sliding.

An increase in ground acceleration amplitude also increases the eccentricity

ratio (in absolute value) for the base forces. For EfT / Ecd = 1 there are two peaks

(around 8 sec) forJl = 1 and five peaks (at different times) for Jl = 1.2 exceeding

unity. For EfT / Ecd = 0.25 the eccentricity ratios are all less than one. Thus, rocking

will not occur for a dam on very flexible foundation rock, although it could become

important for a dam on a more rigid foundation rock subjected to a ground motion

with a large peak ground acceleration.

The input energy increases by almost a factor of two when the amplitude of

the Taft ground acceleration increases from O.4g to 0.6g, and for the cases analyzed,

sliding seems not to be an important dissipator of energy. For very flexible foundation

rock, E fT / Ecd = 0.25, most of the energy is dissipated in the foundation rock.
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Figure 5.32. Response of Pine Flat dam with flexible foundation rock, E fT / Ecd = 1,

horizontal interface, a = 1, fl = 0.8, subjected to the horizontal S69E component of

Taft ground motion with peak ground acceleration = 0.6g.
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Figure 5.34. Response of Pine Flat dam with flexible foundation rock, E fr / Ecd = 1,

horizontal interface, a = 1, J.l = 1.2, subjected to the horizontal S69E component of

Taft ground motion with peak ground acceleration = O.6g.
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Figure 5.35. Envelope of maximum principal stresses (in MPa) in Pine Flat dam with

flexible foundation rock, E fr / Ecd = 1, horizontal interface, 0' = 1, subjected to the

horizontal S69E component of Taft ground motion with peak ground acceleration =

0.6g. Static effects not included.
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horizontal interface, Q = 1, Jl = 0.8, subjected to the horizontal S69E component of

Taft ground motion with peak ground acceleration = 0.6g.
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Figure 5.37. Response of Pine Flat dam with flexible foundation rock, Efr / Ecd = 0.25,

horizontal interface, Q' = 1, j1. = 1, subjected to the horizontal S69E component of

Taft ground motion with peak ground acceleration = 0.6g.
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Figure 5.38. Response of Pine Flat dam with flexible foundation rock, E fr / Ecd = 0.25,

horizontal interface, 0:' = 1, Jl = 1.2, subjected to the horizontal S69E component of

Taft ground motion with peak ground acceleration = 0.6g.
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Figure 5.39. Envelope of maximum principal stresses (in MPa) in Pine Flat dam with

flexible foundation rock, E fr / Ecd = 0.25, horizontal interface, Q' = 1, subjected to

the horizontal S69E component of Taft ground motion with peak ground acceleration

= 0.6g. Static effects not included.
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The maximum principal stresses, shown in Figures 5.35 and 5.39, increase with

the increase of peak ground acceleration to 0.6g compared with the stresses due to

a peak acceleration of OAg. An increase in principal stresses of about 60 percent is

observed at the downstream face of the dam on a flexible foundation rock with a

moduli ratio E fr / Ecd = 0.25.

5.9 Summary of Response Trends

The case study of Pine Flat dam, which is representative of concrete gravity

dams of moderate height, indicates the following:

1. The sliding response of the dam is affected by the ground motion record. A

ground motion with many acceleration peaks, such as the Taft record, will

produce several sliding events. For the cases analyzed, sliding accumulates in the

downstream direction with large acceleration peaks and therefore Taft produces

the largest sliding compared with the sliding produced by the EI Centro and

Pacoima ground motions. This trend is confirmed by comparing the input

energy for the three ground motions, in which the Taft ground motion produces

the largest input energy to the system.

2. The amplitude of the ground motion affects considerably the base sliding dis

placement of the dam. The influence is more pronounced for dams on rigid

foundation rock compared with dams on flexible foundation rock, because in

the latter case damping in the foundation rock region reduces the response.
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3. The contribution of vertical ground motion to the sliding response depends on

the dynamic properties of the dam system and on the characteristics of the

ground motion considered. For the cases analyzed the vertical ground motion

has little effect in the sliding displacement of the dam.

4. Sliding at the base of the dam acts as an isolation mechanism that slightly

decreases the deformation of the dam, producing smaller stresses compared

with a dam prevented from sliding.

5. For dams on rigid foundation rock, the base sliding displacement is very sensitive

to the coefficient of friction. A slight decrease in the value of the coefficient of

friction produces a large increase in the sliding displacement. On the other

hand, dam deformation and maximum principal stresses are not very sensitive

to the coefficient of friction.

6. The coefficient of friction is less important for dams on flexible foundation rock

compared with dams on rigid foundation rock. The base sliding displacement

decreases substantially as the foundation rock becomes more flexible because

the increase in effective damping from the foundation rock reduces the response

and limits the base shear force causing sliding. For the flexible founadtion rock

cases analyzed sliding is not an effective energy dissipation mechanism.

7. The analysis of Pine Flat dam (with a 95 percent full reservoir) indicates that

rocking of the dam is not likely to occur when the dam is subjected to ground

motions of moderate amplitude (OAg), but it may may be necessary to consider

rocking for larger amplitude ground motions (O.6g).
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Chapter 6

PARAMETER STUDY OF A SIMPLIFIED DAM MODEL

6.1 Introduction

The sliding stability of a concrete gravity dam during a design earthquake must

be evaluated to assess the seismic safety of the dam. Current design practice attempts

to evaluate sliding stability with an equivalent static analysis to give a factor of safety

against sliding. However, the application of this procedure has been questioned as to

whether it represents the transient characteristics of the sliding response.

The study of Pine Flat dam, in Chapter 5, showed that the sliding response

depends on the ground motion an'd it is sensitive to the coefficient of friction. The

sliding displacement of this dam is notably reduced due to dam-foundation rock in

teraction. It is desirable to estimate how these factors affect the sliding response of

dams with different dynamic properties and different heights.

The parameter study of a typical dam monolith investigates the factors that

influence the sliding response of typical concrete dams to horizontal ground motion.

The results are presented in the form of sliding displacement spectra. The analysis

include the effects of water compressibility and foundation rock flexibility, which were

not considered in previous studies [Danay and Adeghe, 1993; Chopra and Zhang,

1991]. These effects, as shown for Pine Flat dam, may influence considerably the

sliding response of a dam.



116

The parameter study is performed using the procedure presented in Chapters

3 and 4. However, the analysis is simplified by using only one generalized coordinate

to represent the motion of the dam in its fundamental vibration mode. The procedure

accounts for the important factors affecting the earthquake response, including the

dynamic properties of the dam, dam-water interaction, and dam-foundation rock in

teraction. The sliding displacements computed using the simplified model are a good

approximation of the displacements obtained by using five generalized coordinates in

the analysis.

6.2 Typical Dam Monolith

A typical concrete gravity dam monolith, shown in Figure 6.1, is used to

investigate the sliding response. The monolith of height Hs has a rigid base and it

rests on a flexible foundation rock. The mass concrete is assumed to be homogeneous,

with linear and isotropic properties. The interface plane is assumed to be horizontal

and sliding occurs along this plane. The impounded water has a constant depth H

and it is idealized as extending to infinity in the upstream direction. The foundation

rock is idealized as a homogeneous, isotropic, and linear viscoelastic half-plane.

One generalized coordinate is used to represent the deformation of the dam.

The assumed mode shape for the dam is:

(6.1)

with a = 0.18 representing the flexural and shear deformation of the dam [Chopra,



H WATER

0.1 B
1<.... -1

DAM

INTERFACE PLANE

B1<..........................................•.3>1

FOUNDATION ROCK

117

----;;Jo~ HORIZONTAL FREE-FIELD GROUND ACCELERATION

Figure 6.1. Simplified model of typical gravity dam monolith.
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1967]. The fundamental period of the dam can be approximated by [Chopra, 1967]:

Ha
T = 0.38 v'E

cd
(6.2)

where Ecd is the modulus of elasticity of the concrete in MPa, and Ha is in meters.

As an example, a 100 m high typical dam is analyzed using the finite element

model presented in Chapters 3 and 4 with five modes of vibration and using the sim-

plified model. The dam is subjected to the Taft S69E ground motion, and two cases

are considered: dam on rigid foundation rock, and dam on flexible foundation rock.

The responses of the two models are shown in Figure 6.2. The crest displacement

obtained with the simplified model is approximately the same as that of the finite

element model for both the rigid and flexible foundation rock cases. The sliding dis-

placements are also similar. The sliding events are well represented by the simplified

model, although for these cases of the simplified model overestimates the sliding of

the finite element model by 6 and 15 percent for the rigid and flexible foundation

rock cases, respectively.

6.3 Parameter Study

The height of the dam is varied from 25 m (82 ft) to 175 m (574ft) to consider a

wide range of dams. The geometry of the monolith is scaled proportionally, according

to Figure 6.1. The concrete has a modulus of elasticity, Ecd, of 27.6 CPa (4 million

psi) for most of the cases analyzed, although values of 20.7 CPa (3 million psi) and

34.5 CPa (5 million psi) are used when the effect of the modulus of elasticity is

examined. The unit weight of concrete is 24.3 kN/m3 (155 pef) and the Poisson's
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ratio is 0.2. A constant hysteretic damping factor of 0.10 for the dam is used for all

cases.

The unit weight of water is 9.8 kN/m3 (62.4 pef). The velocity of wave prop

agation is 1440 m/sec (4720 ft/sec). The wave reflection coefficient for the reservoir

bottom materials is unity, indicating no reservoir bottom absorption for most cases.

Wave reflection coefficients of 0 and 0.5 are used to study the influence of the reservoir

bottom materials on the base sliding response of the dam.

The dam does not slide for any case with an empty reservoir, H/ H$ = 0, or a

half-full reservoir, H/ H$ = 0.5. This indicates the important effect of the impounded

water on the earthquake-induced sliding of the dam. Thus a full reservoir is used for

all cases.

The modulus of elasticity of the foundation rock, EfT> is varied to consider

various rock sites. The following moduli ratios are used: E fr / Ecd = 00, 1, and 0.25.

The unit weight of the foundation rock is 25.9 kN/m3 (165 pef) and the Poisson's

ratio is 0.33. A hysteretic damping coefficient of 0.10 is assumed for the foundation

rock.

A coefficient of friction of unity is used in most of the cases to determine the

sliding response of the dam, although values of I.l = 0.8, 0.9, 1.0, and 1.2 are used to

study the effect of the coefficient of friction on the sliding displacement. The cohesion

force at the interface is assumed to be zero.

The parameter study considers the response of the dam to horizontal free

field ground acceleration. The dam is subjected to the Taft S69E ground motion
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for most of the cases. Additional cases of the dam subjected to the EI Centro SOOE

and Pacoima S16E ground motions show the influence of the ground motion on the

dam response. The ground motions are normalized to have a peak acceleration of

O.4g which represents a moderate design-earthquake. The peak ground acceleration

is varied over 0.3g, 0.5g, and 0.6g to study the effect of ground motion amplitude on

the sliding response of the dam.

6.4 Influence of Ground Motion

The sliding displacement of the dam due to each ground motion record varies

with the height of the dam and the flexibility of the foundation rock, as shown in Fig

ure 6.3. Each ground motion excites the dam system in a different manner depending

on the response spectrum for ground motion, the fundamental vibration period of the

system, and the number and amplitude of acceleration peaks.

The sliding displacement is, for most cases, largest when the dam is subjected

to the Taft S69E ground motion. This applies to dams on rigid foundation rock

with a height less than 160 m (525 ft) and to dams on flexible foundation rock with

a moduli ratio E fr / Ecd = 0.25, with a height less than 90 m (295 ft). In general,

the sliding decreases as the foundation rock becomes more flexible. The peaks of

the sliding displacement spectra are shifted to shorter dams as the foundation rock

becomes more flexible because the vibration period of the system lengthens due to

dam-foundation rock interaction.

The sliding displacement of dams subjected to the EI Centro SOOE ground

motion is the largest for very tall dams on rigid foundation rock and for moderately
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tall dams on flexible foundation rock, with a moduli ratio E fT / Ecd = 1, because the

period of the system for these cases is in the highly amplified region of the response

spectrum. For very flexible foundation rock, E fT / Ecd = 0.25, the damping due to

dam-foundation rock interaction decreases the response for the tall dams subjected

to all three ground motions.

The sliding displacement of dams subjected to the Pacoima S16E ground mo

tion is the smallest, because the ground motion acceleration record has only one large

pulse that produces sliding, so the accumulated sliding displacement is small. The

sliding decreases with the increasing flexibility of the foundation rock and the increas

ing height of the dam. There is almost no sliding of the dam on flexible foundation

rock with a moduli ratio of E fT / Ecd = 0.25.

The Taft S69E ground motion will be used for the rest of the parameter study

because for the most of the cases the sliding displacement is approximately twice that

of the EI Centro ground motion and three to four times that of the Pacoima ground

motion.

6.5 Influence of Peak Ground Acceleration

The initiation of sliding is influenced by the peak ground acceleration and the

occurrence of subsequent sliding events depends also on peaks in the ground accelera

tion record. Figure 6.4 shows the maximum sliding displacement for a dam subjected

to the Taft S69E ground motion scaled to four levels of peak ground acceleration:

0.3g, OAg, 0.5g and 0.6g.
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The sliding displacement increase nonlinearly with increasing peak ground ac

celeration. For a rigid foundation rock, the increase in sliding displacement is roughly

about 120 percent when the peak ground acceleration increases from 0.3g to OAg. The

sliding increases about 90 percent when the peak ground acceleration increases from

OAg to 0.5g. The sliding increases about 50 percent when the peak ground accelera

tion increases from 0.5g to 0.6g. For flexible foundation rock the increase in sliding

displacement is greater as the foundation rock becomes more flexible, although the

maximum sliding displacement decreases.

The sliding response of the dam is not influenced by the peak ground ac

celeration alone. The value of the coefficient of friction also affects the maximum

displacement. However, these results show that the maximum sliding displacement is

substantially affected by the peak ground acceleration.

6.6 Influence of the Coefficient of Friction

The sliding displacement is sensitive to the value of the coefficient of friction.

Figure 6.5 shows the maximum sliding displacement of a dam subjected to the Taft

869E ground motion for four values of coefficient of friction, fl = 0.8, 0.9, 1.0, and

1.2. For the same value of fl, a dam on rigid foundation rock slides more than a

dam on flexible foundation rock. The maximum sliding displacement occurs for tall

dams, Hs=125 m (410 ft) on rigid foundation rock, and for shorter dams, Hs=75 m

(246 ft), on flexible foundation rock. The shifting of the peaks of maximum sliding

displacement is due to the lengthening of the period of the dam system as the dam

becomes taller and the foundation rock becomes more flexible.
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The maximum sliding displacement increases nonlinearly as the coefficient of

friction decreases. The relative increase in sliding displacement with J.l is largest for

short dams and flexible foundation rock, although the largest sliding displacements

are obtained for tall dams on rigid foundation rock. For example, for a 125 m (410

ft) tall dam on rigid foundation rock the maximum sliding increases by a factor of

two from 215 mm for J.l = 1 to 480 mm for J.l = 0.8. For a 75 m (246 ft) tall dam on

flexible foundation rock, with a moduli ratio E fT / Ecd = 0.25, the maximum sliding

displacement increases three times from 84 mm for J.l = 1 to 309 mm for J.l = 0.8.

Base sliding may be interpreted as an isolation mechanism because it limits the

base shear force transmitted to the dam. Figure 6.6 shows the relationship between

the sliding displacement and crest displacement, which is related to the maximum

stresses, for selected values of dam height. The crest displacement decreases with

an increase in sliding displacement for dams taller than 100 m (328 ft) on rigid

foundation rock. However, there is no reduction in the crest displacement when the

foundation rock is flexible. It may be concluded that sliding isolation of the dam is

not an important factor with flexible foundation rock because the foundation rock

itself provides a substantial amount of isolation and energy dissipation.

6.7 Influence of Foundation Rock Flexibility

The flexibility of the foundation rock introduces material and radiation damp

ing in the dam-water-foundation rock system and thus reduces the response. This is

shown in Figure 6.7, where foundation rock flexibility generally reduces the base slid

ing displacement for various levels of peak ground acceleration. The influence of the



Figure 6.6. Relationship between maximum base sliding displacement and maximum

crest displacement of a typical dam with full reservoir of compressible water, a = 1,

Il = 1, subjected to the horizontal S69E component of Taft ground motion with peak

ground acceleration = OAg.
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foundation rock flexibility is sensitive to the dam height. For tall dams the maximum

base displacement is reduced as the foundation rock becomes more flexible, and for

short dams the maximum base sliding displacement is independent of the foundation

rock flexibility. This is because the fundamental period of the dam system lengthens

with the increase in dam height and flexibility of the foundation rock, and larger

values of response are obtained when this period is in the amplified region of the

response spectrum for the ground motion.

Figure 6.8. shows the decrease in sliding displacement with flexible foundation

rock for three heights of the dam, H s = 50 m, 100 m, and 150 m, and a range of the

coefficient of friction. For the 50 m (164 ft) tall dam the flexible foundation rock has

no effect on the sliding displacement of the dam. This corroborates the assumptions

in previous studies that neglected the influence of flexibility of foundation rock when

analyzing short dams [Adeghe and Danay, 1993]. As the height of the dam increases,

the influence of the foundation rock flexibility becomes important. For the 100 m (328

ft) tall dam the sliding displacement for the dam on rigid foundation rock decreases

approximately by one-half when the dam is on flexible foundation rock with a moduli

ratio E fr / Ecd = 0.25. For the 150 m (492 ft) tall dam the sliding displacement for the

dam on rigid foundation rock decreases by more than a factor of three when the dam

is on flexible foundation rock with a moduli ratio E fr / Ecd = 0.25, depending on the

value of coefficient of friction. This trend was observed in the earthquake response of

the 122 m (400 ft) tall Pine Flat dam presented in Chapter 5.
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6.8 Influence of Water Compressibility

The maximum sliding displacement for a dam on rigid or flexible foundation

rock is greater when the water is considered to be compressible compared with the

case of incompressible water, as shown in Figure 6.9. Water compressibility has the

most effect when the dam is on rigid foundation rock, especially for dams less than

150 m (492 ft) tall. In this range of dam heights, the sliding displacement obtained

with incompressible water is as much as 40 percent less than the displacement with

compressible water. The effects of compressibility are less for dams on flexible foun

dation rock because the foundation rock damping generally reduces the importance

of dam-water interaction. This trend has been observed for the linear earthquake

response of dams without sliding [Fenves and Chopra, 1984aJ.

6.9 Influence of Reservoir Bottom Materials

The effects of the reservoir bottom materials on the sliding response of a typical

dam with full reservoir of water subjected to the Taft S69E ground motion are shown

in Figure 6.10. The wave reflection coefficient a= 0 represents a very absorptive

reservoir bottom and a = 1 corresponds to a rigid reservoir bottom.

The sliding displacement is reduced by the reservoir bottom materials because

of the added damping due to absorption. The reduction in the sliding displacement is

largest when the dam is on rigid foundation rock. Reductions in sliding displacement

of 50 percent or more occur when the reservoir bottom becomes very absorptive. The

effect of reservoir bottom absorption is less important when the foundation rock is
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flexible because of the decreased importance of dam-water interaction with the flexible

foundation rock.

6.10 Influence of Modulus of Elasticity of Dam Concrete

The modulus of elasticity of the dam concrete affects the fundamental period

of the dam-water-foundation rock system and hence influences the sliding response

of the dam. Figure 6.11 shows the maximum sliding displacements for three values

of the modulus of elasticity for the concrete, Ecd • The effect of the modulus varies

with the height of the dam and the flexibility of the foundation rock because they

also affect the fundamental vibration period of the system.

The results show that the sliding displacement increases with the modulus of

elasticity for dams taller than 125 m (410 ft) on rigid foundation rock. The sliding

displacement decreases for larger values of Ecd for dams shorter than 125 m (410 ft).

A dam with this height has a fundamental period close to the dominant period range

for the Taft ground motion.

The effect of the modulus of elasticity of the dam, Ecd, is lessened by the

dam-foundation rock interaction, especially for shorter dams. For moderately flexible

foundation rock (Efr/Ecd = 1), the value of Ecd is not important for dams shorter

than 100 m (328 ft), and sliding increases with Ecd for taller dams. For more flexible

foundation rock, the sliding displacement is small and the modulus of elasticity does

not affect significantly the response of the dam.
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6.11 Summary of Parameter Study

The results from the parameter study of a typical concrete gravity dam are used

to quantify the base sliding response. The most important trends are the following:

• The base sliding displacement of the dam is, for most cases, largest when the

dam is subjected to the Taft S69E ground motion compared with the other

records considered. For the different ground motions, the sliding decreases as

the foundation rock becomes more flexible. Base sliding also varies with the

height of the dam. The initiation of sliding and the occurrence of subsequent

sliding events depend on peaks in the ground acceleration record.

• The choice of the earthquake record and the level of peak ground acceleration

affects significantly the base sliding response of the dam. The sliding displace

ment increases by a factor of four when the peak ground acceleration increases

from O.3g to O.5g for the cases considered.

• The maximum base sliding displacement is very dependent on dam-foundation

rock interaction, especially for moderate to tall dams. For short dams the

flexible foundation rock has little effect in the sliding displacement of the dam.

• The sliding response is also sensitive to the value of coefficient of friction. This

is especially true for moderate or tall dams.

• Water compressibility and reservoir bottom absorption are important for the

sliding response of dams on rigid foundation rock. Their effects are less impor

tant for dams on flexible foundation rock.
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

An accurate numerical procedure for the earthquake analysis of concrete grav

ity dams including sliding at the base has been developed using the hybrid frequency

time domain method. Each domain in the system, dam, impounded water, and foun

dation rock, is modeled as a separate substructure in the formulation of the equations

of motion. The formulation accounts for the nonlinear sliding at the base of the dam

and the frequency-dependent interaction effects between the dam and water and be

tween the dam and foundation rock. The numerical procedure has been implemented

in a new computer program, EAGD-SLIDE, which can be used to evaluate the earth

quake response of a gravity dam, specifically addressing the questions about the base

sliding displacement and the sliding stability.

The two-dimensional response of a monolith to horizontal and vertical free-field

ground motion is modeled. The nonlinear sliding behavior in the complex interface

zone is represented by the Mohr-Coulomb relationship for friction resistance of a

material. According to the relationship, the interface zone is characterized by a

coefficient of friction and a cohesion strength. Other sources of sliding resistance,

such as three-dimensional response of the dam or resistance of adjacent monoliths,

are neglected in the model. Consequently, the sliding displacement obtained from

earthquake response analysis of a dam may be considered an upper bound on the

base displacement experienced by the actual dam.
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Since the sliding model only has one degree-of-freedom (the base sliding dis

placement) directly affected by the nonlinear Mohr-Coulomb relationship, the con

vergence of the iterative solution procedure is relatively fast. Additional efforts to

improve computational efficiency of the solution procedure involve computation of the

base forces in terms of the sliding displacement and interpolation of the frequency

response functions. Segmentation of time is an essential requirement for rapid conver

gence of the solution. At present there are no general rules for selecting the duration

of each segment, although short segments are required for convergence when large

base sliding occurs.

The earthquake response of Pine Flat dam, including base sliding, and the

sliding displacement of typical concrete gravity dams to various earthquake ground

motions have been computed using the numerical procedure. Base sliding does not

occur for dams with reservoirs less than one-half full. For dams with full reservoirs,

the earthquake-induced base sliding occurs in the downstream direction only because

the combination of hydrostatic forces and dynamic forces exceed the friction strength

of the interface zone. Although rocking of the dam about the base is not included in

the formulation, it is clear from the resultant of base forces that earthquake-induced

rocking (or overturning) of gravity dams is not an important consideration. For most

of the cases considered, the resultant base force acts within the dam base, so rocking

does not occur.

Earthquake-induced base sliding accumulates only in the downstream direc

tion. The maximum sliding displacement is influenced by the duration and charac

teristics of the free-field ground motion. A ground motion with a large number of
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important peak accelerations, such as the Taft record, induces more sliding than a

ground motion with a single large pulse, such as the Pacoima record. The amplitude

of the peak ground acceleration also influences the amount of base sliding. A moder

ate ground motion (peak ground acceleration of 0.3g to O.4g) produces considerably

less sliding than that produced by a strong ground motion (peak ground acceleration

of 0.5g to 0.6g).

The response of dams to horizontal ground motion was computed for most of

the cases. For the limited cases in which the dam was subjected to horizontal and

vertical ground motion, the vertical ground motion had almost no effect on the sliding

displacement of the dam, although it slightly increased the maximum stresses in the

dam compared with the case of horizontal ground motion only.

In all the cases considered, the cohesion strength of the interface was assumed

to be zero because of the damage caused by base sliding. With zero cohesion, the

sliding displacement is sensitive to the value of the coefficient of friction. In the range

of coefficients considered, from 0.80 to 1.20, the sliding displacement increases as the

coefficient of friction decreases. This trend is particularly pronounced for low values

of coefficients, such as 0.80. Taller dams will be more affected by the coefficient of

friction than shorter dams.

In contrast with earlier studies of earthquake-induced base sliding of dams, the

current study has included the effects of dam-foundation rock interaction, namely the

flexibility and energy dissipation in the foundation rock region. Since dam-foundation

rock interaction reduces the earthquake response of a gravity dam in general, primar

ily because of the increased energy dissipation, it also reduces the amount of base
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sliding. The assumption of rigid foundation rock can significantly overestimate the

amount of base sliding compared with more realistic estimates obtained from includ

ing dam-foundation rock interaction. Dam-foundation rock interaction effects are

more important for tall dams than for short dams.

The response of a typical dam demonstrates that water compressibility and

reservoir bottom absorption are important factors in determining the base sliding of

dams on rigid foundation rock. For dams on flexible foundation rock, their effects on

sliding displacement are less important.

Base sliding may be interpreted as an isolation and energy dissipation mecha

nism for dams. The response results indicate, however, that the sliding displacements

are not large enough to substantially reduce the deformations and stresses in the dam.

This is particularly true for dams on flexible foundation rock.

Although the dams may slide at the base during a strong earthquake ground

motion, the dam remains stable during and after the earthquake. For the 122 m tall

Pine Flat dam on flexible foundation rock with a modulus equal to that of the dam

concrete and a coefficient of friction of 1.0, the earthquake induced sliding displace

ment is 168 mm when excited by the Taft ground motion scaled to a peak ground

acceleration of 0.6g. For this extreme case the sliding displacement is 0.14 percent

of the dam height, a comparatively small value that does not indicate unstable re

sponse. Well designed and constructed dams should be able to tolerate this amount

of deformation at the foundation rock interface. Although the basesliding may cause

local damage to keys, drains, and grout curtains, it does not necessarily indicate loss

of the reservoir. For smaller values of the coefficient of friction, the base sliding dis-
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placement may be excessive, indicating that remedial treatment of the interface zone

is necessary for seismic safety of the dam.

The friction model used for the dam-foundation rock interface zone is a simple

approach that is useful for estimating the earthquake-induced sliding of a dam at

the base. There are, however, uncertainties in establishing the appropriate value of

the coefficient of friction for an earthquake evaluation, which may considerably affect

the computed response. The simple friction model does not consider the nonlinear

behavior of the materials in the interface zone. More elaborate models can be devel

oped, but there is a lack of experimental data to justify overly sophisticated models.

Given the uncertainties in the earthquake evaluation of a dam, it is believed that

the approach adopted in this study provides important information about the base

sliding displacements and stability of concrete gravity dams in earthquakes.
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Appendix A

NOTATION

The following symbols are used in the definition of the notation:

• Subscript a = z,j, s, 9 is associated with generalized accelerations, foundation

accelerations, sliding acceleration, and ground acceleration, respectively.

• Subscript I = x, y is associated with the x- and y-components of ground

acceleration.

• W(w) is the Fourier transform of W(i) where W is a scalar or vector quantity.

An(w)

Ay(w)

A~(w)

complex-valued function defined in equation C.33

complex-valued function defined in equation C.35

frequency-dependent vector defined in equation 4.7

As(w), Ax(w) frequency-dependent vector defined in equation 4.7

b

B

Boa(w)

Bk/(w)

Bea(w)

constant used in interpolation of the frequency response functions

length of the base of the dam

hydrodynamic frequency response function defined in equation C.30

hydrodynamic frequency response function defined in equation C.32

hydrodynamic frequency response function defined in equation C.31
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Bay(w) hydrodynamic frequency response function defined in equation C.34

BRa(w) matrix of hydrodynamic complex-valued response functions defined

in equations C.23 to C.29

BoIIa(w) matrix of hydrodynamic complex-valued functions defined in equa

tions C.22 to C.28

c cohesion force at the base interface

C wave propagation velocity for impounded water

C. shear wave velocity for the foundation rock

C damping matrix for the dam

C· generalized damping matrix for the dam

C/(w), C.(w) frequency-dependent vector defined in equation 4.9

e(t) function defining the sliding direction of the dam

Ecd modulus of elasticity of the concrete dam

E fr modulus of elasticity of the foundation rock

Ed, E., Ef components of energy balance equation for dam base, defined in equa

tion E.7, associated with dam deformation, sliding displacement, and

foundation displacements, respectively

F(t) base forces excluding sliding

F.d inertia force for nodes above the base of the dam, due to sliding at

the interface



h

H

Ion(w)

Ion(w)

Ijn(w)

J

Jo(w)

Jo(w)

J;(w)

K

K*
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resultant inertia force at the base of the dam due to sliding

[Fj(t) FJ(t) Mj(t)] , dam-foundation rock interaction forces

continuous form of h, for the x-component of nodal displacements

due to unit rotation about the center of the base

vector component of R, x- and y-components of nodal displace

ments due to unit rotation about the center of the base

depth of the impounded water

height of the upstream face of the dam

integral defined in equation C.15

integral defined in equation C.16

integral defined in equation C.17

number of Ritz vectors

integral defined in equation C.36

integral defined in equation C.37

integral defined in equation C.38, j = 1, J

stiffness matrix for the dam

generalized stiffness matrix for the dam

impedance matrix of the foundation rock in the x-y coordinate system

impedance matrix of the foundation rock in the interface coordinate

system
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L matrix of participation factors

V(w) vector of forces associated with I-component of ground acceleration

L"(w) vector of forces associated with sliding acceleration

my, mN, mM masses associated with inertia forces due to sliding acceleration

mR(t) effective mass resisting sliding acceleration

ms(t) variation of effective mass due to to sliding

M(t) moment at the center of the base interface due to dynamic loads,

excluding sliding effect

M{3(t) moment at the base interface due to dynamic loads

M mass matrix for the dam

M* generalized mass matrix for the dam

M t matrix of total translational mass and rotational inertia of the dam

about the center of the base

N(t)

N{3(t)

N/(t)

N{3,lIt

p(x, y, t)

normal force at the base due to dynamic loads, excluding forces due

to sliding acceleration

normal force at the base interface due to dynamic loads

total normal force at the base interface including static loads

resultant normal force at the base interface due to static loads

hydrodynamic pressure



p(y,w)

p~(y,w)

p~(y,w)

P(t)

P(w)

Pg(t)

Ps(t)

Pzj(t)

q

R

S(w)
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frequency response function for the hydrodynamic pressure at the

upstream face of the dam

frequency response function for hydrodynamic pressure for a rigid dam

due to the i-component of ground motion

frequency response function for hydrodynamic pressure on a rigid dam

rotating about the center of the base

frequency response function for hydrodynamic pressure due to dam

deformation

vector of equivalent nodal forces due to hydrodynamic pressures acting

on the upstream face of the dam

frequency response function for the vector of hydrodynamic forces

hydrodynamic force due to free-field ground acceleration

hydrodynamic force due to sliding acceleration

hydrodynamic force due to dam and foundation acceleration

compliance of the reservoir bottom materials

vector of response frequency functions for the hydrodynamic pressure

at the upstream face of the dam

[1 x 1y h1influence matrix for rigid body motion of the dam about the

center of the base

dynamic stiffness matrix



T

TJ

T,a

U3J3 (t)

U3,a(t)

U(t)

UJ(t)

VJriction ( t )

V,a(t)

V/(t)

X(t)

elastic stiffness matrix

duration of response

transformation matrix for base forces

transformation matrix for the foundation rock impedance matrix

transformation matrix for sliding

sliding displacement of the dam base relative to the foundation

sliding acceleration at the base interface

vector of dam displacements'relative to rigid body motion of the base

vector of rigid body displacements of the foundation surface relative

to the free-field motion

vector of free-field displacements due to ground motion

free-field ground acceleration vector

shear force at the base interface due to dynamic loads, excluding forces

due to sliding

friction resisting force at interface

shear force at the base interface due to dynamic loads

total shear force at the base interface including static loads

shear force at the base interface due to static forces

vector of generalized displacements and foundation displacements
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I"

I"n(W)

p

\IIj(y)

W

W max

q,

0(t)
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frequency response function for unit harmonic ground motion

frequency response fucntion for unit harmonic sliding acceleration

vector of generalized displacements

wave reflection coefficient for the reservoir bottom

angle of inclination of the base of the dam

tolerance for convergence of generalized displacements, rigid body dis

placements, and sliding acceleration, respectively

constant hysteretic damping factor for the dam

coefficient of friction at the base interface

eigenvalue for nth natural vibration mode of the impounded water

water density

spectral ratio

continuous form of \II for the x-displacements of the dam

harmonic excitation frequency

fundamental na.tural vibration frequency of the dam on rigid founda

tion rock with a empty reservoir

maximum excitation frequency considered in the analysis

rotation of the foundation surface at the center of the base of the dam
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~t

~Wmin

~Wmax

n·J

1/

time step for response computation

increment of frequency evaluated during interpolation procedure

minimum increment of frequency used in interpolation

maximum increment of frequency used in interpolation

frequencies for interpolation of response functions

eigenfunction for nth vibration mode of the impounded water

vector component of R for displacements in direction 1.
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Appendix B

EQUATIONS OF MOTION FOR THE DAM

The equations of static equilibrium and the equations of motion, equations 3.1

and 3.2, for the dam are derived in this appendix. The nodal points in the finite

element model of the dam are divided into two groups: nodes above the base, denoted

by the subscript d, and nodes on the rigid base, denoted by the subscript b. The water

domain and foundation rock domain are represented by interaction forces acting on

the dam.

B.t Kinematics

Assuming no sliding occurs under static loads, the static displacements of the

dam are:

{

U~,stat

U~,stat
} {

Ud,stat

= 0 } + { :: } u/.".' (B.l)

where the vectors U~,stat and U~,stat are the total displacement of the nodal points

above the base and on the base, respectively; Ud,stat is the vector of displacements of

the dam with respect to the base; U l.stat is the vector of foundation displacements;

R d and R b are the influence matrices for the nodal points above the base and on the

base, respecti vely.
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Considering the response to earthquake ground motion, the total dam dis-

placements are:

U~,stat }

Ub,stat

{~;i:;} = {~,(t)} + { ~ } U /(t) + {

+ { ~ } T,U,,(t) + { (B.2)

where U~{t) and Ub{t) are the vectors of total displacements of the dam; Ud{t) is the

vector of dam displacements with respect to the base due to dynamic loads; U f(t)

is the vector of displacements of the foundation surface with respect to the free-field

ground motion; Ug{t) is the vector of free-field ground displacements; Us{3{t) is the

sliding displacement of the base at the interface plane; and T {3 is the vector trans-

forming the sliding displacement at the interface plane to the global x-y coordinate

system.

The condition of rigid body displacements of the dam means that there are no

external forces under rigid body motion. Thus the following relationships between

the influence matrices, R d and R b, and the stiffness matrix of the dam, expressed in

partitioned form, are satisfied:

(B.3)

(BA)
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B.2 Equations of Static Equilibrium

Considering only the static loads, the equilibrium equations for the dam are:

[
Kdd Kdb] { U~,stat } = { Pd,stat } +{O }+ { 0 } (B.5)
K bd K bb U~,stat Pb,stat Pb,u PbI,stat

where P d,stat and Pb,stat are the external static loads applied to the dam including the

hydrostatic forces; Pb,u is the vector of uplift forces acting at the base; and PbI,stat is

the vector of forces at the nodes of the base exerted by the foundation.

Substituting the first partition of equation B.1 into the first partition of equa-

tion B.5, and applying the rigid body conditions from equation B.3 gives:

K dd Ud,stat Pd,stat (B.6)

The solution of this equation gives the static displacements of the dam with respect

to the rigid base. Static stresses of the dam depend on these displacements only and

are independent of the base displacements.

Substituting the second partition of equation B.1 into the second partition

of equation B.5, applying the rigid body conditions from equation B.4, and using

equation B.6 gives:

Premultiplying this equation by Rr, applying the rigid body conditions from equa-

tions B.3 and BA, and using the condition of symmetry for the stiffness matrix gives:

(B.7)



(B.8)
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where -R[PbJ,atat, the resultant of static forces at the base of the dam, is equal to

the sum of the resultants of the external loads and the uplift forces.

B.3 Equations of Motion

Considering static and dynamic response, the equations of motion for the dam

are:

(B.g)

damping matrices of the dam, respectively; Pd(t) and Pb(t) are the hydrodynamic

forces acting on the upstream face of the dam, above the base and on the base,

respectively; and P bJ (t) is the vector of interaction forces at the foundation.

Assuming that the damping matrix is proportional to the stiffness matrix, the

rigid body motion requirements from equations B.3 and B.4 are also valid for the

damping matrix:

(B.I0)

(B.ll )
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B.3.! Equations of Motion for Dam

Substituting the first partition of equation B.2 into the first partition of equa

tion B.8, and applying equation B.3 gives:

M dbVb( t) contains the inertia forces at the dam nodes due to rigid body acceleration

of the masses at the base. These forces are small compared with the other forces in

the equation of motion, so they can be neglected. Thus, the equations of motion for

the dam are:

(B.12)

Substituting the first partition of equation B.2 into equation B.12 gives:

MddVd(t) +CddUAt) +KddUd(t) +MddRdVj(t) +MddRdT{jUs{j(t)

= -MddRdVg(t) +P d(t) (B.13)

Defining the inertia force due to sliding as,

and dropping the subscripts d for convenience, equation B.13 becomes equation 3.1:

(B.14)
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B.3.2 Equilibrium of Forces at Base

Substituting equation B.2 into equation B.8 and applying the rigid body con-

ditions from equations B.3, BA, B.IO and B.ll gives:

Premultiplying this equation by {Rr RD, applying equations B.2 again, and the

rigid body conditions from equations B.IO and B.ll gives:

R[ } [Mdd Mdb] { Ud(t) } + M t {U j(t) + Ug(t) +T{3Us{3(t)}
Mbd M bb 0

= R[Pbj(t) +R;Pt(t) (B.15)

The vector F j(t) = -R[Pbf(t) contains the interaction forces between the dam and

the foundation. The total mass of the dam and the total force at the base are defined

as:

(B.16)

(B.17)

equation B.15 can be further rewritten as follows:

(B.18)
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The coupling term RtMbdUAt) is small compared with the other forces, so it is

neglected. Similarly the contribution of RtPb(t) to the hydrodynamic forces is small

and it is neglected. After rearranging terms, equation B.IS becomes:

Defining the inertia force at the base due to sliding as,

and after dropping the subscripts d for convenience, equation B.19 becomes equa-

tion 3.2:

(B.20)

Equations B.14 and B.20 are the equations of motion for the dam system

subjected to the free-field ground motion.
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Appendix C

HYDRODYNAMIC FORCES

The hydrodynamic forces on the dam due to dam-water interaction are derived

in this appendix. The impounded water is idealized as a two-dimensional domain of

depth H extending infinitely in the upstream direction. The boundary with the dam

is assumed to be vertical, and the boundary with the foundation rock is assumed to

be horizontal. The water is treated as a compressible, irrotational, inviscid fluid with

small displacement motion [Fenves and Chopra, 1984a].

C.l Wave Equation

For the assumptions described above, the hydrodynamic pressure is governed

by the wave equation:

2 1 fj2p
V' p = C 2 ot2

(C.1)

where p(x, y, t) is the hydrodynamic pressure (in excess of hydrostatic pressure), and

C is the wave propagation velocity for water. The hydrodynamic pressure is generated

by horizontal acceleration of the upstream face of the dam and vertical acceleration

of the reservoir bottom. When this pressure is expressed in the frequency domain, as

complex-valued frequency response function for hydrodynamic pressure,

p(x, y, t) = p(x, y,w)eiwt
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the wave equation becomes the Helmholtz equation:

C.2 Boundary Conditions

(C.2)

Considering that the origin of the x-y coordinate system is defined at the bot-

tom of the upstream face of the dam, and that the x-axis is positive in the downstream

direction, the following boundary conditions must be satisfied:

1. At the free surface, the effect of surface waves is neglected and hence the pressure

IS zero.

p(x,H,w) = 0 (C.3)

2. At the upstream face of the dam, the horizontal acceleration of the water is

the same as the total horizontal acceleration of the dam. Considering each

acceleration component:

• free-field ground acceleration:

8p(O,y,w) = _ 8 [/( )ax P xl 9 W

• foundation acceleration:

8p(O,y,w) = _p [i/j(w) + h(y)0(w)]
8x

• sliding acceleration:

8p(0, y, w) f3 u... ( )ax = -p cos 8(3 W

1= x,y (CAa)

(CAb)

(CAe)
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• dam deformation:

ap(o, y,w) = _p t \Ilj(y)Zj(w)
ax j=l

(CAd)

where p is the water density; Oxl is the Kronecker delta function; f3 is the

.. /
angle of inclination of the interface; U9 (w) is the Fourier transform of the 1-

.. x ;;
component of ground motion; Uf (w) and 8(w) are the Fourier transforms of

the translational acceleration in the x-direction and rotational acceleration of

the center of the base of the dam with respect to the free-field acceleration;

\Ilj (y) is the continuous form of W associated with the x-components of the

Ritz vectors for the dam; similarly, h(y) is the continuous form of h for dam

displacements in the x-direction produced by rotation of the base; and J is the

number of Ritz vectors considered in the analysis.

3. At the reservoir bottom, the vertical motion of the fluid, including the interac-

tion between the water and reservoir bottom, depends on the vertical component

of ground acceleration only.

a .. y
lay - iwq]p(x,O,w) = -p Ug(w) (C.5)

where q is the compliance of the reservoir bottom materials. The compliance is

defined in terms of the wave reflection coefficient, a:

a=
1- qC
1 +qC

The coefficient a is defined as the ratio of the amplitude of the reflected hydro-

dynamic pressure wave to the amplitude of a vertically propagating pressure
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wave incident on the reservoir bottom. 0' = 1 represents a rigid reservoir bot-

tom, and 0' = 0 is a very absorptive reservoir bottom material.

4. The hydrodynamic pressure must be finite in the upstream direction.

C.3 Solution for Hydrodynamic Pressure

The solution of equation C.2 with the boundary conditions in equations C.3

to C.5 and the radiation condition gives the frequency response function for hydro-

dynamic pressure at the upstream face of the dam:

p(y,w) = pg(y,w)Ug(w) + P/(y,w)UAw)+

Ps(y,w)T/3Us/3(w) + Pz(y,w)Z(w) (C.6)

The hydrodynamic pressure vectors associated with ground acceleration, foundation

acceleration, sliding acceleration, and dam acceleration, respectively, are defined as:

Pg(Y,w) = [p~(y,w) p~(y,w) 0]

Pi(Y,W) = [p~(y,w) 0 p:(y,w)]

Pz(Y,w) = [Pl(y,W) P2(Y,W) PJ(y,w)]

(C.7)

(C.8)

(C.9)

(C.10)

Each frequency response function is defined as follows [Fenves and Chopra, 1984]:

-x ~ Jl~(w) Ion(w)
Po(Y,w) = -2pH~ H[Jl~(w) _ (wq)2] + i(wq) JJl~(w) _ w2jC2In(Y,W) (C.II)



_y( ) pC 1 . w(H - y)
Po y,w = - H' . H sm

w cos we + zqCsm we C
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.(C.12)

(C.13)

(C.14)

p~(y,w), ~(y,w), and p:(y,w) are the hydrodynamic pressures due to rigid body

motion of the dam; and Pj (y, w) is the hydrodynamic pressure due to deformation of

the upstream face of the dam corresponding to the ph Ritz vector. The coefficients

1 rH

Ion(w) = H io h(y)in(y,w)dy

1 rH

Ijn(w) = H i
o

Il'j(y)in(y,w)dy

(C.15)

(C.16)

(C.17)

The eigenvalues, /In(w), and the eigenfunctions, i n(y,w), of the impounded water are

given by:

e2iJLn (w)H = _J-ln(W) - wq
J-ln(w)+wq

(C.18)

(C.19)
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C.4 Hydrodynamic Force Vectors

The frequency response function for the vector of hydrodynamic forces, P(w),

at the upstream face of the dam is obtained by integrating the hydrodynamic pressures

from equation C.6:

where Qg(w), Qf(W), Q,,(w), and Qz(w) are the equivalent nodal forces in the x-

direction for the pressures at the upstream face of the dam. Considering the finite

element discretization of the dam the force vector is assembled from the virtual work

integrals for the wet elements at the upstream face:

Q/(w) = L JNTpa(y,w)dy
e

where N contains the shape functions for the elements.

c.s Hydrodynamic Response Functions

a = g,!,s,z (C.21)

The hydrodynamic response functions needed in equations of motion are the

force vectors Q(w) premultiplied by the transformations q;T and R T. These complex-

value functions have the following properties:

1. The matrices q;TQz(w) and RTQf(w) are symmetric and defined as follows:

1111 (W) 1112(W)

1121 (W) 1122(w)

B1J (w)

B2J (w)

BJJ(w)

(C.22)
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(C.23)

2. The matrix B\lIf(w) = q,TQf(W) is the transpose of matrix BRz(W) = RTQz(w).

These matrices are defined as follows:

BOI (w) 0 Bill (w)

B02 (w) 0 B Ii2 (w)

BOJ(w) 0 BoJ(w)

(C.24)

[

BOl(W) B02 (w)

BRz(w) = RTQz(w) = 0 0

BOI (w) B02 (w)

3. The other hydrodynamic terms are:

(C.25)

BOl(w) Byl(w) 0

1102 (w) By2 (w) 0
(C.26)

(C.27)

BOl(w) 0 0

B02 (w) 0 0

110J(w) 0 0

(C.28)
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(C.29)

The individual hydrodynamic terms can be computed from equations C.l!

to C.14 after application of the transformation matrices for horizontal ground motion.

The terms are:

00

Boa(w) = -2pH2 L An(w)Ion(w)Ian(w)
n=l

00

Boa(w) = -2pH2 L An(w)Ion(w)Ian(w)
n=l

00

Bik(W) = -2pH2 L An(w)Iin(w)hn(w)
n=l

where a = 0, e,j, and i and k = 1,2, ... J. An(w) is defined as:

An(w) = 1l~(W) 1
H[Il~(W) - (wq)2J + i(wq) J1l~(W) - W2/C2

(C.30)

(C.31)

(C.32)

(C.33)

The hydrodynamic terms associated with vertical ground acceleration are:

where a = O,e,j, and:

1 1
Ay(w) = wH coswH + iqcsinwH

C C C

the coefficients Jo(w), Jo(w), and Jj(w) are:

fH w
Jo(w) = J

o
sin C(H - y)dy

(C.34)

(C.35)

(C.36)



rH
WJo(w) = Jo h(y)sinC(H-y)dy

Jj(w) = l H

\ltj(y) sin ~(H - y)dy
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(C.37)

(C.38)

As an example, Figure C.1 shows the plots of the response functions Boo and

Byo for translational rigid body motion due to x- and y-components of ground motion.
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Figure C.l. Frequency-dependent hydrodynamic functions for rigid body motion.
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Appendix D

INTERPOLATION OF

FREQUENCY RESPONSE FUNCTIONS

The interpolation scheme for the frequency response functions minimizes the

storage and computational effort in solving the equations of motion in the frequency

domain. The same approach is used for interpolating frequency-dependent hydrody

namic terms.

The interpolation scheme presented in this appendix was developed for soil

structure problems [Tajirian, 1981] and it has been used for dam analysis [Fok and

Chopra, 1985]. The frequency response function is divided into frequency ranges with

no more than two resonant peaks in each range. An interpolation function based on

a two degree-of-freedom system is used to interpolate within a frequency range.

D.l Formulation of Interpolation Scheme

The frequency domain equations for response to unit harmonic base acceler~

tionsat the base of the dam due to horizontal and vertical free-field ground acceler

ation and base sliding acceleration are:

S(w)Y/(w) = L/(w) l=x,y,s (D.1)
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where S(w) is the dynamic stiffness matrix; and Y/(w) are the frequency response

functions; V(w) are the load vector. Including two modes, a frequency response

function, Yj(w), can be expressed as:

(D.2)

The constants Clj, C2j , C3j and C4j are determined for each frequency range by

solving equation D.2 at four frequencies:

0 2 1 - 2
-fil Clj }JIOt1 -Yj10l

0 2 1 - 2 -}J2 C2j }J20~2 -Yj202
(D.3)=

0 2 1 - 2 -}J3 C3j }J30~3 -Yj303

0 2 1 - 2 -}J4 C4j }J40 :4 -Yj40 4

where }Ji = }J(Oi) and Oi, are selected frequencies within the range. The response

for other frequencies within the range is computed from the interpolation function in

equation D.2.

D.2 Selection of Frequencies

The frequencies for interpolating the frequency response function are deter-

mined as follows [Fok and Chopra, 1985]:

where the recommended values for b, Llwmin and Llwmax are:

(D.4)

b = 0.5 (D.5)
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and Wf is computed from:

in which H~· is the fundamental frequency of the impounded water and Wt is the

fundamental frequency of the dam. In equation DA, the values of ~fi~t and ~fi~

are determined for all three components of 1. This approximation assumes that the

peaks of the frequency response functions due to x-ground acceleration, y-ground

acceleration, and sliding acceleration occur at approximately the same frequencies.

This is a modification from the original approach, which considers different limits for

each component of ground motion.

D.3 Definition of Interpolation Functions

The interpolation procedure is summarized as follows:

1. Initial Computations.

(a) Determine ~Wmin and ~wmax

(b) Use equation D.1 to evaluate the frequency response function, y /, for

frequencies W = 0 and W = ~Wmin'

(c) Initialize: Wo = 0, Wt = ~Wmin

(d) Initialize counter: i = 0

2. Compute response for selected frequencies.

(a) Increment counter: i = i + 1
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(b) Use equation D.l to evaluate next frequency interval, (.0.W)i, and evaluate

current frequency for calculation.

Wi = Wi-l + (.0.W)i

(c) Solve equation D.l to determine YNw) at that frequency, where 1= x, y, s.

(d) If Wi ~ Wmax go to step 2b.

(e) if Wi > Wmax go to step 3.

3. Compute interpolation functions:

(a) Maximum number of computed frequency response functions is defined

from previous step, nfreq = i.

(b) Subdivide the frequencies into ranges, each containing at least four com

puted values of the response. For each range, at frequencies Wk, Wk+l,

Wk+2, Wk+3: compute elj , j = k, k + 1, k + 2, k + 3, from equation D.3, and

compute interpolated frequencies using equation. D.2.

(c) Repeat 3b for all frequency range, k +3 ~ n freq'
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Appendix E

EQUATIONS FOR COMPUTING ENERGY BALANCE

One measure of the damage in a structure is the dissipated energy during an

earthquake. This concept and the corresponding energy equations were introduced by

Uang and Bertero [1988]. In this appendix, the energy equations are extended for the

dam-water-foundation rock system, considering the foundation, hydrodynamic, and

sliding effects. The energy balance of the system is also used to verify the accuracy

of the solution by the HFTD procedure.

E.! Equations of Motion for System

The equations of motion for the dam-water-foundation rock system, equa-

tions 3.1 and 3.2, can be written as follows:

{ ~TM } V + { ~ } U+ { : } u + { :~ } Vd { ~f(t) }

= { :~~(t) } + { =:~ }V,(t) (E.!)

where Vb is the rigid body displacement of the dam base relative to the free-field

ground motion:

(E.2)

The hydrodynamic force can be partitioned as:

(E.3)
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where P(U, Ub) is the hydrodynamic force due to dam acceleration and base acceler

ations, and P(Ug ) is the hydrodynamic force due to the free-field ground acceleration.

E.2 Integration of Equations of Motion

Integrating the equations of motion with respect to dam displacements, V, and

base displacements, Vb, and using the partitioned form of P(t) from equation E.3,

gives:

(E.4)

Expressing the dam displacements in terms of the generalized displacements, V = q,Z

in equation E.4 gives:

(E.5)
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Evaluating the matrix inner products in equation E.5 gives the energy balance for

the system:

1t

{M*Z{dZ +1t

{Llh{dZ +1t

{LTZ{dUb +1t

{Mlh{dUb

+1t

{C*Z{dZ+1t

{K*zfdZ+1t

{Ff(t)VdUb

+1t
{-'1tTp(Z, lh){dZ +1t

{-RTp(Z, lh){dUb

= 1t

{'1tTp(Ug)}TdZ +1t

{RTp(Ug)}TdUb

+1t

-{LUg(t)}TdZ +1t

-{MtUg(t){dUb (E.6)

E.3 Energy Balance Equation

The energy balance equation is obtained by rearranging equation E.6 to con-

sider the work due to dam deformation, foundation displacement, and sliding dis-

placement, as follows:

(E.7)

Ej is the input energy due to ground motion. It represents the work done by the

forces produced by the free-field ground motion:

E j = 1t

{'1tTp(Ug)}TdZ +1t

{RTp(Ug)}TdUb

+1t

-{LUg(t){dZ +1t

-{MtUg(t)}TdUb (E.8)

Ed represents a number of energy terms in the dam model and impounded water due

to deformation of the dam. It contains the conservative kinetic and strain energy in

the dam and the work dissipated by hysteretic damping. For convenience, Ed also
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contains the work performed by the hydrodynamic forces acting through the dam

displacements:

Ed = 1t
{M"Z{dZ +1t

{Llh{dZ

+1t
{C"z{dZ +1t

{K"Z}T dZ

+1t
[_qiTp(Z, lh)(dZ (E.9)

E j is the work performed by the forces acting through the foundation rock displace-

ment:

Ej = 1t
{LTZ{dU j +1t

{Mtlh{dUj

+1t
[-RTp(Z, lh)(dU j +1t

{Fj(t)fdU j (E.10)

E. is the energy associated with the sliding displacement at the base of the dam:

E. = 1t
{LTZ}TTdU•.~ +1t

{Mtlh{TdU&.~

+1t
[-RTp(Z, lh)(T dU&.~ +1t

{Fj(t)}TT dUs.~ (E.ll)
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