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CHAPTER ONE 

Introduction 

Maintenance. inspection. and repair of existing structural systems is a multi-billion dollar industry. 

Dunker and Rabbat (1993) estimate that over forty percent of the nearly half million existing highway bridges 

in the United States are deficient. The projected cost of restoring all of these deficient highway bridges is 

about $90 billion. Hausner. et al (1990) suggest that a single earthquake in California could cause in excess 

of $100 billion in damage to buildings. bridges. dams. and lifeline facilities. The construction and mainte

nance costs of pavements in the United States are more than $3{} billion per year. These illustrations of the 

great costs associated with maintaining the integrity of our civil infrastructure are only the tip of the iceberg 

because they include only the direct costs of physical replacement orrepair. Many billions of dollars are lost 

every year indirectly due to inadequate maintenance of structures; the cost of interrupted services after anatu

Tal disaster could be astronomical. New methods for the evaluation of structural condition need to be devel

oped to help manage these maintenance problems. 

A structural system must endure many different events during its lifetime that may not have been antici

pated in its original design. It might experience new loads. modifications, or damage. In making decisions 

about the maintenance of a structure. one needs information about its pastperfonnance and its current condi

tion. One also needs a method to create a likely scenario of its future performance. For rehabilitation of a 

structural system one often needs to model the current behavior of the system in ordeTto successfully modify 

the structure to meet new design criteria. Engineering models of structural behavior have proven to be very 

useful in making such performance estimates. 

Very few structural systems can be adequately modeled using theory alone; there are always parameters 

in en analytical model. particularly constitutive parameters. whose values must be assumed or empirically 

determined. Physical testing of a structure often provides valuable information that a theory cannot provide. 

However. test data are often incomprehensible without a theoretical framework to aid the data reduction. Sys

tem identification and parameter estimation are the natural tools for bridging the gap between an analytical 

model and test data. 

To build a mathematical model we begin with generally accepted physical laws. In structural mechanics 

these laws include balance oflinear and angular momentum. kinematics of defonnation. and the constitutive 

behavior of materials. The governing equations. based upon those things that we know well. provide the 

structure for our identification model. The aspects of the model that we do not know are parameterized and 

left to be estimated from the data. In the test we seek to excite the structure in a manner that will encourage 

amode of response that will help the most in identifying the parameters of our modeL Also. we try to measure 
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those quantities that are most indicative of the structural characteristics. It is often important to make those 

measurements as accurate as possible. 

Here we shall limit our context to linear analytical models. Further. we assume that the structure is amena

ble to discretization using the finite element method. Even though we know that. in general. a real structural 

system will behave nonlinearly. one can often justify such a limitation by observing that a linear model is 

the first order approximation of any nonlinear system and that most structures respond linearly over some 

reasonably interesting range of excitation. Clearly. not all problems can be approached this way. For example. 

many kinds of damping cannot be represented with a linear model. Fortunately. a linear approximation yields 

valuable infOITIlation for many structural systems. 

One of the greatest challenges in performing a test on a large structural system lies in exciting the struc

ture. There are probably as many choices of excitation as there are structures. but most would be examples 

of three general classes: (a) static. (b) modal dynamic. and ( c) transient dynamic. In a static test loads are 

applied slowly so that inertial effects are negligible. The generation of large enough loads for certain types 

of structures is difficult. and thus static tests are probably most appropriate for laboratory experiments. A 

modal dynamic test relies on resonant excitation of the structure. The dynamic magnification at resonance 

for lightly damped structures is easily accomplished with a modest force. Such a force might be generated 

by rotating an eccentric mass at a fixed resonant frequency. Many modes can be excited by resonance. pro

vided the integrity of the connection between the structure and the exciting device is not compromised by 

the motion. Some modal tests use free vibration data. generated. for example by imparting an initial displace

ment or an initial velocity to the structure. Imparting an initial displacement is easily done in a laboratory. 

but may be impossible in the field. Imparting an initial velocity can be accomplished using falling weights 

or by impulsive forces generated by explosive cartridges or small rockets. Formost structures. only the lowest 

few modes of vibration can be excited in free vibration. A transient dynamic test relies on motion of the struc

ture from some known cause. Motion of the structure can be induced by impact by forced motion of an at

tached device. or by forced motion of the foundation An earthquake can be used as a structural dynamic test 

if the record of the ground acceleration at the base of the structure is accurately known. Large explosions can 

also generate ground motions and therefore can be considered as possible dynamic tests excitations. The main 

problem in a transient dynamic test is accurately measuring the forcing function. 

In this research -Study we focus on parameter estimation of linear structural systems and propose algo
rithms to minimize the gap between the measured response from the structure and computed responses of 

the parameterized analytical model of that structure. fu particular. we focus on analytical models wherein the 

topology and geometry of the structure are assumed to be known. while the constitutive properties are para

meterized and estimated from the test measurements. 

1.1. System Identification: General Concepts 

In the field of science and engineering. observing the behavior of a system and measuring its input-output 

pairs are fundamental tools for building a model for the system. In general. model building is a mapping prob

lem from a data set of input -output pairs to a set of candidate models and is defined by the identification pro

cess (Ljung 1982). The identification process tries to construct amodel for a system or improving the existing 
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model of a system based on some available observations, and any a priori knowledge about the system. The 

identified model provides physical insight about the system and consequently leads to simulating or predict

ing the response of the system. 

System identification is defined by Zadeh (1962) as "the detennination on the basis of input and output, 

of a system within a specified class of systems, to which the system under test is equivalent." Elements of 

the specified class of systems are models whlchhave the same structure with different parameters. Equiva

lence is defined by an error or loss thatis a function of the process and the model input and output If the value 

of the loss function is the same for two models, then they are equivalent. Parameter estimation is defined 

as the detennination of values of the parameters that govern the behavior of the model, assuming that the 
structure of the model is known (Eykhoff 1974). 

The use of system identification for defonnable mechanical systems dates back to the late 1950 'so At that 
time the airplane industry was perfonning many tests on real airplanes to measure the overall behavior of an 

airplane as well as the behavior of various of its components. These experiments were very expensive and 

relatively time consuming. On the other hand, existing analytical models were not able to reconcile the test 

measurements to the desired level of accuracy. The gap between theory and experiment pushed the industry 

to look for methods to improve their analytical models. System identification had already been used in other 

fields of engineering and held great promise as a tool for simulating 8nd/orpremcting the behavior of defonn

able mechanical systems. 

The most significant evolution in identification methods was initiated in the field of automatic control 
around 1960. At that time, existing control theories had solutions for many complicated control problems, 

but no one knew how to build mathematical models that contained the essential properties of the systems. 
Exploiting the concept of system identification affolided improvements in the mathematical models and thus 
pa¥ed the way for furtberprogress in control. Since that time, system id,entificationhas evolved a great deal, 

and has been applied in many fields of science and engineering; from automatic control to seismic experi

ments and from speech recognition to social economic systems. 

The process of system identification consists of three main stages; (1) defining a model and arranging 

some experiments to measure the response of the system (model selection), (2) using the chosen model and 

the measured response to estimate the unknown parameters of the model (parameter estimation), and finally 

(3) validating and refining the model ifnecessary (diagnostic check). 

The choice oj the model A model is a representation of the essential aspects of a system that contains 

knowledge of that system in a usable fonn (Eykboff 1974). Model selection is basically governed by three 

choices: (1) the candidate class of models, (2) the structure and size of the chosen model, and (3) parameteriza

tion of the chosen model. The intended use of the model usually dictates the class of the modeL Choosing 

the size of the model is not a trivial problem because the model is often a representation of an unknown pro

cess. The model should include onIythe essential features of the real system to avoid introducing unnecessary 
complication. The parameterization of the model should be guided by three important objectives (Niedertin

ski and Hajdasinski 1979): (1) the parameterization should be universal, i.e. the model should be applicable 

to all systems in the same class, (2) the number of parameters should be in accord with the limited infonnation 
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available, and (3) the model should be identifiable from the available information. Some of the well-known 
mathematical models used in system theory include autoregression (AR), moving average (MA), impulse re
sponse, Voltera series, Markov chains, autoregression-moving average (ARMA), matrix fraction description 

(MFD), state-space representations, the Hankel representation, and the transfer matrix representation (Hajda

sinski, et al. 1982). 

Experiment design. The main goal of designing an experiment is to provide maximum information about 

the parameters of the system to be identified. There are many factors involving in the design of an experiment. 

These include the intended application of the results, prior knowledge about the system, the structure of the 

model, the measure of equivalence to the real system, the parameter estimation method, and the operational 

constraints of the system. Many procedures for designing a good experiment have been suggested in the liter
ature (Goodwin 1982). 

Parameter estimation. The essence of building a model for a real system is its capability to simulate and/ 

or to predict the behavior of the system. The performance of the model can be evaluated by an loss function 

that indicates how well the model fulfills the intended tasks. It is natural to minimize the discrepancy between 

the model and the system by tuning the parameters of the model. The essence of parameter estimation is to 

find parameters which minimize a scalar measure of discrepancy known as the criterion of equivalency or 

loss function. A procedure for estimating parameters is referred to as a parameter estimator. In the statistical 
literature, a number of different estimators have been developed. These methods differ predominantly in the 

criterion of equivalency and in the use of available prior information about the statistics of the measurements 
and the parameters. There are three popular estimators in the field of system identification: maximum-likeli

hood, Bayesian, and cross-entropy estimators. The famous class of least-squares estimators is the subset of 

maximum-likelihood estimators that does not require knowledge of the probability density of the measure

ments or the parameters. The class of weighted or Gauss-Markov least-squares estimators is a superset of the 

least-squares method that makes optimal use of the known variability of the measurements. 

There are two basic approaches for estimating the parameters: the off-line or batch method and the on-line 

or recursive method. In the batch approach the computational operations are carried out on the complete set 

of measurements as a whole. Another way of processing the measurements is to continuously update the es

timation of parameters while working serially through the measurements. The recursive approach generates 

an updated estimation as it receives new information. The batch method is computationally more efficient 

and robust than the recursive method. However, recursive methods are popular in the field of control and au

tomation because they do not require the storage of raw data. MatIco and Schumann (1982), and Goodwin 

(1984) reported on families of recursive methods namely: least squares, instrumental variable, maximum li

kelihood projection, output error, and stochastic methods. 

Model validation. A model obtained from the identification process has to be validated to ensure that 

it describes the system suitably for its intended application. Model testing is the most difficult phase of the 

identification process and can be very subjective. In general, there are two approaches to examine the identi

fied model. Compare the results of the model with the results of the best models from the other classes of 

models, or decide whether the properties of the model meet some reasonable requirements such as cross-val-
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idation, residuals, and consistency with a priori knowledge not used in the estimation. Model validation is 

subjective and, regardless of the validation criteria, one must judge for one's self to what extend the model 

really explains the behavior of the system. 

1.2. System Identification in Structural Mechanics 

Model building is a fundamental concept in the natural sciences and engineering because of the impor

tance of experiments and measurements in these fields. The procedure for building a mathematical model 

starts with the application of basic physical laws (e.g. the governing laws of mechanics) to the system orpro

cess being studied. From these laws, a number of relations among the inputs and outputs of the system follow 

and establish the structure of the mathematical model. These relations often take the fOiTIl of algebraic equa

tions, ordillary or partial differential equations, or integral equations. If all external and internal conditions 

of the system are qIlantitatively known and if the physical knowledge about the system is complete then, at 

least in principle, the numerical values of all parameters in those relations can be determined. Fornon-chaotic 

systems finding an appropriate matbematicalmodel based on this procedmemay be difficult even in a narrow 

field of application because infonnationis limited by incomplete or uncertain knowledge of the environment 

or the physical aspects of the system. 

System identification and parameter estimation in mechanical sciences and structural engineering have 

become increasingly important areas of research in the last three decades. Identification methods have been 

used to establish mathematical models orto improve existing models. Many nondestructive testing methods 

are based on the concepts of system identification and parameter estimation. Identification has been used for 

structural monitoring of load carrying systems such as aircraft, space structures, buildings, bridges, offshore 

platlbnns, and mechanical systems (Cawley 1985; Chen and Garba 1987; Stubbs, et al. 1989; Natke 1989; 

Hajela and Seiro 1990; Ismail, et al. 1990). In offshore structures, attempts have been made to assess structural 

damage from changes in the frequency spectrum. of the structure to ambient excitations (Vandiver 1975; Dug

gan, et al. 1980; Kenley and Dodds 1980; Coppolino and Rubin 1980). Engineers have been attracted to such 

methods because of the extreme difficulty and expense of under-water inspection. The aerospace and automo

tive industries extensively use identification techniques to verify or improve mathematical models for subse

quent use in simulation, design, and control studies (Thoren 1972; Collins, et al. 1974; Sheena, et al. 1982; 

Flannelly and Berman 1983; Hashemi-Kia 1988; Kammer, et al. 1988; Stubbs, et al. 1989; Jiang, et al. 1990; 

HoIkamp and Batil11991). 

Mathematical model building has been used frequently for parameter estimation of buildings. Typically, 

system identification is used to model existing structures (Hart and Yao 1977; Torkamani and Ahmadi 1988), 

assess structural changes in buildings after earthquakes (Distefano and Pena-Pardo 1975 and 1976; Beck 1982; 

Distefano and Cakmak 1990), evaluate seismic vulnerability of existing buildings (Ho and Aktan 1989; Aktan 

and Ho 1990), and identify critical collapse mechanisms of structures (Ellis, et al. 1990). Parameterestimation 

has been used to evaluate performance of bridges from ambi.ent, earthquake, and force transient responses 

(Melamore, et al. 1971; Douglas and Reid 1982; Flesch and Kembi.chler 1988; Werner 1989; Raghavendrachar, 

et al. 1991). Another area of application for identification techniques is the condition monitoring of machines 

to enhance the efficiency of their maintenance and operation (Zimoch 1987; Tustin and Mercado 1985; Foster 
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and Mottershead 1990; Mottershead 1990). Mathematical models have been derived to describe the mechani
cal behavior of composite materials (Hasbin 1983; Zhang and Evans 1988; Courage, et al. 1990; Soiero and 

Hajela 1990). These models try to deal with characteristic mechanical behavior including anisotropy, viscoe

lasticity, and deterioration phenomena like debonding or delamination. 

1.3. Objectives and Scope 

Although identification techniques have been extensively developed in system science, identification of 

complex structural systems presents many new problems. In particular, we often know a great deal about our 

systems, but we are often rather limited in our opportunities to observe their responses. Our models often 

contain regions that are inaccessible, but are important to the response. Data cannot be collected at those loca

tions. Instrumentation is currently expensive and difficult to deploy. As a consequence data are usually 

sparsely distributed in space. Incompleteness of measurements and inadequacy of the model are enemies of 

any identification process. Incomplete measurement of the response with respect to time and space and noise 

in measurements reduce the amount and reliability of the available data (Young 1970; Bennan and Flannelly 

1971; Wang 1988; Lee and Chen 1989; Mottershead 1990). On the other hand, the approximate nature of the 

mathematical model and the inexact material modelling compromise the suitability of the model (Leonard 

and Khouri 1985). 

While accurate and efficient numerical methods have been developed for the anal ysis of direct problems 

(e.g. given the model and the loading, estimate the response), analogous techniques for inverse problems 
(identification) have not yet achieved the same level of generality and reliability. In this research study we 

present a general approach for computing the constitutive parameters of finite element models of complex 

structural systems. We choose fmite element models because finite element analysis is a well-established 

field that provides generality and flexibility in developing algorithms and civil engineers are familiar with 

this tool. We study the above-mentioned problems and develop algorithms suitable for complex structural 

systems with minimal required data 

This manuscript consists of nine chapters and two appendices. Chapter Two provides a general frame

work for our approach to parameter estimation of complex structural systems. We outline our least-squares 

fonnulation for all of the specific cases examined in this work; we describe the recursive quadratic program

ming algorithm, which we use throughout to solve our problems of constrained minimization; and we discuss 

the essential elements of simulation and statistics necessary to interpret the examples provided herein. In 

Chapter Three we develop and equation-error estimator and an output-error estimator for the static problem. 

We study the behavior of these estimators via simulation on a bowstring truss structure in Chapter Four. In 

Chapter Five, we modify the static estimators to treat modal data. In Chapter Six, the modal estimators are 

applied to the problem of building a mathematical model for a building that was damaged during the 1989 

Lom a Prieta earthquake, and for which forced vibration test results were available. In Chapter Seven, we pres

ent the theoretical foundations for an equation-error estimator for transient dynamic response. We study the 

behavior of this estimator through simulation in Chapter Eight. Chapter Nine is a summary. Appendix A cov

ers the local optimization technique we have used in this study, and Appendix B covers the computation of 

element sensitivities necessary for all of the algorithms. 
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CHAPTER TWO 

Structural Modeling Based on Test Data 

For structural systems, a mathematical model can be constructed from conditions of equilibrium, kine

matics of deformations, and material constitutive requirements. The mathematical model can be further pro

cessed by numerical tools such as the finite element method, the finite difference method, or the boundary 

element method. Because our structures generally comprise many interconnected elements we shall refer to 

them as complex systems. Using data from a static, forced transient, or free, undamped vibration experiment 

on the structure, parameter estimation techniques can be used to adjust the parameters of the model so that 

the model will best represent the actual performance of the structure during that evaluating experiment. The 

parameters may include the constitutive properties (stiffness, mass, and damping), the geometry of the struc

rore (positions of the nodes), or the degree of boundary restraint Here we will focus only on the identification 

of constitutive parameters. 

In this study we wiU propose an approach to parameter estimation of finite element models of strucroral 

systems. We fonnulate the parameter estimation problem as one of constrained minimization of the difference 

between measured response and response estimated by the parameterized model. The first, and most funda

mental, class of problems that we shall consider is the equilibrium of a strucrore subjected to static loads, 

(Chapters Three and Four). The second class is the equilibrium of a structllre in free, undamped vibration, 

(Chapters Five and Six). And the third class is the transient, damped motion of a structure subjected to dynam

ic loads, (Chapters Seven and Eight). We have endeavored to develop a unified approach to these discrete 

Jinverse problems with a particular view toward evolving methods that are amenable to large-scale computa

tion. 

The primary goal of this chapter is to describe OUlf approach to the parameter estimation of mathematical 

models of structural systems and to derive the relationships required for the proposed algorithms. We win 

refer back to these derived equations in the subsequent chapters. 

We begin the chapter by presenting the equilibrium equations for a mathematical model of a structure 

for static excitation, for undamped free vibration, and for damped, forced dynamic motion. We then propose 

our basic approach, that is, nonlinear constrained optimization, to estimate the constitutive parameters of the 

model using some measured input-output pairs of the real structural system. Next, we present an algorithm, 

recursive quadratic programming, to solve the constructed optimization problem. FInally, we present a frame 

work for simulation to study the behavior of the proposed algorithm. We use this simulation environment 

in Chapters Four and Eight to investigate the statistical properties of the algorithm for the static and forced 

dynamic cases, respectively. 
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2.1. Governing Equations 

Static equilibrium. The equation governing the static equilibrium of a structure with nd degrees of free

dom can be expressed as 

K(x)u = f (2.1) 

where K(nd x nd) is the stiffness matrix, parameterized by vector x with np components,J(nd x 1) is the 

vector of equivalent nodal forces, and u(nd X 1) is the vector of nodal displacements. The direct problem 

(analysis) is characterized by knowing the parameter vector x (and thus the matrix K), and has the goal of 

determining unknown portions of displacement u and forcejfrom known portions of u and! The direct prob
lem is well posed if the known and unknown portions of the force and displacement vectors are disjoint (one 

can only know force or motion a priori at a point, not both), and it has a unique solution if the matrix K is 

positive definite. The estimation problem is different from the direct problem in that we are given samples 

of u andjwith the goal of determining x. In the inverse problem, a single pair (u,J) is usually not sufficient 

to uniquely determine the parameters x, even if those vectors are consistent with a unique solution to some 

direct problem; in fact, they will constitute solutions to an entire set of direct problems. The question of how 

much data (i.e. how many pairs of u and!. and how many components of each) are required to adequately 

determine x is a central issue in this work. 

Free, undizmped vibration. The governing equation for free, undamped vibration of a structure is an ei

genvalue problem which can be stated in discrete form as 

K(x)u = W(x)u (2.2) 

where the (n d X n d) matrices K and M represent structural stiffness and mass, respectively, and the eigenva

lue A represents the square of the natural frequency of the mode whose deformed shape is represented by the 

eigenvector u. Here, we assume that the mass and stiffness parameters are lumped in the parameter vector 

x. The direct eigenvalue problem gives rise to at most n d independent solution pairs (A, u), for a positive 

definite M and a positive semi-definite K. The inverse problem not only requires more than a single eigenpair 
(A, u), but also needs an equality constraint on the parameters of the model, to yield a unique solution. 

Transient,jorced dynamics. The discrete form of the governing equation for the transient damped mo

tion of a structure subjected to dynamic loads can be written as 

M(x)ii(t) + C(x)li(t) + K(x)u(t) = f(t) (2.3) 

where, in addition to those terms already defined, C(nd X nd) is the damping matrix, and ii(t) , li(t), and 

u(t) are state vectors representing nodal accelerations, velocities, and displacements. Here, we assume that 

the mass, damping, and stiffness parameters are lumped in the parameter vector x. The direct and inverse 

problems are like the direct and inverse static problems, except that the response and loading are time depen

dent. The static inverse problem is much easier to formulate and solve than the dynamic inverse problem; 
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however, it is generally much easier to excite a structure dynamically than statically. Consequently, methods 

of testing based on dynamic excitation are much more practical and popular than those based on static excita

tion. From a theoretical point of view, the distinction is less clear. We will show that the static, modal dynam

ic, and transient dynamic inverse problems can be cast into a unified format as constrained noruinear opti

mization problems. 

2.2. Parameter Estimation as an Optimization Problem 

To provide a unified approach toward the parameter estimation problem of models described by Eqns. 

(2.1), (2.2), and (2.3), we propose to cast the problem of parameter estimation into a constrained nonlinear 

optimization problem. Consider that we have subjected a structure (sometime referred to as the real structure 

even though we will often use a simulation model) to N different excitation cases and have observed the re

sponse at certain locations. We win refer to N as the number of observation sets: The number of independent 

load cases forthe static problem, the number of measured modes forthe free vibration problem, orthenumber 

of time points for the transient dynamic problem. Assume that we also have at our disposal a finite element 

model of the subject structure, parameterized by certain constitutive properties. We estimate the unknown 

parameters of the finite element model by minimizing a scalar loss function! subject to a set of constraints, 

where the loss function indicates how well the model equation is satisfied. The parameter estimation problem 

can then be expressed as follows 

minimize 
(.r,1Z) 

subject to 

N 

!(x,ii) =!I ai II ei(x, iii) 112 
i=1 (2.4) 

c(x) S 0 

The loss function! is the weighted summation of L2 norms of the individual error functions e for the various 

observation sets. These error functions refiect the discrepancy between the estimated response of the mathe

matical model and the observations from the real structure, and are a function of the constitutive parameters 

x of the model as well as the unmeasured response ii of the structure. For the sake of the general discussion 

of algorithms, we introduce s as the vector of unlmown variables and assume that it contains both unknown 

parameters x and unmeasured degrees of freedom of the model ii. (We will demonstrate in subsequent chap

ters that not all parameter estimation algorithms requi.re the estimation of the unmeasured response.) 

The weight a i inEqn. (2.4) refiects the degree of confidence to the ith set of observations. For example, 

in a free vibration experiment, since the lower modes are easy to measure reliably, their weights might be 

chosen larger than the weights for the higher modes. In a statistical sense, the best values for the weights are 
the inverse of the variance of the error functions. The proposed estimator is in the class 'of weighted least 

squares estimators, a subclass of maximum lilielihood estimators, and does not require a priori knowledge 

of the probability density of the parameters and measurements. 

The constraints c(x) are used to enforce a priori knowledge of the parameters. In this study we generally 

use only bounding constraints for the unknown constitutive parameters, 
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xSxSx (2.5) 

where!. and x are the lower and upper bound vectors, respectively for the unknown parameters. These 

bounds define the feasible region and are important because they eliminate the possibility of converging to 

physically unreasonable solutions. For structural systems, if the constitutive, damping, and mass parameters 

are chosen to be the parameters of the model, the lower bound:! might be chosen greater than or equal to 

zero because theory insists that these parameters be positive. The upper bound x is more difficult to select, 

but might, for example, be chosen in the neighborhood of the nominal design values (remember, no choice 

is ultimately irrevocable). We will give some guidance on the selection of parameters in Section 2.5. 

2.3. Recursive Quadratic Programming 

The proposed approach to estimating the parameters is an off-line (or batch) method and uses all sets of 

observations in the computation of the parameters. Because of the presence of constraints and the nonlinearity 

of the loss function, a batch approach is more robust than a recursive approach. The selected models (2.1) 

to (2.3) are linear in their response but the parameter estimation problem is inherently nonlinear. Thus lineari

ty of the response presents no advantage. Furthermore, linearity of the constitutive model is not important 

(the structural matrices K, C, and M can be nonlinear with respect to the constitutive parameters x and no 

computational burden accrues). We assume that our models have lumped, time independent parameters. We 

further assume that the parameters are deterministic; however, we will study the behavior of the estimators 

with respect to random observation errors in a simulation environment 

To solve the constrained nonlinear optimization problem (2.4), we use the recursive quadratic program

ming (RQP) method. The recursive quadratic programming method is currently one of the most promising 

approaches to solving constrained nonlinear optimization problems. The RQP algorithm is attractive because 

it applies directly to problems with inequality as well as equality constraints, it is globally convergent, and 

it is amenable to large-scale computation. In this section, we briefly describe the RQP algorithm used in our 

study to solve optimization problems regarding parameter estimation of structural systems. An extensive dis

cussion of recursive quadratic programming can be found in Appendix A. 

A typical iteration of the recursive quadratic programming algorithm has only a few basic steps. One be

gins by selecting a feasible starting vector so. At the current estimate the objective function is quadratified 

and the inequality constraints are linearized. The resulting inequality-constrained, quadratic subproblem is 

then solved (i.e. the quadratic objective is minimized and the linearized constraints are satisfied) using an 

active set strategy. The search direction is then the solution to the quadratic subproblem. The length of the 

step in this direction is determined by minimizing a line search objective function (the sum of the original 

objective function and a penalty term that becomes positive whenever one or more of the constraints is vio

lated). The line search procedure ensures the global convergence of the RQP method. 

A general nonlinear optimization problem with both equality and inequality constraints can be written 

as follows 
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minimize J(s) 
s 

subject to ci(s) = 0 i = 1, ... ,m' (2.6) 

ci(s) :s; 0 i = m' + 1, ... ,m 

wbere the objective functionJ and/or some of the constrains c are noruinear with respect to the unknown van

abIes s. In our proposed parameter estimation problem (2.4), the loss function is the squared-error objective 

function, the vector of unknown variables s contains unknown parameters x and unmeasured degrees offree

dom it, and the constraints are simply bounding the unknown parameters as shown in Eqn. (2.5). The recur

sive quadratic programming algorithm can be stated in a compact form as follows: 

Step 1: Start with an initial So and set the iteration index k to zero. 

Step 2: Compute the search direction dk by solving the quadratic subproblem 

minimize 
dk 

subject to Vci(s)dk + ci(sk) = 0 

Vcis)dk + ci(sk) :s; 0 

i = 1, ... ,m' 

i = m' + 1, ... ,m 

(2.7) 

If the search directiond k orthe gradient vector VI(sk) is small, then terminate and take the current 

iterate as the solution. 

Step 3: Determine a step length P k by solving the one-dimensional minimi:zation problem 

Step 4: Compute matrix H k + 1 using a Gauss-Newton approximation (or a quasi-Newton update, or a full 

Newton computation of the Hessian). Setsk +1 = sk + Pkdk and increment counter to k = k+1. 

Go to Step 2. 

The Fletcher active set strategy is used to solve quadratic subproblem (2.7) as explained in Appendix 

A. The Fletcher algorithm is a robust iterative procedure and suitable for large-scale computation. The active 

set strategy converges to the solution of an inequality constrained problem using a sequence of equality 

constrained problems. At each phase of the strategy, a subset of the constraints of the original problem, named 

the working set, are treated as active constraints. The active set method starts with a given working set, the 

set of equality constraints, and begins minimizing the objective function over the working surface of 

constraints. If new constraints boundaries are encountered, they are added to the working set, however, no 

constraint is dropped. When a local minimum of the loss function with respect to the current working set is 

obtained, the Lagrange multipliers corresponding to the inequality constraints in the working set are deter

mined, if they are all nonnegative, an optimal solution is found. Otherwise, the inequality constraint with the 

lowest negative Lagrange multiplier is dropped from the working set and the process is reinitiated with this 

new working set 
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In the third step of the recursive quadratic programming algorithm, a line search is perfOImed to compute 
a step length. The line search objective function (2.8) is an absolute-value penalty function which is compat

ible with theRQPmethod. The line search procedure ensures the global convergence of the optimization algo

rithm and promotes convergence from a poor starting point. The penalty parameter r in objective function 

(2.8) should be greater than all Lagrange multipliers at the solution to guarantee the global convergence 

(Coleman and Conn 1980). Since the absolute-value penalty function is not differentiable, the golden section 

search is used to minimize one-dimensional objective function (2.8) (Press, et al. 1990). The golden section 

search only requires the value of the objective function and is a robust, linearly convergent method. 

The quadratic subproblem (2.7) needs the gradient of the objective function VI and the matrixH k which 

is an approximation of the Hessian matrix of the Lagrangian associated to the original problem (2.6). In the 

following section, we compute the gradient of the loss function and the Hessian of the Lagrangian forparame

ter estimation problem (2.4). 

2.4. Sensitivity of the Loss Function 
For the sake of brevity in subsequent presentation of mathematical fOITIlUlations, let us introduce some 

notational conveniences. From now on, the application of the gradient operator V to an arbitrary scalar field 

a(y), vector field a(y), and tensor field A(y) are defined to have components as follows 

[Va(y»). = aa(y) 
I aYj 

[Va(Y)]ij = ai;;) [VA( )].. = aAij(Y) 
Y 11k aYk 

(2.9) 

where y is the dependent vector. The gradient of the loss function], in the constrained nonlinear optimization 

problem (2.4), with respect to the unknown variables s has the expression 

N 

VIes) = I ajVTej(s)ej(s) 
j=1 

The Lagrangian function of optimization problem (2.4) takes the fonn 

I(s,).) = I(s) + ).Tc(s) 

(2.10) 

(2.11) 

where). is the vector of Lagrange multipliers and c(s) is the vector of constraints (2.5) bounding the unknown 

parameters x (which are a part of the unknown variables vector s). These constraints are linear, therefore the 

Hessian of the Lagrangian 1 is simply the Hessian of the loss function]. From Eqn. (2.10), the Hessian matrix 

H is computed as follows 

N 

H = V2I(s) = I a j[V2ej(s)ej(s) + VTej(s) Vej(s)] (2.12) 
j=1 

where the components of the third order tensor V2ej(s) and those of the matrix Vej(s) are defined according 

to Eqn. (2.9). The Hessian matrix in Eqn. (2.12) requires the second derivative of the error function, which 
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is sometimes difficult to compute. Another difficulty with the exact Hessian matrix is that it may not be posi

tive definite, complicating the numerical calculations. A sensible remedy is to neglect the first term in the 

parentheses ofEqn. (2.12) so as to eIlSlJre that the approximated Hessian is positive semi-definite. This 

approximation, called the Gauss-Newton approximation of the Hessian matrix JIGN, is constructed as 

N 

HGN = L aiVTei(S) Vei(s) 
i=l 

(2.13) 

The H.GN matrix is computationally simpler than the exact Hessi.anmatrixH and contains enough information 

about the second derivative of the loss function to be computed reliably if the residual errors are sufficiently 

small. 

Another way to compute an approximation for the Hessian matrix is to use a low-rank update formulae 

as explained in Appendix A. Like Gauss-Newton, these update methods use only the first order derivatives 

of the loss function to update the Hessian matrix at each iteration. Unlike Gauss-Newton, they attempt to 

gather information necessary to approximate the exact Hessian. In our study we use the modified BFGS meth

od developed by Han and Powell (Han 1976 and 1977). The Han-Powell approximation of the Hessian matrix 
HliP is given in Appendix A. 

2.5. The Selection of Parameters 

To establish the parameter estimation algorithm we must specify the choice ofparnmetervector x needed 

to build the structural matrices K, C, and M. This choice controls the final output of parameter estimation 

and, consequently, its generality and applicability. In this section, we discuss some of the possibilities for 

parameter selection. 

The simplest way to parameterized a structural matrix is to use its n~ members as independent parame

ters. While, this repres'entation does not need any knowledge other than the size of the model, the parameters 
do not have a physical basis and the model possesses an inordinately large parameter set. Symmetry of the 

structural matrices can be used to reduce the number of parameters. The weak assumption that the topology 
of the model, defining the pattern of connectivity among the elements, is known can be used to impose a sky

line structure on the structural matrices; elements above the skyline can be constrained to zero. The main dis

advantage of selecting the members of the structural matrices to be the unknown parameters is that the number 

of parameters changes as the finite element model changes, for example through mesh refinement. The use 

of symmetry and topology cannot ameliorate this drawback. 

One can gain deeper insight into the physical structure of the model by considering that the topology and 

geometry of the model are known and the parameters are selected from the constitutive (stiffness, mass, and 

damping) equations at the element level of the model. As an example, for a plane stress element, Young's 

modulus, Poisson's ratio, and mass density might be suitable parameters to describe the model. These param

eters have a physical basis and through standard assembly procedures lead naturally to structural matrices 

with proper symmetry and profile. However, if one considers each finite element to possesses its own inde

pendent parameters, then, again, the nmnber of parameters increases as the finite element model is refined. 
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This feature represents a clear disadvantage since parameter estimation becomes increasingly difficult as the 

number of parameters increases, due to sparsity of observations. 

In this work we use a simple grouping scheme to cure the problem of burgeoning of the parameter set 

with mesh refmement The grouping scheme also reduces the total number of parameters in the model and 

thereby increases the robustness of the estimations. Elements in a group are associated with the same set of 

parameters and groups of parameters are disjoint from one another. The grouping schemes for the stiffness, 

mass, and damping parameters need not be the same, for example, the group that an element shares stiffness 

properties with may be different from the group that it shares mass properties with. The grouping scheme 

might be based on prior knowledge of the structure. For example, the columns of a story in a building might 

be known to have the same stiffness; plane stress elements in a layer of a multilayer halfspace might be known 
to have the same Young's modulus. If such knowledge is not available an appropriate grouping might be de
termined by a search over a discrete set of groupings to minimize the loss function with respect to grouping 

(as opposed to simply minimizing over the parameters themselves). The grouping scheme can be made more 

flexible by recognizing that the value of the parameters within a group (e.g. Young's modulus) need not have 

the same nominal value, but can simply be scaled by a common multiplicative parameter. Only the relative 

values of parameters within a group need to be specified in advance. 

In many practical cases it may be of interest to estimate a part of the parameters with the rest taken as 

known. For example, the mass parameters of a structure might be known while the stiffness parameters are 
completely undetermined. Or, we may want to estimate parameters ofnonstructural members knowing the 

structural parameters. Or, in a soil-structure interaction problem, the properties of the soil medium might be 

unknown while the properties of the superstructure are known. The predetermination of some constitutive 

parameters reduces the number of unknown parameters of the model and increases the robustness of the pa

rameter estimator. 

2.6. Simulation Environment 

The behavior of a parameter estimation procedure depends on two main factors: the mathematical model 

and the richness of the data The selection of an appropriate model is difficult and often requires the intuition 

and judgement of an expert in modeling. In the chapter on modal estimation we make a modest exploration 
of the question of model selection. For the static and transient dynamic problems we avoid the subjective step 

of model selection completely by simulation so that we can focus on the more tractable problem of evaluating 

the issue of the richness of the data. To neutralize model selection as a source of error we generate the "real" 

data by simulation with the model we will use as the basis of the parameter estimation scheme. Thus, the 

assumed mathematical model is an exact representation of the "real" structure and is, by construction, pre

cisely valid. The only factor affecting the behavior of the proposed parameter estimation algorithm, then, is 

the richness of the measurements. 

We use the term richness as a descriptor for the information content in the data. It is related not only to 

the quantity of measurements but also to the quality of those measurements. One compromise to the quality 

of the data comes from the noise (e.g. from experimental errors) in the measurements. Experimental errors 

are developed from a variety of sources. Some of the errors are systematic and some are random. We expect 
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certain errors to be present in any experiment The behavior of any parameter estimation algorithm should 

be studied in the context of noisy measurements, whether gathered from real field tests or generated by simu

lation in a computer. 

Another indicator of quality of data is related to the spatial distribution of the measurement locations and 

the spatial distributions of various excitation cases. For example, consider two load cases that excite a struc

ture in two distinctly different modes and two other load cases that excite the same structure in two rather 

similar modes. One would expect the response from the fonner pair to contain more info11llation about the 

structure than the latter pair. Consequently, these data would lead to better estimates of the parameters. Also, 

if one load case excites the structure only locally, one would expect the parameter estimates to be very good 

for those parameters associated with that local region and poor for those parameters not associated with that 

local region. Further, an excitation mode that involves the entire structure, as the fundamental mode ofvibra

tion often is, would lead to good qualitative estimates of most parameters, but those estimates might not be 

as sharp as those from local excitation. 

Whenever some aspect of a given problem has a random nature, the solution to that problem is a random 

variable. In a parameter estimation problem, the measurements can be considered to have arandom error com -

ponent, therefore the estimated parameters are random variables. The essential problem is to discover the 

statistical properties of the solution, in our case the statistics of the estimated parameters. Determination of 

the statistics of the solution is particularly difficult when the problem is nonlinear or complex (or both). 

Monte Carlo simulation provides a useful tool for these problems. 

Monte Carlo s:imulation uses a random sequence of numbers to change the values of the particularrandom 

aspects of the problem to construct a sample of the solution population. The statistics of the sample popula

tion are easily computed and provide an estimate of the statistical properties of the random solution. As the 

size of the sample population increases, so increases the reliability of the estimated statistics. Monte Carlo 

simulation is used in the studies presented here to assess the behavior of the proposed parameter estimation 
algorithms with respect to the amount of measurements, the spatial distribution of loading cases, the initial 

values of the parameters, and the noise in the measured responses. 

In our study, we wish to estimate the parameters of a finite element model, a constrained nonlinear opti

mization problem expressed by Eqn. (2.4). For a given finite element model, set of load cases, bounding 

constraints, and initial values, the solution x is a function only of the response u measured at certain locations. 
These response values will, of course, be polluted with noise. In the simulation environment the noisy re

sponse u is generated by adding a noise vector n to the computed response of the given finite element model 

Uo as follows 

U = U o + n (2.14) 

where n is a random vector with zero expected value and finite known variance. As schematically shown in 

Fig. 2.1, we model the experimental errors as a random noise vector n with an assumed distribution function. 

The response u, computed in accord with Fig. 2.1, is taken to be the measured response of the real structure. 
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The estimated parameters x are functions of the noisy response u which is a random vector. Therefore, 

the solution x becomes a random vector whose distribution directly depends on the distribution of the noise 

vector n and the mathematical characteristics of the proposed estimation problem (2.4). Through Monte Car

lo simulation we generate a population of random solutions x from noisy data whose statistics are completely 

known to us. Each individual member of the solution population corresponds to a certain noise vector. If the 

functional relation between x and n were explicitly known, then the distribution of solutions could be com

puted analytically. However, the present constrained, nonlinear optimization problem admits no such solu

tion. In fact, it must be solved iteratively. Hence, x is a complex, nonlinear function of the noisy response, 

and hence we will compute its statistics by Monte Carlo simulation. 

For a given mathematical model, bounding constraints, initial values, and load cases, Monte Carlo simu

lation uses a random number generator to produce a sequence of noisy responses as follows 

t = 1, ... ,T (2.15) 

where nt is the tth noise vector computed using the random number generator as explained in the next section 

and Tis the sample size. For each individual noisy response ut, the proposed parameter estimation algorithm 

computes an estimate of the parametersr of the mathematical model. Hence, the simulation develops a sam

ple {r, t =1, ... , T} of estimates (i.e. the solution population). Based on the law oflarge numbers, by increasing 

the sample size T, the statistical indices of the sample (e.g. the mean and standard deviation) converge to the 

actual statistics of the population. Monte Carlo simulation does not need the explicit fonn of the relationship 

among inputs and outputs of the algorithm and approximates the distribution of the estimated parameters by 

executing the algorithm repeatedly, each time altering only the values of the imposed noise. An individual 

execution of the estimator is referred to as a trial in the subsequent sections. The sample size T ( number of 

trials) should be large enough to establish statistical significance of the estimates. The variation of the statisti

cal indices of the sample with respect to the sample size becomes steady when the number of trials is large 

enough. 

Noise Modeling. In our simulation study, we do not have real measurements and we simulate noisy re

sponse by adding random noise to the computed response. There are many types of errors that can be 

introduced into a mathematical model to simulate noisy measurements. Due to the complexity of the mea
surement process, any single type of random error would fall short of modeling the actual error experienced 

in the field. On the other hand, we need to simulate noise in measurements in order to study the behavior of 

our developed algorithms. Therefore, two simple types of random noise (error) are used to bound the problem 

Simulated Structure 

u 

Fig. 2.1 Simulation of actual response of the structure 
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of noise modeling. The first type is an absolute error of amplitude A multiplying a uniform random variable 

; that takes values between plus and minus one. The error is added to the computed response Uo to simulate 

noisy measurements. Thus, the simulated absolute measurement error is modeled as 

u~ = Uo + AE-~ , j!:o l i = 1, ... ,nd , t = 1, ... ,T (2.16) 

where n d is the number of measured degrees of freedom for a load case, and Tis the sample size forthe simu

lation. The random variable; is constmcted using a pseudo-random number generator and has a zero ex

pected value and variance equal to 1{3. Equation (2.16) shows that errors added at each measured degree of 

freedom for each trial ;f are independent from one another. 

Absolute errors model actual experimental errors well when all instruments have the same sensitivity and 
are used to measure responses of the same type and order of magnitude. If some of the measurements are 

small, the absolute errors tend to overwhelm the actual responses. The smaller deformations may be unfairly 

penalized, because in practice, when the deformations are suspected to be small, the sensors would be set to 

a greater sensitivity. Also, if the same error amplitude is applied to measurements of different types (such 

as displacements and rotations) the errors can completely dominate the smaller response. 

We introduce a second type of error to take these issues into account. The proportional error is a fraction 

of the computed response multiplying a unif01TI1 random variable; defined in Eqn. (2.16). The simulated 

proportional measurement error is given by 

i = 1, ... ,nd , t = 1, ... ,T (2.17) 

where I is a fraction of the computed defonnation Uo which controls the magnitude of error. Proportional 

errors are representative of actual measurement errors when all instruments are setto optimal sensitivity. True 

experimental errors lie somewhere between the bounds of absolute and proportional errors. These two ex

treme models of noise should provide effective bounds on measurement errors for use in assessing a parame

ter estimation algorithm. The amplitude of absolute error A and the fraction paiameter of proportional error 

I are referred to as the magnitude of noise in the rest of this manuscript. 

Statisticallndices. In anoisy environment, the parameters we are estimating behave as random variables. 

To study our proposed estimation algorithms and to find trends in the behavior of these estimators we will 

use statistical indices to characterize our results. In this section we introduce a few appropriate statistical in

dices for use in probing the behavior of the proposed algorithms by simulation. 

The mean average x of the estimation sample {xE, t=l, ... , T} approximates the expected value of the esti

mated parameters E[x] and is computed as 

T 

x=~Lr (2.18) 

t=l 

where r is the vector of estimates for the tth trial. We refer to x as the vector of estimated parameters for 

a complete ensemble of trials. (We will also refer to a complete ensemble of trials as an experiment in the 
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sequel.) The mean average indicates the centroid of the distribution of the estimates in the space of parameters 

for a given experiment. 

The quadratic bias II E[x] - ; 112 is a measure of the distance between the centroid (expected value) of 

the estimates and the actual parameters; (which we know because we are doing simulation). The average 

root quadratic bias (RQB) is defined as 

RQB = IIx-xll 
np Ilxll 

(2.19) 

where np is the number of parameters and II x - ; II is the root quadratic bias of the sample. The RQB is 

nonnalized with respect to the nonn of actual parameters. 

The average standard deviation (SD) of the estimates, nonnalized with respect to II; II, is given by 

T ftp 1 

[ T : 1 I I (~ - 1';)2] 2 
SD = ,=1 ;-1 (2.20) 

np Ilxll 
The SD indicates the standard deviation, an approximation of the square root of the variance E[ (x - E[x])2] 

of the estimates, and is a measure of scatter of the distribution of the estimates around the expected value. 

Bias and standard deviation are quantitative measures of accuracy and precision of an estimator, respectivel y. 

The smaller bias and standard deviation are, the more accurate and precise an estimator is. 

To measure the scatter of the estimates with respect to the actual parameters; , two indices: average root 

mean square error (RMS) and average identification error (AlE) are defmed as follows 

RMS (2.21) 

AlE = (2.22) 

np Ilxll 
Both have been nonnalized with respect to II; II. The RMS and AlE compute the scatter of the sample based 

on L2 and L1 nonns, respectively. The AlE quantity has the same property as RMS. Combining Eqns. (2.19) 

to (2.21) leads to 

(RMS)2 = (SD)2 + (RQB)2 (2.23) 

which shows that variation of the mean square error depends on variations of both bias and standard deviation. 

Therefore, a decrease in the scatter of the estimates around the actual parameters (RMS) can be generated by 

decreasing the distance between the centroid of the sample and the actual parameters or by reducing the scatter 

of the estimates around the centroid of the sample. 
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When the set of parameters contains different types of quantities, such as axial, shear, or flexural stiff

nesses, the statistical indices are computed by weighted averaging. For example, if there are three different 

types of parameters, then the average root quadratic bias is calculated as follows 

3 

ROB =.1." n Z RQIJj· - n2L P, ' 
P ;=1 

(2.24) 

where Hp; is the number of ith type parameters and RQB; is computed based on relation (2.19) whose vari

ables are calculated for the set of estimates and actual values for the ith type of parameters. In Eqn. (2.24) 

the quantity RQB can be replaced by indices SD, RMS, and AlE. 

2.7. Comparison of Estimators 

In the following chapters, we propose two different estimators forthe parameters of a finite element mod

el. To study the behavior of the proposed estimators and compare them, we need some criteria to measure 

goodness of fit. Bias indicates the distance between the estimated parameters and the actual parameters and 

thus provides a suitable measure of goodness of fit. An unbiased estimation is, practically speaking, more 

desirable than a biased estimation. The expected value E[x] for an unbiased estimator is equal to the actual 

parameters x. An estimator with a small bias and a small standard deviation, called a desirable estimator, 

might be preferred to one which is unbiased but has a large standard deviation. Fmthermore, an estimator 
with a large bias and small variance is not a desirable estimator. 

An unbiased estimator is more efficient than another unbiased estimator if it has a smaller standard devi

ation. Standard deviation is a measure of scatter of estimates and thus indicates the efficiency of an estimator. 

An estimator is consistent if its bias and its standard deviation converge to zero by providing more measure
ments. Unbiasedness, efficiency, and consistency are all criteria that are important in comparing the quality 

of different estimators. 

2.8. Cbapter Summary 

We have proposed a unified approach toward the parameter estimation of a mathematical model of a 

structural system using measured input-output pairs of the real structure. The input-output pairs can be mea

sured from either static, or undamped free vibration, or damped, transient, forced dynamic tests on the real 
structure. For these three cases, we have presented the governing equations of a mathematical model of a 

structure and have defined the unknown constitutive parameters and the type of the input-output pairs. Then, 

we have cast the problem of parameter estimation of a mathematical model into a constrained nonlinear opti

mization problem. We have determined the unknown constitutive parameters of a model by minimizing a 

scalar loss function subject to a set of constraints. Where, the loss function is the weighted summation of 

squared nonns of discrepancies between the real structure and the model for different observation sets and 

the constraints impose upper and lower bounds on the unknown constitutive parameters. 

We have discussed the parameterization of the mathematical model and have stressed that it controls the 

required amount of data, the output of the parameter estimation algorithm, its generality and applicability. 
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In this work, we have assumed the topology and the geometry of the model are known and we have selected 

the parameters from the constitutive equations in the element level of the model. 

Grouping of the members of the structure with the same constitutive parameters is an implemented fea

ture of the proposed algorithm which reduces both the number of unknown parameters and the required 

amount of information, especially for large and complex structural systems. Another feature of the the pro

posed algorithm is to implement a priori knowledge about some of the constitutive parameters which reduces 

the number of parameters to be estimated. 

To compute the constitutive parameters of the model, we have to solve the constructed optimization prob

lem. We have presented a recursive quadratic programming method to solve the constructed optimization 

problem. The recursive quadratic programming method requires the gradient and the Hessian of the loss func

tion which we have derived for a general constrained nonlinear optimization problem. 

To study the behavior of the proposed algorithm, we have presented a simulation environment. In this 

environment we have simulated the measured response of a structure by imposing independent random 

noises on the computed responses from the mathematical model. We have explained two ways for modeling 
the noise. We have also defined some statistical indices to evaluate the statistical properties of the proposed 

parameter estimation algorithm and to compare different parameter estimators built using different defmi
tions for the discrepancy between the real structure and the modal. 
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CHAPTER THREE 

Estimation of Constitutive Parameters from Static Response 

The literature on parameter estimation of structural systems based on static response is limited to a few 

papers. Sheena and Zalmanovich (1982) presented a method for improving the analytical stiffness matrix 

from noise free static measurements. Theirmethod required measurements at certain degrees offreedom, and 

used spline functions to predict the remaining unmeasured degrees of freedom. All elements of the stiffness 

matrix were adjusted to minimize the difference between the actual and analytical stiffness matrices (devi

ation approach) subject to measured displacements constraints. Sanayei and Nelson (1986), and Sanayei and 

Scamboli (1991) estimated structural stiffnesses at the element level by minimizing the difference between 

the applied and internal forces (equation error approach). Their method required defonnations to be measured 

at the same degrees of freedom that the external loads were applied. This drawback was lifted in Sanayei and 

Onipede (1991) by using a condensation procedure. Hjelmstad, et al. (1990, 1992) described an approach to 

parameter estimation of complex linear structures based on the principle of virtual work for static and modal 

experiments. A condensation procedure was used to deal with the incompletely measured systems. They stu

died the behavior of the method in a noisy environment using numerical simulation. Hajela and Soeiro (1989, 

1990) classified the parameter estimation techniques into the equation error, output error, and minimum devi

ation approaches. They assumed that the mass matrix did not change and lumped all elemental parameters 

into a single parameter. They used both measured static and modal responses to assess stiffness change on 

element-by-element basis in structural systems. For parameter estimation of large structures, they proposed 

some sub structuring and order reduction techniques. 

From a practical point of view, estimation of parameters from static response is less appealing than es

timation of parameters from modal or transient dynamic response. It is much easier to excite a large structure 

dynamically, particularly with resonant harmonic loading, than it is to excite it statically. Furthennore, it is 

easier to measure accelerations than displacements because of simplicity of establishing an inertial reference 

frame for measuring accelerations. From a theoretical point of view, the distinction between static, modal, 

and dynamic parameter estimation is less clear. We show that the estimation problem for all three cases can 

be cast in a unified fonnat as a constrained optimization problem having the form ofEqn. (2.4). The similari

ties between the three basic cases will become clear through our discussion of them. We present the static 

problem first because it is the simplest, and will help us set the stage for the remaining cases. 

In this chapter, we develop two algorithms for estimating constitutive (member stiffness) parameters of 

a finite element model of a structural system from measured static response to a given set of loads. From a 

mathematical model with known geometry and topology and measured applied loads andnodal deformations 
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at some degrees of freedom of the model, parameter estimation problems are proposed which, when solved, 

determine the unknown constitutive parameters. The proposed algorithms are based on the concept of mini

mizing the index of discrepancy between the model and the structure, as explained in the previous chapter. 

The recursive quadratic programming method is used to solve the nonlinear constrained estimation problem. 

Both proposed estimators can handle the incompletely measured models, have robust convergence, and are 

amenable to modeling of complex structures. 

In the following sections, first for each estimator the estimation problem is proposed and the necessary 

formulation to compute the sensitivity of the loss function is derived. Then, strategies for setting the initial 

values and scaling the unknown variables of the nonlinear estimation problem are explained. An identifiabil

ity criterion for the amount of measurements is derived. At the end, a numerical simulation is used to study 

the behavior of the proposed estimators with respect to the amount of measurements, loading patterns, initial 

values of parameters, and noise in the measured response. 

3.1. The Model Equation 

The matrix form of the equilibrium equations of the finite element model with nd degrees of freedom 

subjected to nlc static load cases is 

K(x)ui = Ji i = 1, ... ,nlc (3.1) 

where K(nd x nd) is the secant stiffness matrix, x is the vector of unknown constitutive parameters, 

ui(nd x 1) is the response of the fmite element modelfor the ith load case, andJi(nd x 1) is the vector of 

equivalent nodal forces for the ith load case. From now on we will refer to Eqn. (3.1) as the model equation 

for the parameter estimation problem of the finite element model based on static response. 

Generally, the response of the structure cannot be measured at all degrees offreedom of the finite element 

model. Measuring the complete response of a structure is either impractical (e.g. measuring rotational mo

tion) or impossible, (e.g. when part of the structure is inaccessible). To resolve this inherent problem, we 

partition the vector of degrees of freedom ui into two parts as follows: 

", = [~l (3.2) 

where "i(nd x 1) and iii(ifd x 1) are the vectors of measured and unmeasured response of the structure, 

respectively. We shall assume that this partitioning is fixed for all load cases. In accord with this partitioning 

of displacements, we shall also partition the stiffness matrix into two parts: a matrix corresponding to the 

measured responseK(x), with dimension (n d X n d)' and amatrix corresponding to the unmeasured response 

K(x), with dimension (nd X ifd), such that 

(3.3) 
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3.2. The Equation Error Estimator 

For the proposed equation error estimator, the error function is a measure of equivalence between the 

mathematical model and the real structure, and represents the residual force in the model caused by failure 

to meet equilibrium. Substituting Eqn. (3.2) into Eqn. (3.1), the error function takes the fOITIl 

i = 1, ... ,nlc (3.4) 

where the unknowns comprise both constitutive parameters x and unmeasured displacements iii. We win 

generally refer to the unmeasured displacements for altioad cases by grouping them in the vector ii=( iii, 
il2, ••• , un1c). The error function e has the nature of a residual force and indicates how close the vector of 

applied forcesJis to the generated internal forces in the model Xu. Figure 3.1 shows the error function sche

matically. 

In accord withEqn. (2.4), the constrained nonlinear optimization problem for the proposed equation error 

estimator is 

minimize 
(x,if) 

subject to 

nlc 

J(x,ii) = ~ L ai II K(X)Ui + K(x)ui - fi 112 
;=1 (3.5) 

where ~ and x are the prescribed lower and upper bounds of the unknown constitutive parameters, respective

ly, and ai is the weight associated to the ithload case. The proposed estimator simultaneously estimates the 

unknown constitutive parameters and the response at the unm,easured degrees of freedom for all load cases. 

By adding simple bounding constraints on the unknown constitutive parameters we eliminate the possibility 

of converging to unreasonable solutions. As explained in Chapter Two, we employ the recursive quadratic 

programming method (RQP) to solve optimization problem (3.5). The RQP algorithm needs the gradient and 

the Hessian of the loss functionJ with respect to unknown variables (x, u). These sensitivities are computed 

in the following section. 

Sensitivity of the Loss Function 

The gradient of the loss function with respect to the variables (x, iii) can be computed using Eqn. (2.10), 

replacing N with nlc. For notational clarity, we partition the gradient of the error function with respect to the 

unknown variables (x, u) as follows 

f --,-----!I»I Structure I!-------,r--_ U 

EE.Model 

Fig. 3.1 Error function for the equation error estimator (EEE) 
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(3.6) 

For the sake of notational convenience, V xei(x, iii) will be designated as U(x, ui) and is computed from Eqn. 

(3.4) as 

(3.7) 

The sensitivity matrix U can be computed by assembling the element sensitivity matrices Ue in the same 

manner as the stiffness matrix is assembled from element stiffness matrices in the finite element method. To 

wit, 

U(X,Ui) = I ue(xe,uD (3.8) 
e 

where xe is the vector of unknown parameters of the eth element, uf is the vector of nodal displacements 

associated with the eth element for the ith load case, and the element sensitivity matrix Ue is defined as 

(3.9) 

where Ke is the element stiffness matrix. In Appendix B we explain how the matrix Ue can be built for finite 

elements whose stiffness matrices are computed by numerical quadrature. Equation (3.8) is possible because 
the assembly process is linear. In general, the stiffness matrix K(x) might be nonlinear with respect to the 

unknown parameters x (such is the case for the stiffness matrix of the Timoshenko beam element). Equation 

(3.4) then suggests that the derivative of the error function with respect to x is still a function of x. In some 

instances, the stiffness matrix will be linear in x, whereby the gradient would be independent of x. 

The gradient of the error function ei with respect to the unmeasured response iii using Eqn. (3.3) takes 

the form as 

(3.10) 

We assume that the finite element model is linear, therefore the secant stiffness matrix K is not a function of 

deformations. Consequently, the matrix V Triei is a fixed matrix K for all load cases. Knowing iii is a subvector 

of the vector ii containing the unmeasured degrees of freedom for all load cases makes the gradient of the 

error function ei with respect to ii a sparse matrix G i shown as follows 

(3.11) 

The K matrix is a part of the stiffness matrix, therefore it can be generated by assembling K e matrices com

puted from the elemental stiffness matrices Ke. 

The computer program for the proposed estimators should have two libraries of element matrices: (1) a 

library of elemental matrices such as stiffness, mass and damping matrices to build the finite element model 
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and the sensitivity matrices V lie, and (2) a library of the elemental sensitivity matrices Ue to compute the 

sensitivity matrices V;re . With this observation one can see that the structure of a program for parameter es

timation can be organized very much like a program for:finite element analysis. In Appendix B we show that, 

for elements that are linear in their parameters, the matrices Ue can be generated from elemental strain-dis

placement matrices and they do not need a separate library for their sensitivity matrices. 

By substituting equations (3.8) and (3.11) into Eqn. (3.6), the total gradient of the error function with 

respect to the unknown variables (x, ii) can be written as 

(3.12) 

Now, by substituting Eqns. (3.4) and (3.12) into Eqn. (2.10), the gradient of the loss function J with respect 

to the unknown variables (x, ii) for the proposed estimator in Eqn. (3.5) can be computed as follows 

nk T 

VJ(x,ii) = L ai [U(X,Ui) Gi(x)] elx,ui) 
i=1 

(3.13) 

The recursive quadratic programming requires an estimate of the Hessian of the loss function. Often this 

estimate is made with a rank-two update formula (such as modified BFGS in the Han-Powell method), 

however, several interesting alternatives are available for the present problem, namely the exact Hessian and 

the Gauss-Newton approximation of the Hessian. Forthe proposed equation error estimator the second tenn 

in Eqn. (2.12) is simply formed from Eqn. (3.12) as 

(3.14) 

Using the definitions in Eqn. (2.9), the first tenn in Eqn. (2.12) can be expressed in the following fonn 

(3.15) 

Now by substituting equations (3.14) and (3.15), the explicit fonn of the Hessian matrix forthe loss function 

of the parameter estimation problem in Eqn. (3.5) can be written as 

nk 

H(x,ii) = V2J(x,u) = L ai[HfD(x,Uj) + HfN(X,ui)l 
i=1 

(3.16) 

Remark. A Hessian matrix is symmetric, therefore the matrix given inEqn. (3.16) should be symmetric. 

This matrix is a summation of the matrices in Eqns. (3.14) and (3.15). Because the matrix inEqn. (3.14) is 

symmetric by construction, one need only check the symmetry property of the matrix in Eqn. (3.15) to prove 

the symmetry of the above Hessian matrix. The matrix HfD(X, iii) is formed by four matrices. One of its two 

di.agonal matrices is a symmetric zero matrix and the other one V;rU(x, ui)ei is symmetric because, based on 

Eqn. (3.7), itsjkth component can be expressed as 
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[V ( )] "V a
2

[Ku i]1 [ .] xU,X,Ui ei jk = L a:o e'l 
I Xl xk 

(3.17) 

which is obviously equal to its kjth component since the order of differentiation is immaterial. The off-diago

nal matrix V rr U(x, ui)ei is the transposed matrix for the off-diagonal matrix V xG i(X )ei because itsjkth com-
ponent, given by 

_ "V a [ a[KUil l ] [VrrU(x,ui)ei]jk - L -= [eill ' 
I aUj aXk 

(3.18) 

is equal to the kjth component of the matrix V xGi(x)ei' given by 

(3.19) 

again because order of differentiation is immaterial. Therefore the matrix HfD(X, ii;) is symmetric and conse

quently, the derived Hessian matrix in Eqn. (3.16) is symmetric. 0 

Equations (3.18) and (3.19) show that the components of the third-order tensors VxGi(x) and V rrU(x,Ui) 
have the following symmetry properties 

(3.20) 

Hence, one can be generated from the other. Knowing the sensitivity matrix U(x, ui) is a function of only the 

displacements for the ith load case makes the third-order tensor V rr U(x, ui) sparse: 

2 

o 
• •• i-1 i H1 nJc] T 
... 0 VrrP(X,Ui) 0 ::: 0 (3.21) 

The tensors V rrP(x, ui) and V xU(x, ui) can be computed by assembling element matrices as follows 
• 

VrrP(X,Ui) = IV rf;Ue(r,uD 
e 

(3.22) 

VxU(X,Ui) = Iv xeue(xe,uD 
e 

where the superscript e indicates the eth element in the finite element model. The computer program for the 

structural parameter estimation should have a library of the elemental tensors V ~Ue and V xeUe for different 

types of elements. However, if the element stiffness Ke is linear with respect to its constitutive parameters 

xe then Ue is not a function of r, therefore the tensor V xeUe is zero. Also, if an element is linear then its Ue 

matrix is linear with respect to the nodal displacements ufo So, forthis element the elemental sensitivity tensor 

V ~ue can simply be generated from the following relation 
• 

(3.23) 

26 



where ua is the Ith unmeasured degree of freedom of the ethelement for the ithload case, hz is a (n~ x 1) 

unit vector { 0 ... 0 1 0 ... o} whose nonzero componentis atthe position corresponding to the lth unmeasured 

degree of freedom and n~ is the number of degrees of freedom of the eth element. Eqn. (3.23) indicates that 

for the linear:finite element models, there is no need for a library of elemental tensor V ~ue and these tensors 

can be computed using the elemental matrices Ue• 

The Gauss-Newton approximation of the Hessian matrixJlGN is constructed by substituting Eqn. (3.14) 

into Eqn. (2.13) and takes the form 

n1c 

HGN{x if) = '" a·HGN{x if.) \:, Lli\:'l 
(3.24) 

i=l 

The approximated Hessian in Eqn. (3.24) does not need the second-order derivatives of the error function 

nor the third-order tensors to store them. The Hessian matrix generated by the Gauss-Newton approximation 

is computationally simpler than the exact Hessian matrix in Eqn. (3.16) and contains enough information 

about the second derivative of the loss function to be computed reliably when the residual is small. The Hes

sian matrix used in the Gauss-Newton approach is positive semi-definite, while the Newton algorithm must 

be modified to restore positive definiteness of the Hessian. 

3.3. The Output Error Estimator 

For the proposed output error estimator, the error function e is defined to be the difference between the 

measured response of the structure u and the computed response of the finite element model K- "1j . The error 

is accrued only at the locations where measurements have been made. Figure 3.2 shows the error function 
schematically. For the sake of clarity, we define a Boolean matrix Q that extracts the vector of the measured 

response Ui from the complete displacement vector of ui' that is, Ui = QUi' To simplify the discussion, we 

assume that Q is the same for all load cases. (As a practical consideration, such an assumption would be a 

useful idea in setting up the experiment in the first place.) 

The error function for the proposed output error estimator is given by the following expression 

i = 1, ... ,nic (3.25) 

For the output error estimator, the unknown variables comprise only the unknown constitutive parameters 

x. In accord with the general estimation problem (2.4), the constrained nonlinear optimization problem for 

the proposed output error estimator is 

f ---,---.; Structure I----.-.u 

EE-Model 

e 

Fig. 3.2 Error function for the output error estimator (OEE) 
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minimize 
x 

subject to 

nlc 

lex) = t I a i II QK-l(xM - iii 112 
i= 1 (3.26) 

where the bound vectors :! and x and the weights ai have the same definitions as they did in Eqn. (3.5) of 

the previous section The number of unknown variables for the proposed output error estimator is smaller 

than the number of unknown variables for the proposed equation error estimator. Thus, the optimization prob

lem described by Eqn. (3.26) can be solved in a lower dimensional space than the optimization problem de

scribed by Eqn. (3.5). On the other hand, the loss function of the output error estimator is intrinsically more 

nonlinear than the loss function of the equation error estimator by virtue of the inversion of the matrix K(x). 

In the following section, the gradient and the Hessian matrix for the loss function I in Eqn. (3.26) will be 

computed. 

Sensitivity of the Loss Function 

The gradient of the loss function with respect to the unknown parameters x can be computed using Eqn. 

(2.10). From Eqn. (3.25), the gradient of the error function with respect to x takes the form 

(3.27) 

where we have made use of the formula for the derivative of the inverse of a matrix. Using Eqn. (3.7) and 

substituting K-1(x)fi in place of "i' the derivative on the right-hand side of Eqn. (3.27) can be expressed 

in the notation defined previously as 

(3.28) 

By combining Eqns. (3.25), (3.27), (3.28), and (2.10) the gradient of the loss function with respect to the 

unknown parameters x is 

nk T 
\fl(x) = I aj [- QK-l(x)U(x,K-~)] ei(x) (3.29) 

i=l 

where the U matrix is generated for the computed displacement vector K- t.t by assembling element sensitiv

ity matrices Ue• The vector K- t.t and the matrix K-1U are computed by a backsubstitution procedure on 

the vector f and columns of the U matrix, respectively, using the triangularized form of the same K matrix. 

The second derivative of the loss function with respect to the unknown parameters can be computed ex

actly or approximately either by the rank-two update formula using the gradient of the loss function or with 

the Gauss-Newton method. The rank-two update methods are discussed in Appendix A. The Gauss-Newton 

approximation of the Hessian matrix JIGN is computed by substituting Eqns. (3.27) and (3.28) into Eqn. 

(2.13) and takes the final form as follows 
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nIc 1', 

HGN(x) = Iai [QK-l(X)U(x,K-~)] [QK-l(X)U(x,K-~)] (3.30) 

i=l 

The simple approximate Hessian matrix generated by the Gauss-Newton approximationinEqn (3 .30) is sym

metric, positive semi-definite, and contains enough information about the second derivative of the loss func

tion to be computed reliably if the residual error is small. The exact Hessian is tedious to compute, and experi

ence shows that it is not worth the effort. 

The most important aspect of the formulation for both proposed estimators is the computation of the sen

sitivitymatrix U. In section 3.2, we showed how to construct the U matrix by assembling the element sensitiv

ity matrices Ue
• To compute the element sensitivity matrices Ue, we have developed a general procedure dis

cussed in Appendix B. We have shown that the sensitivity of the element stiffness matrix with respect to the 

unknown parameters, the primary concern for the proposed parameter estimation methods, can be generated 

in an elegant and straightforward procedure. The derived formulation is capable of handling an element 

whose stiffness matrix is numerically integrated because the explicit form is too complex to compute. The 

procedure can consider elements with kinematic or material nonlinearity and covers a wide range of finite 

element models using one dimensional to three (or higher) dimensional elements. Besides, the same approach 

can be used to compute the sensitivity of mass and damping matrices with respect to their parameters for dy

namic case (see Chapter Seven). Also, in Appendix B, we have derived the sensitivity matrices for a planar 

truss element, which is a linear function of its axial stiffness parameter EA, and a planar TImoshenko beam 
element, which is nonlinear with respect to its parameters (EA, EI, and GA). 

3.4. Initial Values for the Unknown Variables 

We cast both the output error estimator and the equation error estimator as constrained nonlinear opti

mization problems, which are solved iteratively. Like any iterative algorithm, these estimators need initial 
values for the unknown variables to start the iteration. The choice of the starting point controls the conver

gence of the algorithm and dictates the computational effort required to achieve a solution. The farther the 

starting point is from the local minimum, the more computation is needed to converge. The initial guess for 

the unknown variables is a critical factor for the rate of convergence of estimations. The user should use all 

of a priori knowledge to improve the choice of the starting point. 

While the bounding constraints on the parameters prevent convergence to solutions in the infeasible re

gion, one still faces the possibility that either multiple distinct minima or a ravine exist within the feasible 

domain if the data contain insufficient information. If either one of these two conditions exists, the position 

of the starting point dictates to which point the algorithm will converge. If the solution point is close to the 
actual parameters then the estimated parameters win appear to have a small bias; if the solution point is far 

from the actual parameters then it will appear to have a large bias. Therefore, the choice of the initial values 

will appear to affect the accuracy (by apparently reducing the bias) of the estimator, particularly in a simula

tion environment. 

The output error and the equation error estimators both need initial values for the unknown parameters 

;xO. If they are available, the nominal (or as-built) design values are a reasonable choice for these parameters. 
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One can also use auxiliary engineering methods to improve nominal guesses of the initial values for the un

known parameters. For example, the moment of inertia of a cracked cross section of a reinforced concrete 

member can be used if cracking is suspected. If some of the parameters are known, then the known parameters 

Xo can be used to guess initial values for the unknown parameters XO having the same nature. If the initial 

values are selected such that their ratios are approximately correct, convergence will be enhanced. Since the 

algorithm scales all values automatically, the relative order of magnitude of the parameters is not as impor

tant. The user should use all a priori knowledge and engineering intuition available to select and improve 

initial values ~ and bounding values x and :! in Eqn. (3.5) and (3.26) in order to reduce the computational 

effort required to find a solution. However, the algorithm is robust with respect to starting values. If one has 

complete ignorance of the properties, one might select all parameters to have unit value. The effect of initial 

values XO on the behavior of the proposed estimators will be studied in Chapter Four through a numerical 

simulation. 

The equation error estimator needs initial values not only for unknown parameters XO but also for the 

response at the unmeasured degrees of freedom UO. One could provide the starting values UO explicitly, but 

for large finite element models with multiple load cases this option is usually impractical. In such a case, the 

parameter estimation algorithm should automatically generate reasonable initial values for the unmeasured 

degrees of freedom. For the implementation discussed herein one has the option of specifying the initial val

ues of the unmeasured responses explicitly. We also provide three ways to build UO automatically. In the first 

approach, the average p of the absolute values of the measured degrees of freedom U for a particular load 

case is computed 

(3.31) 

and assigned as the initial values for all of the unmeasured deformations UO associated with that load case 

i = 1, ... ,nd (3.32) 

where nd and nd are the number of measured and unmeasured degrees of freedom, respectively 

(nd = nd + nd)' Here, a priori knowledge about the order of magnitude of measurements for a load case 

is used to calculate a constant initial value for unmeasured response under that load case and this starting point 

is better than another constant value like zero for all deformations at unmeasured degrees of freedom under 

all load cases. 

In the second approach, each component of the vector UO is set equal to the average value Ii- multiplied 

by a random number with uniform distribution on the interval [-1,1], as follows 

i1f = pRk 1,1] i = 1, ... ,nd (3.33) 

Here, the vector of initial values UO does not have constant components for a particular load case. Using the 

random number generator gives the flexibility of starting the optimization procedure from different points 
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in the space of unmeasured degrees of freedom and searching for the potential local minima with a given set 

of initial values for the unknown parameters. 

The third way to generate initial values for unmeasured response ff1 is to compute the response of the 

finite element model based on the values of the known parameters Xo and initial values of the unknown pa

rameters ~ for a particular load case and use the computed deformations at the location of the unmeasured 

degrees of freedom as their initial values. This approach can be expressed as follows 

i = 1, ... ,nic (3.34) 

where ii~ and uf are the computed deformations at the locations of the measured and unmeasured degrees of 

freedom, respectively for the ithload case. In this approach, a priori knowledge about the topology and geom

etry of the finite element model is considered, so the vector of computed initial values of unmeasured re

sponse is closer to the nature of the model equation than the first and second approaches (Eqns. (3.32) and 

(3.33», even though ~m:i.ghtnot be a good initial vector. The closer the initial values forthe unknown param

eters X
O are to the actual parameters, the better the initial values for the unmeasured response are. In order 

to modify the order of magnitude of the starting values for the unmeasured deformations to be close to their 

actual values, it is better to multiply the initial vector Uf by the scalar II Ui " / " u~ ". This scalar multiplication 
adjust the magnitude ofuf whenever the order of magnitude of the initial parameters ~ is far from the order 

of magnitude of the actual parameters. We have found the third approach generates better initial vector ff1 
than the other approaches with respect to the rate of convergence. 

3.5. Scaling Unknown Variables 

Both proposed estimators use the recursive quadratic programming (RQP) algorithm to minimize the loss 
function. The RQP algorithm is an iterative gradient search strategy that uses the local information about the 

gradient and curvature of the loss function at the current point in the space of optimization variables and com

putes a direction vector and a step length to reach the next point 

The performance of the RQP strategy depends on the local geometry of the graph of the loss function 

around a local minimum. Like all gradient-based search methods, if the basin of attraction around the local 
minimum is a ravine with steep slopes for some of the variables and shallow slopes forthe rest of the variables, 

then the RQP algorithm minimizes the loss function along the dimensions of the optimization space with the 

steep slopes and exhibits a reluctance to follow the shallow slopes along the other dimensions. Consequently, 

RQP will have difficulty reaching the bottom of such a ravine (local minimum). This type of geometric feature 

will affect the convergence rate of the RQP algorithm and might sometimes lead to oscillation or divergence 

because of the poor conditioning of the Hessi.an. 

One of the factors contributing to steep, narrow valleys on the graph of the loss function, is a large discrep

ancy in the orders of magnitude of the different variables (scaling problem). In parameter estimation of struc

tures, we have a potential scaling problem because the parameters x can have different units, and hence radi

cally different values depending upon the system of measurement chosen. For example, physical properties 
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such as axial, shear, or bending stiffnesses often have values with different orders of magnitude in the custom

ary systems of measurement The scaling problem becomes even more acute for the equation error estimator 

because the unknowns include unmeasured responses which, in customary units, can have values with orders 

quite different from the unknown constitutive parameters x (not to mention each other). 

Some identification problems will be intrinsically ill-conditioned. For example, a structure may have two 

masses, which we hope to identify, that have wildly different sizes. We presume that the data have captured 

enough information to distinguish these two parameters. The loss function, in this case, might exhibit a ravine 

that no change in units will cure. The scaling problem caused by presence of the ravine will, as with the scaling 

problem caused by units, create difficulties in convergence for the RQP algorithm. 

To ameliorate the numerical difficulties caused by the scaling problem, we propose that all of the un

known variables s be scaled to have the same order of magnitude. We generate a positive definite diagonal 

matrix A, based on the initial values of the unknown variables (XO, UO), to scale the unknown variables (x, 

ll) to have a value equal to X, which can be any positive real number. For the unknown parameters x, the scale 

factors are simply computed as 

A. = Z-
I xl! i = 1, ... ,np (3.35) 

I 

whereAjistheithdiagonalmemberofthescalingmatrixA,xiistheinitialvalue for the ith unknown parame

ter, and np is the number of unknown parameters. 

For the unmeasured degrees of freedom, a single scaling factor is calculated for all of the unmeasured 

displacements which have the same character (e.g. translation as opposed to rotation) and correspond to the 

same load case. For simplicity, but at no loss of generality, we consider the number of different categories 

(types) of displacements to be equal to the number of degrees offreedom at each node n~. (Thus horizontal 

translations would be considered different from vertical translations, which in tum are considered different 

from rotations). To compute the scaling factors one must first determine the average value # for each displace

ment type from the values of measured displacements and the initial values of the unmeasured displacement 

of the same type. Consider the general case in which we have nlc load cases and ndt displacement types. Let 

the index set G k contain the global degree-of-freedom numbers for the m k displacements of type k. The abso

lute average of the displacements of type k for load case j are then 

P~ = ~k I lu~jl (3.36) 
iEGk 

where the vector uOj is the complete displacement vector, including Uj and ifj for the jth load case. In the 

special case where ndt is equal to the number of degrees offreedom per node n~ (e.g. for a planar frame n~ 

is equal to three), and the degrees of freedom are numbered in the same order for each node, then m k is equal 

to the number of nodes. In this case the values of the index set can be computed as G ii) = k + (i - 1 )n~. 

Using the absolute average displacements, the scaling factor for each unmeasured degree of freedom can 

be defmed as 
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A _X 
l(ij) - -,-. -

Pk(i) 

where index l(iJ) depends upon the indices i andj and is calculated as 

Z(i,j) = np + U - l)nd + i j = 1, ... ,nlc , i = 1, ... ,nd 

(3.37) 

(3.38) 

and the index k(i) inEqn. (3.37) indicates that the type k is inherited from the degree of freedom number i. 

The equation for the index l(i, j) in Eqn. (3.38) assumes that the vector of unmeasured displacements 

{ill' U2'···, unIc} is placed after the vector of unknown parameters x in the vector of unknown variables s. 
Thus, the scaling matrix A has np diagonal terms for the output error estimator, and (np + nlc x n~ terms 

for the equation error estimator. Since A is diagonal, it is stored as a vector. 

After computing all scale factors, the scaled unknown variables S are defined as 

S = As (3.39) 

Now, the loss function J for the parameter estimation problem (2.4) is minimized with respect to the new 

optimization variables S. The recursive quadratic programming requires the gradient vector and the Hessian 

matrix forthe scaled variables. Because the transformation in Eqn. (3.39) is simple and linear, the sensitivity 

of the loss function J with respect to S can be simply computed as follows 

(3.40) 

(3.41) 

Since Eqn. (3.41) is a congmenttransformation it preserves the symmetry of V;J(s). Since A is positive defi

nite' the new Hessian matrix ViJ(S) remains positive semi-definite if V;J(s) is positive semi-definite. The 

convergence rate of the optimization algorithm is governed by the eigenvalues of the Hessianmatrix V~(S). 

Therefore, the scaling process can improve the convergence rate and also the condition number of the Hessian 

matrix. The implemented scaling process is efficient because the computational effort required to construct 

and invert the scaling matrix is trivial relative to the cost of a step ofRQP. Also, it needs only an additional 

one dimensional array to store the diagonal terms of the scale matrixA. Based on the numerical simulation, 

we have observed that scaling the variables significantly improves the convergence characteristics and in

creases the robustness of the developed estimators whenever the parameter estimation problem is plagued 

with a scaling problem. 

Other scaling procedures are possible. For example, one might use the same procedure as proposed, but 

updates the scale matrix during the optimization process based on the current values of the unknown variables 

rather than using the initial values. 
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3.6. Identifiability Criterion 

Both of the proposed parameter estimators are members of the class ofleast-square estimators, a subclass 

of maximum-likelihood estimators. Maximum-likelihood estimators treat the parameters as detenninistic, 

unlike Bayesian estimators which treat the parameters as random variables. The assumption of detenninism 

of the parameters introduces a lower bound on the amount of data that maximum-likelihood estimators need 

in order to have any degree of confidence in the parameter estimates. If the amount of data is less than the 

minimum amount required by the estimator, then the confidence interval is essentially infinite, that is, the 

estimated parameters are completely unreliable. As the amount of data increases above the minimum level, 

the confidence in the parameter estimates increases (i.e. the confidence interval shrinks). 

The amount of infonnation contained in the loss function of a least-square estimator is equal to the num

ber of independent squared tenns. This number is often referred to as the dimension of the observation space. 

An estimator is based on a model of the system and is composed of n input -output equations relating the pa

rameters. Whatever experiment we are doing, we run it m times; that is, we provide m different sets of inputs 
to the model and observe the corresponding outputs. Thus, the number of squared tenns in the loss function 

will be n x m; this number represents the amount of infonnation, regardless of what specific data have been 

sampled. On the other hand, the amount of infonnation is clearly equal to the number of data samples taken, 

regardless of what specific loss function one uses to estimate parameters. 

For the linear, least-square estimators, the amount of infonnation available must exceed the number p 

of unknowns we are trying to estimate, that is n x m ~ p . This restriction, which we call the identifiability 

criterion, can also be used for nonlinear estimators (like the ones considered here) by recognizing that they 

are approximately linear in the neighborhood of the estimated parameters. On physical grounds one can also 

argue that the identifiability criterion should be equivalent to saying that the total number of (independent) 

data samples must exceed the number of essential parameters in the model (i.e. the number of parameters 
required to simulate or predict with the model; constitutive parameters in the present context). This intrinsic 

definition would suggest that one cannot create infonnation simply by modifying the loss function which 

is chosen at the convenience of the data analyst. 

For the output error estimator based on Eqn. (3.26), the identifiability criterion can be expressed as fol

lows 

(3.42) 

where nlc is the number of repetitions of the experiment (load cases), n d is the number of equations in the 

model u(x) = u, and np is the number of constitutive parameters. Clearly, nd is also the number of spatial 

sampling points so that nlc x n d represents the total number of data samples. 

For the equation error estimator based on Eqn. (3.5), the identifiability criterion is 

(3.43) 
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where again nlc is the number of repetitions of the experiment (load cases), n d is the number of equations 

in the model K(x)u = f, np is the number of constitutive parameters, and ifd is the number of unmeasured 

responses. In inequality (3.43) the left-hand-side is the amount of data or dimension of the observation space 

and the right-hand-side is the number of optimization variables. The unmeasured responses are unknowns 

in the optimization problem but are not essential to the model in a simulation or prediction context The total 

number of data samples is nlc x n d and the number of essential parameters is np. Noting that 

nd = nd + ifd, inequality (3.43) reduces to inequality (3.42), corroborating the intrinsic lower limit on in

formation. 

Certainly if the identifiability criterion is not satisfied then the parameter estimates are not reliable; how

everthe converse is not true. Satisfaction of the identifiability criterion does not imply that the estimated pa

rameters are reliable. The identifiability criterion (3.42) is a lower bound on data required to estimate parame

ters and one might use it to index the richness of the available inf01mation. One should always check the 

reliability of the estimation by determining how sensitive the estimation is with respect to noise in the mea

surements, the amount of data, the bounding constraints, and other a priori knowledge that has been used 

in the estimating process (e.g. structure geometry and topology). 

The reliability of the estimates (as indexed by their confidence intervals) generally improve as the ratio 

of information to unknown parameters increases above unity, if the estimator is consistent According to the 

identifiability criterion, such an improvement can be achieved either by increasing the number of tests (nlc), 

by increasing the number of measurement locations (nd)' or by decreasing the number of parameters (np). 

The number of unknown parameters can be reduced by grouping the parameters or by using a different mathe

matical model with fewer unknown parameters. One might also try to improve the knowledge of certain pa

rameters by subsidiary testing. However, even if the estimator is consistent there is no guarantee that an indi

vidual parameter estimate will improve by increasing the aggregate amount of information; the data must 

contain sufficient irrformation on that parameter. In some instances, the available load cases cannot sufficient

ly excite certain members of a structure, and thus do not generate adequate information about the parameters 

associated with those members. Sensitivity analysis will expose any parameter that is not adequately repre

sented by the data, and engineering judgement should confirm such an observation. 

3.7. Chapter Summary 

We have presented two algorithms for estimating the constitutive parameters of a finite element model 

that corresponds to areal structural system from measured static response to a given set ofloads. The parame

ter estimation algorithms are based on a priori knowledge of the geometry and topology of the finite element 

model, the applied static forces, and the response of the structure at certaffi locations. The proposed algo

rithms solve a nonlinear constrained optimization problem whose objective function is the norm of eitherthe 

error in nodal force equilibrium (equation error estimator) or the error in output response at the measurement 

locations (output error estimator). The unknown parameters are constrained to lie between lower and upper 

bounds. Each algorithm locates the minimum of its respective loss function by the method of recursive qua

dratic programming. The optimization algorithm exhibits global convergence that is generally robust (i.e. 
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convergence in a few iterations). We have derived the sensitivity matrices necessary for executing recursive 

quadratic programming, we have developed strategies to scale the unknown variables to improve numerical 

conditioning, and we have developed strategies for starting the iteration. Both proposed algorithms can esti

mate constitutive parameters from spatially sparse measurements. They can both be applied to large-scale, 

complex structural systems. While we assume that the response of the system is linear with respect to excita

tion, the parameterization of the structure can be nonlinear. 

The combination of the finite element method and the recursive quadratic programming algorithm 

constitute the kernels of two general purpose parameter estimation programs. Like a finite element analysis 

system, the parameter estimation programs can treat structures with different types of elements. The differ

ences between different structure types have been isolated at the element level. If one can implement an ele

ment in a general purpose finite element system, then one can also implement that element in the parameter 

estimation environment presented here. The parameter estimation algorithms are embedded in an environ

ment capable of executing Monte Carlo simulations, useful both for studying the behavior of the proposed 

estimators. for example with respect to noise in the data, and for studying the identifiability of specific struc
tural systems. 
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CHAPTER FOUR 

Numerical Simulation Studies: Static Case 

The behavior of an algorithm generally depends on the particular problem to which it is applied. While 

one can sometimes derive theoretical estimates of algorithm performance, such estimates are rare, particular

ly when the problem involves random variables. In lieu of such formulae one must either assess algorithm 

performance by observation on specific cases or remain ignorant of the performance. Often, some aspects of 

the qualitative performance of an algorithm are clearly demonstrated through a well chosen example. Usually, 

quantitative estimates cannot be gathered from the study of a single case. In any case, one must know which 

aspects of the problem are worthy of study, and one must be aware that if too many problem aspects are con

sidered important, then the chance of illuminating any of them through a single case study is quite low. 

The most important factors governing the performance of any parameter estimation algorithm are the 

quality and quantity of measured data. To assess the performance of the equation error estimator and the out

put error estimator, we examine their behavior with respect to the amount of noise in the measurements, the 

spatial distribution of measurements, the number of spatial measurements, the number ofload cases, and the 

character of the load cases (specifically, loading patterns). In addition to the extensive study of the effects of 

the physical character of the data and the experiment, we examine the effects of different starting values of the 

unknown parameters used to initiate the iteration. 

The present worle focuses mainly on the behavior of the proposed estimators in the face of noisy data; all 

of the simulations use noisy data. The simulation environment introduced in Section 2.6 is used to control the 

statistical properties of the noise in the measurements and to determine the statistics of the estimations for 

both estimators. Based on quantitative measures of the confidence in the estimates, the general behaviors of 

the algorithms are presented and compared with each other. 

The geometry, topology, and node numbering of a planar bowstring truss are shown inFig. 4.1. The truss 

model (i.e. the actual structure) consists of 25 elements with four different cross sectional areas. The actual 
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Fig. 4.1 Geometric configuration of the bowstring truss 
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Fig. 4.2 Two typical load cases for the bowstring truss 

values of the cross sectional areas are, 18 (in 2) top elements, 15 (in 2
) bottom elements, 12 (in 2) cross ele

ments, and 10 (in 2) vertical elements. The response of the structure is measured under several different static 

load cases. We wish to estimate the constitutive parameters of the structure. We will assume that we know in 

advance that the elements can be grouped into four groups of elements, the elements in each group having the 

same constitutive properties. A truss element has a single parameter. Assuming that Young's modulus is fixed 
for all elements, the parameter to be estimated is the cross sectional area of the members in the group. The 

number of unknown parameters for this problem is four, corresponding to the number of groups. 

In this study we use a pool of 16 different (independent) load cases. Each load set in the study is taken 

randomly from this pool (no load set exceeds 7 load cases). Each load case has non-zero force components 

applied to, at most, three degrees of freedom. Figure 4.2 illustrates two typical load cases. The magnitude of 

nodal loads are chosen so that the maximum nodal displacement is less than 4.5 inches for all load cases. For 

this study, the lower bounds of unknown parameters are assumed to be zero and the upper bounds are five 

times the actual values, unless otherwise is mentioned. The bounding constraints ensure that the parameters 
will not become negative or too large. 

The accuracy of Monte Carlo simulation depends on the sample size (number of trials), which should be 

large enough to establish statistically significant estimates. The statistical indices of the sample population 
converge to the actual statistics of the estimates as the sample size increases. Because a large number of trials 

requires great computational effort, a compromise between accuracy and computational effort is essential. A 

sample is sufficiently large when the sample statistics do not change with additional trials. Figure 4.3 shows 

the typical trend of the loss function (nonnalized with respect to the nonn of measurements for the output 

error estimator and the nonn of applied forces for the equation error estimator), average root quadratic bias, 
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Fig. 4.3 Variations of sample statistical indices with number of trials 
(a) Equation Error Estimator. (b) Output Error Estimator 
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and average standard deviation with the number of trials for both estimators. The statistical indices shown in 

Fig. 4.3, computed based on complete measurements for three load cases with absolute noise with the ampli

tude ,t, are essentially steady after' 100 trials, a conservative value for all experiments done to establish this 

number. In the following, all the statistical indices defined in Section 2.6 are based on a sample of 100 trials. 

4.1. Initial Values for the Unknown Parameters 

The outcome of the recursive quadratic programming algorithm, like any gradient-based method, de

pends on the topography of the loss function. Since we do not generally know where to start the iteration, the 

sensitivity of the algorithm to starting values is important to the general application of the method. Because 

the recursive quadratic programming method is alocal minimization procedure, it will converge to the nearest 

localminllnum. If the loss function has multiple local minima, then the starting point will detennine to which 

of those minlma the algorithm will converge. While we carmot, on mathematical grounds, rule out the possi

bility that the loss function of the present problem has multiple minima, we can examine the issue by studying 

the dependence of the outcome of the iteration on the starting point 

To investigate the sensitivity of the proposed estimators with respect to the initial values for the unknown 

parameters, we define a closeness index CI as follows 

CI = 1 _llxm -£11 
11£11 

(4.1) 

where xin and x are the vectors of initial and actual values of parameters, respectively. The closeness index CI 

measures the distance of the starting point from the actual point, is equal to unity when the initial values are 

equal to the actual values, and takes values less than one for all other starting points. Starting points xin on a 

hypersphere whose center is at x, have the same value of the closeness index. For example, a closeness index 

of zero includes all points on the hypershpere centered at x and having radius equal to the length of the vector 

x (and thus includes the origin). Clearly, the scalar measure CI does not distinguish among points on these 

hyperspheres. Similarly, the scalar measure of bias does not distinguish among estimates on a hypershpere 
centered at x and having a radius equal to the bias. Points with different values of bias must be distinct, but if 

the bias of two estimates is the same, one cannot dismiss the possibiIity that these points are distinct Similar
ly, points with different closeness indices are distinct, but if the closeness index of two points is the same, one 

cannot dismiss the possibility that these points are distinct. 

Figure 4.4 compares the behavior of the equation error estimator and the output error estimator as the 

closeness index varies. Forthis study, we use complete measurements from three load cases (selected from the 
pool of 16) having absolute noise of amplitude A. We examine 7 different closeness indices in the range [0,1], 

and for each of those values of the closeness index we consider four distinct starting points x in. In the figure 

we present the average root quadratic bias RQB and standard deviation SD for the estimates. 

One can observe that the bias and standard deviation are the same for all values of the closeness index for 

both estimators. (Note that the replicated closeness indices plot right on top of each other). Furthermore, we 

observed that all cases converged to the same point (a stronger observation than convergence to different 

points of equal bias). For complete measurements the loss functionforthe equation error estimator is quadrat-
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Fig. 4.4 Variations of the RQB and SD with initial values for complete measurements 
(a) Equation error estimator, (b) Output error estimator 

ie. Hence, uniqueness of the solution point is expected. The loss function of the output error estimator is not 

quadratic, even for complete measurements, so uniqueness of the solution point is not guaranteed. However 

uniqueness did occur for this particular problem, and one might speculate that uniqueness is not exceptional. 

One might expect that the probability that the minimum is unique would diminish for both estimators as 

the amount of information decreases. Multiple minima are certainly possible for sparse measurements from 

few load cases. We examine this possibility by considering the same starting values as before, but using only 

one load case and 5 (out of 21 possible) measurement locations. Figure 4.5 shows that the bias and standard 

deviation remain constant with varying closeness index for both estimators, even with scant information. The 

slight deviation from this constancy notable in the output error estimator is within the tolerance expected for 

the simulation. Again, while one case does not prove uniqueness, it suggests that it may not be exceptional. 

In general, we expect the probability of multiple minima to increase as the amount of available informa

tion (n/c, Ii d) decreases. This probability should be greater for the equation error estimator because its opti

mization space has higher dimensions because the unknowns are augmented by unmeasured displacements. 
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The closeness of a starting point in the space of unknown variables (x, il) for the equation error estimator 

depends strongly on the initial values of parameters, and has a different meanillg than closeness in the space of 

parameters because it computes the initial values for the unmeasured defonnations il using the initial values 

for the unknown parameters xu.. However, since we observed no dependence on starting values for the exam

ple at hand, we simply choose all initial values of the parameters equal to one for the remaining simulations in 

this chapter. 

4.2. Effect of Quality and Quantity of Information 

As mentioned in Chapter 1\vo, the quality of infonnation depends on the amount of random noise in the 

measurements, the spatial distribution of the measurements, and the spatial distribution of the excitation. The 

quantity ofinfonnation is simply the number of measurements times tbe number of load cases. In this section 

we examine influence of quality and quantity of information on the bowstring truss structure. First, we con

sider the effect of noise amplitude (both proportional and absolute). Next, we examine the effect of the num

ber of load cases and their spatial distribution. Finally, we study the effect of the number of measurement 

locations and their spatial distribution. 

According to Eqns. (2.16) and (2.17), we model noise as a unifonnly distributed random variate having 

amplitude). and having absolute or proportional character, respectively. The amplitude of noise is the prima

ry object of study here, however we also consider the effect of noise character throughout, presenting results 

for both absolute and proportional noise. 

The effect o/noise on the equation error estimator. For each specific pattern of noise the topography of 

the loss function is detenninistic and theRQP algorithm is able to locate a single minimum. Since thenoise is a 

random variable the location oftbe minimum in the space of parameters is also a random variable. Although 

we generally do not know the specific probability distribution function for the location of the minimum, the 

distribution can be determined numerically through simulation, and we can observe some qualitative features 

of this distribution. 

The probability density function of the estimated parameters is a delta function at the actual parameters 

for zero noise amplitude. For all amplitudes of noise , the minimum is distributed within a closed region which 

we bound from below. As the noise increases, tbe region containing the local minima initially grows, reaches 

a maximum size, and tben shrinks to a point (the lower bound point) in the limit. The peak of the probability 

density function shifts toward tbe origin as the noise amplitude increases. Thus, the probability that some of 

the parameters are less than a fixed number increases as the amplitude of the noise increases. Physically, the 

tendency to estimate small values for the parameters at large noise amplitudes indicates that in the face of 

great uncertainty the equation error estimator will generate a flexible structure. 

Figure 4.6 shows the variations of average root quadratic bias (RQB), standard deviation (SD), root mean 

squared error (RMS), and identification error (AlE) with the amplitude of noise forthe equation error estimator. 

Forthe equation error estimator, the root quadratic bias is anondecreasingfunctionofnoise amplitude which 

saturates for large amplitudes of noise. As the amount of noise increases, the standard deviation initially in

creases, then becomes stationary, and finally decays. To help explain these trends we plot values of the esti-
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mated cross section areas against the amplitude of absolute noise in Fig. 4.7. One can observe that the esti

mates computed by the equation error estimator decay to small values as the amplitude of noise increases. 

Based on Eqn. (2.19), when the vector of estimated parameters x converges to zero, theRQB value saturates 

near l/np which for the four parameter bowstring truss is 0.25. As the estimates converge to the region in the 

neighborhood of the lower bound constraints, the scatter of the estimates is confined by the bounds and the 

standard deviation of the estimates becomes small. According to Eqn. (2.23), if SD is small thenRMS follows 

the trend of RQB and is almost equal to it The AlE, by definition, behaves in a manner similar to RMS. 

One can observe from Fig. 4.6 that for the equation error estimator, when the amplitude of noise is less 

than 0.03 inches for the absolute noise and 2% for the proportional error, the root quadratic bias is smaller than 

the standard deviation. For greater values of noise the opposite is true. It is desirable for an estimator to have 

smaller bias than standard deviation because it avoids the unfortunate possibility of making a precise (small 

standard deviation) estimate of low accuracy (large bias). In such a case, the standard deviation gives the 

wrong impression of the quality of the estimate. For sufficiently small amounts of noise, the equation error 

estimator is desirable. The closeness of the bias and standard deviation of the estimates indicates that the clus-
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ter of estimates contains the point corresponding to the actual parameters and that the computed estimates are 

in the neighborhood of that point. Let us introduce an index for the amplitude of noise, called the desirability 

bound Ad' When the noise amplitude is less than Ad' the bias of the estimates is less than their standard devi

ation and the estimator has a desirable behavior. Thus, for complete measurements, the equation error estima

tor has a desirability bound about 0.03 inches forthe absolute noise and 2% for the proportional noise for the 

bowstring truss. 

The effect of noise on the output error estimator. Like the equation error estimator, for noise-free data 

the probability that the minimum is equal to the actual parameters is unity and the problem collapses to a 

deterministic one for the output error estimator. For sufficiently small amplitudes of noise, the minimum is 

distributed within a closed region in the neighborllood of the actual parameters. As the noise increases, the 

measure (size) of the region grows. For sufficiently large amplitudes of the noi.se, the region becomes open. 

Specifically, it becomes unbounded in the direction of at least one of the parameters. Because we bound the 

parameters from below, the region containing the minimum is a cone. When the region passes from closed to 

open, the tail of the probability density function of the estimated parameters extends to infinite positive val

ues. As the noise amplitude increases the mass under the tail of the probability density function, which indi

cates the probability that at least one of the estimated parameters is large, increases and becomes steady. The 

probability that at least one of the parameters is smaller than a fixed small number also increases and becomes 

steady as the amplitude of the noise increases. ThlllS, for large amplitudes of noise, local minima tend to occur 

at the boundaries of the feasible region, and not inside. Physically, the tendency to estimate either large or 

small values for the parameters at large noise amplitudes indicates that, in the face of great uncertainty the 

output error estimator will generate either a very stiff or a very flexible structure; the probability of a moder

ately stiff structure tends to zero. 

The probability density function of the estimated parameters is a delta function at the actual parameters 

fiar zero noise amplitude. In the limit as noise becomes large, the probability density concentrates near the 

boundaries of the feasible region. These properties of the probability density function are important to under

standing many of the asymptotic trends observable in the present study. 

While itis most instructive to consider the topography of the loss function as random, some insight can be 

gained by considering the detenninistic topography of the loss function developed by considering a single, 

fixed noise vector. For small amounts of noise the basin of attraction is similar to a well conditioned quadratic 

function. The RQP algorithm, like most gradient-based algorithms, has no difficulty locating the minimum in 

a few iterations. As the noise amplitude increases the probability of occurrence of a distorted basin of attrac

tion increases. For certain noise vectors, the minimum will be located at large values of some of the parame

ters. The topography of the loss function for these cases is invariably characterized by a long, narrow ravine. 

Physically, the presence of the ravine represents insensitivity of the loss function to the parameters on the 

major axes of the ravine. This insensitivity is caused by a dearth of infonnation or, equivalently, because the 

noise has swamped out the true information. For large enough noise amplitudes all good infonnation will be 

lost and the estimated parameters will be totally unreliable, but not all measurements are equally sensitive and 

thus some data are swamped earlier than others. For partially swamped data some of the parameters can still 
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be reliably estimated while others carmot. Most of the statistics reported here do not try to make that distinc

tion. We note that the RQP algorithm does not have difficulty locating minima that occur at the remote end of a 

narrow ravine. 

Figure 4.8 presents the variations of the root quadratic bias and standard deviation of parameters esti

mated based on complete measurements from three different load cases with respect to the amplitude of the 

noise for different upper bounds. One can obselVe that by increasing the noise, root quadratic bias and stan

dard deviation gradually increase and finally saturate. The kinks in the graph specially for the standard devi

ation are due to the limited size of the Monte Carlo simulation. Since the region containing local minima is 

closed for small amounts of noise, the root quadratic bias and standard deviation are not affected by the values 

of the upper bounds at these noise levels. The saturation level for the root quadratic bias and the standard 

deviation is a function of the specified upper bounds. While the proportion of bound cases remains essentially 

fixed for large amplitudes of noise, their mean average increases as the upper bound grows thereby increasing 

the saturation level. Since the saturation level increases as the upper bounds on the parameters increase, one 

would expect that the statistical indices of the parameters estimated by the output error estimator without 
upper bound constraints do not saturate. 

Figures 4.9 (a,b) show the behavior of the output error estimator for absolute noise, and (c,d) for propor

tional noise when the upper bound is five times the actual values. Figure 4.9 (b) shows the same thing as (a), 

but for a larger range of noise; likewise (d) shows the same thing as (c), but for a larger range of noise. ObselVe 

that the AlE and RMS show the same trend as bias and standard deviation. By increasing the amount of noise, 

RMS initially follows the trend of SD and then follows the trend of RQB. Like the equation error estimator, the 

root quadratic bias is less than the standard deviation for a certain range of noise amplitude, the so-called 

desirability range. However, the desirability range is much larger for the output error estimator than it is for 

the equation error estimator. Unlike the equation error estimator, the standard deviation of the output error 
estimator does not decay for larger noise amplitudes. Scatteredness fails to persist in the equation error esti

mator because all the estimated parameters tend to small values at large noise amplitudes. In the output error 

estimator scatteredness persists because the estimated parameters distribute between large and small values. 
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The parameters (cross-section~ areas) estimated by OEE for different upper bounds are plotted against 

the amplitude of absolute noise in Fig. 4.10. One can observe that as noise amplitude increases the values of 

the estimated parameters increase and saturate, unlike the parameters estimated by the equation error estima

tor which converge to small values (as showninFig. 4.7). Figure 4.10 shows the variation of the mean average 

of the sample of estimates for each parameter with respect to noise amplitude. Therefore, the trends observed 

inFig. 4.10 reflect the variations of the distributions of the estimated parameters with respect to the amplitude 

of noise. To iIlustratehowthe distributions of the estimated parameters change withnoise amplitude, we pres

ent in Fig. 4.11 the probabilities that the estimate of each parameter x becomes equal to its upper bound 

P(x = X),islessthanitsupperboundandisgreaterthanthe30%ofitsactualvalueP(03x < x < X),andis 

smaller than the 30% of its actual value P(x S 03X), for different amounts of noise when the upper bounds are 

five times the actual values. The probability of an event is taken to be the ratio of trials associated with that 

event. One can observe that for smaIl amounts of noise, P( 0.3X < x < X) is equal to one for all parameters, 

indicating that the region containing the estimates is closed and is inside the feasible region in the neighbor-
"-

hood of the actual parameters. As the noise increases, P( 03x < x < X) decreases to small values and simul-

45r---~-----'----~-----' 

30 

0.0 0.5 

Amplitude of Noise (in) 

1.0 

100,----r--,.---:::::===::J 

80 

60 

o~ ____ ~ __ ~~ __ ~ ____ ~ 
o 5 10 15 20 

Amplitude of Noise (in) 

(a) 

(b) 

45 ..-------...-----,------r-----, 

- Average Identification Error 

- - - Root Quadratic Bias 

- - Standard Deviation 
30 
~ Root Mean Squared Error 

15 

o 10 20 

Amplitude of Noise (%) 

100 

80 

60 

40 

---'" 

., : ... ---.. ----------.. :.--:.::-=-~.~-... 20 
/;. .... 

o ~_-'--_-'--_-'---_-'-_--' (d) 
o 100 200 300 400 500 

Amplitude of Noise (%) 

Fig. 4.9 Variations of tbe statistical indices with noise amplitude for OEE 
(a, b) absolute noise, (c, d) proportional noise 

45 



taneously P(x = X) and P(x ::s; O.3X) increase and become steady. The trends in Fig. 4.11 indicate that for 

large amounts of noise, the estimated parameters are distributed near the boundaries of the feasible region. 
Therefore, if the lower bounds are set to zero, the mean average of each estimated parameter converges to a 

saturation limit equal to a ratio of its upper bound, and this ratio is equal to the probability that a parameter 

becomes equal to its upper bound. For a well posed parameter estimation problem, P(x = X) is the same 

value for all parameters and is aboutO.5. If one does not prescribe upper bounds for the parameters, equivalent 

to setting x to infinity, one will not observe the saturation phenomena for the trends in Fig. 4.10 and conse

quently, in Fig. 4.8. Also, in Fig. 4.11 one can observe that the event of converging to the upper bound starts at 

smaller amounts of noise than the event of converging to the lower bounds. 

A parameter estimate starts to grow when the noise swamps out the information needed to estimate that 

parameter. The rate of growth of the saturating parameters can be fast for the parameters most poorly repre
sented in the data (i.e. the loss function is insensitive to those parameters). In the present case, as shown in Fig. 

4.10, estimated cross-sectional areas of the vertical elements are most prone to saturation because they are the 
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least excited by the loadings. Also, the phenomenon of converging to upper bounds forthe group of vertical 

elements starts at the smaller amounts of noise than other groups of elements, as shown in Fig. 4.11 

Figure 4.12 shows the variation of the probability that all of the estimated parameters are less than their 

upper bounds P(x < x) with respect to the noise ampIimde for different values of upper bounds. When the 

noise is small, P(x < x) is unity, indicating that all the local minima are located in the interior of the feasible 

region. As noise ampli.tude increases, P(x < x) decreases. We have previously observed (Figs. 4.8 through 

4.11) that as noise increases, the estimates converge in probability to the boundaries of the feasible region. For 

large amplitudes of noise, cases with x s x correspond to cases in which all of the parameters are small be

cause the probability of there being an intennediate point is small. Thus, the probability of estimating all 

small parameters asymptotically approaches zero as the noise amplitude increases. Figure 4.12 also suggests 

that, for a fixed amount of noise, P(x < x) increases as the upper bounds increase, indicating that some of the 

estimated parameters and their corresponding local minima which are on the boundaries or outside the feasi

bIe region, come inside the feasible region by increasing the size of the feasible region. 

Both estimators behave similarly for both absolute and proporti.onal noise. Both estimators are biased and 

their RQB values increase as the amplitude of noise increases. Although the bowstring truss responds linearly 

with excitation and the parameterization of the stiffness matrix is linear, the bias of the estimates varies non

linearly with noise amplitude, even for complete measurements. Forthe equation error estimator the nonlin

earity with respect to noise is due to the presence of products of parameters and noise in the loss function. For 
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the output error estimator the nonlinearity is due to the nonlinearity of the loss function with respect to the 

parameters. Incompleteness of measurements adds yet another source of nonlinearity of estimates with re

spect to noise. 

The output error estimator has an acceptable amount of bias for a wider range of noise amplitude than 

does the equation error estimator. For average root quadratic bias not exceeding 15%, the OBE can deal with 

noise amplitude about 2.0 inches, while EBE requires measurements with the amplitude of noise about 0.15 

inches for the bowstring truss with complete measurements. The main reason for the low biasedness of OBE is 

that the error function for OEE has an additive noise vector which is independent from the parameters. The 

equation error estimator has a noise vector which is multiplied by the stiffness matrix and is not independent 

from the parameters. Consequently, the output error estimator satisfies the main assumption for the unbiased 

least squares estimators, that is, the independence of the noise vector from the parameters (Trenkler 1981 and 

Goodwin 1984). The equation error estimator becomes a low bias estimator when noise is added to the vector 

of applied forces because, in this case, noise is independent from the parameters. 

Effect of number of measurements. Confidence in the estimated parameters depends strongly on the 
amount of data The identifiability criterion (3.42) gives a lower bound for the amount of information for the 

proposed estimators. For both estimation algorithms, the amount of information is the product of the number 

of load cases and the number of measured degrees of freedom, (nlc x n d). In this section, we study the be

havior of the proposed estimators as nlc and n d vary. 

Figures 4.13 and 4.14 show the variation of the root quadratic bias and standard deviation with the num

ber of load cases. In these figures, displacements were measured at all degrees of freedom and an absolute 

noise of 0.02 inches for BEE and 0.1 inches for OBE were applied to the displacements. For each value of nlc, 

we examine four different sets ofload cases, taken from the pool of sixteen, to assess the influence of loading 

pattern. The number of load cases nlc provides a quantitative measure of the richness ofloading. Considering 

four different loading patterns adds a qualitative measure for the information content ofloading. The statistics 

corresponding to each load set are shown as triangles in Figs. 4.13 and 4.14. Note that these load cases were 

chosen at random; no attempt was made to select loading patterns having better statistics. 
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The bowstring truss has 21 degrees of freedom and four unknown parameters. Therefore, for complete 

measurements, one load case is adequate to satisfy identifiability criterion (3.42). As long as load cases are 

added to the load set, the standard deviation of the estimates decreases. The decrement of the scatter of the 

estimates with the increment in the number of load cases is a general trend for both equation error and output 

error estimators. However, as the number of load cases increases, the RQB value remains constant for the 

equation error estimator, as shown in Fig. 4.13, and decreases for the output error estimator, as shown in Fig. 

4.14. Also, one can observe from Figs. 4.13 and 4.14 that for small n[c values, the statistics of the estimates 

depend on the pattern of loading, especiaUy for the output error estimator, for large nlc values, the statistical 

indices are independent of the loading patterns. 

Figures 4.15 and 4.16 compare the behavior of the proposed estimators as the number ofload cases and 

amplitude of noise vary. In these figures, the RQB values are plotted for the loading patterns which have the 

least bias for a given nlc and noise amplitude and the SD values are plotted for the loading patterns with the 

largest standard deviation. The root quadratic bias remains smaller than the standard deviation for OEE. One 
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Root Quadratic Bias Standard Deviation 

Fig. 4.15 Variations of the RQB and SD with number of load cases 
and amplitude of noise for EEE 

can observe the same tendency in the EEE when the amplitude of the noise is adequately small. As the noise 

amplitude increases, the bias value becomes greater than the SD value for EEE. It is evident that the scatter of 

the estimates decreases as the number ofload cases increases. Figure 4.15 indicates that the bias of the esti

mates does not change with increasing nlc for the equation error estimator. For the output error estimator, the 

bias decreases as the number of load cases increases. In other words, as nlc increases the accuracy and preci

sion of the estimates computed by OEE increase and the precision of the estimates computed by EEE in

creases, but their accuracy does not change. Therefore, the output error estimator is a consistent estimator but 

the equation error estimator is not For the same number of load cases and the same amplitude of noise, the 

output error estimator has smaller bias than the equation error estimator. Also, one can infer from Eqn. (2.23) 

and the trends in Figs. 4.15 and 4.16 that for both estimators, the root mean squared error RMS and similarly 

average identification error AlE decrease as the number ofload cases increases. However, RMS andAlE are not 

pure indicators for the accuracy of the estimates. 

Another way to increase the amount of information for the proposed estimators is to increase the number 

of measured degrees offreedom nd' Both estimation algorithms are applicable to problems with sparse mea-
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surements. The maximum value of n d for the bowstring truss is 21. Figures 4.17 to 4.20 show the variations of 

the root quadratic bias and standard deviation with the number of measured displacements n d for different 

amplitudes of noise A.. In these figures, the estimates are computed forthree load cases. Based on the identifi

ability criterion, the minimum value of nd is 2 to have (nlc x nd)greaterthan np , which is equal to 4. The 

abscissa values for Figs. 4.17 to 4.20 range from 2 to 21. To study the effect of the spatial distribution of the 

measurement locations on the estimation errors, we consider four different patterns of measurement for each 

specific value of nd • 

It is evident from Figs. 4.17 through 4.20 that the standard deviation of the estimates decreases as the 

number of measurements increases. This trend is observed for both estimators and is independent from the 

amount of noise. One can also observe that, for both estimators, the sensitivity of the estimation errors to the 

pattern of measurements reduces as the amplitude of noise decreases or as the number of measured displace

ments increases. The bias and scatter of the estimates computed by both estimators increase as the number of 
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measurements approaches its minimum value. This increase is more significant when the amplitude of noise 

is large. In general, for equation error estimator, the root quadratic bias does not decrease as n d increases. As 

shown in Fig. 4.17, by increasing the number of measurements, the bias of estimates does not change when 

the noise amplitude is small compared to the desirability bound, Ad equal to 0.03 inches, forEEE (for complete 

measurements). However, as shown in Fig. 4.18, the root quadratic bias increases as nd increases for larger 

amplitudes of noise. This trend indicates that for the equation error estimator, the estimates based on a few 

noisy measurements may have better accuracy than the estimates computed for complete measurements. The 

bias of estimates computed by the output error estimator decreases as the number of measured degrees of 

freedom increases and this trend is independent of the amount of noise, as shown in Figs. 4.19 and 4.20. Also, 

standard deviation of the estimates computed by DEE is larger than their bias for different numbers of mea

surements. For the same number of measurements and amplitude of noise, the output error estimator has 

smaller bias than the equation error estimator. 
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We have observed in this section that the precision of the estimates and the effectiveness of the estimators 

increases as the number of measurements (nlc x n J increases. For the output error estimator, the bias and 

scatter of its estimates decrease (or in other words, their accuracy and precision increase) as the amount of 

information increases. Besides, the estimates computed by OEE have standard deviation less than bias. There

fore, the output error estimator is a desirable, consistent estimator. Since the bias of the equation error estima

tor does not decrease as the amount of measurements increases, EEE is not a consistent estimator. However, 

for small amounts of noise, BEE is a desirable estimator. In general, for a :fixed amount of information the 

output error estimator has less bias than the equation error estimator. We should mention that all characteris

tics of the proposed estimators are observed for the estimation problems in which noise is added to the re

sponse of the structure. When the applied forces are noisy, the EEE should exhibit characteristics similar to 
those of the OEE with noisy response, and vice versa. The equation error estimator would be a desirable, low 
bias, consistent estimator when there is no noise in measurements and random noise is added to the applied 
forces. 

4.3. Chapter Summary 

We have used Monte Carlo simulation to study the behavior of the proposed estimators using a bowstring 

truss as the model problem. We have observed from the numerical simulation studies that the recursive qua

dratic programming algorithms based on Gauss-Newton and Han-Powell approximations of the Hessian are 

robust and globally convergent Also, we observed that bounding the unknown parameters significantly in
creases the reliability of the proposed estimators and reduces the sensitivity of the algorithms to the initial 

values for the unknown parameters. 

In the presence of noise in the measurements, both equation error and output error estimators are biased 
and their biases increase with the amplitude of noise and eventually saturate. For practical amounts of noise, 

the output error estimator exhibits smaller bias than the equation error estimator. The output error estimator 

has a standard deviation larger than bias for a greater range of noise than the equation error estimator, but both 

estimators have this desirable feature for suitably small amounts of noise. For large amounts of noise the 

equation error estimator suggests high precision (small standard deviation) but has low accuracy (large bias). 

The output error estimator predicts low precision when the accuracy is low for a large range of noise. By in

creasing the amount of information, both estimators become more effective, that is, the standard deviations of 

their estimates decrease. The precision and accuracy of the estimates computed by the output error estimator 

increase as the amount of information increases. However, the bias of the equation error estimator does not 

decrease as more data become available. 

The output error estimator is a low bias, desirable, consistent estimator. The equation error estimator is 

not consistent, but is desirable for sufficiently small noise levels. In the simulations presented here we have 

added noise to the response measurements and not to the excitation. Whennoise is added to the applied forces 

but not to the measurements, one would expect the equation error estimator to behave consistently with low 

bias. 

53 





CHAI.PTER FIVE 

Estimation of Constitutive Parameters from Modal Data 

System identification and parameter estimation from modal data have received considerable attention 

in structural engineering and structural mechanics over the last three decades. Identification techniques us

ing modal data are particularly popular due to the existence of wen-established experimental methods for 

measuring mode shapes and natural frequencies of structural systems (Klosterman 1971, Ibrahim and Mi

kulcik 1977, Ewins 1984). 

In parameter estimation one endeavors to find the values of the parameters of a mathematical model 

such that the model accurately represents the measured modes of the real structure. Methods for parameter 

estimation with modal data generally fall into one of three main categories that reflect the criterion used to 

establish equivalence between the model and the structure: (1) methods that attempt to satisfy the eigenva

lue equation directly, (2) methods that minimize the difference between computed and measured eigenpairs, 

and (3) methods that attemptto satisfy the modal orthogonality relationships. Each method is furtherdistin

guished by the parameterization used to construct the model. There are two main approaches to structure 

parameterization: (1) use of the system stiffness and mass coefficients as parameters, and (2) use of parame

terized constitutive models. In the former parameterization the parameters are related to nodal quantities 

whereas in the latter the parameters are related to element quantities. Some of the earliestparameterestima

!ion techniques required a complete set of modes sampled at all degrees of freedom of the model. These 

methods gave way to techniques that could make estimates based on an incomplete set of modes with com

plete spatial sampling. A modem view of the problem is that one must be able to obtain estimates from an 

incomplete mode set that is sparsely sampled in the spatial domain. We give a brief summary of the main 

contributions to modal identification in structural mechanics in the foHowing paragraphs. 

One of the earliest methods for model improvement using modal data was introduced by Gravitz (1958) 

and modified by Rodden (1967) and McGrew (1969). They first assumed that the model mass matrix was 

known and computed a flexibility matrix based on a complete set of measured modes. The measured mode 

shapes were then modified to satisfy orthogonality relations with respect to the given mass and computed 

flexibility matrices. Chen and Wada (1975) used a matrix perturbation technique to establish a criterion for 

structural-test correlation. They used analytical and test measured eigenpairs and external forcing function 

to compute the modified displacement vector and based on that a criterion for verifying the analytical mod

el. Beliveau (1976) used eigenpairperturbations within a Bayesian framework to determine members of the 

structural matrices. Baruch and Bar -Itzhack (1978) presented a method to find the stiffness matrix by mini

mizing the error in the eigenvalue equation subjected to the orthogonality condition. They also assumed the 
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model mass matrix was known and altered the measured mode shapes to be orthogonal to the model mass 
matrix. From 1978 to 1982 Baruch published several works to improve his method by using a weighted nonn 

of the error, adjusting the flexibility matrix instead of the stiffness matrix, using the given mass matrix only 

to correct rigid body modes to be orthogonal, and allowing adjustments in the mass matrix to minimize error 

in the eigenvalue equation. Wei (1980) also improved the method of Baruch (1978) and found a closed-fonn 

solution for the stiffness matrix by allowing alteration of either the mass matrix, the mode shapes, or both. In 

1978 Berman and Flannelly published a method which considered the measured mode shapes to be correct 

and modified the mass and stiffness matrices to satisfy orthogonality in a least squares sense. This method 

could operate with a truncated set of modes but still required mode vectors to be completely sampled in 

space. Berman (1979) improved his method by minimizing the error in the eigenvalue equation subject to 

orthogonality constraints, like Baruch (1978). Berman and Nagy (1983) presented a method for improving 
the model mass and stiffness matrices from natural frequencies and sparsely sampled mode shapes. They 

assumed that the finite element model adequately represented the structure and used the initial structural 

matrices to compute modal displacements at the unmeasured degrees of freedom from the measured ones in 

the mode vectors. The adjusted mass and stiffness matrices did not necessarily have the same profiles as the 
original matrices. 

Chen and Garba (1980) proposed a matrix perturbation technique to estimate the parameters of a finite 

element model of a mechanical system. They modified the eigenpairs by assuming the changes in the pa

rameters were small. Further, they assumed the difference between the correct and the analytical mass and 

stiffness matrices were small. The method required the sensitivity of the eigenvalues and eigenvectors with 

respect to the unknown parameters. They approximately computed the derivatives of the eigenpairs with 

respect to the unknown parameters using matrix perturbation technique. Chen et al. (1983) improved the 

method of Berman (1979) using a matrix perturbation technique. They used the measured eigenpairs and 

assumed that the differences between the actual and initial mass and stiffness matrices were small. Luck and 

Mitchel (1983) and Chen and Fub (1984) used the pseudoinverse of the measured mode shape matrix to com
pute mass and stiffness matrices from a truncated set of measured modes. They assumed the measured ei

genpairs were exact Zak (1983) proposed an eigenvector updating method which used to modified mass and 

stiffness matrices of a finite element model of a structure. He assumed that the difference between the struc
tural matrices of the initial finite element model and the modified matrices were small and some eigenpairs 

were available. He further assumed that the number of measured degrees of freedom for each mode shape 

was equal to the number of mode shapes (a square matrix of mode shapes). 

In 1985 Kabe published a method which preserved the connectivity condition; zero members of the 

mass and stiffness matrices were forced to remain zero during the modification process. Because of the need 

to solve eigenvalue problems, the method was not suitable for complex structures with many parameters. 

Zimoch (1987) computed the sensitivity matrices of the spectral matrix and eigenvectors of a linear mechan

ical system with respect to small changes in the members of the structural matrices of a finite element model 

of the system. The method required the complete, noise free set of eigenpairs of the original system. Kam

mer (1988) improved Kabe's method and presented a stiffness matrix modification method based on projec-
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tionmatrix theory. Baruh and Khatri (1988) presented a method based on unitary transformations of the pos

tulated modal coordinates for identification of eigenpairs of vibrating systems. They estimated stiffness 

properties by assuming that the mass properties were known. Torkamani and Ahmadi (1988) studied the 

effects of non-structural elements on the natural frequencies, mode shapes and stiffness of a tall building 

using ambient response. The method required modal data and assumed that the stiffness matrix of a finite 

element model of the structure comprised of two matrices. A known stiffness matrix of structural elements 

and an unknown matrix of non-structural elements which were estimated. Kabe (1990) introduced a method 

to improve the measured modes. He assumed the mass matrix was known and minimized the difference 

between the measured and computed mode shapes subject to the orthogonality condition. 

The idea of using element constitutive parameters to reduce the number of unknowns inmodel building 
techniques has been used by several researchers (Wang and Chu 1983, Sanayei and Nelson 1986, Flanigan 
1988, Lim 1990, and Hjelmstad, et al. 1990). Lim (1990) used submatrix techniques and measured modal 

data to correct a stiffness matrix. He assumed the mass matrix was known, and grouped the elements with 

the same stiffuess properties. To overcome the problem of sparsely measured mode shapes he suggested to 

use either computed modal responses from the initial finite element model or to reduce the model size by 

static condensation. HjeImstad, et al. (1990) and Alcoe (1992) presented methods to estimate elemental 

mass and stiffness parameters by satisfying orthogonality in a least squares sense. They condensed out the 

modal displacements at the unmeasured degrees of freedom. 

A study by Janter and Sas (1990) on model-updating techniques showed that the mass and stiffness ma

trices should be updated simultaneously and that increasing the identification accuracy within a specific 

band may decreases the accuracy elsewhere. They also recommend that the modal mass changes should be 

carefully evaluated. Weaver, Smith and Beatti (1991) showed that the stiffness adjustmenttechniques based 

on measured modal data were related to quasi-Newton methods in nonlinear optimization. Baruh and Boka 

(1992) discussed issues related to implementation of modal parameter identification methods to real-time 

problems. They investigated the accuracy level of using the discrete models for continuous systems. Glaser, 
et al. (1992) used the generalized least squares method to revise mass and stiffness matrices and proposed 

three techniques to construct the covariance matrix for the generalized least squares method. 

In this chapter we propose two parameter estimation methods to determine elemental constitutive pa
rameters of a finite element model of a real structure using measured modal data. We assume that the topolo

gy, and geometry of the finite element model are known and that the elemental constitutive parameters are 

grouped together. First, we assume that the mass matrix is known and develop the equation error estimator 

and the output error estimator. Although this assumption is rather restrictive, it has considerable practical 
importance because engineers generally have more confidence in their knowledge of the inertia of a struc

ture than its constitutive properties. Then, we consider the general case, where both mass and stiffness pa

rameters are unknown, and propose an equation error estimator. 

When the mass matrix is known, our approach to estimate the stiffness parameters is simple. First, we 

modify the eigenvalue equation to have a form similarto the static equilibrium equation. Then, we apply the 

same nonlinear constrained optimization technique used to solve the static problem. Both proposed meth-
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ods can deal with a set of truncated modes whose mode shapes are sparsely sampled, both are robustly con
vergent, and both are amenable to large complex structures. 

5.1. Model Equation for Free Vibration 

In undamped free vibration a structure responds in modes governed by the following discrete eigen

value problem 

i = 1, ... ,nmd (5.1) 

where nmd is the number of measured modes, the eigenvalue Ai is the square of the ith angular frequency, 

ui(nd x 1) is the ith mode shape (eigenvector), K(nd x nd) is the stiffness matrix, x is the vector of un
known constitutive parameters with dimension np ' matrix M(nd x nd) is the mass matrix, and nd is the 

number of degrees of freedom. The eigenvalue problem has n d eigenpairs (A, u) for a positive definite M 

and a positive semi -definiteK matrix. One will generally not have a complete set of measured eigenpairs (Ai' 

ui ), but rather a subset of them numbering nmd<nd, which might not contain all the modes between the 

largest and the smallest measured frequencies. We have assumed that the mass matrix is completely known 
and only the stiffness parameters of the structure need to be estimated. 

One of the main difficulties in estimating the unknown parameters from modal data is that the mode 

shapes ui are often sparsely sampled in space. There are several reasons why sparsity of measurement loca

tions is not exceptional. First, there may be regions of the structure that are inaccessible because they lie on 

the interior of a solid domain. Second, certain types of measurements may be impractical to make because of 

technological limitations, e.g. nodal rotations. Third, the number of sensors may be limited due to their cost. 

Even if one measures displacements at all of the degrees of freedom of amodel, these measurements become 

sparse if we subdivide the mesh of the model. Hence, completeness of measurements is, at best, an illusion. 

To overcome the problem of incomplete measurements, we partition the mode shape vector into two 

parts as follows 

u, = [~l "u,(Uj) (5.2) 

where uin d Xl) and Ui(ifd xl) are the vectors of measured and unmeasured modal displacements, re

spectivelyand nd and ifd are the number of measured and unmeasured degrees of freedom, respectively. 

The notation indicates that the total displacement vector u is a function of the unknown displacements. For 

practical purposes we assume that this partitioning is fixed for all measured modes. 

The discrete governing equation of the fmite element model of a structure for undamped free vibration is 

given in Eqn. (5.1) which we refer to as the model equation. Now, we partition the known mass matrix of the 

model into two matrices: a matrix corresponding to the measured displacements M(nd x nd) and a matrix 

corresponding to the unmeasured displacements M(n d X ifd) and rewrite Eqn. (5.1) based on the partition 

in Eqn. (5.2) as follows 
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i = 1, ... ,nnui (S.3) 

In the right hand side ofEqn. (S .3) the firstterm is a completely known vector and the second term contains 

the unknown vector ui' Now, we rearrange Eqn. (S.3) as follows 

(S.4) 

and define a modified stiffness matrix K i • (x) and a force vector Ii * as follows 

(S.5) 

By substituting definitions (S.S) into Eqn. (S.4) the modified model equation becomes 

i = 1, ... ,nmd (S.6) 

which is almostthe same as the governing equation of a structure under nmd static load cases Eqn. (3.1). The 

only difference between the modified model equation and static equilibrium equation is in definition of the 

stiffness matrix. In Eqn. (S .6) the modified stiffness matrix is a function of the eigenvalues, changing for 

each mode. The stiffness matrix for the static problem is fixed for all load cases. All the operations used to 

derive Eqn. (S.6) fromEqn. (S.l) are reversible. If one finds a set of parameters x that satisfies the modified 

model equation (S.6), these parameters also satisfy the eigenvalue problem (S.l). From now on we refer to 

Eqn. (S.6) as the model equation for an undamped free-vibration experiment 

In the following sections, we develop two methods for estimating the constitutive parameters of a finite 
element model of a real structure from measured modal response. One method minimizes the error in modal 

force equilibrium (equation error estimator), while the other minllnizes the differences in modal displace

ments (output error estimator). We first establish appropriate error measures with which we construct the 

loss functions. We then establish the estimation algorithms by minimizing the loss function for the model 

equation (S.6) subject to bounding constraints on the parameters. We explicitly formulate the gradients and 

Hessians required by the RQP algorithm. 

5.2. The Equation Error Estimator (EEE) 

For the proposed equation error estimator, we define the error function ei based on the residual force 

vector for mode i as follows 

i = 1, ... ,nmd (S.7) 

where x is the vector of unknown elemental constitutive parameters. The error function represents the 

amount of residual developed by failure to satisfy the model equation. Let ll= (U1' "2' .... , "nmd) be the 
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vector of unmeasured modal degrees of freedom for all measured modes. Based on the general form of the 

estimation problem (2.4), the nonlinear constrained optimization problem for the proposed equation error 

estimator for modal parameter estimation can be stated as 

minimize 
(x,1l) 

subject to 

nmd 

J(x,U) = t L ai II Ki * (x)ui(ui) - .f 112 
i=l (5.8) 

where ~ and x are the prescribed vectors of lower and upper bounds of the unknown constitutive parame

ters, respectively and a i is the weight associated to the ith mode which reflects the degree of confidence to 

the ith measured mode. The proposed estimation problem (5.8) tries to satisfy the model equation in a least

squares sense. The proposed equation error estimator simultaneously estimates the unknown constitutive 

parameters and the unmeasured displacements for all measured modes. By adding simple bounding 

constraints on the unknown constitutive parameters we eliminate the possibility of converging to infeasible 

solutions. The recursive quadratic programming RQP, explained in Chapter Two and in more detail in Ap
pendix A, is employed to solve the optimization problem (5.8). The RQP algorithm requires the gradient 
vector and the Hessian matrix of the loss function J with respect to unknown variables (x, u). These sensiti

vities are computed in the following section. 

Sensitivity of the Loss Function 

The loss function of the proposed modal parameter estimation problem (5.8) is similar to the loss func

tion of the equation error estimator for the static problem, given by Eqn. (3.5). Consequently, the sensitivi

ties of both loss functions with respect to the unknown variables (x, u) are similar. The gradient of the loss 

function J in problem (5.8), with respect to unknown variables (x, il), can be computed using Eqn. (2.10), 

replacingNwith nmd. The gradient matrix of the error function with respect to unknown variables (x, u) can 

be partitioned as 

(5.9) 

In many cases the stiffness matrixK(x) and consequently the modified stiffness matrixKi • (x) are linear with 

respect to the unknown constitutive parameters x. However, there are important cases, such as the stiffness 
matrix of a Timoshenko beam element, in which the parameterization is nonlinear. To maintain the requisite 

generality, we will assume that the error function is nonlinear with respect to the unknown constitutive pa

rameters, and thus the gradient, V xei(x, ui)' is also a nonlinear function of those parameters. For the sake of 

clarity, the gradient matrix V Xej(x, ui) is represented by the matrix U(x, ui) and is computed as 

(5.10) 
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Since the mass matrix is completely known, the vector !;. '" as defined in Eqn. (5.5) is not a function of x and 

the derivative of the modified stiffness matrixK '" with respect to x is equal to the derivative of the stiffness 

matrix K with respect to x. Thus, the gradient matrix U simplifies to 

(5.11) 

which is exactly the same as Eqn. (3.7) for computing fue derivative of the error function for the static pa

rameter estimation problem. As before, the structural sensitivity matrix U of the model can be computed by 

assembling the element sensitivity matrices ue as follows 

U{X,Ui) = I Ue(xe,ui) (5.12) 

e 

where r is the vector of unknown parameters associated with the eth element and u~ is the vector of nodal 

displacements associated with the eth element for the ith mode. The element sensitivity matrix ue is com

puted by the procedure explained in Appendix B. 

In order to compute the gradient of the error function with respect to the unmeasured displacements if, 

we partition the modified stiffness matrix Ki * (x) into two parts: a matrix corresponding to the measured 

response Ki '" (x) and a matrix corresponding to the unmeasured response Ki '" (x). Therefore, Eqn. (5.7) can 

be recast as 

( "*(" -* * e· x Ii.) = K· x)u. + K· (x)u. - F. ~ , l l ~ Z L Ji 
(5.13) 

Based on Eqn. (5.5) the gradient of the error function with respect to the unmeasured modal response ui 
takes the form 

(5.14) 

whereK(x) is the stiffness matrix correspomling to the unmeasured displacements. Matrices M andK are 

fixed matrices for all modes and are computed by assembling element stiffness andmass matrices. Knowing 

that Iii is a subvector of the vector iI, the gradient of the error function ei with respect to iI can be repre

sented by a sparse matrix Gi(nd x (nm . if~) as follows 

1 2 i-I i+1 

Yirei(x,iI;) = [0 0 ... 0 Ki*(X) 0 (5.15) 

Observe that Eqn. (5.15) and Eqn. (3.11) are constructed in the same way, except that for the free vibration 

experiment Ki'" (x) is a function of frequency and is thus not constant for all modes. By substituting equa

tions (5.10) and (5.15) into Eqn. (5.9), the total gradient matrix of the error function with respect to the un

known variables (x, iI) can be written as 
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(5.16) 

Further, by substituting Eqns. (5.7) and (5.16) into Eqn. (2.10), the gradient of the loss functionJwith re

spect to the unknown variables (x, u) for the proposed equation error estimator can be computed as follows 

nmd T 
VJ{x, it) = L a;[ U{x,u;) G;{X,A;)] e;{x,u;) (5.17) 

;=1 

The exact Hessian matrix for the loss function J can be computed from Eqn. (2.12) in the same way as 

the static case and can be expressed in a form analogous to Eqn. (3.16) as follows 

UT{x, u;)G;{x) + V;rG;{x)el] 

(5.18) 

Gf(x)G;{x) 

where the third-order tensors V;rG;, V rrU ,and V;rU are computed as described in Section 3.2. Accordingly, 

the Gauss-Newton approximation of the Hessian matrix JPN takes the form 

(5.19) 

The Gauss-Newton approximation of the Hessian has the advantages that it does not depend on the second 
derivatives of the error function, making it easier to compute than the exact Hessian, and it is guaranteed to 

be positive semi-definite. The Hessian can also be approximated with a rank-two update formula like the 
modified BFGS (Han-Powell) method. Numerical studies show that the recursive quadratic programming 

method using the Gauss-Newton approximation converges in fewer iterations than the Han-Powell method. 

5.3. The Output Error Estimator (OEE) 

For the proposed output error estimator, we define an error function e to be the difference between the 

measured and computed mode shapes at the locations where the physical measurements are taken. Let us 

define a Boolean matrix Q such that u; = Qu;. In other words, Q extracts the measured modal deformation 

u; from the complete vector of modal degrees offreedom u;. We assume that Q is the same for all modes. 

The error function for the proposed output error estimator is given by the following expression 

• -1 • A 

e;{x) = QK; (x)!; - u; (5.20) 

In contrast with the equation error estimator, the vector of unknown variables contains only the unknown 

constitutive parameters x for the output error estimator. Thus, the nonlinear constrained optimization prob

lem for the proposed output error estimator can be stated as 
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minimize 
x 

subject to 

nnW. 

lex) = tI ai II QKi*-\X)1i* - Ui 112 
i=1 (5.21) 

where the bound vectors ~ and x and the weights ai are the same as those defined in Eqn. (5.8). Like the 

equation error estimator, the output error estimator tries to satisfy the model equation in a least-squares 

sense. The number of unknowns for the output error estimator is smaller than the number of unknowns for 

the equation error estimator. Consequently, the solution of the fOimer is carried out in a space of smaller 

dimensional than the latter. On the other hand, the loss function of the output error estimator has a higher 

degree of nonlinearity than the loss function of the equation error estimator. In the follOwing section, we 

derive the gradient and the Hessian matrix for the loss function J for the output error estimator. 

Sensitivity of th:e Loss Function 

The the loss function of the proposed output error estimator for modal data is similar to the loss function 

of the output error estimator for static data (cf. Eqn. (3.26)). Thus, one would expect the gradient and Hes

sian to be fonned in an analogous way. The gradient of the loss functionJin the optimization problem (5.21) 

with respect to the unknown constitutive parameters x can be computed by replacingK(x) and.li in Eqn. 

(3.29) withK/(x) and .Ii. as follows 

(5.22) 

where the structural sensitivity matrix U is computed by assembling element sensitivity matrices Ue as de

scribed in Appendix B. 

The second derivative of the loss function with respect to unknown parameters can be computed exact-

1y' it can be constructed with a rank-two update fonnula using the gradient of the loss function (e.g. the 

Han-Powell method explained in Appendix A), or it can be approximated with the Gauss-Newton method. 

The Gauss-Newton approximation, H GN
, can be computed as in Eqn. (3.30) by replacing K(x) and Ii with 

K/(x) and f/ as follows 

~d T 
r7GN( ) """ [ .. -1( )TT( *-11'*)] [ *-1( )U( K*-1 *)] L1. - X = L ai QKi XU' X, Ki J i QKi X X, i .Ii (5.23) 

i=1 

The Hessianmatrix generated by the Gauss-Newton approximation inEqn (5.23) is symmetric and positive 

semi-definite, and contains enough infonnation about the second derivative of the loss function to be com

puted reliably for this general class of problems if the residual error is small. 

The loss function, gradient vector, and Hessian matrix in the output error estimator all require the com

putation of the inverse of the matrixK * . Thus we must examine the conditions that would cause this matrix 

to be singular. Recall that the modified stiffness matrix K i " is simply a shift Ai of the stiffness matrix Kby a 
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positive semi-definite matrix [0 M]. Assume that there exists a set of critical shifts {,uj} that cause the mo

dified stiffness matrix Kj· to be singular. It follows that 

j = 1, ... ,nd 
(5.24) 

where ¢ j is the jth eigenvector and n d is the number of degrees of freedom of the finite element model. 

When a computed eigenvalue Ai of the model equation (5.1) is equal to one of the eigenvalues ofEqn. (5.24), 

the modified stiffness matrix will be singular. Since, lid columns of the matrix [0 M] are zero, the eigenva

lue problem (5.24) has lid eigenvalues equal to infinity. Therefore, the number of real value shifts which 

cause singularity is equal to the number of unmeasured modal degrees of freedom if d. The eigenvalues {,u j } 

of the truncated mass system are larger than the eigenvalues {Ai} of the original system, roughly by the ratio 

of total modal mass to modal mass associated with the unmeasured degrees of freedom. The probability of 

having a singular K • matrix increases by measuring more modes or increasing the number of critical shifts. 

Thus, the eigenvalues ,uj in Eqn. (5.24) depend on the stiffness matrix K which changes during the iterations 

of the optimization process as a consequence of changes in the unknown constitutive parameters. The 

theoretical number of critical shifts is equal to if d multiplied by the number of optimization iterations and 

therefore the probability that one of the critical shifts is equal to one of the measured eigenvalues of the free 

vibration problem theoretically increases as the number of optimization iterations increases. Coincidence of 

eigenvalues of the two systems can only occur if an eigenvalue of the truncated system matches an eigenva
lue of the original system with a different ordinal value. Clearly, such a random occurrence is possible. By 

increasing more measured degrees of freedom or reducing the number of optimization iterations, which is 
controlled by the criteria of convergence, one can reduce the number of critical shifts and consequently, the 

possibility of developing a singular K • matrix. If the matrix is singular, the inverse can be computed using 

the singular value decomposition. 

In the previous sections, we developed two estimators to detennine stiffness parameters of a finite ele

ment model of a structure using measured modal data in conjunction with the known mass matrix. In the 

following section, we propose an equation error algorithm to estimate both the mass and the stiffness param

eters. 

5.4. Equation Error Estimator: The General Case 

The governing equation for undamped free vibration is given in Eqn. (5.1). Since the mode shapes are 

often sparsely measured in the space, we use the partitioning given in Eqn. (5.2). Further, we partition the 

mass and the stiffness matrices of the model each into two matrices: amatrix corresponding to the measured 

displacements, respectively shown by M(nd x lid) and K(nd x lid) and a matrix corresponding to the un

measured displacements, respectively shown by M(nd x ifd) and K(nd x ifd)and rewrite Eqn. (5.1) based 

on the partition in Eqn. (5.2) as follows 

[K(x) - A#(X)]Ui + [K(x) - A#(X)]ui = 0 (5.25) 
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where x is the vector of unknown constitutive parameters and consists of both the mass, xM' and the stiff

ness, x K' parameters. Now, we define an error function e i based on the residual force vector for mode i as 

follows 

(5.26) 

where U = (u1' il2, ••. , unmtl) is the vector of unmeasured modal degrees of freedom for all measured 

modes. In accord with the general form of the estimation problem (2.4), the constrained nonlinearoptimiza

tion problem for the proposed equation error is 

minimize 
(x, u) 

nmd 

J(xM' xl(> ill' ••. , iln;md) = t I ai " elx, ili) 112 
i=l 

subject to ~ S x S x 

(5.27) 

where nmd is the number of measured modes. The loss functionJ must be augmented by a constraint relat

ing the constitutive parameters. For example, the total mass might be known a priori or some of the individ

ual parameters might be known. Now we compute the gradient of the loss function J with respect to the 

unknown variables (x, il) using Eqn. (2.10) as 

nmtl 

VJ(x, it) = I ai VTei(x, iii) ei(x, iii) (5.28) 

i=l 

The gradient of the error function with respect to (x, il) can be partitioned as follows 

(5.29) 

The gradients with respect to the constitutive parameters are easily computed using Eqn. (5.1) as 

(5.30) 

(5.31) 

where U M and UK are structural sensitivity matrices computed by assembling element sensitivity matrices 

UM and UK derived in Appendix B. 

We must also compute the gradient of the error function elx, iii) with respect to the unmeasured dis

placements ui . Using Eqn. (5.26) the gradi.ent of the error function with respect to the unmeasured displace

ments of the ith modal vector is given by 

(5.32) 
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We assume that the finite element model is linear, therefore the structural matrices M, C, and K do not de
pend on the response. Consequently, for a particular finite difference method based on displacement vec

tors, the matrix V rIiei(X, u) is constant for all modes. 

The total gradient of the error function with respect to the unknown variables, defined in Eqn. (7.23) can 

now be explicitly written as 

1 ••• i-I HI nmd 

Vei(x'Ui) = [UM UK 0··· 0 K(X)-A~(X) 0 0] == [U GJ (5.33) 

where the matrix U is the concatenation of the individual gradients with respect to the variables x and the 

matrix G i is the concatenation of the gradients with respect to the unknown responses, and is quite sparse. 

The gradient of the loss function] with respect to the unknown variables for the proposed estimator in Eqn. 
(5.27) takes the following form 

nmd 

VJ(x,u) = I ai[U(x,Ui) (5.34) 

i=l 

With the notation used here, the Hessian approximations are identical to those developed earlier. 

5.5. Initial Values, Scaling, and Identifiability 

The proposed equation error estimator and the output error estimator are based on nonlinear constrained 

optimization problems. The recursive quadratic programming method, like any iterative process, needs ini
tial values for the unknown variables. The choice of starting point is one of the important factors which 

control the speed of convergence of the algorithm, and one should employ any prior knowledge about the 

parameters. 

Both of the developed estimators need initial values for the unknown constitutive parameters. One 

could use design values as a reasonable choice for the initial values of the unknown parameters. One could 
also use analytical methods and engineering modeling to generate initial values. In the absence of any a 

priori knowledge, one must guess the initial values for the unknown constitutive parameters x. If for some 

parts of the structure parameters are known, then the known parameters Xo can be used to guess initial values 

~ for the unknown parameters with the same nature. 

The equation error estimator also needs initial values for the unmeasured modal displacements UO. We 

have found that the best way to generate UO is to compute the modal response from the model equation (5.6), 

with the modified stiffness matrix K • constructed analytically from the known parameters Xo and initial 

values of the unknown parameters xv. To wit, 

i = 1, ... ,nmd (5.35) 

where thematrixP is a B oolean matrix that picks the unmeasured displacements Uf from the total computed 

displacements Uf. 
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The estimation algorithms suffer from the same scaling problems as their static counterparts. To solve 

the scaling problem, we scale the optimization variables to have the same order of magnitude. The scale 

matrix is constructed based on the initial values of the optimization variables using the procedure explained 

in Section 3.5. Based on numerical studies, we have observed that the scaling process improves the conver

gence rate and robustness of the proposed estimators formoda! experiments by changing the shape of attrac

tion basin around the local minima to be more suitable for a gradient search strategy whenever the estimators 

confront with the nonhomogeneous optimization variables. 

The proposed estimators formodal problems are in the class of least-squares estimators, and thus carmot 

reliably make an estimation if less that a certain minimum amount of data are available. Confidence in the 

estimates increases with the amount of information above this minimum level. Since the algorithms for the 

modal problem are analogous to those of the static problem, the basic identifiability criterion is the same. 

Hence, we must have 

(5.36) 

where (nmd x na) is the number of independent measurements and np isthenumberoflll1knownconsti

tutive parameters. The identifiability criterion (5.36) is a quantitative index for the richness of the available 

information. If this criterion is not satisfied, then the estimates are totally unreliable. However, satisfaction 

of the identifiability criterion does not guarantee reliable estimates. If the estimator is consistent, the confi

dence in the estimation can be improved by increasing the amount of available data (nmd x nd) and/or 

reducing the number of unknown parameters np. One can increase the amount of information by measuring 

more modes ormore degrees offreedom of the :finite element model. Grouping the parameters, using a sim

pIer model with less number of parameters, or increasing the number of known parameters using a priori 

knowledge reduces the number of unknown parameters. The introduction of bounding constraints elimi

nates the possibility of converging to infeasible solutions. For example, for a structural system, the un

known constitutive parameters must be positive and are probably not much larger than their nominal values. 

The bounding constraints can be used to enforce these limits. One should always check the reliability of the 

estimates with a sensitivity analysis. 

Remark. The shape of the surface of the loss function inside the feasible region control s the output of the 

developed parameter estimation methods. It is desirable to ::find a unique set of parameters, however there 

always exists the possibility of multiple local minima and narrow ravines. One can use a global optimization 

scheme to converge to the the smallest of the feasible local minima to find the most desirable solution. But 

even a global minimum may not be unique. The existence of desirable minima increases the estimation 

range of parameters. On the other hand, when the attraction basin of aminimumis anarrowravine with steep 

slopes for some of the parameters and shallow slopes forthe rest of parameters, the loss function is sensitive 

with respect to the parameters corresponding to steep slopes (sensitive parameters) and insensitive with re

spect to the rest of them (insensitive parameters). Therefore, the insensitive parameters can have large es

timation ranges without changing the value of the loss function significantly_ The number oflocal minima 
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and the shape of attraction basin depend on the shape of the loss function which is a function of available 

infonnation and the shape of feasible region. One can expect that the estimation ranges of parameters are 

reduced by shrinking the feasible region, increasing the amount of measurements if the estimator is consis

tent, and decreasing the number of unknown parameters. 

One should not be deceived by satisfying the identifiability criterion and should always check the reli

ability of the estimates by a sensitivity analysis. One should fmd out how sensitive the estimation is for the 

given amount of measurements, bounding constraints, starting point, topology, geometry, and other a priori 

knowledge. 0 

5.6. Chapter Summary 

We have developed the equation error estimator and the output error estimator to determine elemental 

constitutive parameters of a finite element model of a real structure using measured modal data We have 

assumed that the topology, and geometry of the finite element model are known and an incomplete set of 

spatially sparse measured modal data are available. We have considered two cases: when the mass parame

ters are known and when both mass and stiffness parameters are unknown. 

Forthe case with known mass matrix, we have simply modified the eigenvalue problem to a fonn simi

lar to the static equilibrium equation. We have partitioned the mass matrix and the response vector into two 

parts: a part corresponding to the measured degrees of freedom and a part corresponding to the unmeasured 

degrees of freedom. Then, we have defined a modified stiffness matrix and a modified load vector and 
derived the governing equation. Following the procedure explained in Chapters Two and Three we have 
developed the equation error estimator and the output error estimator using modal data. We have derived the 

sensitivity of loss functions for these two estimators with respect to their corresponding unknown variables. 

When both mass and stiffness parameters are unknown, we have proposed an equation error estimator. 

We have derived the sensitivity of the loss function with respect to the mass and stiffness parameters. 

We have also provided a grouping scheme to group the elemental constitutive parameters of similar 

members of the finite element model together. Elements with similar mass parameters can be grouped to

gether regardless their stiffness parameters and vis versa. In other word, an element might belong to two 

different groups solely based on its mass parameter or its stiffness parameter. 

We have briefly explained strategies, described in Chapter Three, for generating the initial values for 

unknown constitutive parameters and unmeasured responses at the locations of the unknown degrees of 

freedom. We have also discussed a strategy to scale the unknown variables to improve numerical condition

ing. We have derived the identifiability criterion to reliably estimate the unknown constitutive parameters 

and have stressed the need for sensitivity analyses with respect to the shape of the loss function, bounding 

constraints, and initial values. 
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CHAPTER SIX 

Oakland City Han Building: A Real Case Study 

In this chapter we use the developed modal estimator to build a mathematical model for an existing build

ing, Oakland City Hall, using measured modal data The Oakland City Hall building is a 19 story structure 

with setbacks along the elevation, as shown in Fig. 6.1. The rectangular plan is fairly regular. The structure 

suffered some damage during the 1989 Lorna Prieta earthquake and was the focus of engineering studies into 

its repair and retrofit Decisions regarding repair and retrofit of earthquake resistant structures can be facili

tated by knowledge of the actual dynamic properties of the structure. A solid understanding of the linear prop

erties of the structure generally provides a good foundation for launching further studies into the behavior of 

the extant structure or modifications 10 it. 

One of the most reliable methods of assessing the modal properties of a structure is to monitor its behavior 

through forced vibration tests in the field. The resonant frequencies are first established by sweeping through 

the frequencies and noting the frequencies of maximum amplification. The mode shapes are then established 

Meas, Level Elevation Node 

19th 318.75 21 
r---- 18th 304.17 20 

Typ.DOF 

0--

I I 
I J 
1 I 0--

17th 270.84 19 

16th 245.84 18 

15th 233.84 17 

14th 219.84 16 

13th 207.34 15 

0-- 12th 194.84 14 

11th 182.30 13 

10th 169.76 12 

0--- 9th 157.22 11 

8th 144.68 10 

7th 132.14 9 
0-- 6th 119.60 8 

5th 107.06 7 

4th 94.52 6 ---------- Mezz 83.52 5 

- '--- 0-- Roof 64.21 4 

3rd 40.50 3 

2nd 26.67 2 

'Yffffffd ,.§.§.§.;§ 1st 14.00 

Base 0.00 

Fig. 6.1 Oakland City Hall bunding and! the beam model 
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by measuring the steady-state response of certain locations of the structure during a dwell test with sinusoidal 

motion at the natural frequency. 

In order to investigate the effects of modifying a structural system, the modal data must be expressed in 

terms of parameters which can be identified with physical properties of the structure. The physically based 

properties can then be perturbed from their basic values analytically. The post processing of modal data can be 

achieved by postulating a model of the structure and then estimating the parameters of that model. The esti

mated parameters are simply an alternative way oflooking at the modal data The parameters cannot be better 

than the underlying model, but insight can often be gained with a rather simple representation of the structure 

topology. 

The present study documents efforts to identify the constitutive properties of a beam model of the Oak

land City Hall building from modal measurements taken during forced vibration tests performed in 1990. The 
results of the forced vibration tests are summarized first. Then, two models of the building are identified: (1) a 

structure comprising beams with rotations constrained to be zero at the ends (i.e. a shear building) and (2) a 

structure comprising beam elements with shear and flexural deformations. The identified models are ana

lyzed and compared with the measured modal properties. Finally, the identified models are compared with a 

model obtained by an engineering approach which does not directly use the modal data 

For the purposes of the present study the building will be modeled as a beam with masses lumped at the 

story levels. The north-south and east-west directions will be treated independently as planar structures. The 

idealized model comprises twenty elements connected to twenty one nodes as shown in Fig. 6.1. Element 

number i is connected to the nodes numbered i and i+ 1. The mathematical model is completely fixed at node 

Table 6.1. General properties of the beam models 

Node Elevation Mass Measured 
(ft) (k-sec2/ft ) displacement 

1 14.00 0.0 
2 26.67 155.1 
3 40.50 193.9 
4 64.21 175.2 (measured) 
5 83.52 132.0 
6 94.52 66.9 
7 107.06 51.8 
8 119.60 50.0 (measured) 
9 132.14 49.9 
10 144.68 49.8 
11 157.22 49.3 (measured) 
12 169.76 48.8 
13 182.30 50.0 
14 194.84 57.8 (measured) 
15 207.34 52.3 
16 219.84 81.1 (measured) 
17 233.84 24.7 
18 245.84 40.4 
19 270.84 39.8 (measured) 
20 304.17 20.2 
21 318.75 7.2 
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one. The translational masses used in this study are presented in Table 6.1. Rotational masses are taken as zero 

for all analyses. 

6.1. Summary of the Forced Vibration Tests 

The dynamic properties of the Oakland City Hall building were measured by forced vibration tests by 

ANeO Engineers, Inc. for the City of Oakland Office of Public Works, Division of Architectural Services. 

These tests are documented in the report by ANeo (1990). The data obtained from these tests comprise the 

mode shapes and natural frequencies of the lower several modes of the structure, which are summarized in 

Table 6.2. The lateral motion was measured at levels Roof, 6th, 9th, 12th, 14th, and 17th (corresponding to 

nodes 4,8,11,14,16, and 19 of the stick model). 

According to the reports on the forced vibration tests, there was some confusion concerning the coupling 

among the east-west and torsional modes of vibration. Both ambient and forced vibration tests indicated that 

both east-west and torsional motions were sensed at the resonant frequencies of 1.36 Hz and 3.62 Hz. Since the 

building has two axes of symmetry, translation and torsional modes were expected to be uncoupled. Conse

quently, closely spaced modes were suspected as the cause of the torsional-translational coupling. 

The presence of closely spaced modes would seem to be important to the proper modeling of the three 

dimensional response of the structure, and should be scrutinized more carefully. Even if the natural frequen

cies of two modes are close, the mode shapes are different During a dwell test it is highly likely that there 

would be a continual exchange of energy between these two modes (Lu and Hall, 1990). If the instruments 

measuring the mode shapes did not exhibit a beating phenomenon, then the possibility of closely spaced 

modes should be dismissed in favor of a simple, but torsionally coupled, mode (indicating that the apparent 

symmetry is not realized). 

Unfortunately, the instrumentation deployed during the forced vibration tests would appear to be insuffi

cient to assess the degree of coupling of translation and torsion. At least three instruments would be required 

to monitor the motion of a rigid body in a plane. Most of the story levels had only two instruments. 

If certain of the east-west and torsional modes are simple and coupled, the identified models will not re

flectit However, for the sake of comparison, the east-west modes have been labeled I (ew) , 3(ew), and 5( ew); 

suggesting that modes 2(ew) and 4(ew) are missing. In the comparisons of measured and estimated mode 

shapes, we will use let) in place of the missing 2(ew) and 2(t) in place of the missing 4(ew). 

Table 6.2. Measured modal properties of Oakland City Han 

Direction North-South East-West Torsional 

Mode number lens) 2(ns) 3(ns) 4(ns) l(ew) 3(ew) 5(ew) let) 2(t) 

FreqUl':ncy (Hz) 0.76 1.68 2.64 4.38 0.64 2.28 4.65 1.36 3.62 

Level Roof 0.10 0.34 -1.27 -1.28 0.08 -0.59 0040 0.10 -1.77 
6th 0048 0.79 -1.59 0.92 0.28 -0.73 -0.79 OAO -1.06 

9th 0.91 1.04 -0.48 3.27 0.71 0.71 -0.91 0.86 1.38 
12th 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
14th 1.04 0.95 1.29 0.50 1.06 1.33 1.17 1.14 1.23 
17th lAO -2048 0.23 -2.37 1.55 0.33 -3.17 -0.32 -2.05 
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6.2. Results of Parameter Estimation 

Three different models of the structure are discussed in this section: (1) The structure identified as a shear 

building (i.e. the rotational degrees of freedom are held fixed). The only parameter associated with this model 

is the flexural modulus of the beam, EI. (2) The structure identified as a Timoshenko beam, the parameters 

identified are the flexural stiffnesses EI and shear stiffnesses GA of the elements. (3) A model of the structure 

obtained by an "engineering approach" which does not use the modal data. 

Since the number of measured degrees of freedom is small, elements are grouped together to reduce the 

number of unknown constitutive parameters and satisfy the identifiability criterion. The properties of the 

model were lumped into 9 different element types, giving 9 total parameters to estimate for the shear buildings 

and 18 total parameters to estimate for the shear-flexure models. The elements were lumped as follows, using 

the convention group(elements): 1(1,2,3); 2(4,5); 3(6,7); 4(8,9,10); 5(11,12,13); 6(14,15); 7(16,17); 8(18); 

9(19,20). The assumed grouping of elements with the same parameters is shown schematically in Fig. 6.2. 

Matching of the natural frequencies is implicit in the loss function through the specification of the error 

function, but is not otherwise enforced. Since natural frequencies are easy to measure reliably, one should 

place a premium on their accurate representation in the model. The only mechanism available for controlling 

the frequencies of the identified model is the adjustment of the weighting factors ai in the loss function. Mak

ing one of these weighting factors greater emphasizes the importance of that mode in the loss function with the 

result that both the frequency and the mode shape of that mode will more closely match the measured data 

With a typical engineer's bias toward lower modes, we generally made an effort to match the frequencies in 

the lower modes the best, with some sacrifice in the higher modes. 

The identification of the north-south properties used the four modes indicated ns in Table 6.2. As men

tioned earlier, we suspect that the torsional modes, indicated as t in Table 6.2, are actually the missing east-

Fig. 6.2 Element parameter groupings 
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west modes with coupled torsional motion. We identified the east-west model using only the three modes 

labeled ew in Table 6.2. As expected, the identified models had modes between the measured frequencies with 

frequencies corresponding to the so-called torsional modes. Because the missing modes corresponded well 

with the torsional modes, we tried to make the frequencies of the missing modes match the measured "tor

sional" frequencies by adjusting the weighting factors of the measured modes, without using the torsional 

mode shape data. Throughout the presentation of results, we compare the missing modes with the torsional 

modes, even though we did not use those data to make the estimations. 

The natural frequencies of the models identified by both estimators and those of the engineering model 

are listed in Table 6.3 along with the measured values. It should be evident that the natural frequencies of the 

identified models represent the dynamic characteristics of the building wen, particularly for the lowermodes. 

For the identified models the spectral distribution is consistently good and the missing modes are properly 

identified. 

We normalize the mode shapes presented in the following sections by setting thenonn of the six displace

ment components at the measurement locations to unity. This scaling will allow us to compare measured and 

computed modes. For all estimations in the following sections, the lower bounds for the parameters x were 

taken to be zero. The influence of the upper bounds are examined through the sensitivity analyses. 

6.3. Shear Building Model 

Forthe shear building model, the flexural moduli of the beam elements are the only constitutive parame

ters that need to be estimated. With the grouping scheme shown in Fig. 6.2, the number of unknown parame

ters, np , is 9. The number of measured modal displacements, ii d' is equal to 6 and the number of measured 

modes, nmd, is equal to 4 for the north-south model and 3 for the east-west model. Therefore, there are 

nmd x ii d = 24 measurements for the north-south model and 18 for the east-west model. The ratio of mea

surements to the unknown parameters is marginal but acceptable in both directions. 

North-South. The shear building models identified by the output error estimator (OEE) and equation er

ror estimator (EEE) forthenorth-south direction are shown in Table 6.4. The computed natural frequencies for 

these models are presented in Table 6.3 and their first four computed mode shapes are plotted along with the 

measurements in Figs. 6.3 and 6.4. The weighting factors for the first through the fourth measured modes, 

found by trial and errarto produce models with acceptable spectral distributions, were 100,5, 1, and 10, re-

Table 6.3. Natural frequencies (Hz) of the identified models and tbe measured frequencies 

Mode (direction) lens) 2(ns) 3(ns) 4(ns) l(ew) 2(ewl 3(ew) 4(ew)t 5(ew) 

Measured 0.76 1.68 2.64 4.38 0.64 1.36 2.28 3.62 4.65 

Engineering Model 0.76 2.13 3.21 4.93 0.64 1.74 2.75 4.10 5.27 

Shear Building (BEE) 0.76 1.64 2.48 4.15 0.65 1.34 2.25 3.17 4.16 

Shear Building (OEE) 0.76 1.69 2.80 4.38 0.64 1.32 2.17 3.48 4.65 

Shear-Flexure (EEE) 0.77 1.72 2.37 4.21 0.65 1.34 2.47 3.40 4.08 

Shear-Flexure (OEE) 0.76 1.68 2.68 4.36 0.64 1.50 232 3.66 4.65 

t Mode not used in estimation procedure 
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spectively. One can obseIVe that for both identified models the first computed frequency and mode shape are 

represented almost exactly, indicating anearzero error vector in the modified eigenvalue problem. The higher 

modes are also quite well represented and show the important effects induced by the presence of the tower. 

Since the first and fourth modes are weighted more heavily than the second and third modes, their correspond

ing computed mode shapes follow the measured values better, as shown in Figs. 6.3 and 6.4. For the OEE the 

first and fourth computed frequencies exactly match the measured values. 

The overall quality of the computed mode shapes is quite good, indicating that the assumption of shear 

dominated behavior is in harmony with the data. The shear building identified by the output error estimator 

has closer natural frequencies to the measured values than does the model built by the equation error estima

tor. We can attribute the better accuracy to the fact that we used the OEE to perform a sensitivity analysis, and 

hence the investigation of the influence of the upper bound values was more thorough than it was for the EEE. 

The values given in Table 6.3 and Fig. 6.4 are for the best model found. 

The models identified by the output error estimator shows a rather large value for the stiffness of group 6. 

The equation error estimate does not show this feature. Since both identified models have similar natural fre

quencies, one would expect that there exist other models with plausible spectra close to these identified mod

els. To examine the issue of the inherent variability of a parameter, one must perform an analysis of the sensi

tivity of the loss function around the solutions in question. Such an analysis will produce a picture of the 

topography of the basin of attraction of the loss function. Since the number of optimization variables for the 

output error estimator is smaller than the number for the equation error estimator, we performed the sensitiv

ity analysis for the identified model only for the OEE. 

To check the sensitivity of the loss function numerically, we altered the size of the feasible region by 

changing the upper bound constraints and started the optimization process from different initial points. Using 

this numerical technique, one can study the topology of the attraction basin around the solution, search for 

other plausible points at the bottom of the attraction basin, and determine the influence of parameters that are 

bound at their constrains. We accepted only solutions computed during the sensitivity analysis that had natu

ral frequencies close to the model given in Table 6.4. Since matching the frequencies is not explicitly enforced 

Table 6.4. Identified shear building models for the north-south direction 

Parameter 
EI (ns) (l08 k-ft2) 

group 
EEE OEE 

1 2.378 4.442 

2 0.503 0.757 

3 0.278 0.220 

4 0.141 0.110 

5 0.513 0.756 

6 0.518 3.330 

7 0.139 0.114 

8 0.108 0.111 

9 0.378 0.503 
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Table 6.5. Bounds of element properties for the north-south, shear building model 

Parameter EI (ns) (108 k-fP) 

group Max. Min. 

1 4.866 3.000 

2 0.812 0.232 

3 0.404 0.204 

4 0.540 0.110 

5 0.750 0.281 

6 3.453 0520 

7 0.117 0.112 

8 0.141 0.119 

9 0.508 0.465 

by the loss function, we searched for alternative models whose loss function values were close to the value of 

the loss function for the identified model shown in Table 6.4 and then determined their natural frequencies by 

eigenvalue analysis. If the frequencies were close to the measured frequencies, we took the models to be rea

sonable. 

In Table 6.5, the maximum and minimum values of the estimated flexural moduli are listed for the alter

native models found during the sensitivity analysis. The ranges of natural frequencies and values of the loss 

function for these alternative models are shown in Table 6.6. The value of the loss function has units oflength 

squared. The estimation ranges given in Tables 6.5 and 6.6 include the identified model shown in Table 6.4, 

which has the smallest value of the loss function among the plausible alternative models. All estimated alter

native models have natural frequencies close to the measured values. It is evident from Table 6.5 that the es

timation ranges for parameter groups 1 and 6 are larger than those for the other groups, indicating that the loss 

function is less sensitive to these parameters than other parameters. Based on the given measurements, we 

have less confidence in the estimated stiffnesses for elements in groups 1 and 6 than in the other groups. Table 

6.5 does not indicate that any shear building model represented by a point inside the hypercube defined by the 

bounds given in this table is a plausible model. All plausible models satisfy the optimality criteria. Table 6.5 

simply shows the extreme values of parameters found within the plausible set of models. 

East-West. The east-west shear building models were identified using the three modes indicated as ew in 

Table 6.2. The ratio of measurements to unknowns is less favorable than it was for the north-south direction. 

The models identified by both estimators for the east-west direction are given in Table 6.7. Table 6.3 contains 

the computed natural frequencies for these models and Figs. 6.5 and 6.6 show their first five computed mode 

Table 6.6. Bounds of the loss function and the natural frequencies for 
the north-south shear, building model 

Frequency (Hz) 
Value 

Loss function 1st 2nd 3rd 4th 

Minimum 8.06 0.76 1.69 2.69 4.37 

Maximum 17.15 0.76 1.72 2.88 4.38 
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Table 6.7. Identified shear building models for the east-west direction 

Parameter 
EI(ew) (108 k-ft2) 

group EEE OEE 

1 1.910 5.382 

2 1.962 0.710 

3 0.190 0.194 

4 0.101 0.123 

5 0.121 0.074 

6 0.269 6464.700 

7 0.095 0.126 

8 0.062 0.056 

9 0.402 0.446 

shapes along with the measured values. The computed second and fourth east-west translation modes are 

compared with the first and second measured torsional modes in Table 6.2 even though those measured values 

were not used in estimation process. By trial and error, the suitable weighting factors for the first, third, and 

fifth measured modes were chosen to be 100, 1, and 20, respectively. 

Both identified models reproduce the first measured natural frequency and mode shape, indicating anear 

zero error vector in the modified eigenvalue problem. The computed frequencies of the missing second and 

fourth modes are close to the measured torsional frequencies. The model identified by the BEE has the second 

and third frequencies closer to the measured values than the model built by the OBE, however the OEE model 

represents the fourth and fifth natural frequencies better than the BEE shear building modeL The computed 

higher mode shapes follow the general trends of the measured modes, but not as well as the north-south direc

tion. One should recall that the second and fourth modes were not used in the estimation scheme. Since the 

first and fifth modes are weighted more heavily than the third mode, their corresponding computed natural 

frequencies and mode shapes represent the measured values better than the other modes, as shown in Figs. 6.5 

and 6.6. The fif'"dl mode of the OBE model exactly reproduces the measured values. The third computed mode 

does not follow the measured values quite as well, probably because of the presence of outliers in the mea

sured data or because of inadequacy of the topological representation of the structure. 

The shear building model identified by the output error estimator reveals a large value for the stiffness in 

group 6, indicating that the loss function may not be sensitive to this parameter. A sensitivity analysis forthe 

output error estimator, similar to the north-south direction, was done to examine the expected variability of 

the estimated parameters. By changing the upper bound constraints and starting points, we identified several 

other models with loss function values close to the value of the loss function of the OBE model shown in Table 

6.7. From among these solutions, those which had plausible frequency spectra were chosen as alternative 

models. In Table 6.8, the maximum and minimum values of the estimated flexural moduli are listed forthe 

computed alternative models. The range of na.tural frequencies and values of the loss function for these mod

els are shown in Table 6.9. The shear building model presented in Table 6.7 has the smallest value of the loss 

function among the plausible identified models. One can see from Table 6.8 that, except for the parameter 

group 6, all of the estimation ranges are sma.ll, indicating good confidence in the estimated parameters. The 
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Table 6.8. Bounds of element properties for the east-west, shear building model 

Parameter 
EI ( ew) (108 k-fP) 

group Max. Min. 

1 5.400 5.382 

2 0.710 0.659 

3 0.205 0.194 

4 0.123 0.121 

5 0.079 0.074 

6 6464.700 1.000 

7 0.131 0.126 

8 0.056 0.054 

9 0.446 0.444 

large estimation range for the constitutive parameters of elements in group 6 represents the insensitivity of the 

loss function with respect to this parameter and consequently, low confidence in its estimated value. 

6.4. Shear-Flexure Model 

For the shear-flexure model, the flexural stiffnesses and shear stiffnesses of the TImoshenko beam ele

ments are the constitutive parameters that we need to estimate. Since we have 9 parameter groups, the number 

of unknown parameters, np , is 18. Therefore, forthe shear-flexure model, the excess of measurements over 

unknowns is 6 for the north-south model and zero for the east-west model. The ratio of measurements to un

knowns is less favorable than it was for the shear building model, actually hitting the limit of identifiability 

for the east-west direction. One would expect to have less confidence in the estimates and greater variability 

withrespectto the bounding constraints for the shear-flexure model as compared to the shear building model. 

North-South. Table 6.10 gives the properties of the shear-flexure models identified by the output error 

and equation error estimators. The computed natural frequencies for these models are presented in Table 6.3 

and their first four computed mode shapes are plotted along with the measurements in Figs. 6.7 and 6.8. All 
four measured modes were weighted equally. The computed frequencies and mode shapes are closer to the 

measured values than the shear building models, especially forthe OEE model. Because all modes had equal 

weight in the loss function, all the computed modes show approximately the same level of error, except the 

first mode of the BEE model which exactly reproduces the first measured mode. The OBE model has frequen

cies closerto the measured values than the BEE model since the OBE model is the best model among the plau

sible models found during the sensitivity analysis. 

Table 6.9. Bounds of the loss function and the natural frequencies for 
the east-west, shear building model 

Frequency (Hz) 
Value 

Loss function 1st 2nd 3ed 4th 5th 

Minimum 5.60 0.64 1.30 2.17 3.46 4.65 

Maximum 7.10 0.64 1.32 2.17 3.49 4.65 
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Table 6.10. Identified shear-flexure models for the north-south direction 

Parameter 
EEE OEE 

group 
GA (106 k) EI (109 k-ft2) GA (106 k) EI (109 k-ft2) 

1 5.023 3255.000 6.449 48.188 

2 4.756 820.190 107.760 21156.000 

3 2.188 206.960 4.173 46864.000 

4 1.067 141.940 3.117 17756.000 

5 4.835 182.470 1.692 80199.000 

6 3.954 116.880 12.907 22464.000 

7 1.588 53.541 0.747 1.056 

8 0.228 7.964 0.757 0.793 

9 0.768 8.267 1007.401 487.851 

The shear-flexure model identified by the output error estimator shows large values for the flexural stiff

nesses of all groups except groups 1 and 8 and shear stiffness of groups 2, 6, 7, and 9 indicating that the loss 

function may not be sensitive to these parameters. We did a sensitivity analysis similar to the shear building 

models to find other plausible models for the output error estimator. Table 6.11 summarizes the estimation 

ranges for the computed plausible models. The ranges of natural frequencies and values of the loss function 

for these models are shown in Table 6.12. The loss function values for the shear-flexure models are much 

smaller than the corresponding values for the shear building models listed in Table 6.6, explaining the better 

computed natural frequencies. The OEE model listed in Table 6.10 has the smallest value of the loss function 

among the plausible models found in the sensitivity study. One can observe from Table 6.11 that the estima

tion ranges for flexural stiffness of parameter groups 2, 3, 4, 5, 6, 7, and 9 and shear stiffness of parameter 

groups 2,6,7, and 9 are large and better confidence exists for the other parameters. A large estimation range for 

a parameter indicates the insensitivity of the loss function with respect to that parameter. The number of insen

sitive parameters for the shear-flexure model is greater than the number for the shear building model. This 

tendency was expected because the difference between the number of measurements and unknowns for the 

shear-flexure model is less than that for the shear building model. 

Table 6.11. Bounds of element properties for the north-south, shear-flexure model 

Parameter 
GA (ns) (106 k) EI (ns) (10 9 k-ft2) 

group Max. Min. Max. Min. 

1 7.020 5.678 195.880 48.171 

2 111.610 4.198 2865600.000 200.000 

3 4.673 3.894 1314600.000 200.000 

4 3.565 2.973 1032800.000 9.229 

5 3.896 1.686 643020.000 16.105 

6 192.190 10.000 221580.000 4.803 

7 17080.000 0.747 1434.400 1.048 

8 0.951 0.490 1.175 0.316 

9 1007.400 0.458 1979.900 26.163 
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Table 6.12. Bounds of the loss function and the natural frequencies for 
the north-south, shear-flexure building model 

Frequency (Hz) 

Value 
Loss function 1st 2nd 3rd 4th 

Minimum 0.056 0.76 1.66 2.68 4.37 

Maximum 0.530 0.76 1.68 2.68 4.36 

East-West. The number of measurements is equal to the number of unknown parameters forthe east-west 

direction, making the ratio of measurements to unknowns poorest among all identified models. The models 

identified by both estimators are shown in Table 6.13. The computed frequencies for these models are listed in 

Table 6.3 and their first five computed mode shapes are plotted along with the measurements in Figs. 6.9 and 

6.10. Suitable weighting factors for the first, third, and fifth measured modes were found to be 100, 1, and 10, 

respectively. For the BEE model, no significant improvements can be observed in the frequencies and mode 

shapes compared with the shear building model identified by BEE. However, the OEB model, which is the best 

model found during the sensitivity analysis, has closer frequencies to the measured values and its computed 

mode shapes follow the measured modes better than otheridentified models for the east -west direction. Since 

the first and fifth modes were weighted more heavily than the third mode, their corresponding mode shapes 

follow the measurements more accurately than the other modes, especially for the OEE model as shown in 

Fig. 6.10. 

Because the identifiability criterion was just satisfied, we perfonned a sensitivity analysis to assess our 

confidence in the estimates. By changing upper bound constraints and starting points of the optimization 

problem for the output error estimator, we found several plausible models which have low values of the loss 

function and natural frequencies close to the measured values. In Table 6.14, the maximum and minimum 

values of the estimated parameters are listed for the plausible models found. The ranges of frequencies and 

values of the loss function for these plausible models are shown in Table 6.15. Like the north-south direction, 

the identified shear-flexure models have values of the loss function that are much smallerthan the correspond

ing values for the shear building models. One might recall that the value of the loss function is a measure of 

Table 6.13. Identified shear-flexure models for the east-west direction 

Parameter EEE OEE 
group GA (106 k) EI (109 k-fP) GA (106 k) EI (109 k-ft2) 

1 11.495 1314.700 3.123 45566000.000 

2 15.381 602.430 5.243 1008800.000 

3 1.511 149.020 10.056 11.346 

4 0.766 192.300 1.339 8.093 

5 0.922 229.550 2.400 471990.000 

6 1.653 29.800 2626.400 7487.400 

7 0.544 28.080 1.603 3932.200 

8 0.120 5.110 0.686 4618.650 

9 3.148 176.800 0.193 4283.600 
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Table 6.14. Bounds of element properties for the east-west, shear-flexure model 

Parameter GA (ns) (106 k) EI (ns) (10 9 k-ft2) 

group Max. Min. Max. Min. 

1 7.720 3.030 45566000.000 99.977 

2 5.710 1.478 1008800.000 99.948 

3 1025.900 2.131 932.320 9.074 

4 3.832 1.258 9.580 5.967 

5 2.556 1.837 1336100.000 8.245 

6 640790.000 2.013 1085900.000 10.057 

7 1.721 1.113 48649.000 0.736 

8 1.031 0.674 13677.000 0.399 

9 0.433 0.189 4283.600 6.913 

model validation and between two models, the one with the smallest loss function is the most valid. The 

smallness of loss function values explains why the OEE shear-flexure model has the best computed modes 

among all identified models for the east-west direction. The OEE model presented in table 6.13 has the small

est value of the loss function among all plausible models found during the sensitivity analysis. It is evident 

from Table 6.14 that except for parameter group 4 the estimation ranges of flexural stiffnesses are large and for 

the shear stiffnesses, the third and sixth parameter groups have large estimation ranges. 

6.5. Engineering Model 

An independent beam model (including shear and flexural) was developed based on an engineering ap

proach using nominal building properties and simple mechanical assumptions to get story stiffnesses. The 

estimates were made by an independent practicing engineer in California. The initial stiffnesses of the engi

neering model, obtained from nominal properties, were scaled linearly such that the fundamental ns and ew 

frequencies matched the measured values (a one variable parameter estimation procedure). The final proper

ties of the engineering model are given in Table 6.16. The computed natural frequencies are shown in Table 

6.3 and the computed mode shapes are plotted along with the measured modes in Figs. 6.11 and 6.12. 

The frequency distribution of the structure, which is the most reliable measurement available, is much 

better represented by the identified models, even the shear building models, than by the engineering model. 

For both directions, the engineering model has higher frequencies than the measured values, indicating that 

the engineering model is stiffer than the actual building. In order to improve the engineering model's spec

trum the stiffness distribution would have to become more like the OEE shear-flexure model. Consequently, 

Table 6.15. Bounds of the loss function and the natural frequencies for 
the east-west, shear-flexure building model 

Frequency (Hz) 

Value 
Loss function 1st 2nd 3rd 4th 5th 

Minimum 0.26 0.64 1.52 2.23 3.61 4.65 

Maximum 1.52 0.64 1.54 2.31 3.61 4.65 
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the identified model provides a guide for critical assessment of the engineering procedure. The computed 

mode shapes in both directions are smooth and quite similar to the mode shapes of the OEE shear-flexure 

model shown in Figs. 6.8 and 6.10. 

InFigs. 6.13 and 6.14 we plot element properties of engineering model and plausible shear-flexure mod

els identified by the output error estimator and their estimation ranges shown in Tables 6.11 and 6.14. We 

show parameters in a practical range about the properties of the engineering model. Several observations can 

be made in comparing the shear-flexure models obtained by parameter estimation and the stiffermodel built 

by the engineering procedure. The shear stiffnesses of both models have the same order of magnitude and 

have the same distribution, however in general, the engineering model has higher shear stiffnesses in both 

directions. The identified models tend to have higher flexural stiffnesses than the engineering model for bot

tom elements 1 through 7. Both models show a reduction in the flexural stiffnesses in elements 8 through 10 

and have close parameters. The identified models show a dramatic increase in flexural stiffnesses in element 

11 through 13 for the north-south direction and in elements 11 through 15 for the east-west direction with high

erflexural stiffnesses than the engineering model. For top elements 14 through 18 in north-south models and 

elements 16 through 18 in east-west models, both engineering and identified models have close flexural stiff

nesses. The identified models for both directions show tower elements 19 and 20 to be considerably stiffer in 

flexure than the engineering model indicates. The over all distributions of shear and flexural stiffnesses in the 

engineering model follow the mass distribution of the building given in Table 6.1. The identified models try 

Table 6.16. Element properties of engineering model 

Parameter 
North-South East-West 

Element 
group GA (106 k) EI (109 k-ft2) GA (106 k) EI (109 k-ft2) 

1 9.149 119.911 8.611 95.979 

1 2 9.149 119.953 8.611 96.123 

3 10.130 121.753 9.181 122.020 

4 6.308 42.703 7.303 89586 
2 

5 5588 29.218 3.308 21540 

6 4.983 26.456 3.779 13.814 
3 

7 4.179 26.456 2512 13.814 

8 4.035 26.456 2.734 13.814 

4 9 4.145 26.456 2.638 13.814 

10 4.275 26.456 2512 13.814 

11 3.940 26.456 2.973 13.814 

5 12 3.940 26.456 2.600 13.814 

13 3.906 26.456 2.672 13.814 

6 
14 9.166 41.501 7.183 21.893 

15 9542 46.524 7.377 24.058 

16 3.373 6.997 1.459 4.395 
7 

17 3.055 6.997 1.572 4.395 

8 18 1.914 1.788 1.148 0.825 

19 1.340 0.783 1.148 0.621 
9 

20 0.957 0.317 0.957 0.317 
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forced vibration tests. With proper data, a three dimensianal beam model cauld be identified with additianal 

parameters assaciated with the eccentricity af center af mass af a flaar with respect to. center af rigidity. 

Finally, the building was madeled as a beam (with ar withaut shear defarmatian). Such a madel ignares 

the actual tapology af the structure with the cancamitant risk af obliterating impartant modes af respanse. 

The correspandence between measurements and camputatian obtained with the beam model wauld indicate 

that the beam model is a reasanably valid assumption in the present case. 

The abave caveats natwithstanding, the approachfollawed here would appearta be superior to generat

ing amadel of the structure based on ardinary engineering calculatians withaut benefit of the madal data. The 

measurements, if reliable, carry the truth about the behaviar af the structure. If used properly, the measure

ments can be a valuable aid to. the assessment of structural perfarmance. The engineering model can assist the 

parameter estimation approach to. find reasonable bounding canstraints and initial values far the unkno.vm 

parameters. On the other hand, the parameter estimatian procedure can be used to. adjust same af the parame

ters af an engineering madel in order to. represent the measurements better and have a better and more valid 

madel far the structure. 
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to follow the same distribution for shear stiffnesses with smaller estimated values and make elements. espe

cially bottom and top elements, flexurally much stiffer than the engineering model in order to build mathe

matical models whose modes are spectrally close to the measured modes. 

6.6. Chapter Summary 

The parameter estimation procedure produced beam models with excellent dynamic properties; the fre

quency spectra of the identified models accurately matched the measured values and the mode shapes ap

peared to represent the measured modes well, both qualitatively and quantitatively. Accomplishment of such 

estimations would be virtually impossible by trial and error procedures. 

While the computed results are excellent, there are several inherent limitations which should be empha

sized. First of all the mass distribution was computed by an "engineering" procedure, and was considered 

known a priori. In general, one might expect that the mass distribution is known better than the stiffness dis

tribution. However, the mass assumption may not accurately represent the actual mass distribution of the 

structure during the experiment that is implicit in the data. The mass parameters could also be estimated to 

improve the correspondence between measured and estimated properties, but the sparsity of measurement 

would seem to preclude such an estimate in the present case. 

Secondly, the planar response was assumed a priori. Indeed, the planar response was even assumed in the 

selection of instrumentation for the forced vibration tests. At least three measurements per floor are required 

to track the motion of a floor in its own plane. The assumption of planar response was not borne out by the 
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CHAPTER SEVEN 

Parameter Estimation in Structures from Transient Dynamic Response 

Estimating the unknown constitutive parameters of a finite element model of a structural system from 

the measured transient dynamic response of the real structure is more complicated than estimating them from 

static ormodal response because the measured response is incomplete in both space and time. Since we gener

ally measure only one of the state vectors (usually acceleration or displacement), the measurements are also 

incomplete in state. Furthermore, the parameterization of the model is more complicated because there are 

unknown stiffness, mass, and damping parameters, and numerical difficulties accrue from the fact that these 

parameters scale differently. 

Transient dynamic parameter estimation is attractive, on the other hand, because of the wealth of data 

available and the ease of testing. Data collected at each point in time is analogous to a load case in the static 

problem or a mode in the modal dynamic problem. While the data at adjacent time points does not possess 

the same level of information content as different static load cases or different modes, the time points are 

plentiful, generally assuring adequate redundancy in the data sample. 

In this study, we use the response of the structure and a history of the dynamic loads in the time domain 

to compute the unknown constitutive parameters of a finite element model of a structure. The proposed esti

mator is an equation error estimator and can accommodate measured displacements or measured accelera

tions. From a mathematical model with known geometry, topology, load history, and responses at certain 

locations, we pose a parameter estimation problem that, when solved, determines the unknown constitutive 

parameters of that (finite element) model. The proposed algorithm is based on the concept of minimizing the 

difference between the force applied to the structure and the residual force predicted by the model, as ex

plained in Chapter Two. 

The proposed parameter estimation algorithm has two main steps. In the first step, we compute the un

measured state vectors using numerical differentiation and/or numerical integration methods. We treat the 

evolution of each measurement as an independent time series. Thus, the responses at different locations do 

not interact with each other. In the second step, we estimate the unknown constitutive parameters by solving 

a constrained nonlinear optimization problem. We use the recursive quadratic programming method (RQP) 

to solve the estimation problem. In the second phase, the measurements interact with each other through the 

objective function, which measures equilibrium error between the structure and the model. The proposedesti

matar can handle incompletely measured response in time, state, and space. It exhibits robust convergence, 

and is amenable to modeling of complex structural systems. 

In the following sections, we define the model equation in time domain and present methods for comput

ing the state vectors from measured displacements or accelerations. Next, we pose the estimation problem 
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and derive the necessary fonnulas to compute the sensitivity of the loss function with respect to the unknown 

variables. We also briefly explain a procedure for generating initial values of the unknown variables and a 

scaling strategy, followed by comments about the estimation time step and time windows. We demonstrate 

how the algorithm for the transient dynamic estimator can be used through analogy to solve the problem of 

modal identification when both mass and stiffuess parameters are unknown. Finally, we mention the relation

ship of the method advocated here with some of the other methods available in the literature. 

7.1. The Model Equation 

Let us assume that we can adequately represent our structure with a linear finite element model with n d 

degrees of freedom. The equations of dynamic equilibrium of the model can be expressed as an initial value 

problem as follows 

M(x)u(t) + C(x)li(t) + K(x)u(t) = J(t) 

u(O) = U o 

li(O) = Vo 

(7.1) 

where M, C, and K are the usual (time-invariant) mass, damping, and stiffuess matrices, respectively. The 

vectorJ(t) represents the applied nodal force. The nodal displacements are a function oftime and are repre

sented by the vector u(t). The first and second derivatives of u(t) are the velocity, li(t), and acceleration, u(t), 

respectively. These three vectors, each having dimension n d' characterize the state of the system at any time, 

and hence are referred to as state vectors. The initial displacement, uo, and velocity, vo, complete the specifi

cation of the initial value problem. 

As we have done for the static and modal estimation problems, we assume that the system matrices de
pend on np unknown constitutive parameters x. While the parameterization depends upon the specific model, 

the parameters include mass parameters, xM' damping parameters, xc' and stiffuess parameters, xK' The 

mass parameters might comprise element mass densities or nodal masses; the damping parameters might 

comprise viscosity coefficients or modal damping ratios; the stiffuess parameters might comprise material 

constitutive parameters such as Young's modulus (or for beams generalized moduli likeEA andEI). For the 

present development we need not concern ourselves with a specific parameterization, only that the model is 

parametric. 

In general, we will sample the dynamic response of our structures incompletely in both time and space. 

The measured response is incomplete in time because we sample our responses at discrete intervals, separated 

by a constant time interval LJ t. The measured response is incomplete in space for the reasons described in 

the chapters on static and modal estimation: One generally would not attempt to measure the response at all 

points that correspond to degrees of freedom of the model simply because the economics of deploying that 

much instrumentation is not favorable. Furthennore, some responses might be difficult to make reliably (e.g. 

nodal rotations). Other measurements may be impossible to make because the point is inaccessible (e.g. 

points in the interior of a solid domain). The principle difficulties in parameter estimation accrue from incom

pleteness of the sampled response. 
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Acceleration, velocity, and displacement are related to each otherthmugh differential relations involving 

the continuous time variable t. As such they do not represent independent descriptors of the state of motion, 

but rathernon-holonomic constraints among them. The discrete temporal sampling process prevents us from 

exactly enforcing these differential relations. It is thus profitable to viewthe acceleration a k = ii(t k)' the ve

locity vk = u(tk ), and the displacement dk = u(tk ) as independent state vectors. In general, one would not 

measure all of a k' v k' and d k' so that in addition to temporal and spatial incompleteness we also have incom

pleteness of state. For the sake of clarity, we will assume that we have measured either displacement u(t) or 

acceleration ii(t) , but not both. With the current state of measurement technology this assumption is practical. 

One rarely measures velocity directly, however it should be clear how to fonnulate the problem with such 

measurements from the succeeding derivations. 

To deal with the temporal incompleteness of the data caused by discrete sampling we will enforce equilib

rium of our model only at the sampled time points. Consequently, the equations of dynamic equilibrium at 

time t k for our model problem take the form 

(7.2) 

where gk approximates the applied force vector f(tk). These discrete equations will form the basis of our 

parameter estimation algorithm. For static and modal data we demonstrated two basic approaches to the pa

rameter estimation problem: the equation error method and the output error method. Recall that, while the 

output error method for static and modal data did not require the estimation of the state at the unsampled de

grees of freedom, the equation error method did require such an estimate. Forthe transient dynamic case, we 

shall formulate the parameter estimation problem using an equation error method. Hence, it will be necessary 

to estimate the state at the unsampled degrees of freedom. In contrast with the static and modal cases, the 

dynamic case will require the estimation of the displacement, velocity, and acceleration at the unmeasured 

degrees of freedom. The performance of the parameter estimation algorithm depends crucially upon the esti

mates of the unmeasured states, particularly when the data are polluted with noise. To encourage good perfor

mance of our algorithm, we will insist that it be consistent with the model problem (7.1) in some sense. In 

particular, we will require that the discrete state vectors and the discrete load vectors exactly satisfy a discrete 

version of the governing equations of the dynamic model problem for noise free data. 

7.2. Estimation of the State Vectors 

In our tests there are certain points in space that we monitor (the so-called measured degrees offreedom). 

At these points we record a discrete time series representing either displacement or acceleration according 

to the type of instrument we have deployed there. The determination of the remaining two state vectors (e.g. 

velocity and acceleration if we have measured displacements) is a straightforward exercise in univariate sig

nal processing. That is, the state variables at a point are related only through time differentiation, not through 

physical laws like momentum balance. There are many algorithms for integrating or differentiating time se

ries. In addition to the various numerical integration and differentiation schemes used, most of these methods 

include filtering procedures and baseline correction procedures. Here, we will assume that the measured sig-

91 



nal has been suitably filtered to reduce the amount of noise from the measurements. No baseline adjustments 
will be considered. We will use numerical differentiation to compute velocity and acceleration when displace

ments are available and numerical integration to compute velocity and displacement when accelerations are 

available. 

In the following sections we present two methods for computing the discrete load vector gk and the dis

crete state vectors { d k' V k' a k}. The first approach, called EEEA, assumes that the given data are accelerations 

while the second approach, called EEED, assumes that the given data are displacements. Both methods are 

aimed at preparing us for parameter estimation using the equation error approach. 

Estimating state vectors from accelerations. When the history of acceleration is known at a certain loca

tion one can estimate the state variables at discrete times from the measured acceleration u(t) by direct quad

rature as follows 

(7.3) 

Vk = Vo + {' ii(t)dt = Vo + .dt t. c,a, (7.4) 

dk = U o + votk + ft(tk-t)U(t)dt = Uo +L1t ICiVi 
o i=O 

(7.5) 

where the coefficients ci are particular to the specific numerical integration scheme chosen. One can use any 

numerical integration technique to compute the discrete state {d k' V k' a k} at that point. For example, the 

trapezoidal rule approximates the velocity and displacement at time t k according to the following expressions 

Vk = Vo + L1t(Y:uzo + al + ... + ak- I + %ak) 
(7.6) 

dk = Uo + L1t(%vo + VI + ... + vk- I + %vk) 

Estimating state vectors from displacements. When the history of displacement is known at a certain 

location one can estimate the state variables at discrete times from the measured displacement u(t) using a 

finite difference method as follows 

dk = I ~1 u(tk +i) 
iED 

Vk = I ~r u(tk+i) 
iED 

ak = I ~~ u(tk+i) 
iED 

(7.7) 

(7.8) 

(7.9) 

where the coefficients ~1, ~r, and ~i define the numerical differentiation scheme. We define the summation 

to be over the index setD ={-no,-no+l, ... ,0, ... nf-I, nf}, where no is the number of points from the past 
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and nf is the number of points from the future used in the approximation of the present state variable. A nu

merical differentiation rule is often classified according to the number of points covered. Here, the rule covers 

no+nf + 1 paints, and is not necessarily centered in the interval. A centered three-point method, like New

mark or Houbolt, has the index setD ={-1, 0, I}. Most numerical schemes used to integrate second order 

ordinary differential equations do not look more than one point into the future (because of problems with 

numerical stability), but may look into the past to increase accuracy. These operators would have nf=1. The 

bestknownmethods for integrating the model problem fall into this category, and include the Newmarkmeth

od, the Houboltmethod, and the four-step scheme derived by Zienkiewicz (1987). As will become clear soon, 

there is no reason to avoid methods that reach into the future for the parameter estimation problem. 

A differencing scheme consistent with the Newmark method for solving Eqn. (7.1) uses the displace

ments at three time points, with index set D = {-I, 0, I}. The coefficients for the Newmark method can be 

observed in the following equations 

(7.10) 

(7.11) 

(7.12) 

where f3 and y are the Newmark integration constants, Lit is the time step, and uk - 1' Uk' and uk + 1 are dis

placements at a certain location at times tk - 1, tk , and tk +1, respectively. For the values f3 = 1,4 and y = 1h 

the Newmark equations are identical to the classical central difference method, except that the displacement 

at time t k is computed as the moving average of displacements at the three time points. In particular, 

dk = 1,4(uk - 1 + 2Uk + llk+l).Inessence, the Newmark estimator adds a simple filter to the central differ

ence estimator. 

Integrating accelerations to get velocities and displacements is much more stable with respect to noise 

in the sample than is differentiating displacements to get velocities and accelerations. One might expect that 

a parameter estimation scheme based on measured displacements would not perform as well as one based 

on acceleration measurements. Fortunately, it is far more practical to measure accelerations because of the 

simplicity of establishing an inertial frame of reference. Establishing a frame of reference for displacements 

is difficult, except possibly in a laboratory environment. 

In the sequel we shall assume that the state vectors corresponding to the points of measurement have been 

processed. Accordingly, for the remaining developments, the entire state is available at those locations. 

Estimation of the state vectors at unmeasured points. In accord with our standard notation, we partition 

the displacement vector u(t) into two parts: one part corresponding to the measured degrees of freedom 

£l(nd x 1) and the other part corresponding to the unmeasured degrees of freedom fiend x 1) as follows 
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u(t) = [U(t)] 
il(t) 

(7.13) 

Clearly the number of measured and unmeasured degrees of freedom must sum to the total number of degrees 

of freedom of the model, nd + nd = nd . This partition will be helpful in our treatment of the spatial incom

pleteness of the data. The partition can, by inference, be applied to accelerations and velocities. Let us also 

partition the discrete state vectors { d k' V k' a k} into two parts: one part corresponding to the measured degrees 

of freedom {d k' ;, a k}' each vector having dimension n d' and the other part corresponding to the unmea

sured degrees offreedom {dk' Vk' ilk}' each vector having dimension nd, as follows 

ak = [!:] (7.14) 

For simplicity let us assume that this partitioning is fixed for all time points k=O, ... , ntp, where ntp is the 

number of time points in the sample. Each component of the measured state vectors {d k' ;, ~} can be esti

mated from Eqns. (7.3), (7.4), and (7.5) or from Eqns. (7.7) (7.8), and (7.9), according to whether accelera

tions or displacements were measured. We must still estimate the discrete state vectors at the unmeasured 

degrees of freedom, {dk , Vk' ilk}' 

The main concern in the fommlation of a parameter estimation scheme is the influence of noise in the 

measurements. We have described two experiments, one where the displacements are measured and the velo

cities and accelerations are estimated by numerical differentiation, and the other where the accelerations are 

measured and the velocities and displacements are estimated by numerical integration. In both experiments 

we expect the measured data to be polluted with noise. Numerical difference methods tend to amplify noise 
while numerical integration methods tend to filter it. As a consequence we prefer measured accelerations to 

measured displacements. The estimation of the unmeasured state is a different story. There is no reason to 

view the unmeasured displacements il(t) as being polluted with noise. 

We shall estimate the unmeasured state by numerically differentiating the unmeasured (and as yet un

known) displacements using the finite difference operators described previously as follows 

dk = I ~t il(tk +i ) (7.15) 
iED 

Vk = I ~r u(tk +i) (7.16) 
iED 

ilk = I ~f il(tk +i ) (7.17) 
iED 

If we view the state vectors at the measured locations as known, and estimate the state vectors at the unmea

sured locations using the above finite difference scheme, then the discrete dynamic equations, given by Eqn. 

(7.2), are a function of unknown parameters x and unmeasured displacements il= {uo, ... , ilntp }. 
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Discrete load vector. Zienkiewicz (1977) showed that some well known single-step numerical integration 

methods for the model problem could be cast as multi-time-step methods involving only the displacement 

state. The Newmark method, for example, can be expressed as a three-time-step method using the finite dif

ference equations (7.10), (7.11), and (7.12). If the force vector is also suitably discretized, then the discrete 

version of the dynamic equations of motion is exactly consistent with the original model problem. The dis

crete force vector g k can be approximated in a manner that guarantees it to be consistent with the discrete 

state vectors. For example, the consistent force vector at time t k for the Newmark method, has the following 

form 

(7.18) 

where A-1' A, and A+ 1 are the load vectors attimes t k-1' t k' and t k+1' respectively. Forthe specific values 

of f3 = V4 and y = Yz the expression reduces to gk = V4(jk-1 + zA + A+ 1)' 

The estimator based on measured displacements, EEED, estimates the velocities and accelerations for 

both the measured and unmeasured locations by numerical differentiation. The force vector given by Eqn. 

(7.18) is consistent with the numerical differentiation scheme. The estimator based on measured accelera

tions, EEEA, estimates the velocities and displacements for the measured locations by numerical integration, 

but expresses the velocity and acceleration for the unmeasured locations in terms of the unmeasured displace

ments by numerical differentiation. There is no known expression for the discrete force vectors that is consis

tent with the discrete state vectors computed by a numerical integration. In this case there is not any way to 

exactly satisfy the discrete dynamic equations of motion, Eqn. (7.2). In the absence of a consistent formula. 

we estimate the discrete force vector for EEEA at time t k as follows 

(7.19) 

Using finite-element interpolation functions in the temporal dimension, Zienkiewicz (1977) and Gha

boussi (1987) also showed how to compute the multi-step versions of other known methods, e.g. the Roubol! 

and Wilson-e methods. For a noise free, complete displacement vector u(t), the discrete state vectors and 

the discrete load vector g k computed from any of these direct integration methods provides the required con

sistency among the coefficients of the discrete state vectors and coefficients of the discrete load vector, there

by exactly satisfying the discrete dynamic equations of motion, Eqn. (7.2). 

7.3. The Equation Error Estimator 

Our goal in parameter estimation is to find a set of parameters x that best represent the model problem. 

The model is defined up to the unknown constitutive parameters. In accord with the previous developments, 

the discrete form of the governing equations, Eqn. (7.2), are a function of the unknown constitutive parame

ters x and the unknown displacements corresponding to the unmeasured degrees of freedom at ntp+ 1 time 

points {iIi ' i=O, ... , ntp}. We shall use a least-squares estimator that endeavors to minimize the difference 

between the known applied force and the internal resistance estimated from the measured data. In essence, 
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our estimator tries to minimize the residual forces in the model caused by failure to meet equilibrium. To wit, 

we define the error function for time point t k as follows 

(7.20) 

where the unknowns comprise both the unknown constitutive parameters x = {xM' xc' xK} and the displace

ments at the unmeasured degrees of freedom for all time points U = {uo, ..• , ~tp}. The acceleration, velocity, 

and displacement are explicit functions of the unknown displacements through the numerical differentiation 

of the unmeasured responses. In general, the dependence of these state vectors on {uo, ... , untp } is sparse be

cause the state at time point k depends only on the state at adjacent time points. The error at time point k for 

a three-step method like Newmark, for example, depends only on Uk-I' Uk' and uk+ l' 

The structural property matrices, mass matrix M, damping matrix C, and stiffness matrix K, depend upon 

theirrespective constitutive parameters x = { xM' xc' x K}' The columns of these system matrices can be parti

tioned along the same lines as the state vectors, that is, with respect to measured versus unmeasured degrees 
" of freedom. To wit, we defme the matrices corresponding to the measured degrees of freedom to be M(x), 

C(x), and K(x), each having dimension (nd x nd)' and the matrices corresponding to the unmeasured de

greesoffreedom M(x), C(X) , and K(x),eachhaving dimension (nd X nd). With this notation, theerrorfunc

tion at time point k can be explicitly written as 

ek(x, u) = M(x)ak + C(X)Vk + K(x)dk - gk + I[~fM(x) + ~rC(x) + ~1K(x) ]Uk+i (7.21) 
iED 

In accord with the general form of the estimation problem (2.4), the constrained nonlinear optimization prob
lem for the proposed equation error is 

minimize 
(x, 1I) 

subject to 

nlp-n, 

J(xM,xOxK,uo,,,,,untp) = ~ I ad ek(x,u)lJ2 
k=no (7.22) 

where ~ and x are the prescribed vectors oflower and upper bounds on the unknown constitutive parameters, 

respectively and a k is the weight associated with the kth time point. The most convenient norm to use in the 

loss function is the Euclidean norm II e 112 = eTe. The summation of error terms in the loss function starts with 

time point no and ends with time point ntp-nf because of the scheme used to estimate accelerations and 

velocities from displacements for the unmeasured locations. If the loss function involves the error in equilib

rium from time points no to ntp -nf' then it is a function only of the unmeasured displacements { uo, ... , untp }. 

The proposed estimator simultaneously estimates the unknown constitutive parameters and the displace

ments at the unmeasured degrees offreedom for all time points in the sample. By adding bounding constraints 

on the unknown constitutive parameters we eliminate the possibility of converging to infeasible solutions. 

As explained in Chapter Two, we employ the recursive quadratic programming (RQP) to solve optimization 
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problem (7.22). The RQP algorithm needs the gradient vector and the Hessian matrix of the loss function 

J(XM' xc' XK' ira, ... , irmp) withrespecttotheunknown variables {XM , xc' XK> ira, ... , irmp}. These sensitivi

ties are computed in the following section. 

7.4. Sensitivity of tbe Loss Function 

The minimization algorithm requires the gradient of the loss function with respect to the unknown vari

abIes {xM' xc' XK' ira, ... , irntp}. We compute this gradient according to the follOwing partition 

(7.23) 

The gradients with respect to the constitutive parameters are easily computed as 

(7.24) 

(7.25) 

(7.26) 

Further simplification of these expressions is possible if one recognizes that the global coefficient matrices 

M, C, and K of a finite element model are assembled from element contributions as follows 

Nm Nm Nm 

M(x) = I Me(xM) C(x) = I Ce(4) K(x) = I ](l'(xK) (7.27) 

e=l e=l e=l 

whereMe
, ce

, and](l' are element mass, damping, and stiffness matrices, each with size of (n~ x n~), where 

n~ is number of degrees of freedom associated with each element. A superscript e indicates association with 

element e and N m is the number of elements in the structure. For example, rM , XC, and x:K are the vectors 
of unknown mass, damping, and stiffness parameters, respectively, associated with the ethelement The num

ber of parameters per element is n~. The assembly process is linear, and hence the gradient matrices U are 

sparse with respect to the constitutive parameters. The element sensitivity matrix Ue consists of element sen

sitivity matrices with respect to xM' xc' and x1c, respectively shown by UM, Uc , and U1c, and computed 

as follows 

UM-{xM,ak) = a °e [W(xM)akl 'XM 

UCCxe, vk) = a ° e [ce(xe)vkJ (7.28) 
\Xc 

UK(xe de) K' k = a ° e [](l'(4)dkJ 
\XK 
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where ak, Vk ' and dk are discrete acceleration, velocity, and displacement vectors at the kth time point 

associated with the eth element. (Localization of the state variables is a basic operation in a general purpose 

finite element program. Clearly, it is useful here too.) All of these local vectors have the size (nd xl). Often, 

the element matrices Me, Ce, and Ke are linear with respect to their parameters x~, xc' and xK (as they are, 

for example, in a truss bar or a Bernoulli-Euler beam). In these cases, the sensitivity matrix U is independent 

of the unknown parameters x. In Appendix B we have explained how the element sensitivity matrices U~ , 

Uc ,and UK can be built from the fundamental relations of the finite element method. 

Since displacements at the locations of the unmeasured degrees of freedom for ntp time points are also 

unknown, we must compute the gradient of the error function e k(x, it) with respect to iii where index i takes 

values i=O, ... , ntp. To help describe the computation of this gradient let us define the matrix Zj as 

I ~jM(x) + ~JC(x) + ~1K(x) 
Zix) == 

o 

JED 
(7.29) 

j~D 

The matrix Zj is a function of the constitutive parameters x because of its dependence on the matrices M, 

C, and K.1t also depends upon the specific operator used for time differentiation of the unknown state vec

tors at the locations of the unmeasured degrees of freedom. The matrices M, C, and K are fixed for all time 

points and are computed with standard assembly procedures. Forthe (three-point) Newmark method, the ma
trices Z_l' Zo, and Zl take the following fonn 

1 - 1 - -
Z_l = LJt2M + LJt(1' - l)C + (Y2 + 13 - 1')K 

2 - 1 - -
Zo = - LJt2M - 71(21' - l)C + (Y2 - 2f3 + 1')K 

Z 1 - 1 C -
1 = LJt2M + LJt 1' + 13K 

(7.30) 

The value ofZ for any index other that {-I, 0, I} is zero for this case. Using the preceding notation the gradient 

of the error function at the kth time point is given by 

(7.31) 

where the index k takes values k=no, ... , ntp-nl' and the index i takes values i=O, ... , ntp. We assume that 

the finite element model is linear, therefore the structural matrices M, C, and K do not depend on the response. 

Consequently, for a particular finite difference method based on displacement vectors at no+nf+l time 

points, the matrix V liie k(x, ii) is constant for all time points. 

The total gradient of the error function with respect to the unknown variables, defined in Eqn. (7.23) can 

now be explicitly written as 
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where the matrix U is the concatenation of the individual gradients with respect to the variables x and the 

matrix G k is the concatenation of the gradients with respect to the unknown responses, and is typically quite 

sparse. Now, the gradient of the loss function VJ(x, if) withrespectto the unknown variables for the proposed 

estimator in Eqn. (7.22) takes the following form 

ntp-n, ntp-n, 

VJ(x,if) = L akVTek(x,if)ek(x,U) = L ak[U(x,u) (7.33) 

k=no k=no 

The recursive quadratic programming algorithm requires an estimate of the Hessian of the loss function. 

This estimate can be made with a rank-two update formula (such as the modified BFGS update used in the 

Han-Powell method), however, two interesting alternatives are available for the present problem. In particu

lar, one can compute the exact Hessian and the Gauss-Newton approximation of the Hessian of the loss func

tion J(x, if). 

The Gauss-Newton approximation of the Hessian matrix H GN is the part of the Hessian involving only 

first derivative terms and can be computed as JlGN = ITc ak VTek Vek. Accordingly it takes the form 

UT(x, U)Gk(X)] 

GI(x) Gix) 
(7.34) 

(7.35) 

where the third order tensors V;rG k' V;rU, and V flU represent the second derivatives of the loss function, 

and can be computed according to the procedures outlined in Section 3.2. 

The Gauss-Newton approximation oftbe Hessian requires considerably less computation and storage 

than the exact Hessian, and generally constitutes an adequate representation of the exact Hessian when the 

residual is small. Further, HGN(x, if) is positive semi-definite for all values of the parameters, while H(x, if) 

may not be. 

Our experience with Newton methods (using either the exact or approximate Hessian) and quasi -Newton 

suggests thatRQP converges in fewer iterations using a Gauss-Newtonmethod than it does using the Han-Po

well method. This observation is consistent with observations made by other researchers solving least

squares problems. 
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7.5. Initial Values, Scaling, and Identifiability 

The proposed equation error estimator is based on solving a nonlinear constrained optimization problem. 

Like any iterative process, the recursive quadratic programming method needs initial values for the unknown 

variables in order to start the iteration. In Section 3.4, we discussed in detail different alternatives that one 

can use to generate initial values for the unknown constitutive parameters and the unmeasured displacements. 

The recursive quadratic programming (RQP) method is used to minimize the loss function of the pro

posed estimator. The RQP algorithm is an iterative gradient search strategy. Therefore, the performance of 

the RQP method depends on the local properties of the surface of the loss function around a local minimum. 

A large difference between the order of magnitudes of the optimization variables (scaling problem) canmani

fest as large narrow ravines in the topography of the loss function. These ravines can affect the convergence 
rate of the RQP algorithm and occasionally cause the algorithm to oscillate. If the bottom of the ravine has 

directions in which the CUIvature is negligible (i.e. flat spots), the Hessian may become singular (or nearly 

singular), causing additional problems with convergence. The scaling problem exists for parameter estima

tion since the unknown constitutive parameters x may represent different classes of physical properties and 

thus may have different orders of magnitude. Further, the displacements at the locations of the unmeasured 

degrees of freedom il have magnitudes quite different from the unknown parameters x. 

To solve the scaling problem, we scale the optimization variables to have the same order of magnitude. 

The scale matrix is constructed based on the initial values of the optimization variables using the procedure 

explained in Section 3.5. 

The estimations are reliable if a certain minimum amount of data are available. Confidence in the esti
mates increases with the amount of information above this minimum level. Since the algorithm for the tran

sient dynamic is analogous to those of the static and modal problems, the basic identifiability criterion is the 

same. Hence, we must have 

(7.36) 

where the left -hand side of Eqn. (7.36) is the number of independent measurements and np is the number of 

unknown constitutive parameters. The identifiability criterion (7.36) is a quantitative index for the richness of 

the available information. If this criterion is not satisfied, then the estimates are totally unreliable. However, 

satisfaction of the identifiability criterion does not guarantee reliable estimates. 

7.6. Time Windowing 

In a forced vibration experiment, we measure histories of displacements u(t) or accelerations ii(t) for 

a period of time which begins at time To and ends at time Tf , (see Fig. 7.1). The measured response of the 

structure is recorded digitally at time points equally spaced by the time step LI T. One can determine the num

ber of recorded time points NTP as follows 

Tf - To 
NTP = LIT + 1 

100 
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Fig. 7.1 Schematic representation oflocation and size of a window 

One can use the entire hlstory of measurements to estimate the unknown parameters. However, this strategy 

is neither necessary nor computationally efficient, particularly for complex structures. For a fixed number 

of measured degrees of freedom n d and a fixed number of unknown parameters np one must provide data 

at a sufficient number of time points to reliably estimate the unknown parameters. Therefore, we theoretically 

need only a portion of the measured response. We call this portion of the measured response, which begins 

at time to and ends at time tf and contains ntp time points, a time window or simply a window and we refer 

to ntp as the window size. 

Since the forced transient dynamic response is incomplete in time and space, numerically approximation 

of the discrete state vectors adds error to the parameter estimation problem. One can minimize the effect of 
this error if one takes the time step to be reasonably small. But, the distance between two consecutive time 

points in a window controls not only the numerical errors but also one of the estimation error sources. If time 

points are relatively far from each other, numerical errors in integration and/or differentiation will accrue. 

On the other hand, if time points are close to each other, data at ~jacent time points do not provide distin

guishing new information for the estimator. As a consequent one must generally have a sample frequent 

enough to control numerical errors. From that sample we use intermittent points to estimate parameters. The 

estimation time step ..1 t might be a multiple of the recording time step L1 T as follows 

..1t = lUMP x ..1T (7.38) 

One can adjust..1 t by changing JUMP to find a suitable time step that keeps estimation errors reasonably low. 

Figure 7.1 schematically shows a window, window size, and window time step L1 T along a history of accel

erations. 

7.7. Averaging Estimates for Multiple Time Windows 

After computing the discrete state vectors at the measured locations and the discrete load vector, we esti

mate the unknown constitutive parameters of the model and the unmeasured state vectors by solving a con

strained nonlinear optimization problem. Each of these estimates necessarily corresponds to a specific time 

window. A small time window might have sufficient data to make these estimates, but they would tend to 

be sensitive to the location of the window, particularly for large amplitudes of noise. However, many such 
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windows would be available to make independent estimates. To improve the reliability of the estimated val

ues we compute the average over a sample ofN windows located sequentially or randomly along the measured 

history of response. Consequently, we will solve N different constrained nonlinear optimization problems 

corresponding to N different windows which generate N different vectors of parameters x. We compute the 

average of estimates x for all the windows as the estimates parameters x * as follows 

N 
* II x = - x· N I 

(7.39) 

i=1 

As an alternative, one could take comparatively few time windows each having a large number of time 

points. Again, one can average the results, but there would be fewer members in the sample. The optimal 

strategy is not obvious, but will be explored in the next chapter. 

7.8. Modal Identification: A Special Case 

In Chapter Five, we developed two estimators to detennine stiffness parameters of a finite element model 

of a structure using measured modal data in conjunction with the known mass matrix. Also, we proposed an 

equation error estimator when both mass and stiffness parameters are unknown. If both the mass and the stiff
ness matrices are unknown and the modal data are available then modal identification can be viewed as a 

special case of the parameter estimation problem based on forced, transient response. 

The governing equation for undamped free vibration has the following fonn 

M(X)}.kJlk - K(x)uk = 0 (7.40) 

where A. k is the square of the kth natural frequency and uk is the kth mode shape and k takes values from one 

to the number of measured modes nmd. If we let ak=A.kuk and dk= - Uk' and assume our usual partitioning 

of measured and unmeasured modal displacements, then an error function corresponding to Eqn. (7.40) can 

be expressed in a manner similar to Eqn. (7.21) as follows 

(7.41) 

The main difference between Eqns. (7.41) and (7.21) is that, in Eqn. (7.41) the error function corresponding 

to the kth mode e k is a function of the constitutive parameters x and unmeasured displacements of onl y the 

kth mode uk. While, the error function corresponding to the kth time point in Eqn. (7.21) depends on the un

measured displacements at the locations of unmeasured degrees of freedom from the other time points too. 
When the modal data is available the algorithm skips the first part, computation of the discrete unmeasured 

state vectors and begins directly with the second step, estimation of the unknown variables. 

In accord with the general fonn of the estimation problem (2.4), the constrained nonlinear optimization 

problem for the proposed equation error is 
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minimize 
(r, ii) 

nmti 

J(xM'xIO iii, ... ,unmd) = ! L ak 1/ eix,u) 112 
k=l 

subject to x S x S x 

(7.42) 

The loss function for the modal estimation problem must be augmented by a constraint relating the constitu

tive parameters. For example, the total mass be lmown a priori or some of the individual parameters might 

be known. Now we can compute the gradient of the error function as follows 

(7.43) 

The gradients with respect to the constitutive parameters are easily computed as 

(7.44) 

(7.45) 

We must also compute the gradient of the error function e k(x, it) with respect to ~. To help describe the 

computation of this gradient let us define the matrix Zi for our present purposes to be 

(7.46) 

Using this notation the gradient of the error function with respect to the kth modal vector is given by 

(7.47) 

where 0 ik is the Kronecker delta. In this case of the indices take values bO, ... , nmd, and i=O, .... , nmd. We 

assume that the finite element model is linear, therefore the structural matrices M, C, and K do not depend 

on the response. Consequently, for a particular finite difference method based on displacement vectors, the 

matrix V rrl k(x, it) is constant for all modes. 

The total gradient of the error function with respect to the unknown variables, defined in Eqn. (7.23) can 

now be explicitly written as 

(7.48) 

where the matrix U is the concatenation of the individual gradients with respect to the variables x and the 

matrix Gk is the concatenation of the gradients with respect to the unknown responses, and is quite sparse. 

Now, the gradient of the loss function VJ(x, it) with respect to the unknown variables for the proposed estima

tor in Eqn. (7.22) takes the following form 
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nmd nmd 

VJ(x,it) = L akVTeix,it)ek(x,it) = L ak[ U(x,u) (7.49) 

k=l k=l 

With the notation used here, the Hessian approximations are identical to those developed earlier. 

The analogy between the modal parameter estimation problem and the transient dynamic parameter es

timation problem is quite clear. Mode numbers are analogous to time point numbers and we must still esti

mate the unmeasured modal displacements. However, we do not need to estimate discrete state vectors at the 

measured degrees of freedom because both the "acceleration" and "displacement" are given in tenns of the 

modal displacements Uk' There also is no need for a numerical differentiation scheme since the succeeding 

points are not related through time differentiation. The main advantage of recognizing the analogy is that the 
modal estimation procedure can be programmed as a direct subset of the transient dynamic procedure. 

7.9. Relation to Other Methods 

Parameter estimation in structures from dynamic response data has enjoyed considerable attention in re

cent years. The methods that have been developed span the range from linear detenninistic models to nonlin

ear stochastic models. The applications range from improving mathematical models of systems to damage 

detection, from identifying the input of a system to controlling its response. 

One can broadly classify a parameter estimation method using dynamic response as either a time- domain 

method or a frequency-domain method. The equations governing the mathematical model are generally de

fined in the time domain, but can be transfonned to the frequency domain using either the Laplace or Fourier 

transfonn. In general, the choice between time domain and frequency domain is dictated by the prior knowl

edge of the system and the intended use of the model. When the system is governed by differential or differ

ence equations, when the model is intended to predict future response or to simulate the system, or when a 

stochastic control is desired, a time-domain model will eventually be required. When the objective of the 
identification process is to detennined resonances in the response of a system, to design a model for afrequen

cy domain control system, or when the bandwidth and the frequency resolution are available as a priori infor

mation, then a frequency-domain model must be employed. 

The theory and practice of system identification in engineering, particularly in control, were dominated 

by frequency-domain methods up to the 1960's. From the end of the 1960's onward, interest in time-domain 

methods has increased. Now, time-domain methods seem to dominate the literature on identification. Ljung 

and Glover (1981) compare the frequency-domain methods and time-domain methods and summarize some 

of the most popular methods in these two domains. They conclude that, although time-domain and frequency

domain identification methods are often viewed as competitive, they actually complement each other. In the 

following sections we briefly explain the problem of parameter estimation in the time and frequency domains. 

Time Domain Methods. Recall the governing equations of motion of a structural system with mass M, 

damping C, and stiffness K, subject to a force /(t): 

Mii(t) + Cu(t) + Ku(t) = /(t) (7.50) 
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where u(t), aCt), and li(t), represent the nodal displacements, velocities, and accelerations, respectively. 

These equations can be recast in state space by defining the state vector Y(t) as 

Y(t) = { :;:;} (7.51) 

and the (constant) system matrix A and system input vector b(t) , respectively as follows 

A = [-M~'K -M~'C] { 
0 } bet) = 

-M-y(t) 
(7.52) 

With these definitions, Eqn. (7.50) takes the form 

Yet) = AY(t) + bet) (7.53) 

Most state-space methods exploit the closed-form solution ofEqn. (7.53), which is given in terms of matrix 

exponentials as 

Y(t) = eA(H')Y(to) + r eA(t-T)b(TjdT 

to 

(7.54) 

Some of the earHestmethods, for example those proposed by Ibrahim and Mikulcik (1973 and 1976), take 

advantage of the simplicity of the free vibration problem, i.e. b(t)=O. Ibrahim's method assembles two ma

trices of observations that lag each other by an amount ti + 1 - t i == L1 t. Let the dimension of the state space 

be 2n, and the number of observation time points be m+ 1. Further, define the two observation matrices as 

follows 

(7.55) 

By virtue ofEqn. (7.54), these two matrices satisfy 

(7.56) 

and the exponential matrix can be estimated by least-squares as 

(7.57) 

Let ¢ be an eigenvector of A and 1 the corresponding eigenvalue, that is A¢ = 1¢. One can easily show 

that ¢ is also an eigenvector of ~t with corresponding eigenvalue (J) == eMt using the definition of the ma

trix exponentiaL To wit, 

(ALlt)2 
eALlt¢ = [I + ALlt + 2! +... ]¢ (7.58) 
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The complex numbers A. are clearly the damped natural frequencies of the structure corresponding to the 

damped modes ¢. Thus Ibrihim's method amounts to (a) assembling the observation matrices, (b) fonning 

the approximationB according to Eqn. (7.57), (c) finding the eigenvalues and eigenvectors of B, and (d) relat

ing the eigenvalues of B to the frequencies and damping ratios of the system. 

Tsen and Mook (1987) derived an estimation algorithm for linear, time-invariant dynamic models of 
"-

structures by minimizing the difference between observations yet) and a linear expansion of the model in 

tenns of the parameter p. The error function of time t then takes the fonn 

e(t,L1p) = Y(t,p+L1p) - yet) = Y(t,p) + ~;L1P - Yet) (7.59) 

and is linear in the increment L1p. They recognized that the sensitivity of Y evolves in a manner similar to 

Y itself. In fact, if one defines 

{ 

yet) } 
Z(t) = a~~) (7.60) 

Then the augmented system evolves according to 

(7.61) 

Since D is completely known, one can compute both the state vector and its sensitivity for any given value 
of the parameter p for all times t. The error given in Eqn. (7.59) can then be minimized with respect to L1p. 

The method requires state-observable, free or force, discrete time domain measurements. 

Hac and Spanos (1990) used state variables and the concept of Kalman filter to estimate members of the 

system matrix. They tried to improve the quality of data by using an adaptive Kalman filter. The implementa

tion of the Kalman filter requires known system matrix A. Therefore, they proposed an iterative procedure 

using Ibrahim's method. This algorithm had three steps. In the first step, the initial system matrix was esti

mated using Ibrahim's method. In the second step, the data were smoothed and in the third step the smooth 

data were given back to Ibrahim's method to compute the system matrix. They concluded that this method 

improved the results of Ibrahim's method, but if Ibrahim's method used least -squares to compute the state 

system, filtering the data would not improve the results significantly. The developed method required com

plete eigenvectors and assumed the covarience matrix of the measurements was known. 

There are some other methods developed to estimate the forcing function or to model a structure using 

ARMA methods. Here, we briefly explain and list a few of these methods. Pi and Mickleborough (1989) pres

ented a time domain method for estimating the modal parameters of a linear vibrating structure. The method 

was based on an ARMAX model and the modal parameters were related to the coefficient matrices. They as

sumed the vibrating structure was completely observable and displacements were measured. Lee and Olen 

(1989) proposed an approach to estimate autoregressive parameters of an AR model of a randomly excited 

structure. The method required displacements and velocities at all degrees of freedom and assumed an unmea

sured white noise in the input sequence. Yun and Shinozuka (1990) developed a method for identification of 
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the coefficient matrices in the equation of motion for linear structures. They traIlsfonned the equation ofmo

tioninto an ARJ.\fAX model and estimated the parameters of the ARMAXmodel, then they recovered the coef

ficient matrices of the original problem. This method requires time histories of the excitations and displace
ments at all degrees of freedom, assumes the system is observable with an index two and for models with 

order larger than two or large, complex structures has serious problem with number of parameters and recov

ering the members of the coefficient matrices from the estimated ARMAXmodel. In 1992 Yun, et al. modified 

the model to estimate the modal parameters. HoIlkarnp and BatiII (1991) developed an algorithm forparame

ter estimation of an ARMAmodel of a structure using discrete time history of the response. The method was 

used for response prediction and was limited to SISO applications. 

Wang (1990) proposed two methods for prediction of vibration at inaccessible points using measurable 

data. The first method assumed the structural matrices were known and used state variable method to estimate 

displacements at inaccessible locations of the system. The second method used an impulse response function 

to predict the unknown vibrations. Lim and Pilkey (1992) presented a procedure for lightly damped flexible 

structures to estimate forcing functions. They assumed the structural matrices, all state vectors at some de

grees of freedom, and the locations of of loads on the structure were known. The method used the modal re

duction technique to approximate the state vectors at unmeasured degrees of freedom using the known mass 

and stiffness matrices. 

Frequency Domain Methods. One can transfer the equation of motion, Eqn. (7.50), into the frequency 
domain using Fourier or Laplace traIlsfonnation and assuming the initial displacements and velocities are 

zero. For example, using the Laplace traIlsfonn we have 

[s2M + sC + K] u(s) = f(s) (7.62) 

where u(s) and j(s) are the Laplace transform of the history of displacements u(t) and history of excitation 

J(t), respectively. Equation (7.62) can be inverted to yield 

u(s) = H(s)J(s) (7.63) 

where H(s) is called the frequency response function or transfer function. The inverse of the frequency re

sponse function is known as dynamic stiffness matrix or impedance matrix. In the frequency domain, the 

equations of motion look exactly like the static parameter estimation problem. The main difficulty lies in 

computing the Laplace transfonn of the excitation and response functions. 

Caravani and Thomson (1974) fonnulated amethod to determine members of asymmetric viscous damp

ing matrix from frequency responses. They assumed the mass and stiffness matrices were known. Their algo

rithm was a recursive output error approach, wherein they processed one frequency point at a time in an effort 

to improve the estimated damping matrix. For the most recent frequency point they estimated the damping 
matrix. Then, using the updated damping matrix they computed frequency responses for all the previous fre

quency points and again estimated the damping matrix. This algorithm required the complete and noise free 
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frequency responses over some frequency range and assumed that the load vector was a known function of 
frequency. 

Fritzen (1986) presented an iterative algorithm using both least squares and instrumental variable meth

ods to compute members of the structural matrices. His method required displacements or frequency response 

function. He used an equation error function rather than an output error function because it is linear with re

spect to the members of the structural matrices. He considered only the elements that are linear with respect 

to their constitutive parameters. He assumed the complete frequency response function was available and 

used the method of Young (1970) to build an instrumental variable function. Young had suggested using the 

undisturbed output signals of the system which are unknown but can be approximated using an auxiliary 

model. 

Wang (1988) combined a weighted frequency response function with the instrumental variable method 

or least squares method to identify the structural matrices. The developed method tried to estimate the mem

bers of the structural matrices such that the error between the theoretical and measured frequency response 

functions H(s) was minimal. He discussed a procedure for finding a relatively small number of data points 

from the frequency response function such that the accuracy of the estimates increased and computational 
cost and measurement time decreased. This method required a complete frequency response function. He 
concluded that using more data points increases the accuracy of estimates and the instrumental variable meth
od computes more accurate quantities than least squares method. 

Hoff (1989) proposed a model-updating method in conjunction with amodel-order-reduction technique. 

He concluded that, to simulate the lower spectrum frequencies of a structure, a model with a large number 

of degrees of freedom is usually required. He introduced a transfOlmation matrix built by computed lower 

eigenvectors of the undamped initial analytical model. Then, he reduce the order of the initial model by ortho

gonal similarity transfOlmations of all structural matrices and input output vectors using the introduced trans

formation matrix. This technique was sensitive to the number of modes and the selection of modes used to 

construct the transformation matrix. The computed natural frequencies from the reduced-order model were 

sensitive to the transformation matrix. He divided each structural matrix into two submatrices: a submatrix 

that remained constant and a submatrices that was modified during the identification process. He defmed the 

modified submatrix as a linear combination of some known matrices and computed the coefficients of these 

series using a weighted least squares method. He applied the developed algorithm for two cases: modal data 
and frequency domain data. When modal data were available, he used an input error approach and complete 

mode shapes. For incomplete mode shapes, he completed them using the members of the computed eigenvec

tors of the large initial model. For damped free vibration data he assumed a Rayleigh damping. When tran

sient dynamic response was available, he transferred the data to frequency domain and considered both the 

input error and output error approaches. The developed method required lower eigenpairs of the undamped 

model and computed modified members for the structural matrices. The modified terms were very sensitive 

to the selected frequency band. 

Foster and Mottershead (1990) estimated members of the structural matrices using frequency domain data 

and least squares and singular value decomposition techniques. They assumed that the initial finite element 

108 



model would be modified by a minimum amount. Further, they used static condensation to reduce the order 

of the model which caused serious errors into the modified finite element model and limited the application 

of the method. They had some problems with modifying the damping matrix and with the dimension of the 

structure. 

Jiang, et at. (1990) proposed a frequency domain technique for estimating natural frequencies and damp

ing ratios of large, complex structures subject to multiple steady sinusoidal excitation. The method used re

sults from a conventional ground vibration test and resolved some drawbacks of the testing requirements. 

7.10. Chapter Summary 

We have studied the problem of parameter estimation using forced, transient, damped response of a real 

structure. We have developed an equation error estimator using either measured displacements or accelera

tions in the time. We have assumed that the geometry and topology of the model are known and have used 

the history of applied loads, and nodal responses at some degrees of freedom of the model. 

For the proposed parameter estimation algorithm, we first compute the unmeasured state vectors at the 

locations of the measured degrees offreedom using anumerical differentiation method if displacements have 

been measured or a numerical integration method if accelerations have been measured. Then, we compute 

all the state vectors at the locations of the 1!IlIDeasured degrees of freedom using a finite difference method. 
Next, we estimate the unknown constitutive parameters by solving a constrained nonlinear optimization 

problem. We advocate the use of the recursive quadratic programming method (RQP) to solve the optimiza

tion problems. The proposed estimator can accommodate response sampled incompletely in time, state, and 

space. It has robust convergence, and is amenable to identification of complex structural systems. 

We have briefly explained a procedure for generating initial values of the unknown variables and a scaling 

strategy. The concepts of estimation time step and time windows have also been discussed. 

As a special case of the transient, dynamic estimator, we have shown thatthls estimator can accept modal 

information and estimate mass and stiffness parameters of a model. We have derived the necessary equations 

and have also explained the way that the input should be provided. 
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CHAPTER EIGHT 

Numerical Simulation Studies: Transient Dynamic Case 

In this chapter we examine the performance of the transient dynamic estimator through a simulation 

study. The subject structure is the 49 element planar bridge truss shown in Fig. 8.1. We examine the behavior 

of the estimator with respect to noise, the location of the window, the size of the window, the size of the time 

step, and the number of measured degrees of freedom. In addition to our study of the effects of the physical 

character of the data, we study the effects of different starting values of the unknown parameters used to initi

ate the iteration. We investigate our parameter estimation algorithm for two cases: (1) when a history of dis

placements at some degrees of freedom is available and (2) when a history of accelerations at some degrees 

of freedom is available. 

The present work focuses on the behavior of the proposed estimator in the face of noisy data. All of the 

simulations use noisy data. We use the simulation environment introduced in Section 2.6 to control the statis

tical properties of the noise in the measurements and to determine the statistical properties of the estimations. 

The geometry, topology, and element numbering of the bridge truss are shown in Fig. 8.1 and in the rest 

of this chapter we refer to this finite element model as the real structure. This structure represents a truss of 

a highway bridge designed to carry amoving load of 0.8 kpfincluding impact and a uniform dead load of2.0 

kpf. Ithas 26 nodes and consists of 49 elements with four different cross sectional areas. Table 8.1 lists element 

numbers, type, actual mass density, and actual cross sectional area of each group of elements. 

We will assume that the structure is lightly damped, and model it as consistent viscous damping, with 

viscosity equal to 0.01 (kips I (fi I sec) 1ft). Further, we assume that the dead load of the structure is uniformly 

distributed along al149 elements with amass density equal to 0.017 (kipsl(filsec2)lft). All elements have 

Young's modulus of 432 x 104. (kips Ift2). In Table 8.2 the first three and the last natural frequencies of the 

structure are listed and indicate that the structure is relatively stiff. 

The axial stiffuesses, mass densities, and damping parameters of the elements can be taken as the un

known parameters in the simulation study. Since the program is capable of grouping the elements with the 
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Fig. 8.1 Schematic representation of the bridge truss 
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Table 8.1. Nominal properties of the bridge truss 

Element Element Element Mass Area 

Group Number Type Ib/(jlj sec2)/ft (in2) 

1 1-5,4~9 W21 x83 2.58 24.3 

2 6-13,37-44 W21 x93 2.90 27.3 

3 14-21,29-36 W24x 104 3.23 30.6 

4 22-28 W24x 146 4.54 43.0 

same properties, the number of unknown stiffness parameters can be reduced to four, corresponding to the 

number of groups of elements. We shall assume that all of the elements have the same mass densities and 

damping. Thus, we have one group for the mass densities and one group for the damping parameters. The 

total number of constitutive parameters of the finite element model of the structure is six, including four stiff

ness parameters, one mass parameter, and one damping parameter. The program can estimate all the constitu

tive parameters. But since the value of mass and damping parameters are very small, noise in measurements 

might swamp the estimation of these parameters and mask the behavior of the estimator. So, for this simula

tion study we assume the mass density and viscosity are known and investigate the behavior of the estimator 

from the estimation of the stiffness parameters. 

We use Monte Carlo simulation to investigate the statistical behavior of the estimator. Monte Carlo simu

lation is based on the generation of a sample of responses from which we estimate the statistical properties 

of the output parameters. For each random incarnation of noise which is added to the computed response the 

estimator processes the given information and solves a nonlinear constrained optimization problem to com

pute the unknown parameters. The ensemble of these estimates constitutes the Monte Carlo sample. 

8.1. Simulated Response 

To simulate field measurements, we add different noise vectors to the output of the fmite element model 

of the structure under the dynamic loads. The noise vector is either absolute or proportional and is added to 

either displacements or accelerations, depending on which of these we assume to be measured (see Section 

2.6). The simulated field measurements are given as the input to the estimator. 

We will simulate a dynamic loading of the structure and measure its response. The load set consists of 
five dynamic loads with sinusoidal variations, simultaneously applied at five nodes of the structure shown 

Table 8.2. Natural frequencies and period of vibration of the bridge truss 

Mode 
Natural Period 

Number 
frequency (sec) 
(rad/ sec) 

1 22.00 0.29 

2 41.23 0.15 

3 55.70 0.11 

48 707.99 om 
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Fig. 8.2 Schematic representation of the dynamic loads 

inFig. 8.2. The duration of each test will exceed one second. Each load has amplitude of 200 (kips) and fre

quency of 20 (radl sec) which is close to the first natural frequency of the structure. The magnitude of nodal 

loads are chosen such that the maximum nodal displacement is less than 5.0 inches. In the rest of this chapter 

we use either the first second of the measured displacements orthe first 0.15 seconds of the measured accelera

tions to estimate the unknown panuneters and study the statistical behavior of the proposed estimator. 

As mentioned in Chapter Seven, we use the NewmaIk method to solve the model equation. Forthis class 

of direct integration methods, the time step LI T should satisfy the relationship .L1 T ~ 2/ almax, where almax 

is the largest natural frequency of the structure. If this relation holds, the direct solution is guaranteed to be 

stable. By decreasing the time step the analytical solution converges to the actual solution of the governing 

equation. From Table 8.2, the largest natural frequency for this structure is about 708 (radl sec) therefore, the 

time step should be less than 0.003 seconds to satisfy the stability condition. To reduce the numerical errors 

for the problem at hand, LITis taken to be 0.001 seconds. 

To illustrate the analytical behavior of the structure under appli.ed loads, the vertical responses of node 

16 are plottedinFig. 8.3. The small disturbances observable in the accelerations are due to the effects of higher 

modes. In the following four figures, the noisy measured response and the discrete equivalent forms of all 

the state vectors are plotted. If the displacements are measured at a certain degrees of freedom, the discrete 

displacements, velocities and accelerations at these measured degrees of freedom are approximately com

puted using the Newmark method with y = 1/2 and P = 1/4, (Eqns. (7.10), (7.11), and (7.12». When a 

history of accelerations at some degrees of freedom are measured, discrete state vectors are computed by the 

trapezoidal rule (Eqns. (7.3) and (7.6». 

0.6 ,..---,.--....,.----.----, 12r--,.----.---.----. 300r--.----;-----r----, 

Velocity (ftfsec) 

4 

-4 

-O.6'--_...l...-_-'-_---' _ ___' -12'--_...l...-_-'-_~ _ ___' -300'---...l...---'-----'----' 

0.0 0.5 
Time (sec) 

1.0 0.0 0.5 
TIme (sec) 

1.0 0.0 0.5 
TIme (sec) 

1.0 

Fig. 8.3 Analytical responses of the structure at node 16 
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Figure 8.4 shows the noisy vertical displacement of node 16 and discrete state vectors, computed by Eqns. 

(7.10), (7.11), and (7.12), for amplitudes of 0.0024 inches and 0.024 inches. The same plots are presented for 

proportional noise in Fig. 8.5 for a small noise with the amplitude of 1 % and a large noise with the amplitude 

of 20%. As we expect, even for a small amount of noise in displacement, large disturbances develop in the 

discrete velocity and acceleration vectors from numerical differentiation. 

The measured vertical acceleration at node 16 and its corresponding discrete state vectors for a small ab

solute noise with the amplitude of24 (in/ sec2 ) and a large absolute noise with the amplitude of 180 (in / sec2 ) 

are shown in Fig. 8.6. The same plots for a small proportional noise of 2% and a large proportional noise of 

20% are presented in Fig. 8.7. One can notice that by using numerical integration, the effect of noise in discrete 

velocity and displacement vectors is reduced. 

8.2. Estimation Time Step 

The estimator requires measured response at discrete time points. One must provide infonnation about 
the response of the structure at a finite number of time points equally spaced from each other. Finding an 

appropriate time step LI t is crucial for the reliability of the estimations (see Section 7.6). One can study the 

measured responses of the structure to choose an appropriate estimation time step. For the problem at hand, 

when we have a history of displacements, we choose LIt equal to 0.01 seconds (see Figs. 8.4 and 8.5). When 

we use measured accelerations, the estimation time step should be very small to grasp all the infonnation 

contained in the recorded response (see Figs. 8.6 and 8.7). We choose LIt equal to 0.0001 seconds. The effect 

of the size of the time step on the estimated parameters will be discussed later in this chapter. 

8.3. Location of the Time Window and the Effect of the Sample Size 

We have observed that the estimator is quite sensitive to the location of the window, especially for large 

amplitudes of noise. To overcome this problem we use a sample of windows which can be located specifically 

or randomly along the history of the measured response instead of using one window to estimate the parame

ters. We increase the number of windows until the statistical indices become steady. Then, we compute the 

average of estimates from all the windows and consider the vector of average parameters as the estimated 

parameters. 

The reliability of the statistical behavior of the estimator also depends on the sample size (number of 

trials). In order to establish statistical significance of the estimates, the sample size should be sufficiently 

large. Increasing the size of the sample demands more computation, so a compromise between the accuracy 

of the estimates and computational efficiency detennines a lower bound for the sample size. A sufficient sam

pIe size is one for which the statistical indices of the sample of estimated parameters do not change by increas

ing the number of trials. 

To establish how many trials and time windows are sufficient, one must consider plots like those shown 

in Figs. 8.8 and 8.9 for different amplitudes of noise. In Fig. 8.8, for example, the variations of the root qua

dratic biasRQB and standard deviationSD of the estimated parameters from complete displacement measure

ments and a small absolute noise of 0.0024 inches and a large absolute noise of 0.024 inches versus number 
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of trials and number of time windows are plotted. The time windows are randomly located along the history 

of the response. As one increases the number of windows, the statistical indices become steady, leveling off 

at about 15 time windows. When the number of windows is small, the statistical indices are sensitive to the 

number of trials. When one uses more than 15 time windows the estimator is insensitive to the number of 
trials as well as to the location of the window. 

Figure 8.9 shows variations of the root quadratic bias and standard deviation versus the number of time 

windows and number of trials when the acceleration vector is completely measured for a small noise ampli

tude of24 (in / sec2
) and a large noise amplitude of360 (in / sec2

). The time windows are randomly located along 

the history of the response. One can observe that the number of time windows influences the statistical in
dices. The estimator becomes steady at about 10 windows. Increasing the number of trials does not signifi

cantly change the root quadratic bias and standard deviation, even for a small number of windows. In general, 

based on Figs. 8.8 and 8.9 one can obselVe that the estimator is insensitive to the location of the window and 

number of trials if a sufficient number of windows are considered. 

4 

o 

Root Quadratic Bias Standard Deviation 

0.1 

601 

(a)Asmallamountofnoi~ A = 2.4 X 10-3 (in) 

2 

o 

(b)Alargeamouill.tofnoi~ A = 2.4 X 10-2 (in) 

30 
20 

10 ~e~~c;¢' 
'l:l0.o'f. 

Fig. 8.8 Variations of the RQB and SD versus number of trials and number of time windows 
for a small an.d a large absolute noise in measured displacements 
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0.5 

o 

Root Quadratic Bias Standard Deviation 

(a) A small amount of noise A = 24 (in/sec2) 

(b) A large amount of noise A = 360 (in/sec2) 

Fig. 8.9 Variations of the RQB and SD versus number of tria1s and number of time windows 
for a small and a large absolute noise in measured accelerations 

8.4. Effect of the Estimation Time Step 

The developed estimator solves a parameter estimation problem based on the dynamic response recorded 

at discrete time points equally spaced by LI T. The quality of information provided for the estimator is con

trolled largely by the estimation time step LIt. In the rest of this chapter when we refer to the time step we 

mean the estimation time step. If the time step is too short, the data at adjacent time points are very similar 

and hence contain little new information about the system. On the other hand, for large time steps, numerical 

errors in differentiation and integration of the response for computing the discrete state vectors grow and 

swamp the output of the estimator. Understanding the influence of the time step on the quality of the estimates 

is crucial. One must find an appropriate time step that compromises between numerical errors and estimation 

errors. We have provided an option in the identification algorithm, called JUMP, that faciliates the search for 

an appropriate time step. 

Figures 8.10 to 8.12 show variations of the root quadratic bias and standard deviation with respect to the 

time step for different number of windows. These figures show the statistical indices computed for random 

selection of windows with five time points and 20 trials per window. For a noise free history of complete 
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Root Quadratic Bias Standard Deviation 

Fig. 8.10 Va:riations of the RQB and SD with respect to the time step and 
number of windows for noise free dispJacements 

displacements, one might expect the estimator to be unbiased. However, one can observe in Fig. 8.10 that, 

by increasing the time step, the root quadratic bias and standard deviation increase. We attribute this behavior 

to errors caused bynumerlcal differentiation. The variations of the statistical indices for noisy, complete mea

sured displacements against the time step for a relatively small noise of 0.0024 inches and a relatively large 

noise of 0.012 inches are presented in Figs. 8.11 and 8.12. For time steps less than 0.003 seconds, numerical 

Root Quadratic Bias Standard Deviation 

1 

0.05 

}yo. Of];. 10 0.025 I¢') 
~e~ s~~ 

JJ.1dOJ>:;. 20 0.001 ~e 

(a) A smaIl amount of noise A = 2.4 X 10-3 (in) 

15 

o 

(b) A large amount of noise A = 1.2 X 10-2 (in) 

0.05 

0.025 ~) 
20 0.001 ~e$l.eft 

Fig. 8.11 Variations of the RQB and SD with respect to the time step and number of windows 
for a small and a large absolute noise in measured displacements 
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Tune Step (sec) 

0.05 0.0 0.025 0.05 
Time Step (sec) Time Step (sec) 

Fig. 8.12 Variations of the RQB and SD with respect to the time step for complete 
measured displacements after considering 20 windows 

differentiation errors are small, but estimation errors influence the behavior of the algorithm and increase the 

root quadratic bias and standard deviation. As the time step increases, the estimation errors decrease and nu

merical errors take over, increasing the statistical indices for small amplitudes of noise but do not significantly 

changing them for large amplitudes of noise. Figure 8.12 shows the variations of the statistical indices with 

respect to the time step for noise free and noisy measured displacements after considering 20 time windows 

and suggests that the optimal time step for this simulation study is about 0.01 seconds. 

Figures 8.13 to 8.15 show variations of the statistical indices with respectto the time step and different 

number of windows for complete measured accelerations. These figures show the statistical indices com

puted for random selection of windows with five time points and 20 trials per window. Fornoise free measure

ments, increasing the time step does not affect the estimation errors (they remain at zero) but it does amplify 

the numerical integration errors, increasing the root quadratic bias, as shown in Fig. 8.13. The rate of change 

of the root quadratic bias is smaller for time steps less than 0.001 seconds than it is for time steps larger than 

0.001 seconds. To investigate the effect of the time step on the behavior of the estimator for noisy data, two 

amplitudes of noise are considered: a small noise with the amplitude of 24 (in / sec2) and a large noise with 

the amplitude of 180 (in/sec2). As shown in Figs. 8.14 and 8.15, as the time step increases, the statistical 

5 

Root Quadratic Bias 

Iv. 10 
0'0£7] 

lllIe~ 
:ill(f0JP,y 20 0.0 

0.005 

0.0025 ~) 
~eS~~ 

Standard Deviation 

5 

o 1~~~~~~llli ....... ~~ ._ 0.005 
b O 10 0.0025 " 
.~, ,o£'l'i -/ 

lI:Qe ~,.... 20 0.0 S~~ 
... U~ ~e 

Fig. 8.13 Variations of the RQB and SD with respect to the time step and 
number of windows for noise free acceleration 
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Root Quadratic Bias Standard Deviation 
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O.0025~) 
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5 

(a) A small amount of noise A. = 24 (in/ sec2) 

0.005 

0.0025 ~ 
~\e'2~ 

~e 

(b) A large amount of noise A. = 180 (in/ se?) 

20 0.0 

0.005 

0.0025 :) 
<;~~ 

~e" 

Fig. 8.14 Variations of the RQB and SD "With respect to the time step and number of windows 
for a small and a large absolute noise in measured accelerations 

indices increase and then level off. The statistical indices level off earlier for large amplitudes of noise than 

for small amplitudes. Figure 8.15 shows that, for a large amplitude of noise, numerical errors reach theirmax

imum values for a time step of about 0.001 seconds and the statistical indices do not change significantly for 

6 

[ 
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0 
!:: 
til 
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6 12 
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Fig. 8.15 Variations of the RQB and SD with respect to the time step for complete 
measured accelerations after considering 20 time windows 
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time steps larger than 0.001 seconds. For small amplitudes of noise, numerical errors saturate for a time step 

larger than 0.005 seconds. Figure 8.15 shows the variations of the root quadratic bias and standard deviation 

with respect to the time step for complete measured accelerations after considering 20 time windows and 20 

trials per window. One can observe that, the time step should be small enough to reduce the numerical errors 

and consequently, the bias. For this simulation study when a history of accelerations is available the optimal 

time step is about 0.0001 seconds. The developed estimator is more sensitive to the time step when accelera

tions or displacements are incompletely measured. 

8.5. Initial Values for the Unknown Parameters 

The developed estimator converges to the feasible local minimum nearest to the location of the starting 

point The bounding constraints ensure the feasibility of the solution, but to which local minimum the estima

tor converges depends on the distribution of the local minima of the loss function and the starting point of 

the minimization search. The proposed constraints significantly decrease the sensitivity of the estimator to 

the initial values of the unknown parameters and increase the reliability of the estimator. Again, we use the 

closeness index, Eqn. (4.1), to investigate the sensitivity of the estimator with respect to feasible initial values 

for the unknown parameters. 

Figure 8.16 compares the behavior of the estimator using measured displacements with its behavior using 

measured accelerations with respect to the closeness index for absolute noise of amplitude A. The average 

root quadratic biasRQB and standard deviation SD are computed for the estimates based on noisy, completely 

measured displacements or accelerations from one window which contains three time points with the first 

time point at 0.03 seconds and for 20 different trials. Both estimates based on displacements and those based 

on acceleration have constant root quadratic bias and standard deviation for different starting points with 

closeness indices between zero and one. From this typical experiment and many other ones in this simulation 

study, one can observe that the estimator is not sensitive to the initial values of the unknown parameters re

gardless the type of measured response if measurements are spatially complete. 

The proposed estimation algorithm becomes more sensitive to the starting point as the amount of in

formation decreases. The closeness of a starting point in the space of unknown variables (x, u) for the pro-
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Fig. 8.16 Variations of the RQB and SD versus closeness index for complete measurements 
(a) Displacement, (b) Acceleration 
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Fig. 8.17 Variations of the RQB and SD versus closeness index 
for incomplete measured displacements 

100 

posed estimator depends on the initial values of the parameters. The initial values of the unmeasured deforma

tions fi are computed based on the initial values for the unknown parameters. Figure 8.17 shows variations 

of the root quadratic bias and standard deviation with respect to closeness index for absolute and proportional 

noise with the amplitudes A when displacements at 28 degrees of freedom are measured. As the initial values 

of the UIlknown parameters come closer to the actual values of the parameters, the root quadratic bias de

creases and converges to a small value and the standard deviation slowly increases but remains smaller than 

the root quadratic bias. When the starting point is very close to the actual point, the root quadratic bias and 

standard deviation are both small and RQB value is smaller than SD value. The same trend can be observed 

for proportional noise. 

The variations of the root quadratic bias and standard deviation with respect to the closeness index for 

estimates from measured accelerations at 28 degrees of freedom are shown in Fig. 8.18. The trend is the same 

as shown in Fig. 8.17. By increasing the closeness index the RQB value decreases and the SD value slightly 

increases. The estimator behaves in this manner, because by increasing the closeness index the distance be

tween the starting point and the actual point decreases and the possibility to converge to the other local mini

rna decreases. When initial values are close to the actual values of the parameters, the root quadratic bias and 
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Fig. 8.18 Variations of the RQB and SD versus closeness index 
for incomplete measured accelerations 
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standard deviation are both small and the SD value is larger than than the RQB value which is a desirable fea
ture, (see Section 4.2). Figures 8.17 and 8.18 are developed for relatively large amplitudes of noise. For small 

amplitudes of noise the behavior of the estimator follows the same trend observed for large amplitudes of 

noise except the RQB remains smaller than SD even for starting points far from the actual point regardless 

the type of measured response. 

8.6. Effect of Quality of Information 

One of the most important features of an estimator is the way it behaves in the presence of noise. One 

would expect that by increasing the noise, the accuracy of the estimated parameters for a fixed amount of 

information would decrease. Figures 8.19 and 8.20 compare the behavior of the proposed estimator for abso

lute and proportional noise in the measured response. The average root quadratic biasRQB, standard deviation 

SD, root mean square error RMS, and identification error AlE are plotted against the amplitude of noise. The 

estimates of axial stiffnesses are computed based on noisy, complete measurements for 20 trials and 30 time 

windows randomly picked from a one second history of displacements or 0.15 seconds of accelerations. The 

estimator behaves in a similar manner for absolute and proportional noise regardless the type of measured 

response. The developed estimator is biased and its RQB value increases as the amplitude of noise increases. 

Although, the bridge truss is a linear structure with elements linear in their parameters, the bias of the esti

mates varies nonlinearly with noise amplitude. This nonlinear relationship indicates that the solution of the 

proposed parameter estimation algorithm is a nonlinear function of measurements. 

From Fig. 8.19 one can observe that, for measured displacements, the root quadratic bias is smaller than 

the standard deviation when the amplitude of noise is less than 0.002 inches for absolute noise and 1 % for 

proportional noise. In other words, for complete measured displacements the desirability bound Ad' (see Sec

tion 4.2), of the estimator is about 0.002 inches for absolute noise and 1 % for proportional noise. By increasing 

the amplitude of noise, the standard deviation increases and then becomes steady. To explain these trends, 

we plot values of the estimated axial stiffnesses against the amplitude of noise in Fig. 8.21. The estimates 

converge to small values in the neighborhood of the lower bounds of parameters as the amplitude of noise 
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Fig. 8.19 Variations of the RQB and SD versus amplitude of noise 
for complete measured displacements 

126 

20 



20 

~ ........ ... g 
~ 
s:: 10 .,g 
0: 
0 

t;:: . .= 
s:: ., 

"0 ..... 

0 
0 

Absolute Noise Proportional Noise 
20 I 

-- Mean ldentificaticn Em:r 

~ --- Standard Dcviatic:n 
... 
g Root Quadratic Bias 

~ - -,\- - RootMeanSqnare Error 
s:: 

10 .~ 
0 

--- t;:: --- . .= 
~ 

"0 ..... 

0 
120 240 360 0 25 

Amplitude of Noise (inlsec2) Amplitude of Noise (%) 

Fig. 8.20 Variations of the RQB and SD versus amplitude of neist! 
for complete measured accelerations 

50 

increases. Based onEqn. (2.19), when the vector of estimated parameters x converges to zero, theRQB value 

saturates near l/np which for the bridge truss is about 25%. The scatter of the estimates is confined by the 

boundaries of the constraints and the standard deviation becomes small. From Eqn. (2.23), the smallness of 

SD value makes the RMS value follow the trend of the RQB value and be almost equal to it. The AlE value, 

which is a scatter index like RMS but based on an absolute nonn, behaves in the same manner as RMS value 

behaves. The statistical indices AlE, RQB, and RMS of the proposed estimator based on measured displace

ments vary like a sigmoid function with the amplitude of noise. These statistical indices increase with a small 

rate as noise amplitude is small A <Ad then rapidly increase, and finally saturate. 

Figure 8.20 presents the variations of the statistical indices for the estimates computed from complete 

measured accelerations with respect to the amplitude of noise. The desirability bound Ad of the estimator is 

about 100 (in / sec2) for absolute noise and 45% for proportional noise. All the statistical indices vary like a 

sigmoid function with respectto the noise amplitude. They increase with a small rate as the amplitude of noise 

is small, then rapidly increase, and finally saturate. The saturation limit ofRQB, which is 25%, occurs for a 

much larger amplitude of noise than what is shown in Fig. 8.20. The increment rate of the SD value is smaller 
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Fig. 8.21 Variations of the estimated parameters versus amplitude of noise 
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Fig. 8.22 Variations of the estimated parameters versus amplitude of noise 
for complete measured accelerations 

than the other statistics for absolute noise. As shown in Fig. 8.20, for amplitudes of noise less than Ad' the 

RMS and similarly AlE are close to the standard deviation and for large amplitudes of noise they separate and 

follow their own saturation paths, because the RQB and SD values become relatively large. 

Figure 8.22 illustrates the variations of the estimated parameters with respect to the amplitude of noise 

when a history of complete accelerations is available. As the amplitude of noise increases the estimated pa

rameters converge to regions near the lower bounds of the parameters. The rate of decrease for the axial stiff

ness of the elements in group 1 is smaller than the rates of decrease for the other groups. The lower limit for 

all parameters is zero and based on Eqn. (2.19), the root quadratic bias saturates near 25% as the noise becomes 

large. The value of the saturation limit of RQB value depends on the bounding constraints. One should antici

pate this behavior, because it is an inherent characteristic of equation error estimators. The estimates based 

on a history of accelerations have an acceptable bias for a relatively wider range of noise than the estimates 

based on the measured displacements. The main reason for high biasedness of displacement-based estimates 

is the occurrence of numerical differentiation errors in the higher derivatives. 

8.7. Effect of Quantity of Information 

For the proposed estimator confidence in the estimated parameters strongly depends on the amount of 

information (or the number of measurements which we interchangeably use in the rest of this chapter), 

ntp x lid. The identifiability criterion ntp x Ii d ~ n p gives a lower bound for the number of measurements 

(or observations). In this section, we study the behavior of the proposed estimator as the number of time 

points, ntp, and the number of measured degrees offreedom, lid' increase. 

Size of the window. The number oftime points in a window ntp defines the size of a window. One would 

expect that, for a fixed lid and a fixed np , increasing the size of the window would improve the accuracy of 

the estimates. Figures 8.23 and 8.25 show variations of the statistical indices with respect to the number of 

time points for a small amplitude of noise (0.0024 inches) and a large amplitude of noise (0.024 inches) for 

complete measured displacements. The number of trials per window is 20. One can observe that the estimator 

is not sensitive to the number of time points for this simulation study regardless the amplitude of noise. The 
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(a) A sm:illamount of noise A = 2.4 x 10 -3 (in) 

(b) A Ia:rge amount of noise A = 2.4 X 10-1 (in) 

Fig. 8.23 Variations of the RQB and SD with respect to the size and number ofmndows 
for a small and a large absolute noise in measured displacements 

reason is simple. For the bridge truss the number of unknown parameters is four and number of measured 

degrees of freedom is 48. Therefore, even for one time point the number of measurements is adequate to reli

ably estimate the parameters. For large amplitudes of noise, the estimation errors cannot be effectively re

duced by increasing the size of the window because, when the noise is large, it dominates the behavior of the 

estimator. The estimator is more sensitive to the size of the window for noisy, incomplete measured displace-
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Fig. 8.24 Variations of the RQB and SD with respect to the size and number of windows 
for a small absolute noise and incomplet,e measured displacements 

129 



complete and small noise incomplete and small noise 
0.2 ,.------,.---....,.---,.----, 

complete and large noise 
12"----'--'1---'---' 12"---~---r--.---. 

... Root Quadratic Bias 

• Standard Deviation 

A = 0.0024 (in) 6 - A = 0.024 (in) - 6 A = 0.0024 (in) 

0.0 '------'----'---'-----' 1 

o 25 

Window Size 

50 25 

Window Size 

50 25 

Window Size 

Fig. 8.25 Variations of the RQB and SD with respect to the size of windows 
for measured displacements 

50 

ments. Figure 8.24 shows variations of the root quadratic bias and standard deviation with respect to the num

ber of time points in a window for a case with measured displacements at 13 degrees of freedom and an abso

lute noise of 0.0024 inches. By increasing the size of the window, the root quadratic bias increases and the 

standard deviation decreases; then both become steady. This trend suggests that less infonnation with high 
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Fig. 8.26 Variations of RQB and SD with respect to the size and number of windows 
for a small and a large absolute noise in measured accelerations 

130 



Root Quadratic Bias Standard Deviation 
A. = 24 (in/ set?) 

Fig. 8.27 Variations of RQB and SD with respect to the size and number of windows 
for a small absolute noise and incomplete measured accelerations 

confidence is better than more information with low confidence. Figure 8.25 presents the statistical behavior 

of the estimator for complete and incomplete measured displacements with different amplitudes of noise after 

considering 20 windows and 20 trials per window. 

Figures 8.26 and 8.28 show the statistical behavior of the proposed estimator with respect to the size of 

the window for noisy, complete measured accelerations. We consider two amplitudes for absolute noise: one 

small (24 in / sec2 ) and the other one relatively large (180 in / sec2 ). One can observe that the estimator is not 

sensitive to the size of the window regardless of the amplitude of noise because even one time point in a win

dow provides 48 measurements, to estimate only four unknown stiffness parameters. The variations of the 

root quadratic bias and standard deviation for the case with measured accelerations at only 13 degrees of free

dom and an absolute noise of 24 (in/sec2
) are presented in Fig. 8.27. For incomplete measurements, as the 

size of the window increases the root quadratic bias increases and the standard deviation decreases and then 

both become steady. Like the case with incomplete measured displacements, less information of good quality 

results in a better estimation than more information ofless qUality. Figure 8.28 presents variations of the root 

0.50 

~ ... 
0 
t:: 

p:) 

80.25 . .g 
t.l 

5 
i: 
~ :s 

0.00 
0 

complete and small noise complete and large noise incomplete and small noise 

I 6 1.0 
A = 24 (inJsec2) A = 180 (inJsec2) A = 24 (in/sec2) 

.. .. Root Quadratic Bias 

• • •• • • • • Standard Deviation .. 
3 0.5 .... .. • .. • 

• • .. .. .. .. 

a 0.0 
25 50 a 25 50 0 25 

Window Size WmdowSize WmdowSize 
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Fig. 8.29 Variations of the RQB and SD versus number of measured displacements 

quadratic bias and standard deviation of the estimates from complete and incomplete measured accelerations 
for different amplitudes of noise after considering 20 different windows and 20 trials per window. 

Number of measured degrees of freedom. The estimator is applicable to problems with sparse measure
ments. Thus, another way to increase the number of measurements for the estimator is to increase the number 

of measured degrees of freedom nd' Figures 8.29 to 8.32 show the behavior of the proposed estimator with 

respectto the number of measured degrees of freedom for an absolute noise with amplitude A. In these figures 

the estimates are computed from 20 different windows with three time points per window. The maximum 

value of n d for the bridge truss is 48 and its minimum value, based on the identifiability criterion, is two. The 

abscissa values for Figs. 8.29 to 8.32 range from 8 to 48. To study the effect of measurement locations on 

the estimation errors, we consider three different patterns of measurements for each specific value of n d' One 

pattern of measurements differs from another according to which degrees of freedom are measured. Figures 

8.29 and 8.30 illustrate variations of the root quadratic bias and standard deviation with respect to different 

numbers of measured displacements for an absolute noise of 0.0024 inches. For a small number of measured 

displacements, the statistical indices oscillate. When the number of measured degrees of freedom exceeds 
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Fig. 8.30 Variations of the RQB and SD with respect to the number of measured displacements 
and number of windows for a small absolute noise 
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28, the root quadratic bias significantly decreases, but the standard deviation continues to oscillate until nd 
exceeds 43. Then it decreases. Increasing the number of measured degrees of freedom decreases the sensitiv

ity of the estimatorto the locations of measurements. If the amplitude of noise is large it dominates the behav

iorofthe estimator, therefore increasing the number of measured displacements does not significantly change 

the statistical indices; they remain almost steady. 

For measured accelerations and an absolute noise of 24 (in/sec2), Figs 8.31 and 8.32 show variations 

of the statistical indices with respect to the number of measured degrees of freedom. When the amplitude of 

noise is small the standard deviation remains almost steady for different numbers of measured accelerations. 

But, the root quadratic bias oscillates if the number of measured degrees of freedom is less than 23. If one 

provides more measurements, RQB decreases. One can observe that, the estimator is not sensitive to the loca

tions of measurements when the number of measured degrees of freedom is large. For large amplitudes of 

noise, increasing the number of measured degrees of freedom does not significantly change the root quadratic 

bias or standard deviation. 
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Fig. 8.32 Variations of the RQB and SD with respect to the number of measured accelerations 
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8.8. Chapter Summary 

We have used Monte Carlo simulation to study the statistical behavior of our estimator using a bridge 

truss as an example. Both displacement and acceleration data were considered. Some measurements were 

spatially incomplete. We observed that the recursive quadratic programming algorithm based on Gauss-New

ton and Han-Powell approximations of the Hessian matrix are robust and globally convergent. We also ob

served that the bounding constraints on the unknown parameters significantly increase the reliability of the 

proposed estimator and reduce its sensitivity with respect to the initial values for the unknown parameters. 

We demonstrated that the time step should be small enough to control numerical errors in differentiation 

and integration but should be large enough to provide new information for the estimator. In the presence of 

noise in the measurements, the estimator is biased. The bias saturates at large amplitudes of noise. Forpracti
cal amounts of bias, the estimator can deal with relatively large amplitudes of noise if accelerations are mea

sured. The estimator has desirable characteristics when the noise amplitude is small. For adequately small 

amounts of noise, the accuracy of the estimates increases as the amount of information increases. The amount 

of information can be increased by increasing the size of the window or increasing the number of measured 

degrees of freedom. When the number of unknown parameters is considerably smaller than the amount of 

measurements, increasing the size of the time window does not significantly improve the estimations. For 

small numbers of measured degrees of freedom, the bias of the estimates increases if the size of the window 

is increased. 

The estimator is sensitive to the location of the window especially for large amplitudes of noise. We 

solved this sensitivity by considering a sample of windows instead of a single window and compute the aver

age of the estimates from the sample of windows as the estimated parameters. 

134 



CHAPTER NINE 

Closure 

System identification and parameter estimation techniques can be used in the field of structural mechan

ics to improve existing analytical models, orto establish relatively reliable mathematical models for structur

al systems, from test data. These techniques can be used in a variety of applications, from simulation and 

prediction studies for design to damage detection in existing structures. While identification methods have 

evolved a great deal over the last thirty years, many challenging problems still remain in the field ofparameter 

estimation. In particular, identification of complex systems suffers from the effects of sparse data and, like 

all physical measurements, from noise in the observations. The number of constitutive parameters of the 

model can also be troublesome for large structures. 

In this research study we have presented an approach to the problem of parameter estimation of finite 

element models of complex structural systems for static, modal, and transient dynamic problems. We have 

endeavored to develop a unified approach to these discrete inverse problems with a particular view toward 

evolving methods that are amenable to large-scale computation. The proposed framework for estimating 

constitutive parameters for structures with known topology and geometry is a batch method using all observa

tions in the computation scheme. We have assumed that the structure is discretized by the finite elementmeth

ad, that the excitation is known, and that deformations are measured at certain spatial locations on the struc

ture. Also, we have assumed the selected finite element model is linear in its response. However, the 

parameter estimation problem is inherently nonlinear, and hence, the linearity of the response accrues no great 

advantage. Linearity of the constitutive model is not essential (the structural matrices can be nonlinear with 

respect to the constitutive parameters). We have assumed that our models have lumped, time independent, 

deterministic parameters. 

9.1. Summary 

In Chapter One, we introduced our subject, justified system identification as the appropriate tool for solv

ing our inverse problems, and described the basic features of the parameter estimation problem. 

In Chapter Two , we developed the general frameworkforparameterestimation problem as a constrained, 

nonlinear minimization of the difference between the response of the real structure and the prediction of a 

mathematical model of that structure. We advocate a least-squared error approach, using the recursive qua

dratic programming method as the numerical engine. This algorithm is attractive because it applies directly 

to problems with inequality as well as equality constraints, it is globally convergent, and it is amenable to 

large-scale computation. Finally, we examined the statistical framework for evaluating the performance of 

our identification algorithms. 
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In Chapter Three we considered the identification of a structure subjected to static loads. We developed 

two estimators: (a) an equation-error estimator, which measures the discrepancy between model and structure 

as the nodal force imbalance, i.e. Ku-f, and (b) an output error estimator, which measures the discrepancy 

between model and structure as the difference in nodal displacements, i.e. u-K-Y. The unknowns for the 

equation error estimator comprise both unknown constitutive parameters and displacements at the unmea

sured degrees of freedom. The unknowns for the output-error estimator comprise the unknown constitutive 

parameters. For both estimators, the constitutive parameters are assumed to be bounded from above and be

low. 

In Chapter Four, we used Monte Carlo simulation to study the behavior of the proposed estimators using 

a bowstring truss as the model problem. We demonstrated that, in the presence of noise in the measurements, 

both the equation-error and the output-error estimators are biased. For practical amounts of noise, the output

error estimator exhibited a smaller bias than the equation-error estimator. Unfortunately, for large amounts 
of noise the equation-error estimator suggested high precision (small standard deviation) but had low accura

cy (large bias). Fortunately, the output-error estimator predicted low precision when the accuracy was low 

for a large range of noise and high precision when the accuracy was high for practical amounts of noise. We 

observed that the precision and accuracy of the estimates computed by the output-error estimator increased 

monotonically as the amount of infonnation increased. The bias of the equation-error estimator, on the other 

hand, did not decrease as more data became available. We observed from the numerical simulation studies 

that the recursive quadratic programming algorithms based on Gauss-Newton and Han-Powell approxima

tions of the Hessian were robust and globally convergent Also, we observed that bounding the unknown pa

rameters significantly increased the reliability of the proposed estimators and reduced the sensitivity of the 

algorithms to the initial values for the unknown parameters. 

In Chapter Five, we studied modal identification techniques. First, we assumed that the mass matrix was 

known and developed an equation-error estimator and an output-error estimator using modal data. Then, we 

considered the general case, where both mass and stiffness parameters were unknown, and proposed an equa
tion-error estimator. When the mass matrix was known, we modified the eigenvalue equation to have a fonn 

similar to the static equilibrium equation. Then, we applied the same nonlinear constrained optimization tech

nique used to solve the static problem. Both proposed methods could deal with a set oftruncated modes whose 

mode shapes were sparsely sampled, both were robustly convergent, and both were amenable to large, com

plex structures. We applied the proposed estimators to build an analytical model for the Oakland City Hall 

building using measured modal data, in Chapter Six. 

In Chapter Seven, we studied the problem of parameter estimation from the transient response of a struc

ture. We developed an equation-error estimator for two cases: when histories of displacements at some de

grees of freedom were available and when histories of accelerations at some degrees of freedom were avail

able. We discussed the concepts of the estimation time step and the time window. We also showed that the 

developed estimator could, by analogy, use modal data to estimate the mass and stiffness parameters of a finite 

element model. 
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In Chapter Eight, we used Monte Carlo simulation to study the statistical behavior of the estimator devel

oped in Chapter Seven using a bridge truss as an example. Both spatially incomplete displacement and accel

eration data were consi.dered. We investigated the effect of the estimation time step and the size and location 

of the time window along the history of response. In the presence of noise in the measurements, the estimator 

was biased. We concluded that for practical amounts of bias, the estimator could deal with relatively large 

amplitudes of noise if accelerations were measured. We also studied the effect of the amount of information 

on the accuracy and precision of the estimator. 

In Appendix A we studied the class of recursive quadratic programming methods and described the algo

rithm we used in this study. We tailored the existing alternatives for each step of a recursive quadratic pro

gramming algorithm to suit our objective. 

The recursive quadratic programming is a gradient-search method that requires the gradient and the Hes

sian of the loss function with respect to the unknowns. In Appendix B, we have proposed a straightforward 

method to compute the sensitivity of the loss function with respect to the unknown variables. 

For the static and modal identification problems, we have proposed and implemented algorithms for the 

equation-error estimator as well as the output-error estimator. For transient vibration problems, we have pro

posed and implemented the equation-error estimator for the cases in which the history of displacements or 

accelerations is available. All of the proposed algorithms perfonn wen when measurements are sparse in 

space and, for the dynamic case, in state and time. The proposed algorithms have all the fiexibilities of the 

finite element method and new elements can easily be implemented. 

9.2. General Features of the Proposed Approach 

The finite element discretization and the recursive quadratic programming algorithm form the basis of 

our general purpose parameter estimation programs. Like a finite element analysis system, the parameter es
timation programs can treat structures with different types of elements. The differences between structure 

types have been isolated at the element level. If one can implement an element in a general purpose :finite 

element system, then one can also implement that element in the parameter estimation environment presented 
in this work 

Like a finite element analysis system the algorithm is organized on the basis of assembling the estimation 

equations from element contributions. An implementation of these algorithms should have aIibrary of differ

ent element types. Each element in the library would provide the elemental stiffness, mass, and damping, 

matrices, as a :finite element system does, in addition to the sensitivity of those elemental matrices with re

spect to the unknown constitutive parameters. We have demonstrated these features for one-dimensional ele

ments (i.e. truss bar and Bernoulli and Timoshenko beams with axial stiffness) in Appendix B, where we also 

outline the procedure for developing the sensitivity matrices for elements computed by numerical quadrature 

method. To show the procedure, we have derived and implemented the stiffness and sensitivity matrices for 

a truss element Currently, the algorithms support truss and beam elements as well as plane stress elements. 

Both the output-error estimator and the equation-error estimator are cast as constrained nonlinear opti

mization problems that are solved iteratively. One should bring to bear all available knowledge in selecting 
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the starting point of the iteration. Both estimators require initial values for the unknown parameters. Further, 

the equation-error estimator needs initial values for the displacements at the unmeasured degrees offreedom. 

We have supplied several options to generate these initial values. 

The reliability of the estimates generally improve as the ratio of information to the unknowns increases 

above unity, if the estimator is consistent. Such an improvement can be achieved either by increasing the num

ber of tests (i.e. number of load cases for the static case, number of measured modes for the modal case, and 

number of time points in a window for the dynamic case), by increasing the number of measurement loca

tions, or by decreasing the number of parameters. The number of unknown parameters can be reduced by 

grouping the parameters or by using a different mathematical model with fewer unknown parameters. 

We have used a simple grouping scheme to keep the number of parameters small enough to be manage
able. The grouping scheme can reduce the total number of parameters in the model and thereby increase the 
robustness of the estimations. Elements in a group are associated with the same set of parameters and groups 

of parameters are disjoint from one another. The grouping schemes for the stiffness, mass, and damping pa

rameters need not be the same, that is, an element can be a member of different groups based on its stiffness, 

mass, or damping parameters. The grouping scheme might be based on prior knowledge of the structure. The 

grouping scheme can be made more flexible by recognizing that the value of the parameters within a group 

need not have the same nominal value, but can simply be scaled by a common multiplicative parameter. Only 
the relative values of parameters within a group need to be specified in advance. One might also try to improve 

the knowledge of certain parameters by subsidiary testing. In this case, the user can introduce the known pa
rameters to the program. 

We have embedded our algorithms in an environment capable of executing Monte Carlo simulation, use

ful both for studying the behavior of the proposed estimators and for studying the identifiability of specific 

structures. Monte Carlo simulation uses a random sequence of numbers to generate a sample of measurement 

sets and consequently, to construct a sample of the solution population. We have introduced a few appropriate 
statistical indices to probe the behavior of the proposed algorithms by simulation. 

9.3. Where Do We Stand? 

At last, we are left with the question of whether or not there is engineering value in our ability to identify 

structures. Certainly, any competent engineer would gladly accept such information, if it were free. It is not. 

At the present time, one must look forward to transporting excitation and measurement devices to a struc

ture that has no natural places for them. The cost of such devices is presently quite high. Usually, there are 

no baseline measurements to aid the assessment of currently acquired data. Usually, data reduction is done 

by someone other than the one that physically tests the structure; thus, the conditions of the test are not quite 

right or the data are incomplete or ambiguous. Usually, an analytical model is constructed long after the test 

equipment has been removed from the structure. Probably more important than all of the above obstacles to 

monitoring structures, the average engineer has not had a reliable, informative means of processing in situ 

test data from large, complex structures. 
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Let us consider a brighter future; a future where the monitoring system is planned by the engineer at the 

time the structure is designed; a future where the monitoring system is installed as the structure is built, just 

as the electrical and mechanical systems are now; a future where maintenance of the mOnitoring system is 

as simple as changing a lightbulb. This is the future where the identification of the structure is essentially 

free. 

There remains, in our present, a tremendous void in our knowledge of the environments in which our 

structures must survive, of the actual performance of our structures over their lifetimes, of the consequences 

of many of our design decisions. Our bright future would, at the very least, provide a laboratory to examine 

these engineering problems. There is no limit to what we could learn from a constantly, oreveninterrnittently, 

monitored structure if the monitoring system was more than haphazardly placed. But we must first decide 

if the knowledge is worth the price. 

After a natural disaster we are always left with impossibly difficult decisions regarding the fate of our 

damaged infrastructure. Is a bridge crossable, a building inhabitable, a pipeline usable? Can we redirect the 

flow of traffic, repair a building, fill a dam? In our present we yeamformore data to help with those decisions, 

but acknowledge the impossibility of gathering those data in time to make a difference. In our bright future 

those data would be available and could be of tremendous value in making engineering decisions. The eco

nomics might be favorable, even if the investment risk is large. 

Thus, while the technology is ready today, as evidenced by the fact that we have already used it, its time 

is probably yet to come. Whether or not its time will come at all depends upon how we view engineering in 

the future. What do we need to know that we do not know today? What sort of investments should we make 

to enhance our ability to engineer with competence in the future? 
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APPENDIX A 

Recursive Quadratic Programming 

We begin by considering a general nonlinear programming problem (NP) with both inequality and equali

ty constraints as follows 

minimize F(x) 
:r ERn 

(NP) 
subject to ci(x) = 0 i = 1, ... ,m' (AI) 

clx) :5 0 i = (m' + l), ... ,m 

where the objective function F and/or some of the constrains c are nonlinear with respect to the unknown 

variables x. Forthe purpose of discussion we assume that the objective function is twice differentiable, and 

a solution x" exists forthe nonlinear programming problem, such that the normals to the binding constraints 

are linearly independent. In other words, x" is a regular point. No further properties such as convexity are 

assumed, and hence we shall be concerned only with local minima. We shall discuss those methods which 

approach the solution x" iteratively. A typical iteration of a method for solving NP includes the following 

procedure. If the current iterate x k does not satisfy the appropriate optimality conditions: (1) compute a search 

direction dk by solving a subproblem, (2) determine a step length,Bk such that specified properties hold at 

xk + ,Bkdk. Following these steps xk + ,Bkdk becomes the new iterate xk+l. The second step is usually 

termed the step length procedure or line search. 

Algorithms in which the search direction is computed by solving a quadratic programming subproblem 

are called recursive quadratic programming techniques. The search direction dk is the solution of aminimiza

tion subproblem with the general form as follows 

minimize QF(dk) 
dk ERn 

(QP) 
subject to Lcidk) = 0 j = 1, ... ,m' 

CA2) 

Lcj(dk) :5 0 j = (m' + 1), ... ,1 (:=:;m) 

In the subproblem (A.2) QF is a quadratic function which can be viewed, for the moment, as being quadratic 

approximation ofF about the point x k. Similarly, Lej is a linearization of the constraintcj . A number of differ

ent forms have been proposed for the subproblem (A2) and it is not entirely clear which ideas will lead to 

the most successful algorithm. A common form for the quadratic function in (A.2) is 
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(A.3) 

where B k is a positive definite approximation to the Hessian matrix of the Lagrangian function asso

ciated with problem (A.I). The matrix Bk is defined in this way because the second order conditions 

for optimality of x· are expressed in terms of the Hessian of the Lagrangian function. 

Any algorithm for solving NP must include some procedure, usually termed an active set strategy, 

for determining which constraints are bun ding at the solution. Some algorithms include a pre-assigned 

active set strategy that specifies which constraints are to be treated as equalities in the OP subproblem 

and solve an equality constrained OP (EOP) subproblem to find a search direction. Their linear con

straints represent a subset of the original constraints (I .$ m). The term "preassigned" signifies that 

the decision about the active set is made before posing the OP subproblem. Others proposed (A.2) 

as an inequality constrained OP subproblem (lOP) with I = m, so that linearizations of all constraints 

in NP are included. With a pure lOP approach, a OP-assigned active set strategy can be used such that 

the set of active constraints at the solution of the OP subproblem will be taken as a prediction of the 

active set of the original problem NP. Algorithms employing an equality constrained subproblem 

(EOP) have been discussed by Biggs (1972 and 1975), Murray and Wright (1978), and Van der Hoak 

(1980). lOP based methods seem to have received more attention and are described by Wilson (1963), 

Fletcher (1973 and 1975), Han (1977), Powell (1978), and Tupia (1977). There are many variants in the 

formulation of OP subproblems between EOP and lOP approaches. 

A.I. Motivation 

Consider a nonlinear optimization problem with equality constraints as follows 

minimize 
x ERn 

F(x) 

subject to ci(x) = 0 i = 1, ... ,1 

The Lagrange first order necessary conditions for the problem (AA) are 

VF(x) + A TVC(X) = 0 

c(x) = 0 

(AA) 

(A.S) 

where e(l x 1) is the vector of equality constraints and A(t x 1) is the vector of Lagrange multipliers. The 

set of necessary conditions is a nonlinear system of n+t unknowns comprising the components of x and A. 

These equations can be solved by Newton's method. The linearized fonn ofEqn. (A.5) about the configura

tion (xk' AJ is 

(A.6) 
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whereH(x/c' A k) is the Hessian matrix forthe Lagrangian functionF(xk) + AIc(xk) anddk and Yk are the 

increments for the vectors xk and Ak at the kth iteration, respectively. The system of equations (A6) can be 

simplified to the following form 

(A7) 

Akdk = - ck 

where symbolsHk,Ak , andck represent the matricesH(xk, A k) and VC(Xk), and the vectorc(xk) , respective

ly. We note that the Eqns. (A7) are the necessary conditions for a quadratic programming problem with the 

following form 

minimize 
akERn 

subject to AJf1k + ck = 0 

(A. 8) 

where the vector A k + 1 in Eqns. (A7) corresponds to the vector of the Lagrange multipliers of problem (A.8). 

The analogy with the quadratic programming suggests a procedure for extending the above Lagrange optimi

zationmethod to minimizing problems with inequality constraints. Similarly forthe problem NP, the quadrat

ic subproblem (A2) takes the form 

minimize 
akERn 

subject to A~qdk + c~q = 0 

A~dk + c~ ::; 0 

(A.9) 

where the superscripts eq and in refer, in a manner similar to (A7), to the equality and inequality constraints 

in problem (AI), respectively. In problem (A9), the constraints are linearized forms of the original 

constraints in Eqn. (AI) and the objective function is a quadratic approximation of the Lagrangian for the 

problem NP. The Lagrange multipliers of problem (A9) correspond to the Lagrange multipliers of the origi-

nalnonlinearprogramming problem (A. I). 

The corresponding quadratic subproblem (A8) or (A9) can be interpreted as an approximation to the 

problem of minimizing the Lagrangian over the tangenthyperplane. Since the second order sufficiency condi

tions of the original constrained problem require that the Hessian of the Lagrangian be positive definite on 

the tangent hyperplane at the solution, the quadratic subproblem is guaranteed to be well-defined near the 

solution. Based on this observation, the class of methods which minimize (an approximation to) the Lagran

gian over the tangent hyperplane, are sometimes referred to as projected Lagrangian methods. 

The recursive quadratic programming method extends Newton's method to solve the Lagrange first order 

necessary conditions for nonlinear inequality constrained problems. However, this form of the RQP method 

can be improved to relax the requirement of the second order derivative information and by implementing 

a suitable line search to guarantee global convergence, especially useful for problems with inequality 

constraints. 
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A.2. Modifications to the Quadratic Subproblem 

The objective function for the quadratic subproblem is given in Eqn. (A.3). Based on the analogy with 

Eqns. (A.8) and (A.9), one can see that the matrix B kin Eqn. (A.3) is an approximation to the Hessian matrix 

Hk of the Lagrangian function at each iteration. For the EQP approach to recursive quadratic programming, 

the QP subproblem takes the form 

(EQP) 

minimize 
dk ERn 

subject to Akdk + Ck = 0 

and for the IQP approach, the QP subproblem is stated as follows 

(IQP) 

minimize 
d

k 
ERn 

subject to Aeqd + ceq = 0 
k k k 

A~ndk + c~n S; 0 

(A. 10) 

(A.ll) 

To relax the requirement of computing the second derivative in the algorithm, B k is built from first deriva

tives gathered along the search path. There are various ways to make the approximation matrix B k. Here we 

will focus on the Gauss-Newton approximation to the Hessian and a on various rank-two update formulas. 

The convergence of the recursive quadratic programming method is not necessarily impaired if we use 

a positive definite approximation to the Hessian matrix even when the Hessian matrix is indefinite. On the 

other hand, superlinear convergence can be proved if Bk = H(xk' Ak). Obviously, H(xk' A k) is not always 

positive definite, but the computational convenience of using a positive definite approximation can be justi

fied by the observation that the superlinear convergence result requires B k to agree with the actual Hessian 

matrix onI y in the subspace where the Lagrangian must have positive curvature. Some authors, however, are 

considering how to devise stable algorithms where Bk is not forced to be positive definite. 

The approximate Hessian matrix B k can be taken to be positive definite even though H k is not. Let us 

assume that this is so. Similar to the Eqn. (A.7), we can write the first ordernecessary conditions for subprob

lem (A. I 0) as follows 

B~k +AIAk+1 = -ik 
(A.12) 

Akdk = - ck 

where the vectorik is the gradient of the objective function V pT (x k) at the kth iteration. SinceB k is not singu

lar, Eqn. (A. 12) has the following explicit solution 

(A. 13) 

(A.14) 
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The Lagrange multipliers can be computed using Eqn. (A 14). However, the multiplier update methods in 

the following section can be used to avoid computing the complete solution for Eqn. (A.12). 

Update Methods for the Lagrange Multipliers 

Estimates of the Lagrange multipliers are needed to compute and update matrix B k in order to construct 

an approximation of the Lagrangian function and its Hessian matrix. For example, the active set strategies 

in the original problem and the quadratic programming subproblem need the Lagrange multiplier estimates 

to update the working set of active constraints. Algorithms based on the quadratic line search functions need 

an estimate of the Lagrange multipliers to construct constraints of the QP subproblem. The lower bound for 

the penalty parameters of the line search functions are also defined based on the values of the Lagrange multi

pliers. 

The multiplier update methods reduce the computational efforts. For example, to avoid computing the 

complete solution for system of equations (A.12), its first equation can be written as 

(A.15) 

A 

where Akis an estimate of the vector of the Lagrange multipliers A k+1. And the general iteration formula 

for the system of equations (A.12) is stated as 

(A. 16) 

where the term in the brackets is the gradient of the Lagrangian with respect to x. One can use the exact form 

of the updated Lagrange multipliers from Eqn. (A 14), but there are several other strategies one can use to 
A 

determine a suitable estimate for the updated A k(Luenberger 1989; Murray and Wright 1982). The strategies 
A 

include: (1) Ak = Ak + rc k where r is a penalty parameter. This formula is used in the method of augmented 

Lagrangian to update the multipliers. (2) Ak = [AkAn -lAkA, a least squares approximation. (3) If matrix 

Bk in Eqn. (A 14) is set to the identity matrix an estimate for the updated Lagrange multipliers will be com

puted as Ak = [A0n -l[ck - AkA]. This formula is also obtained by adding vector [AkAn -lck to the 

second updating formula that corrects the least squares estimate for the nonzero active constraints. (4) 

Ak = [tI + AkB;lAn -l[Ck - AkB;~kJ, the same as Eqn. (A.14) except it is corrected to consider the 

effect of the quadratic line search function and reduces to Eqn. (AI4) as r becomes a large number (Biggs 

1975). 

Hessian Matrix Update Methods 

The approximation matrixB for the Hessian matrix of the Lagrangian can be estimated from first deriva

tive information using a rank-two update formulae. As such, the recursive quadratic programming extends 

the quasi-Newton approach to constrained optimization problems. Standard update formulae such as BFGS 

and DFP formulae can be implemented to update the matrixB used to approximate the Hessian of the Lagran

gianH(xk' A k). For example the BFGS formula takes the form 
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(A.l7) 

where d k = x k + 1 - x k is the increment for x k at the kth iteration and q k is the difference between the gradi

ents of the Lagrangian at two consecutive iterations computed with the same Lagrange multipliers and is 

stated as 

(A.18) 

One can show that quasi-Newton methods for equality constrained optimization problems converge superli

nearly when initiated sufficiently close to the solution if a unit step length is used. Rank-two update fOITIlulae 

such as Eqn. (A. 17) should be modified to preserve the positive definiteness that can be lost if the line search 

is not exact (Han 1977; Powell 1978). For example, Han-Powell algorithm modifies Eqn. (A. 17) as follows 

(A. 19) 

where the matrices Br and Bf:t 1 are the approximate Hessian matrices at iterations k and k+ 1, respectively 

and the vectors dk and qk are the same as in Eqn. (A. 17). The vector Tk is defined as follows 

(A.20) 

where parameter (J is introduced to assure that positive definiteness of the approximate Hessian is preserved 

from Br to Bf:t 1 and is calculated as 

1 

(J = (A.21) 

If the constraints c(x) are linear, then vector q k is only the difference between the gradients of the loss func

tion F at two consecutive iterations and takes the fOITIl as 

(A.22) 

obviating the need to compute the gradient of the Lagrangian. The Han-Powell update fOITIlula requires an 

initial positive definite matrix B1fj'; one can use an identity matrix as the initial matrix B:f'. 

In practice one needs to consider which of the many low-rank update fOITIlulae will be most suitable for 

building a good estimate of the Hessian, while avoiding the singularity or unboundness of the matrix B. 
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A.3. Global Analysis 

A line search procedure is necessary to ensure global convergence of the recursive quadratic program

ming method (Murray 1969). The line search is important as a means for promoting convergence from bad 

starting points. Also, the superlinear convergence of QP methods depends upon the use of unit step length 

near the solution. The line search (merit) function must be compatible with the direction-finding algorithm 

in the sense that it must decrease along the search direction. The line search objective function is usually a 

sum of the objective function and a penalty tenn that becomes positive when the constraints are violated. The 

absolute-value penalty function and quadratic penalty function are compatible with the recursive quadratic 

programming methods using a modified Hessian matrix. 

The Absolute-Value Penalty Function 

Forthe nonlinearproblemNP (A. I), Han (1977) recommended the merit function with the following form 

In' m 

Vex) = F(x) + 2>il ci(X) I + I rimax[O'Ci(X)] (A.23) 

i=1 i=m' +1 

where each penalty parameter r i is positive. Coleman and Conn (1980a and 1980b) proposed a similar line 

search function with one penalty parameter as follows 

Vex) ~ F(x) + r [ %,!C,(x)! + i~t+l max[O,C;(x)J] (A.24) 

In order to have global convergence, each new vector in the sequence {Xk} is calculated to satisfy an inequality 

that at least obeys the condition 

(A25) 

Condition (A.25) is a weak condition. In some methods, x k+ 1 satisfies the strong condition of minimizing 

the merit function. Han (1977) analyzed a recursive quadratic programming algorithm that obtains xk + 1 by 

searching from x k along a direction d k and the step length is chosen to give the reduction (A.25). The search 

direction d k is the solution of the inequality constrained quadratic programming subproblem IQP (A. II ). Han 

assumed that the matrices {Bk; k = 0,1, ... } are unifonnlybounded away from singularity and that the linea

rized constraints in IQP are compatible. Under these assumptions and some other conditions, he proved that 

limits of the sequence {x k} are Kuhn-Tucker points of the optimization problem NP. 

Let {Ai; i = 1, ... , m} be the Lagrange multipliers atthe solution of the IQP. One of the conditions of Han 's 

analysis is that the penalty parameters h; i = 1, ... , m} in the merit function (A.23) have lower bounds as 

follows 

i = 1, ... ,m (A.26) 
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Coleman and COM (1980b) and Luenberger (1989) showed the same results for the merit function (A.24) and 

proved that the recursive quadratic programming method with the absolute-value merit function Vex) in Eqn. 

(A.24) is globally convergent if 

(A.27) 

and the step lengthfi k is computed by minimizing the univariate function Vex k + fi kd k) where d k is the solu

tion for the IQP subproblem. 

The recursive quadratic programming, in conjunction with the absolute-value penalty function, is an at

tractive technique for nonlinear constrained optimization problems. However, there are some difficulties to 

be kept in mind. First, the computation of a step length requires a one-dimensional search with respect to a 

nondifferentiable function. This difficulty can be relaxed by using the weak condition (A.25) or line search 

procedures which do not need derivatives of the merit function such as the golden section method. Second, 

the absolute-value function requires an estimate for the upper bound of the Lagrange multipliers to select the 

penalty parameters such that they satisfy conditions (A.26) or (A.27). 

The Quadratic Penalty Function 

Another line search objective function that is compatible with the recursive quadratic programming 

method is the standard quadratic penalty function. For the NP problem (A.I) this differentiable quadratic 

function is defined as follows 

(A.28) 

Murray (1969) showed that the minimum of Q(x) is approximated with the solution to a certain quadratic 

programming problem, and suggested that the NP problem (A.I) might be solved very efficiently via a se

quence of such problems so as to approach the solution along a trajectory resembling the sequence of penalty 

function minima. This procedure proved very successful in practice and it was further developed into an EQP 

approach for the RQP method (Biggs 1972 and 1975; Murray and Wright 1978). For the equality constrained 

problem (A.4), the standard quadratic penalty function takes the fonn 

l 

Q(x) = F(x) + ~r I cl(x) (A.29) 

j=! 

Minimizing the function Q(x) in Eqn. (A.29) will not yield an exact solution to the equality constrained prob

lem (A.4) and rc(x) converges to the Lagrange multipliers of problem (A.4) as the penalty number increases. 

Therefore, to make the quadratic subproblem compatible with the quadratic line search function, it can be 

stated as follows 
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(EQPP) 

A 

minimize 
tIk ERn 

(A.30) 

where A is an estimate of the Lagrange multipliers forthe original nonlinear problem and might be computed 

using the update formulae discussed in Section A.2. Similarly, Biggs (1982) suggested that for the quadratic 

merit function in Eqn. (A.28), a new IQP subproblem should be considered for the NP problem as foHows 

(IQPP) 

A A 

minimize 
tIk ER" 

subject to (A.31) 

where A and r are estimates of the Lagrange multipliers for the original problem. The IQPP subproblem 

(A.31) can be solved using active set strategy to develop a sequence of the EQPP subproblems. Numerical 

computations have identified cases where subproblem (A.31) is superior to the IQP subproblem (A.ll) and, 

just as for the equality constrained problems, there are seldom any serious disadvantages in including the 

r-term (Biggs 1982). A good recursive quadratic programming algorithm might include the penalty term in 

the subproblem at points far from the solution and switch to 1/r=O at a suitable stage near the solution to obtain 

the most rapid ultimate convergence. Another advantage of the subproblems EQPP and IQPP with respect to 

the subproblems (A.lO) and (A.ll) is the compatibility of their constraints. 

A.4. The Fletcher Active Set Strategy for Solving tltu:~ QP Subproblem 

The Fletcher algorithm is an iterative method based on an active set strategy (Fletcher 1971). At each 

iteration, there is a working set Wk which is to be treated as the active set. The algorithm generates asequence 

of equality constrained quadratic programs which differ only in active constraints. Usually in each iteration 

one constraint is added orremoved from the working set. Consider a general quadratic program withinequali

ty constraints as fonows 

minimize 
tI ER" 

subject to aTd = ci 

aTd ::; ci 

i = 1, ... ,m' 
(A.32) 

i = m' + 1, ... ,m 

The matrix G is symmetric and positive semidefinite. The Fletcher algorithm for solving problem (A.32) can 

be stated as tallows (Fletcher 1971; Luenberger 1989): 

Step 1: Start with a working set Wo. Set k=O and find a feasible initial solution do lying in the inter

section of active constraints. 

Step 2: Solve the equality constrained quadratic program (A.34) to obtain search direction P k' use 

Eqn. (A.35), if Pk is zero go to Step 4. 
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(A.33) 

If fik < 1, then add the minimizing index in (A.33) to Wk to form Wk +1. Update matrices 

Dq and Cq using relations (A.39) and (A.40) . Set k=k+ 1 and return to Step 2. 

Step 4: Compute the Lagrange mUltipliers of the problem (A.34) using Eqn. (A.36) or the formulae 

given in Section A.2. Then calculate the minimum of the Lagrange multipliers At associated 

with the inequality constraints in the working set. If At is nonnegative, stop and dkis the opti

mal solution. Otherwise, remove t from Wk to form Wk + 1 and update matrices D q and Cq 

using relations (A.41) and (A.42). Set k=k+1 and return to Step 2. 

In Step 2 the following equality constrained quadratic program must be solved to compute the increment vec

tor Pk 

minimize 
Pk ERn 

subject to aTp k = 0 

(A.34) 

where gk = b + Gdk is the gradient of the objective function for problem (A.32). The explicit solution for 

problem (A.34) can be written as 

(A.35) 

(A.36) 

where q is the number of active constraints in the working set Wk and matrices Dq(n x n) and Cq(q x n) 

are defined as follows 

(A.37) 

(A.38) 

whereAq is a matrix whose columns are the vectors alto aq• Fletcher (1971) introduced the recurrence rela

tions for updating matrices D q and Cq when a constraint is added to orremoved from the working set. These 

updating formulae make the algorithm very efficient. 

Adding a constraint. Suppose that we wish to add the (q+ I)th constraint, whose coefficients vector is 

a q+1, to the working set, the recurrence relations are stated as 

(A.39) 
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(AAO) 

where v = D qaq+l' 

Removing a constraint. To remove the qth constraint from the working set, the recurrence relations take 

the forms as 

(AA1) 

(A.42) 

where hT is the qth row of Cq corresponding to the constraint being removed. Permutation of columns of 

Cq enables the same formula to be used to remove any constraint from the working set. It should be noted 

that for n active constrains, Dn = 0 and Cn = A;l. 
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AppendixB 

Element Sensitivity Matlf'ices 

In this appendix we shall show that the sensitivity of the element mass, damping, and stiffness matrices 

with respect to the unknown constitutive parameters, one of the primary computational steps in parameter 

estimation, can be generated in an elegant and straightforward procedure. Since we have assumed that the 

topology and the geometry of the structure are known, computation of the global sensitivity matrices can be 

accomplished onanelement-by-elementbasis and combined with the standard assembly process. Here, we 

derive the relationships for computing the element sensitivity matrix Ue (or UK-. UM' and Uc for stiffness, 

mass, and damping, respectively) specifically for finite elements that are computed by numerical quadrature. 

The procedure can consider elements withldnematic ormaterial nonlinearity and covers a wide range of finite 

element models using one dimensional to three (or higher) dimensional elements. For some elements the ele

ment stiffness, damping, and mass matrices can be expressed explicitly. The element sensitivities for these 

elements are straightforward to compute, as we will show for frame elements later in this appendix. 

For the sake of the present discussion, let us assume that the geometry of the element is described in a 

coordinate system with local spatial coordinates z. Transformation to a global coordinate system is standard 

and will not be included in these derivations. Let Qe designate the spatial domain (volume) of the element. 

In most cases, the context will be sufficient to distinguish between stiffness, mass, and damping parameters. 

Thus, we will simply designate the parameters associated with an element as r, unless the ambiguity of the 

context demands that we refer to them more specifically as mass, rM , damping, XC, and stiffness xicparame

ters. Generally the stiffness matrix depends only on stiffness parameters, the mass matrix only on mass pa

rameters, and the damping matrix only on damping parameters. We discuss Rayleigh damping as a special 

exception to this rule. 

R.I. Sensitivity Matrices for NumericaUy Integrated Elements 

Element Stiffness Sensitivity Matrix. Starting from the principle of virtual work, one generallyexpres

ses the element stiffness matrix K: (xe) as an integral over the domain of the element as follows 

K'(x') = I B,T(z)E'(Z,x")B'(z)dz (E. 1) 

[Je 

where r is the vector of element constitutive parameters. The matrix Be(z) has dimension (n~ x nd) and 

represents the strain-displacement operator and the matrix Ee(z,xe
) has dimension (n~ x nn and represents 

the material constitutive properties, both for the eth element. The matrix dimensions are indexed as follows: 

nd is the number of displacement degrees of freedom associated with the element and n~ is the number of 
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strain measures defined for the eth element. For example, a two noded planar truss element has n~ equal to 

four (two components of translation at each end) and n~ equal to one (axial strain); a two noded planar beam 

element has n~ equal to six (two components of translation and one rotation at each end) and n~ equal to three 

(axial strain, shear strain, and flexural cUIVature). 

Let de (z) have dimension (nd! xl) and let it designate the continuous displacement field associated with 

the eth element. Further, let ee(z) have dimension (n~ Xl) and let it designate the strain field. The relation

ship between displacement and strain can then be written as 

(B.2) 

The differential operator L ehas dimension (n~ x ndf), where ndf is the number of quantities required to char

acterize the displacement field for the eth element. We approximate the continuous displacement field by in

terpolating the nodal displacements ue (in local coordinates) with appropriately selected element shape func

tions, Ne(ndf x nd) . The displacement field is then approximated as 

(B.3) 

Substituting Eqn. (B.3) into (B.2), the strain field can be expressed in terms of the local displacements ue 

as follows 

(B.4) 

where the strain-displacement matrix Be(z) depends only on the geometric characteristics of the element, and 

is defined by substituting Eqns. (B.2) and (B.3) into Eqn. (BA): 

(B.5) 

The differential operator matrix L e can be either linear or nonlinear. Therefore, for a finite element model 

which is kinematically nonlinear, the present formulation can be used with only slight modification. 

In general, the element stiffness matrix Ke can be implicitly computed by numerically integrating Eqn. 

(B.I) using Gauss quadrature. To wit 

n~p 

Ke(xe) = I WmBeT(Zm)Ee(Zm,xe)Be(Zm) (B.6) 

m=l 

where Wm is the weight associated with the mth Gauss station Zm, and ncp is the number of Gauss points 

in the eth element needed to integrate the element stiffness matrix K e . From these definitions one can easily 

see that 

= I wmBeT(Zm) [a[Ee~;,xe)] ] Be(Zm)ue _ 
m=l 
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The ijlh component of the element sensitivity matrix UK is given by 

[Uxk = [a[Ke(xe)ue]] = a[Ke(xe)uel 
'J axe ij ax~ 

J 

(B.8) 

In general, the element sensitivity matrix UK is a function of displacements ue and constitutive parameters 

r. If the explicit form of the stiffness matrix is known, one can use EqIl (B.8) to compute UK explicitly, 

just as we have done for the Timoshenko beam element in Section B.2. However, for most elements (e.g. 

shell, plane stress, block, and plate elements), Ke is numerically generated. The matrix Ee which defines the 

relations between strains and stresses is a function of unknown constitutive parameters for each element r. 
If the members of the material matrix are linear in constitutive parameters, which many elements are, then 

the derivative is particularly simple to express. Often this matrix is also diagonal. For example, for the truss 

elementEA (axial stiffness) is the only member of E e , and for a planar beam elementEe is a diagonal matrix 

of the axial stiffness EA, flexural stiffness EI and shear stiffness GA. 

Element Mass Sensitivity Matrix. There are basically two categories of mass that are important to us: 

(a) mass associated with structural elements, and (b) mass associated with non-structural elements. The for

mer mass is associated with the nodes of the mathematical model, while the later is associated with the ele

ments. The mass matrix of a structural element can be modeled as either a consistent mass matrix or a lumped 

mass matrix. We shall discuss the former. 

The consistent mass matrix for an element of mass density Qe(z,xe) can be expressed as 

Me(xe) = f Qe(z,r)NeT(z)Ne(z)dz (B.9) 

Q' 

where Ne(z) is the matrix of element shape functions used to approximate the acceleration field (usually the 

same as those used forthe displacement field) forthe eth element. The mass matrix can be computed by Gaus

sian quadrature as follows 

nop 
Me(r) = I WmQe(Zm,xe)NeT(Zm)~(Zm) (B. 10) 

m=l 

where Wm is the weight associated with the mth Gauss station Zm, and nop is the number of Gauss points 

in the eth element needed to integrate the element mass matrix. From these definitions one can easily see that 

(B.ll) 

The ijth component of the element sensitivity matrix Ult- is 

(B. 12) 

For the consistent element mass matrix the number of parameters is unity. 
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Element Damping Sensitivity Matrix. Among stiffness, damping, and mass, damping is the most poorly 

understood. According to our model problem, damping is velocity dependent, implying some sort of viscous 

damping mechanism. In reality, however, we generally associate many different phenomena with damping. 

Among these we find dry friction, slip mechanisms, and hysteretic energy loss. The absence of a compelling 

physical basis for damping complicates its mathematical modeling. Here we discuss only the standard vis

cous model and the case of Rayleigh damping. 

A parametrically linear, consistent viscous damping model gives rise to the following element damping 

matrix. 

C'(x') = f p'(z.x')N'T(z)N'(z)dz (B.13) 

Q< 

where Ne(z) is the matrix of element shape functions used to approximate the velocity field,,ue(z,r) is the 

material damping field, analogous to viscosity, for the eth element. The damping matrix can be computed 

by Gaussian quadrature as follows 

nap 
ce(xe) = I W m,ue(Zm,xe)NeT(Zm)Ne(Zm) (B.14) 

m=l 

where Wm is the weight associated with the mth Gauss station Zm, and nap is the number of Gauss points 

in the eth element needed to integrate the element damping matrix. From these definitions one can easily see 

that 

(B.15) 

The ijth component of the element sensitivity matrix Uc is 

(B.16) 

For consistent element damping matrix the number of parameters is unity. Although, consistent damping ma

trix ce has a strong physical basis for a Newtonian fluid, viscous damping is less popular in structural me

chanics than dry friction and hysteresis loss. 

There are other interesting damping models. For example, one model often used in structural dynamics 

is the two parameter Rayleigh damping model. In this model the damping is assumed to be proportional to 

the mass and stiffness matrix 

(B.17) 

Clearly, for this model, the damping matrix is not only a function of the damping parameters ,u1 and ,u2' but 

also a function of the mass and stiffness parameters x M and x K. The computation of the gradient of the damp-
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ing matrix with respect to constitutive parameters is straightforward, but must reflect the couping of the pa

rameters. The main motivation for using the Rayleigh damping model in direct analysis problems is that it 

is diagonalized by the normal modes of vibration. Orthogonality with respect to the normal modes is not im

pottant to the inverse problem, and hence the Rayleigh damping model may be unnecessarily complicated 

and overly restrictive. 

Assembly of Global Sensitivity Matrices. The global sensitivity matrix consists of three structural sensi

tivitymatrices UK' U c, and U M computed by assembling element sensitivity matrices. The rows of the ele

ment sensitivity matrices UK' Uc' and UM are assembled into rows of the structural sensitivity matrices UK' 

U c, and U M according to the connectivity of elements (just like the assembly of element stiffness matrices 

into the global stiffuess matrix). The columns of the element sensitivity matrices are assembled into the col

umns of the structural sensitivity matrices according to their parameter group index. For example, if stiffness 

parameters of two elements belong to the same stiffness parameter group, the columns of their stiffness sensi

tivity matrices are assembled in the same column of the matrix UK' These two elements might have different 

mass and damping properties, putting them in different mass and damping parameter groups. 

B.2. Sensitivity Matrices for Frame Elements 

In this section we derive the sensitivity matrices for a truss bar element, a Bemoulli-Euler beam element, 

and a Timoshenko beam element The mass, and damping matrices of these three element are linear with re

spectto theirmass,xM, and damping parameters, xC. The stiffness matrices of the truss bar and the Bernoulli

Euler beam element are also linear with respect to their stiffness parameters Xlc (EA , or EA and EI, respective

ly). The stiffness matrix for the Timoshenko beam element is nonlinear with respect to its parameters EA, EI, 

and GA. 

Truss Bar. To implement the procedure developed in Section B .1, first, we implicitly compute the stiff

ness element sensitivity matrix and then we use the explicit mass and damping matrices and compute the mass 

and damping element sensitivity matrices. 

For a planar truss bar with three degrees of freedom at each end, there is only one deformation field, axial 

deformation ll(Z), one strain field, axial strain e (z), and one stiffness parameter EA. Using the notations de

fined in the earlier sections, for a truss element we have the following properties: number of degrees of free

domassociated with the element, n~ = 6,numberofstrainmeasures, n~ = l,numberofquantitiesrequired 

to describe the displacement field, n~f = 1, and number of constitutive parameters, n~ = 1. The displace

ment field is completely described by the axial displacement, hence dt:(z) = ll(Z). For a truss element axial 

strain is the only possible defOlmation, hence ee(z) = e(z). Figure B.l shows the nodal displacements 

ueT = [Ul V1 e1 U 2 V2 e2l for a general one-dimensional, planar element in the element local coordinate 

system. 

The defonnation field along the truss element can be approximated using linear Lagrangian shape func

tionsN = [I-z/Z 0 0 z/Z 0 0] as follows 

ll(Z) = N(z)ue = (l-z/l)lll + (z/l)u2 (B.18) 
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Fig. B.l Geometric deformation of planar truss and beam elements 

Using Eqn. (B.2) the strain-displacement relation in element local coordinates can be written as 

e(z) = ;z[u(z)] (B.19) 

where L e == d / dZ is the differential operator defined in Eqn. (B .2). The strain-displacement matrix Be based 

on Eqn. (B.5) will be 

Be = [-too toO] (B.20) 

The material matrix E e and the vector of parameters XX each has only one member, the axial stiffness EA. 

Using Eqn. (B.1) we compute the element stiffness matrix which is a (6 x 6) sparse matrix with only four 

nonzero members as follows 

(B.2l) 

The stiffness element sensitivity matrix U~(6 x 1) can simply be computed using Eqn. (B.8) 

o o o 0] (B.22) 

Since the stiffness matrix of a truss bar is linear in its parameters, the stiffness element sensitivity matrix UK 
is only a function of the nodal displacements. 

One can also compute the mass matrix from the shape functions. Let us assume that the density per unit 

of length is constant. Using Eqn. (B .9) and the linear Lagrangian shape functions defined previousl y, the con

sistent mass matrix for a truss element takes the following form 

2 0 0 1 0 0 ii1 

0 2 0 0 1 0 v1 

Me((/)ue {li 0 0 0 0 0 0 01 (B.23) = 6 1 0 0 2 0 0 ii2 

0 1 0 0 2 0 V2 

0 0 0 0 0 0 O2 
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where i/ is the vector of nodal accelerations in the element local coordinates system. The consistent mass 

matrix is only a function of the mass density rf, therefore the mass element sensitivity matrix U~( 6 xl) 

is a vector which can explicitly be computed as follows 

UM
e T = -61 ["":1 + u"z 2" - 0 £.u VI + V z (B.24) 

FromEqns. (B .9) and (B .13), the consistent mass and damping matrices for a truss element have the same 

form and consequently, the sensitivity matrices also have the same fonn. Using Eqn. (B.24) and replacing 

the vector of the nodal accelerations it with the vector of the nodal velocities u the damping sensitivity matrix 

Ucwill be 

UeT I [. . 
C ="6 2U I + U z o (B25) 

where I is the length of the truss bar and the nodal velocities are defined the same as nodal displacements 

shown in Fig. B.1. 

Bernoulli-Euler Beam Element. The explicit stiffness matrix for a Bernoulli-Euler beam element, 

which is linear with respect to its constitutive parameters EA and EI, is given by the following 

PEA 0 0 -PEA 0 0 U I 

0 12£l 6lEl 0 -11£1 6[El Vi 

=.!. 
0 61El 4[2El 0 -61El 2ZZEI el Ke(xe)u p (B26) 

-[2EA 0 0 [2EA 0 0 Uz 

0 -12£1 -6lEl 0 11£1 -6lEl V2 

0 6lEl 2[2El 0 -6[El 4PEI e z 

Using the element stiffness matrix given in Eqn. (B.26) one can explicitly compute the stiffness sensitivity 

matrix UK as follows 

Ue = 1 
K P 

[2(U 1 - U2) 

12(Vl - v2) + 6[(e1 + e z) 

6l(v1 - v2) + 2ZZ(2e1 + e2) 

[2(u z - Ul) 

12(v2 - VI) - 61(e1 + e2) 

6l(Vl - vz) + 2[2(e1 + 2ez) 

The consistent mass matrix for a Bemoulli-Euler beam element is 
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140 0 0 70 0 0 U1 

0 156 221 0 54 -13/ VI 

eel 0 221 4P 0 13/ - 3P 81 
Me((f)i/ = 420 (B.28) 

70 0 0 140 0 0 u2 

0 54 13/ 0 156 -221 V2 

0 -13/ - 3P 0 -221 4f2 82 

The element mass matrix, Eqn. (B.28), is linear with respect to the mass density (/ and one can easily and 

explicitly compute the mass element sensitivity matrix for the Bernoulli-Euler beam element as 

ue 
M 

I 
= 420 

70(2U 1 + u2) 

(156vl + 54vz) + 1(2281 - 130z) 

/(22vl + 13v2) + P( 481 - 3(2) 

70(Ul + 2u 2) 

(54v1 + 156v2) + /(1301 - 22(2) 

- 1(13vl + 22v2) - P(301 - 4(2) 

(B.29) 

Since the consistent element mass and damping matrices are constructed in the same way, their sensitivity 

matrices also have the same fonn. Replacing the vector of the nodal accelerations ii with the vector of the 

nodal velocities Ii we can compute the damping sensitivity matrix Uc as follows 

Ue = _I_ 
e 420 

70(2U 1 + u2) 

(156v1 + 54v2) + 1(22e1 - 13(2) 

l(22vl + 13v2) + f2(4e 1 - 3(2) 

70(Ul + 2U 2) 

(54v 1 + 156v2) + l(13e1 - 22(2) 

(B.30) 

Timoshenko Beam Element. For a Timoshenko beam element the vector of parameters xi< consists of 

axial stiffness, EA, flexural stiffness, El, and shear stiffness, GA, thus n~ = 3. Figure B.1 shows the nodal 

displacements for this element. Again there are six element displacement degrees of freedom n ~ = 6, but 

there are three quantities required to describe the displacement ndJ = 3 (axial displacement, transverse dis

placement, and rotation of the nonnal to the cross section), and three strain quantities n~ = 3 (axial stretch, 

shearing, and flexural curvature). For a planar Timoshenko beam, one could follow the procedure used for 

the truss element and implicitly compute the stiffness matrix. It turns out to be nonlinear in its parameters. 

We will, however, simply use the explicit fonn of the stiffness matrix to compute its stiffness sensitivity ma

trix. for this element. The stiffness matrix for this element can be written as 
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PEA 0 0 -[2EA 0 0 U l 

0 12al 6la l 0 -12a1 6[al v1 

=1. 0 6[a1 2J2(2a 1 +az) 0 -6ia1 '2P(a1-aZ) 61 
xe(Xe)U r (B.31) 

-PEA 0 0 PEA 0 0 Uz 

0 -12a 1 
-6[a1 0 12a1 -6ia1 Vz 

0 6ia 1 2J2(a1-aZ) 0 -61a1 2J2(2a1 +az) 6z 

where the scalars al = EI/(2a3 + 1), a2 = ala3, and a3 = 6EI/(GAF). Using Eqn. (B.8) we can compute 

the stiffness element sensitivity matrix UK' and it has the following form 

d~l 0 0 
0 d"zzb 1 d~zbz 

0 d~2b1 +d~3b3 d~zbz+d~3b4 
Ue = K d~l 0 0 

0 d~zb1 d~2b2 

0 d~zbl +d~3b3 d~.jJz+d~3b4 

where scalars dij and hi are defined as follows 

1 d11 = d~l = y(u1 - uz) 

dh = -d~z = i; (Vi - vz) + *(e1 + ez) 

dh = *(VI - Vz) + t(261 + ez) 

d~3 = -d63 = t(61 - ez) 

6 2 
d~2 = p(V1 - vz) + y(e1 + 2e2) 

f3 = 12EI + iZGA 

aa 1 (GAF/ 
bi = a(EI) f32 

aa1 12(EAI/ 
b2 = a(GA) f32 

aa2 = 72(EI)z + 12(GA)(EI)f2 
b3 = a(EI) f32 

-6(EI)2[2 

f32 
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The mass and damping element sensitivity matrices for a Timoshenko beam element are the same as for 

a truss element, except that the terms corresponding to the rotational degrees of freedom are not zero. The 

mass and damping element sensitivity matrices will be as follows 

u e T 
M 

_1[2U+" - '6 1 u2 21\ + v2 2e1 + e2 iil + 2U 2 v1 + 2V2 e 1 + 2e2 ] (B.34) 

and 

ueT = 1 [2U 1 + u2 2Vl + V2 201 + O2 u1 + 2U2 V1 + 2V2 01 + 202 ] C '6 
(B.35) 
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