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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand and
disseminate knowledge about earthquakes, improve earthquake-resistant design, and implement
seismic hazard mitigation procedures to minimize loss of lives and property. The enmphasis is on
structures in the eastern and central United States and lifelines throughout the country that are found
in zones of low, moderate, and high seismicity.

NCEER's research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elements, as shown in the figure below. Element |, Basic Research, is carried out to
support projects in the Applied Research area. Element [1, Applied Research, is the major focus of
work for years six through ten. Element I11, Demonstration Projects, have been planned to support
Applied Research projects, and will be either case studies or regional studies. Element 1V,
Implementation, will result from activity in the four Applied Research projects, and from Demonstra-
tion Projects.

ELEMENT | ELEMENT It ELEMENT i
BASIC RESEARCH APPLIED RESEARCH DEMONSTRATION PROJECTS
* Seismic hazard and * The Buiding Project Case Studies
ground motion * Active and hybrid controi
* The Nonstructural « Hospital and data processing
+ Soils and geotechnical Components. Project facilities
sngineering » Shorn and medium spen bridges
+ The Lifelines Project [ >« Water supply systams In
+ Structures and systems Memphis and San Francisco
The Highway Project Regional Studies
* Risk and reliability * New York Clty
* Mississippl Valley
* Protactive and inteiligent * San Francisco Bay Area
systems
« Societal and economic
studies I ] I |
\V4 v
ELEMENT IV
IMPLEMENTATION

s Conferences/Workshops

» Education/Training courses
+ Publications

s Public Awareness

Tasks in Element 1, Basic Research, include research in seismic hazard and ground motion; soils and
geotechnical engineering; structures and systems. risk and reliability; protective and intelligent
systems;, and societal and economic impact.
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The soils and geotechnical engineering program constitutes one of the important areas of research
in Element I, Basic Research. Major tasks are described as {ollows:

1. Perform site response studies for code development.

2. Develop a better understanding of large lateral and vertical permanent ground deformations
associated with liquefaction, and develop corresponding simplified engineering methods.

3. Continue U.S. - Japan cooperative research in liquefaction, large ground deformation, and
effects on buried pipelines.

4. Perform soil-structure interaction studies on soil-pile-structure interaction and bridge
foundations and abutments, with the main focus on large deformations and the effect of ground
failure on structures.

5. Study small earth dams and embankments.

This report describes the development of an earthquake motion simulator for centrifuge testing and
its application 10 studying the dynamic response of saturated soil deposits. Two groups of tests were
performed. The firsttestswere part of the Verification of Liquefaction Analysis by Centrifuge Studies
(VELACS) project sponsored by the National Science Foundation. The results from these tests were
used 1o study the validity of the liquefaction analysis programs DYNA 1D and DYNAFLOW. It was
confirmed that both programs can closely simulate the details of the experimental centrifuge
liquefaction test.

A second set of lests were performed (o investigate soil-structure interaction. The results were
correlated with numerical simulations from the DYNAFLOW computer program. Comparisons of
computed versus recorded structure accelerations and pore water pressure variations were found
to be in good agreement.

v



ABSTRACT

Centrifuge model studies of dynamics effects in soils are dependent upon the ca-
pability to simulate the excitation due to earthquakes. Various efforts have been
made by experimentalists to design and develop such capabilities for existing geo-
technical centrifuges. Tiis study reports on the development of an electro-hydraulic
earthquake motion simulator for the Princeton University geotechnical centrifuge.
The success of the Princeton ground motion simulator indicates that application of
electro-hydraulic shaker technology in centrifuge dynamic testing does not necessar-
ily require high investments.

The first group of tests performed with the electro-hydraulic ground motion sim-
ulator are part of the VELACS (Verification of Liquefaction Analysis by Centrifuge
Studies) project. A soil deposit constructed with two layers, sand and silt, was tested
to study dynamic behavior of non-uniform horizontal soil deposits.

Next, an experimental study of soil-structure interaction effects was performed
with geometry of the test corresponding to one of the collapsed Niigata apariments,
damaged due to the liquefaction induced by 1964 Niigata earthquake.

The experimental results are compared with results obtained from different meth-
ods of numerical analysis encompassed in computer codes DYNAID and DYNA-
FLOW developed at Princeton University.
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Section 1

Introduction

Earthquakes can so often be violent, and so far they have been unpredictable. Their
activity produces injury, damage, and helplessness, so people have always feared
them. Popular legends in many countries attributed earthquakes to underground
monsters and gods. In Japanese ancient folklore a great catfish (namazu) causes
earthquakes by thrashing its body; its activity can only be restrained by a god
{dainyejin). But when the attention of the dainyojin wanders the namazu moves
and the ground shakes.

Most of the modern world today uses what are believed to be more scientific ap-
proaches. Because of the complex nature of earthquake effects, current investigations
encompass many disciplines, including those of the both physical and =ocial sciences.

The engineering part is in employing appropriate countermeasures to decrease
the hazard to urban and rural areas that can lead to disasters, and in providing an
adequate degree of safety at an affordable cost. That requires an extensive knowledge
and high level of expertise in earthquake engineering.

The influence of saturated soils on the behavior of structures received little or
no attention from engineers until the ecarly 1960’s. However, a series of catastrophic
failures, such as landslides during the 1964 Alaska earthquake, and extreme liquefac-

tion during the Niigata earthquake in 1964 (Figure 1.1) brought scientist’s interest
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Figure 1.1: Damage caused by 19684 Niigata Earthquake

to the field of soil dynamics.

In recent years, there have been a number of mode] studies of the earthquake
responsc of saturated soils, and soil-structure interaction using geotechnical cen-
trifuges. Still, there is a need for further model studies, and new equipment that
would enable systematic and careful experimental methoeds.

This study includes the development of a centrifuge earthquake motion simulator,
and its use in small-scale modelling of soil liquefaction and soil-structure interaction.

The report provides a review of liquefaction phenomenon, centrifuge testing and
the Princeton University centrifuge facility (Section 2).

The .tructure of the shaker system is presented in Section 3 together with its
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performance and ability to maintain desired earthquake-like excitation on a testing
model.

First geotechnical testing, performed with the Princeton University hydraulic
ground motion simulator was a part of the Verification of Liquefaction Analysis by
Centrifuge Studies project (VELACS). A brief introduction to the VELACS project
and a description of performed tests and numerical simulations are presented in
Section 4 .

Section 5 details the soil-structure interaction model tests and numerical simula-
tion with DYNAFLOW code.

Section 6 ptovides conclusions and some recommendations for future work.

Apendix A presents a summary of the all centrifuge model tests performed on
the Princeton University Geotechnical Centrifuge.

Appendices B to D provide detailed descriptions and results of the performed

cenirifuge tests.



Section 2

Background

2.1 Liquefaction

During sarthquakes, the shaking of ground may cause a loss of strength or stiffness
that results in landslides, dam failures, settlements of strictures, or other damage
(Figure 1.1). The process leading to such loss of strength and stiffness is called soil
Liquefuction.

This is a phenomenon primarily associated with saturated sands. Soil liquefaction
has been ohserved in almost all large earthquakes, and in many cases it has caused
scrious damage. The destructive eflects of soi! liquefaction were brought to the
attention of engineers by the 1964 earthquake in Niigata, Japan. This earthquake
caused more than one billion dollars in damages, due mostly to widespread soil
liquefaction.

For critical structures, such as nuclear power plants and large earth dams, the
possibility of liquefaction presents a serious engineering problem. Knowledge con-

cerning liquefaction and its effects has come mainly from three distinct efforts:
¢ ficld observations during and following earthquakes,

» theoretical studies {employing numerical procedures),



» experiments in the laboratory on soil samples and models of foundations and

earth structures ( including small scale models ).

In the first case, one has to wait for earthquakes of sufficient magnitude to occur
to obtain the required data. As the time and place of an earthquake cannot be
predicted, it is necessary to install instrumentation on many structures in many
locations in the hope of eventually acquiring some data.

However, careful field studies identified sandy soils to be most likely to liquefy, and
provided some information and correlations of great value to engineering practice.
With a certain confidence, the occurrence or nonoccurrence of liquefaction relating
to the intensity of ground motion can be obtained from in-situ evaluation of soil
characteristics.

Numerical analysts, ever if they have good modelling procedures, face prob-
lems with determining the uroperties of soil deposits in non-homogeneous layers
and lenses. In addition, the boundary conditions are often aifficult to define. Still,
theoretical analysis made good progress in formulating constitutive relations that
describe the physical behavior of soil as a continuum.

Soils laboratory testing showed that cyclic straining of a saturated soil can cause
pore pressure to build up as a result of rearrangement of soil particles. In an
undrained environment, gravity loading is transferred from soil skeleton to the pore
water, with reduction in the soil capacity to resist loading.

These tests have also demonstrated influence of size, shape, and gradation of
particles on the ability of soils to liquefy. Saturated uniform granular soils without
cohesive fines are most susceptible to the pore pressure build-up. Other factors
affecting the level of pore pressure build-up include the amplitude of straining, the
density, the history of stressing, the confining pressure, and the overconsolidation

ratio of the soil {5].
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fodel {ests of foundation and earth structures performed on large shake-table
devices, used by some experimentalists, have been useful to study the complex dis-
tribution of pore pressure and deformations. However, these tests suffer from the
disadvantage of having much lower effective stresses in the laboratory model than
those encountered in the field.

One experimental technique that offers the ability to create relatively realistic full-
scale stress states together with measurable soil properties is centrifuge model testing.
Centrifuge testing of dynamic problems has been widely employed by geotechnical
investigators in recent years, in a variety of test configurations, including liquefaction
studies.

Several test facilities, besides Princeton University Centrifuge, now have capabil-
ity of dynamic model testing to simulate seismic loads. Hydraulics shakers similar
to the Princeton shaker are operational at U.C. Davis, Caltech, RPI, and at the
University of Colorado Boulder. Cambridge University has been operating a centri-
fuge shaking table, known as the "Bumpy Road Simulator” since 1980. With the
development of these facilities, it is now possible to study the effects of simulated
earthquakes on the behavior of the variety of structures built of or on liquefiable

80ils.



2.2 History of Centrifugal Modelling

The idea of the small scale modelling in the centrifuge was presented for the first
time in 1869 by E. Phillips in France [6]. Using the equilibrium differential equations
for elastic solids, Phillips derived the relationship which had to be satisfied for the
prototype and the small scale model, to exhibit the same behavior. He briefly gave
some general principles for the design of centrifuges, and proposed using a centrifuge
for testing models of a metal bridge for spanning the British Channel.

Sixty years would pass before this idea would be implemented. In the early
thirties, this idea was re-discovered independently in the former USSR and in the
US. Pokrovski in the former USSR, and Bucky in the US used the idea to study
stability of slopes in river banks and deformation of rock beams in underground
chambers, respectively. The centrifuge model testing has been used ever since in
civil and military projects. In the US, use was confined to mining applications {8].

In the following thirty years, more than twenty centrifuges have been built in
various research organizations specially for geotechnical studies, but it took almost
forty years for centrifuge tests to become something other than an exotic scieatific
undertaking. Finally, one can consider the establishment of an International Tech-
nical Committee on Centrifuge Testing in 1981 to be an 'official’ recognition by the
geotechnical community of the value of the centrifuge experiments.

Recent developments in the electronic fields provided some fancy features in the
measuring, and the data acquisition systems. Miniature transducers and powerful
data acquisition oriented computers opened a new dimension in the centrifuge testing

approach.
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2.3 Principles of Centrifugal Modelling

The basic principle concerns the question of weight. In Figure 2.1, 1/106 scale model]
of mass 5 [Kg] (of soil), in flight in centrifuge with radius of 1.1 [m], at a speed
of 30 [radians/s] (286 [RPM]), has a tangential acceleration of 990 [m/s?], which
will cause the 5 [K g] mass to experience an inertial force of ~ 5 [kN] force radially
inwards. Viewed externally, the model appears to be constantly accelerating in the
direction of the arrow, but on the television screen, the block will appear to be at
rest relative to the camera [19].

The centrifuge arm has to be strong, because the block of scil will be trying to
accelerate through the bottom with an equal and opposite relative acceleration of
990 [m/s?] (~ 100 times earth's gravity). If the frame of reference is the basket
(viewed internally), then the direction of the force field is pointed outwards.

A large prototype exposed to the earth’s gravity field experiences the same pres-
sures across its volume as a small model in a centrifuge, exposed to the force field
due to the centrifuge acceleration. In both cases, the upper surface of the body is
unstressed and the pressure builds up through the depth of the body. Hence, the
stress-stra:n behavior of a point in the model is the same as that of the homologous
point in the prototype. This technique allows various tests to be performed at a
conveniently reduced scale, and provides data applicable to full-scale problems. Fur-
ther, the tests can be performed on any particular soil type and/or deposit, and/or
for any structure configuration.

The modelling technique leads to a set of scaling relationships, or scaling laws,
that affect time, physical dimensions, and the many derivatives of these combinations
such as velocity, acceleration, force ete. These scaling relations are listed in Table 2.1.

The centrifuge approach promises to be an invaluable aid for studying a variety
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b) Model

Figure 2.1: Prototype - Model

of complex geotechnical problems and in particular, for studying soil liquefaction,
and soil-structure liquefaction problems.

Finally, a model tested at Ng should have a geometry that is /N times the
geoinetry of the prototype to reproduce prototype stresses. For correct scaling of
inertial effects, the model horizontal acceleration time history should have accelera-
tions magnitudes N times the prototype accelerations, with a frequency egual to N
times the prototype frequency.

Unfortunately, not all effects behave like experimentalists would like them to
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Quantity Full Scale| Centrifugal
Prototype | Model at ng
Linear Dimension, T
Displacement 1 1/n
Area 1 1/n2
Volume 1 1/n3
Stress 1 1
Strain 1 |
Force 1 1/n?
Mass 1 1/n?
Acceleration 1 n
Energy 1 1/n?
Density 1 1
Energy Density 1 1
Velocity 1 1
Time
In Dynamic Terms 1 i/n
In Diffusion Terms 1 1/n?
In Viscous Flow Case 1 1
Frequency in Dyna.aic
Problems 1 n

Table 2.1: Scaling Relations
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behave. It can be seen in Table 2.1 that consolidation in a model occurs N? times
faster than for the prototype, thus tests that involve both inertial and consolidation

effects must be very carefully performed.

2.4 Princeton University Geotechnical Centrifuge
Facility

The Princeton University Geotechnical Centrifuge has been in operation since Jan-
uary 1980. It is located in the basement of the Engineering Quadrangle of the
Princeton University (Figure 2.2).

The centrifuge drive and enclosure, a model 1230 — 1 "Genisco”, are combined
with a special accelerator arm and two swinging platforms (Figure 2.4), designed
at Princeton to enable performing of the geotechnical experiments. The *Genisco”
drive mechanism is made up of a remote 15 [Hp| clectric motor which is coupled
to a hydraulic pump and a rotor system capable of spinning the accelerator arm to
several hundred RPM. The accelerator arm, made of 5.08 [cm] thick aluminum, has
a maximum payload of 10 [G — tons].

Nicolas-Font [12) plots usable domain of a centrifuge in the frame of reference
(acceleration, platform loading) (Figure 2.3). That indicates the capabilities of the
device and an operating range inside which the safety of the equipment and people
using it can not be jeopardized. Figure 2.3 shows the change of the usable domain
of the Princeton University geotechnical centrifuge due to the shaker installation.

On each end of the 3.05 [m] (10 [ft]) (Figure 2.4) accelerator arm is a hinged
swinging basket, one for mounting experimental hardware, and another one for bal-
ancing the centrifuge. The entire arm is enclosed by a 5/16” [in] thick metal housing

whose vibrations are, for safety reasons, monitored with a seismometer. Electric
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Figure 2.2: P.U.Geotechnical Centrifuge Laboratory
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Line Type || Available [ In Use
High Voliage
Power Line 24 12
Low Voltage
Data Lines 22 19
Pneumatic
Air Lines 2 1

Table 2.2: Available and Used Connections Through the Centrifuge Axis

power, pneumatics, and low Jevel voltage data signals are transferred to and from
the experiment via high power slip-rings, rotating union, and miniature instrument

slip-rings, respectively (Table 2.2).
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Section 3

Ground Motion Simulator

3.1 Introduction

As described in Section 1 this study includes the development of a centrifuge ground
motion simulator that is used to simulate carthquake motions for small scale geo-
technical model testing. It begins with a brief survey of developments in the area of
earthquake-like motion simulators, traces some attempts made at Princeton Univer-
sity to design a cheap and simple motion simulator, and ends with a description of

the currently operating Princeton University ground motion simulator.

3.2 Types of Ground Motion Simulators

The first experiments with seismic loading in a centrifuge were carried out in 1940 by
Pohorsky and Fedorov [23]. A special suspension system was designed which allowed
a model to oscillate while the centrifuge was in flight.

A spring actuated shaker able to provide decaying sinusoidal input motion at
fixed frequency was part of early dynamic testing at Cambridge University (11},
California Institute of Technology [20] and at Princeton University. The 'bumpy
road’ technique, currently operating at Cambridge University {10], involves a tracks
of desired input wave forms mounted over a portion of the centrifuge housing wall.
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Shaker Type || Shaker Cost Simplicity | Adjustability Freq. Range
Low High
Cocked Springs | Very Low | Very Simple Poor FoA
Piesoelectric Low Simple Good F
Explosive Low Simple Moderate oA
Bumpy Road High Complex Moderate + 4
Hydraulic || Very High' | Very Complex| Very Good | F R

Table 3.1: Comparison of Various Methods for Simulating Earthquake
Ground Motions on Centrifuge

An earthquake simulator using piezoelectric element has been used in the Uni-
versity of California, Davis [1]. A piezoelectric ceramic element is an artificially
polarized wafer whose strain magnitude, when exposed to an electric field, is directly
proportional to the magnitude of that field. The motion of the element may be
controlled by the electric input.

A simulator system using small explosions as an input was developed at Ecole
Politechnique in Paris in the later 1970’s [24]. Up to 10 charges of explosive of
1 to0 5 [g] could be detonated in desired sequence, their explosions modified in an air
blast modification chamber, and applied to the vertical face of a soil mass through
a rubber membrane.

A hydraulic shaking system was for the first time put into operation on the
geotechnical centrifuge at the California Institute of Technology [7]. A flow of il
is directed into one of two opposed pistons to create a motion of the shaking box
connected to the actuator device. Comparisons of various methods for simulating

earthquake ground motion are given in Table' 3.1 [23)].

!Princeton University ground motion simulator design and construction showed that cost of the
hydraulic shakers for stnall centrifuges does not necessarily have to be very high



3.3 Princeton University Designs

At Princeton University, a hammer-exciter plate device was used to provide internal
excitation of a test model [22]. A plate placed near the bottom of a soil mass was
activated by an air pressure driven hammer device. The amplitude can be controlled
by varying the air pressure in the hammer device, while the frequency content can
be varied by changing the plate’s dynamic characteristics (Figure 3.1).

The simulated earthquake was similar in amplitude and frequency to some real
earthquakes with relatively high frequency contents {22].

The old hammer-exciter plate technique was very simple and cheap, but it was
only capable of generating one type of earthquake with high predominant frequen-
cies, and short in duration. In order to achieve better control over the earthquake
simulations, it was decided to upgrade the centrifuge with the Acutronic designed
spring shaker system.

The idea behind the design was to have a one degree-of-freedom system floating
on a powerful air hockey table' device {Section 3.4.3). Resulting motion dominant
frequencies were too high for the realisiic earthquake simulation, and the system was
unable to perform in a high g environment.

It seemed reasonable to solve the problem using a device strong enough to in-
duce forced vibrations of the sysiem. The Acutronic springs were replaced with
the Ingersoll Rand multi-vane air motor series 4800. The air motor was previ-
ously redesigned to maintain needed 5.2 (kW] (7 [Hp]) ot 6400 [RP M| from original
2.8[kW|(3.7(Hp])at 560 RPM|. The constructed system was able to provide sine-like
displacement time-histories with reasonable control over the frequency, although the
air motor starting and stopping caused some irregularities in the excitation. Due to

the imperfect transmission, the whole system generated very high mechanical noise,
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Figure 3.1: Old Hammer-Exciter Shaker on P.U. Geotechnical Centrifuge
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and it was impossible to produce the desired number of cycles, which was required
to perform VELACS model check test. In spite of the fact that the air motor driven

shaker was operational, it was decided to start construction of the electro-hydraulic
shaker.

3.4 Electro-Hydraulic Shaker

In 1991, the P.U. centrifuge has been modified to include a one degree of freedom
electro-hydraulic shake table, capable of subjecting a test container to various types
of dynamic excitation in the direction which lies in a plane of the centrifuge rotation.

An electro-hydraulic shaker is a special hydraulic actuator and a high perfor-
mance servomechanism, optimized for high frequency operation. A servomechaniam
is defined as: "an automatic feedback control system in which controlled variable
is mechanical position or any of its time derivatives” (ANSI, 1981). The system
is capable of vibration testing from DC to 1000 [Hz), and is particularly advanta-
geous for vibration tests requiring high force levels, like those in a high gravitational
environment.

An electro-hydraulic vibration test system is made up of three major subsystemas:
¢ Hydraulic Subsystem,
e Electronic Subsystem,
e Slip table.
3.4.1 Hydraulic Subsystem

The whole hydraulic subsystem of the Princeton ground motion simulator is located

on the centrifuge arm (Figure 3.2).
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The subsystem includes: the hydraulic power supply system, 25 [{] oil tank, man-
ifolds for oi] passages, a filtering system, two 1.86 [{] (1/2 gallion) accumulators, the
servovalve and the linear actuator (Figure 3.4). The hydraulic power supply system
consists of the Ingersoll Rand air motor and the Airline Hydraulics oil pump. The
combination was required to have a full flow capacity of 20.0 {I/min] operating with
maximurn oil pressure at 20.7 {M Pa]. The position of the tank, on the centrifuge
arm, was chosen such that the oil pump operates in a submerged regime, without
suction oil lines, while the centrifuge was in flight.

Aun additional weight was placed on the centrifuge arm to act as a counterbalast
for the oil tank and the power supply units. A filtering system includes a HP010
Moog Filter Assembly rated at 38 [l/min] (10 gallon/min) and Beta rating for
3 microns of 75, with dirt alarm set to 670 [kPa] (100 [PSI]) pressure drop, in-
stalled in the high pressure lines before the actuator, and an oil strainer placed on
the oil tank outlet.

Beside the main power unit, a system has a supply accurnulator as an optional
power supply for the actuator when the oil pump is not active, together with a re-
turn accumulator used to receive oil on the return side of the actuator. The supply
accumulator was precharged with 17.25 [M Pa] nitrogen, and the return accumula-
tor was precharged at 1.04 [M Pa| nitrogen pressure. The accumulator volume and
precharged pressures were chosen in conjunction with the actuator size to provide
working volumes and supply duration consistent with the requirements for scaled
earthquake-like events, yet without excessive drop in oil pressure. Because the pri-
mary power unit can be active while the centrifuge is in flight, accumulators have
not yet been used as an alternative power supply.

The linear actuator is a Team Impedance Assembly Head 21/0.5. The full stroke
of the piston rod is +6.35 [mm)] (0.25 [in]) and the cylinder diameter is 32 [mm)

3-6



(1.26 [in}]), and the piston rod diameter is 25.4 [mm] (1.0 [in]). Piston working area
is 297 [mm3} (0.46 [in?]) (Figure 3.3).

A position feedback information for the automatic feedback control is provided by
a SCHAEVITZ MHR250 transducer built in the Team actuator. The actuator was
sized for stall force at supply pressure, but the device that controls the hydraulics
shaker, and connects the hydraulics subsystem with the electronics subsystem is a
servovalve.

Servovalve throttles flow from a constant pressure supply to each side of the ac-
tuator piston to produce the piston rod motion. A Moog Controls Servovalve model
760 — 912A rated at 19 [I/min] (5 {gpm]) was mounted directly on the impedance
assembly head to minimize the time for load response. (Figure 3.4). The Moog servo-
valve together with the SHAEVITZ LVDT make the hydraulic subsystem connection

with the electronic subsystem.

3.4.2 Electronic Subsystem

The ground motion simulator electronic subsystem consists of a Moog Controls Model
121 - A132 servocontroller, a Moog Controls Model 123 -C'134 Exciter-Demodulator,
a 'function generator’ and an input voltage [evel regulator (Figure 3.5).

A desired signal generated on 'function generator’ (Masscomp computer) is scaled
with a simple voltage divider and brought to the servocontroller through a centrifuge
slip ring.

The servocontroller processes the signal together with a feedback signal coming
from the exciter-demodulator, and sends the command to the servovalve. A resulting
actuator rod motion is monitored by the LVDT and a new feedback signal is sent to
the exciter-demodulator and then back to the servocontroller.

The designed system can provide good control over the actuator piston rod posi-
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Figure 3.3: Team Assembly Head and Moog Servovalve Mounted on the
Swing Platform
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Figure 3.4: Team Assembly Head and Moog Servovalve
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tion relative to the centrifuge swing container, and eliminate most of the phase lags

caused by the hydraulic subsystem components.

3.4.3 Slip Table

The spring shaker system, designed by Acutronic, included a plate floating on air
flow attached with four springs. The idea behind that design was to eliminate friction
between the oscillating plate and the base of the shaker. To provide 0.57 [m?¥/min)]
(20 [efml) air flow at 2 [MPA] (300 [psi]) needed for the plate to float, a 5.6 [kW]
(7.5{Hp]) compressor and one cubic meter tank were installed. The plate was initially
sitting on the 'air hockey table’ with 16 air jets which were supposed to lift the plate
once the centrifuge is in flight.

However, due to imperfections in design, and the weight of the sample placed
on the plate, once the air was released the plate would tilt and let the air escape
without establishing the stable system. Vertical acceleration generated inside the
system was impossible to control, and too high for realistic small scale modeling of
ground motion.

The slip table currently in use, designed at Princeton University, consists of
12.7 [mm] (1/2 {*n]) aluminum rollers placed on an aluminum base. The first tests,
performed in 100g environment, showed satisfactory performance of the rollers. The
only problem, transmission of high frequencies generated in the shaker power supply
unit (air motor and oil pump), was eliminated with a 1.6 [mm] (1/16 [in]) gasket
placed on the interface of the swing platform and the rollers base, and a duct tape on
surfaces of a rollers’ contact with the base and a test model box. Vertical acceleration
generated with the slip table was always below 15% of the horizontal acceleration

amplitude with a frequency range similar to one of the input (Figure 3.6).
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3.5 Instrumentation and Data Acquisition Sys-
tem

Precise and reliable instrumentation is of major importance for the small-scale mod-
elling. During simulated earthquakes, instrument sensors measured accelerations,
pore pressures and displacements.

Accelerations are measured by miniature piezoelectric accelerometers that have
to be placed at desired locations of the model. The accelerometers used at Prince-
ton University are Kistler PICOTRON series 8616 A. When used in a saturated
environment, transducers were protected with a silicone case.

Pore pressure transducers used in tests described in Sections 4 and 5 were Druck
PDCRB81 with pressure range of ~ 200 (kPa)}.

Displacements are measured with contact and non-contact LVDTs. The non-
contact position measuring system used in centrifuge tests is Kaman KD — 2300 -
8CM differential impedance transducer with linear range of 12.7 [mm].

The instrument sensors were plugged into a board supporting BNC connectors
for the accelerometers and phone connectors for the pore pressure transducers and
the LVDTs. The board is connected with a signal conditioning box which includes
amplifying, filtering and voltage to current converting devices. Conditioned signals
are then transmitted through slip rings into an instrument room.

The signals generated during & simulated carthquake are, at the same time, re-
corded on a 9 channe] Aiwa tape recorder, and a 16 channel data acquisition oriented
Masscomp computer. Short term measured traces are momentarily portrayed on the
Masscomp color screen. Long term time histories can be recovered from the tape

recorder and plotted on the screen after a sampling rate has been changed.
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Section 4

VELACS project

4.1 Introduction

VELACS - Verification of Liquefaction Analysis by Centrifuge Studies, is a geotech-
nical centrifuge study which includes the following collaborating universities: Univer-
sity of California, Davis; University of California, Berkeley; University of Colorado
at Bouider; Rensselaer Polytechnic Institute; Massachusetts Institute of Technology;
Cambridge University, U.K.; and Princeton University.

A primary objective of the VELACS project is to undertake a program of dynamic
centrifuge tests on a variety of different models in order to study different mechanisms
of failure and to verify various numerical procedures in liquefaction analysis.

A secondary objective of the program is to evaluate the test results’ dependence
on used testing devices and procedures. This would be achieved by performing a
scrics of standard model check tests on all available centrifuges, and by repeating
some gelected tests on different centrifuges.

The significance of the results of this study is that it would provide verification of
available numerical procedures for analyzing liquefaction problems. The validation

of these procedures would be of great importance for engineering practice.
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4.2 Standard Model Check Test

The first consideration of the VELACS project was the standard model check test, in
order to estimate the variation of results from tests performed by the different partic-
ipating experimental groups. Each group was supposed to use its own ground motion
simulator, and to the best extent possible the same test box, scil type, preparation
technique, and test procedure.

The standard model consists of Nevada sand (#120) and Silica silt provided by
Earth Technology, INC. (ETI). The pore liquid was water, and a test was performed
on a sand prepared to a relative density of 60% with a dry pluviation technique. A
test was supposed to be performed on a 3.0 [m] ( prototype ) thick layer of saturated
sand, overlaid by a 3.0 [m] thick layer of saturated silt.

It was decided to apply vacuum to ensure full saturation of sand, and to pour silt
in a form of the slurry after the sand layer was prepared. The sample preparation
procedure had to be carried out 24 hours before the centrifuge test. The free water
surface had to be above the silt surface to ensure that the silt layer is completely
submerged.

The centrifuge had to be brought up to a centrifugal acceleration of 50g, and
the test container maintained at this level for 20 minutes before the application of
the carthquake-like event. The event had to consist of approximately 10 cycles of
sinusoidal motion at a peak acceleration of 0.25g (prototype) [21].

There have been two major groups of the tests performed at Princeton University
(Table 4.1), each of them performed at a different centrifugal acceleration level.

The firat group of tests were performed during the summer '91 [9]. Due to the
size of the centrifuge swing platform, the test box was half the size of the standard
VELACS box, and the tests have therefore been performed at 100g centrifugal ac-
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st s ate .| Acc. | F.P.1. B
VELACS Check || 100 | 20.Jun91 | 100 g/I 3 2 1
Silica Silt
VELACS Check || 100 ] 30-Jul-91 | 100 g/II 5 3 0
Silica Silt
VELAGS Check | 75 | 06-Oct-01 75 g/1 3 3 0
Silica Silt
VELACS Check | 75 | 01-Nov-81 | 75 g/1I 6 2 0
Silica Silt
VELACS Check 75| 20-Apr-92 | Bonnie/l 3 2 2
Bonnie Silt
VELACS Check 75 | 10-Jun-92 | Bonnie/lIl 3 3 2
Bonnie Silt

Table 4.1: Standard VELACS Maodel Tests Performed on Princeton Geo-
technical Centrifuge

celeration. The old Princeton box had an inside plan area of 216 x 97 [mm|, and a
height of 114 {mm].
The second group of tests was performed in a 759 environment after the ground

motion simulator, and the slip table was redesigned to accept a larger testing box.

4.3 100g Tests

The samples were constructed in two layers. The lower layer consists of approxi-
mately 3.0 (o] (3.0 [m] prototype) of Nevada sand (#120) and the top one consists
of 3.0 [em) of silt. Since the box was fairly small, the bottom of the sample , and
the surface of the sand layer were not shaped. The surface of the silt was formed by
the centrifuge force, while the centrifuge was in flight. The box was able to sustain
50 [em] of mercury vacuum used during the saturation process. A drainage hose
2 [mm] in diameter was placed on the bottom of the sample to obtain slow and

uniform watering of the sample, and to prevent sand particle flow after the valve
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was open. The volume of the hose together with the pressure transducers and the
accelerometers was measured (~ 5%) and subtracted from the sample volume.

The pressure transducers were first de-aired in a vacuum and stored in water
unti] placed in the sample. Approximately 950 [g] of dry sand was pluviated through
a raining device . Pluviation was stopped once (for the first test and twice for the
second test) in order to place accelerometer(s) and pressure transducers in the middle
{and at the bottom for the second test) of the sand layer. The bucket was then sealed
and the vacuum introduced to the sample. Water was subjected to the vacuum and
was de-aired with a magnetic stirrer. De-aired water was then slowly drawn (sucked
from the container with a lower vacuum level to the box with a higher vacuum level)
to cover the sand surface.

The silt was first mixed with water to form a slurry, sud then poured slowly over
the sand. Pouring was halted once to place accelerometers in the middle of the silt
layer.

After the samples were allowed to sit for 12 hours, some additional silt was
added in order to reach the required depth for the silt layer, and the centrifuge was
brought up to 100g level. The samples were left in flight at 100g for approximately
ten minutes before it was stopped, and visually checked. An LVDT core with a
supporting footing was placed on the surface of the sample in the first test.

A high level of the core footing sinking was noticed after the first test. Since this
problemn has not been solved, the vertical displacement during the second test was
not measured. The centrifuge was then spun back up to the 1009, and the tests were

performed after the pressure transducers’ readings had stabilized.
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4.3.1 100g Tests Comparison

Since the first test was performed with the old data acquisition system, with limited
capabilities, only few comparisons were made. Due to the different forms of the
shaker input files (number of zero points preceding the earthquake-like event) time
history recordings of tests I and JJ do not coincide in a displayed interval of 20
seconds. To insure a same (close) beginning time for the both events, the event |
was moved forward in time for approximately 0.5 {s].

Locations of the instruments in both tests are giver on Figures B.1 and B.9 in
Appendix B. Comparisons of the recorded acceleration time histories are given on
Figure 4 1. The input acceleration (vertical and horizontal) time history comparisons
demonstrate the ground motion simulator ability to produce consistent output. The
silt layer horizontal acceleration time histories coincide during the first two cycles,
and show a similar trend for the rest of the event, both signals were significantly
damped, after the liquefaction had occured in the sand layer.

Short and long pore pressure time histories are shown on Figures 4.2 and 4.3,
respectively. Both transducers placed on the interface of the two materials recorded
relatively high noise, which might be due to the boundary conditions (Section 4.7).
However, the resulting maximum level of excessive pore pressure is in good agreement
both for the interface and for the sand layer. Looking at the end of the interval of
1000 {s] one can see that excessive pore pressures coincide, but the rate of pore
pressure change is not consistent for both tesis. The reason for that difference might
be the fairly small testing box which does not allow precision during the sample
preparation, so one has to be extremely careful during the modelling of dissipation

problems.
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4.4 759 Tests

In September 1991 the shaker system was modified, and the old slip table was re-
placed with a new one with dimensions 310 x 210 [mm)]. The performed changes
now allow the centrifuge bucket to accept a larger testing box. The old standard
VELACS box was then replaced with a new one, which is 2/3 the size of the box
used by the other VELACS participants.

The new mode] box, when tested at 75g centrifuge acceleration, has the same
prototype dimensions as the old model box for the 100g tests. The new system was
extensively tested to determine a voltage input level for the servocontroller required
to achieve 0.25¢ acceleration amplitude, and to test whether the new slip table and
the test box have any impact on the shaker performance. The shaker performed
well, and the new slip table had a vertical acceleration level less than 12% of the
horizontal acceleration level (Figure C.3).

The second group of tests was performed on the modified system, at 75¢ cen-
trifugal acceleration. All results and detailed description of the tests can be found

in Appendix C.

4.4.1 75g Tests Comparison

Figure 4.4 shows horizontal acceleration time history comparisons, and Figures 4.5
and 4.6 show excessive water pressure comparisons. All results have good agreement,
even long term pore pressure time histories show reasonably consistent dissipation.
Difference in excessive pore water pressure levels on Figure 4.5 are due to the diferent

positions (depth) of the pressure transducers.
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4.5 Comparison Between the 100g and the 75¢g
Tests (Modelling of Models Concept)

Centrifuge modelling principles used to interpret model tests in terms of prototype
behavior can not often be verified with the prototype results. Prototype monitoring is
always expensive and not always possible. The modelling of models concept evolved
as an alternative to provide a good check of centrifuge modelling procedures.

In the absence of the prototype, comparison was made between the first and the
second group of tests, performed with models of different sizes at different centrifugal
accelerations. Model dimensions, of both groups, scaled with a g level, corresponding
to each test, give the same prototype geometry.

Figure 4.7 provides acceleration time history comparisons. Since few data were
recorded in the first 100g/7 test, most of the comparisons were made with the second
100g/ I test and the two 757 tests. Time histories of the 100g tests were given a very
small offset in order to make the comparison easier, otherwise it would be hard to
distinguish the two diagrams. The first two peaks of the acceleration time histories
have about 30% higher level tha:: input acceleration both in the silt layer and at the
top of the silt. But after the sand close to the silt layer liquefies, the acceleration level
decreases, which can be explained by the inability of the shear waves to propagate
through liquefied sand.

Figures 4.8 and 4.9 show a short and a long term pore pressure time history
comparisons. For both tests, the peak residual pressure may be observed when the
excitation has ceased at about 8 seconds, and before significant drainage has time to
occur. It can be seen that fluctuations in the pore pressure time histories, recorded
during the 100g tests, were significantly reduced during the 759 tests due to new

orientation of the transducers (perpendicular to the shaking direction).
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Due to the different time scaling of the dissipation cffects, one would expect
faster pore pressure dissipation in 100¢ tests, which is not the case, but significant
difference in pore pressure dissipation has been noticed between the two 100g tests
as well.

Similar behavior of both models extrapolated to the projected prototype is a
good verification of the scaling relations used, as well as of the consistency of the

centrifuge model testing scheme [8].

4.6 Vertical Displacements

The old Linear Voltage Displacement Transducer which was used in the first test
(100g/I) did not allow careful measurements of the vertical displacements of the silt
surface. The reason was _he sinking of the LVDT core support plate in the silt layer.
It was impossible to distinguish which part of the recorded displacements was due to
the sinking of LVDT core, and which part were actual settlements of the silt surface.

In order to eliminate the problem with the LVDT, it was necessary to use a device
capable of measuring displacements of a remote object without physical contact with
that object. The non-contact position measuring instrument used in 75g tests (Bon-
nie [ and Bonnie 1) was KAMAN KD-2300-8CM differential impedance transducer
with linear range of 12 {mm|.

The device uses a metal object (surface) as a target, and gives voltage (current)
output propertional to the distance between the transducer’s head and the metal
target. The impedance head was placed above the soil sample {Figure C.27), and a
piece of a very light aluminum foil placed on the silt surface was used as a target.

Figures 4.10 ard 4.11 show good repeatability of the short and the long-term
vertical displacemen's recorded in the two tests. It can be observed that contact
LVDT has larger final displacements, with most of the displacements occuring during
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the shaking. On the other hand, the KAMAN (non-contact device) has recorded less
deformations with all displacements taking place after the event.

From Figure 4.12 one can observe that the time interval needed for most of the
displacements to occur corresponds in length to the time interval during which most
of the excessive porc water pressure is dissipated. The displacement time histories
recorded with LVDT show some post-event settlements as well.

The second test sample was left until the Bonnie silt was completely dry. The
LVDT core support plate and the aluminum target were then removed. While the
aluminum foil stayed on the surface of the silt, the LVDT core support plate sank in
the silt producing a crater close to 1 [mm) deep. Since the test was performed in a
75¢ environment, corresponding prototype crater depth is close to 7.5 [en].

All these results are suggesting that the vertical displacements recorded with a
contact device whose footing is sitting on the silt surface, during the short earthquake-
like event, are most likely caused by the footing sinking in the silt. However, post-
shaking measurements are fairly accurate, although one can never be completely
confident in obtained resulis, because the footing can sink even deeper.

Measurements obtained by KAMAN (non-contact) apparatus support thinking
that a vertical displacement of a fully saturated porous material layer is possible only

if water is allowed to evacuate from the porous material.
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4.7 Numerical Simulation

4.7.1 Introduction and Background

Several numerical analyses were performed in an effort to accurately simulate the
performed centrifuge tests. In the first group of analyses, the Standard VELACS
check test was idealized assuming a one-dimensional geometry: deformations and
stresses are assumed to be uriformly distributed over the horizontal layers. The
second group of analyses involved 2D geometry which can introduce various types of
boundary conditions.

Numerical simulatione were performed using the computer codes DYNAILD [16],
and DYNAFLOW (18] Both DYNAID and DYNAFLOW analyses iuvolve eval-
uation of the spatial and temporal variation of ground motions together with the
determination of the effects of seismic waves (potential liquefaction).

The assumptions used in one-dimensional analysis are that the site consists of
horizontal layers, and excitation consists of vertically propagating dilatational and
shear waves. Some authors {3] take in consideration only horizontal motions gener-
ated by shear waves' vertical propagation through the systemn. Such an assumption
is valid for saturated soil mediz if no drainage of the pore water can take place during
the seismic event [16]. However, for the soil deposits with moderate permeabilities,
in the case of the VELACS check test, drainage can take place and vertical motions
should be included in the analysis. Further, a compiete effective stress analysis that
models nonlinear stress-strain response should be conducted in cases where liquefac-
tion is possible. DYNAID is a finite element analysis prograr designed to perform

nonlinear seismic site response calculations, taking into account:

¢ the nonlinear, anisotropic and hysteretic stress-strain behavior of the soil ma-

terials;
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o the effects of the transient flow of the pore water through the soil strata.

Procedures used in DYNA1D are general and can be applied in multidimensional
analysis (DYNAFLOW). The appendix to this section provides some results of the
1D and 2D analysis performed with the same procedures (field and constitutive
equations), and the same material properties.

Although very reliable and simple to use, one-dimensional analysis does not con-
sider boundary conditions inside the centrifuge. In order to include the eflects of
the testing box, it was necessary to perform a two-dimensional analysis with DYNA.-

FLOW.

4.7.2 One-Dimensional Finite Element Discretization

Each of the two horizontal layers was modeled with six two-node nne-dimensional

elements (Figure 4.13), with the following analysis options:

o hyperbolic type analysis for two phase porous continuum;

4 d.of. per node;

2000 time steps of 0.01 [s];
o water table at the silt surface;
¢ compressible fluid;

¢ implicit-explicit treatment for the solid effective stress contribution to the equa-

tions of motion;

¢ select integration scheme parameters ¢ = 0.65 and b = 0.33 for the introduction

of the high frequency numerical dissipation;

¢ 12 elements, 13 nodes resulting in 43 equations;
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e prescribed acceleration for the solid phase horizontal d.o.f. at the base node;

e no vertical displacement allowed for both phases at the base node.

Since 1D analysis requires a considerably smaller amount of computer time than
2D analysis, parametric study involving change of material permeabilities was per-
formed with DYNA1D. 2D analysis was then performed with material properties

obtained with 1D parametric study.

4.7.3 Two-Dimensional Finite Element Discretization

The finite element model for 2D analysis consists of the 132 equally sized rectangular

elements (Figure 4.14). The following options were employed in 2D analysis:

o hyperbolic type analysis for two phase porous continuum,;

4 d.of. per node;

e 2000 time steps of 0.01 [s];

o water table at the silt surface;

¢ compressible fluid;

¢ modified Newton-Raphson iteration procedure;

e implicit-explicit treatment for the solid effective stress contribution to the equa-

tions of motion;

o select integration scheme parameters ¢ = 0.65 and & = 0.33 for the intreduction

of the high frequency numerical dissipation;

s 132 elements, 156 nodes resulting in 539 equations;
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e prescribed acceleration for the solid phase horizontal d.o.f. for the base nodes

and for the nodes on both sides to simulate the boz ¢ffect;
* no vertical displacement allowed for both phases for the base nodes;
¢ slaved horizontal d.o.f. for the water phase for all nodes at the base;

o slaved vertical d.o.f. for the water and the solid phase on the both sides of the

mesh;

4.7.4 Material Properties

The elasto-plastic purely kinematic hardening constitutive model for pressure sensi-
tive materials was adopted to simulate the soil behavior {15]. The material properties
used for the analysis are shown in Table 4.2.

Where available, the material parameters were evaluated from the soil laboratory
test results reported by Earth Technology Corporation (4], otherwise, they were
assumed. A parametric study was perfermed with different values for the material
permeabilities.

Material properties for the Ottawa silt were assumed to be the same as those

reported for the Bonnie silt {4] .

Specific Gravity = 2.67 (4.1)
Void Ratio = 0.687 (4.2)
Permeability = 1.0E — 08 [m/sec] (43)

The initial shear modulus value is the mean of the resonant column tests data

obtained for the effective confining pressure of 80kPa [4].
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4-27



Property Nevada Sand | Ref. Silica Silt | Ref. )
Mass density (Kg/m>) 2680 | [4 2670 | [4]
Porosity 04| RD.60 % 0.42
Permeability 56x10 | [4 1.0 x 10-% | [4]

Low Strain [4 Assumed,
Shear Modulus (M Pa) 68.9 | Eq. 4.6 2.7 | see text
Poisson’s Ratio 03] [13] 0.4 ] [13)
Bulk Modulus (M Pa) 149.3 12.7

Fluid Bulk Modulus (M Pa) 2000 2000

Cohesion (kPa) 0 10 | [13]
Reference Mean

Normal Stress ( kPa) 60 233

Dilatation Angle (4] Assumed,
(compress. and ext.) 25° | see text 15° | see text
Dilatation Parameter 0.05 0.02

Friction Angle Assumed, Assumed,
(compress. and ext.) 30° | see text 20° | see text
Coefficient of

Lateral Stress 0.5| [13] 0.67 | [13]

Slope of the

Stress Path 0.33 0.33

Max. Shear Strain

in Compression 0.05 0.05

Max. Shear strain

in Extension 0.03 0.03

Table 4.2: Material Properties Used in Numerical Analysis
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Test60 — 41 G,

85.71MPa (4.4)
Test60 — 43 G,

73.45M Pa (4.5)

The dependence of the moduli on the mean effective stress was taken into account

by referring the initial moduli Gy to the reference mean stress p, as:

G, = Go (2)” (4.6)

Where p, is a reference mean stress for the model, py is confining pressure in
a resonant column test, and the parameter n = 0.5 for the sand, and n = 0.8 for
the silt. The shear modulus for the silt was assumed to be 10% of the sand shear
modulus. Values for Poisson ratios and the coefficients of lateral stress were assumed

within the range proposed by Nonveiller [13] as:

Sand ko = 043 — 054 v = 0.30 — 0.35 (4.7
Silt ke = 067 — 0.69 v = 040 — 045 (4.8)

Sand friction angle was obtained from monotonic 'triaxial’ soil test data [4]. Dia-
grams on Figure 4.16 show mobilized friction angle in relation to shear and volumetric
strains. The friction angle mobilized at 5% shear strain is close to 38°, with dilation
angle of 25°. From the extension ’triaxial’ tests (Figure 4.17) one can obtain friction
angle of — 30°, mobilized at 3 % shear strain, and dilation angle 25°.

For the purpose of this analysis it was decided to use 30° friction angle in compres-
sion, which was obtained by matching plain-strain assumption with Mohr-Coulomb
yield criterion.

The yield criterion used in numerical modelling of the Nevada sand was proposed
by Drucker and Prager as a simple generalization of Mohr-Coulomb as follows [17]:
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I
f=-al|d+ tamp + I - k= (4.9)

where a and k are positive material parameters which can be expressed in terms
of the cohesion c and friction angle ¢. For axial compression (03 = 03 and 8 = — %)

one finds:

2 V3singp k= 2 /3 c cosp

CT B —amp) ' T T @< sing) (4.10)
and for noncohesive materials:
2 \/iain.ga
a—m,k_(l (411)

Figure 4.15 shows trace of both Mohr-Cnulomb and Drucer-Prager surfaces onto
the deviatoric stress plane II. The distance from the origin of any deviatoric plane

to the trace of the yield surfaces is given by:

Ry _ V2 sing (412)
Pa/ pmec. cosb + 7; dinb sing

a V2 (4.13)

P
LG
e
o
|
i

R=\2J ; pa = %‘ (4.14)

Using the plain-strain and associative flow assumptions one can obtain the fol-

lowing [17]:

sanéd =

(4.15)

Sle
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Equivalent friction angle can be obtained by matching distances from the origin

of any deviatoric plane to the trace of the yield surfaces of both criteria:
R R
(&) - (%) (4.16)
Pe/Mc. Pa/pp
which upon substitution of Egs. 4.12 and 4.13 leads to:

V2 sinp, _ 2 \/asinw
cosf + 55 sinf sinp, (3 — sinp)

(4.17)

where . i8 equivalent friction angle.

Diagram 4.18 shows correlation between friction angle in axial compression and
equivalent friction angle in plain strain. Equivalent friction angle that corresponds
to the axial compression friction angle of 38° is 26°. Therefore, assumed angle of 30

degrees is on the conservative side.
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Plain Strain Mohr - Coulomb (¢ = 38)
Drucker - Prager (9 = 26)
Mohr - Coulomb (9 = 26)

Figure 4.15: Diucker-Prager and Mohr-Coulomb Criteria
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4.7.5 'Test Results

The first 1D numerical simulation was performed using permeabilities obtained from
soil laboratory test results. The horizontal acceleratinn time history at the base
recorded during the first 75g centrifuge test was r:sed as an input motion.

Figures 4.19 and 4.20 show a comparison between computed and measured ac-
celeration time histories for the centrifuge model tests with the different centrifugal
acceleration levels. One can rotice that, in general, the computed acceleration time
histories are in better agreement with the recorded time histories at the silt surface
than in the middle of the silt layer. It can be observed that the computed motions
are damped faster than the recorded ones.

Figures 4.2]1 and 4.22 show pore pressure time histories comparisens of computed
(DYNA1D) results with the 100g and the 75¢ tesis, respectively. One can det=ct
good coincidence of a pore pressure rise at the sand-silt interface and in the middle

of the sand layer, but the level of the computed excessivc pore pressure {ime history
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in the deep sand is higher than the measured value.

It can also be seen that computed pore pressure does not dissipate as fast as
measured. If the linear scale factor between model and prototype is n then excess
pore water pressures dissipate approximately n? times faster in the model thaa in
the prototype [2].

Atternpts were made by some investigators to increase the model pore fluid vis-
cosity in order to accurately model pore pressure dissipation in the prototype. In this
case, when an attempt was made to simulate the behavior of the centrifuge model,
it seemed reasonable to expect the residual pore pressure to dissipate faster, and a
lower level of excessive pore pressure with increased permeability. Permeabilities of
sand and silt were increased 75 times in the second numerical sirnulation, and results
were compared with second group of experimertal tests (75¢ tests). Change in per-
meability did not affect the acceleration time histories in the silt layer. In a case of
pore water pressures, except for the interface pore water pressure, where agreement
was satisfactory, increased permeability did not allow pressure to build up in the
sand layer (Figure 4.23).

Among the group of tests performed with the different permeabilities (all results
are available at Princeton University) congruity of the measured and the calculated
time histories (Figure 4.24 ) was observed with the initial permeability increased 10
times.

In general, it takes more time for the numerical model to build up the pore
pressure in the sand layer, but on the other hand the pore pressure is dissipated
faster in the centrifuge model.

If one compares the measured pore pressure time history close to the side of the
testing box (Figure 4.26) with results obtained with 1D (infinite layers) analysis it

b:comes clear that some effects of the rigid box boundaries can not be included in
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1D analysis. For precise evaluation of the performed centrifuge test it was necessary
to introduce the boundary conditions.

2D analysis was performed with permeabilities 10 times larger than ones obtained
in the soils laboratory tests. From Figure 4.25 it can be noted that the computed
time history curves in the center of the sample are closer to the recorded ones than
the 1D time histories. It seems that the rigid box effect decreases the time interval
needed for the full pore pressure rise in the numerical model; the time histories
obtained with 2D analysis have steepest positive slope. Correlation is even better
if comparison is made at points close to the boundary of the sample 4.28. High
fluctuations of the water pressure close to the boundaries, in the physical model, can
be captured with the numerical model only if input acceleration is introduced to the

side nodes, and if both sides are made impervious.
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4.8 Appendix

In an effort to validate performed analysis, and to show that differences in results are
not due to the inconsistency of used codes (and procedures), but ta the difference
in the physics of the numerical models, some additional analyses were done with
computer code DYNAFLOW. This finite element analysis program should enable
computation of one-, two- and three-dimensional system, and despite large system
capacity, no loss of accuracy and efficiency should 1 ~ encountered in solving small
problems.

Figure 4.29 shows comparison of the performed DYNA1D analysis and results
of the one-dimensional numerical model computed with DYNAFLOW. 1t is obvious
that both codes obtained the same level of the pore pressure rise. DYNAFLOW
enables 2D analysis of a one-dimensional element. Results of that analysis compared
with 1D DYNAFLOW analysis are shown on Figure 4.30.

2D (DYNAFLOW) analysis of infinite, horizontal layers, which was the main
assumption used in 1D analysis, gives exactly the same answer as 1D analysis (Fig-
ure 4.31). However, 1D analysis needs 20 times less computation time than 2D
analysis.

Finally, to establish the connection between DYNALID and DYNAFLOW 2D
analysis that includes the rigid boz boundary conditions, DYNAFLOW 1D results
were compared with DYNAFLOW 2D results in Figure 4.32, which is almost identical
to Figure 4.25
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Section 5

Soil-Structure Interaction

5.1 Introduction

One of the most important tasks in civil engineering is to design a structure that
will resist the effects of strong earthquakes. These effects can be evaluated only by
considering the interaction between the structure and the soil or rock foundations.
Interest in soil-structure interaction is rapidly growing in the field of earthquake
engineering. For complete evaluation of a soil-structure interaction problem it is
necessary to determine the properties and the motions of both the structure and
the foundation. Unfortunately, current ability to solve the soil-structure interaction
problem is limited due to the lack of knowledge about scil behavior during seis-
mic events, In addition, there is a lack of physical data for verification of existing
techaiques, so experimental modelling and simulations are vital for a further un-
derstanding of the fundamentals of the soil-structure interaction problem. In this
section, a centrifuge model is presented which is capable of realistically representing

a soil-structure system subjected to an earthquake-like event.
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5.2 Soil Structure Interaction Centrifuge Tests

A geometry of the mode! (Figure D.1) corresponds to the geometry of the Niigata
apartments collapsed because of the liquefaction induced by 1964 Niigata Earthquake
(Figure 1.1).

A lexan box 7 x 10 x 14 [em] (Figure 5.1 } has been designed and filled with lead
shot to simulate the apartment building with a center of gravity six meters above
the ground. The model weight of the box filled with the lead shol was computed
to simulate bearing pressure of 200 [kN/m?]. The test box used for this test was
the same as the one used for the VELACS Standard Model Test performed in a 75¢
environment. The 0 tests are always performed to calibrate shaker input voltage
level which can produce an event with desired acceleration amplitude. In this case,
it was not certain if the shaker could provide desired acceleration level for the large
box filled with sand at the 100g centrifuge acceleration level.

Input was sirnilar to the VELACS Standard Model tests, ten cycles of sine func-
tion with an objective amplitude of 0.30g. Ten channels were recorded directly on the
Masscomp data acquisition system with a sampling rate of 10000{Hz]. Nine channels
were at the same time recorded on the tape recorder. Due to the limited capacity of
the tape recorder (nine channels), input vertical acceleration was recorded only on

the Masscomp computer.
5.2.1 Sample Preparation

It was decided to use the Nevada sand with relative density of 60 %. A 14 [om] thick
sand layer was pluviated through the same device used for preparation of Standard
VELACS Test samples. The pluviation was stopped when the pressure transducers
were installed in the sample. Three pressure transducers were placed under the

structure and one in the field. It was assumed that 14 [cm] change of pluviation
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height does not effect relative density of the sand. Because of the structure height,
it was impossible to seal the box with the structure placed on the sand.

A shallow rectangular frame the size of the structure was placed in the sand after
the pluviated sand reached a depth of 13 [om). Following the pluviation process, the
sand inside the frame was removed with a vacuum cleaner, the model was sealed
and a vacuum was introduced to the sample. Even though the sample was slightly
disturbed due to the large distortion of the front side of the box {the lexan plate
deformed close to 5[mm] in the center) under the vacuum, it was decided to perform
the test.

De-aired water was siowly drawn into the sand sample through the drainage hose
on the bottom of the model box. A water level was planed to be one meter below the
sand surlace, but during the sample preparation it was decided to rise it one meter
above the sand surface. It was difficult to estimate water level while the water was
below the sand surface.

After the sand was saturated, the structure was placed in the frame and its
standing was checked with bubble levels. The sample was placed in the centrifuge

and the centrifuge was brought up to 100g level.

5.2.2 Test Procedure

The sample was left in flight at 100¢ for approximately ten minutes before it was
stopped, and an LVDT core with a supporting footing was placed on the surface of
the sample and the structure was checked for vertical deformations and tilting.
The sample was shaken four times with increasing acceleration level of the shaker
before the centrifuge was stopped. The first event had an acceleration level below
0.15¢ and the last one above 0.28g. The Team electro-hydraulic shaker performed
well, it induced 0.25¢ level with voltage input of 0.95 [V] (maximum input is 10 [V])



while the pressure in the oil lines was 50% of the maximum allowed oil pressure.

Large vertical and horizontal deformations of the structure were noticed after the
tests. The structure leaned on the displacement transducer on the left hand side and
its front side tipped. Surface cracks in the sand surface were noticed together with
a distortion of the i=xan plate. From recorded time histories, it was not possible to
determine after which event the structure collapsed.

Two more tests were performed after the sample box was redesigned to prevent
large deformations of the lexan plate due to the high pressure induced by vacuum
during the sample preparation process. Results and schematics of both tests can be
found in Appendices D.1 and D.2.

Figures 5.2 to 5.4 show comparisons of the results of the two performed soil-
structure tests. All results are in good agreement, and even the visually observed

vertical displacements show similarity of model structure behavior in both tests.

5.3 Numerical Analysis

Once again, performed centrifuge model tests were utilized to investigate the validity
of DYNAFLOW [18] in solving liquefaction and soil-structure problems.
The following discussion is a comparison of the experimental and computed re-

sults with a brief descriptior of the numerical analysis performed.

5.3.1 Simulation Procedure

Simulation of the test case was performed using the 2D solver of DYNAFLOW code.
The finite element model of the ground and the structure is shown in Figure 5.5. The
mesh consists of 119 elements, and 154 nodes. Input for the model consists of the
acceleration time history recorded during the centrifuge model test at the base of the

testing box. The required material constitutive parameters are given in Table 5.1.
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Figure 5.1: Soil-Structure Interaction Model Test # I, Before and After
the Event 5.5
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The following analysis options were used in the simulation:

hyperbolic type analysis for two phase porous continuum;
¢ total npumber of yield surfaces was set equal to 20;

o 4 d.of. per node;

e 2000 time steps of .01 |s};

o water table at the sand surface;

¢ compressible fluid;

¢ implicit-explicit treatment for the solid effective stress contribution to the equa-

tions of motion;

o select integration scheme parameters g = 0.65 and & = 0.33 for the introduction

of the high frequency numerical dissipation;

e prescribed acceleration for the solid phase horizontal d.of. for the base nodes

and for the nodes on both sides to simulate the boz effect;
o slaved horizontal d.o.f. for the water phase for all nodes at the base;

o slaved vertical d.o.f. for the water and the solid phase on the both sides of the

mesh;

o three element groups, one for the structure and two for the sand (free field,

and under the structure);

e structure simulated as a rigid body
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5.3.2 Material Properties

The elasto-plastic purely kinematic hardening constitutive model for pressure sensi-
tive materials was adopted to simulate the soil behavior [15].

The sample was divided in two zones with different material properties (14]. One
zone was below the structure and one in the {ree field. Material properties of the
zone # 1 (free field) are the same as the properties of the sand used in the VELACS
standard test, with permeability 10 times larger than one obtained in laboratory
results [4].

Vertical settlements of the model structure during the centrifuge tests probably
caused densification of the sand below the structure. It seemed reascnable to model
the sand below the structure with different material. Material parameters of the

zone # 2 material were evaluated by Popescu [14].



Property Nevada Sand | Ref. Nevada Sand | Ref.
Free Field Bellow Struct.

Mass density (Kg/m?) 2680 | (4] 2680 | [4]

Porosity 0.4 RD.60% 0.4

Permeability 56 x 10-¥ | Chap. 4 5.6 x 10~% | Chap. 4

Low Strain [4]

Shear Modulus (M Pa) 68.9 | Eq. 4.6 21| {14

Poisson’s Ratio 0.3 13 0.3 [13

Bulk Modulus (M Pa) 149.3 455

Fluid Bulk Mod. (M Pa) 2000 2000

Cohesion (kPa) 0 0

Reference Mean

Normal Stress ( kPa) 100 100

Dilatation Angle

(compress. and ext.} 25° | Chap. 4 34° | [14]

Dilatation Parameter 0.05 0.10

Friction Angle

(compress. and ext.) 30° | Chap. 4 36° | [14]

Coefhicient of

Lateral Stress 0.5 [13] 0.5 | [13]

Slope of the

Stress Path 0.33 0.0 [14]

Max. Shear Strain

in Compression 0.05 0.10

Max. Shear strain

in Extension 0.03 0.10

Table 5.1: Material Properties Used in Numerical Analysis

5-12




5.4 Test Results and Comparisons

Figure 5.6 shows the comparison of the structure acceleration time histories. The
time histories are in good agreement, except for the last five cycles of the right
structure corner verticel acceleration. This difference might be due to the disturbed
structure standing noticed in the centrifuge model (Figure 5.1) which can not be
modelled as an axisymmetric problem.

The excess pore-water pressure time histories are shown in Figure 5.7. The
experimental and numerical models accede in the rise of the pore-water pressure,
and the fluctuations of the pressure in the free field, while the numerical resulis have
higher frequency of the fluctuations under the structure.

Due to the technical problems, only rough measurements of the vertical displace-
ment were available for the comparison with the computed results. It was observed
that on average, the right side of the structure had vertical displacement between
30 and 40 [cm), while the left side had displacement between 50 and 60 [em]. The
deformed mesh on Figure 5.8 shows displacemnent after the event. Although the struc-
ture standing in the numerical model was not disturbed as much as in the physical
model, the vertical displacements (Figure 5.9) match the observations made during

the experiments.
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Section 6

Conclusions

This report has described the development of an earthquake motion simulator for
centrifuge testing, and its use for studying the dynamic response of saturated soil
deposits.

The development of the Princeton University ground motion simulator represents
a successful application of electro-hydraulic system technology for dynamic centrifuge
modelling, without large investments in the testing equipment.

Although tested only with a sinc like input, the electro-hydraulic shaker proved
to be capable of subjecting testing containers of various sizes to a strong motion in a
high ¢ environment. The performance tests, and estimation of the system frequency
response with a careful study of the shaker capabilities, and possible application of
the 'real’ earthquake motions should be a part of future research.

Results of the first group of experiments, performed as a part of the VELACS
project, were used to study validity of the liquefaction analysis programs DYNAI1D
and DYNAFLOW.

As a result, it was confirmed that both DYNA1D and DYNAFLOW programs are
suitable for closely simulating the details of the experimental centrifuge liquefaction
test, such as: the time history response of excess pore pressures in the center of
the model, and acceleration time historiea of the silt layer. DYNAI1D proved to be
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inadequate for evaluation of the boundary condition effects. However, one should
still consider using it to evaluate free field problems, because of the considerable
savings in computer time. On the other hand, DYNAFLOW 2D analysis has been
found to be in good agreement with all the experimental data.

VELACS check tests were performed at different levels of centrifugal acceleration
following the modelling of models concept. Similar behavior of both models extrap-
olated to the projected prototype proved to be a good verification of the scaling
relations, as well as of the consistency of the centrifuge model testing scheme.

The second group of centrifuge tests involved a study of the soil-structure inter-
action effects. A scaled structure model of the collapsed Niigata apartments lost its
standing during the event, which was exactly the effect observed on the prototype
structures.

Simulation of the test was performed using the program DYNAFLOW. Compar-
isons of computed versus recorded structure accelerations and pore-water pressure
variations have been discussed and found in a good agreement. The computed ver-
tical displacement magnitude was within the range of observations made after the
centrifuge model tests.

Finally, phenomenvlogical aspects of soil-structure interaction, and soil lique-
faction demonstrated in centrifuge tests can be fully represented with num.erical
procedures encompassed in code DYNAFLOW.

Future work might include, besides the complete study of the shaker capabilities,
some improvements of the current facility which would allow earthquake-like motion
excitations in two perpendicular directions. This improvement would allow results

of the three dimensional numerical analysis to be verified.
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Appendix A

Summary of the Model Tests

| Test [ G’s [ Date Rel. | Comments
VELACS Check || 100 | 20-Jun-91 100 g/1 | Appendix B.1
Silica Silt
VELACS Check | 100 | 30-Jul-91 100 g/II | Appendix B.2
Silica Silt
VELACS Check 75 | 06-Oct-91 75 g/1 | Appendix C.1

| Silica Silt
VELACS Check 75 01-Nov-91 75 g/11 | Appendix C.2
Silica Silt
VELACS Check 75 | 18-Dec-91 | Glycerin/I { Appendix C.3
Silica-Glycerin Pore Fluid Water + Glycerin
VELACS Check 75 | 08-Mar-92 | Noncontact | Device Malfunctioned,
Silica Silt Device Test | Test Disregarded
Soil-Structure 100 | 20-Mar-92 §-S/0 | Initial Test (Dummy),
Interaction Deformed Lexan, Disregarded
Soil-Structure 100 | 26-Mar-92 S-S/1| Appendix D.1
Interaction
Soil-Structure 100 | 09-Apr-92 S-S/II | Appendix D.2
Interaction J
VELACS Check 7% | 20-Apr-92 Bonnie/I | Appendix C.4
Bonnie Silt
VELACS Check 75 | 10-Jun-92 Bonnie/II | Appendix C4
Bonnie Silt
VELACS Check 751 20-Jun-92 | Bonnie/III | Curved Sand Surface,
Bonnie Silt Not Satisfactory, Disregarded
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Appendix B
VELACS 1004 Tests

B.1 Test 100g/1

Test 100g/1 was performed on June, 20, 1991 (Figure B.1). Due to the limited ca-
pacity of the old data acquisition system, data could only be recorded on 6 channels.
Four channels were recorded directly on the Norland four channel oscilloscope, and
two had to be played back from the tape recorder (accelerometers A and B).

Pigure B.2 shows the measured horizontal acceleration time history of the box,
later referred to as the base, (accelerometer C), with 2 normalized frequency content
and a response spectra. Fast Fourier Transform of the acceleration time history, with
the 5000 [Hz] sampling rate, was scaled with its maximum value, after changing to
polar coordinates.

The Response Spectrum with 5% damping was calculated in 500 steps applying
the Newmark method. A vertical acceleration trace (Figure B.3) had been recorded
previously during a durnmy test performed previous to Test I. The dummy test had
been performed to determine a voltage input level for the servocontroller required to
achieve 0.25¢ acceleration amplitude of the event.

Good repeatability can be observed after comparing with the vertical acceleration

recorded during Test II (Figure B.11). Figure B.4 shows the horizantal acceleration
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Figure B.1: Standard Velacs Model Test 100 g/1
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time history, its normalized frequency content, and a response spectra, recorded in
the silt layer (accelerometer A). The normalized frequency content was obtained by
scaling the FFT results with maximum of the FFT result of the horizontal acceler-
ation of the base, same for the acceleretion time history of the silt layer as for the
vertical acceleration of the base.

Pore pressure transducers had been placed horizontally with a porous stone facing
in the shaking direction. Due to the small test box it was hard to form relatively
stiff transducer cables without disturbing the sample under the transducer.

As was mentioned beforz, a sample rate has been changed from 10000 [Hz| to
5000 {H z], and all data records have been zeroed with subtracting average value of
the first 50 points. Positions of the pore pressure transducers were measured with a
ruler after the test. All the dimensions in Figure B.1 show the distances measured
from the surface to the center of the transducers. Effective vertical stresses were
calculated with these values and the assumed densities of 1950 {kg/m?] for the sand
and silt ( no scil data were available ).

Pore pressure ratios were shown in Figure B.5 as short-term time histories and
Figure B.6 as long-term time histories. While the short-term pore pressure time
histories were available directly from the oscilloscope, the long-term time histories
were obtained from the tape recorder with a sampling rate of 100 [Hz]. Figure B.7
shows stress and pore pressure variations with depth. Values of the excessive water
pressures were obtained by inspection from the Figure B.5.

A vertical displacement was measured only on the surface of the sample (Fig-
ure B.8). A 25 x 25[mm)] plastic footing was used to support a LVDT core. Heavy
sinking of the LVDT footing was noticed while the centrifuge was in flight, as well
as after the test, so the reported measurement of the vertical displacement must be

considered with caution.
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B.2 Test 100g/1]

Test 11 was performed on July, 30, 1991 (Figure B.9), after the data acquisition
system had been upgraded. A new signal conditioning system was built and mounted
on the centrifuge arm. The system was designed to support the Masscomp computer
with a 16 channels capacity, which was used during Test 11.

Increased volume of the transducers B.9 was peglected during the sample prepa-
ration, and it was assumed that volume of the all objects in sample was 5% of the
sand layer volume. The sample preparation process had not been changed except
during the pluviation which was stopped twice in order to place the transducers in
the sand layer. During the test accelerometer E came off, so acceleration time his-
tory, reported here, was recorded in a dummy test, which had been performed before
Test II. Numerous tests had been performed on the P.U. shaker with the same in-
put (2 [Hz], 10 cycles), (all records available on P.U.), and all had similar output
acceleration time histories.

Figure B.11 shows a vertical acceleration time history of the test box with its
normalized frequency contest and response spectra. Horizontal accelerations of the
mid silt layer and the silt surface are shown in Figures B.12 and B.13 , respectively.

Effective vertical stresses were calculated the same as in Test [. The short-term
pore pressure time histories were available from Masscomp computer, and the long-
term time histories were played back from the tape recorder (Figures B.14, B.15).
Figure B.16 shows stress and pore pressure variations with depth, with the values of
the excessive water pressures obtained by the inspection of Figure B.14. Since the
problem with the sinking footing of the LVDT core had not been solved at the time

Test 11 was performed, vertical displacement of the silt surface was not measured.

B-11



21.5m

Noog il

PU Standard Velacs
Test setup

Accelerometers

Standard Velacs Model Test 100 g/I1I

Figure B.9

B-12



03

0.2

S, — —

§ h

]

q._l

—emneme.  AtOSiretisn Tins Hisey
e
T T T T T T T T
0 2 4 [) ] 10 12 14 16 % 2
Time (s)

]

- )
=z

g—i

] 4
z ° Normalised Froquyncy Comtents w.r1 Bass Acc.
° < T T | B T ! Y Y 1

0 2 4 6 ] 10 ” (L] s 11 2
Frequency (Hz)

"

~ =

8,
£

< ——e Raspouss Specarvm 3% Dumping

° T T T

=
o
w
Lol

1 1.5
Period (3)

Figure B.10: Standard VELACS Model Test 100¢/]J Horisontal Accelera-
tion of the Base

B-13



0.5

0.25
i

A Time History
L)
44
T T T T T T T Al LE
0 2 4 [ s 10 12 14 16 1 20
Time (s)
-
— -
§ s
=
33 -
|
N
- Ny lized Frequency Contents w.r.L Base Acc.
° 1 | | E—— Y T ! T T
Q 2 4 L] 3 10 12 L] 1% 18 20
Frequency (Hz)
”™
-
~ ]
3,
]
E -
w
2 Rosponse Specsrum 5% Damping
M
b T T ! T
0 0s 1 1.3 2 15
Period (s}

Figure B.11: Standard VELACS Maodel Test 100g/77 Vertical Acceleration
of the Base

B-14



[,]
o
8
3. e )
A
]
———_Aspiereties Tiee Hisery
3
T T T T T T T T T
0 2 4 s s 10 12 " i 18 0
Time (s}
2.
i 24
b3
%2
b Hormalised Froquency Coutents w.r.L Base Acc.
° T Y — T J T ' )
[ 2 4 [ s 0 1 14 s 1 0
Froquency (Hz)
a4
CA
A -
& ~——————  Respongs Spicirum 5% Damping
bt T T T -
1] 03 1 13 3 13
Period (s)

Figure B.12: Standard VELACS Model Test 100g//7 Horizontal Accelera-
tion in the Silt Layer

B-15



Normalized Magnitude

Spectral acc. (g)

0.3

n, —
-
- N
4|
8
Teme History
vy
e
T T T T T T 1 T
0 2 4 5 ) 10 £2 14 16 18 2
Time (s)
-
-
vy
~
s
w
4]
q
- Jized Frege Conimnis w.r( Base Acc
=2 -t
1 T T T i T T T T L
0 2 4 [} 1 10 12 14 16 it § o
Frequency (Hz)
”
w
7
o -
“
3 -N Respomse Spocam 58 Demping
° T T T T
3 0.5 H 1.9 2 25

Period (s)

Figure B.13: Standard VELACS Model Test 100g//] Horizontal Accelera-
tion on the Silt Surface

B-16



11

- e Prattiare Now G Top of U Send Layer (LY 5. » 311 kPs}

- — - l
“n |
> o
-]
Z3-
N
° T ] T ¥ T T T T
[ 2 4 [ | 10 12 14 " 18 2
Time (s)
"
-4
-
™
AR
“
B v
o ©
§—‘ — Prossure Nowr he Midtie of s Sand Layes (E V.3, = 349 &Ps)
o
R T T T T 1 1 T T
0 2 4 6 ] 10 12 14 16 18 2
Time (s)
w
"
v v
B »n |
B ©
ﬁ'J Proseare Noww the Bosom of the Send Layer (EV S. » 509 &P%)
S
T T T T L T T T
0 2 4 & ] 1] 12 14 16 1] F

Time (s)

Figure B.14: Standard VELACS Model Test 100g/1] Short Term Pore Pres-
sure Ratio Time Histories
B-17



L3

o - ———————  Pressure Near the Top of tee Sand Layer (EV .S = 31 1 kP3)
“ -~-1
> 5]
Q: »n
a o
a4
(-3
o Porthrds
T T T —T
(] 200 00 &00 800 1000
Time (s)
]
o - ——————  Pressure Near the Middie of the Sand Layer (EV.S. » 359 kPs)
%4 ow
> a7
.
a o
q
57
< T 1 T T
o 200 400 600 800 1000
Time (s}
v
o4 —————  Pressure Near the Bottom of the Sand Layer (E.V.S. = S0.9kPs)
o
> 5]
¢
8 v |
a o
84 oy e mpgi
bl e . an by
] —_— -1 T T T
0 200 400 600 200 1000
Time (s)

Figure B.15: Standard VELACS Model Test 100g/1! Long Term Pore Pres-
sure Ratio Time Histories
B-18



“ D
1]
\
'
7 - \‘
1)
‘\
1Y
L]
1
\
L ]
v
1]
.
'
.
“ \
[}
v
A
' ] a
.
v
[
.
‘I
.
\
q 1
T | 0 ) L T
0 20 40 60 B0 100 12¢

U, U+dU, SIGV (kPa)

140

Figure B.16: Standard VELACS Model Test 100g//] Stress and Pore Pres-

sure Variations With Depth
B-19



Appendix C
VELACS 75¢ Tests

C.1 Test 75¢/1

Test 75g/1 was performed on October, 6, 1991 with an upgraded data acquisition
system (Figure C.1). The centrifuge bucket had been redesigned to accommodate
larger models, such that the model box for the 759 test has the same prototype
dimensions as the model box for the 10(g testis.

Ten channels were recorded directly on the Masscomp data acquisition system
with a sampling rate of 7500 [Hz], in order to have the same prototype time step
as the one in 100g tests. Eight channels were backed up with the tape recorder;
due to the limited capacity of the tape recorder (eight channels), accelerometers A
and C were recorded only on the Masscomp. During the sample preparation process
accelerometer A changed its orientation, so data recorded from acc. A is not valid.

Because of the larger box it waa possible to place all pressure transducers except
PT # 2, perpendicular to the shaking direction. Unfortunately, PT # 2 did not
function during the test, so it was impossible to make a comparison between them.
But when comparing a pore pressure time history of the PT # 1 with a corresponding
time history of the 100g test, it is obvious that the level of noise in pore pressure

time history has been decreased.

C-]



21.5m

|

PU Standard Velacs

Test Setup /75 g |

23m

Accelerometers

Press trans. |l Direct.

of shaking

L

Direct. of shaking

Press. trans.

O

Standard Velacs Model Test 75 g/1

Figure C.1

[an]



A sample rate was changed from 7500[Hz] to 3750[H z], and all data records were
zeroed with subtracting average value of the first 50 points. Positions of the pore
pressure transducers were measured with a ruler after the test. All the dimensions
in Figure C.1 show the distances measured from the surface to the center of the
transducers. Effective vertical stresses were calculated with these values and the
assumed densities of 1950 [kg/m?| for the sand and silt (no soil data were available).

Input time histories were shown on Figures C.2and C.3. Horizontal and vertical
acceleration time histories of the silt layer and the silt surface are presented in Fig-

ures C.4 to C.7. Short and long term pore pressure ratios were shown in Figures C.8

and C.9.
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C.2 Test 759/11

Test 75¢/1] was performed on November, 1, 1991 (Figure C.11) to verify the results
of Test I. Ten channels were recorded directly on the Masscomp data acquisition
system with a sampling rate of 7500 [Hz]. Eight channels were at the same time
recorded on the tape recorder. Due to the limited capacity of the tape recorder
(eight channels), accelerometers A and C were recorded only on the Masscomp.

All pressure transducers were placed with porous stone facing a direction perpen-
dicular to the shaking direction. PT# 2 was placed close to the box side in order to
monitor boundary effects on a pore pressure time history.

Input time histories were shown on Figures C.12 and C.13. Horizontal and ver-
tical acceleration time histories of the silt layer and the silt surface are presented
in Figures C.14 to C.17. Short and long term pore pressure ratios are shown in
Figures C.18 and C.20. Figure C.19 shows comparison of the pore-water pressure
time histories of the side and the center of the testiug box. It seems reasonable to
explain the higher pore-water pressure fluctuations recorded with PT # 2 with the

boundary effects of the box.
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C.3 Test 759 Glycerin/I

Test 759 Glycerin/I was performed on December, 18. 1991 (Figure C.22). In an
attempt to study effects of pore fluid viscosity on the pressure dissipation in the
sand layer water was mixed with Glycerin in ratio 2 : 1. Ten channels were recorded
directly on the Masscomp data acquisition system with a sampling rate of 7500 [Hz].
Eight channels were at the same time recorded on the tape recorder, due to the
limited capacity of the tape recorder (eight channels), accelerometers A and C were
recorded only on the Muscorﬁp.

All pressure transducers were placed with porous stone facing a direction perpen-
dicular to the shaking direction. PT# 4 was not operational during the test.

Input time histories were shown on Figure C.23 Horizontal and vertical acceler-
ation time histories of the silt layer and the silt surface are presented in Figures C.24

and C.25. Pore fluid pressure ratios were shown in Figure C.26.
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C.4 Tests With the Bonnie Silt (Bonnie/I & Bon-
nie/II)

Another two VELACS check tests were performed during the Spring 1992. It was
decided to use Bonnie silt instead of Silica silt which, used in previous tests, proved
to be very hard material to work with. The same sample preparation procedure was
followed when preparing both samples with the Bonnie silt.

The samples were constructed in two layers. The lower layer consists of approx-
imately 4.0 [on] of Nevada sand, and the top one consists of 4.0 {on] of Bonnie silt
(both materials were provided by E.T.C.).

During the tests attention was mostly concentrated on the vertical displacements
of the silt surface, so only few measurements were taken inside the samples.

Two pressure transducers were placed in the sand layer and one accelerometer in
the silt layer (Figures C.27 and C.33). Both samples were allowed to sit 24 hours
before they were placed in the centrifuge, and left in flight at 75¢ for approximately
10 minutes. After the centrifuge was stopped some more silt was added, and the
LVDT core support plate and aluminum foil were placed on the samples’ surfaces.

The centrifuge was brought up to 75¢ and readings of both displacement trans-
ducers were taken in intervals of 5 minutes. Both tests were performed after the two
consecutive readings showed no differential settlements of the silt surface within the
instruments’ precision. Consolidation period for test Bonnie/I was 15 minutes, and
for test Bonnie/II 20 minutes. The sample of the test Bonnie/Il was visually checked
one more time after the consolidation, and before the shaking, and no LVDT core
support sinking was observed.

In spite of the fact that only few measurements inside the samples were taken,

results of both tests follow a general trend established by previously performed tests.
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In both cases the sand layer was fully liquefied close to the material interfacs with
the silt, which caused significant damping of the silt layer acceleration magnitudes

(Figures C.28 to C.36).
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Appendix D

Soil-Structure Interaction Tests

D.1 Test #1

Test # 1 was performed on April, 9, 1992. Sample box had been redesigned to prevent
large deformations of the lexan plate due to the high pressure induced during the
test and the vacuum during the sample preparation process. An aluminum bar was
placed on the lexan plate to increase the stiffness in the direction of the deformations
noticed during the 0** test.

Ten channels were recorded directly on the Masscomp data acquisition system
with a sampling rate of 10000 [Hz]. Nine channels were at the same time recorded
on the tape recorder; accelerometer B (vertical acceleration of the model box) was
recorded only on the Masscomp.

The same procedure as the one described for 0** test was followed during the
preparation of Test # 1. The aluminum bar performed well, a vacuum introduced
during the sand saturation did not deform the lexan plate, and the sample was
undisturbed.

It was very difficult to place the structure at the desired level, in this test the
structure was put 1.5 [m] below the sand surface.

Two plastic rulers were attached to the structure model for easier monitoring of
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the vertical displacements. An optical instrument used for centrifuge balancing was
applied a3 a measuring device for vertical displacement. Initial readings were taken
after the sample was placed in the centrifuge bucket.

During the 0% test, the structure leaned on the transducer for measuring hori-
zontal displacements. In this test the goal was to let the structure deform entirely,
so displacement transducers were not placed on the structure.

The sample was left in flight at 100g for approximately ten minutes before it
was stopped and the structure was checked for vertical displacement and standing.
Vertical settlement measured following the centrifuge consolidation was 0.2 {m) (pro-
totype), and was equally distributed, in other words, the structure standing was not
disturbed.

The centrifuge was spun up again, and ten cycles of sine-like motion with an
amplitude of 0.3 ¢ was presented to the soil sample. The vertical displacement was
measured after the centrifuge was stopped. The structure had collapsed again, but
this time it tipped in the direction of shaking (Figure 5.1). Vertical displacements
were 0.2 [m] on the right side and 0.5 [m] on the left side (prototype} with no visible
inclination in the direction perpendicular to the shaking direction.

A large vertical displacement of the structure can relocate pore pressure trans-
ducers placed under the structure. In order to determine the transducers’ positions
initial readings were taken after the settlement and prior to the earthquake-like event.
Reported are transducers’ locations obtained from the initial (static) readings.

During the test, contact on the Masscomp data acquisition cable was lost, so all
acceleration time histories, except vertical acceleration of the left structure corner

(the side that collapsed), were recovered from the tape recorder.
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D.2 Test # 2

Test # 2 was performed on April, 9. 1992. Soil-Structure interaction test # 2 was
a copy of the test performed on April, 1. 1992. The object was to verify results
obtained from the first test.

Ten channels were recorded directly on the Masscomp data acquisition system
with a sampling rate of 10000 [H z]. Nine channels were at the same time recorded on
the tape recorder: due to the limited capacity of the tape recorder (nine channels),
accelerometer B was recorded only on the Masscomp.

The same procedure as the one described for 0°* and 1°* test was followed during
the preparation of Test # 2. The aluminum bar again performed well, 2 vacuum
introduced during the sand saturation did not deform the lexan plate, and the sample
was undisturbed. Initial readings were taken with the optical instrument after the
sample was placed in the centrifuge bucket.

The problem with the structure positioning at a required depth was still not
solved, the structure depth for this test was 2 [m]. The sample was left in flight
at 100g for approximately ten minutes before it was stopped and the structure was
checked for vertical displacement and standing.

Vertical settlement measured following the centrifuge consolidation was 0.23 [m]
{prototype), and was equally distributed, in other words, the structure standing was
not disturbed. The centrifuge was spun up again, and ten cycles of sine-like motion
with an amplitude of 0.3¢g was presented to the soil sample.

The vertical displacements were measured after the centrifuge was stopped. The
structure had collapsed again, once more it tipped in the direction of shaking. Ver-
tical displacements were 0.25 [m] on the right side and 0.6 [m] on the left side (pro-

totype) with no visible inclination in the direction perpendicular to the shaking
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direction.

Accelerometer A (horizontal input acceleration) came off during the event. Since
the computer set- up was not changed from the one when the first test was performed,
it was reasonable {o assume that the input acceleration was same as the one in the

first test.
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“Report  on the Whiner-Nanows,  Calitorma,  Earthquake  of - October 1, 19877 by ]
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P. Cergely. C.H. Conley. J.F. Abel and AH. Zaghw, 1/15/89, (PBKY-21R465),

“"Liguefacion Hazards amd Thewr Effects on Bured Pipelines.” by TD. (VRourke and P.A. Lane, 2/1/8Y,
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“lnelastic Three-Dimensionat Response  Analyvsis of  Rentorced  Concrete Building
Structures (IDARC-AD), Part | - Modeling.” by S K Kunnath and A M. Reinhomn., 4/17/R9, (PBY-114612).
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tn Our Schools,” Edited by K.E.K. Ross, 6/23/8Y, (PR(-108606).
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K.C. Chang. 1.8. Hwang and G.C. Lee. 9/18/89, (PBY- 1601 AY ).

Tapered  Members.” by

"DYNAITLD: A Computer Program for Nonbincar Sesmie Site Response Analysts - Techmeal Docomentation,”
by Jear: H. Prevost, 9/14/89, (PRY0D-[A1944). This report 1 gvaifable only through NTIS (see address given
above).

"1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers tor Asessmic Protection.” by
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“"Deterministie Maodet for Seismic Damage Evaluation of Renjoreed Concrete Suwciures.” by 1 M. Bracar,
AM. Rembonn, J B Manda and S K Kunnath, Y2789

“On the Relaton Between Local and Global Damage Indices,” by E. Dif'asquale apd A 8. Cukinak, 8/15/89.
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“Dynamic Interaction Factors for Floating Pile Groups.” by G. Gazetas. K. Fan. A. Kayma and E. Kausel.
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