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........~ ..-. During the Northridge earthquake of January 17 In Los Angeles,
California, seven highway bridges suffered partial collapses and another 170 bridges suf-
fered damage ranging from minor cracking to the slumping of abutment fills. This report
thus contains a detailed summary of the performance of eight bridges that suffered major
damages. These bridges are as follows: 1) Calvin Canyon Undercrossing; 2) Route sR 1'1'
1-5 Separation and Overhead (Southbound); 3) Route sR 111/1-5 North Connector Over-
crossing; 4) Bull Creek Canyon Channel Bridge; 5) Mission-Gothic Undercrosslng; 6)
Balboa Boulevard Overcrosslng; 7) Fairfax-Washington Undercrossing; and 8) LaCienega-
Venice Undercrossing. Damage sustained by these and other bridges can be ,categorized a
follows: abutment back-fill settlement and erosion; abutment and shear key structural dam-
age; flexural failures in plastic hinges with inadequate confinement; pounding and unseat-
Ing at hinge seats and girder supports; shear failures in short single columns, piers, mul
ti-column bents, columns with flares and other accidental restraints, and columns In
skewed bridges. It Is observed that of those bridges with collapsed spans, all were de-
signed and constructed from the mid-sixties to the mid-seventies. None were "new" in the
sense of being built to current codes. Most had been retrofitted with cable restrainers,
where appropriate. Some bridge columns in the epicentral region had also been
strengthened with steel-jackets. Whereas several cable restrainer units failed, none of the
steel-jacketed columns showed distress despite strong ground shaking in some cases.
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PB94-193851
ABSTRACT

On January 17, 1994 at 4:31 a.m., a magnitude 6.6 earthquake struck the Los Angeles meiropolitan

area. Epic:entered in the San Fernando Valley town of Northridge, Califomia, the earthquake caused

serious damage to buildings and sections ofelevated freeways; ignited at least one hundred fires as it

ruptured gas pipelines; and disrupted water supply systems. As a consequence, S1 people died,

another I,SOO were seriously injured, and 22,000 were left homeless. Over 3,000 buildings, most of

which were residential structures, were declared unsafe for reentry due to earthquake damage. Los

Angeles, a city which has extensively prepared itself for earthquakes, found that it had experienced

the most destructive event since the 1906 San Francisco earthquake. Direct economic losses are

estimated currently at over $20 billion.

This reconnaissance report provides an analysis of major bridge damage which occlll'l'ed during the

earthquake. Eight highway bridges arc described in tenns of their geometry, site ground motions.

observed damage and likely failure modes.

This report is one of three NCEER reports resulting from reconnaissance activities following the

Northridge, California earthquake. The other two reports arc: The Northridge, Califonia
Earthquake or January 17, 1994: General Reconnaillana Report and Tile NorthriclCe,
California Earthquake of January 17,1994: Performance ofGa Traasmiuion Pipelines.
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SECTION I
INTRODUCTION

During the Northridge earthquake of January 17 in Los Angeles, California, seven highway bridges
suffered partial collapses and another 170 bridges sutTered damage ranging from minor cracking to
the slumping of abutment fills. Many of the damaged structures were closed only temporarily for
inspection and/or shoring but some were closed permanently and have since been demolished
pending replacement. Of those bridges with collapsed spans, all were designed and constructed from
the mid-sixties to the mid-seventies. None were "new" in the sense of being built to current codes.
Most had been retrofitted with cable restrainers. where appropriate. Some bridge columns in the
epicenlral region had also been strengthened with steel-jackets. Whereas several cable restrainer
units failed, none of the steel-jacketed columns showed distress despite strong ground shaking in
some cases.

This report contains a detailed summary of the performance of eight bridges that suffered major
damage. These bridges are as follows:

1. Gavin Canyon Undercrossing
2. Route SR14/1-5 Separation and Overhead (Southbound)
3. Route SR14/I·5 North Connector Overcrossing
4. Bun Creek Canyon Channel Bridge
5. Mission-Gothic Undercrossing
6. BalbOa Boulevard Overcrossing
7. Fairfax-Washington Undercrossing
8. La Cienega-Venice Undercrossing

Figure I-I shows the location of these bridges relative to the epicenter of the earthquake in
Northridge lll.

Damage sustained by these and other bridges can be summarized as fonows:

• Abutment back-fill settlement and erosion
• Abutment and shear key structural damage
• Flexural failures in plastic hinges with inadequate confinement
• Pounding and unseating at hinge seats and girder supports
• Shear failures in short single columns, piers. multi...column bents. columns with flares and

other accidental restraints. and columns in skewed bridges.

The performance of buildings and lifeline systems is described in a companion NCEER report
entitled The Northridge, Califomia Earthquake of JaDuary 17,1994: GeDenl ReeoDDaisaaD"
Report (1).
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FIGURE I-I Location Map of Bridges with Major Damage
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SECTION 2
SEISMOLOGY AND GEOTECHNICAL ASPECTS

2.1 Seismologital Observations

On the morning of January 17, 1994 at 04:30:55.4 (PST), an earthquake occurred near Northridge in
the San Fernando Valley 35 km northwest of the Los Angeles central business distrkt in Southern
California (340 12.7'N 1180 32.3', depth 18km). The preliminary moment estimate detennined from
regional surface waves and teleseismic recordings was I to 1.5 X 1026 dyne-em, which gives a
moment magnitude of Mw=6.7. The preliminary local magnitude detennined fronl telemetered
strong-motion instruments in Southern California was ML==6.4. Both the first-motion focal
mechanism from local stations and the teleseismic mechanism show a thrust fault on a plane trending
in a northwest direction. The pattern of aftershocks reveals that the plane dipping toward the
southwest is the fault plane, and its dip is 400 to 50°.

A contour map of the maximum component of peak horizontal acceleration for the San Fernando
VaHey and Los Angeles Basin developed by Todorovska and others [2] is shown in Figure 2-1. A
similar map for the vertical component is shown in Figure 2-2. These maps were constructed by the
University of Southern California (USC) using data from the los Angeles Strong Motion
Accelerograph Network. Other sources included the California Strong Motion Instrumentation
Program (CSMIP) and U.S. Geological Survey's National Strong Motion Program (USGSINSMP).

The strong ground motions from the Northridge earthquake were recorded on many instruments
within the Los Angeles area. Peak accelerations of free-field instruments were generally O.5g to I.Og
in the aftershock area and decreased to 0.1 g at distances of about 50km. Several sites close to the
epicentral area recorded accelerations over Ig. The extensive damage caused by this earthquake
emphasizes the need for better understanding of local site conditions that affect ground motion.
More than 75 instruments were deployed following the mainshock to study these site effects.
Seismic instruments were placed at many of the strong motion instrument sites that produced
significant records of the mainshock. Also, many of the severely damaged areas in Northridge,
Shennan Oaks and Santa Monica were instrumented, as well as the collapsed bridge sites at the
Route 14/1-5 interchange, Route 118 near Woodley, and the 1-10 freeway near La Cienega
Boulevard.

Thousands of aftershocks occurred in the two month period following the earthquake including six
MS, forty-three M4 and 284 M3 events as of March 15. The locations of the aftershocks are
distributed across an area about 30 x 20km. These locations are clearly deeper toward the south and
in cross-section reveal a plane dipping toward the southwest which is interpreted to be the fault plane
for the earthquake. This plane extends from the mainshock hypocenter at 18km upward toward the
surface. Preliminary analysis of teleseismic data indicates that most of the slip on the fault plane
occurred at depths below 5 to IOkm with relatively little slip of the shallow portions of the fault.

The location of the fault plane, as inferred from the aftershock distribution, does not correspond to
any mapped geologic fault. The earthquake did occur, however, within a system of known thrust
faults that extend along the northern edge of the San Fernando Valley. Most of the mapped faults
have northerly dips, although there are several structures, such as the nearby Oak Ridge system, that
have southerly dips.

2-1
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Many of the aftershocks are located on or close to the rupture plane. However, there are also many
off-fault events that have a variety of focal mechanisms. One example is the M5.1 earthquake of
January 29 which was a shallow strike-slip event above the main rupture plane. Portable instruments
recorded accelerations of up to 0.8g from this earthquake.

Real-time information about the mainshock and aftershocks were broadcast to 15 members of the
Caltech·USGS Broadcast of Earthquakes (CUBE) program. This project is a cooperative effort to
provide rapid earthquake information in Southern California. CUBE participants include
governmental emergency response agencies, water and power utilities, railroads. and other private
sector organizations. Earthquake locations and magnitudes are di.,.seminated via pagers and
computer displays throughout Southern California and to other parts of the country. Generally,
information is received within five to eight minutes of the earthquake occurrence. Because of
various problems encountered at the time of the Northridge earthquake. information about the
mainshock was relatively slow in being released. However, data on the first aftersho~ks were being
broadcast within 15 minutes of the mainshock.

Aftershocks were recorded at several sites by California Department of Min,~s and Geology, U.S.
Geological Survey and Lamont-Doherty Earth Observatory (LDEO) personnel. Some of the LDEO
data are presented in Section 4.2.

2.2 Geod~tic Observations

Results from re-surveys of benchmarks, using the Global Positioning System (GPS), reveal the static
displacements due to the earthquake at 15 sites. In the aftershock region, there were vertical uplifts
of 40 to 50cm and horizontal motions of 2 to 2Ocm. These movements are consistent with the fault
geometry derived from seismological observations of a plane dipping toward the southwest at about
40°. Preliminary modeling of the data indicate that there was a slip of 2.5 to 3.5 meters on a to x
10km patch of the fault. The motion was primarily thrust faulting, and most of the slip occurred at
depths ofgreater than 6km.

2.3 Geological Observations

Two areas of surface cracking observed immediately after the earthquake are being studied. It is
unclear if these cracks are direct results of tectonic faulting or due to ground shaking. The small
amount of observed surface cracking, however, is consistent with the geodetic results that there was
not a large amount of slip on shallow portions of the fault.

The most extensive area of ground deformation was in Potrero Canyon on the north side of the Santa
Susana mountains near the northern edge of the aftershock zone. A series of discontinuous tension
cracks and normal faults with displacements of up to 60Cm were observed on both the north and
south sides of the canyon extending for about 3km. Evidence for compressional features with
vertical displacements of 8 to 20cm were also observed along the south margin of the canyon. None
of the deformations was associated with any previously mapped surface fault.

A second system of small cracks was studied along a Sian zone in Granada Hills. a region that had
numerous water and gas main ruptures caused by the earthquake. The complex series of cracks had
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both extensional and left-lateral features. Some of the defonnation occurred in association with
buried stream channels but may also represent secondary faulting on the Mission Hills fault.

There were extensive landslide occurrences in the younger sediments of the western Santa Susana
Mountains, Oak Ridge and Big Mountain areas. Rock falls have choked the ravine bottoms of many
canyons in the Santa Susana Mountains. These were of some concern following the earthquake
since heavy rains could saturate the material, causing it to mobilize into debris flows that threaten
structures near the mouths of the canyons.

2.4 GeotKhnical Aspects

The geotechnical aspects ofthe Northridge earthquake include soil amplification, topographic effects
on the intensity, frequency and duration of ground motion, soil liquefaction, permanent ground
deformation, and landslides. In general however, the geotechnical effects on the performance of
bridges during the earthquake were relatively minor. Effects on buildings and buried lifeline systems
are described in f1].
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SECTION 3
GAVIN CANYON UNDERCROSSING ­

BRIDGE NUMBER 53-t797R & L

3.1 Description

This undercrossing carries the north and south bound lanes of Interstate 5 over Gavin Canyon Road
using two separate bridges. Interstate 5 is the main link between Northern and Southern California.
The bridges are located approximately 2-1/2 miles northwest ofthe 1·5/SR14 interchange. They were
originally constructed in 1967 and were retrofitted with expansion joint hinge restrainers in 1974.

Each bridge is five spans in length and consists of three frames separated by expansion joints with 8
inch bearing seats. Span lengths on the northbound bridge are 120.0, 170.0, 208.0, ]45.0 and 98.0
feet. The southbound bridge has span lengths of 128.0, 170.0, 208.0, 145.0 and 90.0 feet. Both
bridges are 68.0 feet wide.

The two outside frames are of cast-in-place reinforced concrete box girder construction, each
supported on a monolithic end diaphragm abutment and a single two column bent. The center frame
is a cast-in-place prestressed concrete box girder supported on two bents, each with two columns.
The abutments, expansion joints, and bents are all oriented at a relatively large skew that is
approximately 67 degrees to normal. The bridges are separated by a 42.0 foot wide median. A
schematic of the bridges is shown in Figure 3-\.

The structure is located in mountainous terrain. Large approach fills exist on each end of the bridge.
Bent footings are supported on steel "H" piles that penetrate through approximately 20 feet of ~oose

to very dense sands and gravels down to siltstone and shale. These footings are relatively compact in
size and provide limited resistance to rotation. Abutments are supported on spread footings located
in the approach fills.

Reinforced concrete columns measure 6.25 ft x 10.0 ft in cross-section at the base and have large,
but lightly reinforced, architectural flares that widen out to over 20 ft at the soffit. All columns are
poorly confined with nominal ]/2 inch diameter ties at 12 inches on center over the full length of the
column. Main column steel is spliced at the footing. At bents 2 and 5 the clear column heights are
generally shorter with all but two columns measuring between 28.3 and 38.9 feet. One column
within each of these bents is noticeably longer. These columns measure 53.6 and 67.3 feet,
respectively. The columns in bents 3 and 4 are typically longer than those in bents 2 and 5 and
measure between 65.9 and 73.0 feet in length. Column details are shown in Figure 3-2.

The bridge survived the 1971 San Fernando earthquake with only minor damage. Most damage was
confined to the expansion joint hinges and consisted primarily of minor spalling and cracking of the
concrete near acute comers of the supporting portion of the hinges. The expansion joints were
displaced transversely up to approximately 1-3/4 inches and damage to barrier rails at the hinges
indicated a longitudinal movement during the earthquake of approximately three inches. Settlement
of the bridge, particularly at the west end, was noticed after the earthquake [3,4).

3-1



n
"
n
~

A
·1

B
·2

?
B

·3
8

-4
8·

5
A

·6
~

A
P

P
R

O
A

C
H

F
IL

LS

~
-

'4"
m

"n
"""

,
O"
,"
,R
_~
,n
~m
,m
""
,,
,,
,,
,l
!m
·;

~

Y
o

)
I N

N
O

R
ll

i

~
--

-"
-_

._
--

-
.."_

..
•
-
-

--.
--

--
-

TY
PI

C
A

L
EL

EV
A

TI
O

N

\
~
)
(
p
~
N
S
I
O
N

JO
IN

T
H
I
~
G
E

/\
.6

'-
3

"
X

10
'-0

"
C

O
LU

M
N

S

-
-
~
'
~
~

~
a

__
(
:
_

'
c
~
'
~

I
J
l
l
I
E
R
S
!
~
T
E

5

I
~
c
,

0
Z

o
-_

Z
c
~

PL
A

N

FI
G

U
R

E
3-

1
G

av
in

C
an

yo
n

U
nd

er
cr

os
sl

ng
"

G
en

er
al

Pl
an

an
d

E
le

va
ti

on



I
~ Co

,4
@

12
"

'8
x

29
'·

O
·

T
O

T
14

S
E

C
T

IO
N

A
-A

r
~
~

!

54
'1

4

S
E

C
T

IO
N

B
-B

'1
4

T
O

T
2

6

*8
x

12
'-

0"
T

O
T

8

A

'4
0

1
2

"

'8
X

1
6

'·
0"

T
O

T
4

A
'

II
I

R
=3

5'
-0

"

~ , w

F
IG

U
R

E
3-

2
G

av
in

C
an

yo
n

U
nd

er
cr

os
si

ng
•

C
ol

um
n

D
et

aU
s



'A -#.Mj

Expansion joint hinge restrainers were not present during the 1971 earthquake. They were placed
after the earthquake and are unusual by modem standards in that they are oriented along the
centerline of the bridge rather than normal to the expansion joints. Restrainer details are shown in
Figure 3-3.

3.1 Ground Motion

Ground shaking at this bridg: site is thought to have been severe. The bridge is located in one of the
regions where extensional surface fractures were noticed. This and other preliminary seismological
analysis indicates the bridge site is near the surface projection of the Oak R,idge - "Newhall" fault
which is thought to be the source of the earthquake [5].

The nearest strong motion data available at the time of this writing is from CSMIP Sta. No. 24279, a
free field instrument located approximately 2-112 miles to the north at the Newhall Fire Station [6].
This instrument is founded on alluvium of unknown depth. Peak accelerations in excess of 0.6 g
were recorded in al\ three directions. The motions for the peak horizontal accelerations were nearly
in phase indicating a horizontal ground acceleration peak of approximately 0.8 g in a northeasterly
direction. Very strong shaking lasted for approximately six to seven seconds.

High horizontal accelerations were also recorded at the Olive View Hospital parking lot free field
instrument in Sylmar (CSMIP Sta. No. 24514) which is approximately seven miles east of the bridge
site. A peak horizontal acceleration of0.91 g was recorded in the easterly direction. Strong shaking
lasted for approximately nine seconds.

Records from both instruments have been processed and indicate very high spectral accelerations for
the frequency range of these structures [7]. In fact, in the case of the Newhall record, -the five
percent damped spectral accelerations for the north-south component of ground motion exceed the
Caltrans' design spectrum for the bridge site for the period range between 1/2 to 2 seconds. (Caltrans
uses a smoothed elastic design spectrum based on average motions for the "maximum credible
earthquake" on the most critical known fault [8].)

3.3 Observed Earthquake Damage

The ATCINCEER reconnaissance team did not visit this site because demolition of the unstable side
spans had progressed to the point that collapse evidence had been destroyed and little would have
been gained from a site visit. However, other teams from Caltrans and the University of California
at Berkeley were on the scene earlier. and this description of damage is drawn from their
observations and an interpretation of available photographs.

Both structures suffered failures due to total or partial loss of support at the expansion joint hinges.
The acute comer of the supported span tended to become unseated tirst due to a counterclockwise
rotation ofeach the structural sections about a vertical axis (Figure 3-4).

The movement of the superstructure caused restrainer cables to be pulled at an angle to their
principal axis as evidenced by spalling at the edges of cored holes through which the restrainers
passed. In some cases restrainer cables snapped as the expansion joints separated while in other
cases they pulled through the expansion joint diaphragm (Figure 3-5). Some cables remained intact
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helping to support the partially unseated spans and preventing unseating of the span at one of the
hinges.

Despite the strong ground shaking at the site. the structure suffered very little column damage as can
be observed in Figure 3-6. Only minor cracking was observed at the base of some columns.
Cracked pavement at the bridge approaches is evidence that the fills shifted during the earthquake.
There was some minor abutment damage.

3.4 Failure Analysis

The failure ofthis bridge is attributed to large lateral and rotational movements of the superstructure
sections which caused the narrow expansion joint hinges to become unseated. Rotational movement
of the end spans was probably induced by the eccentricity between the center of mass of the
superstructure and the center of stiffness of the end frame which tended to be shifted toward the
rather stiff diaphragm abutments. It should be noted that the strong shock measured at the Newhall
Fire Station was oriented in a direction transverse to the bridge. Motion in this direction would have
resulted in maximum excitation of rotational response of the end spans.

An additional factor in the response of the structure is the large difference in the vibrational
characteristics of the center frame compared to the two end frames. The center frame is much more
flexible and has a natural period of vibration that is much longer than the end frames. Calculated
relative displacements between the two frames based on a 0.6g Caltrans design spectra loading
exceed the eight inch hinge seat width by several inches. It is unlikely that restrainers would have
been able to prevent the out of phase movement between the three frames that most likely occurred
during the earthquake.

Rough calculations show that the columns within this bridge were likely to have been exposed to
relatively high ductility demands if it is assumed that footings remained fixed against rotation. The
satisfactory performance of the columns at bents 3 and 4 is attributable to the relatively low shear
forces resulting from their long length and low percentage of longitudinal reinforcement. However.
more damage was expected at bents 2 and 5 due to high calculatecl shear forces. The fact that these
columns remained relatively undamaged may be npl<!ined by rocking of the footings. Calculations
show that these footings are unable to develop the ultimate moment capacity of the column and most
likely rocked during the earthquake thus preventing the development of high shear forces. However,
such rocking most likely aggravated the relative superstructure displacements at the hinges.

3.5 Issues/Questions

This failure illustrates th~ difficulties associated with large skews and with multiple expansion joints.
A major lesson is the importance of eliminating and/or minimizing skew and expansion joints,
especially in high structures where the vibration characteristics of adjacent frames are different from
one another.

This failure also illustrates that just because a bridge survives one earthquake (Sylmar, 1971), it does
not necessarily mean it is immune to damage in future earthquakes.
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FIGURE 3-5 Gavin Cany~n Undererossing­
Hinge Seat and Failed Cable Restrainer

nGURE 3-6 Gavin Canyon Undererossinl­
Collapsed End Spans After Demolition
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The unique response of skewed brid~es to earthquakes has been observed in the past. As of yet there
is no widely accepted design procedure that adequately accounts for all of the effects of skew during
an earthquake. Research is needed to better understand this phen,)menon and to develop a
methodology for designing skewed supports.

With respect to column behavior, this bridge is another example of the importance of relative shear
strength. The absence of damage in the presence of ground motions that most likely exceeded those
for the "maximum credible earthquake" illustrates the need for more research on the effects of shear
on column behavior.
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SECTION 4
ROUTE 14/1-5 SEPARATION AND OVERHEAD (SOUTHBOUND)­

BRIDGE NUMBER S3-1960F

4.1 Description

The southbound SRI4/1·5 separation and overhead structure is located at mile post 24.S on Route 5
in Los Angeles County approximately 24 miles to the northwest of downtown Los Angeles and is
generally aligned in a north-south direction. The structure carries traffic from southbound Route 14
to southbound Route 5 spanning the Route 5 southbound and northbound mainlines. Route 5 is a
U.S. Interstate running north-south along the west coast and Route 14 is a State highway beginning
at the SRI4/1-5 interchange and running northeast to U.S. Route 395 in Kern County.

The SR14/I-5 interchange is located on steeply dipping, well consolidated sandstone of the Towsley
formation. Alluvium is present locally. Structures are founded in the sandstone with abutment fills
present at approaches. A general view of this interchange immediately following the earthquake of
January 17 is shown in Figure 4-1. A simplified plan view of this interchange is given in Figure 4-2.
In this view, the four viaducts which allow the interchange of traffic between 1-5 and SR14 are
shown. A fifth structure, which carries southbound truck traffic from SR14 to 1-5, is not shown. It
suffered only minor shear key damage and is not discussed further in this report.

The southbound SRI41l-S separation and overhead is a 10-span continuous, cast-in-place, five-cell
concrete box girder bridge. It has seat type abutments and single column bents. The total length is
1582 feet with an overall width of 53 feet. There is no skew but the structure is curved to a radius of
2200 feet. The bridge is constructed in five segments with four intermediate hinges. See Figure 4-3
for details of span geometry.

The structure was under construction at the time of the 1971 San Fernando earthquake. The bottom
slab and stem concrete had been placed from abutment I to the hinge of span 3 when this earlier
earthquake occurred. (These spans subsequently collapsed in the Northridge earthquake of 1994).
Concrete from the hinge of span 9 to abutment II was completely placed but the spans had not yet
been prestressed. The remainder of the superstructure had not been constructed. Most of the
damage to the superstructure was the result of falsework settlement [9].

Reconstruction began in 1972. At the same time, Type 2 hinge restrainers were installed at hinge
locations in spans 5 and 6. Type I hinge restrainers were added at the hinge located in span 9. (See
Figure 4-4 for typical restrainer details).

4.2 Ground Motion

This interchange is approximately 2·112 miles from the Gavin Canyon Undercrossing. The ground
motions here can be assumed to be similar to those experienced at the Gavin Canyon site (Section
3.2). However, one difference may be the effect of spatial variation in the ground motion for a
viaduct ofthis length (in excess of 1500 feet).

During the week immediately following the earthquake, several agencies recorded aftershocks in the
area for the purpose of quantifying spatial effects. These agencies included the U.S. Geological
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FIGURE 4-1 SR1411-5 Interchange -
General View from Abutment 10 oftbe Soutb Connector Looking Southwest
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Survey, the California State Department of Mines and Geology and the Lamont-Doherty Earth
Observatory.

The Lamont-Doherty Earth Observatory deployment consisted of eight sites (denoted as circles in
Figure 4-2) arranged in two lines at roughly a 35° angle. At each site, the ground acceleration in
three orthogonal directions was digitall' l"ecorded at 200 samples per second. The stations were
arranged at unequal increments alor", each line with the closest spacing being one meter and the
largest around 750m. The sites ,. <:re "hard" rock (conglomerate, sandstone and siltstone) or very
shallow soils. Several hundred aftershocks were recorded including several over magnitude four
earthquakes.

An example of the spatial variability of ground motion recorded at this location is shown in Figures
4-5 and 4-6. Figure 4·5 shows the vertical components of the P-wave from a M4.7 aftershock
recorded at four sites within 150 meters. Figure 4-6 shows the difference between site SO and sites
S2-4. It is seen that the first two cycles of P-wave motion (5.5 to 6.1 seconds) are well correlated at
all four sites with correspondingly small differential motions. After 6.1 seconds, the waveforms are
much less correlated and differential motions increase. It will also be noted that the differential
motion increases with distance. The peak difference between SO and 84 (150 m apart) is twice the
difference between SO and S2 (10m apart). Further, the peak differential motion can be larger than
the peak ground motion and, in this example, it occurs later in the waveform.

The impact of these variations in ground motion on structural performance should be the subject of
future research.

4.3 Observed Earthquake Damage

As shown in Figure 4-7, spans 1,2 and 3 collapsed, pier 2 was completely crushed and pier 3 sheared
through the superstructure. The mode of failure at pier 2 could not be determined by visual
observation as it was completely crushed under the superstructure. The three spans which collapsed
made up the first frame with piers 2 and 3. Span I was supported on a 24 inch seat abutment and
frame I terminated at an in-span hinge, approximately 22 feet from pier 4 in span 3. The in-span
hinge seat was 14 inches in width and Type 1 restrainers (Figure 4-4) tied frames I and 2 together.
Restrainers were not used at either abutment.

The right exterior shear key at abutment 1 was damaged; however the left shear key had little visual
damage. The superstructure at abutment 1 displaced approximately 10 feet up station (north) and 10
feet right (east). The pier 3 bent cap was inclined towards pier 4 and the measured ground separation
from the column at pier 4 was approximately six inches north-south and four inches east-west. At
the in-span hinge I, cantilever side, the transverse shear key was damaged; however the shear key
was still in place (Figure 4-8). At this same hinge, the equalizing bolts failed in tension (Figure 4-9)
and the nuts on the restrainer cable studs were missing (Figures 4- I0 and 4-11). The vertical shear
planes noted on the faces of pier 3 bent cap appeared to be similar to the web stem and soffit cracks
documented at these locations after the 1971 San Fernando earthquake. The piers Were not detailed
as ductile elements; however visual inspection of piers 3 and 4 above grade did not indicate
structural damage. The predominant motion of the structure appeared to be in the north-south
direction.
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4.4 Failure Analysis

The possible failure mechanisms appear to be:

1. Seat loss at in-span hinge 1 caused span 3 to collapse, which overloaded the bent cap and
web interfaces at pier 3; the subsequent collapse of span 2 overloaded pier 2 followed by the
collapse of span 1 and unseating at abutment 1.

2. Shear failure at the interface between the web stems and pier 3 bent cap (towards pier 4) led
to the collapse of span 3, and the unseating of span 3 at the in-span hinge; the subsequent
collapse of span 2 caused overloading and collapse of pier 2 followed by collapse of span 1
and unseating at abutment 1.

3. Non-ductile failure of pier 2 caused collapse of spans I and 2, failure of the bent cap and web
interfaces at pier 3 with the subsequent collapse of span 3. However the bent cap at pier 3 is
inclined towards pier 4. Also, crushing of column concrete below the bent cap towards pier
4 (Figure 4-12) and no crushing of column concrete below the bent cap towards pier 2
(Figure 4-13) would indicate that perhaps span 3 collapsed first. Further, span 2 was 206 feet
long versus span 3 being 149 feet to the in-span hinge; thus if span 2 collapsed first it would
have pulled the pier 3 cap towards pier 2.

The circumstantial evidence available at the site, especially the damage sustained by the face of pier
3, suggests that mechanism) . is the likely failure mode.

4-7



50
52
53
54

I

"
\ "

I I'

" ,
, I

• I ,
I , I

I I

"

"I
I

I.'I
I

,
I
I
I
I,'It
, '10, ..
, I

I

38)

-I

5.6 5.' 70 72 7.4 7.6

Seconds

FIGURE 4-5 SR14/1-5 Interchange-
Vertical Components of P-wave from a M4.7 Aftershock Recorded

at Four Temporary Sites (SO, 2-4)

3b)

1\

I
I

I
I

f,
I

52
53
54

-I
",

5.6 7.6

FIGURE U SRlUI-S Intercha.e ­
Dillereace betweea Site SO aad Sites S1-4

4-8



4-9



FIGURE 4-8 SR14/I-S Separation and Overhead (Southbound) ­
Hinge Seat and Shear Key in Span 3

FIGURE 4-9 SR1411-5 Sepantion aDd Overhead (Southbound) •
EqualbiDI Bolt at BiDle in Span 3
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FIGURE 4-10 SR1411-5 Separation and Overbead (Soutbbound)­
Equalizing Bolt and Restninen at Hin~e in Span 3

FIGURE 4-11 SRl411-5 Sepllratioa aDd Overhead (Southbouad).
Restrainer Studs at HiDge in Span 3
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FIGURE 4-12 SR14/1-5 Separation and Overhead (Southbound)­
North Side 01 Pier 3 and Cap

FIGURE 4-13 SRl411-5 Separatioll and Overhead (Southbound) •
South Side of Pier 3 and Cap
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SECTION 5
ROUTE 14/1-5 NORTH CONNECTOR OVERCROSSING ­

BRIDGE NUMBER 53-1964F

5.1 Description

The SRI4/I-S north connector overcrossing structure is located at mile post 24.92 on Route 5 in Los
Angeles County approximately 24 miles to the northwest of downtown Los Angeles. The structure
is curved with a radius of 550 feet and a subtended angle of approximately 101 degrees. The
structure carries traffic from southbound Route 14 to northbound Route 5, spanning Route 5 (truck),
Welclon Canyon Road, and Southern Pacific Railroad tracks. Route 5 is a U.S. Interstate running
north-south along the west coast and Route 14 is a State highway beginning at the SRI4/1-5
interchange and runs northeast to U.S. Route 395 in Kern County. The SRI4/1-5 interchange is
located on steeply dipping, well consolidated sandstone of the Towsley formation. A general view
and plan of the interchange are shown in Figures 4-1 and 4-2.

The north connector in the SRI4/1-5 interchange is a IO-span. continuous. cast-in-place. three cell,
concrete box girder bridge. It has seat type abutments and single column bents supported on both
spread footings and piled footings. The total length is 1.532 feet with an overall width of 34 feet.
The bridge is constructed in five segments with four intermediate hinges. See Figure 5-1 for details
of span geometry.

This bridge was under construction at the time of the 1971 San Fernando earthquake. Approximately
80% of the superstructure from abutment I to hinge 4 in span 8 was complete. During this earlier
earthquake, the deck profile altered a total of 0.4 feet in a reasonably uniform change from abutment
I to the hinge at pier 8. The hinges had minor damage of crushed expansion material, slight spalling,
separated waterstops, and failed equalizing bolts. Pier 2 showed signs of movement at the ground
level having an embankment separation of 2-im;h around the column. A crack was also noted on the
superstructure soffit near pier 3 [9].

Reconstruction began in 1972 to build the substructures at pier 10 and abutment II, and the
superstructure between the hinge in span 8 to abutment II. Type I hinge restrainers. (4 units per
hinge) were added at the exterior cells. The construction of pier 10 incorporated double #4 spirals at
a 3.5 inch pitch along the entire length of the column.

5.2 Ground Motion

This interchange is approximately 2-1/2 miles from the Gavin Canyon Undercrossing. The ground
motions here can be assumed to be similar to those experienced at the Gavin Canyon site (Section
3.2). However, as noted in Section 4.2, one difference may be the effect of spatial variation in the
ground motion for a viaduct of this length (in excess of 1,500 feet).

During the week immediately following the earthquake, several agencies recorded aftershocks in the
area for the purpose of quantifying spatial effects. These agencies included the U.S. Geological
Survey. the California State Department of Mines and Geology and the Lamont-Doherty Earth
Observatory. Results obtained in the vicinity of the southbound SR14/1-5 separation and overhead
are discussed in ~tion 4.2.
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5.3 Observed Earthquake Damage

As shown in Figures 5-2 and 5-3, spans I and 2 collapsed and pier 2 was completely crushed. The
mode of failure for this pier could not be determined by visual observation. Span I was 188 foot
long, simply supported at the seat abutment and at the in-span I hinge. The hinge and abutment
seats were both 14 inches in width and hinge restrainers had been installed at the hinge. (Current
Caltrans design specifications require that abutment seat minimum widths be 24".) The shear keys at
abutment I were not severely damaged, indicating that motion was primarily in the longitudinal
direction of the bridge at abutment I, Le., in a north-south direction (Figure 5-3). Equalizing bolts at
abutment I, shown in Figure 5-3, failed. Pier 2, which collapsed, was supported on a spread footing
and was approximately 21 feet high. The other two piers making up frame I were pier 3,
approximately 73 feet high supported on CIDH piles and pier 4, approximately 60 feet high
supported on a spread footing. These pier columns were not detailed for ductile behavior having #4
ties at 12 inch centers.

5.4 Failure Analysis

Possible failure mechanisms appear to include: (I) seat loss at abutment I causing span I to collapse
with subsequent failure of pier 2 followed by collapse of span 2 to pier 3; (2) non-ductile shear
failure of pier 2 followed by the collapse of spans I and 2.

Without analysis, the sequence of failure is uncertain but it seems likely that pier 2 failed first
followed by the collapse of the two spans. It is possible that pier 2 attracted a much higher
proportion of the lateral load than assumed in design because of its relatively short height. Further,
there was probably a significant reduction in the axial load in the pier due to both the severe
curvature in the bridge and the high vertical accelerations in the ground motion. This reduction in
axial load may have reduced the capacity of the column to less than the demand leading to the failure
of the pier.
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FIGURE 5-2 SR1411-5 North Connector ­
Collapsed End Spans After Demolition

FIGURE 5-3 SR14/1-S North Connector·
Seat aad Transvene Shear Keys at Abutment 1
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SECTION 6
BULL CREEK CANYON CHANNEL BRIDGE ­

BRIDGE NUMBER 53-2206

6.1 Description

This bridge carries 10 lanes of traffic on State Route 118 and off ramps to Woodley Avenue, over a
small drainage canal in the northern San Fernando Valley. It is located approximately one mile west
of the interchange with 1-405 and is adjacent to the Mission-Gothic Undercrossing (Br. No. 53.2205)
which suffered a partial collapse during the earthquake. The bridge is relatively new, having been
constructed in 1976.

The bridge is essentially two parallel structures separated by a longitudinal expansion joint that runs
down the median of the freeway. The superstructure for each bridge consists of a three span, multi­
cell, cast-in-place prestressed concrete box girder that is typical of bridges built in California in the
seventies. At the center of the freeway, the three spans measure 90.5, 101.0, and 65.0 feet in length.
Because of the off ramps, the bridge is considerably wider at the east end. A schematic of the bridge
is shown in Figure 6-1.

The abutments and bents are not quite parallel and are laid out on skews which vary from
approximately 37 to 47 degrees from normal. This results in the span lengths for the westbound
bridge being slightly shorter than those on the eastbound bridge. Reinforced concrete columns,
which are fixed against rotation at both the top and the bottom, are approximately 24 feet in length
and have a four foot wide regular octagon shaped cross-section. Longitudinal reinforcement varies
from 2.0 to 3.5 percent of the cross-sectional area. Transverse reinforcement consists of #5 spirals
that are spaced at a pitch of 3" over a length of4'-0" just above the footings and just below the soffit.
The remaining transverse reinforcement is spaced at a pitch of 12 inches. A transverse reinforced
concrete training wall is located several feet above the footings between the columns in bent 3.
Column details are shown in Figure 6-2.

Monolithic end diaphragm abutments are supported on greased pads that allow for prestress
shortening and temperature movement. Transverse movement at the abutments is restrained by
concrete shear keys built into the abutment footings. Abutment and bent footings are supported on 16
and 24 inch diameter cast-in-drilled-hole piles, respectively. Piles are approximately 40 feet long at
the abubnents and 30 feet long at the bents. The soil profile is alluvium consisting of slightly
compact to dense silts, sands and gravels in excess of90 feet deep.

6.2 Ground Motion

This bridge site is located approximately five miles northeast of the epicenter of the earthquake.
Strong motion instruments that recorded the highest levels of motion during this earthquake are
located within a north-south oriented band that passes through the epicenter and includes the region
where this bridge is located. A large portion of the damage to manmade facilities, including several
bridges on SRI18 and 1-5, was concentrated within this band.

The nearest two strong motion instruments are each located on the edge of this hypothetical band
approximately four miles southeast of the Bull Creek Canyon Channel Bridge. Both instruments
recorded strong shaking that lasted approximately 10 seconds [6].
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SECTION A-A
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TYPICAL BENT 2 COLUMN
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FIGURE 6-1 Bull Creek canyon Channel Bridge.
Column Details
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A triaxial free field instrument located at Arleta on deep alluvium (CSMIP Sta. No. 24087) recorded
peak accelerations ofO.34g in the east-west direction and 0.31g in the north-south direction. These
records have been processed and reveal five percent damped response spectra in both horizontal
directions comparable to the Caltrans' smoothed elastic design spectra for peak nx:k accelerations
between 0.2 and 0.3g. £7,8). An unusual characteristic of the records obtained from this site was the
relatively high peak accelerations of 0.558 measured in the vertical direction.

A second instrument located at the base of a seven story hotel in Van Nuys recorded peak
accelerations ofO.47g in the north-south direction and 0.41g in the east-west direction. Peak vertical
accelerations of 0.38 obtained at this site are more typical of those recorded in past earthquakes,
being approximately two-thirds of the peak horizontal accelerations.

It is speculated that ground motions at the bridge were higher than those recorded b)l either of the
above two instruments. This speculation is based on the extent of damage to other structures in the
vicinity, and on the location of the hypothetical band of strong motion mentioned above.

6.3 Observed Earthquake Damage

As shown in Figure 6-3, this bridge sustained irreparable damage to its columns during the
earthquake. At bent 2, the two southernmost columns in the eastbound bridge failed just below the
well confined section near the superstructure soffit as shown in Figure 6-4. This caused the
superstructure to drop several inches at these locations rec;ulting in cracking and spalling in the soffit
near the location of the failed columns. Some remaining columns in the eastbound bridge eldtibited
diagonal cracking. bent 2 columns on the westbound structure sustained far less damage.

At bent 3 all columns in both bridges failed just above the training wall as shown in Figure 6-5.
These failures occurred in an area above the well confined section of the column that was near the
footing. Disintegration of these columns during the earthquake resulted in a significant drop in
elevation at bent 3.

There was no visible sign of damage to the abutments, but there was an offset of the easterly
approach pavement of approximately 15 inches suggesting a failure of the buried transverse shear
keys in the abutment footing.

6.4 Failure Analysis

The failures at bent 3 may be explained by the presence of the training wall which forced the plastic
hinge to fonn at the top of the wall and thus above the confined section of the column. The training
wall also shortened the effective height of the column thus increasing the shear forces in the columns
due to flexural demands. Some torsional shear forces were also induced because of the eccentricity
of the training wall to the centerline of the column.

Bent 2 failures and possible abutment shear key failures Were probably a result of the failed columns
at bent 3 and the subsequent shifting of lateral forces to the remaining supports. It is felt that the
bent 2 column failures were essentially shear failures aggravated by the degradation of shear strength
that resulted from flexural yielding. This conclusion is supported by the behavior of the various
columns in bent 2.
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FIGURE 6-3 BuD Creek Canyon Cbannel Bridge ­
Side View
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FIGURE 6-4 Bull Creek Canyon Channel Bridge.
Hinge Formation Below Well Confined Section in Column of Bent 2 (Eastbound Bridge)

FIGURE 6-5 Bull Creek Canyon Channel Bridge.
Hinges in All ColumDI of Bent 3 Immediately Above the Channel Training Wall
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The eastbound and westbound bridges are very similar in geometry. The tributary deadload for each
of the columns in bent 2 is approximately equal, and the column heights and cross-sectional
dimensions are essentially the same. Therefore, hypothetical elastic moment demands in each of the
cdumns as a result of earthquake loading is expected to be similar. However, columns on the
westbound bridge are more lightly reinforced than those on the eastbound structure thus resulting in
lower ultimate moment capacities and higher ductility demands.

On the other hand, ultimate shear forces, which are directly proportional to column flexural strength,
are approximately 30 percent higher in the columns on the eastbound bridge. Since columns on this
bridge failed while those on the westbound bridge did not, despite their potentially higher ductility
demands, it is concluded :hat the failures resulted because of higher shear forces and are not solely
due to flexural yielding in the region below the well confined zone of the column.

6.S Issues/Questions

The column failures demonstrate the risks of attempting to optimize column designs by trying to
predict the location of plastic hinging, even in relatively simple columns such as these. The
placement of a training wall forced hinging to occur at a location unforeseen by the designer. Also,
it does not appear the columns wt:re adequately reinforced for shear. Therefore, it would seem
prudent to place closely spaced transverse reinforcement over the full length of the column. It is
relatively inexpensive to do so and it will help minimize the effects of unforeseen conditions.

As with several other bridge failures during this earthquake, the failure of the Bull Creek Canyon
columns raises a question about the interaction between allowable ductility demands and the relative
shear strength of the column. More research is needed in this area.
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SECTION 7
MISSION-GOTHIC UNDERCROSSING ­

BRIDGE NUMBER 53-2205

7.1 Description

This bridge is located on State Route 118 at postmile mark 8.63 at the intersection of San Fernando
Mission Boulevard and Gothic Avenue in the Northridge area. Designed in 1973, the bridge is in
flict two separate side-by-side structures carrying east and west bound traffic through San Fernando
Valley. The structure is 536 feet long at the centerline and skewed 45.90 clockwise at abutment I
and 44.1 0 counterclockwise at abutments 4 and 5. Since the abutments are almost at right angles to
each other, onl bridge is approximately 438 feet long on its centerline and the other is 634 feet on its
centerline. The shorter, westbound bridge is supported on two bents, while the longer, eastbound
bridge is supported on three bents. The superstructure is a cast-in-place prestressed concrete 7.5-foot
deep box girder. Both structures are 98 feet wide with slight variations to accommodate nearby
ramps. Some of these details are shown in Figure 7-1. Each bent of both bridges consists of two
columns, flared at the top, as shown in Figure 7-2. The total depth of the flare is 12 feet; the average
column height is 22 feet.

The columns are six-foot diameter octagonal (circular core) reinforced concrete columns wrapped
with No.5 spirals spaced at 3.5 inches. This level of confining shear reinforcement almost satisfies
today's standards. The main longitudinal column reinforcement consists of 45, number II bars
embedded 6.5 feet into the cap. The flares outside of the central 6-foot diameter core are reinforced
with 22, number II longitudinal bars tied with number 5 bars shown in Figure 7-2. These flares are
presumed to have been provided for architectural reasons so as to improve the aesthetics of the
column-to-girder connections. Caltrans has used this detail for this purpose since the early seventies,
especially on single column bents. These "flares" are not intended to add to the structural strength of
the column but are expected to be damaged and later repaired as necessary. Although well­
reinforced in the vertical direction they are usually lightly reinforced in the transverse direction
outside of the central core (No.5 bars at 12 inches). As a consequence, these architectural elements
are not considered to supplement or compromise the seismic performance of the column in any
!lignificant way.

The bases of all the columns are supported on piled footings through l,4-inch thick neoprene sheets
coated with molylube grease covered with 16 gage sheet metal. No reinforcing steel runs through
the bottom of the column into the pile cap. The lateral support for the column bases was provided by
a concrete collar cast at least 120 days after the superstructure was prestressed (Figure 7-2). The
ratios of the column lengths to the column widths, measured from the "pin" at the base to the bottom
of the flare range, from 1.7 to 2.1, thus technically making them pier walls in the transverse
direction.

The first 20 to 30 feet of the soil at the site consists of primarily loose to slightly compact brown very
fine to fine grained sand and sandy silt. The bents and the abutments were all supported on cast-in­
drilled hole concrete piles.
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7.2 Ground Motion

No strong motion accelerograph data in the immediate vicinity of the site are available at this time.
It should be noted, however, that intense ground motions were recorded in this general area as noted
for the nearby Bull Creek Bridge (Section 6.2). This structure is about five miles from the epicenter,
and four miles from the Sylmar accelerograph which recorded a free-field horizontal acceleration of
0.91g horizontally. A "back of the envelope" calculation for this structure indicates that the ground
motions would have had to have been at least about 0.35g to initiate the observed damage at this
structure. It is quite likely that the ground motions at this site were larger than this estimate. In fact.
preliminary contour maps of peak ground accelerations from the Los Angeles Strong Motion Array
[2] indicate that both the vertical and the horizontal peak accelerations at the site may have been on
the order ofO.5g or greater.

7.3 Observed Earthquake Damage

The eastbound bridge collapsed completely at the end near abutment 5 and fell off the abutment seat
(Figure 7-3 and 7-4). The deck of this bridge also rotated clockwise when looking down in plan
(Figure 7-5). and was left partially standing on its severely damaged columns.

The westbound bridge (which was shorter in overall length than the eastbound bridge) did not
collapse. However, most of the two-column bents were severely damaged (Figures 7-6 and 7-7) with
failures occurring at mid-height just below the flare. Similar distress was observed in the eastbound
bridge but the columns near abutment 5 also sustained large lateral offsets (up to five feet) due to the
clockwise rotation of the deck (in plan). Transverse restraint at the abutments was provided by
external shear keys and these clearly failed at abutment 5 on the eastbound bridge. Evidence of
similar damage to the restraint at abutment I, for the same bridge, is shown in Figure 7-8.

As noted above and shown in Figure 7-2, each column is pinned to its footing and the required shear
connection is provided by a collar, placed around the column, that is tied to the footing and buried
just below the surface. Figure 7-9 shows the right hand column of 'lent 2 of the eastbound bridge
and a substantial upheaval of soil immediately to the south of the column. Excavation by Caltrans
(and a demolition contractor) showed this disturbance to be due to the cC!!llr breaking free from the
footing and being driven into the soil by the column. Figure 7-10 shows a portion of the excavated
collar; note the absence of a positive connection to the footing. It is likely that the lack of an
effective shear connection to the footing substantially reduced the forces in the column and may
explain the absence of damage in this particular column.

7.4 Failure Analysis

This bridge was well designed and detailed and would probably pass all current screening tests for
vulnerability and possible retrofit. It is therefore of particular interest to consider the possible failure
mode.

It is likely that several factors contributed to its collapse; one possihle scenario is as follows. Since
the abutments have opposing skew angles. and are thus at right angles to one another. excessive
shear demands could have been placed on the restraints at the east abutments which then failed and
triggered the partial collapse of the bridge.

7-4



FIGURE 7-3 Mission-Gothic: Unden:rouing­
Side View of Partially Collapsed Eastbound Bridge

FIGURE 7-4 Mission-Gotbie UndererossiDg ­
Span" aDd East Abutment of Eutbound Bridge
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FIGURE 7-5 Mission-Gothic Undercrossing-
View from East Abutment Showing Rotation of Eastbound

Superstrudure Away from Westbound Bridge

FIGURE 7~ Mission-Gothic Undercrossing -
BiDge FormadoD Below Flare iD ColumD ofWestbouDd Bridge (Faee View)
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FIGURE 7-7 Mission-Gothic Undercrossing-
Hinge Formation Below Flare in Column of Eastbound Bridge (Side View)

FIGURE 7-8 Missioa-Gotbk Undercrossing -
Shear Key Damage at West Abutment of Eastbound Bridge
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FIGURE 7-9 Mission-Gothic Undercrossing -
Soil Upbeaval Above Footing ofRigbt Hand Column in Bent 2 of Eastbound Bridge

FIGURE 7-10 Miaion-Gothic Undercrossinl-
Excavated Collar from Footing of Rilbt Hand Column in Beat :1 of Eastbound Bridge
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This is illustrated in Figure 7-11 which shows the eastbound bridge of the Mission-Gothic
undererossing. For shaking predominantly in the north-south and/or east-west direction, the bridge
was "locked" in one direction but "free" in the other. For loading towards the north and east (figure
7-1Ia), the bridge was restrained by the backwalls and fills behind the north and east abutments. In
this locked position. the columns and shear keys were protected by the resistance provided by the
backfills. For loading towards the south and west (Figure 7-11 b), the bridge was not restrained by
either abutment and the full lateral loads were resisted by the columns until the transverse restraints
at the abutments engaged.

Under these loads, the columns began to develop plastic hinges. But because of their flared
geometry and the accidental strength that these provide to the upperhalf of the column, these hinges
fonned near mid-height. The corresponding shear forces were then almost 83% larger than if the
hinges had fonned just under the soffit (as assumed in design) leading to excessive shear demands in
the plastic hinge zones. Degradation of the columns transferred more load to the abutment restraints
which subsequently failed leaving the bridge free to translate and rotate about a vertical axis. If the
north-south component dominated the ground motion, then the east abutment restraints would likely
fail before those at the north abutment leading to a clockwise rotation about the north abutment, as
shown in Figure 7-llc.

In fact, the damage patterns and residual displacements at the west end suggest that the center of
torsion was probably nearer bent 2 than abutment I. The corresponding rotation imposed large
horizontal deformations in the bents that increased with distance from the west end (Figures 7-llc
and 7-5) and culminated in the unseating at the east abutment and the large pennanent offsets in the
columns of bent 4. Partial collapse ofthe eastbound bridge followed. The westbound bridge was not
as extensively damaged probably because it is shorter in length and the shears in the columns and at
the abutments were not sufficient to trigger collapse.

While it is recognized that this may not have been the exact sequence of events, it is almost certain
that three factors played a contributing role in the collapse of the bridge. In summary these are:

I. The unusual geometry and in particular the effect of orthogonal skew, and variations in skew
from one substructure to the next;

2. The unintended actions of architectural elements such as the flares on the columns which
may have inadvertently enhanced the flexural strength of the columns leading to premature
shear failures, particularly in these short columns; and

3. The inadequate capacity of shear keys and other transverse restraints at the abutments.
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FIGURE '-II Mission-Gothic Undercrossing ( Eastbound Bridge) ­
Possjble Load Distribution and Failure Sequence

7-10



.. '4ifJ'

SECTION 8
BALBOA BOULEVARD OVERCROSSING ­

BRIDGE NUMBER 53-2395

8.1 Description

The Balboa Boulevard overcrossing spans State Route 118 at mile post 7.8 in Los Angeles County,
approximately 21 miles to the northwest of downtown Los Angeles. The structure is on a north­
south tangent alignment. Balboa Boulevard is a paved undivided arterial which runs from the city
of Encino to the Route 5/210 interchange.

Built in 1976, the bridge is a two-span continuous cast-in-place box girder with 13 cells. Seat
abutments and one three-column bent support the structure. The southern reinforced concrete bin
abutment spans between the seat abutment and a diaphragm abutment, both of which are supported
on 16-inch diameter CIDH concrete piles.

The total length is 282.5 feet, with an overall width of 117 feet. There is negligible skew and
curvature. The only intermediate joint is located between the bin abutment and the box girder.
Overall geometry and span arrangements are given in Figure 8-1, and a view of the bridge is shown
in Figure 8-2.

Of particular note is the number of utilities carried by this bridge. These are summarized in Table
8-1.

TABLE 8-1 Utilities Carried by tbe Balboa Boulevard Overcrossing

Utility SenIce Lifelines

Los Angeles Department of Water and Power power 6,5" ducts

water 1,12" pipeline

water 1,8" pipeline

Southern California Gas Company gas 22" line in 26" casing

gas 4" line in 8" casing

General Telephone Company telephone 4,4" ducts

AT&T telephone 6,4" ducts

Unassigned unspecified 4, r ducts

8.1 Ground Motion

This bridge is less than a mile west of the Mission-Gothic Undercrossing. The ground motions here
can be assumed to be similar to those experienced at the Mission-Gothic site (Section 7.2).
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8.3 Observed Earthquake Damage

Damage to the structure was primarily located at bin abutment I. Waterlines supported from the
structure ruptured and subsequently washed out the soil beneath the approach and pile caps causing
collapse ofapproach pavement and undermining of the diaphragm abutment I and bent 2 (part of the
bin abutment). Some of this damage is shown in Figure 8-3. The seat abutment sustained damage at
the left front wall (Figure 8-4) and the adjacent curtain wall near the pile cap (Figure 8-5). The
damage appeared to be shear cracks resulting from longitudinal forces being resisted at the bin
abutment. Damage to the 16-inch exposed CIDH piles was not noted. Movement of the structure
appeared to be primarily in the north-south direction which is the longitudinal direction of the
overcrossing.

8.4 Failure Analysis

This bridge perfonned satisfactorily. It resisted the longitudinal seismic forces by soil plowing at the
abutments and frame action at bent 3. Undennining at the bin abutment occurred after the
waterline(s) carried by the bridge, ruptured during the seismic event. The principal damage to the
bridge (and its closure) was therefore the result of colocation of lifelines - a reminder that the
vulnerability of a lifeline that shares right-of-way with other lifelines is detennined by the most
fragile member; which may not necessarily be the lifeline under study.
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FIGURE 8-2 Balboa Boulevard Overcrossing ­
General View
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FIGURE 8-3 Balboa Boulevard Overcrouinl -
Soil Erosion at Soutb Abutment Due to Ruptured Water Lin.
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SECTION 9
FAiRFAX·WASHINGTON UNDERCROSSING­

BRIDGE NUMBER 53-1580

9.1 DeseriptioD

This urban undercrossing carries both east anli west bound Interstate 10 over Fairfax Avenue and
Washington Boulevard near Culver City in west-central Los Angeles County, California. Interstate
10 is reported to be the busiest freeway in the United States. The bridge was originally constructed
in 1964 and subsequently retrofitted in 1974 with expansion joint restrainers. At the time of the
earthquake the bridge was scheduled for Phase 2 retrofitting consisting of abutment shear keys, steel
column shells, bent cap and footing strengthening, and expansion joint modifications.

The bridge superstructure is a multi-cell, cast-in-place, reinforced concrete box girder typical of
California construction. It is separated by a longitudinal expansion joint that runs down the median
of the freeway. The western abutment is nearly normal to the centerline of the freeway while the
eastern abutment is skewed at approximately 47 degrees to normal. The structure is slightly wider at
the western end to accommodate an off-ramp. A single expansion joint hinge with a seat width of
six inches is located in span 3. The structure to the south of the longitudinal expansion joint is
approximately 73 feet wide and consists of seven spans (lengths: 45.8, 112.0, 98.0, 17.6. 83.0. 81.0,
and 46.1 feet). The structure to the north flares from between 101 feet wide at the west abutment to
70 feet wide at the east abutment and has eight spans (lengths: 45.8, 112.0,98.0. 76.1,76.1, 83.0,
81.0, and 46.1 feet). The above span lengths are measured along the approximate centerline of each
of the respective structures.

The ends ofthe structure are supported on steel rocker bearings approximately six inches high at seat
type abutments. The supports adjacent to the abutments consist of solid concrete pier walls designed
to hinge in the longitudinal direction at both the top and bottom. The remaining supports are multi­
column bents with poorly confined four foot round reinforced concrete columns spaced at between
25 to 31 feet on center. The number and location of columns is dictated by the geometry of the city
streets which cross under the bridge at different angles. A schematic plan and elevation of the bridge
is shown in Figure 9-1.

Although all the reinforced concrete columns have a clear length between the top of footing and the
bottom of soffit of approximately 20 feet. the amount of main reinforcement in the columns varies
between 1.0 and 5.3 percent of the cross-section area. The end condition at the base of the column
also varies depending on the bent. Transverse reinforcement consists of single hoops of 112 inch bars
spaced at 12 inches along the full length of the column. Hoops are lap spliced. Column details are
shown in Figure 9-2.

Abutment foundations bear directly on soil while all interior foundations are supported on 16 inch
cast-in-<lrillcd-hole piles approximately 20 to 25 feet in length. The soil profile at the site consists
mostly of slightly compact to dense sands and gravels in excess of 70 feet deep.
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SECTION A-A

·11 DOWELS
(TOTAL 4)

#11 REINF.
(NO. OF BARS VARIES)

SECTIONB-B

14" EXP. JT.
MATERIAL

fX 1-5/8"
KEY

" A
V V

IAr' COLUMN ........
A A

~ ~ A ~

~ ~
~.,.

N FOOTING

, ,~ ~ I---- --- ._--

"'<> ...
~ "ll > ...

~

"FIXED" COLUMN
(BENTS 3, 4A. &5)

"PINNED" COLUMN
(BENTS 4 &6)

FIGURE 9-~ F8Irfax-Washington Undercrosslng ­
Column Details
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9.2 Ground Motion

The structure is located approximately 17 miles southeast of the epicenter of the main shock. Two
free field strong motion recorders are located within a few miles ofthe bridge site [6].

The first instrument (CSMIP Sta. No. 24157), which is located two miles to the southeast in Baldwin
Hills on one meter offill over shale/sandstone, recorded approximately 10 seconds of strong shaking
with a peak horizontal acceleration in the east-west direction of 0.24g and 0.17g in the north-south
direction.

The second instrument (CSMIP Sta. No. 24389) also recorded approximately 10 seconds of strong
shaking. The peak horizontal acceleration was 0.27g in the east-west direction and 0.24g in the
north-south direction. This instrument is located approximately four miles northwest of the bridge
and is supported on terrace deposits.

Motions recorded approximately four miles away on a bridge structure within the 1-10/1-405
interchange are consistent with the magnitude of horizontal ground motion recorded at the above two
free field sites.

9.3 Observed Earthquake Damage

This structure sutTered major damage during the earthquake. All of the columns in bent 3 failed
resulting in a several foot drop of the superstructure at this support (Figure 9-3). This drop caused
the superstructure to rotate about the pier wall at bent 2 and to lift off the seat at abutment I (Figure
9-4). As a result. flexural yielding occurred in the superstructure near bent 3. The expansion joint
hinge in span 3 remained effective despite the narrow seat width (Figure 9-5). Observation of the
hinge restrainers after demolition of the expansion joint (Figure 9-6) showed that they remained
intact during the earthquake and helped prevent total loss of support.

The columns in bent 3 failed near the top at the expected location of plastic hinging. Transverse steel
hoops were ineffective in containing the column concrete and in preventing buckling of the main
column steel. The columns rapidly disintegrated resulting in the damage shown in Figure 9-7.

Damage in the form of shear cracking was also observed in some of the columns in bent 4 (Figure 9­
8), but visible damage in the remaining columns of the bridge was limited to minor spalling and
flexural cracking near the top of the columns (Figure 9-9). Distribution of column damage is shown
in Figure 9-10.

9.4 Failure Analysis

The column failures at bent 3 were most likely caused by excessive shear forces. Flexural yielding in
the columns resulted in degradation of shear capacity while producing relatively high ultimate shear
demands. To demonstrate this effect, the columns in the right half of the bridge were analyzed for
both moment and shear.
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FIGURE 9-3 Fairfax-Washington Unden:rossing ­
Side View of Partially Collapsed Eastbound Bridge

FIGURE 9-4 F.irfax-Wuhinlton UDden:rossinl­
Uplift from Seat at Abutment 1
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FIGURE 9-5 Fairfax-Washington Undercrossing­
Rotation at Hinge in Span 3

FIGURE 9-6 Fairfax-Washington Undercrossinl­
Hinge Seat and Restrainers in Span 3 after Demolition
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FIGURE 9-7 Fairf'ax-Wubington Undercrossing.
Total Column Failure in BeDt 3
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A response spectrum analysis of the bridge was performed to determine the approximate extent of
flexural yielding in the columns during the earthquake. The Caltrans' design spectra for 0.2g peak
rock acceleration and 80 to 150 feet of alluvium [8] was used to simulate the ground motion thought
to be most likely to have occurred at the bridge site.

Columns were assumed fixed at the base even though the main reinforcement was spliced at this
location. Those columns for which the main steel stopped at the footing were assumed to be pinned.
The ratio of the elastic moment from the response spectrum analysis to the ultimate moment capacity
at the axial compression produced by dead load was calculated as an indicator of ductility demand.
This is similar to the "Z' factor defined in the Caltrans Bridge Design Specifications [8].

Column shear capacity was calculated using methods proposed by researchers at the University of
California at San Diego [10]. This method considers shear capacity contributions from concrete,
steel and axial force. Ultimate shear demands were calculated using statics by assuming that the
nominal ultimate moment was present at all potential plastic hinge locations. No capacity reduction
factors were used in calculating shear capacity and no multipller to account for strain hardening of
the steel was used in calculating ultimate shear demands. The results of the column analysis are
shown in Table 9-1.

TABLE 9-1 Column Shear Capacities in Easthound Bridge at Fairfax-Washington

Bent No. Column Shear (kips) CapacitylDemand Effective "Z"
for Shear

Ultimate Capacity

Demand (UCSD)

3 370 292 0.79 3.45

4 290 391 1.35 1.31

5 3001194 3031196 1.0111.01 2.95/6.02
6 99 176 1.78 4.33

The capacity/demand ratio for shear at bent 3 clearly shows the potential for a shear failure.
Although bent 4 columns would have been ex.pected to perform well based on the above analysis, the
column disintegration at bent 3 would have shifted forces to this bent resulting in higher ductility
demands and a disintegration of column shear strength. This would explain the bent 4 column
failures.

Bents 5 and 6 performed well despite relatively high calculated ductility demands and physical
evidence of flexural yielding. Both of these bents apparently ex.perienced ductility demands similar
to bent 3. However. they each had better shear capacity/demand ratios. This seems to suggest that
even poorly confined columns are capable ofsustaining relatively high ductility demands when shear
forces are low.
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The notion of relative shear strength was the basis for the column screening procedure presented in
the FHWA Seismic Retrofitting Guidelines for Highway Bridges (also known as ATC-6-2) [II].
This procedure uses a column base vulnerability rating (BVR) based on simple column parameters
that can be quickly determined from the plans without doing an analysis. This method predicted the
vulnerability ofcolumns in this bridge with good accuracy as shown in Table 9-11.

TABLE 9-11 FHWA Column VUlnenbility Ratings of Eastbound Bridge
at Fairfax-Washington

Bent No. BVR
3 6.8 to 8.2
4 6.7 to 7.5
5 oto 5.7
6 0

Note BVR = 0
2.5
5
7.5
10

9.5 Issues/Questions

implies no damage
implies minor damage (spalling)
implies moderate damage
implies major damage
implies severe damage

The lesson from this failure and that of the adjacent La Cienega-Venice Undercrossing is that
structures with multi-column bents may be vulnenble to severe damage even when ground motions
are well below current design levels. Once the shear capacity of a poorly confined column is
exceeded, it disintegrates rapidly. Clearly higher priority must be given to screening and retrofitting
bridges with vulnerable multi-column bents, especially those on important routes.

The column failures at bent 3. and thus the failure of this bridge, can be explained by high shear
forces. However, the high bending ductility demands in the lightly reinforced columns at bents 5 and
6 coupled with their minimal transverse reinforcement would seem to have been the formula for
serious column failure. The fact that these columns suffered very little damage suggests an
interaction between relative column shear strength and the bending ductility demands that columns
are capable of sustaining. Laboratory research is needed that focuses on this issue and seeks to
develop a rational procedure for practitioners to better evaluate existing columns.

This bridge failure also demonstrates the importance of ex.pansion joint hinge restrainers in
protecting life. Although the bridge was severely damaged, total collapse was prevented. The
situation may have been different if hinge restrainers had not been used. since the failure of bent 3
would have resulted in movements at the expansion joint hinge sufficient to cause it to become
unseated.
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SECTION 10
LA CIENEGA-VENICE UNDERCROSSING ­

BRIDGE NUMBERS 53-1609 AND 1609S

10.1 DeseriptioD

This undercrossing carries both east- and west-bound Interstate 10 over Venice and La Cienega
Boulevards near Culver City in west-central Los Angeles County. It is approximately one-half mile
west of the Fairfax-Washington Undercrossing that also partially collapsed. The bridge was
originally constructed in 1964, and subsequently retrofitted with cable restrainers in 1978.

The bridge superstructure, between piers 2 and 9, consists of two nine-cell cast-in-place, reinforced­
concrete box girders, varying from 70 feet to 94 feet in width. A general plan and typical section is
given in Figure 10-1. Damage sustained during the earthquake is illustrated in Figures 10-2 through
10-7. Detailed plans, sections and elevations are presented in Figures 10-8 to 10-16. These details are
generally representative of Caltrans' design and construction practice in the mid-sixties.

The east- and west-bound bridges are separated by a longitudinal expansion joint that runs down the
median of the freeway. Both end spans consist of slab and girder construction with a span length of
approximately 51 feet (Figure 10-9). Abutment 1, pier 2 and bent 3 are nearly nonnal to the center
line of the bridge, whereas from bent 4 to abutment 10 there is an increasing skew that is
approximately 45° at abutment 10 (Figure 10-10). There is an off-ramp adjacent but structurally
separate from the undercrossing on the south side. There are two expansion hinges, one between
bents 3 and 4, and the other between bents 6 and 7 (Figure 10-10). From bents 3 to 7 there are
storage facilities located underneath most of the superstructure, and the concrete block walls
enclosing these facilities prevented the total collapse of the superstructure. The total length of the
bridge was 870 feet, with span lengths ofS1, 116,93, Ill, 112, 105, 116, liS, and 51 feet, measured
from abutment I.

Bents 3 to 7 have three columns of support for each 70 feet to 90 feet width of superstructure, and
bent 8 has four columns of support (Figures. 10-11 through 10-16). All columns are four ft. in
diameter, but with significant variations in the longitudinal steel. Confinement/shear reinforcement is
a No.4 bar at 12 inches or a No.4 spiral with a 12 inch pitch at each column location. All columns
are supported on piled foundations ofapproximately 3S ft. depth.

The soil profile consists of an increasingly dense, sandy, silt soil with gravel down at least 70 ft.
where the site borings ended.

10.2 Grouad Motioa

The structure is located approximately 17 miles southeast of the epicenter of the main shock. Two
free-field strong motion recorders are located within a few miles of the bridge site.

The first instrument (CSMIP Sta. No. 24157), which is located two miles to the southeast in Baldwin
Hills on one meter of fi 11 over shale/sandstone, recorded approximately ten seconds of strong shaking
with a peak horizontal acceleration in the east-west direction of 0.248 and 0.17g in the north-south
direction.
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The second instrument (CSMIP Sta. No. 24389) also recorded approximately ten seconds of strong
shaking. The peak horizontal acceleration was 0.27g in the east-west direction and 0.24g in the
north-south direction. This instrument is located approximately four miles northwest of the bridge
and is supported on terrace deposits.

Motions recorded approximately four miles away on a bridge structure within the 1-10/1-405
Interchange are consistent with the magnitude of horizontal ground motion recorded at the above two
free-field sites.

10.3 Observed Earthquake Damage

This structure suffered major damage. Several or all columns at each bent, from bent 3 to bent 8,
suffered shear cracking, flexural hinging, crushing of concrete, and symmetrical, longitudinal bar­
buckling. The shorter columns on the south side of bent 3 failed (Figure 10-2), and concrete spalling
was evident at the top of the single-column support of the off ramp (Figure 10-2). All columns at
bent 3 were designed to be fixed at their base. The majority of the columns at bents 4, 5 and 6
appeared to have failed, but most were inside the storage facility and not able to be inspected. Figure
10-3 is typical of the damage to the north side columns at these bents. This figure also shows the
storage facility supporting the superstructure between the hinge locations (bents 4 to 7). A view of
the superstructure is shown in Figure 10-4. The damage to the columns at bent 7 was unusual
(Figure 10-5). In this bent, flexural/shear hinges had developed at the tops of the first (Type M) and
third (Type H) columns from the north side, and at the base of the second (Type L) columrl. Figure
10-16 is not explicit with regard to the column fixity (Types M and H), but it does show that Type L
is fixed at its base. The three columns on the south structure did not show the same significant
damage, but they were shored as shown in Figure 10-5. The hinge adjacent to bent 6 separated
(Figure 10-6) due to the collapse of the central segment of the bridge. It was noticed that some of the
high strength rod restrainers had failed while anchor nuts were missing on others. The columns at
bent 8 (four columns per superstructure) showed significant shear cracks and concrete spalling
(Figure 10-7) and were shored.

10.4 IssuesiQuestioDs

I. The lesson from this failure is that multi-columns bents are vulnerable to severe damage even
at relatively low ground accelerations. Once the shear capacity is exceeded, the column
disintegrates rapidly.

2. The columns on this bridge suffered very significant damage. The bridge immediately to the
east carrying 1-10 over Ballona Creek (Bridge Number 53·1579) suffered negligible damage
to its columns. It appeared to be of similar construction, but the columns were perhaps 200.4
to 30% taller. This bridge is actually located between La Cienega-Venice and Fairfax­
Washington on 1-10. The input ground motions can therefore be assumed to be similar but
the perfonnance is markedly different. A detailed study of the La Ciencga-Venice
Undercrossing should therefore also include a comparison with the perfonnance at Ballona
Creek.
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FIGURE 10-2 La Cienega.VeDiee UDdererossiDI­
Column Failure iD Bent 3

FIGURE 10-3 La Ciftaep-V.Dicc UlldercfODi_c­
Colam_ naaaaa. in Beats .c, 5 alld 6 Partially HidcI_

from View by Storace FacUity UDder Bridle
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FIGURE 10-4 La Cienega.Veniee Undercrossing­
Supentrueture Settlement Due to Column Failures

FIGURE 10-5 La Cieaeg.·Vella Undererouing·
Alte....tiDl Loeatioas of HiBlei in Colam.. ofBeat 7
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FIGURE 10-6 La Cienega-Venice Undercrossing ­
Unseated Hinge Near Bent 6

FIGURE 19-1 La Cieaega·VeaK:e Uadercrossing­
Shear Crackinl in ColII.a in BeDt 8
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SECfION 11
RETROFITfED BRIDGES

Many bridges in the epicentral region had been retrofitted with cable restrainers and a number of
single column bents had been strengthened with steel jackets.

Most of these retrofits perfonned adequately despite strong ground motion at some sites. In some
instances, cable restrainers lacked sufficient capacity to prevent the unseating of girders. Failures in
the cables at the swaged fitting (Figures 4-4 and 11-1) were common in these situations. In other
instances, fastening details were shown to be inadequate and/or punching failure of the concrete
diaphragm occurred. In at least two cases, anchorage nuts were found to be missing. At the present
time, it is not clear as to whether these nuts were left off during construction. worked loose over
time, or stripped off during the earthquake. In most cases. these failures were in units with details
that have since been superseded by Caltrans. It is also clear that many restrainers worked as
expected and significantly reduced the number ofcollapsed spans.

All of the columns with steel jackets appeared to perfonn without distress. Some were on bridges
close to other structures which did partially collapse. One example is shown in Figure 11-2 which is
a view of a jacketed single column under an off-ramp across Ballona Creek on 1-10. It is located
between the La Cienega-Venice and Fairfax-Washington structures. Close examination found no
sign of damage.
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FIGURE 11-1 SR1411-5 Interchange-
Failure ofa Type I Hinge Restrainer at tbe Swaged Fitting

FIGURE 11-2 Bailon. Creek Undercroam. OD 1·10 •
Slape ColulDa Beat Retrofitted witll Steel Jaeket
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SECTION 11
OTHER BRIDGE DAMAGE

A complete list of damaged bridges as of February 1, 1994 is given in Table 12-1. There are 176
bridges on this list with damage ranging from minor spalling to collapsed spans. Some examples
include:

• Interstate 5 at the San Fernando Road Undercros'lings (abutment and wingwall damage and
minor column spalling);

• Southwest Connector at the Interstate SlRoute 118 Interchange (column shear cracks);
• Interstate 5 at the Santa Clara River Bridge (a steel plate-girder bridge with sheared anchor

bolts and failed cable restrainers);
• Route 101 at Los Virgenes (pile damage);
• Interstate 405 at the Jefferson Boulevard Undercrossing (outrigger joint cracking);
• The South Connector in the interchange between Interstate 5 and State Route 14 suffered

severe pounding at the hinge seats and substantial damage to abutment 10 (Figures 12-1 and
12-2); structural damage at the hinge seats appeared to be more severe on the inside face of
the curved girder indicating greater movements in the radially outwards direction than in the
opposite direction.

• Abutment fills slumped behind the backwalls of many bridges (e.g., at the Bull Creek and
Havenhurst Bridge sites on SRI18). In instances where approach slabs were used, and tied
to the backwalls, access was not impaired. However, slumping in the shoulders and
emergency stopping lanes will require repair (Figures 12-3 and 12-4).

In addition, the City of Los Angeles reported several instances of approach fill settlement, abutment
damage, bearing and shear key damage. The Southern Pacific Railway reported inconsequential
damage to bridge structures.
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FIGURE [2-1 SR1411-5 South CODnector­
Pounding and Damage to Hinge Seat in Span 6

FIGURE 11-2 SRI4II-S Soath CODHCtor ­
DalUle to Abutment 10
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(a) Siagle Span Bridge with Integral Abutments SUhlined Minor Damage

(b) SlampinI ofAbutment Fills under Rudway SlIoa1den; Approaeb
Slab in Forecround Succeuf.lly Spus Settlement

FIGURE 11-3 Havenbant UDderel'OlliDl OD SR 118
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FIGURE 11-4 Bull Creek CauyoD ChaDDel Bridge ­
SlumpiDI of AbutmeDt Fills UDder Roadway Sliouiden
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SECTION 13
CONCLUSIONS

The following general conclusions can be made from the perfonnance of bridges during the
Northridge earthquake.

Bridge retrofit programs are effective. Although many cable restrainers failed, they were generally of
a design that has since been superseded by Caltranli. Also, some that failed catastrophically did so
after collapse of nearby columns and loss of support for gravity loads. In these instances, the cable
loads far exceeded their design forces because they were then supporting the self-weisht of several
spans of the bridge. However, some restrainers might have railed due to improper installation. In at
least one instance, the nuts on several restrainer cable studs were found to be missing with no
evidence of stripped threads. Column jackets appeared to work well and none showed signs of
damage or distress despite strong ground shaking nearby.

Prioritization algorithms for bridge retrofit need to be reexamined. At least one bridge that partially
collapsed would probably pass the current screening procedures and not be identified as vulnerable.
Structure attributes such as skew and the unintended participation of nonstructura1 elements (e.g.,
walls and flares) need to be further addressed. Multicolumn bents should also be ~~Ievated in the
priority ranking procedures.

Other conclusions include:

• Assessmcllt of bridge vulnerabilities should not overlook the vulnerabilities of co-located
pipelines.

• Abutments and internal hinge seats must be generously proportioned to accommodate large
relative movements in flexible structures.

• The combination of high vertical ground ac:celerati(lns in bridges with high curvature may
significantly decrease column axial loads and adversely affect shear capacities.

• Approach slabs that are tied to abutment back walls can successfully bridge slumped fills
behind these walls and provide continued access.
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