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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand and
disseminate knowledge about earthquakes, improve earthquake-resistant design, and implement
seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis i~ on
structures in the eastern and central United States and lifelines throughout the country that are found
in zones oflow, moderate, and high seismicity.

NCEER's research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elements, as shown in the figure below. Element I, Basic Research, is carried out to
support projects in the Applied Research area. Element II, Applied Research, is the major focus of
work for years six through ten. Element III, Demonstration Projects, have been planned to support
Applied Research projects, and will be either case studies or regional studies. Element IV,
Implementation, will result from activity in the four Applied Research projects, and from Demonstra
tion Projects.

ELEMENT I
BASIC RESEARCH

• Seismic haDrd .nd
ground motion

• Soils .nd geotKhnlcal
engineering

• Structure. end systems

• Rlsk.nd relleblllty

• Protective end Im.lllgent
systems

• Societal end economic
studl..

ELEMENT II
APPLIED RESEARCH

• The Building Project

• The Nonatructural
Componen. Project

• The LJhllnes Project

The Hlghwlly Project

ELEMENT III
DEMONSTRATION PROJECTS

C... Stud...
• Active end hybrid control
• Hospital .nd deta procenlng

fIIclllties
• Short end medium spen bridges
• W..... supply systems In

Memphis end Sen Francisco
ReglOMI Stud_

• New York City
• M1.....lppI Velley
• Sen Franclaco Bey ArM

ELEMENT IV
IMPLEMENTATION

• ConferenceaJWorbhopa
• EducetlonlTralnlng courua
• Publlcetlona
• Public Awa,.,...

Research in the BuDding Proj~ focuses on the evaluation and retrofit of buildings in regions of
moderate seismicity. Emphasis ison lightly reinforcedconcrete buildings, steel semi-rigid frames, and
masonry walls or infills. The research involves small- an1 medium-scale shake table testsand full-scale
component tests at several institutions. In a parallel effort, analytical models and computerprograms
are being developed to aid in the prediction of the response of these buildings to various types of
ground motion.
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Two of the short-term products of the Building Project will be a monograph on the evaluation of
lightly reinforced concrete buildings and a state-of-the-art report on unreinforced masonry.

The risk and reliability program constitutes one ofthe important areas ofresearch in the Building
Project. The program is concerned with reducing the uncertainty in current models which character
ize and predict seismically induced ground motion, and resulting structural damage and system
unserviceability. The goal ofthe program is to provide analytical and empirical procedures to bridge
the gap between traditional earthquake engineering and socioeconomic considerations for the most
cost-effective seismic hazard mitigation. Among others, the following tasks are being carried out:

1. Study seismic damage and develop fragility curves for existing structures.
2. Develop retrofit and strengthening strategies.
3. Develop intelligentstructuresusing high-techand traditional sensors for on-line and real- time

diagnoses ofstructural integrity under seismic excitation.
4. Improve and promote damage-control design for new structures.
5. Study critical code issues and assist code groups to upgrade seismic design code.
6. Investigate the integrity ofnonstlUctural systems under seismic conditions.

This report examines current codifiedmethodsfor seismic analysis and develops a new methodfor
evaluating the seismicperformance ofbuildings. The current codifiedmethodsfor seismic analysis
are generally based on an incomplete characterization ofthe seismic hazard, the static methodfor
estimating structural response, and elementary failure criteria. On the other hand, the proposed
methodis basedona realistic characterizationofthe seismichazard, accurateestimatesofstructural
response that can be obtainedby nonlineardynamic analysis, andfai/ure criteria accountingfor the
damage process that occurs during seismic events. A Markov model is developedfor evaluating the
seismic performance and reliability ofbuildings. The model can be applied to characterize the
evolution of the global damage indices during the lifetime of a building. Moreover, a simple
relationship is developed between local and global indices for the case ofshear type buildings.

IV
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ABSTRACT

Current methods for evaluating the overall seismic performance of structural systems

are based on global damage indices which are usually obtained by heuristic combinations of

local damage indices. The local indices are related to the parameters of restoring force defined

at the critical cross-sections of structural system. However, a global measure of damage

can not characterize structural state uniquely, provides only a crude estimate of structural

performance during seismic events, and cannot be used to assess structural vulnerability to

future loadings. In addition to the above limitations, current estimates of seismic reliability

analysis of building structures are based on (i) incomplete representatians of seismic hazard,

e.g., by the peak ground acceleration a10 that is exceeded at least once in 50 years with

probability 10%, (ii) static method for estimating structural response, and (iii) elementary

failure criteria that do not account for damage accumulation between consecutive seismic

events. It is suspected that the reliability analysis based on above simplifications may not

provide a satisfactory measure of structural performance.

--:;." Research in tois study has focused on several important issues regarding probabilistic

seismic performance of structural systems. Three major directions of research have been

pursued. They indude (i) evaluation of effects of simplifications in reliability-based design

codes, (ii) development of a new methodology based on Markov model for seismic reliability

of degraded structures, and (iii) development of analytical relations between local and global

damage indices for seismic analysis of shear~

Reliability-Based Design Codes:~Staticand dynamic analyses are performed to

evaluate reliability based-design codes. Both strength- and damage-based failure criteria are

used to determine seismic reliability of several code-designed structures. Results suggest that

reliability depends on the mean arrival ra.te and the intensity of seismic load process. Sites

with frequent small earthquakes have very different reliability indices than those at sites

with/infrequ~nt large earthquakes, although the sites are characterized by the same value
tl, ~;/A,CJ lr,.I .

of~. Comparisons between the reliability indices from the static and dynamic methods

indicate that the seismic reliability can be significantly underestimated by the static method

especiaUy at sites with low seismicity. ~~-._-
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A Markov Model for Seismic Reliability Analysis: A new methodology based

on a Markov model is proposed to evaluate seismic performance and sensitivity to mitial state

of structural systemll and determinE the vulnerability of structures exposed to one or more

earthquakes. The analysis involves simple but realistic characterization of seismic hazard,

nonlinear dynamic analysis for estimating structural response, uncertainty in the initial

state of structural systems, and failure conditions incorporating damage accumulation during

consecutive seismic events. From the proposed model, both elJent and lifetime reliabilitip.s

can be calculated thus providing a designer more control in seismic performance evaluation.

It can be used to determine the damage probability evolution dl'ring several earthquakes

allowing investigation on seismic vulnerability of new and existing structures. The model

can be used to compute mean first passage time determining average number of seismic

events before the structure will suffer potential damage. It can also evaluate sensitivity of

seismic reliability due to the variability in the initial state of structural systems.

Local and Global Damage Indices: A global hysteretic model is developed and

the relations between the parameters of local and global models are established for seismic

analysis of multi-story shear buildings. In both models. the analyses involve hysteretic

constitutive laws commonly used in earthquake engineering to represent restoring forces and

nonlinear dynamic analysis for estimating seismic structural response. From the proposed

relations, the local hysteretic behavior and damage can be recovered from a.nalysis based

on global models. Both nondegrading and degrading systems are considered and several

numerical examples on single- and multi-degree-of-freedom systems of shear bea.m models are

presented to illustrate the proposed methodology. The correlation equations are also applied

to implement the Markov model for estimating seismic performance of multi-story degrading

structures. Results from this study indicate that the seismic reliability based on lifetime

largest load effects can differ significantly from that obtained from seismic hazard based on

damage accumulation between seismic events and the uncertainty in initial condition can

yield significant varia.tion in the seismic reliability estimate.
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SECTION 1
Introduction

1.1 Overview

A major objective of seismic design is the generation of structures that can survive earth

quakes. Traditional building structures are usually designed in accordance with provisious in

building codes and st.andards such as Uniform Building Code (UBe) [100,101,102,103,104],

Standard Building Code (SBC) [198], The National Building Code [37], The BOCA/Basic

Building Code [36], and American National Standard ANSI A5S.! [10]. Current code provi

sions for seismic design are usually based on simplified methods for estimating seismic haz

ard (e.g., the zone fac+or Z of Uniform Building Code), seismic load effects (e.g., the static

method for stress analysis) and elementary simplified failure criteria (e.g., failure occurs

when load effects exceed resistance at anyone structural component). Effects of frequency

content and duration of ground motions, structural dynamic characteristics, nonlinear dy

namic analysis, and structural redundancy are not explicitly accounted for in seismic design.

There is no doubt that building codes should utilize simplified rules and formulas to facilitate

operational convenience of design process. However, the validity of these rules and formulas

and their impact on building safety and reliability should also be investigated.

The code provisions are intended to achieve satisfactory performance of structura.l

systems due to seismic loads during the lifetime of structures. Thus, it is essential to eval

uate the adequacy of simplified methods of buildings codes and their effects on the actual

performance of structu.ral systems under earthquakes. Ideally, this will require exact knowl

edge of material characteristics and lifetime seismic loadings on the structure. However, for

buildings located in seismica.lly active regions, the ground motions can not be modeled with

absolute certainty. Furthermore, the variability in structural and material models constitutes

another major source of un.certainty in the evaluation of seismic performance. Two sources

can be identified [174,175] and they correspond to the uncertainty in (i) the mathemati

cal idealization (model) of hysteretic restoring forces and (ii) the parameters of restoring
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force characteristics given a hysteretic model. Thus, it is difficult to speak of assessment of

structural performance solely by deterministic terms.

A realistic evaluation of structural performance can be conducted only if the un

certainty in structural loads, resistances, and hence responses are taken into consideration.

While the load and resistance parameters are not deterministic, they nevertheless show sta

ti8tical regularity and the statistical information necessary to describe their probability laws

are available. This suggests that the probability theory and structu1"al reliability methods

can be applied to assess seismic performance of structural systems. The reliability analysis

may then be performed by computing the probability that the structural responses of interest

will not viola.te a set of performance criteria during its lifetime.

1.2 Static Reliability Analysis

The static reliability analysis is based on (i) elementary models of seismic hazard, e.g. by the

50-year maximum peak ground acceleration, (ii) stress analysis by static method, and (iii)

limit states defined by strength-related failure criteria at a particular structural component.

The corresTJonding component reliability index can be computed from 4l-1(P,) where P, is

the probability that the lifetime largest load effect obtained from static analysis does not

exceed strength at a specific structural component and ~(.) is the cumulative distribution

function of standard Gaussian random variable. Effects of structural redunda.ncy, nonlin

ear dynamic response, and damage accumulation during consecutive seismic events are not

explicitly included in this analysis.

These simplified methods have been used in recent studies [149,173,179] to perform

reliability analysis of code-designed buildings subject to seismic ground shaking. Resultant

reliability indices have much lower values than those for gravity loads. It is suspected that the

seismic reliability indices obtained from static analysis do not provide satisfactory means of

structural performance, because their determination involves several gross approximations.

For example, it is assumed that:

• seismic hazard at & site is completely characterized by 50-year maximum peak ground

acceleration. The cumulative distribution function of this acceleration depends only
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on the 10% upper fractile of peak ground acceleration G10. Frequency, duration, and

occurrence rate of earthquakes are not considered in the analysis. Moreover, if a struc

ture is designed to resist several seismic events in its lifetime without consideration of

repairs between any two consecutive earthquakes, the lifetime peak ground acceleration

may not be meaningful as a design load parameter due to accumulation of damage;

• load effects can be estimated by the equivalent static method which may provide inac

curate results in many practical cases;

• failure occurs when load effects exceed resistance in at least one structural component.

Thus, in addition to using an elementary failure criterion for components, the approach

completely ignores structural redundancYi and

• seismic loads E can be obtained from 610 reported in hazard maps developed by AI

germissen and Perkins and structural strength can be derived from the nominal base

shear Era in the 1985 Uniform Building Code. This code is based on a seismic zone

map characterizing seismic environment in terms of seismic zone factor Z which ac

counts for the maximum Modified Mercalli intensity observed historically in each zone.

However, 610 is mapped considering site seismicity and design lifetime. As a result,

the consequent reliability analyses based on E and Era can be inconsistent.

1.3 Dynamic Reliability Analysis

The dynamic reliability analysis is based on (i) random process representation of seismic

ground acceleration, (ii) nonlinear dynamics for structural stress analysis, and (iii) damage

related limit states. Since earthquake-resistant design aims at mitigating extensive damage

and minimizes collapse probability, it has been proposed to evaluate the overall structural

performance by global damage indices. These global indices are usually obtained from heuris

tic combinations of local damage measures which can be related to the parameters governing

local restoring forces. The reliability analysis involves (i) nonlinear dynamic analysis to

yield global damage indices (ii) determination and calibration of global indices, and (iii)

assessment of seismic performance from the probability that the global indices do not exceed
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admissible values. As in the stat.ic method, the seismic hazard is specified by the largest load

effect during the lifetime of the structure. Effects of damage accumulation during consecutive

seismic events are not taken into account in the current dynamic analysis.

The current measure of global damage has several shortcomings. For example, it

(i) can not characterize structural state uniquely, (ii) provides only a crude estimate of

structural performance during seismic events, and (iii) can not be used to assess structural

vulnerability to future loadings. Furthermore, the definitions of such global indices are

largely based on arbitrary considerations and do not account for any mechanistic aspects of

seismic st.ructural performance.

Another important issue in the evaluation of seismic performance is the uncertainty

in the initial state of structural systems. This can be caused by manufacturing processes,

errors in design, inadequate construction, unsatisfactory quality control for new structures

and lack of information concerning damage caused by previous seismic events for existing

structures. Reliability analysis based solely on current definitions of global damage indices

cannot be applied to determine sensitivity to initial stlt.te of structural systems. Hence,

any rational assessment of structural performance should simultaneously account for the

mechanical degradation process of all critical cross-sections and components.

1.4 Objectives Of The Study

Research in this study focuses on several important issues regarding probabilistic evaluation

of seismic performance of structural systems. Three major directions of research have been

pursued. They include (i) evaluation of effects of simplifications in the current reliability

based design codes, (ii) development of a new methodology based on a Markov model for

seismic reliability analysis, and (iii) development of an analytical approach to establish

relations between local and global damage indices in seismic analysis.

1.5 Outline Of The Study

Performance and safety of structures under severe environmental loads like earthquakes

strongly depend on nonlinear response of structures. Both qualitative and quantitative
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natures of this response in turn are significantly related to the accuracy in the modeling

of structural systems, restoring forces, seismic load processes, and obviously the seismic

damage. Section 2 provides a comprehensive state-of-the-art review on the above issues

describing recent progress and limitations.

Section 3 performs the static reliability analysis to obtain seismic reliability indices of

structures designed according to current building codes. First- and Second-Order Reliability

Methods (FORM/SORM) and Importance Sampling technique are applied to obtain the

reliability measures. The reliability analysis is carried out based on component failure criteria

describing structural performance at the critical cross-sections. It also involves sensitivity

analysis due to different models of seismic hazard.

Section 4 carries out the dynamic reliability analysis of nondegrading models of struc

tural systems. Various failure criteria are used to (i) calculate reliability indices for simple

code-designed structures, (ii) evaluate sensitivity of reliability indices to static and dynamic

methods, and (iii) investigate the adequacy of current code provisions for seismic design.

Section 5 continues to examine the validity of static reliability indices by conducting

seismic analysis of nonlinear degrading systems. The analysis accounts for (i) stochastic

process representation of seismic ground acceleration, (ii) nonlinear dynamics of structural

systems, and (iii) damage-related limit states. Various failure criteria based on maximum

deformation combined with cumulative load effects and interstory drift are employed to

obtain seismic reliability measures of reinforced concrete frame structures designed by 1985

Unifonn Building Code. These analyses provide benchmark results against which the static

reliability estimates of the above frames obtained in the previous phase of this study are

compared.

Section 6 proposes a new methodology based on a Markov model for stochastic eval

uation of seismic performance of structural systems. The method of analysis involves (i)

complete characterization of seismic hazard, (ii) nonlinear dynamic analysis for estimating

structural response to earthquakes, (iii) failure conditions incorporating damage accumula

tion during consecutive seismic events, and (iv) uncertainty in the initial state of structural

systems. Simple degrading systems representing code-designed structures are presented to

illustrate the capabilities of the proposed Ma.rkov model.

1-5



Section 7 develops a rational analytical tool to establish relations between parameters

of local and global hysteretic models for deterministic seismic analysis of shear type build

ings. The proposed method of analysis is based on (i) state-of-the-art endochronic model

for restoring forces and (ii) nonlinear dynamic analysis for estimating structural response to

earthquakes. Both nondegrading and degrading systems are considered and several numeri

cal examples are presented to validate the proposed methodology. The correlation equations

proposed in this section are then a.pplied to implement the Markov model for realistic struc

tural systems.

Section 8 summarizes the principal contributions made from this study and finally,

draws conclusions regarding seismic performance of structural systems.
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SECTION 2
State-Of-The-Art Review

2.1 Introduction

The beha.vior of aU engineering systems under severe loads which typify environmental haz

ards like earthquakes strongly depends on nonlinear response of structures. Both qualitative

and quantitative natures of this nonlinearity in tum are significantly related to the accuracy

in the modeling of structural systems, restoring force, and obviously the seismic load pro

cess. Since earthquake resistant design aims at mitigating extensive damage and minimizes

collapse probability, damage indices are currently used to evaluate seismic performance of

structural systems. In recent years, significant progress in these areas has been achieved both

in terms of the development of methodologies and the applications to earthquake engineering

problems. The objective of this section is to summarize and discuss the state-of-the-art of

several subject areas related to seismic analysis. The review is organized to include issues

related to (i) material mechanical models, (ii) structural models, (iii) seismic hazard, and

(iv) seismic damage assessment.

2.2 Material Mechanical Models

While linear elastic constitutive law provides much valuable insight into the nature of struc

tural response due to earthquake excitation, it is now widely recognized t.hat most real

structures exhibit nonlinear behavior, particularly for levels of response which correspond to

structural damage. A variety of nonlinearities may be encountered in structural applicati')ns.

These range from geometric and other elastic nonlinearities to nonlinearities associated with

inelastic behavior. Broadly, the nonlinear systems can be classified into (i) conservative

systems and (ii) nonconservative systems.
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2.2.1 Conservative Models

The simplest models of nonlinearity are those describing nonlinear elastic behavior. These

models are conservative, because they do not include any form of energy dissipation. Figure

2.l(a) shows the generalized force-displacement relation of a so-called hardening elastic sys

tem for which the freCluency of free oscillation increases with amplitude of oscillation. This

trend is reversed for the s()ftening system illustrated in Fig. 2.1(b). Both types of general

ized force-displacement relation may be modeled by a power series expansion in generalized

displacement or by a piecewise linear representation. The well-known Duffing oscillator [63]

is the lowest order nonlinear power series representation of the elastic system. Hardening

systems often arise as a result of geometric nonlinearities as in the case of deflection of

suspension bridge cables [144]. Most equipment isolation devices also behave as hardening

elastic systems for large deflection [55]. A softening elastic model may be used as a first

approximation to the behavior of prestressed concrete [200]. It may also be used to charac

terize the behavior of axially loaded column [135] and to interpret the destabilizing effect of

gravity on simple structures [95].

Due to the presence of friction (or damping forces) and other dissipative forces, most

structural systems do not exhibit conservative behavior. Another major cause is the large

deformation experienced by structures during earthquakes. More attention has thus been

focused here on modeling nonconservative systems.

2.2.2 Nonconservative Models

A more complicated and realistic form of nonlinearity encountered in large amplitude os

cillation of structures is that associated with inelastic hysteretic behavior. In structural

dynamics, the term "hysteresis" is used to describe a nonconservative system behavior in

which the generalized force is a functional depending not only on instantaneous generalized

displacement, but also on its entire past history. For reinforced concrete structures, this type

of behavior may result from opening and closing of cracks, yielding of reinforcing steel to

gether with the Bauschinger effect, nonlinearity of concrete in compression, bond-slip of steel

bars, sliding shear at open cracks, and obviously the load history. For steel structures, on

the other hand, because of the uniformity of material the hysteretic behavior is considerably
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Force

-----I----~ Displacement

(a) Hardening System

Force

-----JiC.---~ Displacement

( b) Softening System

Figure 2.1: Generalized Force-Displacement Relation
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simpler than that for reinforced concrete. Any complicacies arise from yielding of various

elements within the structure or due to slippage of bolts at connections or due to failure

of nonstructural elements and welds. The hereditary nature of this hysteretic behavior is

usually described by smooth curves or piecewise linear segments which are essentially the

plots of restoring forces (e.g., moments, shears, etc.) versus deformations (e.g., curvatures,

displacements, etc.). These restoring force-deformation models can be defined for the mate

rial at the level of member usually concentrated at its ends (e.g., end joints of beams and

columns), subassemblages of structure (e.g., the shear beam model), and structure itself.

Univariate Hysteretic Law

Consider the relative displacement response X, of a general hysteretic oscillator with mass

m which is subjected to seismic ground acceleration W,. The equation of motion is governed

by a second-order differential equation given by

mX, + g ({X"X" 0 $ s $ t}jt) = -mW, (2.1)

In Eq. 2.1, g is a general restoring force which is usually chosen to admit an additive

decomposition of nonhysteretic component

gnla(X" X,) =eX, +akX,

and hysteretic component

9/& ({X"X" 0 $ S $ t};t) = (l-a)kZ,

(2.2)

(2.3)

in which c is the constant damping (viscous) coefficient, a is the parameter defining partici

pation of linear restoring force, k is the stiffness, and Z, is the hysteretic (auxiliary) variable,

the evolution of which can be modeled by a first order nonlinear ordinary differential equation

Z, = F(X" X" Z,; t)

or, by the nondimensionalized version
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via the transformation

i, = !(z"x"z,;t) (2.5)

(2.6)

in which X· is a characteristic displacement usually taken as the yield displacement z" F and

! are general nonlinear functions depending on a particular constitutive law. Following the

state vector approach [67,94,136] with the designation of (h" = X" '2" = X" and (Ja,' = Z,.

the equivalent system of first-order differential equations in state variables becomes

81,t = '2,t
1

82,' = -- [c92' +a:k61, +(1 - a:)k93'] - W,m t I ,

83,t = F( 'l,h 92,,, 93,,; t)

which can be recast in a more compact form

;(t) = h(8(t),t)

with the initial conditions

8(0) = 0

(2.7)

(2.8)

(2.9)

where h(·) is a vector function, and 8(t) = {6I",62",63,,}T is a complete 3-dimensional

response state vector. Thus, the computational effort in determining the response charac

teristics of a nonlinear dynamical system can be viewed as the solution of the nonlinear

initial-value problem in Eqs. 2.8 and 2.9.

When the functions ! or F are explicitly prescribed, a wide variety of mathematical

models of hysteretic characteristics can be produced. However, there is no rigorous theoret

ical investigation in determining these functions. Currently, they are selected on the basis

of experimental and empirical studies of hysteretic behavior of structural systems subject to
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repeated load processes during earthquakes. Quite arbitrarily, they are classified here into

(i) piecewise linear hysteresis, and (ii) smooth hysteresis.

Piecewise Linear Hysteresis

The piecewise linear hysteretic models are conceptually simple, but they do not allow an

alytical treatment to be simple as well. The abrupt change in slopes of these models are

obviously not very realistic and it requires very small time steps to avoid overshooting in the

numerical integration of equations of motion. Nevertheless, many such models exist and :..re

widely used in current seismic analysis.

Bilinear Model: The simplest model for hysteretic behavior and one which has re':.eived

by far the widest use in earthquake engineering is the bilinear hysteretic model (including

the well-known elasto-plastic system) as indicated in Fig. 2.2. The constitutive law of the

I

x

Figure 2.2: Bilinear Model

hysteretic component is given by the following differential form [118]

z= z[I- H(z)H(z -1) - H(-z)H(-z -1)] (2.10)

where H(·) denotes the unit step function, i.e., H(u) = 1 for u ~ 0 and 0 for u < O.

The constitutive law of bilinear hysteretic model is completely described by the Eqs. 2.1-
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2.10. Similarly, by introducing additional state -{ariables one can describe the hysteresis

of a higher multi-linear model. The major drawback of the bilinear model is that it does

not reflect system degradation, pinching effects or Bauschinger effects exhibited by various

engineering materials.

Kato-Akiyama Model: The hysteretic model presented by Kato and Akiyama [115]

has the stiffening or degrading characteristics of yield strength with the cumulative plastic

deformation as shown in Fig. 2.3. The differential form of this model is [208]

z

x

Figure 2.3: Kata-Akiyama Model

z= x [1 - (1 - s)H(x)H (z - 1 - lS:"J -(1 - s)H( -X)Y ( -z - 1- 1
8:.8)] (2.11)

x" = (1 - s)xH(:i)H (z - 1 - IS~J (2.12)

x. :::; -(1 - s)xH(-:i)H (-z - 1 _ sx,. ) (2.13)
1-8

where x, and x. are the one-directional cumulative plastic deformation in the hysteretic

component z, and 8 is the rigidity ratio of the hysteretic component z. Thus the description of

Kato-Akiyama hysteretic model needs differential equations for the additional state variables

2-7



x, and x. controlling the stiffening and degrading of hysteresis in addition to the state

variables x, i, and z. The Kato-Akiyama model represents the stiffening or degrading

characteristics according to 8 > 0 or 8 < 0, respectively. In a particular case when 8

vanishes, the Kato-Akiyama hysteresis is reduced to the bilinear hysteresis.

Origin-oriented Model: The origin-oriented model shown in Fig. 2.4 has zero-memory

and origin-oriented features. The constitutive law of the normalized origin-oriented hysteretic

x

Figure 2.4: Origin-oriented Model

component is given by [207)

z= i [{I - H(i)H(z -I)} H(z) - {I- H(-:i:)H(-z -In H(-Z)]
1 +x, 1 +x.

:i:, = :i:H(i)H(z -1)

ita = -iH(-x)H(-z -I)

(2.14)

(2.15)

(2.16)

where xp and z" are the absolute maximum and minimum inelastic displacements (total

displacement minus unity), and are utilized to preserve the current positive and negative

peak deformations.
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Peak-oriented Model: The peak-oriented hysteretic model represents stiffness degradins

characteristic which is closely rela.ted to the total cumulative plastic deformation. The model

is shown in Fig. 2.5, and the normalized hysteretic component is given by [207]

z = 2Z [1- H(x)H(z -1) - H(-z)H(-z -I)]
2 +x,.

x"" =z[H(z)H(z - 1) - H(-z)H(-z - 1)]

where x"" is sum of x, and x" defined by Eqs. 2.15 and 2.16.

x

Figure 2.5: Peak-oriented Model

(2.17)

(2.18)

Slip Model: The normalized hysteretic component of slip model shown in Fig. 2.6 has the

differential form [207]

i = x [H(x - x,)H(z){l- H(z -In +H(x)H(-x){l- H(-z)}+

H(-x - x,.)H(-z){1 - H(-z -In +H(-x)H(x){I - H(z)}] (2.19)

z, = zH(z)H(z -1) (2.20)
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x. = -xH(-x)H(-z -1)

Figure 2.6: Slip Model

x

(2.21)

The idealized slip model proposed by Tanabashi and Kaneta [214] is given by Eqs.

2.19,2.20, and 2.21. In particular case when Xp and x" in Eq. 2.19 are neglected, the slip

model collapses to the double bilinear hysteretic model proposed by Iwan [108].

Clough Model: The stiffness degrading hysteretic model presented by Clough and John

ston [50) intended for use in reinforced concrete structures is shown in Fig. 2.7. In this

model, the differential representation of the hysteretic component z becomes [208]

z = xH(z) [ 1- z H(x){1 - H(z -I)} + H(-X)] +
1+xp - x

xH(-z) [1 1+ z H("':x){1- H(-z -I)} + H(X)] (2.22)
+x,+x

i, = xH(x)H(z -1) (2.23)

i. = -xH(-x)H(-z -1) (2.24)
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x

Figure 2.7: Clough Model

Other models such as those proposed by Takeda et aI. [210], Fukada [70], Muto [142],

and others extend the bilinear models to include various deterioration by using the similar

set of empirical rules described earlier. Although these rules may be applied for a time

history analysis of the response by means of a step-by-step numerical integration, they are

difficult to put in mathematically convenient forms for analytica.l solution.

Smooth Hysteresis

The smooth hysteretic models are usually obtained from the constitut,ive equations of en

dochronic theory [220,225,143,25]. The endochronic concept is based on rate-dependent

viscoplasticity without the existence of yield surface and was introduced in triaxial consti

tutive relations for metals by Valanis [220] who also coined the term "endochronic". The

smooth hysteretic model is attractive mainly because it eliminates the sudden transition

from elastic to inelastic states thus avoiding the a.ttendant mathematical problems.

Boue Model: A versatile smooth restoring force model capable of reproducing inelastic,

hysteretic, but nondegrading behavior is proposed by Bouc [34] which has the following

differential form of hysteretic component (Fig. 2.8)
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z= Az - .8lzlz - jzlZI (2.25)

in whieh.8, 1, and A are parameters governing the amplitude and shape of hysteretic loops.

Figure 2.8: Boue Model

A large variety of hysteresis are possible choosing appropriate values for the parameters of

restoring for~deformation model. The main inconveniences of this constitutive relation

are the lack of closure of hysteresis cycles and the anomalous behavior under cycles during

unloading and loading phases without load reversal [25]. The first difficulty can be avoided

by appropriate selection of model parameters. The second aspect, on the other hand, leads to

violate a basic mechanica.l principle which in the rigid plastic case is known as the nonnality

rule [45,46]. For an arbitrary hysteresis shown in Fig. 2.9, the work done L1W on the

material during unloading (AB) and reloading (BC) is equal to ~Wl - ~W2 which must be

non-negative in accordance with Drucker's stability postulate [25,62]. When Bouc hysteresis

is considered, ~Wl ~ 0, L1W2 > 0 (Fig. 2.8), and ~W becomes largely negative thus

violating Drucker's stability postulate.

Wen Model: Another parameter JJ controlling the smoothness of transition from elastic

to inelastic region in Bouc's hysteretic model has been incorporated by extending the model
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z

B

x

Figure 2.9: Unloading-Loading Cycle of a General Hysteresis

in Eq. 2.25 into the form [228]

(2.26)

As shown in Fig. 2.10 when p ,/ 00, the Wen hysteresis reduces to that of bihr..ear model

and when p = 1, the model collapses to original Boue model as expected. In this model,

the issue regarding violation of Drucker's stability postulate is still present. However, the

degree to which this postulate is violated can be reduced by increasing the value of p which

was not possible for the original Boue model. For example, when p ,/ 00, although 6Wt ::!

0, 6W2 '\, 0, and consequently 6W = 6Wt - 6W2 ,/ O. However, large values of p

(i) makes the step-by-step integration of nonlinear equations of motion more cumbersome,

(ii) reduces the accuracy achievable by using equivalent linearization techniques, and (iii)

more importantly, puts a serious limitation in the modeling capability as calibration with

experimental results suggest the use of p =1 for steel and p =2 for reinforced concrete [204].

Nevertheless, this model has received a fair amount of attention in the seismic engineering

community and will also be used here in this study.

Deterioration of the restoring force is achieved by prescribing the model parameters
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Figure 2.10: Effects of 11- on Skeletal Curve of Wen Model

to be arbitrary functions of response severity such as total hysteretic energy dissipation or

amplitude of response or both. Baber and Wen [20,211 used the energy based degradation

in an extended Wen model

.i = ! [Ax - v (Plx\lzl"-l z - 'Yzlzl")] (2.27)
'1

with additional parameters v and '1 to incorporate strength and stiffness degradation by

strength deterioration by

and, stiffness degradation by

v(t) = vo .. 6"E:T(t),

'1(t) = '10 - 6"t:T(t)

(2.28)

(2.29)

(2.30)

in which 6A, 6" 6" are the constant rates of degradation, Ao, vo, '10 are parameter values prior

to loadin~8, and
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eT(t) = (1- a)k 10' z(s)z(s)ds (2.31)

is the total hysteretic energy dissipated until time t. Sues et al. [205] used response amplitude

based degradation given by

,., = A xPi - XPi_l (2.32)
zPi - ZPi_l

in which xp; and zp; are the displacement and hysteretic amplitude in the ith half cycle.

Baber and Noori [19] added a "slip-lock" element in tandem with the hysteretic force element

which is able to reproduce the commonly observed pinching of the hysteretic loops exhibited

by reinforced concrete. Although, th~ above degradation laws and pinching mechanism are

arbitrarily chosen, they have been found useful in seismic analysis.

Casciati Model: In an attempt to avoid the limitations of previous models regarding

violation of Drucker's stability postulate, an improved endochronic model is proposed by

Casciati [45] by adding more terms in the Wen model giving

(2.33)

where PI and PI < P are additional parameters of this model. The experience of Ref. [45]

suggests that for endochronic models, the local violations of Drucker's stability postulate can

not be avoided. However, with the model in Eq. 2.33 applied with appropriate parameters,

the global results makes ~W = ~WI - 6 W2 a "small" quantity but not a positive one as

the postulate would require.

Other hysteretic models such as Ramberg-Osgood model [112] describes the force

displacement skeleton curve by a three-parameter polynomial and allows a smooth transition

from the elastic to plastic region and some freedom in the shape of the hysteresis. However,

it is difficult to incorporate system degradation. A distributed element model which is an

extension of the combined spring Coulomb damper concept has been proposed by Iwan [107)

where the smooth transition can be properly reproduced.
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Multivariate Hysteretic Law

Multivariate constitutive laws are essential for spatial extension of frames and the bidirec

tional nature of seismic excitation. For two-dimensional structures under biaxial excitation,

the interaction of restoring forces in the two directions may significantly alter the response

behavior. For example, the damage suffered from oscillation in one direction is likely to

weaken the strength and/or stiffness in the other direction and vice versa. The endochronic

restoring force model of Eq. 2.26 together with IJ = 2 has been extended quite arbitrarily to

include such interaction by requiring that the hysteretic components in the two directions,

i.e., z~ and z, satisfy the following coupled differential equations [157]

(2.34)

(2.35)

where u~ and u, are the displacements in the traditional x and y directions. A, p, and "1 as

in Eq. 2.26 are system parameters. Implicit in Eqs. 2.34 and 2.35 is the assumption that

the hysteretic restoring forces are isotropic. For an orthotropic systems (implying stiffness

and strength in the two directions are different) one can introduce a simple transformation

of the response variables and still use the same equations [157]. As in the uniaxial model,

deterioration can be introduced by letting parameters A, (3, and "1 be functions of time

depending on the severity of response, e.g., maximum response amplitude or hysteretic

energy dissipation or both.

Endochronic theory was originally developed without the concept of yielding surface,

but the identification of model parameters requires the availability of test results, which are

presently scarce particularly for multivariate hysteresis. A multivil.riate endochronic model

that at least considers the basic requirements of plasticity theory has thus been examined

by Casciati [45,44]. The mathematical formulation of hysteresis is obtained in the tensorial

form of three-dimensional analog of Boue model and is given by [45J

Y =AE - (311 y 11,,-211 y ~E II Y - "111 Y 1I,,-2(y ~t)Y
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in which A, p, 7 and 1£ are model parameters, E is the deviatoric strain tensor, ® is the

symbol for tensor product, and II Y II~ .;y-:y etg VTr(yTY) is the norm of second-order

tensor Y defined as

Y = S-'1 (2.37)

where S is the deviatoric stress tensor and." is the tensor of internal variables obtained from

." = I'i' (2.38)

in which I' is some work hardening constant and i' is the plastic strain rate tensor given by

f' = 84> A (2.39)
8iT

where 4> = rj>(iT,.,,) is the plastic potential, iT is the stress tensor, and it is the corresponding

plastic multiplier. Details of derivation are available in the original reference [451.

Plasticity is governed by associated flow rule (plastic potential coincides elastic p0

tential). Hardening is assumed to be kinematic (the subsequent yield surface is obtained

from rigid body motion of initial yield surface), and also the motion is deemed to be linear

during successive propagation of yield surfaces (Prager's Hardening). Comparisons of the

model in Eq. 2.36 with the model in Eqs. 2.34 and 2.35 show that (i) the interaction of

restoring forces does not include all the terms of (Y ®E) and (ii) the yielding curve in Eqs.

2.34 and 2.35 is not convex thus violating a basic mechanical requirement of the theory of

plasticity.

2.2.3 Evaluation of Hysteretic Models

Calibration of Model Parameters

In order to predict the restoring force behavior of an actual structure, it is necessary to

determine appropriate values for the parameters of hysteretic models. A system identification

technique based on a least square error minimization has been used by Sues et 41. [204] for

the smooth hysteretic model in Eq. 2.25. The values of model parameters from calibration

with laboratory data suggest the use of (i) A = 1, 1£ = 1, Q = 0.04, fJ = 7 for steel and (ii)
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A = 1, n = 2, Q = 0.02, fJ = -31' ("'( < 0) for reinforced concrete in which"'( is computed from

A/(13 +"'()1/1A = F,. where F, is the yield force usually known from material characteristics.

Other methods such as those based on ali extended Kalman filter method have been applied

to the smooth hysteretic restoring forces. Methods for estimating the system parameter of

the distributed element model and the Masing models have been proposed by Peng and Iwan

[163] and Jayakumar and Beck [111]. Parameter calibration for biaxial models in Eqs. 2.34

and 2.35 has also been performed by Wen and Ang [227].

Comparisons with Experimental/Theoretical Results

The accuracy and capability of the hysteretic model are indicated by comparisons of the

restoring force-displacement relations with those based on experimental and rigorous theo

retical studies. The Wen hysteresis with the displacement dependent degradation law has

been evaluated by Sues et al. [204,205]. Comparisons with the test results of Park and Paulay

[155] and Gulkan and Sozen [81] shown in Figs. 2.11 and 2.12 exhibit overall satisfactory

performance of the analytical model with the exception of pinching behavior exhibited by

the corresponding laboratory data. In Ref. [226], the degrading and nondegrading biaxial

hysteretic models based on Eqs. 2.34 and 2.35 are also compared with experimental studies

of Takizawa and Aoyama [211] and classical plasticity solution by Powell and Chen [166].

Fig. 2.13 shows the force-displacement characteristics of a degrading endochronic model

[157] and the corresponding test results of Takizawa and Aoyama [211] under nearly square

displacement path. Figs. 2.14 and 2.15 show comparisons of results for nondegrading system

based on rigorous plasticity theory [166] and endochronic model in Eqs. 2.34 and 2.35 under

both diamond and square displacement paths. The agreements are found to be surprisingly

good considering the generally complicated biaxial inelastic stress-strain relation and the

simple and somewhat arbitrary nature of the endochronic models.

Effects of Uncertainty

The laboratory or field data for calibration of hysteretic model parameters are usually deter

mined for certain structural systems and forcing functions such as sinusoidal waves and the

El Centro earthquake in Refs. [204] and [205]. Hence, the applicability of calibrated model
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parameters associated with a particular test setup may not be relevant for other structural

systems and seismic ev(~nts. Since there are inherent variabilities in system characteristics

and load processes, the uncertainty in hysteretic models should also be taken into account.

Recently, " sY!ltematic investigation is conducted to study the sensitivity of seismie

performance to the uncertainty in structural and material characteristics [174,175]. The

method of analysis involves ''Uysteretic constitutive laws commonly used in earthquake en

gineering and extensive simulation. Two distinct sources of variability are identified and

they correspond to the uncertainty in (i) the mathematical idealization of hysteretic restor

ing force model and (ii) the parameters of restoring force characteristics given a hysteretic

model [174,175].

Fig. 2.16 obtained from the original reference [175] shows the plots of exceedance

probability of ductility ratio DR of a nonlinear oscillator relative to various thresholds 1'0 for

three nondegrading models (elast.o-plastic, bilinear, and Bouc). The ground acceleration is

assumed to be stationary Gaussian band-limited white noise with varying one-sided spectral

intensity Go. For weak noise (Go = 0.005 in28-3), the exceedance probability for Boue-Wen

hysteresis is considerably smaller than that for either elasto-plastic or bilinear models which

exhibit identical behavior due to mostly linear response. For strong noise (Go =0.5 in28-3),

the probabilities become similar for bilinear and Bouc Models both of which show smaller

values of above probability than that for .the elasto-plastic model. When the strength of

the noise is somewhat intermediate (Go = 0.05 in28-3 ), all the hysteretic models exhibit

practically similar behavior.

Also illustrated in Ref. [175], Table 2.1 provides the exceedance probability of a

story level ductility ratio DR" (k =1,2,· . ,,10) of a IO-story steel frame relative to several

thresholds 1'0 = 3,4,5,6 obtained for a specific hysteretic model (Bouc model) with both

deterministic and uncertain parameters. The ground motion is assumed to be uniformly mod

ulated stationary Gaussian colored noise with spectral parameters and modulation function

defined in Ref. [175]. The tabulated results show that the uncertainty in the parameters

of a specific hysteretic model can significantly increase the exceedance probability of story

ductility. Clearly, both aspects of structural and material uncertainty discussed above can

have significant effects on seismic performance of structural systems.
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Figure 2.16: Effects of Modeling Uncertainty on the Exceedance Probability of Ductility
Ratio (Ref. 175)
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Table 2.1: Effects of Parameter Uncertainty on the Exceedance Probability of Ductility Ratio
(Ref. 175)

Cases story Pr(DRk > po)
k PO =3 PO = 4 PO =5 Po =6

Deterministic 1 0.383000 0.151000 5.666xl0 .:1 2.233xl0-:I
System 2 0.201333 6.266xlO-<l 1.566xl0-<l 5.333xl0 ·3

3 0.121000 2.400 x 10 -:I 6.000x 10 ·OJ 1.666x 10 ·OJ

4 7.633 x 10 .:1 1.166xl0 -:I 2.0ooxlO-OJ 3.333xl0-4

5 4.500 x 10-:1 5.666xl0-OJ 0.000 0.000
6 4.400 x 10-.1 3.000 x 10 -OJ 0.000 0.000
7 3.133x 10 ..1 9.999xl0-· 0.000 0.000
8 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000

Uncertain 1 0.452666 0.269000 0.154333 9.099xl0-1

System 2 0.312666 0.153000 7.733xl0-" 4.133xl0 ';1

3 0.223000 .9.200 x 10 ':1 4.066xl0 ." 2.2ooxl0 .:1

4 0.161000 5.700 x 10 ." 2.433 x 10-" 1.033xl0-:l
5 0.109333 3,466 x 10 ':1 1.066x 10 ." 5.000x 10 ·OJ

6 0.114000 3.066 x 10 -;I 7.333xl0 -os 3.666xl0-OJ

7 0.104&;5 2.133xl0 -:I 5.000 x 10 ·oJ 1.333x 10 -oJ

8 1.333xl0-OJ 0.000 0.000 0.000
9 9.999 x 10-· 0.000 0.000 0.000
10 0.000 0.000 0.000 0.000
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2.3 Structural Models

In predicting the response and damage of actual structures, modeling of structural systelIlB

is an essential task. A model of a structure is defined as a mathematical representation

of the behavior of the structure in its environment. The accuracy of response prediction

depends on how well the models approximate the actual behavior of the structure. Hence,

it is important to know the limitation of the mathematical models used to represent the

structural systems.

The formulation of a mathematical model of a structure centers on the selection of

parameters that define the configuration of the model. The configuration is characterized by

the simultaneous locations of all material points. The number of independent parameters

required to define the configuration represents the degrees of freedom of the model. These

parameters are called the generalized coordinates [125] of the model. If a model has infinitely

many degrees of freedom, it is called a continuous modef, otherwise, it is called a discrete

modeL

2.3.1 Continuous Models

In continuum mechanics, the possibility of knowing the behavior of individual particles in

the sense of modern physics is avoided. Instead, emphasis is provided on the gross or

macroscopic behavior of material bodies. By no means, the model denies the existence

of molecules, atoms, and subatomic particles, but simply sidesteps the issue by employing

continuous representation of matter.

Consider a general three-dimensional body B defined as a set of uncountable infinity

of points, called material points, that can be mapped homeomorphically into the closure of

open, connected subsets of euclidean vector space [3. Each such homeomorphism defines a

configuration of the body. Consider one particular configuration called reference configuration

B C [3 and identify material points of the body with their position vectors X E 8. Consider

a motion of the body B from configuration 8 into other configuration Xc : 8 ...... [3 (Fig.

2.17), i.e.,
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x =x,(X) =x(X, t) (2.40)

where t is the time variable and x is the position vector of the material point in the deformed

x = X(X,t)

~

Reference Configuration Deformed Configuration

Figure 2.17: Kinematics of the Body B

configuration Be = X(8,t) = {X(X,t),X E B}. From the Euler's (not Newton's) balance

law of linear momentum, it can be shown [151,82,133] that the strong form of equations of

motion of the body B is given by

V·T+pb=pV (2.41)

in which, T E £(£3) is a second-order tensor known as Cauchy stress tensor, V . T is Ii.

vector field representing the divergence of tensor field T, p is the scalar JIl&88 density of the

material of the body B in the configuration Be, b is the vector field denoting the body force

density in the configuration 8t , v = i(X, t) is the velocity vector field in the confisuration

Bt , and the overdot represents the derivative with respect to time t. In order for the motion

x = X(X,t) to be determined, the field equation (Eq. 2.41) must be supplemented by
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appropriate boundary conditions and initial conditions. Finally, the set of equations are

completed by specifying T as a function or functional of f,x, v, Vx, and, in general, of

higher derivatives of x = X(X, t). The equation resulting from this specification is called

the constitutive equation and its precise form depends on the nature of the material behavior

being modeled.

While derivation of the governing field equations of continuous models is not unduly

difficult, the attainment of general solution is a formidable task. To date, analytic solutions

are known only for a few relatively simple continuous systems with linear elastic constitutive

law, e.g., uniform beams, strings, plates and shells with simple boundary conditions. For the

dynamic analysis of skeletal structures like frames, the continuous model becomes extremely

complex and have thus found limited use in practice.

2.3.2 Discrete Models

The discrete models are essentially based on discretization of a continuum to represent the

configuration by a finite number of generalized coordinates. Among the discrete models,

the finite element method and the finite difference method have received widespread use in

the engineering community. Their versatility is reflected by a variety of characterizations

and applications [23,24,52,73,92,150,2361. Once a continuum is discretized, say into finite

elements, a step-by-step integration of equations of motion can be conducted. However, the

inconvenience of such procedure is 110t of minor nature. The computational effort is still

significant even with the recent developments of numerical techniques.

The development of discrete models for skeletal structural frames requires that com

promises be made in deciding on the total number of degrees of freedom to be retained. A

precise description of the structure may require many degrees of freedom than are acceptable

from a computational viewpoint. Limitations of the degrees of freedom to be retained arise

from both restrictions embedded in the available software and economic considerations of

the expense in generating the numerical solutions.

2-29



Single-Degree-of-Freedom Systems

The single-degree-of-freedom (SOOF) models of multi-story structures are conceptually sim

ple and have been considered by various researchers [21,1,213]. The model is applicable when

the structural behavior is governed by a single genera.lized coordina.te. A structural system

represented by a SOOF model satisfies the equation of motion (Eq. 2.1)

mX, + 9 ({X.,X., 0 $ s $ t}j t) = -mW,

with the initial conditions

Xo = 0 and Xo = 0

(2.42)

(2.43)

in which X, is the relative displacement response of the oscillator with respect to the ground

motion, m is the constant mass, 9 is a functional representing the general nonlinear restoring

force, and W, is the seismic ground acceleration.

The SOOF model with linear elastic restoring force (e.g., 9 = eX, + kX, with c

and k representing damping coefficient and stiffness) associated with the fundamental mode

of vibration is currently used in seismic design codes. The codes, however, account in an

approximate way for the effects of second oscillatory mode.

Shear Beam Systems

Structures can not always be described by SOOF systems and, in general, have to be repre

sented by more realistic multi-degree-of-freedom (MOOF) systems. A simplest such MOOF

model is the shear beam systems [164,54,162] in which it is assumed that (i) total mass ofthe

structure is concentrated at the levels of the floors, (ii) the girders on the floors are infinitely

stiff' as compared to the columns, and (iii) the deformation of the structures is independent

of axial forces present in the columns. The first assumption transforms the problem from a

structure with distributed mass to a structure which has only as many degrees of freedom as

it has lumped masses at the floor level. The second assumption introduces the requirement

that the joints between beams and columns are fixed against rotations. The third lUIIumption

leads to the condition that the rigid girders will remain horizontal during motion.
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Consider a N-dimensional shear beam model of MDOF system shown in Fig. 2.18.

The second order differential equation representing the equation of motion of kth mass (floor)

exhibited in Fig. 2.18(b) is given by (k =1 for the first floor and k = N for the top floor)

k

E Uj(t) + W(t) +~ - (I - 6kN)91;+1 = 0 (2.44)
j=1 ml; ml;

where Uk(t) is the displacement of kth mass with respect to displacement of (k -1)th mass

(except when k = 1), ml; is the kth mass, 91; is the kth general restoring force, W(t) is

the dynamic excitation representing ground acceleration due to earthquakes, N is the total

number of masses (floors), and 61;N is the kronecker delta, i.e., t5ij = 1 for i = j or zero

otherwise. When the (k - 1)th equation is subtracted from the kth equation (except when

k =I), the resulting decoupled equation takes the form

UI;(t)-(1-6kt} 91;-1 + [I + (1 - 6kl)~] ~-(1-6kN)mk+l 91:+1 = -01;1 W(t) (2.45)
ml;-1 mk-l ml; ml; mk+I

with the initial conditions

(2.46)

in which once again 61:1 ,01;N are kronecker deltas introduced for the equation to be valid

when Ie = 1 and k =N.

The shear beam model is applicable for weak-column and strong-beam type of struc

tural systems. Although, design of such structures is not encouraged in earthquake engineer

ing, the model has been used quite extensively due to its apparent simplicity [21,205]. When

structural systems depart significantly from this type, a more detailed modeling is neces

sary. However, various techniques have been developed by researchers to obtain equivalent

lateral stiffness and equivalent story strength [13,123,205J for their use in the shear beam

idealization.

General Yielding Systems

Detailed discrete representations of structural systems are based on concentrated plasticity

models at critical cross-sections and are widely used in the deterministic analysis of yielding
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structures [26,27,51,75,206,212,I54J. In general, the inelastic action may occur at arbitrary

locations, however, it is the usual practice to restrict such action to regions immediately

adjacent to the beam-column joints as shown in Fig. 2.19. The distributed masses are

usually lumped at the floor level allowing only the translational inertia to be considered.

Consider again the framed structure shown in Fig. 2.19. The stochastic seismic

modeling of this MDOF nonlinear system leads to the system of differential equations

mX, + g ({X.,X., 0 ~ s ~ t};t) = -mdW,

with the initial conditions

Xo = 0 and Xo = 0

(2.47)

(2.48)

in which X, is the vector of generalized displacement, g is the vector functional representing

general nonlinear hysteretic restoring forces, m is the mass matrix, d is the constant vector

of proportionality indicating effects of the scalar base excitation on the different degrees of

freedom, and W, is the dynamic excitation representing seismic ground acceleration. Explicit

solution of Eq. 2.47 usually requires step-by-step numerical integration for the time-history

analysis.

2.3.3 Modeling Uncertainty

It is widely recognized that the variability in seismic performance evaluation is overwhelm

ingly dominated by the uncertainty in seismic load processes. However, in recent work of

Rahman et aI. [180] and Turkstra et al. [218], the modeling uncertainty of structural systems

is found to contribute significant effects on seismic response of a real 24-story RIC flat slab

building in Brooklyn, New York shown in Fig. 2.20.

The test structure is modeled as a two-dimensional frame-shear wall type building

based on the assumption that the floors have perfect in-plane rigidity. Moment of inertia

of all the columns are lumped into columns of a 3-bay planar frame (System-A). For the

shear walls, the moment of inertia are lumped into two separate walls (System-B and -C)

corresponding to contributions from small and large walls. Hinged links are then used to
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Table 2.2: Effects of Aw on To and Maximum Base Shear Coefficient (Ref. 180)

Aw To Maximum Base Shear
(8) Coefficient

0.35 2.9 0.045
1.00 2.3 0.08

transfer the axial loads from System-A to System-B and then from System-B to System-C.

The simplified idealized structure is shown in Fig. 2.20(b).

Out-of-plane bending of floor slabs is considered by idealizing slabs into equivalent

beams [7,116] of same depth with effective width being some fraction Aw (effective width

coefficient) of slab panel width. Using the chart proposed by Khan [116] and Allen [7] with

proper regard to the irregularity of plan, a lower bound of Aw = 0.35 and an upper bound

of Aw = 1.0 were obtained. The variability of effective width coefficient Aw may incorporate

substantial amount of uncertainty in the response of structure due to earthquake loads.

For example, the initial fundamental natural periods To of the building are 2.9 seconds for

~w =0.35 and 2.3 seconds for ,\W =1.0 [180).

Fig. 2.21 shows a plot of top displacement of the building versus seismic base shear co

efficient obtained from nonlinear sta.tic analysis based on a bilinear force-deformation model

[180]. Significant differences are noticed in the values of base shear coefficients when cal

culated for '\tII = 0.35 and Aw = 1.0. Table 2.2 summarizes the results from the original

reference [180] for ,\W = 0.35 and ~tII = 1.0.

2.4 Seismic Environment

In order to evaluate seismic performance of structure, it is necessary to determine the seis

mic hazard at a site for a specific exposure time. The estimation of earthquake hazard

can take many forms and requires various levels of sophistication. Traditionally, seismic

hazard is characterized by epicentral locations, maximum intensity of ground motion, and

frequently by the peak ground acceleration (PGA), each of which provides partial informa

tion on earthquake loads. More accurate characterizations includ~ mean earthquake arrival

2-36



O. 10,.-.....,..-.,.---yo--r---,-.,...-r--...,

0.08

A... = 0.35
(To =2.9 a)

-.-.- A... = 1.00
(To = 2.3.s)

0·08.0 0.5 l.0 l.5 2.0

Top Displacement (% of Height)

Figure 2.21: Base Shear Coefficient versus Top Displacement (Ref. 180)

rate, distribution of PGA, and duration and frequency content of ground motion.

This section briefly summarizes the state-of-the-art in seismic hazard estima.tion. The

review will serve as the basis and the justification for seismic reliability &na1ysis presented

in the later sections of this report.

2.4.1 Seismic Hazard Map

Historically, a number of different methods have been used to develop seismic hazard mapa

in the United States. One early national zoning map along with a detailed zoning ma.p of

Boston has been discussed by Freeman [68]. Interest in the evaluation of seismic hazard

has greatly increased in the past yean, at least in part because of the realization of the

importance of the hazard aaaeument of nuclear power plant sites and other critical facilities.
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Extensive review of development of zoning maps are also given in Refs. [2] and [165]. Only

an outline of the development of seismic zoning maps along with their relative merits and

demerits on the application of building codes is attempted here. This will be done in the

remainder of this section.

Ulrich Map

In 1948, a seismic map developed by Ulrich [186] was introduced which divided the con

terminous United States into four zones numbered 0,1,2, and 3. Zone 3 was considered to

have the greatest potential for earthquake damage. The map was adopted in 1949 by the

International Conference of Building Officials (leBO) for inclusion in the Uniform Building

Code and became one of the first national zoning maps used for building code purposes

in the United States. The numbered zones were used in the code in the development of

the lateral force provisions considered appropriate for various parts of the country. Despite

the fact that Ulrich map was developed with collaboration of leading seismologists in the

country, the exact basis for the zones on the map was never explained dearly. The map

displays epicenters of the larger earthquakes that occurred through 1946. The zones were

apparently drawn on the basis of the maximum magnitude earthquake that had occurred in

each zone. The zones are geometrical in outline and do not represent differences in ground

motion. Thus, at some places on the map (e.g., the western U.S.) zone 3 adjoins zone 1, etc.

Within a few years, the map was withdrawn as misleading and subject to misinterpretation.

Richter Map

Another important seismic regionalization map was published by Richter [183,165] in 1958

containing several significant advances. For example, it depicted the estimated maximum

ground motion rather than the distribution of earthquake epicenters. A notion of frequency

of occurrence of earthquakes was also introduced, however, in a very qualitative way by

coining the terms "occasional" and "frequent" for the region IX.

Algermiuen Map

The 1970 edition [104] of the Uniform Building Code made use of a map developed by

Algermisaen [5]. The map has the same numbering scheme as in Ulrich map and is based
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largely on the maximum Modified Mercalli intensity observed historically in each zone, but

the spatial distribution of the intensities has been generalized to take into account some

regional geological structures. The zoning map was adopted by the UBC in 1970, but

the Code did not make use of the frequency of earthquake occurrence information that

accompanied the map. Later, in the 1976 edition of UBC, this map was modified to introduce

a zone 4 in some areas of California and Nevada, and in 1979 edition of UBC, additional

modifications were introduced for Idaho [103].

Algermissen and Perkins Map

Due to a number of publications outlining feasibility of the application of probabilistic mod

els on earthquake hazard estimation, a probabilistic acceleration map for the contiguous

United States was developed by Algermissen and Perkins [4]. The quantity mapped in this

hazard map is the 10% upper fractile of a random variable Yso denoting largest peak ground

acceleration for a lifetime period of 50 years. The concept of hazard mapping used in the con

struction of this map is that earthquakes are randomly distributed in magnitude, interarrival

time, and space. Both the earthquake magnitude and interarrival time have exponential dis

tributions. Independent and identically distributed exponential interoccurrence time has the

implication that the seismic events occur as homogeneous Poisson process. The exponential

magnitude distribution is an assumption based on empirical observation. The assumption

of Poisson process for earthquakes in time is consistent with historical occurrence. Large

shocks closely approximate a Poisson process, but as magnitude decreases, earthquakes may

depart significantly from this fashion of arrival. However, ground motions associated with

small earthquakes are of marginal interests in structural engineering applications, and con

sequently, the Poisson assumption may stiD serve as a useful and simple model [53].

The Applied Technology Council (ATC) report [16] contains two ground motion maps

based on effective peak acceleration and effective peak velocity, which are used to compute

lateral force coefficients for structural systems. For the conterminous United States, these

two maps are based on the hazard map of Algermissen and Perkins. The Algermissen

Perkins map is also contained in the ATC report. The ATC etrective peak acceleration

map is very similar to the Algermissen-Perkws acceleration map with the exception that
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the largest values of ground acceleration shown on the ATC map are O.4g in California,

while the Aigermissen-Perkins map has accelerations as high as 0.8g in California. The ATC

effective peak velocity map was derived from the Aigermissen-Perkins acceleration map using

principles and heuristic rules outlined in the report.

Although, the Algermissen and Perkins map introduced the probability into the de

scription of ground motion, it is perceived to have three shortcomings. They include (i)

characterization of seismic hazard in terms of only one ground motion pa.rameter, peak

ground acceleration, (ii) a focus on only one level of probability (e.g., annual exceedance

probability of 1/500), and (iii) lack of adequate geologic information in the generalization

of the seismic history.

Algermissen, Perkins, Thenhaus, Hanson, and Bender Map

In 1982, Algermissen et aI. [3] published an improved version of earlier map by including peak

ground velocity in addition to peak ground acceleration which are mapped for the several

reference periods of 10,50, and 250 years at the 90% probability level of nonexceedance for

the contiguous United States. The 50-year, 10% upper fradile map of Yso for the contiguous

United States is shown in Fig. 2.22. In many areas this new map differs from the 1976

Algermissen-Perkins map because of the increase in details resulting from greater emphasis

on the geologic basis for seismic source zOnes. This new emphasis is possible because of

extensive data recently acquired on Holocene and Quaternary faulting in the western United

States and new interpretation of geologic structures controlling the seismicity pattern in the

central and eastern United States. The most significant difference between the two maps is

the delineation of specific fault zones such as Ramapo fault zone in New York-New Jersey

and the Clarendon-Linden fault zone in northwestern New York as discrete seismic source

zones.

Limitations of Seismic Hazard Mapa

The earliest national earthquake hazard maps are primarily a geometric partitioning of the

United States according to the maximum intensities experienced historica.lly. Progress since

then has featured an increased reliance on tectonic principles to generalize from the seismic
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history to possible future earthquake locations, a focus on actual ground motion parameters

(e.g., peak ground acceleration, peak ground velocity, etc.) and the use of probability theory

to incorpor~teseismic risk. However, aU these maps provide only partial information, because

they do not take into account duration and frequency content of ground motion and their

inherent statistical variabilities.

The hazard maps of Algermissen and Perkins and Algermissen et 4/. are based on a

single lifetime maximum ground motion parameter which are identified as a potential factor

for the damageability of structures. However, conventional structures are usually designed

to resist several seismic events during their lifetime (e.g., 50 years). Hence, the lifetime

peak ground acceleration or velocity may not be useful if damage accumulation between

consecutive seismic events are permitted.

2.4.2 Stochastic Process

The seismic hazard maps express seismic input only in terms of peak ground acceleration

or velocity which obviously does not provide all information necessary to describe the char

acteristics of a strong ground motion relevant to earthquake design. Frequency content and

duration of motion can also playa significant role in the dynamic response and seismic per

formance of structures. The variabilities associated with these and other earthquake features

suggest the use of random process models for characterizing seismic loads. Both stationary

and nonstationary random processes have been proposed. However, due to transient na

ture of seismic ground accelerAtion, nonstationary models are more suitable than stationa.ry

models.

Stationary Random Procell

A stationa.ry random process is a fairly good approximation for earthquake excitation when

the epicentral distance is large and the duration of strong motion is long compared with the

fundamental period of structure. It may also provide valuable qualitative information about

the nature of response even when these conditions are not met.
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Gaussian White Noise

Perhaps the simplest stochastic model for seismic excitation is the stationary Gaussian

white noise (,. Bycroft [43] was one of the earliest to suggest the use of the model, which

has the well-known properties

(2.49)

(2.50)

where E[·] denotes the expectation operator, 6(8) is the Dirac delta function, and Go is the

one-sided mean spectral intensity of white noise (,. It is well known that the assumption of

constant spectral content of excitation is not realistic, nor even physically possible, since the

mean square base acceleration is unbounded. Nevertheless, stationary white noise may be

a satisfactory approximation for wide band excitation, when the excitation spectrum varies

slowly in the vicinity of the structural system's natural frequency, and will be used as a first

order approximation for seismic excitation in the current work.

Gaussian Colored Noise

Fourier analyses of existing strong-motion a.cceierograms reveal that the Fourier am

plitude spectra are not constant with frequency even over a limited band. They are some

what oscillatory in character, may have localized peak values at one or several frequencies,

and usually damp out with increasing frequency. These sugest that a stationary filtered

white noise of limited duration could be more representative of actual strong sround motion

provided the filter transfer characteristics are properly selected.

Consider a system that can be described by a linear, time-invariant ordinary differ

ential operator £{.} such that the colored output W, of the system due to the white input

(, is given by

(2.51)
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The solution of above equation can be obtained as

- 1+00

W, = -00 ho(t - s){.ds (2.52)

where ho(t) is a unit impulse response function. If Ho(w) denotes the frequency response

function of the same system, Ho(w) and ho(f) are related by the following Fourier transform

pair

1
+00

Ho(w) = -00 ho(t)exp(-iwt) dt

1 1+00

ho(t) = -2 Ho(w)exp(iwt) dw
1(' -00

(2.53)

(2.54)

in which i =yCT is an imaginary unit. It can be shown that the modulus of Ho(w) can be

related to the one-sided mean power spectral density G(w) of the stationary colored process

"" by [203,128J

- 2G(w) = GoIHo(w)1 . (2.55)

Several forms of ho(t) or IHo(w)l2 are available in the Cl1rre:lt literature. They have been

used quite extensively in seismic analysis.

• Kanai and Tajimi [113,209,127,I44J

ho(l) = H(l) [w: (1 - 2(:) exp(-',w,l),in~:' 11_-,;;)1)]
+ H(t) [2(,w,exp(-(,w,t) cos (w,..jl- (nt)] (2.56)

(2.57)

where H(.) is a unit step function, and w, and C, are model parameters.
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• Bolotin (32]

IHo(w)12 = a + a"",,::,"""_
2(w - W*)2 +a2 2(w +W*)2 +a2

where a and w* are model parameters.

• Shinozuka and Sato [197]

sin(w ~t)
ho(t) = H(t) exp(-("",t) j~w, 1- (:)

where w, and (, are model parameters.

• Iyengar and Iyengar [109]

where a and b are model parameters.

Nonstationary Random Proce..

(2.58)

(2.59)

(2.60)

In order to obtain an even more representative process for strong ground motion, the tran

sient characteristics of actual accelerograms need to be considered. Generation of such

artificial ground acceleration records usually resorts to stationary processes modulated by

deterministic functions that specify the temporal variation of seismic intensity [32]. These

nonstationary models, referred to as uniformly modulated processes [167], are characterized

by time-invariant spectral shapes [12,129]. They have been generalized in several ways. For

example, it has been proposed to generate accelerograms by passing a uniformly modulated

stationary white noise through a shaping filter [197] or to represent consecutive nonoverlap

ping &e8ments of a ground acceleration record by different uniformly modulated stationary

procesaes [193]. Another type of representation proposed for the ground acceleration process

is based on the response of .. linear system to a modulated train of impulses with random

magnitudes (161).
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Oscillatory Process

Consider a class of oscillatory scalar random processes Vet) E C which admits a

spectral representation of the form

j+oc .
V(t) = -00 a(t;w)e""cdR(w)

in which dRew) is a process with orthogonal increments of variance

(2.61)

(2.62)

and {a( t; w)} is lL flLmily of slowly varying functions of time for all vlLlues of w. The condition

that the functions a(tj w) vary slowly in time is essential to retain the frequency interpreta

tion of the parameter w. When this condition is met, a(t;w)ewC can be interpreted as an

amplitude modulated wave. From Eq. 2.61, Vet) has mean zero, covariance function

B(t, t + u) ~ E[V(t)V(t + u»)

j +oc .= -oc a(t;w)a(t +u;w)e-""'-dF(w)

where the overline denotes complex conjugate, and variance

(2.63)

(2.64)

j+oc
t7V{t)2 =B{t, t) = -oc la(tj w)l2dF(w) {2.65}

Let F(w) be a differentiable function and dF(w) = S(w)dw. The evolutionary power spectral

density of Vet) at time t is [167]

(2.66)

and represents the frequency content of the process in a small vicinity of t. Process Vet)

becomes stationary in the wide sense when the functions a(t;w) are time-invariant.

Consider the special case in which S(w) is a. piecewise constant function with jumps

of magnitude uf'l/2 at a finite number offrequencies w" q = -Q, . . " -1,1" . " Q. In this

case, the integral in Eq. 2.61 can be replaced with a finite 8um that can be represented in

terms of trigonometric functions in the form
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(2.67)

(2.68)

q
V(t) = E a,(t)(7t [At cos(w,t) + B, sin(w,t)),_1

in which a,(t) is a slowly varying function of time, A, and B, are uncorrelated zero mean,

unit variance Gaussian random variables. The one-sided. mean power spectral density of the

process Vet) is

q 2
G.(w) = E la,(t)1 (7,26(w - w,)

,=1
where 6(·) is the Dirac's delta function. From Eqs. 2.67 and 2.68, the energy of an oscillatory

process is associated with a fixed set of frequencies and fluctuates in time according to the

modulation function a(tjw) or a,(t). Forexa.mple, the oscillatory process with evolutionary

power spectrum in Eq. 2.68 has energy at frequency w, and the energy associated. with

this frequency is lo,(t)120'" at any instant of time t. Similarly, when Vet) has a continuous

spectrum the energy is distributed at any time within the range of frequencies where G.(w) >

o.
An elementary example of an oscillatory process is [32]

Wet) = .p(t)W(t) (2.69)

in which .p(t) = a slowly varying real-valued, non-negative deterministic function modulating

the amplitude of Wet), and Wet) = a real-valued zero mean wide sense stationary process

with one-sided spectral density function O(w). The family of oscillatory functions of t:.,e

process is {.p(t) expiwl'} 80 that W(t) has the following one-sided evolutionary spectral density

Gw,,(w)

(2.70)

of time-invariant shape. The process in Eq. 2.69 has been applied extensively to model and

generate seismic accelerograms. Its samples generally have finite power at w = 0 even when

0(0) = 0 [192]. Thus, the model predicts the existence of a static load that is meaninsJes.

in seismic analysis. Of course, this later observation does not create any practie&1 problem

as structure has always strength to withstand the above-mentioned static load.
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In order to correct this undesirable sample property of the process in Eq. 2.69, it

has been proposed to generate artificial accelerograms from a different process obtained by

passing a uniformly modulated white noise through a linear filter [192]. This model belongs

to the class of oscillatory processes since it can be regarded as the output of a time variant

linear filter to stationary white noise. It has samples with no power at IN = 0 but still has

a time-invariant spectral shape. Generation of synthetic accelerograms based on this model

involves some numerical diffi("ulties. Besides, the design of the filters for shaping the white

noise input is not straightforward when e.g., Wet) has a multi-modal spectral content. This

is a common situation with seismic ground acceleration records.

Various forms of modulation function tJI(t) (also known as intensity function, envelope

function, etc.) are available in the literature. Some of them are described below.

• Bolotin [32]

tJI(t) = H(t)exp(-at)

where Q is a model parameter.

• Houlner and Jennings [91]

,pet) = H(t)H(t - t*)

where t* > 0 is a model parameter.

• Shinozuka and Sato [197]

tJI(t) = H(t)e., [exp(-at) - exp(-btl]

where a, b are model parameters and

1
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is the normalizing constant.

• Amin and Ani [12,11]

0 t~O

.p(t) = (t)2, o~ t ~ t1

1, t1 ~ t ~ t2

exp[-~(t - h)], t2 $ t

(2.75)

in which CfJ, t1, and t2 are model parameters.

• Iyenlu and Iyengar [109]

(2.76)

in which 41:, k = 1,2,3,4 are model parameters.

Process with Modulated Amplitude and Frequency

An alternative nonstationary model for ground acceleration process has been devel

oped by Grigoriu et 41. [77,78]. It is obtained by modulating both the amplitude and the

frequency of a stationary pro<:ell8. In this method, another frequency modulation function

?(t) in addition to amplitude modulation function .p(t) has been proposed to derive the

nonstationary process Wet) given by

Wet) = .p(t)W(?(t». (2.77)

It can be shown [77,78] that the time-dependent one-sided spectral density of Wet) has the

form

(2.78)
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When tP(t) = t (i.e., no frequency modulation), Gw,,(w) coincides with the spectrum in

Eq. 2.70 as expected, and W(t) in Eq. 2.77 becomes a uniformly modulated process. The

modulation function tP(t) determines the rate at which the spectrum of W(t) changes with

time. In contrast with oscillatory processes, that are defined for slowly varying spectra,

Gw,,(w) in Eq. 2.78 is valid for both slow and ra.pid changes in the frequency content.

Accelerograms recorded during the 1985 Michoacan Earthquake in Mexico have been

used to calibrate the proposed process and an elementary oscillatory process [32]. Samples

of these processes and actual accelerograms have been used to calculate extreme responses

of linear and nonlinear single-degree-of-freedom systems. Figure 2.23 obtained from the

origina.l reference [771 shows the coefficient of variation (C.O.V.) of ductility demand of

stiffness degrading systems for different natural periods. The plots are obtained for ground

~
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Figure 2.23: C.O.V. of Ductility Demand (Ref. 77)

accelerations based on currently used uniformly modulated process and the proposed model.

Comparisons with corresponding coefficients of variation for actual ground motions show that

the C.O.V. of ductility demand is systematically lower for systems excited with uniformly

modulated process than those subjected to proposed model and actual ground accelerations.
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On the other hand, ductility demands by the proposed model are consistent with those

corresponding to actual ground motions. Further details on this subject can be obtained

from the Ref. (77].

Digital Generation of Gaussian Processes

Considerable progress has been made in stochastic modeling of ground motion and in gen

erating the corresponding sample functions for the purpose of nonlinear and parametric

seismic response analysis. However, a large number of these analyses are performed under

the assumption that the seismic ground motion consists of a single horizontal component. In

this respect, the digital generation of univariate and one-dimensional stationary stochastic

processes using spectral representation rema.ins of critical importance in the seismic analysis.

A commonly used method [49] to generate the samples from a stationary Gaussian

process Wet) with one-sided power spectral density G(w) is obtained from

Nil!
Wet) = E Cj; sin(Wkt + .1;) (2.79)

1;=1

in which WI: is the discrete frequency, Cle = V2G(WI;)AWI; is the deterministic amplitude,

NIII is the number of discrete frequencies, and the phase angles .1:, k = 1,2" . " NIII are

independent and identical random variables uniformly distributed over (0,2",). Strictly,

Wet) in Eq. 2.79 is not Gaussian when NIII < 00. Asymptotically, however, as NIII -+ 00,

Wet) approaches a Gaussian process according to the Central Limit Theorem. Moreover,

a study [217] on simulating random sea waves showed that this method, which is based on

deterministic amplitudes Ck may be unsatisfactory because of less variance of the simulated

samples.

An alternative simulation scheme based on both random amplitudes and random

phase angles have been proposed (203J. In this approach, the representation of Wet) has the

form

Nw

Wet) = E AI: COS(Wj;t) + BI: sin(wkt) (2.80)
1:::1

in which AI: and BI: (k =1,2"", NIII ) are independent and identically distributed Gaussian
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Table 2.3: Strong Motion Duration

Moayyad and Mohraz (Ref. 140) Vanmarcke and Lai (Ref. 221)
Soft Intermediate Hard Soil Rock

Ground Ground Ground
Mean (8) 10.0 6.9 5.6 10.1 4.9

C.O.V 0.44 0.42 0.65 0.90 1.01
Sample Size 161 60 26 118 22

random variables with mean zero and varilLllce G(Wi)~i' Note that the representation of

W(t) in Eq. 2.79 becomes equivalent to that in Eq. 2.80 if the amplitudes Cl: are random

and follow Rayleigh distributions.

Duration of Strong Motion

The duration of strong motion due to an earthquake may significantly effect nonlinear struc

tural response and damage. A number of studies have been conducted to define and estimate

the duration of strong motion for earthquakes [33,216,134,221,122,1401. Values of mean and

coefficient of variation (C.O.V) of strong motion duration evaluated by Moayadd and Mohraz

[140] and Vanmarcke and Lai [221] are summarized in Table 2.3. The differences in mean

duration obtained from two sets of data do not appear to be significlLllt. However, the co

efficients of variation of strong motion duration show subst~uHal differences. Based on the

observation that strong motion duration is negatively correlated with peak ground accel

eration, Lai [122] has suggested the following regression equation for design strong motion

duration T.

T. =30 exp {-3.2544maz 0.35}

for a design peak ground acceleration am.~ (in 9 units) at a particular site.

Modeling Uncertainty

(2.81)

The variability in stochastic modeling of earthquakes constitutes one of the major causes

affecting seismic response and reliability of structural systems. Following similar considera

tions to material models discussed previously, two sources can be identified. They correspond
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Table 2.4: StatisticaJ Data on 1.11, and (,

Probabilistic Soil Rock
Characteristics (Sample Size = 118) (Sample Size = 22)

1.11, (, 1.11, (,
(rad/8) (rad/s)

Mean 19.1 0.35 26.7 0.32
Coefficient of Variation 0.425 0.391 0.398 0.426

to the uncertainty in (i) the mathematical models of impulse response functions ho(t) (Of

IHo(w)12) and modulation functions tb(t) and/or ~(t), and (ii) the corresponding parameters

given a model.

A systematic study on the probabilistic characterization of pafameters of ground

accelerations is reported in Ref. [122]. Ground motions are characterized by the parameters

of the Kanai-Tajimi spectraJ density function and by the strong motion duration. The

spectral content and duration of 140 actual strong-motion accelerograms are studied with an

aim of quantifying the uncertainty of ground motion representation. Parameters of Kanai

Tajimi spectrum and strong motion duration are estimated for fO.a.ch fecord based on the

method of spectral moments. The statistics and dependence of the parameters are then

evaluated from the data base used in the study. Means and coefficients of variation of w,
and (, obtaiued by Lai [122] for the two ground conditions classified as "rock" and "soil"

are summarized in Table 2.4. They provide a rational basis for characterizing seismic input

by considering uncertainty in the ground motion parameters. However, these information

may not be useful if the nature of site spectrum departs significantly from Kanai-Tajimi

spectrum.

2.5 Seismic Damage Assessment

A major objective of seismic desisn is the generation of structures that can survive earth

quakes with a limited amount of damage. It has been proposed to evuuate structural

performance by damage indices defined as scalar functions whose values can be related to

particular structural (physical) damage states. 10 addition to the evaluation of the perfor-
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mance of individual structures, damage indices can also be used to develop optimal strategies

for codified seismic design.

Empirical and theoretical considerations have been applied to yield various estimates

of structural damage [79,235]. The empirical damage models are based on statistics of struc

tural damages observed at various sites during earthquakes [85,231]. Although, these obser

vations of damage may be subjective, they sometimes provide useful qualitative information

in overall seismic performance of structural systems. However, the empirical evaluation does

not lend itself well to rationally predicting the strength reserve and response characteristics

of a structure with a specified degree of damage because (i) it completely disregards the

mechanics of materials that undergo large inelastic cyclic loads, (ii) future earthquakes may

have different intensities, duration, and frequency content, (iii) recently built structures can

differ significantly from the structures used to develop damage statistics, and (iv) the dy·

namic characteristics of the population of structures included in the statistical analysis may

have altered due to repairs and damage accumulation in previous earthquakes.

The theoretical damage models account for characteristics of structure and seismic

action and can have various degrees of complexity. They can be broadly divided into two

classes [79,180] which are (i) strength-based damage indices, and (ii) response-based damage

indices.

2.5.1 Strength-Based Damage Indices (SDI)

Damage index based on strength is simple and does not require response analysis. However,

the index must be calibrated against observed damages and calibration usually requires a

large data base.

Strength-based damage indices have first been proposed in China by Yang and Yang

[233] and Japan by Shiga et a/. [196] and Aoyama [14]. These indices depend on the geometry

of structural elements and their general material propp-rties. They have been extended by

Meli [138] and used to relate them to observed damages resulting from the 1987 Mezico City

Earthquake [99]. The strength-based damage indices have been used in a Japanese code for

evaluating existing buildings [15,152].
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Shiga Index

Studies of reinforced concrete structures subjected to seismic ground motion indicate that

the Shiga diagram [196] on the basis of column/wall area criteria can be used for damage

assessment. The diagram consists of a plot of wall area index

and average shear stress

mw'
EA",ij

WAr = ~j~-::l~_

EAl
k=i

(2.82)

(2.83)

for a lateral acceleration of 19, where W Ali is the wall area. index of i'" story, T.",i is the

average shear stress at i'" story, A.,ij is the area. of itA shear wall in i'" story, Aeij is the area

of j'A column in i'" story, Al is the total area of k'" floor, Wk is the weight of k'" floor, N

is the total number of stories, m",i is the total number of walls in i'A story, me
i is the total

number of columns in i'A story, i is the story coordinate. For a particular story level i, .,..",i
indicates the intensity of seismic forces while WAr provides a measure of relative stiffness

and hence the relative shear deformation capacity of the story compared with those of floors

above.

Japanese Index

According to the Japanese code [15,152] for evaluating existing buildings, the damage due

to potential seismic ground shaking can be estimated by a seismic damage index

Is = EoGSDT (2.84)

where Eo is the seismic sub-index of basic structural performance, G is the seismic sub-index

of ground motion, SD is the seismic suh-index of structural design, T is the seismic sub-index
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of time-dependent deterioration. There are several levels of modeling for these sub-indices.

The first level involves only shear capacities of each floor. The second level includes both

shear and bending moment capacities of walls and columns. The data for seismic indices

of actual structures which experienced several 1978 f"..a.rthquakes in Japan suggest [15J that

buildings with Is(first level) ~ 0.8 and Is(second level) ~ 0.6 are likely to have adequate

seismic strength.

The SOl lacks rigor and must be based on a large set of observations. However, the

method is very simple and does not necessitate any response analysis. Therefore, it is suitable

for evaluating the seismic performance of large structural populations such as the low-rise

buildings in the state of New York. Since field observations of damaged structures due to

seismic loads are not readily available in New York Statp., the method can be calibrated from

synthetic data obtained from the prediction of damage indices based on nonlinear dynamic

analysis discussed in the next section of this review.

2.5.2 Response-Based Damage Indices (RDI)

Damage index b&k!d on response of nonlinear dynamic analysis is relatively complex but

usually requires less data for calibration. It requires detailed informatioll of structural and

material models and description of ground motion(s) consistent with the site of structure.

The seismic performance of structures is commonly related to the capacity of un

dergoing inelastic deformations, defined as the ratio of a peak inelastic response to the

corresponding yield response or ductility. This measure of structural performance can be

unsatisfactory as demonstrated by experimental studies because it can not account for the

duration and the frequency content of the seismic lOAd. Experimental studies also show that

alternative measures of seismic structural performance based solely on the low-cycle fatigue

theory do not seem to provide either a satisfactory index for seismic damage [22J. These

experimental results are consistent with the anticipated notion that failure of brittle systems

is caused by excessive deformations while the failure of ideal ductile systems is initiated by

repeated inelastic deformations [6J. Therefore, damage indices for actual structures, that are

neither ideal brittle nor ideal ductile, should account for the damage efl'ects of both excessive

deformations and repeated inelastic deformations [158,235J.
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One of the most general damage indices proposed for seismic analysis is a bivariate

random process D(t) e ~2 with components Dm(t) E ~ and De(t) E ~ denoting normalized

values of maximum inelastic deformation and dissipated energy at any instant of time t

[22]. The index attempts to account in a systematic way for the damage caused by both

excessive inelastic deformations and cumulative damages caused by repeated inelastic load

cycles. The use of bivariate process is also supported by experimental data on reinforced

concrete beam-column assemblages subject to cyclic loads. These data show that current

damage indices can be divided into two distinct sets, damage indices related to extreme

deformations or stiffness degradation, and damage indices related to energy dissipation or

structural deterioration. It is attractive from a theoretical point of view, but may have

limited practical applications due to difficulties related to the estimation of the probability

of failure that may depend on the entire history of D(t). An estimate of this probability,

however, has been developed in Ref. [22] from experimental data in a transformed space of

D(t) in which the damage index process is approximately isotropic.

Most of the existing damage indices used currently in seismic analysis focus on the

maximum value of one of the two components of D(t) or related quantities. There have

also been few attempts to develop damage indices that account in a simplified way on both

components of D(t) or related quantities [47,159,160]. These damage indices are examined

in the remainder of this section.

Maximum Deformation

Ductility Ratio (DR)

The ductility ratio DR defined i..S the ratio of the maximum deformation 6m to the

yield deformation 6, given by

DR = 6m (2.85)
6,

has been applied extensively in seismic analysis to evaluate the capacity of structures under

goiag inelastic deformation and develop inelastic response spectra [144]. It can be expressed

in terms of various components of response, e.g., displacement, rotation, and curvature [6,
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149]. As a damage index, the ductility ratio may be unsatisfactory because it cannot ac

count for both duration and frequency content of typical ground motions [22,235]. It is

usually usumed that failure occurs when the ductility demand (response) in Eq. 2.85 ex

~s structural ductility (capacity) that is equal to the ratio of the ultimate deformation

under monotonic static load 6. to 6, [29,144].

Interstory Drift (10)

The interstory drift I D has the expression

ID= ~m
h

(2.86)

in which ~m = the maximum relative displacement between two stories and h = the story

height (199,201]. From the analysis of test data on components and small scale structures,

it was found that values of I D smaller than 1% correspond to damage of nonstructural

components while values of ID larger than 4% may result in irreparable structural damage

or collapse (199,215]. In another study, collapse is assumed to occur when ID exceed 6%

(187]. As for ductility ratio, the interstory drift cannot account for efFects of cumulative

damage due to repeated inelastic deformation. Damage indices similar to those in Eqs. 2.85

and 2.86 have also been considered in Refs. (153] and (195].

Slope Ratio (SR)

DaIIlafie has also been related to stiffness degradation during seismic loading that can

be measured by the slope ratio SR defined as

9=& ~n
K.

where e.g., K r and K. are slopes of loading and unloading branches of the force-displacement

diagram. From tests of small scale structural systems, it has been determined that S R with

values 1.0 and 0.2 correspond to safe structural behavior and critically damaged structures

[215].
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Flexural Damage Ratio (FDR)

Damage has also been correlated to the ratio of initial stiffness Ki to the reduced

secant stiffness Kn at the maximum displacement [22,187] given by

FDR = Ki (2.88)
Kr•

where FDR represents the Flexural Damage Ratio.

Damage indices based in extreme inelastic deformations seem to be strongly correlated

[22] 80 that their predictions are usually similar. For example, the correlation coefficient

between rotational DR and FDR has been found to be 0.95 [22]. As previously mentioned,

these indices can be unsatisfactory because they cannot account for effects of cumulative

damage caused by repeated load reversals. Critical values of the damage indices considered

in this section are determined from laboratory tests and/or field observations. Therefore,

their use in the prediction of seismic damage for structures with mechanical characteristics

significantly different from those used in the calibration process is questionable. Additional

difficulties in the use of the damage indices relate to differences between features of future

earthquakes and earthquakes considered in calibration, e.g., duration and frequency content.

Cumulative Damage

Normalized Cumulative Rotation (NCR)

A simple measure of structural deterioration during a seismic event is the sum of

all plastic excursions experienced by the structure. The value of this measure depends on

the duration and intensity of the earthquake. For example, the damage index denoting

normalized cumulative rotation [22] can be defined as

NCR = E 18,1 (2.89)

"where " = inelastic rotation during half cycles, and " = yield rotation. Statistical analyses

of datl\ on beam-column elements subject to cyclic loads show that the NCR is strongly

related to the dissipated energy. These studies also show that damage indices based on only
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cumulative inelastic deformation or dissipated energy may be inadequate to ~haracterizethe

complex process of damage propagation and subsequent failure in concrete members [22]

Low Cycle Fatigue

The theory of low-cycle fa.tlgue has been a.pplied to the seismic analysis of structures

subject to strong ground motion to estimate damage [149,201,202,234]. According to this

theory, the total damage Dc is the sum of incremental damage ~Di in every load cycle i.

Le.,

(2.90)

in which

(2.91)

1 ~~c ( )
and m = 1 _ 0.86r' r = 6.~t 2.92

where ~6t and ~6c are the tensile and compressive change in the plastic deformation, and

~6tl is the tensile change in the plastic deforma.tion in one cycle test to failure conducted at

the relative ratio r. In applications, ~btl can be approximately estimated by the deformation

at failure under simple monotonic loads [201,202] with 6 denoting strain [234] or deflection

[149,201,202]. From the analysis of laboratory and field data it has been concluded that the

exponent 11m in Eq. 2.92 takes on values in the range (1,2) [201,202,234]. Since Dc in Eq.

2.90 is not sensitive to the value of this exponent [234], the damage index does not require any

calibration. Therefore, it can be used directly to predict the damage state of any structural

system for a postulated value of 11m in the range (1,2). Failure is assumed to occur when

Dc = 1. The determination of Dc in Eqs. 2.90 and 2.91 is somewhat complex and involves

the entire response history. In addition, the index may be unsatisfactory since it cannot

account, as the NCR index in Eq. 2.89, for the effect of maximum inelastic deformation.
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Maximum Deformation and Cumulative Damage

Park et al.

A simplified failure ~riterion involving the components of the damage vector process

D(t) E ~2 has been proposed in Refs. [159], [160] and [157]. It is based on scaled values of

ductility and dissipated energy during the seismic ground shaking. The ductility, defined as

the ratio of the maximum to the yield deformation 6m/6" is scaled by 6,/6. in ·...hich 6. is

the ultimate deformation under monotonic static loads. The dissipated energy I dE is scaled

by fJc/(Q,6.) where Q, is the yield force and fJe is a nonnegative constant usually obtained

from experimental calibration. The failure is assumed to occur when the damage index DI

representing a linear combination of the scaled components of D(t) given by

DI = 6m + "'!!!-JdE (2.93)
6. Q,6.

exceeds unity. Under monotonically increasing loads, I dE = 0 giving the damage index

DI =6m/6. 80 that failure is predicted to occur, as expected when 6m = 6•.

The assumptions in Eq. 2.93 that (i) the contributions to damage of the extreme

deformation and dissipated energy can be superposed linearly, and (ii) the joint evolution in

time of these components can be disregarded, do not seem to be in congruence with results

obtained in Ref. [22]. In addition, the value of constant fJc is not specified and has to be

obtained by calibration to laboratory and/or field data. Regression analysis of experimental

data for reinforced concrete structures suggests [159]

fJe = (-0.447 + O.073~ + O.24no + O.314Pc) O.7Pw (2.94)

where I/d is shear span ratio, no is normalized axial stress, p", is confinement ratio, and Pc is

the longitudinal steel ratio. In evaluating the da.mage index in Eq. 2.93, it is apparent that

a significant role is assigned t~ the parameter fJe which in tum depends on four completely

unrelated variables.

Variability in mechanical properties of structural systems can be incorporated to

generalize the aforementioned failure condition if the critical deterministic threshold of unity
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is replaced by a random variable DR. In this case, the failure condition is DI > DR

[159]. Statistical analyses of tests in reinforced concrete members suggest that DR follows

a lognormal distribution with expected value equal to unity and standard deviation 0.54.

First and second-moment descriptors of 6m and f dE have been determined by approximate

solutions of random vibration analyses based on stochastic equivalent linearization.

Maximum Softening Damage

A global damage index based on maximum softening of structure due to variation of its

vibrational periods during a seismic event has been proposed by DiPasquale aud Cakmak

[59]. According to this model, the maximum softening damage bM is defined as [59]

SM = 1 - (TO)jDj,j., (2.95)
(To)m,z

where (TO)iDitill is the fundamental period of (undamaged) structure before it experiences the

earthquake and (To)m,z is the maximum value of the fundamental period during a potential

seismic event. This damage indicator, which measures the maximum relative stiffness reduc

tion caused by the stiffness and strength deterioration of the actual structure, is calculated

for an equivalent linear structure with slowly varying stiffness characteristics. Reference [59]

presents some calibration results of this damage indicator using seismic simulations tests in

the laboratory. Good correlation has been reported between predictions based on the max

imum softening indicator and observed results from shaking table experiments and actual

building structures. Recently, the Markov property of one- and two-dimensional maximum

softening damage indicators has been investigated by Nielsen and Cakmak [146] and Nielsen,

Koyluoglu, and Cakmak [147].

Various other damage models such as those proposed by Krawinkler et aI. [119],

Gosain et al. [76], Hwang et aI. [97], Darwin et 0.1. [56], Bertero et 0.1. [28], Blejwas et al.

[31], Roufaiel et aI. [189], Mizuhata et aI. [139], Chung et al. [48], and Reinhom et aI. [182],

have also been reported in the current literature. Details of these models can be obtained

from Refs. [48] and [182].
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Global Damage Evaluation from Local Damage Meuurel

Important decisions concerning the residual strength and safety of a damaged structure are

currently based on a single structural or global damage index. This sioL.... damage index is

usually obtained from heuristic combinations of local damage mel-.Sures. The simplest tech

nique in combining local damage indices is to use a weighting scheme giving the fundamental

expression

~w'DIL .L.J. ,-

DIG = i ~
LJWi

(2.96)

in which the subscripts Land G stands for local and global damage indices, and Wi is the

weight assigned to each local index. The weighting factor can reflect the replacement cost

and/or the relative importance of the substructure in mainta.ining the integrity of structure.

For example, the lower story of a building might be assigned more importance than the

upper stories. The weighting factor for any story could also depend on the magnitude of the

damage index for that story, so that severely damaged stories are weighted more heavily.

One approach used by Park et al. [157] is to make Wi proportional to DIL,i. The equation

for global damage index becomes

EDhi
DIG= E .

DIL,i
(2.97)

Due to the combination of detailed damage information of an entire structure into a

single global estimator, too much information is lost thus allowing only a crude estimate of

structural performance during seismic events. Since there is no one-ta-one relation between

local and global indices, a global measure of damage defined by Eq. 2.96 cannot characterize

structural state uniquely and thus cannot be used to assess structural vulnerability to future

loadings. Hence, evaluation of seismic reliability studies based on monitoring parameters of

restoring force models at all critical structural components is more meaningful to simulate

correctly the system degradation process.
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Numerical Reaultl for RDI

Available numerical studies on damage indi<:el can be divided in three claases dealing with

(i) calibration, (ii) performance evaluation, and (iii) effects of uncertainty in structural and

ground motion characteristics.

CAlibration af RPI

The calibration of most damage indices is usually based on laboratory experiments

and involves various procedures for estimating the damage state. These procedures can

be based on concepts of system identification, fuzzy sets, and expert systems 1141,215].

The experimental results are determined for certain types of structures and earthquakes.

Therefore, their applicability may not he relevant for other structural systems and seismic

events. This is a significant limitation that may prevent the use of most of the damage

indices in the prediction of seismic performance of structural systems and development of

rational seismic codes.

PerfwmADce Evaluation of RDI

Dama«e indices are usually evaluated based on comparison between predicted and

observed damages. A recent study 1201] provides an extensive evaluation of the damage

indices in Eqs. 2.90 and 2.93. Four structural systems are used in the evaluation: (i) inte

rior reinforced concrete beams subject to cyclic and monotonic loads, (ii) a 1/10 size model

of a 10 story reinforced concrete frame subjected to shakins table dynamic test, (ii) a full

size 7 story reinforced concrete building subjected to " pseudo-dynamic tests simulating

earthquakes at increasing intensity, and (iv) the Imperial County Services Building that

was damaged during the October U, 1979 Imperial Valley Earthquake. Details on available

observations and calculations can be obtained from the original reference [201]. The calcula

tions were performed under diferent assumptions regarding the ultimate displacement when

this displacement was not available, e.g., ultimate interstory displacement of 8 to 10 % are

considered to be realistic. Values of constant Pc in Eq. 2.93 were assumed to be 0.25, 0.5,

and 1.0. Results indicate that 0.25 is the optimal value of Pc in cases examined.
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The analysis in Ref. [201] shows that the index in Eq. 2.93 overpredicts structural

damage in some cases but available evidence is insufficient to determine whether the damage

index in Eq. 2.90 is superior to the one in Eq. 2.93 or vice versa. Another .tudy [158] shows

a good agreement between the prediction of the index in Eq. 2.93 and damages observed in

many structural systems. Unfortunately, this study does not give values of the pUi!.meters

6., Q" and Pc used in the analysis.

Effects of Uncertainty

A systematic investigation on effects of the uncertainty in the parameters of the

seismic excitation and structural characteristics is reported in Ref. [149] for the ductility

ratio in Eq. 2.85 and the damage index in Eq. 2.90. The analysis is based on a single degree

of freedom model with elasto-plastic restoring force models and a set of 20 actual earthquakes

scaled to the same peak ground acct"~ration. The structural damping, stiffness, and yield

displacement are assumed to be deterministic or follow lognormal distributions. Results

obtained by simulation based on Latin Hypercube Sampling indicate that the uncertainty in

structural mechanical properties can increase significantly the variance of ductility ratio. It

is also found that there is a little correlation between the damage indices in Eqs. 2.85 and

2.90. This is in agreement with other studies showing a weak correlation between damage

indices based on the maximum deformation and cumulative effects of cyclic loads [22].

2.5.3 Evaluation of SDI

A recent study [180] based on both SDI and RDI is carried out for the assessment of seis

mic performance of existing buildings in New York City. Nonlinear dynamic analyses and

statistical evidence from previous earthquakes are used to evaluate strength-based damage

indices. Figure 2.24 shows the potential seismic damage for a 24-story RIG fiat-slab building

in Brooklyn obtained by a strength-based damage index defined by Eq. 2.84. Figure 2.25

shows the interstory drift (defined by Eq. 2.86) venus story coordinates for this 24-story

structure subject to the actual and scaled versions of the 1986 San Salvador Earthpake. p~

liminary geolosical considerations suggest that the earthquake i. adequate (or the building

site. The analysis account. for the uncertainty in material characteristics. In all the cases,
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the drift is found to exceed the allowable value (0.4 ~) suuested by the 1988 Uniform

Building Code. Thus, comparisons with the results in Fis. 2.25 indiCAte that strength-based

damage indices C&D provide a useful measure of seismic performance for buildings in New

York City.
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Figure 2.24: Strength-based Damage Index (Ref. 180)
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SECTION 3
Static Reliability

3.1 Introduction

Current estimates of seismic reliability indices for building structures are obtained by static

method. The static reliability analysis is based on (i) elementary models of seismic haz

ard, e.g. by the 50-yr maximum peak ground acceleration, (ii) stress analysis due to static

loads applied laterally to structural systems, and (iii) limit states defined by strength-related

elementary failure criteria at a particular structural component. Effects of structural redun

dancy, nonlinear dynamic response, and damage accumulation during consecutive seismic

events are not explicitly considered in this simplified analysis.

The objective of this section is to assess seismic performance of code-designed struc

tures by static reliability analysis. Several models of seismic hazard are also examined to

evaluate sensitivity of seismic reliability estimates to particular hazard model.

3.2 Structural Strength

Building codes and standards used in structural design contain provisions for ensuring struc

tural safety under extreme loads. The general form of equation from these provisions is

obtained from the Load and Resistance Factor Design (LRFD) format [8,64,72,131] and is

given by

-LD . >C,.Uy n 1l. _ • (3.1)

in which; is the resistance factor, R.i is the nominal code-specified resistance at ith struc

tural component, Cj is the influence coefficient obtained from structural stress analysis due

to factored ultimate load

(3.2)
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(3.3)

where Q.j and "Ij are nominal load and corresponding load factor for the jth load component,

respectively. Several load combinations are usually required to specify U in Eq. 3.2 which

can be used in Eq. 3.1 to evaluate deterministic nominal strength R.i. For example, when

the ACI Code 918-89 [9] is adopted, the explicit form of Eq. 3.2 becomes

{

lAD" +1.7L..

U = 0.75(1.4D. +1.7L. ± 1.87E.)

0.9D" ± 1.43E"

where D., L., and E. are code-specified nominal dead load, live load, and earthquake load

respectively. Representative values of the nominal loads used in a wide variety of buildings

can be obtained from the specification in American National Standards Institute (ANSI)

A58.1-8~ [10], Uniform Building Code (UBC) [100,101,102] and many others. For example,

the nominal seismic base shear E" obtained from the 1988 Uniform Building Code [100] is

E" = ZICW
Rv

1.258
where C = ---,:j3

To
and from the 1985 Uniform Building Code [101] is

E" =ZIKC8W

1
where C = J1rf:

15v~o

in which

Z = seismic zone factor

I = importance factor

K, R., = building system factors

S = soil factor
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To = initial fundamental period of structure

W = weight of structure.

(3.8)

Data on structural resistance exhibit a distinct statistical scatter. Three major sources

can be identified and they correspond to the uncertainty in (i) material properties (e.g.,

yield strength of steel, compressive strength of concrete, etc.), (ii) geometry (e.g., structural

dimensions) and (iii) modeling accuracy (e.g., the use of rectangular stress block in reinforced

concrete design). Mean, coefficient of variation and probability distribution for structural

strengths have been determined from test data on the strength of materials and laboratory

experiments of full-scale members under idealized loading environments and in some cases,

through simulation where a well-defined analytical model is available. A representative

sampling of these data which summarizes results of numerous research programs are available

in Ref. [65] and is shown in Table 3.1. The mean values are normalized with respect to the

deterministic nominal resistance which is based on the model used to predict the strength in

the appropriate material specification. The statistics include factors which reflect the effects

of modeling and fabrication errors. Further studies may be found in Ref. [65].

3.3 Structural Loads

Most structural loads vary with time. If the structure is subjected to only one time-varying

load (e.g., live load) in addition to its time-invariant dead load, the total load effect may

be determined by considering the combination of the dead load with the maximum time

varying load during some appropriate reference period of time ., (e.g., 50 years). Frequently,

however, more than one time-varying load act on a structure (e.g., live load plus wind load

or earthquake load). When more than one time-varying load acts, it is extremely unlikely

that each load will reach its peak lifetime value at the same instant of time. Consequently, a

structural component can be designed for a total load which is less than the sum of the peak

loads. This is currently recognized in the American National Standards Institute (ANSI)

A58.1-8! [10].

Ideally, the load combinations should be dealt with applying the theory of random
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Table 3.1: Statistical Data on Structural Resistance

Structural Member Mean/Nominal Coefficient of Probability
Variation Distribution

Structural Steel:
Tension Members 1.05 0.11 Lognormal
(Yielding)
Tension Members 1.10 0.11 Lognormal
(Tensile Strength)
Compact Beam 1.07 0.13 Lognormal
(Uniform Moment)
Beam-Column 1.07 0.15 Lognormal
Plate Girders, Flexure 1.08 0.12 Lognormal
A325 HS Bolts, Tension 1.20 0.09 Lognormal
Axially Loaded Column 1.08 0.14 Lognormal
Reinforced Concrete:
Flexure, RIC, Grade 60 1.05 0.11 Normal
Flexure, RIC, Grade 40 1.14 0.14 Normal
Flexure, Pre-tensioned Beam 1.06 0.08 Normal
Flexure, Post-tensioned Beam 1.04 0.10 Normal
Short Columns 1.05 0.16 Normal
(Compression Failure)
Short Columns 1.05 0.12 Normal
(Tension Failure)
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processes which accounts for the stochastic nature of the loads in both space and time.

However, the probabilistic characterization of the maximum of a sum of stochastic load

processes is not an easy task. A simple model for describing the maximum during period T'

of a combination of IOltds follows from the assumption that the maximum total load occurs

when one of the loads attains its maximum value during l' while the other loads assume

their instantaneous or arbit=-ary-point-in-time values [2191. In other words, when the loads

are assumed to be stationary, the maximum load effect Si at the ith structural component

is given by

Si =m~x [m~X(CijQj) +L Ci1Q1] (3.9)
J l#j

where Qj is the jth load component and Cij is the influence coefficient which transforms

the jth load component into load effect at ith structural component. Eq. 3.9 enables a

random variable rather than stochastic process characterization of the load combination.

The arbitrary-point-in-time load is simply the value measured if the load processes were to

be sampled at any instant of time and is typically much less than the associated nominal

value. Recent research on load combinations [126,2291 suggest that Eq. 3.9 ill a good

approximation in many practical cases, although it tends to be unconservative in instances

where the probability of joint occurrence of more than one maximum load is not negligible.

Mean, coefficient of variation, and prob?l>ility distributions of 50-yr maximum and

arbitrary-point-in-time loads are available in Ref. [71] and is summarized in Table 3.2. The

load subcommittees within the ANSI Committee A58 provided many of these estimates. By

and large, these statistical studies are a synthesis of values reported in numerous previous

studies on structural loads and load models, behavior of structural members, and reliability

based design. Insofar as possible, the load statistics are based on load surveys in situ,

measurements of wind pressure on buildings, and probabilistic load modeling which converts

a survey load to a maximum load used for the purpose of reliability analysis and design. In

addition to the basic va-riability in the loa.d, uncertainty also arises from the load model itself

which transforms the actual spatially and temporally varying load into a statically equivalent

uniformly distributed load (e.g., dead load, live load, etc.) for the operational convenience

of design process. These uncertainties are included in the coefficients of variation listed in
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Table 3.2: Statistical Data on Structural Loads

• CharactertstIc extreme and shape parameters

Load Mean/Nominal Coefficient of Probability
Variable Variation Distribution
Dea.d,D 1.05 0.1 Normal
Live, L Ref. 71 0.25 Type-I
Live, L.p' Ref. 71 Ref. 65 Gamma
Wind, W 0.78 0.37 Type-I
Wind, W.pl (-0.021)* (18.7)* Type-I
Snow, S 0.82 0.26 Type-II
Earthquake, E (Site Dependent)· (2.3)* Type-II.

Ta.ble 3.2. The probability distributions are obtained by the best fit to the upper percentiles

of the distribution obtained from either Monte Carlo simulation or numerical integration.

Detailed description of load modeling is available in Ref. [65]. In this study, an ela.borate

discussion on the probabilistic load characterization for seismic environment is presented.

3.3.1 Current Models of Seismic Hazard

Load effects due to seismic ground shaking are currently determined by the inverted triangu

lar loads applied laterally to building structures. These loads are proportional to base shear

E which can be obtained from [65,16]

E _ 1.2YsoSW
- Kl'o2/3

(3.10)

where

Yso = 5D-yr extreme peak ground acceleration (PGA)

R = response modification factor

S = soil factor

To = fundamental period of structure

W = weight of structure.

(3.11)
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(3.12)

Acc:ording to Refs. [65] and [53], the cumulative distribution function of l'50 at a site

can be modeled as Eztreme Type-II distribution which is given by

Fso(Y) = { ezp [- (~)-.], 11 ~ 0

0, otherwise

in which the extreme and shape parameters u and k can be obtained from the Algermissen

Perkins map [2] giving the contour plots of 10% upper fractile of 1'50. The acceleration al0

has a return period of 475 years and is mapped for the entire continental United States.

Assumin,g k = 2.3 as suggested in Refs. [65] and [149], u may be computed for any mapped

value of alO from u = 0.38 alO. This seismic hazard map of Algermissen-Perkins can not

he relat.ed to the seismic zone map of Uniform Building Code [101], because the code map

is })~ed on largest historical event while the Algermissen-Perkins map accounts for the site

s?:;mici ~' '\nll design lifetime. Moreover, it is also possible that different sites located at the

same seismic zone of Uniform Building Code [100,101] are characterized by different values

d 1110. Thus, the resultant reliability measures for structural systems can be very different

rill' to the identical design base shear obtained from Uniform Building Code [loo,101J.

3.3.2 Alternative Models of Seismic Hazard

Consider a site affected by a single seismic source characterized by a mean rate of earthquake

occurrence ~. It i~ assumed that (i J the earthquake arrivals follow a homogeneous Poisson

process with mean rate ~, (ii) ground motions in different seismic events are independent

and identically distributed stationary Gaussian processes W(t) with mean zero, one-sided

mean power spectral density G(w) for wE (0,+00) and (iii) seismic events have the same

deterministic strong motion duration T.. This representation of seismic hazard provides a

very simplified model of seismic environment.

The distribution of the peak ground acceleration during fJ seismic event can be ap

proximated by [203,179J

where

del ( - ) [ T. {I; { 11
2

}]F(y) = Pr mT~IW(t)1< y ~exp --;VI;exp -2~o
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~i ~100

wiG(w)dw (3.14)

is the ith spectral moment of W(t). Therefore, the cumulative distribution function of the

largest peak ground acceleration Yr during 4 Ii/dime period T is [179]

Fr(y) ~ Pr (mF{W(t),O < t < T) < y)
00 (~T)"

= E [F(y)]"-, exp (-~T)
,,=0 n.

( ~ )f: [~TF(y)]"= exp-T ,
,,=0 n.

= exp [-~T{1 - F(y)}] (3.15)

The peak ground acceleration 410, defined as the 10% upper fractile of 1'50, can be obtained

from the condition

giving

410 = F-I [1 + 5~~ log 0.9]

= F-I .[1 - 47~~]

(3.16)

(3.17)

Note that 410 depends on ~, T., and the spectral density G(w) of ground motion. Different

values of these parameters can yield the same peak ground acceleration 410.

According to Eq. 3.12, the distribution of lifetime largest peak ground acceleration

Yso depends only on 410 without any explicit regard for other parameters of seismic hazard.

It is possible that different sites characterized by same value of 410 may have very different

values of ~, T., and other parameters. In all these cases, if the structural designs are identical

due to same seismic zone of Uniform Building Codes [100,101], reliability estimates of these

structures obtained from Eq. 3.12 will also be identical. Hence, a more realistic reliability

analysis can be conducted by usins Eqs. 3.15 and 3.13 which accounts for all site parameters

of ground motion.

3-8



3.4 Structural Reliability Analysis

Structural reliability analysis requires a mathematical model derived from principles of me

chanics and experimental data which relates the resistance and load variables for a specific

performance criterion of interest. Let Ri and Si denote two random variables representing

structural strength and load effects at the ith structural component. The reliability of this

component can be computed from the condition that the margin of safety Mi = Ri - Si > O.

This condition can be expressed in the conventional form Mi = g(X) > 0 where X E R" is a

vector of basic random parameters characterizing uncertainty in both loads and resistances,

and g(x) is the performance function of the structural component. In the x space, this

function g(x) also known as limit state function separates the domain "D of X into safe set

S = {x : g(x) > O} and failure set ;: = {x : g(x) < O} and are shown in Fig. 3.1. The

---------"-- "." Failure Set :F \
,/ \

/ I
/fm,"""",,~ I

I I
I .I

" Limit State g(x):o ,//
I /
I /'

" Safeset S
........... _-------

x space

Domain "D with Pr{X E V) = 1

Figure 3.1: Definition of Limit State

lifetime reliability Ps is the complement of lifetime probability of failure PF (Ps =1 - PF)

which can be defined as
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(3.18)

PF ~ Pr [g(X) < 0]

= 1 fx(x)dx
,(x)<o

in which fx(x) is the joint probability density function of random vector X E Rit. The

generalized reliability indez Po of the structural component can be obtained from [61]

(3.19)

in which .(.) is the cumulative distribution function of standard univariate Gaussian ran

dom variable. In general, the n-fold integral in Eq. 3.18 cannot be calculated analytically.

Alternatively, numerical integration can be performed, however, the computational effort

becomes prohibitive when n > 2.

3.4.1 Approximate Methods for Reliability Analysis

Several approximate methods exist for performing the probability integration in Eq. 3.18.

Among them, First- and Second-Order Reliability Methods [66,168,132,90,35], Variance

Reduction [111], Importance Sampling [69,83,84,137,98], Directional Simulation [58,60,30],

Monte Carlo Simulation [190], and many others can be applied to compute PF and Po in

Eqs. 3.18 and 3.19, respectively. In this seCtion, a few of them will be presented for their

use in the approximate reliability analysis.

Fint- and Second-Order Reliability Methods (FORM/SORM)

First- and Second-Order Reliability Methods (FORMjSORM) are general state-of-the-art

methods of structural reliability. The methods are based on linear (first-order) and quadratic

(second-order) approximations of the limit state surface g(x) = 0 tangent to the closest point

of the surface to the origin of the space. The determination of this point involves nonlinear

programming and is performed in the standard GaulSia.n image of the original space.

The FORM/SORM algorithms involve several steps. They will be described here

briefly assuming a generic n-dimensional random vector X. First, the space of uncertain

parameters x is transformed into a new n-dimensional space u consisting of independent
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standard Gaussian variables. The original limit state g(x) =0 then becomes mapped into

the new limit state gu(u) = 0 in the u space. Second, the point on the limit state gu(u) = 0

having the shortest distance to the origin of the u space is determined by using an ap

propriate nonlinear optimization algorithm. This point, which has a distance PHL to the

origin of the u space, is referred to as the design point or p-point and is shown in Fig.

3.2. Third, the limit state gu(u) = 0 is approximated by a surface tangent to it at the

9U(U) = 0

U space

9U{U) < 0

...... ;:. 9Q(u) = 0
~ ......

"" "" ",

J 9£(U)=0

...... .....-- ... ---~

9U(U) > 0

Figure 3.2: Linear and Quadratic Approximations to the Limit State

design point. Let such limit states be 9L(U) = 0 and gQ(u) = 0, which correspond to the

approximating surfaces as hyperplane (linear or first-order) and hyperparaboloid (quadratic

or second-order), respectively (Fig. 3.2). The probability of failure PF (Eq. 3.18) is thus

approximated by Pr(gdU) < 0] in FORM and Pr(gQ(U) < 0] in SORM. Let PF,! and PO,l

be the first-order estimates and PF,2 and PO,2 be the second-order estimates of the actual

failure probability PF and the corresponding reliability index fJo. Analytical expressions can

be developed to determine these probability estimates. Appendix A provides the derivation

details of FORM/SORM equations. From Appendix A, the first-order estimates are
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and

fJa.1 = fJHL

and the second-order estimates are

,,-I

PF,2 ~.( -fJHL) n (1 - ICifJHL)-!
i=1

and

where

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

is the cumulative distribution function of a standard Gaussian random variable, and ICi are

the principal curvatures of the limit state surface at the design point. FORM/SORM are ana

lytical probability computation methods. Each input random variable and the performance

function g(x) must be continuous. Depending on the solver for nonlinear programming,

additional requirement regarding smoothness Le., differentiability of g(x) may be required.

Monte Carlo Simulation and Importance Sampling

Consider a generic n-dimensional random vector X which characterizes uncertainty in all

load and system parameters with the known joint distribution function Fx(x). Suppose

that x(I), x(2), .. "x(L) are L realizations of input random vector X which can be generated

independently, Let g(l), g(2), • • " g(L) be the output samples of g(X) corresponding to the

inputs x(I),x(2)" • .,x(L) that can be obtained by conducting repeated deterministic trials

(analyses). Define LF as the number of trials which are associated with negative values of

g(X), Then, the failure probability estimate by the direct Monte Carlo simulation is the ratio

LF/ L which approaches the exact failure probability PF when L approaches infinity. This
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method is simple and relatively straightforward and should be used when each deterministic

analysis does not require excessive computer time. When the analysis is computationally

prohibitive or burdensome, alternative simulation method, known as Importance Sampling

method, can be applied. In Importance Sampling, the random variables are sampled from

a different probability density function, known as the sampling density. The purpose is to

generate more outcomes from the region of interest, e.g., the failure set F = {x: g(x) < O}.

Using information from the FORM/SORM analysps, good sampling densities can be con

structed. According to Hohenbichler [89J, the failure probability estimate PF,3 by importance

sampling based on SORM improvement is

(3.25)

and the corresponding estimate of reliability index is

(3.26)

where lJl(-f3HL) = ¢(-f3HL)/~(-{3HL), ~j = {ii1,j,ii2,j,·· ·,i;n_l,j}T is the jth realization

of the independent Gaussian random vector V E R,,-l with mean and variance of ith

component being zero and 1/[1- .(f3HL»), hQ(vj) is the quadratic approximant in the form

of rotational hyperparaboloid, and N/s is the sample size for importance sampling. Details

of this equation are also provided in Appendix A.

3.5 Numerical Examples

In this section, several numerical examples are illustrated to obtain seismic reliability indices

by the static method. In the first example, a S-story reinforced concrete (R/C) frame building

designed by 1985 Uniform Building Code is used to perform the reliability analysis based

on current models of seismic hazard. In the second example, two I-story special moment

resisting frame structures designed by both 1985 Uniform Building Code and 1988 Uniform
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Building Code are considered. Reliability analyses are carried out for each of the structures

based on various models of seismic hazard discussed earlier.

Structural Design

A 5-story, 3-bay RIC planar frame is analyzed and designed in accordance with the appropri

ate provisions of 1985 Uniform Building Code and ACI Code 318-83 for seismic zones-2 and

-3. Thus, the static method and elementary failure criteria have been used in the analysis.

Effects of structural redundancy and dynamic response are not included in this simplified

analysis. Fig. 3.3(a} shows the typical plan of the building system. An interior frame is

chosen to perform seismic analysis in the transverse direction a.nd is shown in the Fig. 3.3(b).

Seismic design for the itb structural member of building frame by ACI Code 918-83

requires

where

A.-D ·>C·U
¥'~.... - • (3.21)

(3.28)
{

lAD. + 1.1L.

U = 0.15(1.4D. +1.7L. ± 1.81E.)

0.9D. ± 1.43E.

is the ultimate factored load, Rai is the nominal strength of ith structural component, Ci

is the ith influence coefficient, and the resistance factor 4> = 0.9 for beams and ~ = 0.1

for columns. The nominal dead load D. consists of mainly self-weight of structure and

superimposed load of 30 psf for tbe floors and 10 psf for the roof. The nominal live load

L. is also assumed to be 30 ps f for the floors and lOpsJ for the roof. The nominal seismic

bue shear E. can be obtained from Eq. 3.6 and are found to be 34 kips and 64 kips for

seismic zones-2 and -3, respectively. The calculated base ahean are based on Z = 3/8 for

zone-2 and 3/4 for zone-3, I = 1, K = 0.61 for ductile moment resisting frame, C=0.10,
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Figure 3.3: Plan and Interior Frame of Building Systems
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Table 3.3: Distribution of Lateral Forces

Story Lateral Forces (kips)
Zone-2 Zone-3

1 3 6
2 5 10
3 7 14.. 9 18
5 10 20

8=1.2 for stiff clay, and W = 1043 kips. For load combination involving earthquake, this

nominal base shear is distributed along the height of building frame and is applied laterally

to the structural systems. Since, the fundamental period of the frame is estimated to be less

than 0.7 s, the concentrated lateral load F, specified in the 1985 Uniform Building Code is

neglected. Tables 3.3 shows the distribution of lateral forces for seismic zones-2 and -3.

The size of the columns is 16 in x 16 in for exterior columns and 20 in x 20 in

for interior columns. The size of the beams is assumed to be 14 in x 20 in. The columns

have the same sizes throughout the height of the building. The beams also have the same

dimension at aU floor levels. The slab is assumed to be 7 in thick and is assumed to be

constant throughout the structure. The dimensions of cross-sections of the above structural

memberti are kept same for both zones-2 and -3. The amount of steel reinforcement, however,

are obviously different due to ci.ifferential design forces at the above zones and are exhibited

in Fig. 3.4 and Tables 3.4 and 3.5. The dimensions of the top and bottom cover d and II

are assumed to be 2.5 in.

NormAl weight concrete with the nominal values of compressive strength fe' = 4 hi,

unit weight We = 145 pcj, and modulus of elasticity Ec = 4000 bi are used. The reinforcing

steel is obtained from ASTM A615 Grade 60 with the nominal values of yield strength

F, = 60 ksi, modulus of elastiCIty E, = 29000 ksi.

Reliability Analysis

FORM/SORM algorithms and importance sampling techniques are employed to determine

the performance of above frames designed for seismic zones-2 and -3 of 1985 Unijoma Building
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Table 3.4: Steel Reinforcement for Beams

Beam Zone-2 Zone-3
Cross-section· A. A.'" A. A.'"

(in2 ) (in2 ) (in2 ) (in2)

5-6 3.16 3.14 4.54 3.33
6-5 4.37 3.14 6.08 3.33
6-7 4.37 2.65 6.08 2.85

9-10 3.38 3.14 4.79 3.33
10-9 4.37 3.14 6.08 3.33

10-11 4.37 2.65 6.08 2.85
13-14 3.16 3.14 4.37 3.33
14-13 4.00 3.14 5.39 3.33
14-15 4.00 2.65 5.39 2.85
17-18 3.00 3.14 3.58 3.33
18-17 4.00 3.14 4.54 3.33
18-19 4.00 2.65 4.54 2.85
21-22 1.80 2.40 2.18 3.00
22-21 3.16 2.4tl 4.16 3.00
22-23 3.16 2.08 4.16 2.51

• ". - )" Implies cross-sectIon. of member connected by nodes & a.nd J

Table 3.5: Steel Reinforcement for Columns

Column A. in<!)
Zone-2 Zone-3

16 2.64 3.60
17 2.64 4.74
18 2.64 4.74
19 2.64 4.74
20 3.98 6.00
21 4.00 5.08
22 4.00 5.08
23 4.00 5.08
24 4.00 5.08
25 4.00 5.08
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Code. The reliability analysis is carried out for the load combination D + L.p' + E, where

D, Lapt and E denote dead load, arbitrary-point-in-time live load, and earthouake !',ad,

respectively. The dead loads in all the floors and roof are assumed to be perfectly correlated

requiring only one random variable to represent thE'!!r uncertainty. The live load&, on the

other hand, are modeled as five independent random variables. The load component in each

type of the gravity loads is assumed to be uniformly distributed over the span of beams. The

probabilistic characteristics of resistance and loe-d variables are obtained from Table 3.1 and

Table 3.2, respectively. For earthquake load, the cumulative distribution function of peak

ground accelE'!Tation is based on seismic hazard in Eq. 3.12.

The seismic performance of this frame is evaluated by calculating component reli

ability indices at the critical cross-sections. The corresponding limit states are obtained

from flexural action for beams and combined action of axial force and bending moment for

columns. The explicit form of above limit state for beam (F:~xure, RIC, Grade 60) is

y(X) = R.K - [CDD +t.CL;L••i +CEE] (3.29)

in which R. is the deterministic nominal bending strength and H is the Gaussian random

variable with mean 1.05 and coefficient of variation 11% (Table 3.1). The limit state for

column (Short Column, RIC, Tied) is

(3.30)

in which

(3.31 )

where P,. is the nominal axial force strength obtained from the interaction diagram of column

cross-section for a nominal eccentricity ratio en and and H is the Gaussian random variable

with mean 1.05 and coefficient of variation 16% for compression failure and 12% for tension

failure (Table 3.1). In both cases, CD, CL i, and CE are the influence coefficients representing

either bending moments or axial forces at a specific cross-section due to relevant unit loads.

They can be easily obtained following linear elastic static analysis of structural systems.
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Note that in the above limit states X = {D L.",l L.",2 L.",3 L."," L.",5 E g{ is the

8-dimensional random vector characterizing uncertainty in the loads and resistances.

Discussions on Results

Tables 3.6 and 3.7 show the static reliability indices by FORM, SORM, and Importance

Sampling technique obtained for columns and beams of the 5-story RIC frame structure

designed for seismic zone-2 of 1985 UniJofTTI Building Code with aID = O.lg. The smallest

reliability indices by FORM are found to be 2.19 for the beam and 2.25 for the column.

Comparisons of these results with more accurate estimates by SORM and Importance Sam

pling confirm previous results with slight variation in the values of reliability indices. While

the indices for most of the critical cross-sections of beams are quite low, the ones for the

columns, however, are found to be comparatively large except for external columns at the

top stories. The higher reliability of columns is expected due to the fact that most of the

columns are designed with the minimum reinforcement ratio of 1% specified in the current

ACI code 918-83 in spite of considerably lower theoretical requirement. Since the value of aID

can vary within a same seismic zone (defined by code), similar reliability analyses are also

carried for the same structure when 010 = 0.15g and 010 = 0.2g. Results suggest that the

indices based on FORM for zone-2 can be as low as 1.81 if 010 = 0.15g and 1.5 if 010 =0.2g.

The static reliability indices are also obtained by various estimates for the 5-story RIC

frame structure designed for seismic zone-3 of 1985 UniJofTTI Building Code with several cases

of a10 = 0.2g, 010 = 0.3g, and aID = 0.4g. Based on FORM estimate, the smallest values

of the above indices are 2.04 for 010 = 0.2g, 1.59 for 010 = 0.3g, and 1.30 for 010 = O.4g.

Comparisons of these results with those for zone-2 structure suggest that that current designs

by 1985 UniJorm Building Code is less safe in areas of high seismicity.

It appears that the seismic reliability indices obtained by the static method can be

very low for distribution of peak ground acceleration in Eq. 3.12. According to these results,

(i) current design practice is unconservative when dealing with load combinations including

earthquake because the reliability index is generally 3 - 4 for gravity loads, and (ii). the

seismic reliability estimate can be very different for code-designed structures due to large

possible variation of 0)0 within a specific seismic zone.
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Table 3.6: Static Reliability Indices for Columns (zone-2, al0 = O.lg)

Cross-section· FORM SORM Importance Sampling
(Fig. 3.4) (Eq. 3.21) (Eq. 3.23) (Eq. 3.26)

1-5 4.29 4.34 3.97
5-1 4.29 4.25 4.25
5-9 3.42 3.36 3.34
9-5 3.63 3.58 3.52
9-13 3.71 3.71 3.71
13-9 3.34 3.34 3.34
13-17 2.99 2.96 2.94
17-13 2.56 2.52 2.48
17-21 3.16 3.13 3.13
21-17 2.25 2.22 2.20
2-6 4.25 4.24 4.24
6-2 4.70 4.97 4.68
6-10 4.84 5.02 5.02
10-6 4.90 4.92 4.92
10-14 5.33 5.32 5.32
14-10 5.23 5.22 5.22
14-18 5.78 5.78 5.78
18-14 5.64 5.64 5.64
18-22 6.22 6.22 6.22
22-18 5.92 6.09 5.96

• "a - i' Imphes cross-sectIon a of member connected by nodes a and J
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Table 3.7: Static Reliability Indices for Beams (zone-2, diD = O.lg)

• ", - J" Implies cross-sectIon , of member connected by nodes I and 1

Cross-section· FORM SORM Importance Sampling
(Fig. 3.4) (Eq. 3.21) (Eq. 3.23) (Eq. 3.26)

5-6 2.19 2.15 2.12
6-5 2.32 2.27 2.26
6-7 2.38 2.34 2.33
9-10 2.22 2.18 2.15
10-9 2.32 2.27 2.27

10-11 2.36 2.32 2.31
13-14 2.30 2.35 2.36
14-13 2.37 2.31 2.23
14-15 2.41 2.36 2.37
17-18 2.46 2.46 2.46
18-17 2.56 ~.56 2.56
18-19 2.82 2.82 2.82
21-22 2.63 2.63 2.63
22-21 3.31 3.18 3.19
22-23 3.04 3.04 3.04.. .
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3.5.2 Example 3.2

Structural Design

Consider two sites A and B in the western U.S. with mean earthquake arrival rates AA =
O.92/yr and Ag =0.024/yr [3] shown in Fig. 3.5. Geographically, site A is located in River-

Figure 3.5: Probabilistic Map of 410 for Western U.S.

side and S4n Diego counties, while site B falls mostly into the Orange county of California.

Both sites lie in the same seismic zone-4 of the Uniform Building Code [100,101] and have

the same peak ground acceleration 410 = 0.4g. Consider a special moment resisting frame

structure modeled as simple oscillator with damping ratio' =0.05, initial natural frequency

WO = 20.944 rad/s (initial fundamental period To = 0.3 s), and weight W. The nominal base

shear forces from the 1988 Uniform Building Code and the 1985 Uniform Building Code a.re

E. = 0.09167W (Eq. 3.4) and E. = 0.08W (Eq. 3.6), respectively for zone-4. Theya.re

based on S = 1, 1= 1, Rv = 12, K = 0.67, and Z = 0.4 (1988 Uniform Building Code) or

Z = 1 (1985 Uniform Building Code).
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The corresponding structural shear strength r and limit displacement XI from the

1988 Uniform Building Code are

and

r = "YE. = 1.4 x 0.09167W =0.1426W
~ 0.9

(3.32)

XI =strength =0.1426W = 3.19 mm (3.33)
stiffness W02W!g

where"Y = 1.4 and ~ = 0.9 are the load and resistance factors, respectively. Based on the

1985 Uniform Building Code, r = O.l251W and XI = 2.8 mm.

Consider the alternative model of seismic hazard discussed in Section 3.3.2. Suppose,

the ground motion in each seismic event can be represented by a zero-mean stationary

Gaussian band-limited white noise {(t) with one-sided mean power spectral density

G(w) = {GO, 0 < w < W (3.34)
0, otherwise

wnere Go is the spectral intensity of noise and wis the cutoff frequency for the band-limited

white noise. Assuming w= 2511' rad!s [179], the spectral moments can be obtained from Eq.

3.14 and are found to be >'0 = 78.54Go and >'2 = 161492Go. From Eqs. 3.13 and 3.15 and

the condition Fr =50 ,r(Y = alO) = 0.9, it can be shown that [179]

T, =30exp [-3.2M(";' ) 0."'] =2.83 • (3.36)

as proposed in Ref. [122]. Fig. 3.6 shows the variation of spectral intensity Go in Eq. 3.35

with mean rate >.. Sites A and B are characterized by frequent small seismic events and rare

large earthquakes, respectively. However, designs at both sites are identical according to the

Uniform Building Code [100,101].
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Reliability AnalY8is

The seismic reliability Ps can be obtained from the probability that seismic load E does not

exceed a deterministic bue shear resistance r during the service lifetime T. The assumption

of deterministic structural characteristics is satisfactory at this level of analysis due to the

large uncertainty in seismic load. Hence, the lifetime reliability

Ps = Pr(E < r)

P (
1.2YsoSW )

= r RTol < r

= Pr(Yso < yo) (3.37)

in which yo = RToir/(1.2SW) is the design peak ground acceleration. Using R = 7 for

special moment resisting frames, yo becomes 0.3731 and 0.331 for 1988 Uniform Building

Code and 1985 Uniform Building Code, respectively. From Eqs. 3.12 and 3.37, the seismic
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reliability of the structure designed by the 1988 Uniform Building Code is [100]

[ {
0.373 }-2.3]

Ps = exp - (0.38 x 0.4) = 0.88 (3.38)

for both sites A and B. The corresponding reliability index is Pc =.-1 (0.88) = 1.175. If the

design is performed by the 1985 Uniform Building Code, the reliability becomes Ps = 0.845

with Po = 1.015.

Site seismicity can be accounted for in a more realistic way if reliability calculations

are based on Eqs. 3.13 and 3.15. According to this method, reliabilities of structure designed

by the 1988 Uniform Building Code are Ps = 0.68825 (Po = 0.491) for site A and Ps =
0.8024 (Po = 0.85) for site B. The corresponding reliabilities of the structure designed

by the 1985 Uniform Building Code are Ps = 0.098 (Pc = -1.29) for site A and Ps =

0.5664 (Pc = 0.167) for site B.

Discussions on Results

Figure 3.7 shows the distribution F(y) in Eq. 3.13 for sites A and B. Fig. 3.8 shows the

lifetime probabilities Fr(y) in Eq. 3.15 for T = 50 yr for sites A and B and corresponding

lifetime distribution Fso(Y) in Eq. 3.12 used in Refs. [65] and [149].

Note that all these distributions take on the same values at ato = O.4g but differ

significantly for other values of peak ground acceleration. Thus designs by the Uniform

Building Code (100,101] at sites with smal~ values of ~ are relatively safer than those with

large values of ~, if the design peak ground acceleration YO is less than alO. However, the

above designs become relatively unsafe when YO is greater than 010.

Designs by the 1988 Uniform Building Code have higher reliability than those by the

1985 Uniform Building Code. However, in designs by both codes (i) the reliability indices

are lower than those for gravity loads consistent with findings in Refs. [65] and [149], and

(ii) reliability of structure depends strongly on mean arrival rate ~.
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SECTION 4
Dynamic Reliability Of Nondegrading Systems

4.1 Introduction

There is a growing consensus in the earthquake engineering community that a single ground

motion parameter such as peak ground acceleration and the static analysis may not reliably

predict the actual behavior of structure. In addition to earthquake intensity, the evaluation

of seismic performance must account for the details of ground acceleration and the dynamic

structural characteristics. It is thus essential to conduct a parallel dynamic reliability analysis

for an assessment of static reliability measures obtained earlier.

In this section, dynamic reliability analyses are performed to evaluate the adequacy

of static reliability indices obtained in the previous phase of the work. The analysis involves

(i) stochastic models of seismic ground acceleration, (ii) simple nondegrading models of

structural systems, and (iii) damage-related failure criteria. Both linear and nondegrading

nonlinear systems are considered and the reliability estimates are made by using several

failure criteria. The following sections will continue to focus on this evaluation procedure by

including various types of nonlinearity and system degradation process.

4.2 Linear Systems

4.2.1 Equations of Motion

Consider a system of differential equations representing the motion of discrete, linear elastic

multi-degree-of- freedom structures

rnX, +eX, + leX, = -mdW, (4.1)

in which m is the mass matrix, e is the damping matrix, k is the stiffness matrix, X, E

!tit is the generalized displacement vector at time t, d E !tIt is a influence coefficient or

direction vector which contains unity for all degrees of freedom in the same direction of

ground motion( e.g., translations) and zerw>" for all other degrees offreedom (e.g., rotations),
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and W, is a general real-valued zero mean nonstationary colored process. It is assumed that

the system mechanical properties are deterministic.

Mechanical linear systems can be divided into two classes: systems with proportional

and nonproportional damping. Damping matrix of systems with proportional damping can

be expressed as a linear combination of mass and stiffness matrices. As a result, classical

modes of vibration exist and response characteristics can be obtained from the joint statistics

of the pairs of modal coordinates [80]. This section examines systems with more general

nonproportional damping.

Following the state vector approach [67,94,136] with the designation of 81" = X, and

82,t = Xc, the equivalent 2n first order linear differential equations in sta.te va.riables become

9, = A8, +GW,

where

and

with I representing the n-dimensional identity matrix.

4.2.2 Coordinate Transformation

(4.2)

(4.3)

(4.4)

(4.5)

Consider a general change of physical variables 8, E ~211 into canonical variables V, E C211

via the transformation

(4.6)
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which uncouples the real system in Eq. 4.2 into the following complex modal coordinates

given by

v= =:V, + .-lGW, (4.7)

where. is a complex matrix comprisin~; eigenvectors of A and s: = .-1A. is a complex

diagonal matrix with diagonal elements tp" E C, k = 1,2" . ',2n as the eigenvalues of A.

Assume that the eigenvalues tp" and eigenvectors _" of A are distinct so that the matrix

- = [-t, .2,' ", -2"] has an inverse. From Eq. 4.7, the kth uncoupled equation

(4.8)

with the initial condition V", = 0 has the solution,

V",t = !k lot exp[tp,,(t - u)]W.du (4.9)

where \'t., E C and It E C are the kth components ofV, E C2" and .-lG E C2", respectively.

4.2.3 Second Moment Descriptors of Response

Expectation, variances and covariances of pairs of modal coordinates V, E C2" can be

evaluated using Eq. 4.9 and are given by

E[V,.,] = 0

., r
E[l1:.,V,••] = AI'10 du exp(tp,,[t - uJ) 10 dv exp(tp,[s - v])E[W.W"J)

(4.10)

(4.11)

where the overline denotes the complex conjugate. These results simplify significantly when

the excitation W, is stationary and/or white. The above moments (i.e., means, variances

and covariances) can be assembled into the complex modal mean vector

Pv ~ E[Vt] = 0

and complex modal covariance matrix
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del [ -T]Ev(t,s) = E V,V, (4.13)

where E[·] is the expectation operator. Using Eq. 4.6, the second-moment statistics of

response 8, E R2n can be found as

and

P, ~ E[X,) =.E[V,] =0 (4.14)

(4.15)

where P, and E,(t, s) are real mean vector and real covariance matrix of 8, E R2R. Suppose,

a response vector process of interest Y, can be related to the physical state vector 8, through

the linear transformation

Y, =D8, (4.16)

where B is an appropriate deterministic matrix of influence coefficients. Then, the second

moment characteristics of Y, becomes

py ~ E[y,] = BE[8,] = 0

and

where py and Ey(t,s) are real mean vector and real covariance matrix ofY,.

4.2.4 Seismic Reliability Analysis

(4.17)

(4.18)

Consider a discrete linear system with the state vector 8, satisfying Eq. 4.2 where A and G

are assumed to be time-invariant and deterministic. Consider the model of seismic hazard

discussed in Section 3.3.2. Suppose, the ground motion in each seismic event is modeled

as a zero mean stationary Gaussian white noise (, with one-sided spectral intensity Go.
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The seismic performance of structural systems ea.n be evaluated from the condition that the

ma.ximum interstory displacement at the ith story level exceeds an admissible value. For a

N story structure, there are N such failure modes. These failure criteria are usually relevant

when the limit states associated with the serviceability of building systems are considered.

Consider now the ith interstory response vector process ~i" = {Oi,,, 6i,,)T where

Oi" = 1';" -1';-1"

6i" =li" -li-l"

(4.19)

(4.20)

in which the ith component Yi,' of Y, E RN denotes the ith story displacement. The mean

/AtJ,. and covariance EtJ,.(t, s) of the interstory response vector ~i" E R2 becomes

and

(4.21)

EtJ,.(t,s) ~ E [~i,,~r..]

= [E(Yi,' - Yi-l,r)(Yi,. - Yi-I,.)
(sym)

E(~" - ~_I,')(~,. - ~-I,.) ]

E(Yi,t - Yi-l,,)(l'i,. - l'i-I,.)

(4.22)

which can be easily obtained from the known covariance matrix Ey(t, s) in Eq. 4.18. Since

the input excitation is Gaussian process, the state vector 9, is Gaussian and 80 are the

responses Y, and ~i".

Event Reliability

The E":"ilt reliability PS,i(T.) represents the probability that the maximum ith interstory dis

placement Oi" does not exceed a critical threshold Oi,er during an earthquake of deterministic

stron~ motion duration T.. Thus, the reliability is

PSi(T.) ~ Pr (max 16i,I < 6i er)
, 0<'<7',"
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which cannot be generally determined exactly. However, it can be approximated by [203,

128]

PS,i(T,) ~ exp [-2 loT. V(cSi,crjt) dt] (4.24)

in which V(6i,cri t) is the transient mean 6i,cr-upcr08sing rate of nonst~tionary Gaussian ran

dom process cSi,t at time t. Exact and approximate methods for ccJculating mean upcrossing

rates of Gaussian processes can be found in the current literature and is given by [184,185]

V(6i,cri t ) = V 1 ~ (...; .si,er ) [(filt·~ (#li,t:) + #li,t·~ (#li,t:)] (4.25)
E11(t, t) En(t, t) (fi,t CTi,t

where

• cSi crE12(t, t)
#li,t = 'E (t t) ,

11,
(4.26)

.•2 _ E (t t) {E12(t, tn2
(4.27)

(f',t - 22 , - Eu(t,t) ,

and Eij(t, t), i,j = 1,2 is the ijth element of E~(t, t) in Eq. 4.23. When 6i,t attains

stationarity, EA(t, t) becomes time-invariant with its constant elements En(t, t) = Ell,

E 12(t, t) = 0, and E22 (t, t) = E22. Consequently, the steady-state mean cSi,cr-upcrossing rate

V,,(cSi,cr) simplifies to

V,,(c\cr) = 2~ J~:: exp ( - ~~::) . (4.28)

Eqs. 4.25 and 4.28 can be used to substitute V(cSi,cri t) in Eq. 4.24 to obtain event reliability

in Eq. 4.23 when cSi,t is assumed to be nonstationary and stationary, respectively.

Lifetime Reliability

The lifetime reliability PS,i(1') can be defined by the probability that the ith interstory

displacement cSi,t does not exceed cSi,cr during the lifetime l' of structural system. This can

be obtained following similar considerations as in Eqs. 3.13 and 3.15. Acr,ordingly, the

reliability is
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(4.29)

where A is mean arrival rate of earthquakes discussed in the previous section.

4.2.5 Numerical Example

Example 4.1

Consider the special moment resisting frames in Example 3.2 designed by both 1988 Uniform

Building Code and 1985 Uniform Building Code. The seismic reliability indices of these

frames are already computed by the static method for the two sites A and B which are

characterized by the same value of dl0 = OAg but different mean earthquake arrival rates

AA = 0.92/yr and AS = 0.024/yr, respectively. In this example, these reliability measures

are evaluated by the dynamic method with linear elastic restoring force.

Consider the model of seismic hazard discussed in Section 3.3.2. Suppose, the ground

motion W, in each seismic event is modeled as stationary Gaussian band-limited white noise

with one-sided mean power spectral density G(",,) = Go for"" =:; iii and zero otherwise. The

spectral intensity Go is equal to 10026 mm2 8-3 when A = AA = 0.92 yr-1 and 16090

mm2 8-3 when A = AS = 0.024 yr-1 for a strong motion duration T. = 2.83 8 as obtained

earlier. Assume that the frames can be represented by linear oscillator with initial natural

frequency ""0 = 20.944 rad/8 and damping ratio' =0.05.

The event reliability Ps(T,) of the linear oscillator can be obtained from the probabil

ity that the largest value of displacement response 6, of the oscillator with respect to ground

motion does not exceed a critical threshold 6Cf' during strong motion duration T,. Note that

the description of such failure criterion does not uniquely characterize seismic performance.

When 6, is stationary and the structural characteristics and strong motion duration T, are

assumed to be deterministic, the event reliability Ps(T,) obtained from Eq. 4.23 becomes

= Pr (max 16,1 < eSCf')O<,<T.

!:::! exp [-2",.(6cr)T.]
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Table 4.1: Reliability of Linear Systems

Design Site Go V•• ( Der) Ps(T.) Ps(r)
Code (mm2s-3)

(6c, ) (-X) (I3E) (lh)
UBC(85) A 10026 8.81 x 10-5 0.9998 0.991

(19.6 mm) (0.92jyr) (3.54) (2.366)
B 16090 6.36 x 10-3 0.9821 0.9787

(0.024/yr) (2.1) (2.028)
UBC(88) A 10026 3.1 x 10-5 0.999991 0.9996

(22.3 mm) (0.92jyr) (4.3) (3.35)
B 16090 7.98 x 10-· 0.997744 0.9973

(0.024/yr) (2.84) (2.78)

where the stationary mean Dc,-upcrossing rate V..(Dc,) of 6, can be obtained from Eq. 4.28

as

V•• (Der ) = 2~ J~:~ exp ( - :~:1) (4.31)

with Ell ~ 7rGo/4(wo3 and E22 ~ 7rGo/4(wo for a sufficiently large bandwidth w = 257r, as

obtained earlier. Correspondingly, the event reliability index I3E can be defined as

I3E = t~1 (Ps(T.)) (4.32)

where t(·) is the standard Gaussian cumulative distribution function. From Eq. 4.29, the

lifetime reliability Ps(r) of the oscillator becomes

Ps(r) = exp[--Xr{l- Ps(T.)}].

with the corresponding lifetime reliability index I3L defined as

IlL = t-1 (Ps(r».

(4.33)

(4.34)

Table 4.1 shows both event and lifetime reliabilities of the special moment resisting

frames for the sites A and B calculated from the Eqs. 4.30 and 4.33 for a strong motion

duration T, = 2.83 3, respectively. Also included in the table are the corresponding
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reliability indices which are calculated by using Eqs. 4.32 and 4.34. These reliability measures

by the linear elastic dynamic method are obtained when the design is modified to r· = 7r

in Eq. 3.52 to account for the use of R = 7 in designing the special moment resisting frame

structures [100,101].

Results show that (i) the reliability indices by static and dynamic methods have

significantly different values, (ii) designs by two editions of Uniform Building Code [100,

101] have different reliabilities at sites with frequent small earthquakes and infrequent large

earthquakes, although the sites are characterized by the same value of alO, (iii) designs by

1988 Uniform Building Code is safer than those by 1985 Uniform Building Code, and (iv)

event and lifetime reliabilities of these designs can differ significantly particularly at sites

with frequent small earthquakes.

4.3 Nonlinear Nondegrading Systems

When studying the effects of yielding on structural response an ideal nondegrading elasto

plastic (EP) material behavior is often assumed to be the first choice. This simple and

idealized hysteretic restoring force with its vanishing stiffness during yielding is attractive at

least for two reasons. One follows the observation that many ma.terials roughly exhibit this

behavior, at least near ultimate loads. The other reason lies in the mathematical simplicity

of the model which allows analytical treatment feasible for nonlinear random vibration of

hysteretic systems.

4.3.1 Ideal Elasto-Plastic Oscillator

Consider a. single-degree-of-freedom (SDOF) lightly damped nonlinear oscillator with mass

m subjected to stationary Gaussian random excitation Wt with the relative displacement

response Xt satisfying the differential equation

- • 2 -
Xt +2(woX, +WO Z, = -W, (4.35)

In Eq. 4.35, wo is the initial natural frequency, (is the viscous damping ratio, and Z, is the

ideal elaste-plastic hysteretic variable which can be modeled as
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Zc = Xc [1 - H(Xc/x,)H(Zc/x. - 1) - H( -Xc/x.)H(-Zc/x, -1)] (4.36)

where x. is the yield displacement of the oscillator, and H(e) is a unit step function, i.e.,

H(e) = 1 for e~ 0 and 0 for e< O. Fig. 4.1(a) shows the restoring force characteristics of

the ideal elasto-plastic oscillator. At the start of the motion and untillX,1 crosses the yield

level x, for the first time, the solution of Eq. 4.36 becomes Zc = Xc with the corresponding

restoring force F = wo 2Xc. Thus, the response of this EP system is identical to that of

an associated linear system with constant stiffness It = wo2m and is shown in Fig. 4.1(b).

Behavior surrounding the onset of the inelastic deformation is equivalent to a first-crossing

problem for the associated linear oscillator [222,224,232,223].

In between yield level crossings, the EP system also behaves like a linear oscillator.

Suppose that at some known time t, the most recent yield level crossing brought the total

plastic deformation up to a value Xc' =d. The total displacement at time t will then consist

of a permanent set d and a linear elastic component X,e, i.e., X, = d + X,e. The process

Xl changes rather abruptly whenever inelastic action occurs. For d = 0, i.e., before any

plastic deformation, Xc =Xce. A realization of this process Xce is shown in Fig. 4.2(a). It

is obtained by subtracting the plastic deformation process Xl in Fig. 4.2(b) from the total

displacement process Xc in Fig. 4.2(c). The. permanent set Xl remains invariant as long as

the absolute value of Xce is smaller than the yield threshold x•. Each time IX,el exceeds z"
however, inelastic action is known to occur.

4.3.2 Seismic Performance Evaluation

Consider the seismic hazard model discussed in Section 3.3.2. Suppose, the ground motion in

each seismic event can be modeled as stationary Gaussian random process "" with one-sided

mean power spectral density G(w). The structural and material characteristics are assumed

to be deterministic.

Seismic performance of structural systems can be evaluated in terms of the condition

that a specific response or damage level is not exceeded during ground motion. In this section,

several response quantities of interest along with their stationary probabilistic characteristics

are discussed.
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(4.37)

Event Reliability

Ductility Factor

One of the most extensively used damage index in seismic analysis is the ductility

factor. If the plastic action occurs during deterministic strong motion duration T. associated

with a seismic event W" the ductility factor can be expressed as

max IXll
D ·li F de! 1 o<t<T.uctJ ty actor + -=-=-=-....;;.....--x,

= 1 + M.
x,

where M. represents peak inelastic deformation during strong motion duration T•. The event

reliability Ps(T.) of the nonlinear oscillator can be obtained from the probability that the

ductility factor does not exceed a threshold PO during a time interval (0, T.). Thus, reliability

becomes

Ps(T.) ~r Pr [Ductility Factor < po]

= Pr [M. < x,(po - 1)]

= FM. (:r,(po -1)) (4.38)

in which FM. ({) is the cumulative probability distribution of M.. This probability can

be approximated by viewing the upcrossings of the process IXll of a fixed threshold d

as a nonhomogeneous Poisson process with transient mean rate "M. (aj t). The mean rate

11M. (d; t) is proportional to the stationary mean rate IIc( x,) of jump occurrence in Xl and

can be obtained from

IIM.(d; t) = IIc(x,)p(d; t) (4.39)

where p(d; t) is the probability that a plastic set contribution at time t results in an upcroesing

of the level d. The net result which can be obtained from i;he original reference [222] is the

following approximate expression for FM.(e)
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where

and

in which

F.v(e) = exp [- {exp[vc(x,)T.J -1) exp ( -~)]

Vc( z ) =..!..- {K; exp [_=l] (1 _exp [_ ~QX,])
, 27r VA;, 2Ao V2trx·

(4.40)

(4.41)

(4.42)

(4.43)

is the ith spectral moment of Xte with one-sided mean power spectral density Gx.(w), and

q is a factor determining the degree of correlation among successive peaks given by

(4.44)

Since Xt
e represents response of the associated linear oscillator, Gx.(w) can be readily

determined from the input spectrum G(w).

Cumulative Plastic Deformation

Another useful indicator of seismic damage assessment of structural systems is the

energy dissipated during strong motion duration T. of a seismic event [148]. This dissipated

energy is proportional to accumulated absolute plastic deformation ~t which is defined as

N,

At = E IAil
i=1

(4.45)

where IAil is the absolute plastic set during ith isolated (-x" +x,)-outcroaing of the dis

placement response Xt e of the associated linear system. Assuming that the damping force

2(woX: is very small compared with the yield force F, = wozmz, in spring (a consequence

of small (), Ka.rnopp and Scharton [114] derived a simple approximate expression
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(4.46)

which follows from the argument that all the kinetic energy mXt' /2 of the oscillator is

released into work done F.I~I =wo2mx.I~1 due to plastic deformation. The event reliability

Ps(T,) of the oscillator can be similarly obtained from the probability that ~T. does not

exceed a threshold d during a time interval (0, T,) and is given by

Ps(T,) dJ! Pr [~T. < dJ (4.47)

In spite of correlated outcrossings, an estimate of above reliability can be obtained by assum

ing statistical independence of homogeneous Poisson x,-upcrossin~s of X,e with steady-state

mean rate v(x,) = 1/21r /A2/AO exp(-x,2/2Ao). Thus, the reliability becomes

where

(4.49)

is the gamma function, Xt, i = 1,2, "', k is independent and identically distributed standard
k ~2 k' 2

Gaussian random variable, and Ei-l Xt = Ei=l (Xt/wotTx') is the chi-squared random

variable with k degrees of freedom.
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The event reliability index fJE can be defined as

fJE =.-1 (Ps(T.» (4.50)

where Ps(T.) is the event reliability which can be obtained from either of the Eqs. 4.38 and

4.47 associated with the failure criteria based on ductility and cumulative plastic deformation,

respectively.

Lifetime Reliability

The lifetime reliability Ps(T) of the oscillator can be obtained following similar considerations

as in Eqs. 3.13 and 3.15. Accordingly, the reliability is

Ps(r) = exp [-Ar{l - Ps(T.)}]

with the corresponding lifetime reliability index Ih defined as

fJL = .-1 (Ps(r».

(4.51)

(4.52)

Note that Eqs. 4.51 and 4.52 can not be applied when the analysis accounts for structural

degradation.

4.3.3 Numerical Example

Example 4.2

Consider again the special moment resisting frames at sites A and B in Examples 3.2 and

4.1 which are designed by both 1988 Uniform Building Code and 1985 Uniform Building

Code. Dynamic method with linear elastic restoring forces are already applied to assess the

adequacy of the static reliability indices for these simple structures. This example continues

to focus on the evaluation of above reliability estimates by considering nondegrading elasto

plastic hysteresis for the nonlinear oscillator representing the special moment resisting frames.

Assume as before that the ground motion W, in each seismic event is a stationary

Gaussian band-limited white noise with one-sided mean power spectral density G(w) = Go
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for w $ wand zero otherwise. The spectral intensity Go is equal to 10026 mm2 s-3 when

A = AA = 0.92 yr- l and 16090 mm2 s-3 when A = AB = 0.024 yr- I for a strong motion

duration T. = 2.83 s as obtained earlier. Assume that the frames can be represented by an

ideal nondegrading elasto-plastic oscillator with initial natural frequency wo =20.944 rad{s

and damping ratio ( = 0.05. The yield displacement x, of the EP oscillator is assumed to

be the limit displacement Xl (Eq. 3.33) obtained from the Uniform Building Code.

Two different failure criteria depending on ductility factor and cumulative plastic

deformation are employed to obtain the seismic reliability of the EP oscillator representing

the above frames at sites A and B. Fig. 4.3 shows the plots of ductility-based event and

lifetimereliabilities in Eqs. 4.38 and 4.51 ofthe structures designed by 1988 Uniform Building

Code for different values of PO at the sites A and B. They indicate significant differences in

the above reliability measures for the two sites A and B although they are characterized by

the same value of alo = 0.49. This observation is also exhibited when the reliabilities shown

in Fig. 4.4 are computed from Eqs. 4.48 and 4.51 for a different failure criteria associated

with the cumulative plastic deformation in Eq. 4.45. Figs. 4.5-4.6 provide the similar sets

of plots of event and lifetime reliabilities associated with above failure criteria (ductility and

cumulative plastic deformation) for the structures designed by 1985 Uniform Building Code

at the sites A and B. The above probabilities depend essentially on earthquake intensity and

duration and on structural dynamic characteristics. Thus, designs at sites with the same a10

can have different reliabilities because such sites may correspond to earthquakes of different

occurrence rate ~ and spectral intensity Go.

The system factors Rand K in the Uniform Building Code depends essentially on

the ductility characteristics of structural systems. However, t.here is no reliable way of

obtaining corresponding ductility capacity for a code-specific system factors. Therefore, for

several ductility thresholds po ~ 6,8,10, the event and lifetime reliabilities along with the

associated reliability indices of above designs are shown in Table 4.2. Significant differences

are exhibited when these reliability measures are compared with those obtained by the static

method in Section 3.

Results show that (i) the reliability indices by static and dynamic methods have very

different values, (ii) designs by two editions of Uniform Building Code [loo,101J have differ-
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Table 4.2: Event and Lifetime Reliabilities of Elasto-Plastic Oscillator for Failure Criteria
Based on Ductility

Design Site 110 = 6 110 = 8 110 = 10
Code Ps(T.) Ps{r) Ps(T.) P.(r) Ps(T.) Ps(r)
(x.) (..\) (PEl (lh) (PE) Uh) (PE) (Pr)

UBC(85) A 0.8399 0.0063 0.9124 0.281 0.9955 0.8143
(2.8 mm) (0.92/yr) (0.99) (-2.49) (1.92) (-0.58) (2.62) (0.89)

B 0.5012 0.5536 0.8043 0.1901 0.9326 0.9223
(O.024/yr) (0.02) (0.14) (0.86) (0.81 ) (1.50) (1.42)

UBC(88) A 0.9496 0.0982 0.9952 0.8019 0.9996 0.9197
(3.19 mm) (O.92/yr) (1.64) (-1.29) (2.59) (0.85) (3.32) (2.05)

B 0.6965 0.6948 0.9201 0.9092 0.9813 0.9778
(0.024/yr) (0.52) (0.51 ) (1.41 ) (1.34) (2.08) (2.01)

ent reliabilities at sites with frequent small earthquakes and infrequent large earthquakes,

although the sites are characterized by the same value of 410, (iii) designs by 1988 Uniform

Building Code is safer than those by 1985 Unifonn Building Code. and (iv) event and life

time reliabilities of these designs can differ significantly particularly at sites with frequent

small earthquakes. Similar observations were noted when the nondegrading linear systems

were considered.
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SECTION 5
Dynamic Reliability Of Degrading Systems

5.1 Introduction

A proper selection of restoring force models for the constituent components of specific struc

tural systems is one of the major factors governing accurate prediction of seismic response

and reliability [175]. For example, when the reinforced concrete structures are considered, it

is desirable that the hysteretic loops of various components exhibit several significant aspects

such as stiffness degradation, strength deterioration, and pinching behavior, which have all

been observed in the laboratory tests. The system of ordinary differential equations which

represents the motion of these degrading systems due to earthquake ground acceleration

are usually nonlinear with time-dependent coefficients. Generally, no exact analytic method

exists to obtain the solutions of these nonlinear time-varying systems. For large systems,

the only feasible approach to the deterministic stress analysis is the numerical step-by-step

integration of equation of motion.

This section continues to examine the validity of static reliability indices by con

ducting seismic analysis of nonlinear degrading systems. The method of analysis is based

on (i) stochastic models of seismic ground acceleration, (ii) nonlinear dynamic analysis of

degrading structural systems, and (iii) damage-related limit states. Various failure criteria

based on maximum deformation combined with cumulative load effects and interstory drift

are employed to obtain seismic reliability measures of reinforced concrete frame structures

designed by 1985 Uniform Building Code. Results from these analyses provide a means to

evaluate the adequacy of static reliability indices for the above frames, which were presented

in a previous section of this report.

5.2 Seismic Load Process

The characterization of seismic load process at a site during the lifetime of structure requires

description of a.ll seismic events including pre-shocks, main events, and after shocks. It
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is expected that a code-designed structure will withstand all these earthquakes during its

exposure time. A very simple model of seismic hazard based on a filtered Poisson process was

discussed in Section 3.3.2. This model was applied to obtain dynamic reliability measures

of linear and nonlinear nondegrading systems in Section 4. However, when the structures

are modeled as nonlinear degrading systems, the equation (e.g., Eq. 4.51) used previously

to obtain lifetime reliability from event reliability cannot be applied. Thus, the reliability

analysis becomes much more difficult as it requires to account for the cumulative damage

during consecutive events.

Alternatively, it has been proposed to evaluate seismic performance due to the lifetime

largest load effect. This largest load effect is not physically realizable and it characterizes

only an artificial seismic environment. Nevertheless, such description of hazard is abundant

in the current deterministic and probabilistic seismic analysis. It will be used here in this

section for the initial study to obtain dynamic reliability measures for degrading systems.

The issues related to more realistic hazard model (Section 3.3.2.) and damage accumulation

between consecutive seismic events will be addressed in the following sections.

Consider a site where the lifetime largest load effect during exposure time T of seismic

environment can be represented by a nonstationary colored process Wr(t) with strong motion

duration T,. Suppose, the ground acceleration process Wr(t) can be modeled as a uniformly

modulated random process

(5.1)

(5.2)

where t/J(t) is a modulation function and Wr(t) is a zero mean stationary Gaussian colored

noise with one-sided mean power spectral density [113,209,127,144]

{G~ wE (0,00)
G(w) = 0[1-(~)2] +[2(,(~)] ,

0, otherwise.

The spectrum in Eq. 5.2 is obtained when a stationary Gaussian white noise with ~>ne

sided spectral intensity Go is passed through a time-invariant linear filter with the frequency

response function in Eq. 2.56 with the spectral parameters (, and W" Fig. 5.1 shows the
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plots of one-sided Kanai-Tajimi spectrum of W,.

-G (w)

w

Figure 5.1: One-sided Kanai-Tajimi Spectra

During the stationary strong motion phase of Wr(t), the distribution of lifetime peak

ground acceleration Yso can be obtained from spectral characteristics of W,.(t) as

~ Pr (max IWr(t)1 < PI)
O<,<T.

~ exp [-2ii(y)T.J

in which F50(Y) is the cumulative distribution function of Yso,

(5.3)

ii(y) ~ ~ ~exp (_ y.2 )
2w-~ I;; 2~o

= ii(O)exp (-fI;) (5.4)

is the stationary mean y-upCf08Sin« rate of W,.(t) with
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ii(O) =1.. ~ (5.5)
2,.. ~ 1;

as the stationary mean zero-upcrossing rate of Wr(t), and ~i is ith spectral moment of Wr(t)

given by

~i = koo

""iG(~)dw1. (5.6)

When the expression for G(~) in Eq. 5.2 is substituted in Eq. 5.6, the spectral moments ~o

and ~2 can be obtained as

in which

Xo = PoGo (5.7)

(5.8)

(5.9)

(5.10)

O· .
1.'(0.) - ~ (Old{} (5.11)

I -.. 10 (1 _ 0 2)2 + 4(,202 '

O· = ~·/~" ~. is the cutofF frequency which replaces the upper integration limit of infinity

in Eq. 5.6 [122].

5.2.1 Site Consistent SpectrallnteDsity

Consider the lifetime peak ground acceleration Y50 at a site which has the cumulative dis

tribution function shown in Eq. 5.3. From this distribution function, it can be shown that

the approximate expected value of Y50 is [57)

E [Yso] ~ (J2IDg[2ii(O)T,] +J 'Y ) II
2log[2ii(O)T,]
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where "Y ~ 0.5772 is the Euler's constant. Consider now the alternative description of the

distribution function of Yso given by [53,65]

(5.13)

with the parameters k ~ 2.3, and u = 0.38010 where 010 is the 10% upper fractile of 1'50.

The expected value of }'So from this Extreme Type-II distribution function in Eq. 5.13 is

E [}'So] =ur (1 -1) =1.58u = 0.60010' (5.14)

(5.15)

When the two expected values in Eqs. 5.12 and 5.14 are equated, they give rise to an

expression for the site specific spectral intensity

[ ]

2

Go = -!.. 0.6010

Po v'2Iog[2v(0)T.1 + J2Iod1'-;(0)T,]

which is consistent with the site specific value of 010 obtained from the Algermissen-Perkins

map (Fig. 2.22) [3]. For a given Til and spectral parameters w, and (" Po and P2 can be

calculated by using Eqs. 5.9 and 5.10. Using these values, v(O) can be obtained from Eq.

5.5. Finally, for any site specified value of 010, the corresponding spectral intensity Go can

be computed from Eq. 5.15. Note that when the quantities T., w" (, are treated as random

variables, Go also becomes random. However, the Same algorithm can be applied by using

their relevant realizations.

5.2.2 Generation of Synthetic Seismograms

An elementary example of the oscillatory process is the uniformly modulated random process

which can represent seismic ground acceleration [32]

(5.16)

in which .p(t) is a slowly varying real-valued deterministic function modulating the amplitude

of Wr(t), and Wr(t) is rea.J.-valued, zero mean stationary Gaussian process with one-sided
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mean power spectral density G(w). The family of oscillatory functions of the process is

{tb(t)eiw'} 80 that Wr(t) has the following one-sided evolutionary power spectral density

(5.17)

Consider a discrete approximation of O(w) in Fig. 5.1 consisting of N,., spikes each

of which has magnitude O(WI:) at the frequency Wir and is shown in Fig. 5.2. The associated

-G (Wk)

I I I I I

Figure 5.2: Discretization of Kanai-Tajimi Spectra

stationary process Wr ( t) can thus be represented by a superposition of harmonic components

giving the discrete spectral decomposition of Wr(t) as

Nw

Wr(t) = tb(t) E tTlr [Air cos(Wlrt) +Bir sin(wlrt)] (5.18)
1=1

where tTlr = JG(WIr)~ICl Air and Bir are independent and identically distributed standard

Gaussian random variables.
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Algorithm for Artificial Accelerograms

The following list provides a procedure for generating artificial seismograms. The input time

series is consistent with site specific spectral parameters and the 10% upper fractile GI0 of

lifetime peak ground acceleration.

• Input values of filter parameters "". and (. suitable for the soil condition of site or

generate their samples, if random;

• Calculate the quantities PO and P2 from Eqs. :>.9 and 5.10.

• Calculate the ;;(0) of Wr(t) from Eq. 5.5.

• Input strong motion duration T, or generate its sample, if random. Specify the site

consistent value of 010 and hence calculate the corresponding one-sided mean power

spectral intensity Go from Eq. 5.15.

• Discretize the mean power spectral density G(",,) into Nw spikes

• Generate 2Nw samples of independent standard Gaussian random variable to obtain a

realization of stationary Gaussian random process Wr(t) .

• Multiply with the modulation function 1/1(t) to obtain a realization of nonstationary

random process Wr(t).

5.3 Nonlinear Degrading Systems

5.3.1 Equation of Motion

Consider a discrete, nonlinear structural system subjected to seismic ground acceleration.

The equation of motion satisfies the following governing system of ordinary differential equa

tion

mi, +eX, +g({X"O < s < t}jo) = -mdWr(t)

with the initial conditions
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X o= 0 and :to = 0 (5.20)

in which X, E R" is the vector of generalized displacement, m is the constant mass matrix,

c is the linear time-invariant viscous damping matrix, g is a vector functional representing

general nonlinear hysteretic degrading restoring forces, 0 is a constant vector of hysteretic

parameters determining rules for structural degradation, d is an influence coefficient vector,

and WT'(t) is a real-valued scalar stochastic process representation of ground acceleration.

5.3.2 Constitutive Law for Reinforced Concrete Structures

The univariate restoring force used to describe the hysteretic behavior of reinforced concrete

structures due to seismic ground shaking depends on the type of structural component to be

modeled. A three parameter hysteretic model developed by Park et al. [1561 is used for the

nonlinf"a.r ciynamic analysis conducted in this study. This model consists of piecewise linear

segments in the hysteretic loops and is capable of representing various types of reinforced

concrete members with appropriate choice of parameters.

Fig. 5.3 shows a nonsymmetric trilinear backbone curve consisting of generalized force

versus displacement plot to describe the monotonic loading behavior of individual compo

nents of reinforced concrete structures. The discontinuities in each direction (positive and

negative) correspond to the cracking and yielding points of a critical cross-section and may

occur at different magnitudes due to differential quantities of reinforcing steel at top and

bottom of cross-section (e.g., beams with dissimilar positive and negative steel reinforce

ments). A wide variety of restoring forces can be achieved through the combination of this

general nonsymmetric trilinear skeleton curve and a general hysteretic rule governed by a

vector 0= {Ol,02,03}T of hysteretic parameters. The values of the three components of

a determine the properties of (i) stiffness degradation, (ii) strength deterioration, and (iii)

pinching behavior of the material model.

During repeated load reversals due to seismic ground acceleration, the stiffness of

a reinforced concrete component experiences a progressive reduction as the magnitude of

the deformation process increases. The decay in stiffness is usually caused by cracking of

the concrete and bond deterioration of the reinforcing steel-concrete interface [189J. The
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Figure 5.3: Trilinear Backbone Curve

parameter at specifies the degree of the stiffness degradation.

In addition to stiffness degradation, reinforced concrete members also undergo strength

deterioration under cyclic loading. The strength degradation reduces maximum load capac

ity of a member and depends essentially on the amount of hysteretic energy dissipated [76,

106,159J and many other structural factors such as the confinement ratio, magnitude of axial

force, and concrete strength. Correlation between commencement of strength decay and the

spalling of concrete cover has also heen observed [17J. In the three parameter model, the

rate at which the strength deterioration occurs is determined by the parameter 02.

The restoring force model also accounts for the pinching phenomena of reinforced

concrete members by the third parameter 03. This is mainly caused by the slippage of the

reinforcing steel when there is a sudden stress reversal. This behavior is usually pronounced

and become biased for T-beams in reinforced concrete structures where there is substantial

difference in the longitudinal steel ratios between the top and bottom reinforcing bars. The

introduction of pinching leads to a general reduction of hysteretic loop areas and indirectly

to the amount of energy dissipation. An elaborate study of the effects of all the components
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of Q can be obtained from the original reference [156].

5.4 Seismic Response and Reliability

5.4.1 Computer Code IDARC

I DARC, which is an acronym for Inelastic Damage Analysis of Reinforced Concrete Struc

tures, is a deterministic code for structural dynamic analysis and was developed by Park d.

[156]. The program, based on a "three-parameter" hysteretic model described earlier, can

perform both static and dynamic response analyses of reinforced concrete structures under

seismic excitations. A wide variety of structural models are available that include beam el

ements, column elements, shear-wall elements, edge-column elements, and transverse-beam

elements. The combination of these five element types allows for a wide variety of struc

tural configurations that can be analyzed by I DARC. Details of these element types can be

obtained from Ref. [156].

The response and damage analysis in I DARC are conducted by performing direct

step-by-step numerical integration of the equations of motion (Eq. 5.19). The basic oper

ation in the step-by-step numerical integration of a system of differential equations is the

approximate conversion to a set of simultaneous algebraic equations. This is accomplished

by introducing a simple relation between displacement, velocity, and acceleration vectors

which may be assumed to be valid for a small time increment. Appendix B provides a

n"merical procedure for the incremental dynamic analysis that was coded in I DARC [23,

145] to compute the nonlinear response characteristics of structural systems. This numerical

scheme with the parameters 11 = 1/2 and 12 = 1/4 (see Appendix B) is unconditionally

stable. Thus, the determination of the time step ~t depends only on the accuracy desired in

the numerical integration. In this study, I DARC is used for the structural dynamic analysis.

5.4.2 Seismic Performance Evaluation

Seismic performance of structural systems can be evaluated in terms of the condition that a

specific response or damage level is not exceeded during ground motion W,.(t). Both ground

acceleration and structural and material characteristics are assumed to be random. Hence,

a realistic assessment requires computation of the non-exceedance probability of a response

5-10



quantity of interest. In this section, several damage indices based on maximum deformation

and cumulative load effects are considered.

Maximum Deformation

The simplest damage index based on maximum deformation is the interstory drift JD which

can be defined as [199,201]

JD= ~m
h

(5.21)

in which ~m is the maximum relative displacement between two stories and h is the story

height [199,201]. The lifetime seismic reliability Ps(-r) can be evaluated by the probability

Ps(-r) ~f Pr(1D <~) (5.22)

where So is the allowable threshold of interstory drift. Hence, the corresponding reliability

index becomes

(5.23)

Maximum Deformation and Cumulative Damage

Structural damage during earthquake depends primarily on maximum deformation and the

hysteretic energy dissipated during repeated load cycles [22,47,159,160,157]. The damage of

any structural members can be measured by the index [159,160,157]

DJ = 6". +~JdE (5.24)
6. Q,6.

where 6". is the maximum deformation, 6. is the ultimate deformation under monotonic

loading, Q, is the calculated yield strength, dE is the incremental absorbed hysteretic energy,

and fJe is a non-negative parameter which can be estimated from the experimental data.

The probabilistic evaluation of seismic performance based on this damage index requires the

computation of lifetime seismic reliability Ps(-r) given by

Ps(-r) ~ Pr(DJ < do)
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where do is the allowable value of structural dama.ge. Accordingly, the reliability index

becomes

/h = .-1 (Ps(r».

5.5 Numerical Example

(5.26)

Consider the 5-story, 3-ba.y RIC planar frames in Example 3.1 which is designed by appropri

ate provisions of 1985 Uniform Building Code and ACI Code 318-83 for seismic zones-2 and

-3. Design details of these frames and the seismic reliability estimates by static method are

already provided in Section 3. In this example, a dynamic reliability analysis is performed

to obtain benchmark results against which the static reliability indices can be compared.

5.5.1 Structural System

The structural modeling of the frames are done by using beams and columns with critical

cross-sections at their ends. The stiffness matrix of an element is derived from the inverse of

the flexibility matrix with the flexibility distribution assumed to be linearly varying between

the critica.1 cross-section and the point of contraflexure. Details of this model can be obtained

from the original reference [1561.

The trilinear backbone curve of a structural component is defined by various com

ponent properties, such as cracking moments, cracking curvature, yield moment, and yield

curvature. These quantities are ca.1culated from a number of empirical relations developed

from experimental results of reinforced concrete structures available in the current literature

[156]. The post-yielding stiffness is taken as 1.5% ofthe initial elastic stiffness of the member.

The uniaxial constitutive law for each individual critica.1 cross-section of the frame can

be described by the trilinear backbone curve and the model parameters O}, 02, and 03 that

determine the properties of hysteretic loops. The stiffness degradation parameter o} is taken

as 2.0 for both beams and columns which is found to be fairly representative for reinforced

concrete structures [156]. The strength deterioration parameter 02 of an individual member

is calculated from the empirica.lly developed expression in Ref. [156]. No slippage of the

reinforcement is allowed either in beam or in column and the pinching parameter Q3 is set
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to one extreme value which does not account for pinching effect in the restoring force. A

typical hysteretic rule for beam or column element is shown in Fig. 5.4.

Force

Displacement

Figure 5.4: A Typical Three Parameter Model with Degrading Hysteresis

The concrete strength Ie' and yield strength F, of steel reinforcement are treated as

independent random variables with mean 3.39 k3i and 67.5 k3i, and coefficients of variation

18% and 9.8%, respectively [105,130]. The probability distribution of Ie' and F, are modeled

as Gaussian and lognormal variables, respectively [65].

Mass is assumed to be lognormal random variable with mean value equal to the

nominal value and coefficient of variation 11% [121,205,175]. The damping property is

specified by damping ratio in the first mode with mean 0.02, coefficient of variation 65%

[121,205,175]. and lognormal distribution function. The uncertainty in the stiffness property

wiD be determined by the variabilities in the basic parameters such as concrete strength, and

yield strength of steel. Due to common construction and workmanship, each of the random

variables accounting for the masses of system are assumed to be perfectly correlated among

all the stories.
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5.5.2 Seismic Load Process

Consider the seiRmic hazard discussed in Section 5.2. It is assumed that the ground accelera

tion can be represented by an elementary Gaussian oscillatory process W,,(t) which admits a

multiplicative decomposition of a zero mean stationary Gaussian random process WT(t) with

one-sided mean power spectral density G(w) in Eq. 5.2 and a modulation function t/J(t) in

Eq. 2.75. The Kanai-Tajirni spectral parameters w, and (, are assumed to be independent

random variables with their mean values 16.5 rad/sand 0.8 and coefficients of variation

42.5% and 42.6%, respectively [140,205]. These values are consistent with the intermedi

ate soil condition for which the frames are originally designed. The probability distribution

functions of w, and (, are modeled as gamma and lognormal, respectively [122]. The strong

motion duration T. is also treated as a random variable with mean 6.9 8, coefficient of

variation 42% [140,205], and lognormal cumulative distribution function. The modulation

function t/J(t) in Eq. 2.75 is chosen with t} = O.lST., t2 = l.lST., and c;p = 2.0/T•. The

total duration T4 of ground motion is assumed to be 1.5 times the strong motion duration

T.. The artificial earthquakes are generated in accordance with the algorithm described in

Section 5.2.2.

5.5.3 Seismic Performance Evaluation

Seismic performance of 5-story, 3-bay reinforced concrete frame structures are evaluated by

calculating the lifetime reliabilities in Eqs. 5.22 and 5.25 depending on two damage-based

failure criteria discussed in Section 5.4.3. In principle, these probabilities can be calculated

by using statistical linearization method [228,230,20,21,18,172]. This method is based on the

linearization of a system of nonlinear differential equations (Eq. 5.19) via minimization of the

expected value of some error measure. In earthquake engineering, the linearization method

has been applied quite extensively mainly for response and reliability analysis of nondegrad

ing systems. Recent investigations on the accuracy of statistical linearization for nonlinear

degrading systems, however, reveal that the method may significantly underestimate the

probabilistic characteristics of seismic response [172].

In this study, the reliabilities are estimated by direct Monte Carlo simulation. The

associated deterministic nonlinear dynamic analysis for a particular sample of simulation is

5-14



performed by the computer code 1DARG [156] described earlier. This program computes

the deterministic structural response by direct step-by-step numerical integration using the

Newmark algorithm. In brief, the effort in simulation consists of the following steps. First,

the samples of random variables representing mechanical models of structural systems are

generated which are consistent with their probability distribution functions. Second, real

izations of site-specific seismic ground motions are generated from the algorithm described

in the Section 5.2.2. Third, nonlinear dynamic analyses are conducted by 1DARG for each

of these sample structures and earthquake ground motions to obtain samples of several re

sponse variables of interest. Fourth, standard statistical analyses are performed to determine

probabilistic characteristics of these response or damage variables.

Maximum Deformation

Consider the interstory drift 1D in Eq. 5.21 which represents one of many damage indices

based on maximum deformation of structural response. Fig. 5.5 shows the associated lifetime

reliabilities in Eq. 5.22 for the 2nd story of the 5-story frame structure designed for seismic

zone-2. These probabilities are plotted for different values of deterministic threshold 60 • The

different plots in each figure correspond to several possible values of alO = 0.10g, 0.15g,

and 0.20g within the same seismic zone-2. Fig. 5.6 exhibit the similar results for seismic

zone-3 for several cases of alO = 0.20g, 0.30g, and 0.40g. The rightward shift of the plots in

these figures confirm the anticipation that the structural reliability decreases with increasing

values of alO within a same seismic zone. Reliabilities for other stories, which are not shown

here, can be obtained from the Ref. [171].

Maximum Deformation and Cumulative Damage

Consider the damage index DI in Eq. 5.24 which is based on combined effects of maximum

deformation and cumulative load effects due to seismic ground motion. Figs. 5.7 and 5.8

show the corresponding lifetime reliabilities in Eq. 5.25 of the beam component 2 and the

column component 21 or 26 of the 5-story frame designed for seismic zone-2 (see Section

3). These probabilities are plotted for different values of deterministic allowable damage

threshold do. The different plots in each figure are associated with several representative
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values of 410 =0.10g, 0.15g, and 0.20g within the seismic zone-2.

Figs. 5.9 and 5.10 show the similar sets of above plots for the same frame structure

designed for seismic zone-3 for several cases of of aID =0.209, 0.30g, and 0.40g. Similar trend

of decreasing seismic reliability is observed due to increase in the value of 410. The reliability

plots for other structural members of the frame designed for both zone-2 and zone-3, which

are not shown here, are also available in Ref. [171].

5.5.4 Comparison with Static Reliability Indices

One major objective of this numerical example is the evaluation of static reliability estimates

obtained in the previous phase of the study. This can be accomplished by comparing the

static reliability indices with the reliability measures obtained from nonlinear dynamic anal

yses. The dynamic reliability is estimated both at the member (Eq. 5.25) and story levels

(Eq. 5.22).

Table 5.1 shows the smallest reliability index fh in Eq. 5.23 based on interstory drift

1D (Eq. 5.21) which is obtained for the 5-story frame designed for seismic zone-2. These

values are tabulated for several cases of 410 = 0.10g, 0.15g, and 0.20g and critical t.hresholds

So = 0.5%, 1.0%, 2.0%, 3.0%, and 4.0%. Table 5.1 also provides the similar information

for designs in seismic zone-3 for several cases of a10 = 0.20g, 0.30g, and 0.40g. Results

show that the conclusions regarding seismic reliability estimates depend significantly on the

critical thresholds for the interstory drift and specific values of al0 within a same seismic

zone.

Table 5.2 shows the smallest reliability index fh in Eq. 5.26 based on the damage

index DI (Eq. 5.24) which is obtained for the 5-story frame designed for seismic zone

2. The critical threshold of do = 0.4 proposed in Ref. [156] is used here to calculate

the above quantities in the table. Table 5.2 also produces similar information when the

frame is designed for seismic zone-3. Although the failure criteria (in static and dynamic

relia.bility analyses) are different, these member level reliability indices can be compared

with corresponding static reliability measures obtained previously and is summarized in

Table 5.3. Comparisons of minimum reliability indices for the 5-story frame obtained for

various combinations of seismic zone and 410 exhibit significant differences due to the static
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Table 5.1: Dynamic Reliability Indices of 5-story Frame with Failure Criteria Based on
Damage Index I D (Eq. 5.23)

Minimum /1£ based on I D (Eq. 5.23)
60 Zone-2 Zone-3

610=0.19 610=0.159 alO=0.29 al0=0.2g alO=0.39 al0 =0.49
0.5% 2.55 1.51 0.79 0.90 -0.21 -0.85
1.0% 4.31 3.29 2.59 2.72 1.38 0.67
2.0% 6.07 5.07 4.38 4.53 2.98 2.19
3.0% 7.10 6.10 5.42 5.59 3.91 3.09
4.0% 7.83 6.84 6.17 6.35 4.57 3.72

and the dynamic methods. Similar results were also found when the nondegrading systems

were considered (Section 4). However, note that the comparisons are valid only when the

component reliabilities are considered. Concepts of system reliability are not explored in

this study.

In a recent work by O'Connor and Ellingwood [1491, a similar study regarding ade

quacy of static reliability indices for simple structural systems was performed. Their findings

suggest that the static method provides satisfactory seismic structural performance when

compared with the dynamic method. However, in Ref. (149], the analysis was based on

elementary stochastic modeling of ground motion in which the peak ground acceleration is

assumed to be random with the cumulative distribution function defined be Eq. 3.12 and the

frequency contents are obtained from an ensemble of actual seismograms. Also their study

involved simple I-story portal frame and ideal elasto-plastic material model without any

degrading characteristics. It is interesting to note that in this study, static reliability indices

are found to significantly underestimate structural reliability particularly at sites with low

seismicity.
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Table 5.2: Dynamic Reliability Indices of 5·story Frame with Failure Criteria Based on
Damage Index DI (Eq. 5.26)

Zone aiD Minimum 11£
based on DI (Eq. 5.26)

O.lg 7.69
Zone-2 0.15g 6.57

0.2g 5.13
0.2g 5.12

Zone-3 0.3g 3.60
OAg 2.91

Table 5.3: Static Reliability Indices of 5-story Frame

Zone 410 Minimum PC,l
(Eq. 3.21)

O.lg 2.19
Zone-2 O.15g 1.81

0.2g 1.50
0.2g 2.04

Zone-3 0.3g 1.59
0.4g 1.30
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SECTION 6
A Markov Model For Seismic Reliability Analysis

6.1 Introduction

Current methods for evaluating the overall seismic performance of structural systems are

based on global damage indices and lifetime mazimum seismic hazard. The global indices

are obtained by heuristic combinations of local damage measures, .md the seismic hazard is

modeled without any consideration for cumulative damage during consecutive seismic events.

Such a global measure of damage can not characterize structura.l state uniquely, provides

only a crude estimate of structural performance during seismic f'!vP!!ts, ::':ld .::a.niiu~ be used to

assess structural vulnerability to future loadings. Since most structures are designed to resist

several earthquakes during their exposure time, the lifetime largest ground motion may not be

meaningful as a design load parameter due to accumulation of damage between consecutive

seismic events. This is particularly true and unavoidable for a series of earthquakes including

pre-shocks, main events, and after-shocks during which repairs of structural systems can not

be performed.

Another important issue in the evaluation of seismic performance is the lack of exact

knowledge in the initial state of structural systems. This uncertainty is primarily caused by

manufacturing processes, errors in design, inadequate construction, unsatisfactory quality

control for new structures, and lack of information concerning damage caused by previous

seismic events for existing buildings. Reliability analysis solely based on current definitions of

global damage indices can not be applied to determine sensitivity to initial state of structural

systems. Hence, any rational assessment of structural performance should simultaneously

account for the mechallical degradation process of all critical cross-sections and components.

The objectives of this section are to evaluate the seismic perfonnance and sensitivity

to initial state of structural systems and determine the vulnerability of structures exposed

to one or more earthquakes.. A new methodology based on a Markov model is proposed

for seismic reliability analysis. The method of analysis is based on (i) simple but realistic

characterization of seismic hazard, (ii) nonlinear dynamic analysis for estimating structural
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response to earthquakes, (iii) uncertainty in initial state of structural systems, and (iv)

failure conditions incorporating damage accumulation during consecutive seismic events.

Simple structures designed by the Uniform Building Code are used to iUustrate the proposed

method. Effects of uncertainty in the initial state of these systems on seismic reliability are

also investigated.

6.2 Seismic and Mechanical Models

6.2.1 Seismic Hazard

Consider a site which is affected by a single seismic source characterized by a mean rate of

earthquake occurrence.t It is assumed that (i) the earthquake arrivals follow a homoge

neous Poisson process with mean rate ~, (ii) ground motions in different seismic events are

independent stochastic processes Wi(t), i =1,2," ·,N(r) where N(r) represents the ran

dom number of seismic events during lifetime period T, and (iii) seismic event i has random

duration t i . The supposition of stationary Poisson process has the implication that the inter

arrival times are independent and follow the same exponential distribution. Although this

representation provides an elementary model of the seismic environment, it has been found

to be consistent with historical occurrences for ground motions associated with earthqua.kes

that a.re of engineering interest in structural applications [2]. Consequently, the Poisson as

sumption may still serve as a useful but simple model of seismic hazard [53]. A similar but

simplified venion of this filtered Poisson process model was also adopted in Sections 3 and

4 of this report. Fig. 6.1 shows the schematics of seismic environment at a site.

WICtl

Fipre 6.1: Seismic Hazard at a Site
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6.2.2 Nonlinear Degrading Systems

Consider a general multistory framed structure with nc critical cross-sections each of which

has n, parameters to describe the restoring force model. The stochastic seismic modeling of

this multi-degree-of-freedom, hysteretic, and degrading system leads to the matrix differential

equations of the form (Eq. 2.47)

(6.1)

with the initial conditions

(6.2)

where t is the local time coordinate originating at the beginning of seismic event i, Xi(t)

is a vector of generalized displacements, gi is the vector functional representing general

nonlinear hysteretic restoring forces, m is the constant mass matrix, d is a vector of influence

coefficients, and Wi(t) is the stochastic process representation of ith seismic event. In

earthquake engineering, the total restoring force gi is usually modeled by the superposition

of a nonhysteretic component

(6.3)

and a hysteretic component

(6.4)

where c is the constant viscous damping matrix, k i .1 is the nonhysteretic part of stiffness

matrix, ki1 is the hysteretic part of stiffness matrix, and Zi(t) is the vector of additional

hysteretic variables the time evolution of which can be modeled by a set of general nonlinear

ordinary differential equations

(6.5)
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in which Fi is a general nonlinear vector function the explicit expression of which depends

on the hysteretic rule governed by a particular constitutive law, and Ai(t) E ~" is a damage

state vector which has n = ncn, components equal to the parameters of restoring forces at

all critical cross-section of a structural system at time t. during seismic event i and ~" is the

n-dimensional real vector space. Following the state vector approach [67,94,136] with the

designation of

81i(t) = Xi(t)

82i(t) = j{i(t)

8ai(t) = Zi(t), (6.6)

the equivalent system of first-order nonlinear differential equations in state variables become

;~(t.) =
;;(t) =
;;(t) =

92 i (t.)

_m-1 [c 82i(t)+ki.~ (81i(t»)91i(t)+ki~ (83 i(t») 81i(t)] -d Wi(t)

Fi (81 i(t), 82i(t), 83i(t), tj Ai(t») (6.7)

which can be recast in a more compact fonn

;i(t) = hi (8i(t),tjAi(t»)

with the initial conditions

8i (O) = 0

(6.8)

(6.9)

where h i (.) is a vector function, 9i (t) is the response state vector, Ai(t.) E ~. is the damage

state vector representing state of parameters in the restoring force, and are given by

(6.10)
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and

(6.11)

When the excitation is random, Ai(t) is a vector stochastic process and it characterizes

structural state uniquely.

6.3 Markov Model

6.3.1 Damage State Vector

Consider a damage state vector Ai which has n = nen, components equal to parameters of

restoring forces at aU critical cross-sections of a structural system at the end of seismic event

i. It can be obtained from

(6.12)

where Ai(t) is defined earlier in Eq. 6.5. State vector Ai can be conveniently mapped into

a normalized damage sta.te vector Di by the relation

. A·i
D;' = 1 - ~ (6.13)

Aj

where j = 1,2,···, n represents the index for the component of vectors Ai e R- and Di E R-.

This simple transforma.tion permits the domain of each component of D i to lie between 0

and 1. Note that the state vector Di provides complete characterization of structural state

at the end of earthquake i. Hence, one needs only Di to perform dynamic analysis and

determine structural performance through a new seismic event.

A duty cycle (DC) is a repetitive period of operation in the life of a structure that

causes an increase in dama~. For earthquake resistant structure, each seismic event corre-
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sponds to a DC. If the earthquake is modeled as a filtered Poisson process with each seismic

event assumed to be an independent random process, damage state vector Di at the end of

an ith DC depends only on initial state Di-l at the start of the DC, and on that DC itself.

It is independent of damage and loading history up to the start of that DC. In other words,

the propagation of damage state vector Di can be treated as Markov process evolving on

a discrete time scale [169,171,176,177]. The evolution of a discrete version of Di can be

described by one-step transition matm T(i) with the element Tpt(i) representing the prob

ability that damage changes from state p to state q due to seismic event i. This is explained

in the forthcoming section.

6.3.2 Transition Matrix

Consider a domain 1) ~ ~" as shown in Fig. 6.2 having Pr(Di E 1) ~ 1 with K =nj=l'j

cells (states) {C,,} such that 1) = U::1C" C" n C, = 0 (p I- q), and lj represents the

number of discretized states of jth component of Di E ~". Consider the change in stochastic

vector process Di, i = 0,1,2" . " N(T), taking values in a finite or countable number of cells

01,02,"', OK. Let Pr(Di E C,) be the probability that damage state vector Di is in cell C,

after i seismic events. Then row vector P(i) = {Pr(Di E C1), Pr(Di E C2), "', Pr(Di E OK)}

gives the probability that Di belongs to any of the cells C1,C2,"', OK after i seismic events.

Suppose the seismic events constitute a sequence of independent random processes.

Then the probability Pr(Di E C,!Di-1 E Op, past history of structural. loading and damage)

is equal to T,,(i) = Pr(Di E C,IDi-l E C,) because system performance is completely spec

ified by the value of damage state vector Di-1 at the application of earthquake i. Denote

T(i) = {T,,(i)}, p,q = 1,2"", K as one-step transition matrix from time i-I to time i as

sociated with the ith DC. Hence, {Di, i = 0,1,2, ...., N(T)} is a discrete-state (OS), discrete

time (DT) Markov Vector Process, where N(T) designates the total (random) number of

seismic events at a site. Fig. 6.3 shows the schematic diagram of transition probabilities for

Markov process Di.

The estimation of transition probability T,,(i) invoives computation of conditional

probability density ofthe random vector D i1Di-1 E 0, for all the cells C" p =1,2" . " K.

The method of Monte Carlo Simulation can be used for this purpose due to unavailability of
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analytic solutions. Each deterministic trial in the simulation method requires nonlinear dy

namic analysis. Mathematically, this corresponds to the computational effort for solving the

deterministic initial-value problem in Eqs. 6.8 and 6.9. Various numerical integrators such

as Runge-Kutta method [191,120,87,93,1101, Adam's or Gear's method [74,194,88], Bulirsch

Stoer Extrapolation method [38], and several others can be applied to obtain thE" ltUlution.

The selection of a particular method depends on its computational efficiency, numerical ac

curacy and stability, and "stiffness" of the nonlinear system of differential equations. In this

study, several numerical schemes are tested and finally the fifth- and sixth-order Runge-Kutta

integrators are determined to be satisfactory and used for structural analysis. Appendix C

summarizes the Runge-Kutta method for step-by-step numerical integration.

It is worth noting that for a small increase in the dimension of damage state vector,

there is a correspondingly large increase in the order of transition matrix. For example, when

the dimension n of Di is increased to n + I, the order of T(i) increases from nj:::l'j =K to

nj~: 'i = IfI+I K . This observation regarding rapid increase in computational involvement

suggest the initial use of Markov model for shear beam idealization of framed structures.

6.3.3 Evolution of Distribution of Di

Consider a K-dimensional row vector which prescribes the joint probability mass function

of the random vector Di denoting damage after ith seismic event. The probability of n i

following i seismic events is [161,169,171,176,177,178],

P(i) =P(i -1)T(i) , i =1,2, ... ,N(.,.) (6.14)

When this eq11ation is used recursively, the distribution of probability of being in state C"

p = 1,2,3" .., K after i seismic events becomes

i

P(i) =P(O) II T(i)
i=1

(6.15)

where P(O) denotes the initial vector representing probability distribution of DO. In gen

eral, Eq. 6.15 defines a nonstationary Markov Process due to differential severities of DCs.
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However, if one assumes independent and identicaUy distributed random processes for earth

quakes with same deterministic duration, the Markov process becomes stationary and Eq.

6.15 takes the form

P(i) = P(O)Ti (6.16)

where the index i has been dropped because of the invariance of transition matrix to severities

of DCs.

6.3.4 Lifetime Distribution

The lifetime probability distribution P(T) defined as the distribution of damage index vector

nN(r) in lifetime T can be obtained from the theorem of total probability

00

P(T) = EP{i)Pr{N{T) = i}
i=O
00 (.\'7")i

= EP{i)-.-, exp{-.\r)
i=O I.

j- (.\r)i
(6.17)~ EP{i)-.-, exp(-.\r)

i=O I.

in which i· is a finite real integer to be determined from the observation that the i·th

component of above summation in Eq. 6.17 is negligibly smaD. For stationary Markov

process, a more compact form of lifetime distribution can be obtained as

P('7") = EP(O)Ti(.\~)i exp(-.\r)
i=O I.

= P(O)exp (-.\'7") E (.\~~)i
i=O I.

= P(O)exp (-.\T(I - T» (6.18)

where lEt (RK) is the identity matrix. Determination of above probability requires

computation of eA where A = -.\'7"[1 - T]. Appendix D describes the evaluation procedures

of linear aIIebra to calculate eA for a general square matrix A e t (RK x !lK), where

L, (RK x ItK) denotes a set of linear mapping from !lK to RK.
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6.3.5 Mean First Passage Time

Another quantity of engineering interest in seismic performance evaluation is the mean num

ber of earthquakes before absorption to any undesirable damage state(s). Considering homo

geneous Markov process with stationary transition probabilities, let 1'.A(p) denote the mean

number ofseismic events before the system enters a damage set ,A ~ 'D with .Au,Ac = 'D ~ RW

(Fig. 6.2) if the initial damage state is C, ~ ,Ac. Then, the mean first pasSAge time is given

by [169,171,176,177,178]

1'.A(p) = E [Absorption timelDo E e,]
= E E [Absorption timelDOE C" D I E Cf] Pr (D1 E Cf/Do E e,)

CtE.Ac

= 1+ E E [Absorption timelinitial state is CfJ TI't

CtE.Ac

= 1 + E p.A(q)T19 (6.19)
Cte.Ac

When the initial states are uncertain, the mean first passage time can still be obtained

from I'.A (p) by averaging relative to the probability of DO. Let I'.A represent the mean number

of events the system starting at initial state C, ~ ,Ac with probability Pr(DO E e,) has to

wait before absorption to damage set ,A ~ 'D. It is given by (169,171,177]

(6.20)

6.4 Numerical Example

6.4.1 Seismic Hazard

Consider two sites A and B in the western U.S. with mean earthquake arrival rates ~A =

O.92/yr and >'B = 0.024/yr (3,179]. These sites were also considered in Sections 3 and 4.

Both sites He in the SAme seismic zone-4 of the 1988 Uniform Building Code [100J and have

the same peak ground acceleration GIO =OAg. The ground motions in different seismic events

are assumed to be independent and identically distributed ze~mean stationary Gaussian

processes Wet) with band-limited white power spectral density ~(WJ) given by
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{
Go, 0 < IAJ <W

G(IAJ) =
0, otherwise

(6.21)

where the spectral intensity Go is equal to 10026 mm2,,-3 when ,\ = ,\Jt = 0.92 /yr and

16090 mm2,,-3 when ,\ = '\B = 0.024 /yr for a deterministic strong motion duration

T. = 2.83 " and bandwidth W = 2511" rod/" as proposed in Ref. [122]. Sites A and B

are characterized by frequent small seismic events and rare large earthquakes, respectively.

However, designs at both sites are identical according to the 1988 Uniform Building Code.

6.4.2 Structural System

Consider a special moment resisting framed structure [100] illustrated in Sections 3 and

4 which is modeled here as a hysteretic, degrading Bouc-Wen oscillator [34,228,230] with

linear damping ratio ( =0.05, initial natural frequency I.lJ() = 20.944 rod/", mass m, and is

subjected to the ith seismic event Wi(t) = W(t) giving the equation of motion

(6.22)

where Xi(t) is the relative displacement of oscillator with respect to ground motion at

time t during seismic event i. The total restoring force gi is assumed to admit an additive

decomposition of nonhysteretic component

(6.23)

and hysteretic component

(6.24)

where the hysteretic variable Zi(t) satisfies the ordinary nonlinear differential equation [34,

228,230]

(6.25)
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in which Q quantifies the participation of linear restoring force. The model parameters p, (l,..,

are assumed to be constants while the parameter Ai(t) which controls system degradation

has the following implicit time dependency through the dissipated hysteretic energy E, at

local time t [21]

(6.26)

where 6.4 signifies constant rate of system deterioration with E, satisfying the differential

equation

(6.27)

Note that the degradation law in Eqs. 6.26 and 6.27 is defined here quite arbitrarily. It

is obtained from one of the main choices available in the current literature. Further study

with more realistic buildings needs to be undertaken to make decisions regarding the proper

selection of structural deterioration. The time-invariant parameters governing hysteresis are

chosen as Q = 0.04, p = 1, (l = 0.1505, and.., = 0.1505 consistent with the initial stiffness

and strength values of the oscillator [2041. Structural deterioration is permitted by assigning

a small value of ~A =1.0 x 10-6 in Eq. 6.26. The structural characteristics are assumed to

be deterministic.

The state of structure is represented by Ai = Ai(T.) E R denoting the value of

parameter Ai(t) of restoring force model at the end of ith seismic event. The corresponding

normalized damage index Di = 1 - Ai/ AO which varies from 0 to 1 is discretized into

K = It = 16 distinct cells (states) of equa.1length 0.0625 and is shown in Fig. 6.4. When

this index is calibrated to the observed seismic damage in actual structures, each or group

of these cells can be correlated with common engineering measures such as minor, medium,

severe, reparable, nonreparable, and collapse damage states. Regardless, the discretized

cells CI, C2,' • " CIS in succesSion denote progressive states of structural damage. Since the

damage is an irreversible process, after each seismic event without any subsequent repair,

the structural state advances only to any of the higher numbered damage states, or it may

remain in the 8&IIle state. In other words, once Di-l E C" there is a zero probability that

ni E C, when q < p for all p =1,2" . ,,16. Specially for p =16, i.e., for the cell CIS which
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Figure 6.4: Discretization of Sample Space of Di E R

represent state of largest possible damage, if the damage process ever enters that state, the

probability of remaining in that state becomes unity. This state is known as the "absorbing"

or "trapping" state since once entered the process is never left.

6.4.3 Structural Response and Reliability

As mentioned previously, Eqs. 6.22 to 6.27 can be rewritten as a system offirst-order ordinary

differential equations analogous to Eqs. 6.8 and 6.9. This nonlinear system of equations for

the initial value problem is then solved by using step-by-step numerical integration. Fifth

and sixth-order explicit Runge-Kutta integrators are used to obtain such solutions.

The transition matrix T is constructed by performing several conditional Monte Carlo

simulations each with 1000 samples. In brief, the effort in the simulation consists of the

following three steps. First, the oscillator is pre-assigned a dama.ge index (before seismic

event i) which is associated with the damage state C,. A representative value, such as

the midpoint of the cell Cp , can be used to define this deterministic damage index. This

also defines the initial value Ai(O) of the degrading parameter Ai(t) of the hyst~ticmodel
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during the ith seismic event. Second, with the condition Di-I E Cp , 1000 samples of

random excitation representing the ith seismic event W(t) are artificially generated. Third,

1000 deterministic nonlinear dynamic analyses are carried out with the oscillator subjected

to each of these realizations of W(t). This generates 1000 samples of conditional damage

index DilDi-1 E C, following seismic event i from which its histogram <-"'0 be developed.

Fig. 6.5 shows the histograms of Di IDi-1 E C, for the cells C" p = 1,2" . " 15 obtained for

both the sites A and B. Due to larger spectral intensity Go, the shapes of above histograms

for site B exhibit more spread than those for site A. These histograms which estimates

the conditional probability densities are used to construct the first 15 rows of corresponding

transition matrix T. Since the cell CI6 is absorbing state, the last row of the transition

matrix is calculated by setting TI6" = 1 for q = 16 and zero otherwise. Here, no repairs

of structural systems are consideroo following each seismic event. This has the implication

that T is an upper triangular matrix. In case there is a systematic maintenance program

after each seismic event, the transition matrix will need to be modified based on inspection

and repair methodologies.

The event distribution of damage, starting from any damaged state of system, can be

obtained from the transition matrices described earlier. Fig. 6.6 shows the evolution of this

distribution of Di, with respect to seismic event i, according to Eq. 6.16 for both sites A and

B starting with deterministic initial state C, = CI of structural system, [i.e., when P,(O)

representing the pth component of P(O) is 1 for p = 1 and zero otherwise]. However, if the

initial state is uncertain and particularly if it has uniform distribution with P,(O) = 1/16

:or all p = 1,2" . ,,16, the same equation can be used to obtain above evolution of damage

probability P(i). Fig. 6.7 exhibits such probabilities for both sites A and B.

The lifetime probability t\istribution of damage after N(T) seismic events are com

puted using Eq. 6.18 with the assumption of initially undamaged deterministic state of

system, Le., when P,(O) = I for p = 1 and zero otherwise. Fig. 6.8 shows the lifetime

probability mass function of DN(r) with T = 50 years for both the sites A and B. Based

on these case-specific studies,. buildings at sites with infrequent large earthquakes appear to

sustain less damage than those at sites with frequent small seismic events. Similar results

were fount! in Sections 3 and 4 of this report. However, more studies need to be undertaken
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Table 6.1: Mean First Passage Times with Uncertain Initial States

#SA
Damage Set .A Site-A Site-B

.At 24.89 7.53

.A2 13.78 4.69

.As 8.34 2.88

..... 4.59 1.62

.As 2.09 0.75

to make a generic conclusion.

Figure 6.9 shows the lifetime probabilities for T = 50 years starting from a uniform

distribution of initial damage state for the sites A and B. Due to change in initial condition,

the reliabilities can still be obtained directly from Eq. 6.18 and previous transition matrices.

Results show that the uncertainty regarding initial condition can yield significant variation

on seismic reliability estimates.

Consider several damage sets AI, A2, As, ....., and As which are defined in Fig. 6.4.

These damage sets may represent collections of undesirable damage states, which may be

prescribed for a specific design condition. The mean first passage time providing the num

ber of seismic events before absorption to these several sets of und~irabledamage state(s)

starting from any deterministic initial damage state is exhibited in Fig. 6.10 for both sites

A and B. For example, when the site B is considered, if the deterministic initial state is 0..

(i.e., p = 4), the structure will require 13.4, 9.46, 6.42, 3.74, and 1.23 number of earthquakes

on the average to enter the damage sets .AI, .A2, .A3, ....., and .As, respectively. They are

computed from Eq. 6.19 and are obtained for both Site-A and Site-B. Due to large difference

in the mean arrival times of the two sites, the mean first passage time for Site-A is found

to be considerably higher than that for Site-B. When the initial state is uncertain and the

probability of DO is uniformly distributed among all states, the corresponding mean absorp

tion times for the sites A and B can still be calculated from Eqs. 6.19 and 6.20. They are

given in Table 6.1. All t.hese results provide useful information to make decisions for optimal

inspection and repair of structural systems.

The Markov model, developed in this section, can also be applied to evaluate scis-
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mie performance of existing structures that have been exposed to past earthquakes. The

analysis, however, requires calculation of transition matrix which can be performed by two

approaches. In the first approach, the transition probabilities can be computed by carrying

out stochastic dynamic analysis of new structures, as done here. One can then use the same

transition matrix with an appropriate initial state characterizing damage state of the existing

structures. In the second approach, an estimation procedure can be devdoped by obtain

ing the preceding probabilities from a suitable database involving observeil performance of

existing structures.

6.4.4 Conclusions

A new methodology based on a Markov model is proposed to evaluate seismic performance

and sensitivity to initial state of structural systems and determine the vulnerability of struc

tures exposed to one or more earthquakes. The analysis accounts for simple but realistic

characterization of seismi.: hazard, nonlinear dynamic analysis for estimating structural re

sponse, uncertainty in the initial state of structural systems, and failure conditions incorpo

rating damage accumulation during consecutive seismic events.

The method is based on theoretical development using general hysteretic restoring

force characteristics which can be applied to both reinforced concrete and steel structures. It

estimates both event and lifetime reliabilities thus providing a designer more control in seis

mic performance evaluation. It can be used to determine the damage probability evolution

during several earthquakes allowing investigation on seismic vulnerability of new and exist

ing structures. The model facilitates computation of mean first passage time determining

average number of seismic events before the structure will suffer potential damage. It also

evaluates sensitivity of seismic reliability due to variability in the initial state of structural

systems.

The Markov model developed in this report has been applied to evaluate seismic

reliability measures of simple code-designed structures. Results suggest that designs by the

Uniform Building Code have different reliabilities at sites with frequent small earthquakes

and infrequent large earthquakes, although the sites are characterized by the same value of

GIO. Similar findings were also obtained in the previous sections of this report when the
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reliabilities were calculated for nondegrading systems.

The uncertainty regarding initial condition can yield significant variation on seismic

reliability. Since, variability regarding initial conditions can playa significant role in seismic

reliability estimate, it is essential that any reliability scheme has provisions of uncertain

initial condition(s). Using the Markov structure, this is accomplished here with little effort.
/

A small increase in the dimension of damage state vector representing state of struc-

tural systems is associated with comparatively large increase in the order of transition matrix.

Correspondingly, the computational involvement in obtaining transition probabilities may

become significant.
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SECTION 7
Local and Global Damage Indices

7.1 Introduction

Conventional seismic analysis of discrete, nonlinear structural systems is based on concen

trated plasticity model, which describes the local restoring force characteristics at the critical

components of interest. For building frames, these restoring force-deformation relations are

defined locally at the member level for shear type buildings (e.g., column shear force versus

relative column end displacement) or at the cross-section level for general yielding frames,

(e.g., bending moment versus curvature or rotation at the end joints of beam-column). Given

a hysteretic model, the parameters of such local restoring forces are usually estimated from

experimental calibration. Using this local model with the restoring forces adequately de

fined at all critical components, the equations of motion can be directly integrated to yield

various structural response characteristics. However, the inconvenience with regard to the

applicability of local model as a practical analysis tool for large structural systems is not of

minor nature. This is obviously because of the large dimension in which the stress analysis

has to be performed. The computational effort is still significant and time-consuming even

with the recent development of numerical techniques and computational facilities. These

i!lsues become more significant when numerous deterministic analyses are required in a full

probabilistic analysis. It is thus desirable to perform structural dynamic analysis on some

reduced dimension to lessen computational burden without any serious loss of accuracy in

the results. In principle, this can be achieved by using a global model, which describes restor

ing force-deformation characteristics at a global level (e.g., story shear force versus relative

story disp1a.cements for shear type buildings). But, when such a model is to be used, it is

required to know capriO" the parameters which govern the global hysteretic characteristics of

structural systems. Currently, there are no rational methodologies available for determining

these global parameters.

In addition, some of the parameters of local restoring forces are usually related to

known physical properties such &8 strength and stiffness of structural components. Any
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change in the values of these time-variant paramet.ers due to a potential seismic event is

thus indicative of induced damage due to possible structural degradation. This suggests

that conceptual models of local damage indices can be developed from the known state of

local parameters. During a seismic event, such local indi~ not only describe progression

of structural damage for seismic performance evaluation, but also provide a unique charac

terization of structural state due to one-ta-one correspondence with the parameters of local

restoring forces. Unless the mechanistic relations between local and global damage indices

are established, the usefulness of seismic performance evaluation based on global damage

indices are very much limited.

This section proposes a global hysteretic model and establishes analytical relations

between the parameters of local and global hysteretic models for seismic analysis of multi

story shear type buildings. In both models, the analyses involve hysteretic constitutive laws

commonly used in earthquake engineering to represent restoring forces and nonlinear dy

namic analysis to estimate seismic response and reliability of structural systems. However,

when the global model is used, the dimension of dynamic structural analysis becomes much

smaller, and hence, the computational effort can be reduced significantly. From the proposed

relation between these models, the local hysteretic behavior fl,nd damage can be recovered

from analysis based on global models. Several numerical examples based on nondegrad

ing and degrading characteristics of both single- and multi-degree-r "-freedom systems are

presented to iUustrate and validate the proposed methodology.

Once the correlations between local and global damage indices are established, they

are applied to implement the Markov model developed in the earlier phase of this study

for estimating stochastic seismic performance of degrading multi-story structures. Such

a model facilitates a systematic investigation on the validity of current seismic reliability

practice which are based on lifetime largest seismic hazard without any consideration of

cumulative damage during consecutive seismic events. A numt~rical example of a 5-story

building structure designed by the 1988 Uniform Building Code is presented. Effects of

uncertainty in the initial state of system on the seismic performance are also investigated.
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1.2 Local and Global Models

Consider a shear beam model of N-degree-of-freedom IYltems shown in FiS. 7.1(a). The

aecond order differential equation representing the equation of motion of kth mals (floor)

exhibited in Fig. 7.1 (b) can be obtained from Eqs. 2.44 and 2.45.

7.2.1 Local Restoring Force

Suppose that the kth story of building consists of n~ number of individual column. (Fig.

7.I(c» each of which may be associated with different stiffneas and strength characteristics.

The total restoring force 91: at the kth story can be modeled by the superposition of the

Donhysteretic component 91;"" (UI;(t), U~(t») = CI:U,,(t)+E:1 O",kl,Ul(t) and the hysteretic

component 91;" ({U~(s), Ut(")' 0 :s s :s t}; t) = E:l(1 - o",)kl;,Z",(t) anJ is thus given by

Itt Itt

9" = elUI;(t) +E ol;,k",UI;(t) +E(l - QI;,)k",ZI:,(t)
'.1 '.1

(7.1)

in which CI: is the kth constant damping (viscous) coefficient, Q~, is the parameter defining

participation of the linear restoring force, kl:' is the stiffness, and Z~,(t) is the hysteretic

variable all of which are associated with the Ith column of kth story. It is assumed here

that the evolution of ZI:,(t) can be modeled by a first-order nonlinear ordinary differential

equation [34,228,230]

where {Jl:h 11:', PI: are the time-invariant parameters and A~,(t) is the time-varying parameter

of local hysteretic restoring force model. The parameter Al,(t), which controls stiffneas and

strength degradation, has the following time dependency through the dissipated hysteretic

energy at time t [21]

(7.3)

in which cSA., represents constlWt rate of local detmioration. As mentioned previ -,1111y, the

desradation law in Eq.. 7.3 is defined here quite arbitrarily. It is obtained from one of the
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Figure 7.1: Shear Beam Idealization of Framed Structures
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9il (t) =
9u(t) =

many choices available in the current literature. Followilll the state vector approach with

the designation of state variables 9tl(t) = Ut(t), lii2(t) = Ui(t), and 8t3(t) = Zil(t),' .

.,8i.H.t(t) = Z"••• (t) at the kth story, the equivalent system of first order differential

equations corresponding to Eqs. 2.45 and 7.2 becomes

8i2(t)

(1 - 611) 91:-1 - [1 + (1 - ~ll) mt ] 1!.. + (1 - eSt.) mHI 9HI - ~ilWet)
ml_1 mt-I ml mi ml:+l

= Ail(t)81:2(t) - .8iI18t2(t)1!813(t)I,,·-18i3(t) - '"(11 812(t)18t3(t)I"·

which can be recast in a compact form

iI(t) = h (8(t), ti A(t» (7.5)

with the initial conditions 8(0) =0, where 'et) ={.. "8tl(t),8"2(t), 8u(t),' . " 8".2+•• (t), .. .}T

is a real (2n +Er:1 nil-dimensional response state vector, A(t) ={"', Au(t), At2(t), "',

A"••• (t), .. .}T is a real (Ef:1 n,,)-dimensional damage state vector representing state of

time-variant parameters in the local restoring force, h(·) is a vector function, 0 is a null

vector, and the superscript T is a symbol for transpose of a general vector. At any time t

during a potentially d&Dl&ging seismic event, A(t) characterizes uniquely state of structural

d&Dl&ge due to any stiffness degradation or strength deterioration.

7.2.2 GlrJbal Restoring Force

Suppose that the total restoring force 9" at the kth story can be modeled globally by the

superposition of the nonhysteretic component g"." (Ut(t),U,,(t») = C1U,,(t) +Qt"ktlU,,(t)

and the hysteretic component 91" ({U,,(,,),U,,(,,),O ~,,~ t}it) = (1- QI)k· t Z·1(t). It is

given by

(7.6)

7-5



in which a*1: is the global parameter defining participation of kth linear restoring force, k*1:

is the kth story stiffness, and Z*I:(t) is the single kth global hysteretic variable the evdution

of which can be modeled by a similar first-order nonlinear ordinary differential equation

where P*I:' "1*1:' III are the time-invariant parameters and A*i(t) is the time-varying param

eter of the global hysteretic restoring force model. T~e parameter A*1;(t) which now controls

story stiffness and strength degradation is expected to follow a similar degradation rule

(7.8)

in which 6*A. represents a constant rate of global deterioration. Following designation of

state variables 9·I;I(t) = Ui(t), 0·1;2(t) = UI;(t), and 0·1;3(t) = Z·i(t), the equivalent systt'm

of first order differential equations corresponding to Eqs. 2.45 and 7.7 becomes

611(t) =
612(t) =
6h(t) =

9·1:2(t)

( £) 9i-l [ ( £) ml; ] 9i ( £ )m1+1 91:+1 ( )1 - Oil -- - 1 + 1 - 0U -- -- + 1 - 0i" ---- - 6uW t
mi-l rni-l rnl: rnl rn"+l

A·i(t)0·1:2(t) - P·lI0·,,2(t)1!0*u(t)I"- .-10*"3(t) - 'Y*i6*i2(t)16*"3(t)I"-· (7.9)

which can be recast in a compact form

.*(t) = h· (8·(t),t;A·(t» (7.10)

with the initial conditions 8*(0) = 0, where 8·(t) = {"" '*u(t), 9·"2(t), '*1:3(t),' . .}T is

the 3n-dimensional response state vector, A*(t) = {A*1(t),A*2(t)," .,A*,,(tnT is the n

dimensional damage state vector representing state of time-variant parameters in the global

restoring force, and h*(·) is a vector function. Note that in both local and global models,

the dynamic structural analysis can be viewed as a nonlinear initial-value problem with the

system of the differential equations described above. But, the dimension of 8·(t) is much

smaller than that of 8(t), particularly when the total number of columns nl for all the
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stories k = 1,2,,'" n is very large. Hence, when the global model is used, the computational

effort in solving the initial value problem can be reduced significantly. Application of the

global model, however, will require estimation of its parameters from the known calibrated

parameters of local model. They are discussed in the forthcoming section.

7.2.3 Relation between Local and Global Parameters

Structural analyses are usually based on local constitutive law. The parameters of these

local models can be calibrated from experimental data. For large structures with many

components, it is however, desirable to perform stress analysis based on global constitutive

law to facilitate practical design [170,1761. This requires estimation of the parameters of

global models. Hence, it is important to establish relations between the parameters of local

and global models.

Consider the kth total restoring force g" in Eq. 7.1 obtained from the local restoring

forces. Following simple algebra, it can be shown that

in which

III:

E w",Z",(t)
'=1

(7.11)

k",w", = ...-- (7.12)

Ek",
'=1

is the stiffness-based weighting coefficient. Further simplification of above equation can be

accomplished by noting that

(7.13)
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when Qlel - o. In earthquake engineering, this is not a significant limitation as the quantity

Qlel which also represents the ratio of post- to pre-yield stifl'nesse& is indeed small for realistic

material models. Recent calibration with laboratory data reported in Ref. [205] suggests that

Qlel = 0.04 for steel and Qlel = 0.02 for reinforced concrete. Thus, with this approximation,

Eq. 7.11 takes the form

(7.14)

which when compared with the kth total restori'lg force 9le in Eq. 7.6 obtained from the

global restoring force gives

".Q·le = LW/CIQ/CI,
1=1

Time-111variant Parameters

"It "It

k·le = L k/cl ~nd Z*le(t) =LW/CIZlel(t).
1..1 1=1

(7.15)

Con~;der the rate equation of global hysteretic variable Z·/c(t) in Eq. 7.15 which can be

exp&L~<..-d as following:

"t
Zi(t) = L W/CIZlel(t)

1=1
"t

= L W/cl [Alel(t)Ut(t) - PleIIU/c(t)IIZ/CI(t)I,,·-1 Z/CI(t) - 7/CiU/c(t)IZ/CI(t)l"t]
1=1

"It

= E WleiA/CI(t)U/c(t) -
I=-I

-It

E wt,PtlIZtl(t)I"·-1 Zt,(t)
1=1 x

II.
E Wt,Ztl(t)
1=1

-.E Wtl7/c,I Ztl(t)I'" _. "'
1=1". ". Ut(t) E WtIZtl(t)
E WtlZtl(t) 1=1

1=1

(7.16)

Comparison of above equation with Eq. 7.7 suggests
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"II"'·t = "'Ia A·k(t) = Ewt,Ak,(t) and
'=1

(7.17)

(7.18)

"" ""L WI:,,8I:,I ZI:,(t)!",,-1 ZI:,(t) L Wkl"Yk,IZk,(t) I'"
,8-1: = '=1 -t t = :.:'=~1,-- ~_

"" ",,-1 "i II'"''
LWI;,ZI;,(t) LWI;,ZI;,(t) LWk,Zk,(t)
'=1 '=1 '=1

Note that the expressions for the global parameters in Eq. 7.18 involve local hysteretic

variables Zk,(t) at both numerator and denominator which in turn may be dependent on

external load parameters. This has the immediate bearing that the global parameters ,8-k

and 'Y. k are no longer time-invariant as their counterparts are in the local level. Thus, when

a global modeling is adopted, exact determination of these parameters is not possible due to

lack of apriori knowledge regarding evolution of local hysteretic variables.

For earthquake type of loading, it is however, feasible to search for approximate evalu

ation of above global parameters and still treat them as time-invariant hysteretic parameters.

Two extreme cases based on the magnitude of seismic intensity can be perceived. When the

intensity of seismic noise is not extremely large, the time span during which large differences

in the values of ZI;,(t) may occur can be neglected. This will allow approximation of Zk,(t)

to be a common time function (say, 2'1:(t» thus simplifying Eq. 7.18 into

"i 1111

,8.1; ~ E wl;,fJt, and "Y-t ~ E WI;,"Yt,· (7.19)
'=1 '=1

On the contrary, when the intensity of seismic noise is very large, it can be argued

that Zt,(t) assumes its maximum value Zt"mu(O) most of the time during ground motion.

The largest value Zt',m•• (O) can be easily obtained by substituting the expression for Zt,(t)

in Eq. 7.2 into the following equation of maximization

(7.20)

giving [21]

(7.21)
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Following replacement of Z",(t) in Eq. 7.18 by Z"',m.:I:(O) in Eq. 7.21 at t =0 along with the

observation that at any time t the signs of Z",(t) are the same, another estimate of above

pa.rameters can be obtained as

(7.22)

The two sets of estimates of fl·" and 'Y." given above apply to two extreme cases of load

intensity and can be used as some sort of bounds for the determination of above parame

ters. When the strength of noise is somewhat intermediate, the appropriate values of these

parameters can be interpolated from these bounds.

Time-Variant Parameter

Consider the infinitesimal total hysteretic energy dissipated at the kth story from the local

model ~Eq. 7.3) which can be expanded as

II. ".I: k", I:w",Z",(t) JU,,(t)
'=1 '=1

(7.23)

due to similar consideration as in Eq. 7.13. From Eq. 7.17 with A",(t) in Eq. 7.3,

A·,,(t) = Ew", [A",(O) - 6AJrI /(1- a",)k",Z",(t) JU,,(t)]
1=1 II.

= A·,,(O) - I:WI;,6At, J(1 - C!u)k",Z",(t) JU,,(t) (7.24)
'=1
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(7.25)

which can be compared with Eq. 7.8 and the dissipated energy in Eq. 7.23 to yield

lit

E wi,6A.,(l - °i,)ki,f Zi,(t)Ui(t)dt
'=1= lit

E(1 - °i,)ki'f Zi,(t)Ui(t)dt
'=1

in which the order of integral and summation operators is interchanged in the denominator,

and dUi(t) = Ui(t) dt. Again, the exact evaluation of 6·At requires information regarding

time evolution of local hysteretic variables. FoUowing similar consideration as in Eq. 7.19

with small seismic intensity, the above equation reduces to

(7.26)

lit

E wi,6A.,(l - oi,)ki'
£* 1-)
(J At ~ - nt

~)l - oi,)ki'
'=1

When ai' is small or if it does not vary within the columns at a particular story, Eq.

simplifies to

7.26

lit

6·At = E wi,26At,· (7.27)
'=1

When the intensity of noise is large, similar ar~ments given earlier for time-invariant

parameters may be applied to obtain another equation for 6·At. However, such estimate may

not be reliable in degrading systems with large seismic intensity. This is because as time

advances, Ai,(t) - 0, and Zil,mu(t) = [A",(t)/(Pil + "ri,)]l/". - 0 at a much faster rate

due to the rapid loss of stiffness and/or strength. At any time during ground motion, it is

difficult to anticipate variation of Zi,(t) among various columns.

Recovery of Local Hysteresis

Once the global parameters are estimated from the known values of local parameters, prac

tical seismic analysis can be performed based on global restoring force model. It is however,

desirable to recover the local hysteretic behavior of structural systems. This will allow de

termination of local damage distribution which is uniquely related to the global model.
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Consider the partitions oflocal and globalresponse state vectors 6(t) = {61(t), 62(t)}T

and 6·(t) = {9·I(t),9· 2(t)}T in which 91(t) = 6· I (t) = {.. .,U,,(t),U,,(t), ...{ is the 2n

dimensional traditional state vector (in both local and global models) comprising relative

displacement and velocity of each story mass, and 92(t) = {...,Z"I(t),···,Z",,,.(t), ... }T

and 6·2(t) = {..., Z·,,(t),· ..}Tare (Er=1 n,,)- and n-dimensional state vectors consisting of

additional hysteretic variables corresponding to local and global models, respectively. Sup

pose, at any time t, the state vector 6·(t) can be obtained by solving the global initial value

problem in Eq. 7.10. Following extraction of the component state vector 6· I (t) from the

global solution 9·(t), it can be substituted for 91(t) in the local initial value problem of Eq.

7.5 to yield solution for the state vector 62(t) of local hysteretic variables. This way, the

local hysteretic characteristics and damage of a building frame can be recovered fonowing

structural analysis based on the global model.

7.2.4 Numerical Example

Example 7.1

In this example, a single-degree-of-freedom system with both nondegrading and degrading

restoring forces is investigated to evaluate the adequacy of global hysteretic model in predict

ing various seismic response characteristics. The nonlinear systems of first-order ordinary

differential equations in the initial value problems of both local (Eq. 7.5) and global (Eq.

7.10) models are solved by the fifth- and sixth-order Runge-Kutta integrators (see Appendix

C)
Consider a I-story (n = 1) shear building with mass ml = 1, damping coefficient

CI = 0 which consists of 4 different columns with the stiffness kll = 100, kt2 = 200,

k13 = 300, kl4 = 400, and the strength FlI = 960, F12 = 2400, F13 = 4800, Fl4 = 9600.

From the above physical properties with the parameter identification procedures proposed

in Ref. [205], the time-invariant parameters of local model are: ""1 = I, {311 = 111 = 0.05,

{312 = 112 = 0.04, PI3 = 113 = 0.03, Pl4 = 114 = 0.02, and Au(O) = 1, all = 0.04,

for all I = 1,2,3,4. Note that the stiffness and strength characteristics are assumed to be

widely different among the columns. Both nondegrading (6",., =0) and degrading (6",., :F 0)
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systems are considered. The above structural and material properties provide complete local

characterization of nondegrading system. When the degrading system is considered, it is

assumed to follow the deterioration rule in Eq. 7.3, and the values of additional time-variant

parameters 6AII for all the columns are taken as 5.0 x 10-6 in this study.

Suppose that the nonlinear behavior of the building system can be approximated by a

single hysteretic variable describing the restoring force for building system itself. The time

invariant parameters corresponding to this global model can be calcula.ted from Eqs. 7.15

and 7.17 as k·l = 1000, A·l(O) = 1,0·1 =0.04, and "'·1 = 1, respectively. Two different

estimates of P·l and "Y·l are obtained following Eq. 7.19 and Eq. 7.22. They are found to

be P·l = "Y·l = 0.03 and P·l = "Y.) = 0.027, respectively. Obviously when the system is

nondegrading (6AII =0), the global time-variant parameter 6·AI =0 (Eq. 7.25 or 7.26). For

degrading system, the global rate of degra.dation 6·Al is computed to be 1.5 x 10-6 by using

Eq. 7.26 or 7.27.

A sample of modulated Gaussian white noise of duration 6 s with one-sided power

spectral intensity Go scaled to unity is shown in Fig. 7.2. This simulated time-series multi-

Figure 7.2: A Sample of Moqulated Gaussian White Noise (Go = 1)
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plied with varying levels of intensity Go = 1.0 X 105 and 1.0 x 10T are used as deterministic

inputs to the single-degree-of-freedom nonlinear oscillator.

Nondegrading System

Figure 7.3(a) shows the time evolution of relative displacement and velocity of the

oscillator due to deterministic forcing function in Fig. 7.2 with Go = 1.0 X 105• Results

of both local and global hysteretic models with two difFerent estimates of p·1 and 'Y·1 are

shown in the figure. Excellent agreement between these models are obtained irrespective of

the approximations in Eqs. 7.19 and 7.22. No meaningful difFerence in response is noted

due to closeness of bounds of estimated global parameters. Also shown in Fig. 7.3(b) are

the exact time variations of 13·1 and 'Y·l in Eq. 7.18 in which the local hysteretic variables

ZlI(t) are obtained following dynamic analysis based on local model. It clearly indicates

the accuracy of estimated global parameters f3·1 and 'Y·l from the proposed equations.

The evolution of Zu(t) mentioned above is shown in Fig. 7.3(c) which confirms previous

anticipation of negligible time interval during which Zu(t) are different. Accordingly, Eq.

7.19 provides simpler but useful approximation for global parameters. Fig. 7.3(c) also
4

shows the evolution of displacement dependent story restoring forces Ql(t) =Eqll(t) with
1=1

qu(t) = OUkllUl(t) + (1 - ou)kuZll(t) and Q·l(t) = O·lk·1U.(t) + (1 - o·dk·.Z·.(t),

which are obtained from local and global models, respectively. Again, very good agreement

between the results of both models is obtained.

Figure 7.4(a) exhibits the plots of restoring forces qu(t) and Ql (t) versus displacement

U.(t) which are obtained from local model thus providing hysteretic loops for individual

columns and system itself. For comparison with the results of global model, Figs. 7.4(b) and

7.4(c) show similar kind of plots of restoring force Q••(t) and the recovered column restoring

forces q·ll(t) = 01lkllUl(t) + (1 - oll)kuZ·ll(t) in which the conventional state variables

U.(t) and U.(t) are calculated from the global model (Eq. 7.10) and the recovered local

hysteretic variables Z·u(t) are obtained by directly integrating Eq. 7.2. They all indicate

that the global model with both estimates of parameters p•• and ..,•• can accurately predict

both local and global hysteretic characteristics of structural systems.
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Figures 7.5 and 7.6 show similar sets of plots ofvarious responses for a seismic input in

Fig. 7.2 with a larger intensity Go = 1.0 x 107 • Results of glohal model with hoth estimates

of parameters 13·1 a.nd 'Y·l are found to he quite satisfactory when compared with those

obtained from loca.l model. However, when the intensity is very large (Go = 1.0 x 107), the

response characteristics due to global models with estimated parameters 13·1 = 'Y·l = 0.027

are found to be superior than those ohtained with 13.1 ='Y·l =0.03. This is due to the fact

tha.t the significant amount of time the values of Zu(t) as obtained from local model and

exhibited in Fig. 7.5(c) are equal to ZU,mu(O) = [All(O)/(Pu + 'Y1/)]I'"1. Due to the close

proximity of bounds, however, the results based on P·l = 'Y·l = 0.03 are still found to be

reasonably good.

Degrading System

Figure 7.7(a) exhibits the time evolution of displacement and velocity responses of

the degrading oscillator for the deterministic input in Fig. 7.2 with intensity Go = 1.0 x lOS.

The results are compared again with those obtained from global models with two different

estimates of P·l and 'Y·l &8 discussed earlier. As noted in nondegrading systems, excellent

agreement between results of local and global models are also obtained here for degrading

systems. The exact time evolution of p·1, 'Y·l' and 6. 04 1 in Eqs. 7.18 and 7.25 and the

hysteretic variahles Zll(t) obtained from local model are also shown in Figs. 7.7(b) and

7.7(c), respectively.

Figure 7.7(c) also shows the time evolution of restoring forces Ql(t) and Q\(t) ob

tained from local and global hysteretic models. These story level restoring forces along with

the column restoring forces qu(t) and q·lI(t) are also plotted against the displacement Ul(t)

in Fig. 7.8 providing various hysteretic loops. Results suggest that the global model with

appropriate parameters can predict hysteretic structural respODse with very good accuracy.

7-17



6

t

54321

-- LHaI ..
_.- GlolI&l <_·,·Y: ••.•%7}
---- G <,;·Y;·•.•3)

2000

4000 ........-----------....,

o """'VIlli

-2000

-4000

-6000 L.-_..L...- """-_......._ .....__........._.....I

a6

t

5432

LOMIIIoMl
GloMI WoHI <_; .Y; ••.•%7)
GloMI WoHI (_: .y', ·0.03)

1

400 r-------------....,
U1

200

o

-200

-600 ~_..o...-_......._ _a.._.........~_""'_~

o

-400

(a) Displacement and Velocity Re.pon..

0.10 fi~

0.08

0.06

0.10 r---=-.------------,
VI

0.08

0.06

6

t

54321

0.04

0.02

0.00 ~_"""-_......._ _a.._......__• _ __.I

a654321

0.04
MtW-.+U

0.02

O.00 "--_.o....- """-_......."'"'-........-..I.........L.-.II-I

o

(b) Exact Global Parameter. from Local Model

6

t

5432

LHaI .....
.......... <,: ·v:....27}
.......... <,: .y~ ".t3)

1

40000 r=---:;;;::-r------------,

20000

o

·20000

-40000

-60000 L...-_60.0-_",-_.o..-_,,"-_.o..--.I

6 a

t

..

54321

-- Z" Z..
_.- Z.. --_. Z.4

40 r-=,--------------,
Zll

20

o

-20

-40

.60 L...-_.o..-.o....-..o...-"'""-"""-_......._ .............-'

o

(c) Hy.t.r.tlc Varlabl•• and Total R••toring Forc••

Figure 7.5: Time History of Various Responses for Nondegrading System with Go = 1.0 x lOT

7-18



3000 ,..----..,------, 3000 r--......---r----...,
1500 qH 1500 qH

o 0

·1500 -1500U. U. U,
·3000 ·3000 -3000 1..-.----..&...---.....

-500 -250 0 250 500 -500 ·250 0 250 500 -500 -250 0 250 500

3000 r-----~---...,

1500

o

·1500

8000 ,...-----r----..... 8000 ,...........--,-----, 8000 ,..-__---r-----,
3000 3000 q '1 3000

o t---7"'II'" 0 0

-3000 -3000 -3000
U. U, U.-8000 L-~__...I...- ;..J -8000 L...::;;.....__...I...- .... .eooo L- ..&... ;..J

-500 -250 0 250 500 -500 -250 0 250 500 -500 -250 0 250 500

10000 ,..----~----,

5000

o t---+t~

·5000

10000 ,..-......---r-----, 10000 ,..-....----r-----,
&000 q,a &000 q,s

o 0

-6000 -&000U, U, U,
.10000 -10000 -10000 ...........;;....__...L._~_~

·500 -250 0 250 500 -500 ·250 0 250 500 -500 -250 0 250 500

18000 ,..----..,....----,

8000

o t---+t'f

-8000

18000 ,.....----r--~--, 18000 ............---r-----,
1000 1000

o t-+-Illf- 0 t---+t.

.IOOQ -1000U, U, U,
.18000 -11000 .18000 I..-.-~__..L-_~_.....

·500 ·250 0 250 500 -500 -250 0 250 500 ·500 -250 0 250 500

34000 ,....",:-r----r-----,
17000

o t---I-4.

34000 r"::-r----r-----,a,
17000

o t--~.

34000 r-=---r--..,....---.....
17000

o t---I-41f-

·17000 -17000 -17000U, U, U.
-3«lOO ~~--.........-~-~ -s.4QOO -S4000 I.-.--=-__..L-_~_.....

-500 ·250 0 250 500 -500 -250 0 250 500 ·500 -250 0 250 500

(a) local Model (b) Global Model
(J~ • y~ • 0.03)

(c) Global Model
(~~ - Y~ - 0.027)

Figure 7.6: Hysteretic Loops for Nondegrading System with Go =1.0 X lOT

1-19



20
U

t

500
U

t
10 250

0 0

·10 -250

-20 L._I ....... ·500
La........

G..... II....1(.; .y',•.'27) t
01Ma1 liIolIei W, ·V; ·'.027) tG..... ....... .; .y; ·'.OJ) 01Ma1 liIolIei I'; ·V; ·0.'3)

·30 -750
0 1 2 3 4 5 6 0 1 2 3 4 5 6

(a) DI.placement and Veloclly R••pon..

•••
~~

'.to

v~
IE'"

O.M 0.01 IE'" a·
A,

0.1' .... 4E...
0.12 lE_
o.• '.04 I MI...Il IE'"
0.00 '.01

-,.
lE_t

·0.01 '.00 0
0 2 I 4 • • 0 I 1I 4 • • 0 I 1I 4 I •

(b) Exact Global Parameter. from Local Mod.1

20
Zu

15000
CtlCt10000

10 5000

0
0

-5000

·10 ·10000 LMoI ......
--l" ............. l ..

t -15000 ............ (,',..,; ".027)
t--- l.a --_. l'4 ............ <J;·v;"."l

-20 -20000
0 2 3 4 5 6 0 1 2 3 4 5 6

(c) Hy.t.r.tic Varlabl•• and Total R••torlng Forc••

Figure 7,7: Time History of Various Responses for Degrading System with Go = 1.0 X 105

7-20



1000 1000 1000

SOO 500
ql1

500 q"
0 0 0

·500 ·500 U, ·500 U,
·1000 -1000 ·1000

-30 ·20 ·10 0 10 20 ·30 ·20 ·10 0 10 20 ·30 ·20 ·10 0 10 20

3000 3000 3000

1500
q12

1500
qll

1500 q'2
0 0 0

·1500 U, ·1500 U, ·1500 U,
·3000 ·3000 ·3000

·30 ·20 ·10 0 10 20 ·30 ·20 ·10 0 10 20 ·30 ·20 .10 0 10 20

5000 5000 5000

2500
qu

2500
qta

2500
qu

0 0 0

·2500 U, ·2500 U. ·2500 U,
.5000 ·5000 -5000

-30 -20 -10 0 10 20 ·30 ·20 ·10 0 10 20 ·30 ·20 -10 0 10 20

7500 1500 7500

3750 3750
q,.

3750

0 0 0

-3750 -3750 ·3750

-7500 ·7500 ·7500
·30 ·20 -10 0 10 20 ·30 ·20 ·10 0 10 20 ·30 ·20 -10 0 10 20

15000 15000 15000
Q,-I;, q. Q,

7500 7500 7500

0 0 0

·7500 U1

-7500 U, -7500

-16000 ·15000 -15000
-30 -20 -10 0 10 20 -30 -20 ·to 0 10 20 ·30 ·20 ·10 0 10 20

(a) Local Model (b) Global Model (c) Global Model
(IS: • v: •0.03) (II: - v: • 0.027)

Figure 7.8: Hysteretic Loops for Degrading System with Go = 1.0 x lOS

7-21



7.3 Applications to Seismic Reliability Analysis

Current methods for evaluating seismic performance of structural systems are based on life

time mazimum seismic hazard without any provisions for cumulative damage among all

seismic events during lifetime [169,171,177]. This single largest load effect is not physically

realizable and it characterizes only an artificial seismic environment. Nevertheless, such haz

ard description is abundant in both deterministic and probabilistic seismic analysis. Since

most structures are designed to resist several seismic events during their exposure time,

the lifetime maximum ground motion may not be meaningful load process due to damage

accumulation between consecutive seismic events. This is particularly true and unavoid

able for a series of earthquakes including pre-shocks, main events, and after-shocks during

which repairs of structural systems can not be performed. In this section, seismic reliability

of degrading multi-story structures obtained from the lifetime maximum seismic hazard is

evaluated by a new methodology based on a Markov model proposed in Section 6.

7.3.1 Seismic Hazard

Consider a site affected by a single seismic source characterized by a mean rate of earthquake

occurrence ~. It is assumed that (i) the earthquake arrivals follow a homogeneous Poisson

process with mean rate ~, (ii) ground motion& in different seismic events are independent and

identical stochastic processes Wi(t), i = 1,2,·· ·,N(r) where N(r) represents the random

number of seismic events during lifetime period r, and (iii) seismic event i has the same

deterministic duration to.

Consider an elementary representation W'(t) = yiw(t) where UJ(t) is a deterministic

function of time representing either a synthetic or an actual ground acceleration with peak

ground acceleration scaled to unity and yi is the random peak ground acceleration during

ith seismic event with the independent and identical cumulative distribution function F(y).

Therefore, the cumulative distribution function of the largest peak ground acceleration Yr

during a lifetime period r is

(7.28)
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According to a study by Ellingwood et al. [65], Fr(y) for r = 50 years can also be approxi

mated by the Extreme Type-II distribution (see also Cornell [53])

Fso(y)=exp[-(;)-l] ; y~O (7.29)

with the parameters k ~ 2.3 and u = 0.38010, where aID is defined as the 10% upper fractile

of Yso. The peak ground acceleration aID has been used by Algermissen et al. [3] to develop

hazard maps of the entire continental United States. The distribution in Eq. 7.29 depends

only on aID without any explicit regard for the mean arrival rate of earthquakes. These

issues are discussed in the previous sections of this report. Nevertheless, Eq. 7.29 will be

used here as an approximation to the cumulative distribution function of 1'50. When Eq.

7.29 is substituted in Eq. 7.28 (with r = 50 yr), the event distribution F(y) can be obtained

as

1 (y)-A:F(y) =1- - -
50A u

(7.30)

for y ~ U(50A)-I/A: and zero otherwise.

Note that the stochastic model of ground acceleration considered here is quite ele

mentary. The random nature of excitation is only due to the random variable description

of peak ground acceleration (PGA) without any regard to the variability of its frequency

content. Moreover, the probabilistic characteristics of PGA are also based on approximate

equations. However, these simplified assumptions can be justified on the light of the objec

tive of this study, i.e. to determine adequacy of current seismic reliability analysis based on

lifetime largest load efFect.

7.3.2 Nonlinear Deg':ading Systems

Consider the shear beam model of building systems in Fig. 7.1. The equation of motion

for these structural systems and the associated hysteretic models are discussed in previous

sections. Assume that all the parameters describing local restoring forces for the columns

are available. Using the proposed equations, the parameters of global hysteretic model (at

the story level) for these nonlinear systems can be readily calculated.
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1.3.3 Current Performance Evaluation

Current estimates of seismic reliability analysis are based on a simplified representation of

seismic hazard obtained from the largest load effect during the exposure time .,.. Damage

accumulation between consecutive seismic events is not considered in the analysis.

Consider a damage state vector A.,ma:r E !ift obtained at the end of an earthquake

Wr(t) = Yrw(t) of duration to, where Yr is the maximum peak ground acceleration (random)

in time T and !ift is the n-dimensional real vector space. The state vector A.,maz can be

mapped into a normalized damage state vector Dma:r with components

A·,ma:r .
D .ma:r = 1 - J (7.31)

J A.,Oj

where j = 1,2,' . ',n represents an index for the component of vectors A·,ma:r E !ift and

Dma:r E !ift and A*,oj is the initial value i.e. the jth component of A·(0). Consider a domain

'D ~ !ift having Pr(Dma:r E'D) ~ 1 with K = Mft cells (states) {C,} such that'D = U::1C"

C, n Ct =0 (P:i: q), and M represents the number of discretized states of each component

of Dma:r E !i". Define a norm II Dmaz lI~f D:l~x Djma:r of Dmaz representing lifetime largest
J=1

story damage with its state space discretized into M distinct states dl, d2,' . " dM. Let

em ~ 'D ~ !ift define a potential damage set of Dma:r E li" which comprises all the cells

Cj E Cm such that the largest component of Dmaz is in state dm. Denote Qm('T) as the

lifetime probability that II Dmaz liE dm or Dmaz E em. By successive conditioning and

deconditioning, this lifetime probability can be obtained from the equa.tion

(7.32)

where fr(Y) = dFr(y)/dll is the probability density function of Yr and I(C; 111;) is an indicator

variable which is equal to one if the sample of Dmaz due to a realization YiW(t) of ground

motion Yrw(t) is such that DmAz E Cm and zero otherwise.
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7.3.4 Proposed Performance Evaluation

Damage State Vector

Consider a damage state vector A.,i E R" obtained at the end of ith earthquake Wi(t) =

yiw(t) with the deterministic duration to. Similar to Eq. 7.31, the state vector A-,i can

also be mapped into a normalized damage state vector D i by the relation

. A·,i j
D·' =1- - (7.33)

J A-,Oj

where j = 1,2"," n represents an index for the component of vectors Ai E R" and D i E R".

Note that the state vector Di provides complete characterization of structural state at the

end of earthquake i. Hence, one needs only Di to perform dynamic analysis and determine

structural performance through a new seismic event, because the vector defines the structural

state uniquely.

When the earthquake is modeled as a filtered Poisson process with each seismic event

assumed to be an independent random process, damage state vector Di at the end of an ith

event depends only on initial state Di-l at the start of the event, and on that event itself. It

is independent flf damage and loading history up to the start of that event. In other words,

the propagation of damage state vector Di can be treated as Markov process evolving on a

discrete time scale.

Transition Matrix

Consider a domain 'D ~ R" having Pr(Di E 7') ~ 1 with K = M" cells (states) {O,}

such that'D =U:-:10" 0, n 0, =" (P:F q), and M represents the number of discretized

states of each component of Di E R". Consider the change in stochastic vector process

Di,i = 0,1,2"," N(T), taking values in a finite or countable number of cells 01,02," ·,OK.

Let Pr(Di EO,) be the probability that damage state vector ni is in cell 0, after i seismic

events. Then .row vector P(i) = {Pr(Di E 01), Pr(Di E 02),' .., Pr(Di E CK)} gives the

probability that Di belongs to any of the cells 01,C2," ·,OK'

The evolution of a discrete version of Di can be described by one-step transition

matri% T E 'c(RK x RK) with the element T" representing the probability that damage

changes from state p to state q due to a single seismic event where 'c(RK X RK) symbolizes
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a set of linear mapping from RK to RK. This transition probability T" can be obtained

following similar considerations as in Eq. 7.32 and is given by

T" ~{ Pr (Di E C,IDi- 1 E C,) = (00 I(C" Cfi y)/(y)dy ~ f: I(C" Cfi y")/(YIJ~y"
10 1=1

(7.34)

where fey) =dF(y)/dy is the probability density function of yi and I(C" Cfi YI) is another

indicator variable which is equal to one if the samples of Di and Di-l due to a realization

YiW(t) of ground motion yiw(t) are such that Di E Cf lDi-l E C, and zero otherwise.

Evolution or Distribution or Di

Consider a K-dimensional row vector which prescribes the joint probability mass function

of the random vector Di denoting damage after ith seismic event. The probability of Di

following i seismic events is

P(i) = P(i - I)T , i = 1,2, ... , N(T)

which can be used recursively to reach

P(i) = P(O)Ti.

(7.35)

(7.36)

(7.37)

. deC· . .
Consider again a norm II D' II = ~axD/ of D' representing largest story damage

J=1
after ith seismic event. As before, suppose that the state space of II Di II can be discretized

into M distinct states dI, d2,' . " dM. Let Cm ~ 1) ~ R" define a potential damage set of

Di E R- which comprises all the cells Cj E em such that the largest component of Di is in

state 4.. This time, denote Qm(i) as the event probability that II Di liE dm or Di E em
which can be obtained from

Qm(i) = E Pj(i)
cjeCm

in which Pj(i) is the jth component of P(i) representins the probability that Di belongs to

the cell OJ.
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Lifetime Distribution

The lifetime probability distribution P(T) defined as the distribution of damage index vector

DN(r) in lifetime T can be obtained as

peT) = P(O)exp(-.\r(I - T]) (7.38)

where I is the K -dimensional identity matrix.

Consider the damage set Cm ~ 1) with the largest component of damage state vector

in state dm. Denote Qm(T) as the lifetime probability that II DN(r) lie dm or DN(r) e Cm.

This probability can be obtained from

Qm(r):;: E Pj(r) (7.39)
CjEe...

in which Pj(r) is the jth component ofP(r) representing the lifetime probability that DN(r)

belongs to the cell Cj.

7.3.5 Numerical Example

Example 7.2

Structural System

Consider a 5-story building frame designed according to the Uniform Building Code

[100] for seismic zone-4. The building has 4 columns (nA: = 4) at each story and is idealized as

a 5-degree-of-freedom shear beam system (stick model) with one degree of freedom per story.

The lumped masses are ml = m2 = ma =m4 =0.0898 kN a2 mm-l for the first (bottom) to

fourth stories and ms = 0.0762 leN $2 mm-1 for the fifth (top) story. The viscous damping

coefficients are Cl = 0.844 kN $ mm-1, C2 = 0.638 kN $ mm-1, Ca = 0.491 leN 8 mm-1,

ct = 0.390 leN $ mm-l , and Cs = 0.288 kN $ mm-1 for the bottom to top stories. The

damping is assumed to be proportional to the initial stiffness matrix and the values of above

damping coefficients correspond to 3% of critical for the first mode. Table 7.1 provides

the lateral stiffness and strength properties of columns along with the parameters of local
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Table 7.1: Column Properties and Hysteretic Parameters of Local Model

Story Column Stiffness kl: l Strength AI:I(O) PI:, "W iI" 6A", 0",
(k) (I) (kN/mm) (kN)
1 1 19.22 91.23 1 0.064 -0.021 2 3.00E-5 0.02

2 46.89 272.53 1 0.043 -0.014 2 3.00E-5 0.02
3 46.89 272.53 1 0.043 -0.014 2 3.00E-5 0.02
4 19.22 91.23 1 0.064 -0.021 2 3.00E-5 0.02

2 1 19.22 114.45 1 0.041 -0.014 2 3.36E-5 0.02
2 30.78 224.36 1 0.027 -0.009 2 3.36E-5 0.02
3 30.78 224.36 1 0.027 -0.009 2 3.36E-5 0.02
4 19.22 114.45 1 0.041 -0.014 2 3.36E-5 0.02

3 1 19.22 129.44 1 0.032 -0.011 2 3.54E-5 0.02
2 19.22 161.82 1 0.021 -0.007 2 3.54E-5 0.02
3 19.22 161.82 1 0.021 -0.007 2 3.54E-5 0.02
4 19.22 129.44 1 0.032 -0.011 2 3.54E-5 0.02

4 1 11.34 68.63 1 0.039 -0.013 2 3.36E-5 0.02
2 19.22 142.42 1 0.026 -0.009 2 3.36E-5 0.02
3 19.22 142.42 1 0.026 -0.009 2 3.36E-5 0.02
4 11.34 68.63 1 0.039 -0.013 2 3.36E-5 0.02

5 1 11.34 48.17 1 0.080 -0.027 2 3.54&5 0.02
2 11.34 58.94 1 0.053 -0.018 2 3.54&5 0.02
3 11.34 58.94 1 0.053 -0.018 2 3.54E-5 0.02
4 11.34 48.17 1 0.080 -0.027 2 3.54E-5 0.02

hysteretic model for the columns at each story. All the structural characteristics are assumed

to be deterministic.

Evaluation of Global Hysteretic Model

The information regarding the parameters of local constitutive law for the columns

at each story is used to compute the parameters of the global hysteretic model. The global

model describes the restoring force at each story and its parameters are determined from the

Eqs. 7.15,7.17, 7.19, and 7.26 proposed earlier. Table 7.2 provides the estimated values of

these global parameters for each story.

In order to evaluate the global parameters, a numerical investigation is carried out for

this 5-story building structure regarding deterministic structural behavior due to both local
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Table 7.2: Hysteretic Parameters of Global Model

Story k'l; P'I; 'Y'I; ~'I; A'I; 6'",,, a'l:
(k) (kNJmm)
1 132.22 0.049 -0.016 2 1 8.85E-6 0.02
2 100.00 0.032 -0.011 2 1 8.85E-6 0.02
3 76.88 0.026 -0.009 2 1 8.85E-6 0.02
4 61.12 0.031 -0.010 2 1 8.85E-6 0.02
5 45.36 0.067 -0.022 2 1 8.85E-6 0.02

and global models. A classical seismogram of 19..0 El Centro (NS Component) ea.rthquake

with va.rying peak ground accelerations (PGA) is used as deterministic input to this system.

The above ground acceleration with scaled PGA equal to LOg (LOg = 9.81 mJs2) is shown

in Fig. 7.9(80).

Consider the normalized damage indices A~(t) and AI:(t) defined as

"E wl;/AI;I(t)
A'(t) = 1 - A'I:(t) and ih(t) = 1 - ':1 (7.40)

I: A't(O) E WI:IAI;I(O)
1=1

in which A'I:(t) and AI:I(t) are the time-variant degrading parameters of local and global

restoring forces. In both cases, At(t) and AI;(t) represent the damage indices at the kth

story obtained from local and global models, respectively.

Figures 7.9(b)-(f) show the time evolution of the damage indices Ai(t) and At(t) at

the kth story (k = 1,2,"',5) which is obtained for deterministic seismic ground acceleration

in Fig. 7.9(80) with various PGA =0.2g, O.4g, and LOg. It is assumed that AI:/(O) =1, and

hence, A't(O) = 1 from Eq. 7.17. ComparillOns of results associated with local and global

constitutive law suggest that the global hysteretic model with its parameters estimated from

proposed equations can predict structural damage with very good accuracy.

From the above numerical verification, it is now possible to perform seismic analysis

based on global model. Thus, the story level damage state vector A ',i or its normalized

version Oi (Eq. 7.33) can be assumed to be Markovian thus allowing significant reduction

in the computational involvem-mt for the construction of transition matrices.
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Figure 7.9: Damage Indices due to Deterministic Analysis of a 5-story Building Frame
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Seismic Enyiropment

Consider two sites C and D in the western United States with A = 0.36 yr- I , aID =

0.40g, and A = 0.67 yr- l , GIO = 0.46g, respectively. Several counties of California can be

identified with the seismic parameters close to above sites such as Mendocino and Sonoma

(A = 0.3581 yr-I al0 = 0.4g), Orange (A = 0.3584 yr- l alO ~ O.4g), San Diego (A =
0.32 yr- I alO = 0.41g), Monterey (,\ = 0.67 yr- l GIO = 0.46g), and others [3]. They

all fall in the same seismic zone-4 of Uniform Building Code [1001 resulting in identical

structural designs for buildings. The ground motion in each seismic event is represented by

a deterministic time function multiplied by a random peak ground acceleration. The function

w(t) is assumed to be the scaled 19.0 El Centro (NS component) accelerogram truncated

at 11 seconds and is shown in Fig. 7.9(1.). The probabilistic characteristics of peak ground

accelerations are obtained from the Eqs. 7.29 and 7.30.

Structural Response and Reliability

Consider a normalized damage state vector ni E R.5 with the components describing

story damages after ith seismic event. Suppose, a component D,i (j = 1,2,3,4,5) of Di

representing damage at the jth story is discretized into 4 (M = 4) non-overlapping states

dl = (0.0,0.2), d2 = (0.2,0.4), d3 = (0.4,0.6), and t4 = (0.6,1.0) as shown in Fig. 7.10.

Hence, ni can take on K =45 = 1024 number of distinct states (cells) in the domain 1) E R5.
Thus, the transition matrix T has dimension 1024 x 1024. However, if all the cells &S8OCiated

with the largest component of Di (Le., the largest story damage) being greater than 0.6 are

assumed to be absorbing states (i.e., states once entered they are never left), the dimension

of T dramatically reduces to 244 x 244 (35 + 1 = 244). In this example, the transition matrix

T is constructed based on the reduced dimension 244 x 244 and its elements are obtained by

using Eq. 7.34. The nonlinear dynamic analysis is carried out by explicit numerical scheme

such as fifth- and sixth-order Runge-Kutta integrators.

Consider the state space of largest story damage II Di II~ D;lk Dji which is dis
J=I

cretized into 4 (M =4) distinct states dl , d2, d3 , and t4 defined earlier. Fig. 7.11 shows the

evolution of event probability '2",(i) = Pr(1I ni liE d.), m = 1, 2, 3, and" of the largest
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story damage II Di II in Eq. 7.37 starting with an initic:l1y undamaged state for both sites

C and D. The plots provide useful information regarding rates of probability flow among

different damage sets which cannot be obtained unless damage accumulation is permitted

between seismic events. It is assumed that the undamaged state mentioned above can be

characterized by an initial state with D/ E dt for j = 1,2" . ,,5. This defines the initial

probability vector P(O) in Eqs. 7.36 and 7.38 to compute event and lifetime probabilities.

I •
(O.OJ (0.2)

2
• I

(0.4)

3
• I

(0.6)

4

•
(1.0)

Figure 7.10: Discretization of Sample Space of Di

Consider several cases of deterministic initial states of structural system. They are

as follows: D/ e d1, j =1,2", ,,5 (Case-I); DtO e d2, D/ e d], j = 2,3", ,,5 (Case-2)j

and DtD e d3, D/ e dI, j = 2,3", ,,5 (Case-3). In all three cases, the first story is

assigned unabsorbing states of progressive damage (i.e., dt, d2, and d3) while all the top

stories are assigned lowest possible damage state (i.e., dt). Table 7.3 shows the iiCetime

probabilities Q",(r) = Pr(1I DN(T') lie d",), m = I, 2, 3, and 4 of the largest story damage

II DN(r) II with r = 50 fir starting with various cases of initial states for sites C and D. The

tabulated results are obtained by both Markov model (Eq. 7.39) and current estimate (Eq.

7.32). They indicate that the lifetime probabilities based on lifetime largest load effect can

be both unconservative and conservative depending on site conditions when compared with

that obtained from seismic hazard based on damage accumulation between seismic events.

Table 7.4 illustrates the lifetime probabilities by Markov model in sites C and D for

r = 50 fir with a uniform distribution of initial damage state, i.e., when P(O) = m{l, 1" .

.,1}. Due to uncertain initial states, the probabilities can still be obtained directly from Eq.

7.38 and previous transition matrices. Resultll sUQest that the uncertainty in the initial

condition can yield significant variation on seismic reliability estimates.
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Table 7.3: Lifetime Probabilities with Deterministic Initial States

Methods Cases Qm(T = Pr(1I DN(r) liE dm)
Site C Site D

m= 1 m=2 m=3 m=4 m= 1 m=2 m=3 m=4
Markov Case-I 0.592 0.241 0.097 0.070 0.132 0.155 0.132 0.581
Model Case-2 0.000 0.482 0.209 0.309 0.000 0.079 0.065 0.856

(Eq. 7.39) Case-3 0.000 0.000 0.304 0.696 0.000 0.000 0.015 0.985
Current Case-I 0.592 0.246 0.036 0.126 0.398 0.355 0.018 0.169
Estimate Case-2 0.000 0.411 0.292 0.291 0.000 0.299 0.323 0.378
(Eq. 7.32) Case-3 0.000 0.000 0.185 0.815 0.000 0.000 0.194 0.806

Table 7.4: Lifetime Probabilities with Uncertain Initial States

Sites Qm(T) = Pr(1I DN(r) lie dm }

m= 1 m=2 m=3 m=4
Site C 0.002421 0.068913 0.427373 0.501227
Site D 0.000539 0.013461 0.060988 0.925012
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SECTION 8
Conclusions

8.1 Introduction

Research in this study focused on several important issues of probabilistic seismic perfor

mance of structural systems. Three major directions of research had been pursued. They

involved (i) evaluation of effects of simplifications in reliability-based design codes, (ii) de

velopment of a new methodology based on Markov model for seismic reliability of degraded

structures, and (iii) development of an ana.lytical approach to establish relations between

local and global damage indices for seismic analysis of shear type buildings. The conclusions

from each of these studies are summarized below.

8.2 Reliability-Based Design Codes

One of the major objectives of this study was the evaluation of effects of simplifications

used in current seismic design and reliability analysis. The evaluation procedure was based

on both static and dynamic reliability methods. They were applied to determine seismic

reliability of simple structures modeled as nondegrading systems and multi-story buildings

with degrading material models.

8.2.1 Nondegrading Systems

Reliability measures for simple structures designed by Uniform Building Codes subjected to

earthquake loading were determined using both static and dynamic methods a.nd strength

based and da.mage-related limit states. Results showed that:

• reliability depends on the mean arrival rate and the intensity of the seismic load process.

Sites with frequent small earthquakes have very different reliability indices than those

at sites with infrequent large earthquakes, although the sites are characterized by the

same value of "lOi
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• event and lifetime reliabilities of the designs can differ significantly particularly at sites

with frequent small earthquakes; and

• designs at sites with frequent small events have larger event reliabilities than those at

sites with rare large events. However, lifetime reliability suggest that the design can

be either safe or unsafe when the two sites are compared.

8.2.2 Degrading Systems

A 5-story, 3-bay rectangular RIG frame was analyzed and designed in accordance with the

appropriate provisions of 1985 Unifonn Building Code (UBC) and ACI Code 918-89 for Seis

mic Zones-2 and -3. The structural stress analysis was based on linear-elastic static method.

The probabilistic analysis involved elementary strength-based failure criteria at a particu

lar structural component and was performed by FORM/SORM and Importance Sampling

methods. Effects of structural redundancy, nonlinear dynamic response, and damage accu

mulation were not included in this simplified approach. It was found by the static reliability

method that the minimum member level reliability indices can be as low as 1.50 and 1.30

for seismic zone-2 (diO =0.2g) and zone-3 (diO =0.4g), respectively.

The reliability indices for the above frames were re-evaluated based on nonlinear

dynamic analysis of degrading multi-story buildings. The probabilistic analysis involved

da.mage-related failure criteria and was performed by direct Monte Carlo simulation. Re

sults from the dynamic reliahility method indicated that the minimum values of component

reliability indices were 5.13 and 2.91 for the two seismic zones mentioned earlier. Compar

isons between the estimates from the static and dynamic methods indicate that the seismic

reliability is underestimated by the static method.

8.3 A Markov Model For Seismic Reliability
Analysis

A major goal of this research was the development of guidelines for seismic design that

can rationally account for particular features of seismic hazard, mechanical characteristics

of structural .ystems, and likely failure modes. In this rqard, a new methodology based
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on a Markov model was proposed to evaluate seismic performance and sensitivity to initial

state of structural systems and determine the vulnerability of structures exposed to one

or more earthquakes. The analysis involved simple but realistic characterization of seismic

hazard, nonlinear dynamic analysis for estimating structural response, uncertainty in the

initial state of structural systems, and failure conditions incorporating damage accumulation

during consecutive seismic events.

The Markov model, developed in this study, is based on theoretical development using

general hysteretic restoring force characteristics which can be applied to both reinforced con

crete and steel structures. It can estimate both event and lifetime reliabilities thus providing

a designer more control in seismic performance evaluation. It can be used to determine the

damage probability evolution during several earthquakes allowing investigation on seismic

vulnerability of new and existing structures. The model can be used to compute mean first

passage time determining average number of seismic events before the structure will suffer

potential damage. It can also evaluate sensitivity of seismic reliability due to the variability

in the initial state of structural systems.

The proposed model was applied to evaluate seismic reliability measures of simple

code-designed structures. Results showed that the designs by the Uniform Building Code

can have very different reliabilities at sites with frequent small earthquakes and infrequent

lar~e earthquakes, although the sites were characterized by the same value of 010. Similar

findings were also obtained when the reliabilities were calculated for nondegrading systems.

The uncertainty regarding initial condition can yield significant variation on seismic

reliability. Since, variability regarding initial conditions can playa significant role in seismic

reliability estimate, it is desirable that any reliability scheme has provisions of uncertain

initial condition(s). Using the Markov structure, this was accomplished here with little

effort.

A small increase in the dimension of damage state vector representing state of struc

turalsystems is associated with comparatively large increase in the order of transition matrix.

Correspondingly, the computational involvement in obtaining transition probabilities may

become significant.
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8.4 Local and Global Damage Indices

A global hysteretic model was developed and the relations between the parameters of local

and global models were established for seismic analysis of multi-story shear buildings. In

both models, the analysis involved hysteretic constitutive laws commonly used in earthquake

engineering to represent restoring forces and nonlinear dynamic analysis for estimating seis

mic structural response. From the proposed relations, the local hysteretic behavior and

damage can be recovered from analysis based on global models. Using current global indices

based on heuristic combination of local damage measures, this was not possible due to the

lack of unique relation between local and global damages.

Both nondegrading and degrading systems were considered and several numerical ex

amples on single- and multi-degree-of-freedom systems of shear beam models were presented

to illustrate the proposed methodology. First, a single-degree-of-freedom system with both

nondegrading and degrading restoring forces was investigated to evaluate the adequacy of

global hysteretic model in predicting various seismic response characteristics. Second, a

multi-degree-of-freedom system with more realistic design and earthquake loading was stud

ied to compare damage measures by both local and global hysteretic models. In all cases,

results showed that the global model can provide satisfactory estimates of seismic response

and damage characteristics when compared with those obtained from the analysis based on

local model. The plots of restoring forces versus displacement, which represent the hysteretic

loops, were also well-predicted by the global model. When the local hysteretic characteris

tics were recovered from dynamic analysis based on global model, they were found to be in

excellent agreement with the results produced by the local model.

In both local and global models, the dynamic stress analysis can be viewed as a non

linear initial-value problem. However, the dimension of global initial-value problem is much

smaller than that of local initial-value problem. Hence, significant savings of computational

resources, such as Central Processing Units and core memory, can be achieved by using the

proposed global model.

The correlation equations were also applied to implement the Markov model devel

oped in the earlier phase of this study for estimating seismic performance of multi-story
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degrading structures. Such model facilitates a systematic investigation on the validity of

current seismic reliability practice which are based on lifetime largest seismic hazard with

out any consideration of cumulative dama.ge during consecutive seismic events. A numerical

example based on a 5-story building structure designed by the 1988 Uni/onn Building Code

was presented. Effects of uncertainty in the initial state of system on the seismic structural

performance were a.1s0 investigated. Re"'.llts showed tha.t (i) seismic reliability based on life

time largest load effects can differ significantly from that obtained from seismic hazard based

on damage accumulation between seismic events and (ii) the uncertainty regarding initial

condition can yield significant variation in the seismic reliability estimate.
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APPENDIX A
FORM/SORM and Importance Sampling

A.I First- and Second-Order Reliability Methods

Consider a transformation H : X -+ U where U E R" denotes an independent standard

Gaussian random vector. The transformation H is necessary if originally, the basic uncer

tainty vector X has arbitrary joint distribution function Fx(x). For example, when the

Rosenblatt transformation (188) is used, the explicit form of above mapping from origina.l x

space to u spa.ce becomes

UI = t-1[Fx1 (Xl)]

u2 = t-1(Fx2 (X2Ix I)]

H: (A.!)

U" = t-1(FXn(x"lxI, X2, ..... , X,,-I)]

in which FXi(Xi\XI, X2, ..... , Xi-I) is the cumulative distribution function of Xi conditional on

Xl =XI, X2 = X2, '" Xi-l =Xi-l and can be obtained from

(A.2)

where !Xl,X2,oo"Xi_l(XllX2, "',Xi-I) is the joint probability density function of {X., X2,' . " Xi_dT.

The inverse transformation can be obtained in a stepwise manner as

XI = FXl -1(t(UI)]

X2 = FX2-I[t(U2)\Xl]

B-1 :

X. = Fx" -1[.(ulI)\XI,X2, .....,X._tl

which when substituted in Eq. 3.18 yields

A-I

(A.3)



PF = Pr [gu(U) < 0] = 1 ~(u)du
IU(U)<O

where ~(u) is the standard multivariate Gaussian density function defined as

tP(u) = (211')-9 exp ( _~uTu)
and gu(u) =0 is the new limit state surface in the image u of space x.

First-Order Reliability Method (FORM)

(A.4)

(A.5)

Consider a tangential linearization at the point u* ofthe limit state surfacegu(u) =0

which is given by

9L(U) = aT (u - u*) = 0 (A.6)

where u· is the closest point (known as the design point, beta point, etc.) of gu(u) =0 to

the origin of u space, and a E R" is the vector of direction cosines obtained from

in which

v=

with Vgu(u*) as the gradient of scalar field 9U at u·, and

A-2

(A.7)

(A.S)

(A.9)



is the Euclidean £2-norm of a n-tuple vector Vgu(u·). The distance PHL of this point u·

to the origin of u space is referred to as Huo/er-Lind reliability indez [86J and is shown in

Fig. 3.2. PHL can be obtained from a nonlinear optimization scheme

fJHL = inf II u 11=11 u· 11= aTu· (A.10)
,u(u)

When the linear approximation of limit state in Eq. A.6 is substituted in Eq. A.4, the

estimates of PF and Pa by FORM becomes [168]

= I ~(u)du
JaT(u-u·)<O

= I ~(u)du
JaTu-fJHL<O

= ~(-fJHL)

and

Pa,l = PHL·

Second-Order Reliability Method (SORM)

(A.1l)

(A.12)

Consider a suitable rotational transformation from u space to v space so that the the

mapped design point v· has coordinates (0,0," ·,-PHL). Suppose, the transformed vector

v = {VI,V2,·· .,v,,}T = {v,v,,}T where v = {Vt,V2," .,v,,_tlT and v" = hy(v) which is the

root of the mapped limit state surface gy(v, v,,) =°in v space. In this way, the limit state

surfacegy(v) =gy(v,v,,) = °can healtemativelyrepresented byvlt = hy(v) in the v space.

Consider a second-order approximation 9Q(V) =0 to gy(v) =0 or rather an approximation

v" = hQ(v) to v" = hy(v) of the limit state surface. If the quadratic approximant is of

special form such as the rotational hyperparaholoid, it can he shown that [89]

1,,-1
hQ(v) = -PHL + 2E ICiVi2

i ... l

A-3

(A.13)



where rei is the ith principal curvature of the limit state surface at the design point. The

above quadratic is equivalent to the actual v. = hv(v) in the sense that

(A.14)

(A.15)

8
2
hq (v.) = lJ2hv (v.) (A.16)

lJvi8vj lJvilJVj

for i,j = 1,2,· .., n - 1. When the actual limit state surface is approximated by the

hyperparaboloid in Eq. A.13, the estimate of PF by SORM becomes [35]

.-1

PF,2 ~ .(-PHL) II (1- K.iPHL)-!
i=l

(A.17)

which is asymptotically exact when PHL ./ 00. An improvement over above probability

estimate has also been proposed by Hohenbichler [89] which gives

where

.-1

PF,2 ~ .(-PHL) II (1- K.i.(-PHL))-!
i=1

(A.18)

q,( -PHL)
.(-PHL) = .(-PHL)' (A.19)

Note that when PHL ./ 00, q,(-fJHL) ./ fJHL and Eq. A.18 degenerates to Eq. A.17 as

expected. Finally, the corresponding estimate of fJa becomes

fJa,2 = .-1 (-PF,2) • (A.20)

A.2 Importance Sampling

Consider the Eq. A.4 which can be rewritten in the form

Pr (gu(U) < 0]
PF = Pr (g.",(U) < 0] Pr (g.",(U) < 0] = Pr (g.",(U) < 0] CF

A-4

(A.21)



where g.pp(U) is either the linear or quadratic approximation to gu(U) and CF = Pr[gu(U) <
0]/ Pr[g.p,,(U) < 0] is the correction factor improving the reliability estimate by g.pl'(U).

When the quadratic approximation in Eq. A.l3 is used, CF can be approximated by simu

lation with importance sampling. According to Hohenbichler [89], it is given by

(A.22)

in which

t (hQ(~'j») [1 "-1 ..2 ]
CF,j = t (PHL) exp -2~ (PHL) ti KiViJ ' (A.23)

~j = {ol,j, 02,j,· . " O"_I,j}T is the jth realization of the independent Gaussian random

vector VE R,,-l with mean and variance of ith component given by

~ I
Var(Vi) = [l-It(-PHL)]

(A.24)

(A.25)

a.nd NIS is the tota.l number of samples for simulation. Thus, the estimates of PF and fJc

by simulation with importance sampling become

(A.26)

and

(A.27)
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APPENDIXB
Incremental Dynamic Analysis

B.l Incremental Form of Equation of Motion

Consider the nonlinear equation of motion in Eq. 5.19. Let the vector functional g({X.,°<

s < t} j a) be expressed in the matrix equation

g({X.,o < s < tlia) = kc({X.,O < s < t}ia)X, (B.l)

in which k, is the instantaneous stiffness matrix at time t. Note that each component of this

matrix k, is a functional due to hereditary nature of the restoring force. Consider now the

incremental form of equation of motion

(B.2)

in which at is a finite time increment, ~X, =X'-hO>'-X" and ~Wr(t) = Wr(t+~t)-Wr(t).

Eq. B.2 is obtained when the equations of motion at times t and t +~t combined with the

the matrix equation for restoring force in Eq.B.l are subtracted from each other. Suppose,

the time step ~t is sufficiently small during which the change in stiffness characteristics of

structural components can be neglected. Then, the incremental equation of motion takes

the form

m~i, +c~x, +k,~X, =-md~Wr(t).

with the approximation

kHa,({X., 0 < s < t +~t}i a) = k,{{X.,O < s < t}i a).

(B.3)

(B.4)

B.2 Numerical Integration of Equation of Motion

Consider the Newmark integration scheme in which the generalized velocity and displacement

vector at time t +at is approximated by following difference equation [23,145]

B-1



(B.5)

(B.6)

where 11 and 12 are parameters determining the accuracy and stability of numerical integra

tion. When 11 = 1/2, 12 = 1/6 and 11 = 1/2, 12 = 1/4 are used, the above equations corre

spond to the familiar linear acceleration method and constant-average-acceleration method,

respectively [23]. From Eqs. B.5 and B.6, the incremental acceleration and velocity vectors

can be obtained as

(B.7)

(B.8). ( 11 ) - 11 11 .aXt = 1- - AtX,+ --AX, - -Xc
212 12At 12

which when substituted in the incremental form of equation of motion (Eq. B.2) gives rise

to the following system of linear algebraic equation

where

k * k 1 11, = t+--m+--c
12At2 12At

and

[
1· 1 -] [11 . ( 11 ) .]aFt* =-aWr(t)md + 12atXt + 212 X, m + 12Xt - 1 - 212 atX, c

(B.9)

(B.I0)

(B.ll)

When aX, is calculated by solving Eq. B.9, the generalized displacement vector XH6t at

time t +at can be obtained as

(B.12)

B-2



This numerical scheme with 11 = 1/2 and 12 = 1/4 is unconditionally stable. Thus, the

determina.tion of the time step t1t depends only on the accuracy desired in the numerical

integration.
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APPENDIX C
Runge-Kutta Method

C.I Initial Value Problem

Consider the initial value problem

;(t) = h(8(t),t)

8(0) = 80 (C.l)

where t E ~ and (J E R are independent and dependent variables, respectively and 80 is the

initial value of 8(t). A general explicit one-step method for the solution of Eq. C.l is given

by [124,191,120,87]

(C.2)

where ti is a discrete value of independent variable t, Bi = B(ti), and rp(.) will be defined later.

The fact that Eq. C.2 does not mention the function h(B, t) which defines the differential

equation, makes it impossible to characterize the order of the method independently of

the differential equation. Traditionally, Runge-Kutta methods are all explicit, although,

recently, implicit Runge-Kutta methods for improving stability characteristics have also been

considered. In this study, however, "Runge-Kutta" will be phrased to imply "explicit RunSe

Kutta" method.

Definition The method in Eq. C.2 i& said to have order p if p i& the IClrgest integer for

which

(C.3)

holu, tohere B(t) u the theoretical solution of the initial value problem
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C.2 Explicit RU:lge-Kutta Method

The general R-stage explicit Runge-Kutta method is defined by Eq. C.2 in which

R
tt'(t, 9j At) = E ArKr

r=l

where

(C.4)

Kl = h(t,9)

K, = h(t +At]; 8... 9+ At]; B,.K,), r - 2,3", ·,R (C.S)

with Ar and Bn as appropriate constants. Note that an R-stage Runge-Kutta method

involves R function eva.lua.tions per step. Each of the functions Kr(t, 9j At), r = 1,2" .

" R, may be interpreted as an approximation to the time derivative 8, and the functions

<pet, 9(t)j At) &8 the weighted average of these approximations.

C.3 Special Cases

There is a great deal of tedious algebraic manipulation involved in deriving the expressions

for above constants Ar and Bu for an arbitrary order. Two well-known four-stage fQurth

order methods are [124,181]

(C.6)

where

Kl = h (tit Ii)

K2 = h (ti + ~At"i + ~AtKl)

K3 = h (ti + ~At"i + ~AtK2)
K. = h (ti +At,'i + ~tK3) (C.7)

and
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(C.8)

where

Kl = h(ti,6i)

K2 = h (ti + jdt,6i + jAtKI)

K3 = h (ti + ~dt,9i - iAtKI +dtK2)

K. = h (ti +At, 9i +dtKl - AtK2 +dtK3) (C.9)

The method ~n Eq. C.7 is the most popular of aU Runge-Kutta methods. It is frequently

referred to, somewhat loosely, as "the fourth-order Runge-Kutta method".

Higher-order Runge-Kutta methods usuaUy involve complicated algebra [39,40,41,42J.

For examples, the six-stage fifth order method is [124]

(C.10)

where

KI = h (ti, lIil

K2 = h (ti + idt,lIi +~dtKl)

Ka = h (ti + ~At,,Ii + 21SAt[4KI +6K2])

K. = h (ti +At,9i +~At[Kl -12K2 + lSK3J)

Ks = h (ti + iAt,9i + 8
1
1At[6KI +90K2 - SOK3 +8K.])

Ke = h (ti + ~At,9i + 71Sdt[6KI +36K2 + lOKa +8K.]) (c.n)

and the eight-stage sixth order method is [96]

At
9i+1 - 9i = 840 (41Kl +216K3 +27K. +272Ks +27K, +216KT + 41K.) (C.12)
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where

Kl = h (ti, 9i)

K2 = h (ti + ~Llt,9i + ~LltKl)

Ks = h (ti + ~Llt, fJi + ;4 Llt[Kt + 3K2])

K4 = h (ti + ~LltI9i+ ~Llt[KI-3K2 +4KS1)

K5 = h (ti + iLlt,9i + iLlt[-SKl + 27K2 - 24Ka +6K4J)

Ks = h (ti + ~Llt, 9i + ~Llt[221Kl - 981K2 +867Ks - l02K4 +KS])

(S 1K, = h ti + fiLlt,9i + 48 Llt[-183Kt + 678K2 - 472Ka - 66K4+80K5

+3Ks])

Ka = h (ti +Llt, 9i + ;2Llt[116Kl - 2079K2 + lOO2Ks + 834K4 - 454K5

-9Ks +72K,]). (C.13)
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APPENDIX D
Evaluation of eA

D.l Preliminaries

Consider a real K x K square matrix A . A non-zero vector x e CK satisfying the equation

Ax=~x (0.1)

is called the right eigenvector of A with the associated eigenvalue~. When Eq. 0.1 is

written as

xA=~x (0.2)

the vector x is known as the left eigenvector of A. Suppose, there are K linearly independent

family X(I), X(2), "', x(X) of either right and left eigenvectors of A. Then there exists linearly

independent right eigenvectors ,;(1), ';(2), ••• , q,(K) and linearly independent left eigenvectors

1/;(1), .,(2), .. " .,(K), which satisfies orthogonality condition

(0.3)

(") Tn T -where q,' ={;il, ;i2,' .., ;iK} , "'. ={"'ill "'i2,' . " tPiK} , t/Jjl: is the complex conjugate

of "'jl:, and 6ij is the kronecker delta. Assume that ~I, ~2,' ",~K are the eigenvalues (which

may not he distinct) corresponding to the eigenvectors ,;(1), ,;(2), •• . ,,,,(X). Then the matrix

A can represented by

(D.4)

where
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-=

9=

tPIK ~K

"'KI 1
"'K2

t/JIK

V>2K

(D.5)

(D.6)

and

A=

From Eq. D.3, it can be shown that

o
o
o

o 0 >'K

•• = •• =1

(D.7)

(D.S)

where 1 is the K -dimensional identity matrix. This immediately gives

with

(D.9)

Am =

o
o
o

(D.l0)

o o
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D.2 Expansion of eA

Consider now the expansion of eA given by

This equation when combined with Eqs. D.9 and D.10 reduces to

(D.11)

eA !Xl .A"'9
= E , (D.12)

",=0 m.

= ·(fo~~)9
= .eA

"

where

eAt 0 0

eA =
0 eA2 0

(D.13)
0

0 0 eAK
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(PB90-20938B).

NCEER-B9.Q033 "Deterministic Model for seismic Damase Evaluation ofReinforccd Conl:rete Structures: by J.M. B~i,
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E-7



NCEER·90-0007 "Site·SpccirK: Response Spcclnl for Memphis Sheahan Pumping Stalion." by H.H.M. Hwang and C.S. Lee,
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Viagos, Supervised by J.H. Prevost, 6120190, (PB<JI·110197).

NCEER·90-0013 "Secondary Systems in Base-Isolated Structures: Experimental Investigation, Stochastic Response IIICI
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Terminals: by P.A. Fribcra and C.A.T. Susch, 11115190. (pB91-171272).

E-8



NCEER-90-002~ •A Three-Dimensional Analytical Study of Spalial Variability of Seismic Ground Motions," by L-L. HOIII
and A.H.-S. Ang, 10/30190. (PB91-170199).
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