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PREFACE

The National Center for Earthquake Engincering Research NCEER) was established to expand and
disseminate knowledge about earthquakes, improve earthquake-resistant design, and implement
seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis is on
structures in the eastern and central United States and lifelines throughout the country that are found
in Zzones of low, moderate, and high seismicity,

NCEER’s research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elements, as shown in the figure below. Element 1, Basic Research, is carried out to
support projects in the Applied Research area. Element 11, Applied Research, is the major focus of
work for years six through ten. Element III, Demonstration Projects, have been planned to support
Applied Research projects, and will be either case studies or regional studies. Element IV,
Implementation, will result from activity in the four Applied Research projects, and from Demonstra-
tion Projects.

ELEMENT | ELEMENT Il ELEMENT I
BASIC RESEARCH APPLIED RESEARCH DEMONSTRATION PROJECTS
¢ Seismic hazard and s The Building Project Case Studies
ground motion * Active and hybrid control
* The Nonstructural * Hospital and data processing
» Soils and geotechnical Components Project facilities
engineering ¢ Short and medium span bridges
*» The Lifelines Project [ >+ wWater supply systems in
= Structures and systems Memphis and San Francisco
The Highway Project Regional Studies
« Risk and reliabitity ¢ New York City
* Mississippl Valley
* Protective and intelligent » San Francisco Bay Area
systems
« Societal and economic
studies I I I |
Y4

ELEMENT IV v

IMPLEMENTATION

Conferences/Workshope
Education/Training courses
Publications

Public Awarensss

Research in the Building Project focuses on the evaluation and retrofit of buildings in regions of
moderate seismicity. Emphasisis on lightly reinforced concrete buildings, steel semi-rigid frames, and
masonry walls orinfills. The research involves small- and medium-scale shake table tests and full-scale
component tests at several institutions. In a parallel effort, analytical models and computer programs
are being developed to aid in the prediction of the response of these buildings to various types of
ground motion.
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Two of the short-term products of the Building Project will be a monograph on the evaluation of
lightly reinforced concrete buildings and a state-of-the-art report on unreinforced masonry.

The risk and reliability program constitutes one of the important areas of research in the Building
Project. The program is concemned with reducing the uncertainty in current models which character-
ize and predict seismically induced ground motion, and resulting structural damage and system
unserviceability. The goal of the program is to provide analytical and empirical procedures to bridge
the gap between traditional earthquake engineering and socioeconomic considerations for the most
cost-cffective seismic hazard mitigation. Among others, the following tasks are being carried out:

. Study seismic damage and develop fragility curves for existing structures.

2. Develop retrofit and strengthening strategies.

3. Developintelligent structuresusing high-tech and traditional sensors for on-line and real- time
diagnoses of structural integrity under seismic excitation.

4. Improve and promote damage-contro! design for new structures.

5. Study critical code issues and assist code groups to upgrade seismic design code.

6. Investigate the integrity of nonstiuctural systems under seismic conditions.

This report examines current codified methods for seismic analysis and develops a new method for
evaluating the seismic performance of buildings. The current codified methods for seismic analysis
are generally based on an incomplete characterization of the seismic hazard, the static method for
estimating structural response, and elementary failure criteria. On the other hand, the proposed
method is based onarealistic characterization of the seismic hazard, accurate estimates of structural
response that can be obtained by nonlinear dynamic analysis, and failure criteria accounting for the
damage process that occurs during seismic events. A Markov model is developed for evaluating the
seismic performance and reliability of buildings. The model can be applied to characterize the
evolution of the global damage indices during the lifetime of a building. Moreover, a simple
relationship is developed between local and global indices for the case of shear type buildings.
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ABSTRACT

Current methods for evaluating the overall seismic performance of structural systems
are based on global damage indices which are usually obtained by heuristic combinations of
local damage indices. The local indices are related to the parameters of restoring force defined
at the critical cross-sections of structural system. However, a global measure of damage
can not characterize structural state uniquely, provides only a crude estimate of structural
performance during seismic events, and cannot be used to assess structural vulnerability to
future loadings. In addition to the above limitations, current estimates of seismic reliability
an-;lysis of building structures are based on (i) incomplete representations of seismic hazard,
e.g., by the peak ground acceleration aj¢ that is exceeded at least once in 50 years with
probability 10%, (ii) static method for estimating structural response, and (iii) elementary
failure criteria that do not account for damage accumulation between consecutive seismic
events. It is suspected that the reliability analysis based on above simplifications may not
provide a satisfactory measure of structural performance.

—— Researchin this study has focused on several important issues regarding probabilistic
seismic performance of structural systems. Three major directions of research have been
pursued. They include (i) evaluation of effects of simplifications in reliability-based design
codes, (i1) development of a new methodology based on Markov model for seismic reliability
of degraded structures, and (iit) development of analytical relations between local and global
damage indices for seismic analysis of shear w

Reliability-Based Design Codes:JStatic and dynamic analyses are performed to
evaluate reliability based-design codes. Both strength- and damage-based failure criteria are
used to determine seismic reliability of several code-designed structures. Results suggest that
reliability depends on the mean arrival rate and the intensity of seismic load process. Sites
with frequent small earthquakes have very different reliability indices than those at sites
wit{l} ,gfieq‘u,q?t large earthqu‘akes, although the sites are characterized by the same value
of 839, Comparisons between the reliability indices from the static and dynamic methods
indicate that the seismic reliability can be significantly underestimated by the static method
especizally at sites with low seismicity. L

v



A Markov Model for Seismic Reliability Analysis: A new methodology based
on a Markov model is proposed to evaluate seismic performance and sensitivity to initial state
of structural systems and determine the vulnerability of structures exposed to one or more
earthquakes. The analysis involves simple but realistic characterization of seismic hazard,
nonlinear dynamic analysis for estimaiing structural response, uncertainty in the initial
state of structural systems, and failure conditions incorporating damage accumulation during
consecutive seismic events. From the proposed model, both event and lifetime reliabilities
can be calculated thus providing a designer more control in seismic performance evaluation.
It can be used to determine the damage probability evolution dvring several earthquakes
allowing investigation on seismic vulnerability of new and existing structures. The model
can be used to compute mean first passage time determining average number of seismic
events before the structure will suffer potential damage. It can also evaluate sensitivity of
seismic reliability due to the variability in the initial state of structural systems.

Local and Global Damage Indices: A global hysteretic model is developed and
the relations between the parameters of local and global models are established for seismic
analysis of multi-story shear buildings. In both models, the analyses involve hysteretic
constitutive laws commonly used in earthquake engineering to represent restoring forces and
nonlinear dynamic analysis for estimating seismic structural response. From the proposed
relations, the local hysteretic behavior and damage can be recovered from analysis based
on global models. Both nondegrading and degrading systems are considered and several
numerical examples on singles and multi-degree-of-freedom systems of shear beam models are
presented to illustrate the proposed methodology. The correlation equations are also applied
to implement the Markov model for estimating seismic performance of multi-story degrading
structures. Results from this study indicate that the seismic reliability based on lifetime
largest load effects can differ significantly from that obtained from seismic hazard based on
damage accumulation between seismic events and the uncertainty in initial condition can

yield significant variation in the seismic reliability estimate.
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SECTION 1
Introduction

1.1 Overview

A major objective of seismic design is the generation of structures that can survive earth-
quakes. Traditional building structures are usually designed in accordance with provisions in
building codes and standards such as Uniform Building Code (UBC) [100,101,102,103,104],
Standard Building Code (SBC) [198], The National Building Code (37), The BOCA/Basic
Building Code [36), and American National Standard ANSI A58.1 [10]. Current code provi-
sions for seismic design are usually based on simpiified methods for estimating seismic haz-
ard (e.g., the zone factor Z of Uniform Building Code), seismic load effects (e.g., the static
method for stress analysis) and elementary simplified failure criteria (e.g., failure occurs
when load effects exceed resistance at any one structural component). Effects of frequency
content and duration of ground motions, structural dynamic characteristics, nonlinear dy-
namic analysis, and structural redundancy are not explicitly accounted for in seismic design.
There is no doubt that building codes should utilize simplified rules and formulas to facilitate
operational convenience of design process. However, the validity of these rules and formulas
and their impact on building safety and reliability should also be investigated.

The code provisions are intended to achieve satisfactory performance of structural
systems due to seismic loads during the lifetime of structures. Thus, it is essential to eval-
uate the adequacy of simplified methods of buildings codes and their effects on the actual
performance of structural systems under earthquakes. Ideally, this will require exact knowl-
edge of material characteristics and lifetime seismic loadings on the structure. However, for
buildings located in seismically active regions, the ground motions can not be modeled with
absolute certainty. Furthermore, the variability in structural and material models constitutes
another major source of uncertainty in the evaluation of seismic performance. Two sources
can be identified [174,175] and they correspond to the uncertainty in (i) the mathemati-

cal idealization (model) of hysteretic restoring forces and (ii) the parameters of restoring
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force characteristics given a hysteretic model. Thus, it is difficuit to speak of assessment of
structural performance solely by deterministic terms.

A realistic evaluation of structural performance can be conducted only if the un-
certainty in structural loads, resistances, and hence responses are taken into consideration.
While the load and resistance parameters are not deterministic, they nevertheless show sta-
tistical regularity and the statistical infurmation necessary to describe their probability laws
are available. This suggests that the probability theory and structucal reliability methods
can be applied to assess seismic performance of structural systems. The reliability analysis
may then be performed by computing the probability that the structural responses of interest

will not violate a set of performance criteria during its lifetime.

1.2 Static Reliability Analysis

The static reliability analysis is based on (i) elementary models of seismic hazard, e.g. by the
50-year maximum peak ground acceleration, (i1) stress analysis by static method, and (#i¢)
limit states defined by strength-related failure criteria at a particular structural component.
The corresnonding component reliability index can be computed from &~1(P,) where P, is
the probability that the lifetime largest load effect obtained from static analysis does not
exceed strength at a specific structural component and ®(-) is the cumulative distribution
function of standard Gaussian random variable. Effects of structural redundancy, nonlin-
ear dynamic response, and damage accumulation during consecutive seismic events are not
explicitly included in this analysis.

These simplified methods have been used in recent studies [149,173,179] to perform
reliability analysis of code-designed buildings subject to seismic ground shaking. Resultant
reliability indices have much lower values than those for gravity loads. It is suspected that the
seismic reliability indices obtained from static analysis do not provide satisfactory means of
structural performance, because their determination involves several gross approximations.

For example, it is assumed that:

o seismic hazard at a site is completely characterized by 50-year maximum peak ground

acceleration. The cumulative distribution function of this acceleration depends only
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on the 10% upper fractile of peak ground acceleration ajg. Frequency, duration, and
occurrence rate of earthquakes are not considered in the analysis. Moreover, if a struc-
ture is designed to resist several seismic events in its lifetime without consideration of
repairs between any two consecutive earthquakes, the lifetime peak ground acceleration

may not be meaningful as a design load parameter due to accumulation of damage;

load effects can be estimated by the equivalent static method which may provide inac-

curate results in many practical cases;

failure occurs when load effects exceed resistance in at least one structural component.
Thus, in addition to using an elementary failure criterion for components, the approack

completely ignores structural redundancy; and

seismic loads E can be obtained from a;o reported in hazard maps developed by Al-
germissen and Perkins and structural strength can be derived from the nominal base
shear E, in the 1985 Uniform Building Code. This code is based on a seismic zone
map characterizing seismic environment in terms of seismic zone factor Z which ac-
counts for the maximum Modified Mercalli intensity observed historically in each zone.
However, a1g i3 mapped considering site seismicity and design lifetime . As a result,

the consequent reliability analyses based on E and E, can be inconsistent.

1.3 Dynamic Reliability Analysis

The dynamic reliability analysis is based on (i) random process representation of seismic

ground acceleration, (¢t) nonlinear dynamics for structural stress analysis, and (iii) damage-

related limit states. Since earthquake-resistant design aims at mitigating extensive damage

and minimizes collapse probability, it has been proposed to evaluate the overall structural

performance by global damage indices. These global indices are usually obtained from heuris-

tic combinations of local damage measures which can be related to the parameters governing

local restoring forces. The reliability analysis involves (f) nonlinear dynamic analysis to

yield global damage indices (i) determination and calibration of global indices, and (i1i)

assessment of seismic performance from the probability that the global indices do not exceed
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admissible values. As in the static method, the seismic hazard is specified by the largest load
effect during the lifetime of the structure. Effects of damage accumulation during consecutive
seismic events are not taken into account in the current dynamic analysis.

The current measure of global damage has several shortcomings. For example, it
(¢) can not characterize structural state uniquely, (if) provides only a crude estimate of
structural performance during seismic events, and (i#i) can not be used to assess structural
vulnerability to future loadings. Furthermore, the definitions of such global indices are
largely based on arbitrary considerations and do not account for any mechanistic aspects of
seismic structural performance.

Another important issue in the evaluation of seismic performance is the uncertainty
in the initial state of structural systems. This can be caused by manufacturing processes,
errors in design, inadequate construction, unsatisfactory quality control for new structures
and lack of information concerning damage caused by previous seismic events for existing
structures. Reliability analysis based solely on current definitions of global damage indices
cannot be applied to determine sensitivity to initial state of structural systems. Hence,
any rational assessment of structural performance should simultaneously account for the

mechanical degradation process of all critical cross-sections and components.

1.4 Objectives Of The Study

Research in this study focuses on several important issues regarding probabilistic evaluation
of seismic performance of structural systems. Three major directions of research have been
pursued. They include (i) evaluation of effects of simplifications in the current reliability-
based design codes, (iz) development of a new methodology based on a Markov model for
seismic reliability analysis, and (iii) development of an analytical approach to establish

relations between local and global damage indices in seismic analysis.

1.5 Outline Of The Study

Performance and safety of structures under severe environmental loads like earthquakes

strongly depend on nonlinear response of structures. Both qualitative and quantitative
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natures of this response in turn are significantly related to the accuracy in the modeling
of structural systems, restoring forces, seismic load processes, and obviously the seismic
damage. Section 2 provides a comprehensive state-of-the-art review on the above issues
describing recent progress and limitations.

Section 3 performs the static reliability analysis to obtain seismic reliability indices of
structures designed according to current building codes. First- and Second-Order Reliability
Methods (FORM/SORM) and Importance Sampling technique are applied to obtain the
reliability measures. The reliability analysis is carried out based on component failure criteria
describing structural performance at the critical cross-sections. It also involves sensitivity
analysis due to different models of seismic hazard.

Section 4 carries out the dynamic reliability analysis of nondegrading models of struc-
tural systems. Various failure criteria are used to (i) calculate reliability indices for simple
code-designed structures, (ii) evaluate sensitivity of reliability indices to static and dynamic
methods, and (iiz) investigate the adequacy of current code provisions for seismic design.

Section 5 continues to examine the validity of static reliability indices by conducting
seismnic analysis of nonlinear degrading systems. The analysis accounts for (i) stochastic
process representation of seismic ground acceleration, {:¢) nonlinear dynamics of structural
systems, and (fii) damage-related limit states. Various failure criteria based on maximum
deformation combined with cumulative load effects and interstory drift are employed to
obtain seismic reliability measures of reinforced concrete frame structures designed by 1985
Uniform Building Code. These analyses provide benchmark results against which the static
reliability estimates of the above frames obtained in the previous phase of this study are
compared.

Section 6 proposes a new methodelogy based on a Markov model for stochastic eval-
uation of seismic performance of structural systems. The method of analysis involves (i)
complete characterization of seismic hazard, (it) nonlinear dynamic analysis for estimating
structural response to earthquakes, (i¢i) failure conditions incorporating damage accumula-
tion during consecutive seismic events, and (iv) uncertainty in the initial state of structural
systems. Simple degrading systems representing code-designed structures are presented to
illustrate the capabilities of the proposed Markov model.
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Section 7 develops a rational analytical tool to establish relations between parameters
of local and global hysteretic models for deterministic seismic analysis of shear type build-
ings. The proposed method of analysis is based on (i) state-of-the-art endochronic model
for restoring forces and (i) nonlinear dynamic analysis for estimating structural response to
earthquakes. Both nondegrading and degrading systems are considered and several numeri-
cal examples are presented to validate the proposed methodology. The correlation equations
proposed in this section are then applied to implement the Markov model for realistic struc-
tural systems.

Section 8 summarizes the principal contributions made from this study and finally,

draws conclusions regarding seismic performance of structural systems.
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SECTION 2
State-Of-The-Art Review

2.1 Introduction

The behavior of all engineering systems under severe loads which typify environmental haz-
ards like earthquakes strongly depends on nonlinear response of structures. Both qualitative
and quantitative natures of this nonlinearity in turn are significantly related to the accuracy
in the modeling of structural systems, restoring force, and obvicusly the seismic load pro-
cess. Since earthquake resistant design aims at mitigating extensive damage and minimizes
collapse probability, damage indices are currently used to evaluate seismic performance of
structural systems. In recent years, significant progress in these areas has been achieved both
in terms of the development of methodologies and the applications to earthquake engineering
problems. The objective of this section is to summarize and discuss the state-of-the-art of
several subject areas related to seismic analysis. The review is organized to include issues
related to (i) material mechanical models, (ii) structural models, (iiz) seismic hazard, and

(tv) seismic damage assessment.

2.2 Material Mechanical Models

While linear elastic constitutive law provides much valuable insight into the nature of struc-
tural response due to earthquake excitation, it is now widely recognized ihat most real
structures exhibit nonlinear behavior, particularly for levels of response which correspond to
structural damage. A variety of nonlinearities may be encountered in structural applications,
These range from geometric and other elastic nonlinearities to nonlinearities associated with
inelastic behavior. Broadly, the nonlinear systems can be classified into (i) conservative

systems and (it) nonconservative systems.
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2.2.1 Conservative Models

The simplest models of nonlinearity are those describing nonlinear elastic behavior. These
models are conservative, because they do not include any form of energy dissipation. Figure
2.1(a) shows the generalized force-displacement relation of a so-called hardening elastic sys-
tem for which the frequency of free oscillation increases with amplitude of oscillation. This
trend is reversed for the softening system illustrated in Fig. 2.1(b). Both types of general-
ized force-displacement relation may be modeled by a power series expansion in generalized
displacement or by a piecewise linear representation. The well-known Duffing oscillator [63]
is the lowest order nonlinear power series representation of the elastic system. Hardening
systems often arise as a result of geometric nonlinearities as in the case of deflection of
suspension bridge cables [144]. Most equipment isolation devices also behave as hardening
elastic systems for large deflection [55]. A softening elastic model may be used as a first
approximation to the behavior of prestressed concrete [200]. It may also be used to charac-
terize the behavior of axially loaded column [135] and to interpret the destabilizing effect of
gravity on simple structures [95].

Due to the presence of friction (or damping forces) and other dissipative forces, most
structural systems do not exhibit conservative behavior. Another major cause is the large
deformation experienced by structures during earthquakes. More attention has thus been

focused here on modeling nonconservative systems.

2.2.2 Nonconservative Models

A more complicated and realistic form of nonlinearity encountered in large amplitude os-
cillation of structures is that associated with inelastic hysteretic behavior. In structural
dynamics, the term “hysteresis” is used to describe a nonconservative system behavior in
which the generalized force is a functional depending not only on instantaneous generalized
displacement, but also on its entire past history. For reinforced concrete structures, this type
of behavior may result from opening and closing of cracks, yielding of reinforcing steel to-
gether with the Bauschinger effect, nonlinearity of concrete in compression, bond-slip of steel
bars, sliding shear at open cracks, and obviously the load history. For steel structures, on

the other hand, because of the uniformity of material the hysteretic behavior is considerably
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Figure 2.1: Generalized Force-Displacement Relation
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simpler than that for reinforced concrete. Any complicacies arise from yielding of various
elements within the structure or due to slippage of bolts at connections or due to failure
of nonstructural elements and welds. The hereditary nature of this hysteretic behavior is
usually described by smooth curves or piecewise linear segments which are essentially the
plots of restoring forces {e.g., moments, shears, etc.) versus deformations (e.g., curvatures,
displacements, etc.). These restoring force-deformation models can be defined for the mate-
rial at the level of member usually concentrated at its ends (e.g., end joints of beams and

columns), subassemblages of structure (e.g., the shear beam model), and structure itself.
Univariate Hysteretic Law

Consider the relative displacement response X; of a general hysteretic oscillator with mass
m which is subjected to seismic ground acceleration Wy. The equation of motion is governed

by a second-order differential equation given by

mXi+9 ({X0 Xy, 0<s < t}t) = —mW, (2.1)

In Eq. 2.1, g is a general restoring force which is usually chosen to admit an additive

decomposition of nonhysteretic component

Ina{ X, Xt) = CXt + ok X (2.2)

and hysteretic component

o ({X0, X,y 0 S s < 2}it) = (1 - a)kZ (2.3)

in which ¢ is the constant damping (viscous) coeflicient, a is the parameter defining partici-
pation of linear restoring force, & is the stiffness, and Z; is the hysteretic (auxiliary) variable,

the evolution of which can be modeled by a first order nonlinear ordinary differential equation

Zg = F(Xz, X:, Zg; t) (24)

or, by the nondimensionalized version
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2y = f(z4, &4, 205 1) (2.5)

via the transformation

o=t n=at (26)
in which X* is a characteristic displacement usually taken as the yield displacement z,, F and
S are general nonlinear functions depending on a particular constitutive law. Following the
state vector approach [67,94,136] with the designation of 81, = Xy, #2¢ = X;, and 83 = Z,

the equivalent system of first-order differential equations in state variables becomes

by = b2y

. 1

6t = - [602,1 + akdy s + (1 — a)kds ) — Wy

030 = F(0h14,021,0541) (2.7)

which can be recast in a more compact form

8(1) = h (6(1),2) (2.8)

with the initial conditions

9(0)=0 (2.9)

where h(-) is a vector function, and 8(t) = {Ol,g,ﬂglg,ﬂa.g}T is a complete 3-dimensional
response state vector. Thus, the computational effort in determining the response charac-
teristics of a nonlinear dynamical system can be viewed as the solution of the nonlinear
initial-value problem in Eqs. 2.8 and 2.9.

When the functions f or F are explicitly prescribed, a wide variety of mathematical
models of hysteretic characteristics can be produced. However, there is no rigorous theoret-
ical investigation in determining these functions. Currently, they are selected on the basis

of experimental and empirical studies of hysteretic behavior of structural systems subject to



repeated load processes during earthquakes. Quite arbitrarily, they are classified here into

(£) piecewise linear hysteresis, and (it} smooth hysteresis.

Piecewise Linear Hysteresis

The piecewise linear hysteretic models are conceptually simple, but they do not allow an-
alytical treatment to be simple as well. The abrupt change in slopes of these models are
obvicusly not very realistic and it requires very small time steps to avoid overshooting in the
numerical integration of equations of motion. Nevertheless, many such models exist and .re

widely used in current seismic analysis.

Bilinear Model: The simplest model for hysteretic behavior and one which has received
by far the widest use in earthquake engineering is the bilinear hysteretic model (including

the well-known elasto-plastic system) as indicated in Fig. 2.2. The constitutive law of the

42

It
/ )
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/7
4

Figure 2.2: Bilinear Model

hysteretic component is given by the following differential form [118]

i=2[1- H(&)H(z—1) - H(—=#)H(~z - 1)] (2.10)

where H(-) denotes the unit step function, i.e., H(u) = 1 for © > 0 and 0 for u < 0.
The constitutive law of bilinear hysteretic model is completely described by the Eqs. 2.1-
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2.10. Similarly, by introducing additional state variables one can describe the hysteresis
of a higher multi-linear model. The major drawback of the bilinear model is that it does

not reflect system degradation, pinching effects or Bauschinger effects exhibited by various

engineering materials.

Kato-Akiyama Model: The hysteretic model presented by Kato and Akiyama [115]
has the stiffening or degrading characteristics of yield strength with the cumulative plastic

deformation as shown in Fig. 2.3. The differential form of this model is [208]

Figure 2.3: Kato-Akiyama Model

i=g [1 —(1 - 9)H()H (z —1- 2 ) — (1 )H(-&)H (—-z —1- l’f“s)] 2.11)
3y = (1 - o)2H($)H (z ~1- 1“’1) (2.12)
in = —(1 - s)iH(-i)H (—z —1- 13:) (2.13)

where z, and z, are the one-directional cumulative plastic deformation in the hysteretic
component z, and s is the rigidity ratio of the hysteretic component 2. Thus the description of

Kato-Akiyama hysteretic model needs differential equations for the additional state variables
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z, and z, controlling the stiffening and degrading of hysteresis in addition to the state
variables z, #, and z. The Kato-Akiyama model represents the stiffening or degrading
characteristics according to s > 0 or s < 0, respectively. In a particular case when s

vanishes, the Kato-Akiyama hysteresis is reduced to the bilinear hysteresis.

QOrigin-oriented Model: The origin-oriented model shown in Fig. 2.4 has zero-memory

and origin-oriented features. The constitutive law of the normalized origin-oriented hysteretic

Figure 2.4: Origin-oriented Model

component is given by (207]

[{1 - H(@)H(z - 1) 2EL ( ) — {1 - H(~2)H(~z —1)} fi :) (2.14)
i, = H(&)H(z - 1) (2.15)
4o = —2H(—2)H(~z—1) (2.16)

where z, and z, are the absolute maximum and minimum inelastic displacements (total
displacement minus unity), and are utilized to preserve the current positive and negative
peak deformations.



Peak-oriented Model: The peak-oriented hysteretic model] represents stiffness degrading
characteristic which is closely related to the total cumulative plastic deformation. The model

is shown in Fig. 2.5, and the normalized hysteretic component is given by [207]

i= f"‘z (1 — H(E)H(z = 1) — H(~3)}H(-z —1)] (2.17)
)
ipm = & [H(2)H(z — 1) = H(—#)H(=2 — 1)] (2.18)

where zpy, is sum of z, and z, defined by Eqgs. 2.15 and 2.16.

(i

J | X

-~ X, k- xpn”‘p""n

Figure 2.5: Peak-oriented Model

Slip Model: The normalized hysteretic component of slip model shown in Fig. 2.6 has the
differential form [207]

i = i[H(z - zp)H(&){1 - H(z - 1)} + H(z)H(~-3){1 — H(-2)}+
H(-z — za)H(—3){1 = H(~z - 1)} + H(-2)H(#){1 - H(z)}]  (2.19)

i, = zH(:)H(z — 1) (2.20)

29



in = —iH(=£)H(~2 ~ 1) (2.21)

- xp b=

Figure 2.6: Slip Model

The idealized slip model proposed by Tanabashi and Kaneta [214] is given by Egs.
2.19,2.20, and 2.21. In particular case when z, and r, in Eq. 2.19 are neglected, the slip
model collapses to the double bilinear hysteretic model proposed by Iwan [108].

Clough Model: The stiffness degrading hysteretic model presented by Clough and John-
ston [50] intended for use in reinforced concrete structures is shown in Fig. 2.7. In this

model, the differential representation of the hysteretic component 2 becomes [208]

: = zH(2) [ H( #){1-H(z-1)} + H(—z)]
iH(-z2) [ 1 :: e —H(-2){1 - H(=z - 1)} + H(.i)] (2.22)
2y = #H(#)H(z - 1) (2.23)
Ta = —2H(—2)H(-z-1) (2.24)
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Figure 2.7: Clough Model

Other models such as those proposed by Takeda et al. {210], Fukada [70], Muto [142],
and others extend the bilinear models to include various deterioration by using the similar
set of empirical rules described earlier. Although these rules may be applied for a time
history analysis of the response by means of a step-by-step numerical integration, they are

difficult to put in mathematically convenient forms for analytical solution.

Smooth Hysteresis

The smooth hysteretic models are usually obtained from the constitutive equations of en-
dochronic theory [220,225,143,25]. The endochronic concept is based on rate-dependent
viscoplasticity without the existence of yield surface and was introduced in triaxial consti-
tutive relations for metals by Valanis [220] who also coined the term “endochronic”. The
smooth hysteretic model is attractive mainly because it eliminates the sudden transition

from elastic to inelastic states thus avoiding the attendant mathematical problems.

Bouc Model: A versatile smooth restoring force model capable of reproducing inelastic,
hysteretic, but nondegrading behavior is proposed by Bouc [34] which has the following
differential form of hysteretic component (Fig. 2.8)
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i = Az - Blz|z — vz|2| (2.25)

in which 8, 7, and A are parameters governing the amplitude and shape of hysteretic loops.

?1 AW,> O

e
[+

Figure 2.8: Bouc Model

A large variety of hysteresis are possible choosing appropriate values for the parameters of
restoring force-deformation model. The main inconveniences of this constitutive relation
are the lack of closure of hysteresis cycles and the anomalous behavior under cycles during
unloading and loading phases without load reversal [25]. The first difficulty can be avoided
by appropriate selection of model parameters. The second aspect, on the other hand, leads to
violate a basic mechanical principle which in the rigid plastic case is known as the normality
rule [45,46]. For an arbitrary hysteresis shown in Fig. 2.9, the work done AW on the
material during unloading (AB) and reloading (BC) is equal to AW; — AW; which must be
non-negative in accordance with Drucker’s stability postulate [25,62]. When Bouc hysteresis
is considered, AW} =~ 0, AWz > 0 (Fig. 2.8), and AW becomes largely negative thus
violating Drucker’s stability postulate.

Wen Model: Another parameter 4 controlling the smoothness of transition from elastic

to inelastic region in Bouc’s hysteretic mode] has been incorporated by extending the model
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Figure 2.9: Unloading-Loading Cycle of a General Hysteresis

in Eq. 2.25 into the form [228]

3= Az - Bla||z]*" "z — yi|2]". (2.26)

As shown in Fig. 2.10 when u 7 0o, the Wen hysteresis reduces to that of bilinear model
and when g = 1, the model collapses to original Bouc model as expected. In this model,
the issue regarding violation of Drucker’s stability postulate is still present. However, the
degree to which this postulate is violated can be reduced by increasing the value of u which
was not possible for the original Bouc model. For example, when i / oo, although AW) ~
0, AW; ~, 0, and consequently AW = AW; — AW; ,/ 0. However, large values of u
(1) makes the step-by-step integration of nonlinear equations of motion more cumbersome,
(it) reduces the accuracy achievable by using equivalent linearization techniques, and (iit)
more importantly, puts a serious limitation in the modeling capability as calibration with
experimental results suggest the use of y4 = 1 for steel and u = 2 for reinforced concrete [204].
Nevertheless, this model has received a fair amount of attention in the seismic engineering
community and will also be used here in this study.

Deterioration of the restoring force is achieved by prescribing the model parameters
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Figure 2.10: Effects of 4 on Skeletal Curve of Wen Model

to be arbitrary functions of response severity such as total hysteretic energy dissipation or
amplitude of response or both. Baber and Wen [20,21] used the energy based degradation

in an extended Wen model

i= % [Az = v (Bll|l*2 - ydl21*)] (2.27)

with additional parameters v and 7 to incerporate strength and stiffness degradation by

A(t) = Ag — baex(t), (2.28)
strength deterioration by
v(t) = m + buer(t), (2.29)
and, stiffness degradation by
n(t) = no — buer(t) (2.30)

in which 64, 6, 6, are the constant rates of degradation, Ao, #9, 70 are parameter values prior
to loadings, and
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t
er(t) = (1 — a)k /0 2(s)&(s)ds (2.31)
is the total hysteretic energy dissipated untiltime {. Sues et al. [205] used response amplitude
based degradation given by
= A%E T T

n=A2—0= (2.32)
Iy~ iy

in which zp, and zp, are the displacement and hysteretic amplitude in the ith half cycle.
Baber and Noori [19] added a “slip-lock” element in tandem with the hysteretic force element
whicﬁ is able to reproduce the commonly observed pinching of the hysteretic loops exhibited
by reinforced concrete. Although, the above degradation laws and pinching mechanism are

arbitrarily chosen, they have been found useful in seismic analysis.

Casciati Model: In an attempt to avoid the limitations of previous models regarding
violation of Drucker’s stability postulate, an improved endochrenic model is proposed by

Casciati [45] by adding more terms in the Wen model giving

2= A — B2z z = yz|z* + Bil]|z|* " 2 + |z (2.33)

where 8 and pj < p are additional parameters of this model. The experience of Ref. {45
suggests that for endochronic models, the local violations of Drucker’s stability postulate can
not be avoided. However, with the model in Eq. 2.33 applied with appropriate parameters,
the global results makes AW = AW, — AWa a “small” quantity but not a positive one as
the postulate would require.

Other hysteretic models such as Ramberg-Osgood model [112] describes the force-
displacement skeleton curve by a three-parameter polynomial and allows a smooth transition
from the elastic to plastic region and some freedom in the shape of the hysteresis. However,
it is difficult to incorporate system degradation. A distributed element model which is an
extension of the combined spring Coulomb damper concept has been proposed by Iwan [107]

where the smooth transition can be properly reproduced.
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Multivariate Hysteretic Law

Multivariate constitutive laws are essential for spatial extension of frames and the bidirec-
tional nature of seismic excitation. For two-dimensional structures under biaxial excitation,
the interaction of restoring forces in the two directions may significantly alter the response
behavior. For example, the damage suffered from oscillation in one direction is likely to
weaken the strength and/or stiffness in the other direction and vice versa. The endochronic
restoring force model of Eq. 2.26 together with 4 = 2 has been extended quite arbitrarily to
include such interaction by requiring thai the hysteretic components in the two directions,

i.e., z; and z, satisfy the following coupled differential equations [157]

tp = Aty — Blig)|zel2r — ylezs? - Bliy||zylze — Yityz22y (2.34)

iy = Aty — Blisy||zy|zy — iiyzy® — Blitallzzlzy — Yiis222y (2.35)
where u. and u, are the displacements in the traditional z and y directions. A, 8, and 7 as
in Eq. 2.26 are system parameters. Implicit in Eqs. 2.34 and 2.35 is the assumption that
the hysteretic restoring forces are isotropic. For an orthotropic systems (implying stiffness
and strength in the two directions are different) one can introduce a simple transformation
of the response variables and still use the same equations {157]. As in the uniaxial model,
deterioration can be introduced by letting parameters A, S, and 4 be functions of time
depending on the severity of response, e.g., maximum response amplitude or hysteretic
energy dissipation or both.

Endochronic theory was originally developed without the concept of yielding surface,
but the identification of model parameters requires the availability of test results, which are
presently scarce particularly for multivariate hysteresis. A multivzriate endochronic model
that at least considers the basic requirements of plasticity theory has thus been examined
by Casciati [45,44). The mathematical formulation of hysteresis is obtained in the tensorial

form of three-dimensional analog of Bouc model and is given by [45]

Y=AE-B|Y " | YRE|Y -1 Y |**(YRE)Y (2.36)

2-16



in which A, 8,v and u are model parameters, E is the deviatoric strain tensor, ® is the

symbol for tensor product, and || Y ||dé{ vY Y o v Tt(YTY) is the norm of second-order
tensor Y defined as

Y=S-9 (2.37)

where S is the deviatoric stress tensor and % is the tensor of internal variables obtained from

7 = ke (2.38)
in which & is some work hardening constant and &” is the plastic strain rate tensor given by

&= (2.39)

24
where ¢ = ¢(o, n) is the plastic potential, o is the stress tensor, and A is the corresponding
plastic multiplier. Details of derivation are available in the original reference [45].

Plasticity is governed by associated flow rule (plastic potential coincides elastic po-
tential). Hardening is assumed to be kinematic {the subsequent yield surface is cbtained
from rigid body motion of initial yield surface), and also the motion is deemed to be linear
during successive propagation of yield surfaces (Prager’s Hardening). Comparisons of the
model in Eq. 2.36 with the model in Eqs. 2.34 and 2.35 show that (i) the interaction of
restoring forces does not include all the terms of (Y @ E) and (ii) the yielding curve in Eqs.
2.34 and 2.35 is not convex thus violating a basic mechanical requirement of the theory of
plasticity.

2.2.3 Evaluation of Hysteretic Models

Calibration of Model Parameters

In order to predict the restoring force behavior of an actual structure, it is necessary to
determine appropriate values for the parameters of hysteretic models. A system identification
technique based on a least square error minimization has been used by Sues et al. [204] for
the smooth hysteretic model in Eq. 2.25. The values of model parameters from calibration
with laboratory data suggest the use of (i) A=1, u = 1, @ = 0.04, 8 = v for steel and (i1)
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A=1,n=2,a=0.02 8 = -3y (v < 0) for reinforced concrete in which ~ is computed from
Al(B+ ‘7)1/ # = F,, where F) is the yield force usually known from material characteristics.
Other methods such as those based on an extended Kalman filter method have been applied
to the smooth hysteretic restoring forces. Methods for estimating the system parameter of
the distributed element model and the Masing models have been proposed by Peng and Iwan
[163] and Jayakumar and Beck [111]. Parameter calibration for biaxial models in Eqs. 2.34
and 2.35 has also been performed by Wen and Ang [227].

Comparisons with Experimental/Theoretical Results

The accuracy and capability of the hysteretic model are indicated by comparisons of the
restoring force-displacement relations with those based on experimental and rigorous theo-
retical studies. The Wen hysteresis with the displacement dependent degradation law has
been evaluated by Sues et al. [204,205]. Comparisons with the test results of Park and Paulay
[155] and Gulkan and Sozen [81] shown in Figs. 2.11 and 2.12 exhibit overall satisfactory
performance of the analytical model with the exception of pinching behavior exhibited by
the corresponding laboratory data. In Ref. [226], the degrading and nondegrading biaxial
hysteretic models based on Eqs. 2.34 and 2.35 are also compared with experimental studies
of Takizawa and Aoyama [211] and classical plasticity solution by Powell and Chen [166).
Fig. 2.13 shows the force-displacement characteristics of a degrading endochronic model
[157) and the corresponding test results of Takizawa and Aoyama [211] under nearly square
displacement path. Figs. 2.14 and 2.15 show compatisons of results for nondegrading system
based on rigorous plasticity theory {166] and endochronic model in Eqs. 2.34 and 2.35 under
both diamond and square displacement paths. The agreements are found to be surprisingly
good considering the generally complicated biaxial inelastic stress-strain relation and the

simple and somewhat arbitrary nature of the endochronic models.
Effects of Uncertainty

The laboratory or field data for calibration of hysteretic model parameters are usnally deter-
mined for certain structural systems and forcing functions such as sinusoidal waves and the

El Centro earthquake in Refs. [204] and [205]). Hence, the applicability of calibrated model
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parameters associated with a particular test setup may not be relevant for other structural
systems and seismic events. Since there are inherent variabilities in system characteristics
and load processes, the nncertainty in hysteretic models should also be taken into account.

Recently, a sysiematic investigation is conducted to study the sensitivity of seismic
performance to the uncertainty in structural and material characteristics [174,175]. The
method of analysis involves nysteretic constitutive laws commonly used in earthquake en-
gineering and extensive simulation. Two distinct sources of variability are identified and
they correspond to the uncertainty in (i) the mathematical idealization of hysteretic restor-
ing force model and (i:) the parameters of restoring force characteristics given a hysteretic
model [174,175].

Fig. 2.16 obtained from the original reference [175] shows the plots of exceedance
probability of ductility ratio DR of a nonlinear oscillator relative to various thresholds ug for
three nondegrading models (elasto-plastic, bilinear, and Bouc). The ground acceleration is
assumed to be stationary Gaussian band-limited white noise with varying one-sided spectral
intensity Go. For weak noise (Gg = 0.005 in?s—3), the exceedance probability for Bouc-Wen
hysteresis is considerably smaller than that for either elasto-plastic or bilinear models which
exhibit identical behavior due to mostly linear response. For strong noise (G = 0.5 in%s~3),
the probabilities become similar for bilinear and Bouc Models both of which show smaller
values of above probability than that for the elasto-plastic model. When the strength of
the noise is somewhat intermediate (Gy = 0.05 inzs‘J), all the hysteretic models exhibit
practically similar behavior.

Also illustrated in Ref. [175], Table 2.1 provides the exceedance probability of a
story level ductility ratio DRy (k = 1,2, -+,10) of a 10-story steel frame relative to several
thresholds pg = 3,4,5,6 obtained for a specific hysteretic model (Bouc model) with both
deterministic and uncertain parameters. The ground motion is assumed to be uniformly mod-
ulated stationary Gaussian colored noise with spectral parameters and modulation function
defined in Ref, [175]. The tabulated results show that the uncertainty in the parameters
of a specific hysteretic model can significantly increase the exceedance probability of story
ductility. Clearly, both aspects of structural and material uncertainty discussed above can

have significant effects on seismic performance of structural systems.
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Table 2.1: Effects of Parameter Uncertainty on the Exceedance Probability of Ductility Ratio

(Ref. 175)
Cases story Pr(DRy > po)

k o =3 do =4 o =5 o = 6
Deterministic | 1 0.383000 0.151000 | 5.666x10~2 | 2.233x10~2
System 2 0.201333 | 6.266x10™% [ 1.566x10~7% | 5.333%10~3
3 0.121000 | 2.400x10~-7 | 6.000x10~° | 1.666x10~3
4 | 7.633x10~¢ | 1.166x 102 | 2.000x10~° | 3.333x10-7

5 | 4.500x10-7 | 5.666x103 0.000 0.000

6 |4.400x10-7 | 3.000x10 3 0.000 0.000

7 [3.133x10°7 [ 9.999x10~*¥ 0.000 0.000

8 0.000 0.000 0.000 0.000

9 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000
Uncertain 1 0.452666 0.269000 0.154333 | 9.099x10-%
System 2 0.312666 0.153000 | 7.733x10-2 | 4.133x10-2
3 0.223000 [9.200x10-2 [ 4.066x10~2 | 2.200x10~2
4 0.161000 | 5.700x<10~2 [ 2.433x10~% [ 1.033%x10~2
5 0.109333 [ 3.466x10~2 | 1.066x10~2 | 5.000x10~3
6 0.114000 | 3.066x10 2 | 7.333%10~ 7 | 3.666x10-3
7 0.1046C5 | 2.133x10~2 | 5.000x10~3 | 1.333x103

8 | 1.333x10°3 0.000 0.000 0.000

9 [9.999x10~° 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000
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2.3 Structural Models

In predicting the response and damage of actual structures, modeling of structural systems
is an essential task. A model of a structure is defined as a mathematical representation
of the behavior of the structure in its environment. The accuracy of response prediction
depends on how well the models approximate the actual behavior of the structure. Hence,
it is important to know the limitation of the mathematical models used to represent the
structural systems.

The formulation of a mathematical model of a structure centers on the selection of
parameters that define the configuration of the model. The configuration is characterized by
the simultaneous locations of all material points. The number of independent parameters
required to define the configuration represents the degrees of freedom of the model. These
parameters are called the generalized coordinates [125] of the model. If a model has infinitely
many degrees of freedom, it is called a continuous modek otherwise, it is called a discrete

model.

2.3.1 Continuous Models

In continuum mechanics, the possibility of knowing the behavior of individual particles in
the sense of modern physics is avoided. Instead, emphasis is provided on the gross or
macroscopic behavior of material bodies. By no means, the model denies the existence
of molecules, atoms, and subatomic particles, but simply sidesteps the issue by employing
continuous representation of matter.

Consider a general three-dimensional body B defined as a set of uncountable infinity
of points, called material points, that can be mapped homeomorphically into the closure of
open, connected subsets of euclidean vector space £2. Each such homeomorphism defines a
corfiguration of the body. Consider one particular configuration called reference configeration
B C £3 and identify material points of the body with their position vectors X € B. Consider
a motion of the body B from configuration B into other configuration x, : B — £ (Fig.
2.17), ie.,
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x = xy(X) = x(X,1) (2.40)

where t is the time variable and x is the position vector of the material point in the deformed

Reference Configuration Deformed Configurgtion

Figure 2.17: Kinematics of the Body B

configuration By = x(8,t) = {x(X,t),X € B}. From the Eulet's (not Newton's) balance
law of linear momentum, it can be shown [151,82,133] that the strong form of equations of
motion of the body B is given by

V.T+pb=pv (241)

in which, T € L£(£?) is a second-order tensor known as Cauchy stress tensor, V- T is &
vector field representing the divergence of tensor field T, p is the scalar mass density of the
material of the body B in the configuration B, b is the vector field denoting the body force
density in the configuration By, v = x(X,2) is the velocity vector field in the configuration
By, and the overdot represents the derivative with respect to time t. In order for the motion

x = X(X,t) to be determined, the field equation (Eq. 2.41) must be supplemented by
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appropriate boundary conditions and initial conditions. Finally, the set of equations are
completed by specifying T as a function or functional of ¢,x,v,Vx, and, in general, of
higher derivatives of x = x(X,?). The equation resulting from this specification is called
the constitutive equation and its precise form depends on the nature of the material behavior
being modeled.

While derivation of the governing field equations of continuous models is not unduly
difficult, the attainment of general solution is a formidable task. To date, analytic solutions
are known only for a few relatively simple continuous systems with linear elastic constitutive
law, e.g., uniform beams, strings, plates and shells with simple boundary conditions. For the
dynamic analysis of skeletal structures like frames, the continuous model becomes éxtremely

complex and have thus found limited use in practice.

2.3.2 Discrete Models

The discrete models are essentially based on discretization of a continuum to represent the
configuration by a finite number of generalized coordinates, Among the discrete models,
the finite element method and the finite difference method have received widespread use in
the engineering community. Their versatility is reflected by a variety of characterizations
and applications [23,24,52,73,92,150,236]. Once a continuum is discretized, say into finite
elements, a step-by-step integration of equations of motion can be conducted. However, the
inconvenience of such procedure is not of minor nature. The computational effort is still
significant even with the recent developments of numerical techniques.

The development of discrete models for skeletal structural frames requires that com-
promises be made in deciding on the total number of degrees of freedom to be retained. A
precise description of the structure may require many degrees of freedom than are acceptable
from a computational viewpoint. Limitations of the degrees of freedom to be retained arise
from both restrictions embedded in the available software and economic considerations of

the expense in generating the numerical solutions.
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Single-Degree-of-Freedom Systems

The single-degree-of-freedom (SDOF) models of multi-story structures are conceptually sim-
ple and have been considered by various researchers [21,1,213]. The model is applicable when
the structural behavior is governed by a single generalized coordinate. A structural system
represented by a SDOF model satisfies the equation of motion (Eq. 2.1)

mX;+ g ({X,.)i’,, 0<s<t) t) = -mW,; (2.42)

with the initial conditions

Xo=0 and Xo=0 (2.43)

in which X is the relative displacement response of the oscillator with respect to the ground
motion, m is the constant mass, g is a functional representing the general nonlinear restoring
force, and W; is the seismic ground acceleration.

The SDOF model with linear elastic restoring force (e.g., ¢ = cXy + kX with ¢
and k representing damping coefficient and stiffness) associated with the fundamental mode
of vibration is currently used in seismic design codes. The codes, however, account in an

approximate way for the effects of second oscillatory mode.
Shear Beam Systems

Structures can not always be described by SDOF systems and, in general, have to be repre-
sented by more realistic multi-degree-of-freedom (MDOF) systems. A simplest such MDOF
model is the shear beam systems [164,54,162] in which it is assumed that (i) total mass of the
structure is concentrated at the levels of the floors, (:i) the girders on the floors are infinitely
stiff as compared to the columns, and (i#i) the deformation of the structures is independent
of axial forces present in the columns. The first assumption transforms the problem from a
structure with distributed mass to a structure which has only as many degrees of freedom as
it has lumped masses at the floor level. The second assumption introduces the requirement
that the joints between beams and columns are fixed against rotations. The third assumption

leads to the condition that the rigid girders will remain horizontal during motion.
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Consider a /N-dimensional shear beam model of MDOF system shown in Fig. 2.18.
The second order differential equation representing the equation of motion of kth mass (floor)

exhibited in Fig. 2.18(b) is given by (k = | for the first floor and £ = N for the top floor)

k
7. Sk - G4l _
EU’“) +W(t)+ e (1 - 6n) o~ 0 (2.44)

where Ug(t) is the displacement of kth mass with respect to displacement of (k — 1)th mass
(except when k = 1), m; is the kth mass, g; is the kth general restoring force, W(t) is
the dynamic excitation representing ground acceleration due to earthquakes, N is the total
number of masses (floors), and &;x is the kronecker della, ie., §;; = 1 for i = j or zero
otherwise. When the (k — 1)th equation is subtracted from the kth equation (except when
k = 1), the resulting decoupled equation takes the form

2 k-1 mg Ik Mi41 Jk41
U()=(1=8p) ) ==+ {1 + (1 = 1)) ——| — =1 -t 5 ) ——"T— = <6, W(t) (2.45
w()—( 1:1)mk_1 ( kl)mk_l — (1—ébxn) —— uW(t) (2.45)

with the initial conditions

Ur(0)=0 and U(0)=0 (2.46)
in which once again f3;,0ex are kronecker deltas introduced for the equation to be valid
when t =1and &= N.

The shear beam model is applicable for weak-column and strong-beam type of struc-
tural systems. Although, design of such structures is not encouraged in earthquake engineer-
ing, the model has been used quite extensively due to its apparent simplicity [21,205]. When
structural systems depart significantly from this type, a more detailed modeling is neces-
sary. However, various techniques have been developed by researchers to obtain equivalent

lateral stifiness and equivalent story strength [13,123,205) for their use in the shear beam

idealization.
General Yielding Systems

Detailed discrete representations of structural systems are based on concentrated plasticity

models at critical cross-sections and are widely used in the deterministic analysis of yielding
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structures {26,27,51,75,206,212,154]. In general, the inelastic action may occur at arbitrary
locations, however, it is the usual practice to restrict such action to regions immediately
adjacent to the beam-column joints as shown in Fig. 2.19. The distributed masses are
usually lumped at the floor level allowing only the translational inertia to be considered.
Consider again the framed structure shown in Fig. 2.19. The stochastic seismic

modeling of this MDOF nonlinear system leads to the system of differential equations

mﬁt +g ({xn xn 0 <8< t};t) = —det (2'47)

with the initial conditions

Xo=0 and X¢=0 (2.48)

in which Xy is the vector of generalized displacement, g is the vector functional representing
general nonlinear hysteretic restoring forces, m is the mass matrix, d is the constant vector
of proportionality indicating effects of the scalar base excitation on the different degrees of
freedom, and W is the dynamic excitation representing seismic ground acceleration. Explicit
solution of Eq. 2.47 usually requires step-by-step numerical integration for the time-history

analysis.

2.3.3 Modeling Uncertainty

It is widely recognized that the variability in seismic performance evaluation is overwhelm-
ingly dominated by the uncertainty in seismic load processes. However, in recent work of
Rahman et al. [180] and Turkstra et al. [218], the modeling uncertainty of structural systems
is found to contribute significant effects on seismic response of a real 24-story R/C flat slab
building in Brooklyn, New York shown in Fig. 2.20.

The test structure is modeled as a two-dimensional frame-shear wall type building
based on the assumption that the floors have perfect in-plane rigidity. Moment of inertia
of all the columns are lumped into columns of a 3-bay planar frame (System-A). For the
shear walls, the moment of inertia are lumped into two separate walls (System-B and -C)

corresponding to contributions from small and large walls. Hinged links are then used to
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Table 2.2; Effects of Ay on Tp and Maximum Base Shear Coefficient (Ref. 180)

Aw To Maximum Base Shear
(9) Coefficient
0.35 2.9 0.045
1.00 23 0.08

transfer the axial loads from System-A to System- B and then from System- B to System-C.
The simplified idealized structure is shown in Fig. 2.20(b).

QOut-of-plane bending of floor slabs is considered by idealizing slabs into equivalent
beams [7,116] of same depth with effective width being some fraction ). (effective width
coefficient) of slab panel width. Using the chart proposed by Khan [116] and Allen [7] with
proper regard to the irregularity of plan, a lower bound of A, = 0.35 and an upper bound
of Ay = 1.0 were obtained. The variability of effective width coefficient A, may incorporate
substantial amount of uncertainty in the response of structure due to earthquake loads.
For example, the initial fundamental natural periods Ty of the building are 2.9 seconds for
Aw = 0.35 and 2.3 seconds for A, = 1.0 [180].

Fig. 2.21 shows a plot of top displacement of the building versus seismic base shear co-
efficient obtained from nonlinear static analysis based on a bilinear force-deformation model
[180]. Significant differences are noticed in the values of base shear coefficients when cal-
culated for A, = 0.35 and A, = 1.0. Table 2.2 summarizes the results from the original
reference [180] for A, = 0.35 and A, = 1.0.

2.4 Seismic Environment

In order to evaluate seismic performance of structure, it is necessary to determine the seis-
mic hazard at a site for a specific exposure time. The estimation of earthquake hazard
can take many forms and requires various levels of sophistication. Traditionally, seismic
hazard is characterized by epicentral locations, maximum intensity of ground motion, and
frequently by the peak ground acceleration (PGA), each of which provides partial informa-

tion on earthquake loads. More accurate characterizations include mean earthquake arrival
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Figure 2.21: Base Shear Coeflicient versus Top Displacement (Ref. 180)

rate, distribution of PGA, and duration and frequency content of ground motion.
This section briefly summarizes the state-of-the-art in seismic hazard estimation. The

review will serve as the basis and the justification for seismic reliability analysis presented
in the later sections of this report.

2.4.1 Seismic Hazard Map

Historically, a number of different methods have been used to develop seismic hazard maps
in the United States. One early national zoning map along with a detailed zoning map of
Boston has been discussed by Freeman [68]. Interest in the evaluation of seismic hazard
has greatly increased in the past years, at least in part because of the realization of the
importance of the hazard assessment of nuclear power plant sites and other critical facilities.
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Extensive review of development of zoning maps are also given in Refs. [2] and {165]. Only
an outline of the development of seismic zoning maps along with their relative merits and
demerits on the application of building codes is attempted here. This will be done in the

remainder of this section.
Ulrich Map

In 1948, a seismic map developed by Ulrich [186] was introduced which divided the con-
terminous United States into four zones numbered 0,1,2, and 3. Zone 3 was considered to
have the greatest potential for earthquake damage. The map was adopted in 1949 by the
International Conference of Building Officials (ICBO) for inclusion in the Uniform Building
Code and became one of the first national zoning maps used for building code purposes
in the United States. The numbered zones were used in the code in the development of
the lateral force provisions considered appropriate for various parts of the country. Despite
the fact that Ulrich map was developed with collaboration of leading seismologists in the
country, the exact basis for the zones on the map was never explained clearly. The map
displays epicenters of the larger earthquakes that occurred through 1946. The zones were
apparently drawn on the basis of the maximum magnitude earthquake that had occurred in
each zone. The zones are geometrical in outline and do not represent differences in ground
motion. Thus, at some places on the map (e.g., the western U.S.) zone 3 adjoins zone 1, etc.

Within a few years, the map was withdrawn as misleading and subject to misinterpretation.
Richter Map

Another important seismic regionalization map was published by Richter [183,165] in 1958
containing several significant advances. For example, it depicted the estimated maximum
ground motion rather than the distribution of earthquake epicenters. A notion of frequency
of occurrence of earthquakes was also introduced, however, in a very qualitative way by

coining the terms “occasional” and “frequent” for the region IX.
Algermissen Map

The 1970 edition [104] of the Uniform Building Code made use of a map developed by
Algermissen [5]. The map has the same numbering scheme as in Ulrich map and is based
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largely on the maximum Modified Mercalli intensity observed historically in each zone, but
the spatial distribution of the intensities has been generalized to take into account some
regional geological structures. The zoning map was adopted by the UBC in 1970, but
the Code did not make use of the frequency of earthquake occurrence information that
accompanied the map. Later, in the 1976 edition of UBC, this map was modified to introduce
a zone 4 in some areas of California and Nevada, and in 1979 edition of UBC, additional

modifications were introduced for Idaho [103].
Algermissen and Perkins Map

Due to a number of publications outlining feasibility of the application of probabilistic mod-
els on earthquake hazard estimation, a probabilistic acceleration map for the contiguous
United States was developed by Algermissen and Perkins [4]. The quantity mapped in this
hazard map is the 10% upper fractile of a random variable Y59 denoting largest peak ground
acceleration for a lifetime period of 50 years. The concept of hazard mapping used in the con-
struction of this map is that earthquakes are randomly distributed in magnitude, interarrival
time, and space. Both the earthquake magnitude and interarrival time have exponential dis-
tributions. Independent and identically distributed exponential interoccurrence time has the
implication that the seismic events occur as homogeneous Poisson process. The exponential
magnitude distribution is an assumption based on empirical observation. The assumption
of Poisson process for earthquakes in time is consistent with historical occurrence. Large
shocks closely approximate a Poisson process, but as magnitude decreases, earthquakes may
depart significantly from this fashion of arrival. However, ground motions associated with
small earthquakes are of marginal interests in structural engineering applications, and con-
sequently, the Poisson assumption may still serve as a useful and simple model {53].

The Applied Technology Council (ATC) report [16] contains two ground motion maps
based on effective peak acceleration and effective peak velocity, which are used to compute
lateral force coefficients for structural systems. For the conterminous United States, these
two maps are based on the hazard map of Algermissen and Perkins. The Algermissen-
Perkins map is also contained in the ATC report. The ATC effective peak acceleration

map is very similar to the Algermissen-Perkins acceleration map with the exception that
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the largest values of ground acceleration shown on the ATC map are 0.4¢ in California,
while the Algermissen-Perkins map has accelerations as high as 0.8¢ in California. The ATC
effective peak velocity map was derived from the Algermissen-Perkins acceleration map using
principles and heuristic rules outlined in the report.

Although, the Algermissen and Perkins map introduced the probability into the de-
scription of ground motion, it is perceived to have three shortcomings. They include (i)
characterization of seismic hazard in terms of only one ground motion parameter, peak
ground acceleration, (ii) a focus on only one level of probability (e.g., annual exceedance
probability of 1/500), and (#ii) lack of adequate geologic information in the generalization

of the seismic history.
Algermissen, Perkins, Thenhaus, Hanson, and Bender Map

In 1982, Algermissen et al. [3] published an improved version of earlier map by including peak
ground velocity in addition to peak ground acceleration which are mapped for the several
reference periods of 10, 50, and 250 years at the 90% probability level of nonexceedance for
the contiguous United States. The 50-year, 10% upper fractile map of Ysq for the contiguous
United States is shown in Fig. 2.22. In many areas this new map differs from the 1976
Algermissen-Perkins map because of the increase in details resulting from greater emphasis
on the geologic basis for seismic source zones. This new emphasis is possible because of
extensive data recently acquired on Holocene and Quaternary faulting in the western United
States and new interpretation of geologic structures controlling the seismicity pattern in the
central and eastern United States. The most significant difference between the two maps is
the delineation of specific fault zones such as Ramapo fault zone in New York-New Jersey
and the Clarendon-Linden fault zone in northwestern New York as discrete seismic source

zones.
Limitations of Seismic Hazard Maps

The earliest national earthquake hazard maps are primarily a geometric partitioning of the
United States according to the maximum intensities experienced historically. Progress since

then has featured an increased reliance on tectonic principles to generalize from the seismic
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history to possible future earthquake locations, a focus on actual ground motion parameters
(e.g., peak ground acceleration, peak ground velocity, etc.) and the use of probability theory
to incorpor ite seismic risk. However, all these maps provide only partial information, because
they do not take into account duration and frequency content of ground motion and their
inherent statistical variabilities.

The hazard maps of Algermissen and Perkins and Algermissen et al. are based on a
single lifetime maximum ground motion parameter which are identified as a potential factor
for the damageability of structures. However, conventional structures are usually designed
to resist several seismic events during their lifetime (¢.g., 50 years). Hence, the lifetime
peak ground acceleration or velocity may not be useful if damage accumulation between

consecutive seismic events are permitted.

2.4.2 Stochastic Process

The seismic hazard maps express seismic input only in terms of peak ground acceleration
or velocity which obvicusly does not provide all information necessary to describe the char-
acteristics of a strong ground motion relevant to earthquake design. Frequency content and
duration of motion can also play a significant role in the dynamic response and seismic per-
formance of structures. The variabilities associated with these and other earthquake features
suggest the use of random process models for characterizing seismic loads. Both stationary
and nonstationary random processes have been proposed. However, due to transient na-
ture of seismic ground acceleration, nonstationary models are more suitable than stationary

models.
Stationary Random Process

A stationary random process is a fairly good approximation for earthquake excitation when
the epicentral distance is large and the duration of strong motion is long compared with the
fundamental period of structure. It may also provide valuable qualitative information about

the nature of response even when these conditions are not met.

2-42



Gaussian White Noi

Perhaps the simplest stochastic model for seismic excitation is the stationary Gaussian
white noise §;. Bycroft [43] was one of the earliest to suggest the use of the model, which

has the well-known properties

E[t:] =0 (2.49)

and Ef[éifesa] = 7Gob(s) (2.50)

where E[-] denotes the expectation operator, §(s) is the Dirac delta function, and Gy is the
one-sided mean spectral intensity of white noise &;. It is well known that the assumption of
constant spectral content of excitation is not realistic, nor even physically possible, since the
mean square base acceleration is unbounded. Nevertheless, stationary white noise may be
a satisfactory approximation for wide band excitation, when the excitation spectrum varies
slowly in the vicinity of the structural system’s natural frequencv, and will be used as a first

order approximation for seismic excitation in the current work.
Gaussian Colored Noi

Fourier analyses of existing strong-motion accelerograms reveal that the Fourier am-
plitude spectra are not constant with frequency even over a limited band. They are some-
what oscillatory in character, may have localized peak values at one or several frequencies,
and usually damp out with increasing frequency. These suggest that a stationary filtered
white noise of limited duration could be more representative of actual strong ground motion
provided the filter transfer characteristics are properly selected.

Consider a system that can be described by a linear, time-invariant ordinary differ-
ential operator £{-} such that the colored output W; of the system due to the white input
&t is given by

C{W} = & (2.51)

2-43



The solution of above equation can be cbtained as

W= ‘:’ ho(t — 8)Eads (2.52)

where hg(t) is a unit impulse response function. If Hy(w) denotes the frequency response
function of the same system, Hy(w) and ho(t) are related by the following Fourier transform

pair
+o00
Hy(w) = /_ _ ha(t) exp(—iwt) dt (2.53)

ho(t) = 5= _‘:" Ho(w) expliwt) dw (2.54)

in which ¢ = /-1 is an imaginary unit. It can be shown that the modulus of Ho(w) can be
related to the one-sided mean power spectral density G(w) of the stationary colored process
W, by (203,128

G(w) = Go| Ho(w)>. (2.55)

Several forms of hg(t) or |Hg(w)]® are available in the current literature. They have been

used quite extensively in seismic analysis.

o Kanai and Tajimi [113,209,127,144]

in (w \/1 — (2
ho(t) = H(t) [w3 (1-2<3)<=xp(—<.t-1,t)s 5:/1_ Cf;)t)
L ]
+ H(t) 2w, exp(—(gwyt) cos (wg /1 = (2)2))] (2.56)

1+ [26(2)]°
(- + )

where H(:) is a unit step function, and w, and (, are model parameters.

|Ho(w)|* =

(2.57)
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* Bolotin [32]

a a

Ho(w)? = + 2.58
Ho()l 2w-w*)+a2  2w+w) +a? (2.38)
where a and w* are model parameters.
¢ Shinozuka and Sato [197]
sin (wyy/1 — ¢3
ho(t) = H{t) exp(—(swy?) (e 2' ) (2.59)
w'Jl - (')
where wy and (; are model parameters.
e Iyengar and Iyengar [109]
| Ho(w)|? = exp(—a*w?) + bw? exp(—4a’u?) (2.60)

where a and b are model parameters.
Nonstationary Random Process

In order to obtain an even more representative process for strong ground motion, the tran-
sient characteristics of actual accelerograms need to be considered. Generation of such
artificial ground acceleration records usually resorts to stationary processes modulated by
deterministic functions that specify the temporal variation of seismic intensity [32]. These
nonstationary models, referred to as uniformly modulated processes [167], are characterized
by time-invariant spectral shapes [12,129]. They have been generalized in several ways. For
example, it has been proposed to generate accelerograms by passing a uniformly modulated
stationary white noise through a shaping filter [197) or to represent consecutive nonoverlap-
ping segments of a ground acceleration record by different uniformly modulated stationary
processes [193). Another type of representation proposed for the ground acceleration process
is based on the response of a.linear system to a modulated train of impulses with random
magnitudes [161].
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QOscillatory Process

Consider a class of oscillatory scalar random processes V(¢t) € C which admits a

spectral representation of the form

Vi) = [ ’:” a(t;w)e“tdR(w) (2.61)

in which dR(w) is a process with orthogonal increments of variance

E[[dR(w)[*) = dF(w) (2.62)

and {a(t;w)} is a family of slowly varying functions of time for all values of w. The condition
that the functions a(¢;w) vary slowly in time is essential to retain the frequency interpreta-
tion of the parameter w. When this condition is met, a(t;w)e™* can be interpreted as an

amplitude modulated wave. From Eq. 2.61, V() has mean zero, covariance function

B(t,t+u) ¥ E[V(O)V(E+u) (2.63)
= [ ‘: a(t; W)a(t + v w)e W dF(w) (2.64)

where the overline denotes complex conjugate, and variance

ov(t) = B(t1) = | :" la(t; w)[2dF(w) 2.65)

Let F(w) be a differentiable function and dF(w) = S(w)dw. The evolutionary power spectral
density of V(£) at time ¢ is [167)

Si(w) = la(tjw)*S(w) (2.66)

and represents the frequency content of the process in a small vicinity of ¢. Process V(i)
becomes stationary in the wide sense when the functions a(Z;w) are time-invariant.

Consider the special case in which S§{w) is a piecewise constant function with jumps

of magnitude o,?/2 at a finite number of frequencies wy, ¢ = —Q,- -+, —1,1,---,@. In this

case, the integral in Eq. 2.61 can be replaced with a finite sum that can be represented in

terms of trigonometric functions in the form
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V(t) = ZQ: aq(t)og (Ag cos(w,t) + By sin(w,t)] (2.67)

=1
in which a,(t) is a slowly varying function of time, A, and By are uncorrelated zero mean,
unit variance Gaussian random variables, The one-sided mean power spectral density of the

process V(?) is

q
Gi(w) = Z‘i lag($)Poe?é(w — we) (2.68)
=

where §(-) is the Dirac’s delta function. From Eqs. 2.67 and 2.68, the energy of an oscillatory
process is associated with a fixed set of frequencies and fluctuates in time according to the
modulation function a(t;w) or a,(t). For example, the oscillatory process with evolutionary
power spectrum in Eq. 2.68 has energy at frequency w, and the energy associated with
this frequency is |ag(t)|%0,? at any instant of time . Similarly, when V(t) has a continuous
spectrum the energy is distributed at any time within the range of frequencies where Gy(w) >

0.

An elementary example of an oscillatory process is [32]

W(t) = $(1)W(¢) (2.69)

in which ¥(t) = a slowly varying real-valued, non-negative deterministic function modulating
the amplitude of W(t), and W(t) = a real-valued zero mean wide sense stationary process
with one-sided spectral density function G(w). The family of oscillatory functions of tne
process is {1(t) exp*“!} so that W(¢) has the following one-sided evolutionary spectral density
Gw(w)

Gw,{w) = Y(t)’G(w) (2.70)

of time-invariant shape, The process in Fq. 2.69 has been applied extensively to model and
generate seismic accelerograms. Its samples generally have finite power at w = 0 even when
G(0) = 0 [192). Thus, the model predicts the existence of a static load that is meaningless
in seismic analysis. Of course, this later observation does not create any practical problem

as structure has always strength to withstand the above-mentioned static load.
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In order to correct this undesirable sample property of the process in Eq. 2.69, it
has been proposed to generate artificial accelerograms from a different process obtained by
passing & uniformly modulated white noise through a linear filter [192). This model belongs
to the class of oscillatory processes since it can be regarded as the output of a time variant
linear filter to stationary white noise. It bas samples with no power at w = 0 but still has
a time-invariant spectral shape. Generation of synthetic accelerograms based on this model
involves some numerical difficulties. Besides, the design of the filters for shaping the white
noise input is not straightforward when e.g., W(t) has a multi-modal spectral content. This
is a common situation with seismic ground acceleration records.

Various forms of modulation function ¢(t) (also known as intensity function, envelope

function, etc.) are available in the literature. Some of them are described below.

¢ Bolotin [32]

¥(t) = H(t)exp(—at) (2.711)
where « is a model parameter.

¢ Housner and Jennings [91]

v(t) = H()H(t - t*) {2.72)
where t* > 0 is a model parameter.

¢ Shinozuka and Sato [197]
¥(t) = H(t)ey [exp(—at) — exp(-bt)| (2.73)
where a, b are model parameters and

1

MR
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is the normalizing constant.

s Amin and Ang [12,11]

(t) = §

0 t<0

2
1), 0<t<h
L h<t<t

| exp{—cy(t—t2)], 12 <t

in which ¢y, t1, and t; are model parameters.

¢ Iyengar and Iyengar [109]

W(t) = H(t)(a + ast) exp(-ast™)

in which ag, k = 1,2,3,4 are model parameters.

Process with Modulated Amplitude and Frequency

(2.75)

(2.76)

An alternative nonstationary model for ground acceleration process has been devel-

W(t) = Y)W ($(2)).

form

Gwalw) = 900G (w5t5)

#(1)
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oped by Grigoriu et al. [77,78]. It is obtained by modulating both the amplitude and the
frequency of a stationary process. In this method, another frequency modulation function
#(1) in addition to amplitude modulation function v(t) has been proposed to derive the
ponstationary process W(t) given by

(2.77)

It can be shown {77,78] that the time-dependent one-sided spectral density of W(t) has the

(2.78)



When ¢(t) = t (i.e., no frequency modulation), Gw (w) coincides with the spectrum in
Eq. 2.70 as expected, and W(t) in Eq. 2.77 becomes a uniformly modulated process. The
modulation function ¢(¢) determines the rate at which the spectrum of W(t) changes with
time. In contrast with oscillatory processes, that are defined for slowly varying spectra,
Gw t{w) in Eq. 2.78 is valid for both slow and rapid changes in the frequency content.
Accelerograms recorded during the 1985 Michoacan Earthquake in Mexico have been
used to calibrate the proposed process and an elementary oscillatory process [32]. Samples
of these processes and actual accelerograms have been used to calculate extreme responses
of linear and nonlinear single-degree-of-freedom systems. Figure 2.23 obtained from the
original reference [77) shows the coefficient of variation (C.0.V.) of ductility demand of

stiffness degrading systems for different natural periods. The plots are obtained for ground
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Figure 2.23: C.0.V. of Ductility Demard (Ref. 77)

accelerations based on currently used uniformly modulated process and the proposed model.
Comparisons with corresponding coefficients of variation for actual ground motions show that
the C.0.V. of ductility demand is systematically lower for systems excited with uniformly

modulated process than those subjected to proposed model and actual ground accelerations.
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On the other hand, ductility demands by the proposed model are consistent with those
corresponding to actual ground motions. Further details on this subject can be obtained
from the Ref. [77].

Digital Generation of Gaussian Processes

Considerable progress has been made in stochastic modeling of ground motion and in gen-
erating the corresponding sample functions for the purpose of nonlinear and parametric
seismic response analysis. However, a large number of these analyses are performed under
the assumption that the seismic ground motion consists of a single horizontal component. In
this respect, the digital generation of univariate and one-dimensional stalionary stochastic
processes using spectral representation remains of critical importance in the seismic analysis.

A commonly used method [49] to generate the samples from a stationary Gaussian

process W () with one-sided power spectral density G(w) is obtained from

Ny
W(t) = Y Cisin(wit + 8;) (2.79)

k=1
in which w; is the discrete frequency, Ci = \/2é(wk)Awp, is the deterministic amplitude,
N, is the number of discrete frequencies, and the phase angles ¥, k = 1,2,-- .\ N, are

independent and identical random variables uniformly distributed over (0,2x). Strictly,
W(t) in Eq. 2.79 is not Gaussian when N, < co. Asymptotically, however, as N, — oo,
W (t) approaches a Gaussian process according to the Central Limit Theorem. Moreover,
a study [217] on simulating random sea waves showed that this method, which is based on
deterministic amplitudes Ci may be unsatisfactory because of less variance of the simulated
samples.

An alternative simulation scheme based on both random amplitudes and random

phase angles have been proposed [203]. In this approach, the representation of W(t) has the

form

N
W(t) = Y A cos(wit) + By sin(wit) (2.80)
k=1

in which A; and By (k=1,2,--,N,) are independent and identically distributed Gaussian
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Table 2.3: Strong Motion Duration

Moayyad and Mohraz (Ref. 140) [ Vanmarcke and Lai (Ref. 221)
Soft | Intermediate | Hard Soil Rock
Ground Ground Ground
Mean (s) | 10.0 63 56 10.1 49
C.0.V 0.44 0.42 0.65 0.90 1.01
Sample Size | 161 60 26 118 | 22

random variables with mean zero and variance G(wi)Awy. Note that the representation of
W(t) in Eq. 2.79 becomes equivalent to that in Eq. 2.80 if the amplitudes C; are random
and follow Rayleigh distributions.

Duration of Strong Motion

The duration of strong motion due to an earthquake may significantly effect nonlinear struc-
tural response and damage. A number of studies have been conducted to define and estimate
the duration of strong motion for earthquakes [33,216,134,221,122,140]. Values of mean and
coeflicient of variation (C.0.V) of strong motion duration evaluated by Moayadd and Mohraz
[140) and Vanmarcke and Lai {221] are summarized in Table 2.3. The differences in mean
duration obtained from two sets of data do not appear to be significant. However, the co-
efficients of variation of strong motion duration show subsizuiial differences. Based on the
observation that strong motion duration is negatively correlated with peak ground accel-
eration, Lai [122] has suggested the following regression equation for design strong motion

duration 7,

T, = 30exp {~3.2540ma: 3%} (2.81)
for a design peak ground acceleration am,z (in g units) at a particular site.

Modeling Uncertainty

The variability in stochastic modeling of earthquakes constitutes one of the major causes
affecting seismic response and reliability of structural systems. Following similar considera-

tions to material models discussed previously, two sources can be identified. They correspond
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Table 2.4: Statistical Data on w, and (,

Probabilistic Sail Rock
Characteristics (Sample Size = 118) | (Sample Size = 22)
Wy Co Wy Cs
(rad/s) (rad/s)
Mean 19.1 0.35 26.7 0.32
Coefficient of Variation | 0.425 0.391 0.398 0.426

to the uncertainty in (i) the mathematical models of impulse response functions hg(t) (or
IHo(w)lz) and modulation functions 1(t) and/or $(t), and (i¢) the corresponding parameters
given a model.

A systematic study on the probabilistic characterization of parameters of ground
accelerations is reported in Ref. [122]. Ground motions are characterized by the parameters
of the Kanai-Tajimi spectral density function and by the strong motion duration. The
spectral content and duration of 140 actual strong-motion accelerograms are studied with an
aim of quantifying the uncertainty of ground motion representation. Parameters of Kanai-
Tajimi spectrum and strong motion duration are estimated for each record based on the
method of spectral moments. The statistics and dependence of the parameters are then
evaluated from the data base used in the study. Means and coeflicients of variation of wy
and {, obtained by Lai [122] for the two ground conditions classified as “rock” and “soil”
are summarized in Table 2.4. They provide a rational basis for characterizing seismic input
by considering uncertainty in the ground motion parameters. However, these information
may not be useful if the nature of site spectrum departs significantly from Kanai-Tajimi
spectrum.

2.5 Seismic Damage Assessment

A major objective of seismic design is the generation of structures that can survive earth-
quakes with a limited amount of damage. It has been proposed to evaluate structural
performance by damage indices defined as scalar functions whose values can be related to
particular structural (physical) damage states. In addition to the evaluation of the perfor-
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mance of individual structures, damage indices can also be used to develop optimal strategies
for codified seismic design.

Empirical and theoretical considerations have been applied to yield various estimates
of structural damage [79,235]. The empirical damage models are based on statistics of struc-
tural damages observed at various sites during earthquakes [85,231]. Although, these obser-
vations of damage may be subjective, they sometimes provide useful qualitative information
in overall seismic performance of structural systems. However, the empirical evaluation does
not lend itself well to rationally predicting the strength reserve and response characteristics
of a structure with a specified degree of damage because (i) it completely disregards the
mechanics of materials that undergo large inelastic cyclic loads, (i7) future earthquakes may
have different intensities, duration, and frequency content, (iii) recently built structures can
differ significantly from the structures used to develop damage statistics, and (iv) the dy-
namic characteristics of the population of structures included in the statistical analysis may
have altered due to repairs and damage accumulation in previous earthquakes.

The theoretical damage models account for characteristics of structure and seismic
action and can have various degrees of complexity. They can be broadly divided into two
classes [79,180] which are (1) strength-based damage indices, and (1) response-based damage

indices.
2.5.1 Strength-Based Damage Indices (SDI)

Damage index based on strength is simple and does not require response analysis, However,
the index must be calibrated against observed damages and calibration usually requires a
large data base.

Strength-based damage indices have first been proposed in China by Yang and Yang
[233] and Japan by Shiga et al. [196] and Aoyama [14]. These indices depend on the geometry
of structural elements and their general material properties. They have been extended by
Meli {138] and used to relate them to observed damages resulting from the 1987 Mezico City
Earthquake [99]. The strength-based damage indices have been used in a Japanese code for
evaluating existing buildings [15,152].



Shiga Index

Studies of reinforced concrete structures subjected to seismic ground motion indicate that
the Shiga diagram [196] or the basis of column/wall area criteria can be used for damage

assessment. The diagram consists of a plot of wall area index

m-I
3 ALY
WAF = 51— (2.82)
> A
k=i
and average shear stress

> wt
Tawg' = — k= - (2.83)
Z Awij + EAcij
=1 =1

for a lateral acceleration of 1g, where WAI® is the wall area index of i** story, 1'...," is the
average shear stress at i*® story, A" is the area of j** shear wall in i™® story, A." is the area
of j** column in i** story, A * is the total area of k** floor, W* is the weight of k** floor, N
is the total number of stories, m,,' is the total number of walls in i* story, m,! is the total
number of columns in i** story, i is the story coordinate. For a particular story level ¢, r..,‘
indicates the intensity of seismic forces while W AI' provides a measure of relative stiffness
and hence the relative shear deformation capacity of the story compared with those of floors

above.
Japanese Index

According to the Japanese code {15,152] for evaluating existing buildings, the damage due

to potential seismic ground shaking can be estimated by a seismic damage index

Is = BE,GSpT (2.84)

where Ey is the seismic sub-index of basic structural performance, G is the seismic sub-index

of ground motion, $p is the seismic sub-index of structural design, T is the seismic sub-index
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of time-dependent deterioration. There are several levels of modeling for these sub-indices.
The first level involves only shear capacities of each floor. The second level includes both
shear and bending moment capacities of walls and columns. The data for seismic indices
of actual structures which experienced several 1978 earthquakes in Japan suggest [15] that
buildings with Is{first level) > 0.8 and Is(second level) > 0.6 are likely to have adequate
seismic strength.

The SDI lacks rigor and must be based on a large set of observations. However, the
method is very simple and does not necessitate any response analysis. Therefore, it is suitable
for evaluating the seismic performance of large structural populations such as the low-rise
buildings in the state of New York. Since field observations of damaged structures due to
seismic loads are not readily available in New York State, the method can be calibrated from
synthetic data obtained from the prediction of damage indices based on nonlinear dynamic

analysis discussed in the next section of this review.

2.5.2 Response-Based Damage Indices (RDI)

Damage index based on response of nonlinear dynamic analysis is relatively complex but
usually requires less data for calibration. It requires detailed information of structural and
material models and description of ground motion(s) consistent with the site of structure.

The seismic performance of structures i3 commonly related to the capacity of un-
dergoing inelastic deformations, defined as the ratio of a peak inelastic response to the
corresponding yield response or ductility. This measure of structural performance can be
unsatisfactory as demonstrated by experimental studies because it can not account for the
duration and the frequency content of the seismic load. Experimental studies also show that
alternative measures of seismic structural performance based solely on the low-cycle fatigue
theory do not seem to provide either a satisfactory index for seismic damage [22]. These
experimental results are consistent with the anticipated notion that failure of brittle systems
is caused by excessive deformations while the failure of ideal ductile systems is initiated by
repeated inelastic deformations [6]. Therefore, damage indices for actual structures, that are
neither ideal brittle nor ideal ductile, should account for the damage effects of both excessive
deformations and repeated inelastic deformations [158,235).
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One of the most general damage indices proposed for seismic analysis is a bivariate
random process D(t) € R? with components Dy, (t) € R and D, (1) € R denoting normalized
values of maximum inelastic deformation and dissipated energy at any instant of time ¢
[22]. The index attempts to account in a systematic way for the damage caused by both
excessive inelastic deformations and cumulative damages caused by repeated inelastic load
cycles. The use of bivariate process is also supported by experimental data on reinforced
concrete beam-column assemblages subject to cyclic loads. These data show that current
damage indices can be divided into two distinct sets, damage indices related to extreme
deformations or stiffness degradation, and damage indices related to energy dissipation or
structural deterioration. It is attractive from a theoretical point of view, but may have
limited practical applications due to difficulties related to the estimation of the probability
of failure that may depend on the entire history of D(t). An estimate of this probability,
however, has been developed in Ref. [22] from experimental data in a transformed space of
D(t) in which the damage index process is approximately isotropic.

Most of the existing damage indices used currently in seismic analysis focus on the
maximum value of one of the two components of D(t) or related quantities. There have
also been few attempts to develop damage indices that account in a simplified way on both
components of D(t) or related quantities [47,159,160]. These damage indices are examined

in the remainder of this section.

Maximum Deformation

Ductility Ratio (DR)

The ductility ratio DR defined &s the ratio of the maximum deformation é,, to the
yield deformation §, given by
d

DR=1m (2.85)
6’

has been applied extensively in seismic analysis to evaluate the capacity of structures under-
goiag inelastic deformation and develop inelastic response spectra [144]. It can be expressed

in terms of various components of response, c.g., displacement, rotation, and curvature (6,
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149]. As a damage index, the ductility ratio may be unsatisfactory because it cannot ac-
count for both duration and frequency content of typical ground motions {22,235]. It is
usually assumed that failure occurs when the ductility demand (response) in Eq. 2.85 ex-
caeds structural ductility (capacity) that is equal to the ratio of the ultimate deformation

under monotonic static load 8, to &, [29,144].

Interstory Drift (ID)

The interstory drift 7D has the expression

ID = éhﬂ (2.86)

in which A, = the maximum relative displacement between two stories and A = the story
height [199,201]). From the analysis of test data on components and small scale structures,
it was found that values of /D smaller than 1% correspond to damage of nonstructural
components while values of I D larger than 4% may result in irreparable structural damage
or collapse [199,215]. In another study, coliapse is assumed to occur when ID exceed 6%
[187]). As for ductility ratio, the interstory drift cannot account for effects of cumulative
damage due to repeated inelastic deformation. Damage indices similar to those in Eqs. 2.85
and 2.86 have also been considered in Refs. {153] and [195].

Slope Ratio (SR)

Damage has also been related to stiffness degradation during seismic loading that can
be measured by the slope ratio SR defined as
K,

SR= 4" (2.87)

where ¢.g., K, and K, are slopes of loading and unloading branches of the force-displacement
diagram. From tests of small scale structural systems, it has been determined that SR with
values 1.0 and 0.2 correspond to safe structural behavior and critically damaged structures
[215].



Flexural Damage Ratio (FDR)

Damage has also been correlated to the ratio of initial stiffness K; to the reduced
secant stiffness K;, at the maximum displacement [22,187] given by
K

FDR= - 2.88
x. (2.88)

where FDR represents the Flexural Damage Ratio.

Damage indices based in extreme inelastic deformations seem to be strongly correlated
[22] so that their predictions are usually similar. For example, the correlation coefficient
between rotational DR and FDR has been found to be 0.95 [22]. As previously mentioned,
these indices can be unsatisfactory because they cannot account for effects of cumulative
damage caused by repeated load reversals. Critical values of the damage indices considered
in this section are determined from laboratory tests and/or field observations. Therefore,
their use in the prediction of seismic damage for structures with mechanical characteristics
significantly different from those used in the calibration process is questionable. Additional
difficulties in the use of the damage indices relate to differences between features of future

earthquakes and earthquakes considered in calibration, e.g., duration and frequency content.

Cumulative Damage

Normalized Cumulative Rotation {NCR)

A simple measure of structural deterioration during a seismic event is the sum of
all plastic excursions experienced by the structure. The value of this measure depends on
the duration and intensity of the earthquake. For example, the damage index denoting
normalized cumulative rotation [22] can be defined as

NCR = E—a'”'-' (2.89)
1 4

where 8, = inelastic rotation during half cycles, and 8, = yield rotation. Statistical analyses
of data on beam-column elements subject to cyclic loads show that the NCR is strongly
related to the dissipated energy. These studies also show that damage indices based on only
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cumulative inelastic deformation or dissipated energy may be inadequate to characterize the

complex process of damage propagation and subsequent failure in concrete members [22]

Low Cycle Fatigue

The theory of low-cycle fatigue has been applied to the seismic analysis of structures
subject to strong ground motion to estimate damage [149,201,202,234). According to this
theory, the total damage D, is the sum of incremental damage AD; in every load cycle i.

ie.,
D. =Y AD: (2.90)
in which
1
o A& 1™
oo {J2f) o
| 3
1 Ad,
and m= 1——0_86’", r= Ka—‘ (2.92)

where Aé; and Aé, are the tensile and compressive change in the plastic deformation, and
Adyy is the tensile change in the plastic deformation in one cycle test to failure conducted at
the relativeratio r. In applications, Ay can be approximately estimated by the deformation
at failure under simple monotonic loads [201,202] with § denoting strain [234] or deflection
[149,201,202]. From the analysis of laboratory and field data it has been concluded that the
exponent 1/m in Eq. 2.92 takes on values in the range (1,2) [201,202,234). Since D, in Eq.
2.90 is not sensitive to the value of this exponent [234], the damage index does not require any
calioration. Therefore, it can be used directly to predict the damage state of any structural
system for a postulated value of 1/m in the range (1,2). Failure is assumed to occur when
D, = 1. The determination of D, in Eqs. 2.90 and 2.91 is scrnewhat complex and involves
the entire response history. In addition, the index may be unsatisfactory since it cannot

account, as the NCR index in Eq. 2.89, for the effect of maximum inelastic deformation.



Maximum Deformation and Cumulative Damage

Park et gl.

A simplified failure -riterion involving the components of the damage vector process
D(t) € R? has been propesed in Refs. [159), [160] and [157). It is based on scaled values of
ductility and dissipated energy during the seismic ground shaking. The ductility, defined as
the ratio of the maximum to the yield deformation &m /6y, is scaled by &, /8, in which &y is
the ultimate deformation under monotonic static loads. The dissipated energy [ dF is scaled
by B./(Qyés) where Qy is the yield force and S, is a nonnegative constant usually obtained
from experimental calibration. The failure is assumed to occur when the damage index DI

representing a linear combination of the scaled components of D(2) given by

DI=—+

Q' - j dE (2.93)

exceeds unity. Under monotonically increasing loads, [dE = 0 giving the damage index
DI = &,/ so that failure is predicted to occur, as expected when ép, = 8s.

The assumptions in Eq. 2.93 that (i) the contributions to damage of the extreme
deformation and dissipated energy can be superposed linearly, and (i?) the joint evolution in
time of these components can be disregarded, do not seem to be in congruence with results
obtained in Ref. [22]. In addition, the value of constant J, is not specified and has to be
obtained by calibration to laboratory and/or field data. Regression analysis of experimental

data for reinforced concrete structures suggests [159)]

Be = (—0.447 + 0.0735 +0.24ng + 0.314P|) 0.7 {2.94)

where //d is shear span ratio, ng is normalized axial stress, p,, is confinement ratio, and P is
the longitudinal steel ratio. In evaluating the damage index in Eq. 2.93, it is apparent that
a significant role is assigned to the parameter 8, which in turn depends on four completely
unrelated variables.

Variability in mechanical properties of structural systems can be incorporated to

generalize the aforementioned failure condition if the critical deterministic threshold of unity
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is replaced by a random variable Dg. In this case, the failure condition is DI > Dg
[159]. Statistical analyses of tests in reinforced concrete members suggest that Dp follows
a lognormal distribution with expected value equal to unity and standard deviation 0.54.
First and second-moment descriptors of é,, and [ dE have been determined by approximate

solutions of random vibration analyses based on stochastic equivalent linearization.
Maximum Softening Damage

A global damage index based on maximum softening of structure due to variation of its
vibrational periods during a seismic event has been proposed by DiPasquale aud Cakmak
[69]. According to this model, the maximum softening damage 8¢ is defined as {59]

by=1- (TT;%SJIM (2.95)

where (T0)initi«t 18 the fundamental period of (undamaged) structure before it experiences the
earthquake and (To)ma: is the maximum value of the fundamental period during a potential
seismic event. This damage indicator, which measures the maximum relative stiffness reduc-
tion caused by the stiffness and strength deterioration of the actual structure, is calculated
for an equivalent linear structure with slowly varying stiffness characteristics. Reference [59]
presents some calibration results of this damage indicator using seismic simulations tests in
the laboratory. Good correlation has been reported between predicticns based on the max-
imum softening indicator and observed results from shaking table experiments and actual
building structures. Recently, the Markov property of one- and two-dimensional maximum
softening damage indicators has been investigated by Nielsen and Cakmak [146] and Nielsen,
Koylioglu, and Cakmak [147].

Various other damage models such as those proposed by Krawinkler et al. [119],
Gosain et al. [76], Hwang et al. [97], Darwin et al. [56], Bertero et al. [28], Blejwas et al.
[31], Roufaiel et al. [189], Mizubata et al. [139], Chung et al. [48], and Reinhorn et al. [182],
have also been reported in the current literature. Details of these models can be abtained
from Refs. {48] and [182).
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Global Damage Evaluation from Local Damage Measures

Important decisions concerning the residual strength and safety of a damaged structure are
currently based on a single structural or global damage index. This gioi.al damage index is
usually obtained from heuristic combinations of local damage meesures. The simplest tech-
nique in combining local damage indices is to use a weighting scheme giving the fundamental

expression

Z: wiDI;
Dlg = 45— (2.96)
> wi
s

in which the subscripts L and G stands for local and global damage indices, and w; is the
weight assigned to each local index. The weighting factor can reflect the replacement cost
and for the relative importance of the substructure in maintaining the integrity of structure.
For example, the lower story of a building might be assigned more importance than the
upper stories. The weighting factor for any story could also depend on the magnitude of the
damage index for that story, so that severely damaged stories are weighted more heavily.
One approach used by Park et al. [157] is to make w; proportional to DI ;. The equation
for global damage index becomes

Y b1,
Dlg=- (2.97)

Z DI '
i
Due to the combination of detailed damage information of an entire structure into a
single global estimator, too much information is lost thus allowing only a crude estimate of
structural performance during seismic events. Since there is no one-to-one relation between
local and global indices, a global measure of damage defined by Eq. 2.96 cannot characterize
structural state uniquely and thus cannot be used to assess structural vulnerability to future
loadings. Hence, evaluation of seismic reliability studies based on monitoring parameters of
restoring force models at all critical structural components is more meaningful to simulate

correctly the system degradation process.



Numerical Results for RDI

Available numerical studies on damage indices can be divided in three classes dealing with
(¥) calibration, (i) performance evaluation, and (iii) effects of uncertainty in structural and

ground motion characteristics.
Calibration of RDI

The calibration of most damage indices is usually based on laboratory experiments
and involves various procedures for estimating the damage state. These procedures can
be based on concepts of system identification, fuzzy sets, and expert systems [141,215].
The experimental results are determined for certain types of structures and earthquakes.
Therefore, their applicability may not be relevant for other structural systems and seismic
events. This is a significant limitation that may prevent the use of most of the damage
indices in the prediction of seismic performance of structural systems and development of

rational seismic codes.
Performance Fvaluation of RDI

Damage indices are usually evaluated based on comparison between predicted and
observed damages. A recent study [201] provides an extensive evaluation of the damage
indices in Eqs. 2.90 and 2.93. Four structural systems are used in the evaluation: (¢) inte-
rior reinforced concrete beams subject to cyclic and monotonic loads, (ii) a 1/10 size model
of a 10 story reinforced concrete frame subjected to shaking table dynamic test, (i) a full
size 7 story reinforced concrete building subjected to 4 pseudo-dynamic tests simulating
earthquakes at increasing intensity, and (iv) the Imperial County Services Building that
was damaged during the October 15, 1979 Imperial Valley Earthquake. Details on available
obeervations and calculations can be obtained from the original reference [201]. The calcula-
tions were performed under different assumptions regarding the ultimate displacement wﬁen
this displacement was not available, ¢.g., ultimate interstory displacement of 8 to 10 % are
considered to be realistic. Values of constant fi, in Eq. 2.93 were assumed to be 0.25, 0.5,
and 1.0. Results indicate that 0.25 is the optimal value of 8, in cases examined.
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The analysis in Ref. [201] shows that the index in Eq. 2.93 overpredicts structural
damage in some cases but available evidence is insufficient to determine whether the damage
index in Eq. 2.90 is superior to the one in Eq. 2.93 or vice versa. Another study [158] shows
a good agreement between the prediction of the index in Eq. 2.93 and damages observed in
many structural systems. Unfortunately, this study does not give values of the parameters
éu, @y, and S, used in the analysis.

Effects of Uncertainty

A systematic investigation on effects of the uncertainty in the parameters of the
seismic excitation and structural characteristics is reported in Ref. [149) for the ductility
ratio in Eq. 2.85 and the damage index in Eq. 2.90. The analysis is based on a single degree
of freedom model with elasto-plastic restoring force models and a set of 20 actual earthquakes
scaled to the same peak ground acce'sration. The structural damping, stiffness, and yield
displacement are assumed to be deterministic or follow lognormal distributions, Results
obtained by simulation based on Latin Hypercube Sampling indicate that the uncertainty in
structural mechanical properties can increase significantly the variance of ductility ratio. It
is also found that there is a little correlation between the damage indices in Eqs. 2.85 and
2.90. This is in agreement with other studies showing a weak correlation between damage

indices based on the maximum deformation and cumulative effects of cyclic loads [22].

2.5.3 [Evaluation of SDI

A recent study [180] based on both SDI and RDI is carried out for the assessment of seis-
mic performance of existing buildings in New York City. Nonlinear dynamic analyses and
statistical evidence from previous earthquakes are used to evaluate strength-based damage
indices. Figure 2.24 shows the potential seismic damage for a 24-story R/C flat-slab building
in Brooklyn obtained by a strength-based damage index defined by Eq. 2.84. Figure 2.25
shows the interstory drift (defined by Eq. 2.86) versus story coordinates for this 24-story
structure subject to the actual and scaled versions of the 1986 San Salvador Earthquake. Pre-
liminary geological considerations suggest that the earthquake is adequate for the building

site. The analysis accounts for the uncertainty in material characteristics. In all the cases,
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the drift is found to exceed the allowable value (0.4 %) suggested by the 1988 Uniform
Building Code. Thus, comparisons with the results in Fig. 2.25 indicate that strength-based
damage indices can provide a useful measure of seismic performance for buildings in New
York City.
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Figure 2.24: Strength-based Damage Index (Ref. 180)
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Figure 2.25: Response-based Damage Index (Ref. 180)
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SECTION 3
Static Reliability

3.1 Introduction

Current estimates of seismic reliability indices for building structures are obtained by static
method. The static reliability analysis is based on (i) elementary models of seismic haz-
ard, e.g. by the 50-yr maximum peak ground acceleration, (it) stress analysis due to static
loads applied laterally to structural systems, and (ii¢) limit states defined by strength-related
elementary failure criteria at a particular structural component. Effects of structural redun-
dancy, nonlinear dynamic response, and damage accumulation during consecutive seismic
events are not explicitly considered in this simplified analysis.

The objective of this section is to assess seismic performance of code-designed struc-
tures by static reliability analysis. Several models of seismic hazard are also examined to

evaluate sensitivity of seismic reliability estimates to particular hazard model.

3.2 Structural Strength

Building codes and standards used in structural design contain provisions for ensuring struc-
tural safety under extreme loads. The general form of equation from these provisions is
obtained from the Load and Resistance Factor Design (LRFD) format [8,64,72,131] and is
given by

$Ru > CU (3.1)

in which ¢ is the resistance factor, R,; is the nominal code-specified resistance at ith struc-
tural component, C; is the influence coefficient obtained from structural stress analysis due

to factored ultimate load
U=37Qu (3.2)
J

3-1



where Qy; and ~; are nominal load and corresponding load factor for the jth load component,
respectively. Several load combinations are usually required to specify U in Eq. 3.2 which
can be used in Eq. 3.1 to evaluate deterministic nominal strength Ra.;. For example, when

the ACI Code 318-83 [9] is adopted, the explicit form of Eq. 3.2 becomes

1.4Dy +1.7Ly
U =14 0.75(1.4Dp + 1.7Ln % 1.87Ey) (3.3)

0.9D, + 1.43E,
where Dy, Ln, and E, are code-specified nominal dead load, live load, and earthquake load
respectively. Representative values of the nominal loads used in a wide variety of buildings
can be obtained from the specification in American National Standards Institute (ANSI)
A58.1-82 [10], Uniform Building Code (UBC) [100,101,102) and many others. For example,
the nominal seismic base shear E, obtained from the 1988 Uniform Building Code [100] is

_ ZICW
Ry

E, (3.4)

1.255
where C = }“T/a— (3.5)

and from the 1985 Uniform Building Code [101] is

En = ZIKCSW (3.6)

where C =

|
T T (3.7
in which

Z = seismic zone factor
I = importance factor

K, R, = building system factors
§ = soil factor



To = initial fundamental period of structure
W = weight of structure.

(3.8)

Data on structural resistance exhibit a distinct statistical scatter. Three major sources
can be identified and they correspond to the uncertainty in (i) material properties (e.g.,
yield strength of steel, compressive strength of concrete, etc.), (i) geometry (e.g., structural
dimensions) and (1#i) modeling accuracy (e.g., the use of rectangular stress block in reinforced
concrete design). Mean, coefficient of variation and probability distribution for structural
strengths have been determined from test data on the strength of materials and laboratory
experiments of full-scale members under idealized loading envirenments and in some cases,
through simulation where a well-defined analytical model is available. A representative
sampling of these data which summarizes results of numerous research programs are available
in Ref. [65] and is shown in Table 3.1. The mean values are normalized with respect to the
deterministic nominal resistance which is based on the model used to predict the strength in
the appropriate material specification. The statistics include factors which reflect the effects

of modeling and fabrication errors. Further studies may be found in Ref. [65].

3.3 Structural Loads

Most structural loads vary with time. If the structure is subjected to only one time-varying
load (e.9., live load) in addition to its time-invariant dead load, the total load effect may
be determined by considering the combination of the dead load with the maximum time-
varying load during some appropriate reference period of time r (e.g., 50 years). Frequently,
however, more than one time-varying load act on a structure (e.g., live load plus wind load
or earthquake load). When more than one time-varying load acts, it is extremely unlikely
that each load will reach its peak lifetime value at the same instant of time. Consequently, a
structural component can be designed for a total load which is less than the sum of the peak
loads. This is currently recognized in the American National Standards Instituie (ANSI)
A58.1-82[10).

Ideally, the load combinations should be dealt with applying the theory of random
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Table 3.1: Statistical Data on Structural Resistance

Structural Member Mean/Nominal | Coefficient of | Probability
Variation | Distribution

Structural Steel:

Tension Members 1.05 0.11 Lognormal

(Yielding)

Tension Members 1.10 0.11 Lognormal

(Tensile Strength)

Compact Beam 1.07 0.13 Lognormal

(Uniform Moment)

Beam-Column 1.07 0.15 Lognormal

Plate Girders, Flexure 1.08 0.12 Lognormal

A325 HS Bolts, Tension 1.20 0.09 Lognormal

Axially Loaded Column 1.08 0.14 Lognormal

Reinforced Concrete:

Flexure, R/C, Grade 60 1.05 0.11 Normal

Flexure, R/C, Grade 40 1.14 0.14 Normal

Flexure, Pre-tensioned Beam 1.06 0.08 Normal

Flexure, Post-tensioned Beam 1.04 0.10 Normal

Short Columns 1.05 0.16 Normal

(Compression Failure)

Short Columns 1.05 0.12 Normal

!Tension Fa.ilure!




processes which accounts for the stochastic nature of the loads in both space and time.
However, the probabilistic characterization of the maximum of a sum of stochastic load
processes is not an easy task. A simple model for describing the maximum during period 7
of a combination of loads follows from the assumption that the maximum total load occurs
when one of the loads attains its maximum value during 7 while the other loads assume
their instantaneous or arbitrary-point-in-time values [219]. In other words, when the loads
are assumed to be statiopary, the maximum load effect $; at the ith structural component

is given by

8i = max |max (Cy;Q;) + 2 CarQs (3.9)
7 k#j

where Q; is the jth load component and Cj; is the influence coefficient which transforms
the jth load component into load effect at ith structural component. Eq. 3.9 enables a
random variable rather than stochastic process characterization of the load combination.
The arbitrary-point-in-time load is simply the value measured if the load processes were to
be sampled at any instant of time and is typically much less than the associated nominal
value. Recent research on load combinations [126,229] suggest that Eq. 3.9 is a good
approximation in many practical cases, although it tends to be unconservative in instances
where the probability of joint occurrence of more than one maximum load is not negligible.

Mean, coefficient of variation, and probehility distributions of 50-yr maximum and
arbitrary-point-in-time loads are available in Ref. [71] and is summarized in Table 3.2. The
load subcornmittees within the ANSI Committee A58 provided many of these estimates. By
and large, these statistical studies are a synthesis of values reported in numerous previous
studies on structural loads and load models, behavior of structural members, and reliability-
based design. Insofar as possible, the load statistics are based on load surveys in situ,
measurements of wind pressure on buildings, and probabilistic load modeling which converts
a survey load to a maximumn load used for the purpose of reliability analysis and design. In
addition to the basic variability in the load, uncertainty also arises from the load model itself
which transforms the actual spatially and temporally varying load into a statically equivalent
uniformly distributed load (e.g., dead load, live load, etc.) for the operational convenience

of design process. These uncertainties are included in the coefficients of variation listed in
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Table 3.2: Statistical Data on Structural Loads

Load Mean/Nominal | Coefficient of | Probability
Variable Variation | Distribution
Dead, D 1.05 0.1 Normal
Live, L Ref. 71 0.25 Type-1
Live, Lapi Ref. 71 Ref. 65 Gamma
Wind, W 0.78 0.37 Type-I
Wind, W,y (-0.021)" (1s8.7)" Type-1
Snow, S 0.82 0.26 Type-II
Earthquake, E | (Site Dependent)* (2.3)° Type-1I

* Characteristic extreme and shape parameters

Table 3.2. The probability distributions are obtained by the best fit to the upper percentiles
of the distribution obtained from either Monte Carlo simulation or numerical integration.
Detailed description of load modeling is available in Ref. [65]. In this study, an elaborate

discussion on the probabilistic load characterization for seismic environment is presented.

3.3.1 Current Models of Seismic Hazard

Load effects due to seismic ground shaking are currently determined by the inverted triangu-
lar loads applied laterally to building structures. These loads are proportional to base shear
E which can be obtained from [65,16)

E= Eﬂ% (3.10)
where
Yso = 50-yr extreme peak ground acceleration (PGA)
R = response modification factor
S = soil factor
To = fundamental period of structure
W = weight of structure.
(3.11)



According to Refs. [65] and [53], the cumulative distribution function of Yzp at a site
can be modeled as Eztreme Type-II distribution which is given by

ezxp [— (E)-k] y ¥20

0, otherwise

Fuoly) = { (3.12)

in which the extreme and shape parameters u and k can be obtained from the Algermissen-
Perkins map [2] giving the contour plots of 10% upper fractile of Yso. The acceleration ayo
has a return period of 475 years and is mapped for the entire continental United States.
Assuming k = 2.3 as suggested in Refs. [65] and [149], u may be computed for any mapped
value of ajp from u = 0.38 aj9. This seismic hazard map of Algermissen-Perkins can not
he related to the seismic zone map of Uniform Building Code [101], because the code map
is based on largest historical event while the Algermissen-Perkins map accounts for the site
sei:mici’ 3 ana design lifetime. Moreover, it is also possible that different sites located at the
sane seismic zone of Uniform Building Code [100,101] are characterized by different values
of i110. Thus, the resultant reliability measures for structural systems can be very different

Ane to the identical design base shear obtained from Uniform Building Code [100,101].

3.3.2 Alternative Models of Seismic Hazard

Consider a site affected by a single seismic source characterized by a mean rate of earthquake
occurrence A. It is assumed that (i) the earthquake arrivals follow a homogeneous Poisson
process with mean rate A, (if) ground motions in different seismic events are independent
and identically distributed stationary Gaussian processes W(t) with mean zero, one-sided
mean power spectral density G(w) for w € (0,+00) and (iii) seismic events have the same
deterministic strong motion duration T,. This representation of seismic hazard provides a
very simplified model of seismic environment.

The distribution of the peak ground acceleration during a seismic event can be ap-

proximated by (203,179]

F(y) def py (n}‘a:x |W(t)] < y) ~ exp [~%‘/}—Eexp {——21:;}] (3.13)

where



e[ * WiB(w)dw (3.14)

is the ith spectral moment of W(t). Therefore, the cumulative distribution function of the

largest peak ground acceleration Yy during a lifetime period 7 is [179]

Fly) & Pr (m’gx{ﬁ-/(t),o <t<r)< y)

= S FIrC  ep(-an)

n=(

= exp(—AT) iﬂ [—’\%E

= exp[-Ar{l - F(y)}] (3.15)

The peak ground acceleration ajg, defined as the 10% upper fractile of Yz, can be obtained

from the condition

Prsoye(y = a10) & 0.9 (3.16)

giving

1
_ -1 —_
ayg = F [1 + 50N log 0.9]
1
475X

Note that a1g depends on A, T, and the spectral density G(w) of ground motion. Different

= F-‘_[l (3.17)

values of these parameters can yield the same peak ground acceleration ajq.

According to Eq. 3.12, the distribution of lifetime largest peak ground acceleration
Yso depends only on 619 without any explicit regard for other parameters of seismic hazard.
It is possible that different sites characterized by same value of ajg may have very different
values of A, T, and other parameters. In all these cases, if the structural designs are identical
due to same seismic zone of Uniform Building Codes [100,101), reliability estimates of these
structures obtained from Eq. 3.12 will also be identical. Hence, a more realistic reliability
analysis can be conducted by using Eqs. 3.15 and 3.13 which accounts for all site parameters

of ground motion.
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3.4 Structural Reliability Analysis

Structural reliability analysis requires a mathematical model derived from principles of me-
chanics and experimental data which relates the resistance and load variables for a specific
performance criterion of interest. Let R; and S; denote two random variables representing
structural strength and load effects at the ith structural component. The reliability of this
component can be computed from the condition that the margin of safety M; = R, — §; > 0.
This condition can be expressed in the conventional form M; = g(X) > 0 where X € R* is a
vector of basic random parameters characterizing uncertainty in both loads and resistances,
and g(x) is the performance function of the structural component. In the x space, this
function g(x) also known as limit state function separates the domain D of X into safe set

§ = {x : g(x) > 0} and failure set F = {x : g(x)} < 0} and are shown in Fig. 3.1. The

—— S .y,

P Failure Set F

/I Limit State g(x)=0

\\\ Safeset S -
SR

\
Domain D with Pr(X € D) =1

Figure 3.1: Definition of Limit State

lifetime reliability Fg is the complement of lifetime probability of failure Pp (Ps = 1 — PF)
which can be defined as
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Pr 4 Prig(X)<0]
= f'(‘ko fx(x)dx (3.18)

in which fx(x) is the joint probability density function of random vector X € R". The

generalized reliability indez Bg of the structural component can be obtained from [61]

Bg = ' (~Pr) (3.19)

in which ®(-) is the curnulative distribution function of standard univariate Gaussian ran-
dom variable. In general, the n-fold integral in Eq. 3.18 cannot be calculated analytically.
Alternatively, numerical integration can be performed, however, the computational effort

becomes prohibitive when n > 2.

3.4.1 Approximate Methods for Reliability Analysis

Several approximate methods exist for performing the probability integration in Eq. 3.18.
Among them, First- and Second-Order Reliability Methods [66,168,132,90,35], Variance
Reduction [117), Importance Sampling [69,83,84,137,98], Directional Simulation [58,60,30],
Monte Carlo Simulation [190], and many others can be applied to compute Pp and f¢ in
Eqs. 3.18 and 3.19, respectively. In this section, a few of them will be presented for their

use in the approximate reliability analysis.

First- and Second-Order Reliability Methods (FORM/SORM)

First- and Second-Order Reliability Methods (FORM/SORM) are general state-of-the-art
methods of structural reliability. The methods are based on linear (first-order) and quadratic
(second-order) approximations of the limit state surface g(x) = 0 tangent to the closest point
of the surface to the origin of the space. The determination of this point involves nonlinear
programming and is performed in the standard Gaussian image of the criginal space.

The FORM/SORM algorithms involve several steps. They will be described here
briefly assuming a generic n-dimensional random vector X. First, the space of uncertain

parameters X is transformed into a new n-dimensional space u consisting of independent
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standard Gaussian variables. The original limit state g(x) = 0 then becomes mapped into
the new limit state gyy(u) = 0 in the u space. Second, the point on the limit state gy(u) =0
having the shortest distance to the origin of the u space is determined by using an ap-
propriate nonlinear optimization algorithm. This point, which has a distance fy to the
origin of the u space, is referred to as the design point or 8-point and is shown in Fig.
3.2. Third, the limit state gy(u) = 0 is approximated by a surface tangent to it at the

gu(u) >0

Figure 3.2: Linear and Quadratic Approximations to the Limit State

design point. Let such limit states be gz (u} = 0 and gg(u) = 0, which correspond to the
approximating surfaces as hyperplane (linear or first-order) and hyperparaboloid (quadratic
or second-order), respectively (Fig. 3.2). The probability of failure Pr (Eq. 3.18) is thus
approximated by Pr[g;(U) < 0] in FORM and Pr[gg(U) < 0] in SORM. Let Pr, and f¢
be the first-order estimates and Pr2 and Sg 2 be the second-order estimates of the actual
failure probability Pr and the corresponding reliability index Sg. Analytical expressions can
be developed to determine these probability estimates. Appendix A provides the derivation
details of FORM/SORM equations. From Appendix A, the first-order estimates are
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Pry = ®(-8y1) (3.20)

and

Baa = Bl (3.21)
and the second-order estimates are
n—1
Pra~®(—fyz) [] (1 - xifmr)~? (3.22)
=1
and
Bez =" (-PFz). (3.23)
where
B(u) = # ) ; exp (-%9) d (3.24)

is the cumulative distribution function of a standard Gaussian random variable, and ; are
the principal curvatures of the limit state surface at the design point. FORM/SORM are ana-
lytical probability computation methods. Each input random variable and the performance
function g(x) must be continuous. Depending on the solver for nonlinear programming,

additional requirement regarding smoothness i.e., differentiability of g(x) may be required.
Monte Carlo Simulation and Importance Sampling

Consider a generic n-dimensional random vector X which characterizes uncertainty in all
load and system parameters with the known joint distribution function Fx(x). Suppose
that x(1),x(2},. .. x(Z} are L realizations of input random vector X which can be generated
independently. Let g(1),g(®),.. . ¢(X) be the output samples of g(X) corresponding to the
inputs x(1), x(?3) ... x(L) that can be obtained by conducting repeated deterministic trials
(analyses). Define Ly as the number of trials which are associated with negative values of
9(X). Then, the failure probability estimate by the direct Monte Carlo simulation is the ratio
Lr/L which approaches the exact failure probability Pr when L approaches infinity. This
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method is simple and relatively straightforward and should be used when each deterministic
analysis does not require excessive computer time. When the analysis is computationally
prohibitive or burdensome, alternative simulation method, known as Importance Sampling
method, can be applied. In Importance Sampling, the random variables are sampled from
a different probability density function, known as the sampling density. The purpose is to
generate more vutcomes from the region of interest, e.g., the failure set 7 = {x : g(x) < 0}.
Using information from the FORM/SORM analyses, good sampling densities can be con-
structed. According to Hohenbichler [89), the failure probability estimate Pp 3 by importance
sampling based on SORM improvement is

1 M5 @ (ho(¥;))
le): ®(Bu1)

j=1

n—1
Pra = #(=pun) ] {1 - e ¥(Bus))
=1
n-—1
exp "%W(.@HL)ZH'E?J] (3.25)
=1

and the corresponding estimate of reliability index is

e =071 (~Pry). (3.26)
where W(—BuLr) = ¢(~BuL)/®(—Bui), vj = {15,025, - -,13,._1,,'}7‘ is the jth realization
of the independent Gaussian random vector V € ®! with mean and variance of ith
component being zero and 1/[1 — ¥(8y )], hq(v;) is the quadratic approximant in the form

of rotational hyperparaboloid, and Nys is the sample size for importance sampling. Details

of this equation are also provided in Appendix A.

3.5 Numerical Examples

In this section, several numerical examples are illustrated to obtain seismic reliability indices
by the static method. In the first example, a 5-story reinforced concrete (R/C) frame building
designed by 1985 Uniform Building Code is used to perform the reliability analysis based
on current models of seismic hazard. In the second example, two 1-story special moment

resisting frame structures designed by both 1985 Uniform Building Code and 1988 Uniform
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Building Code are considered. Reliability analyses are carried out for each of the structures

based on various models of seismic hazard discussed earlier.

3.5.1 Example 3.1

Structural Design

A 5-story, 3-bay R/C planar frame is analyzed and designed in accordance with the appropri-
ate provisions of 1985 Uniform Building Code and ACI Code 318-83 for seismic zones-2 and
-3. Thus, the static method and elementary failure criteria have been used in the analysis.
Effects of structural redundancy and dynamic response are not included in this simplified
analysis. Fig. 3.3(a) shows the typical plan of the building system. An interior frame is

chosen to perform seismic analysis in the transverse direction and is shown in the Fig. 3.3(b).

Seismic design for the ith structural member of building frame by ACI Code 318-88

requires
PRu 2 CiU (3.27)
where
14Dy + 1.7Ly
U=14 0.75(1.4Ds + 1.7La £ 1.87E,) (3.28)

09D, +143E,
is the ultimate factored load, Ry; is the nominal strength of ith structural component, C;
is the ith influence coefficient, and the resistance factor ¢ = 0.9 for beams and ¢ = 0.7
for columns. The nominal dead load D, consists of mainly self-weight of structure and
superimposed load of 30 psf for the floors and 10 psf for the roof. The nominal live load
Ly is also assumed to be 30 psf for the floors and 10 psf for the roof. The nominal seismic
base shear E, can be obtained from Eq. 3.6 and are found to be 34 kips and 64 kips for
seismic zones-2 and -3, respectively. The calculated base shears are based on Z = 3/8 for
zone-2 and 3/4 for zone-3, I = 1, K = 0.67 for ductile moment resisting frame, C=0.10,
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Table 3.3: Distribution of Lateral Forces

Story Lateral Forces (kips)
Zone-2 Zone-3
1 3 6
2 5 10
3 7 14
4 9 18
5 10 20

S§=1.2 for stiff clay, and W = 1043 kips. For load combination involving earthquake, this
nominal base shear is distributed along the height of building frame and is applied laterally
to the structural systems. Since, the fundamental period of the frame is estimated to be less
than 0.7 s, the concentrated lateral load F} specified in the 1985 Uniferm Building Code is
neglected. Tables 3.3 shows the distribution of lateral forces for seismic zones-2 and -3.

The size of the columns is 16 in % 16 in for exterior columns and 20 in x 20 in
for interior columns. The size of the beams is assumed to be 14 in x 20 in. The columns
have the same sizes throughout the height of the building. The beams also have the same
dimension at all floor levels. The slab is assumed to be 7 in thick and is assumed to be
constant throughout the structure. The dimensions of cross-sections of the above structural
members are kept same for both zones-2 and -3. The amount of steel reinforcement, however,
are obviously different due to aifferential design forces at the above zones and are exhibited
in Fig. 3.4 and Tables 3.4 and 3.5. The dimensions of the top and bottom cover d and &'
are assumed to be 2.5 in.

Normal weight concrete with the nominal values of compressive strength f,' = 4 ksi,
unit weight w, = 145 pcf, and modulus of elasticity E, = 4000 ksi are used. The reinforcing
steel is obtained from ASTM A615 Grade 60 with the nominal values of yield strength
Fy = 60 ksi, modulus of elastiaity E, = 29000 ksi.

Reliability Analysis

FORM/SORM algorithms and importance sampling techniques are employed to determine

the performance of above frames designed for seismic zones-2 and -3 of 1985 Uniform Building
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Table 3.4: Steel Reinforcement for Beams

Beam Zone-2 Zone-3
Cross-section® | A, | A,7 | A~ AT
(in?) | (in?) | (in%) (in?)

5-6 3.16 | 3.14 | 4.54 3.33
6-5 4371 114 | 6.08 3.33
6-7 4371265 | 6.08 2.85
9-10 3.38 | 3.14 | 4.79 333
10-9 437 | 3.14 | 6.08 3.33
10-11 4.37 | 2.65 | 6.08 2.85
13-14 3.16 | 3.14 | 437 3.33
14-13 400 [ 3.14 | 5.39 3.33
14-15 4.00 | 2.65 | 5.39 2.85
17-18 3.00 [ 3.14 | 3.58 333
18-17 400 (| 3.14 | 4.54 333
18-19 400 | 2.65 | 4.54 2.85
21-22 1.80 | 240 | 2.18 3.00
22-21 316 | 2.40 | 4.16 3.00
22-23 3.16 | 2.08 | 4.16 2.51

* “ — 3” implies cross-section ¢ of member connected by nodes ¢ and j

Table 3.5: Steel Reinforcement for Columns

Column A, (in?)
Zone-2 Zone-3
16 2.64 3.60
17 2.64 4.74
18 2,64 4.74
19 2.64 4.74
20 3.98 6.00
21 4.00 5.08
22 4.00 5.08
23 4.00 5.08
24 4.00 5.08
25 4.00 5.08




Code. The reliability analysis is carried out for the load combination D + Lept + E, where
D, Lapt and E denote dead load, arbitrary-point-in-time live load, and earthouake l-.ad,
respectively. The dead loads in all the floors and roof are assumed to be perfectly correlated
requiring only one random variable to represent their uncertainty. The live loads, on the
other hand, are modeled as five independent random variables. The load component in each
type of the gravity loads is assumed tc be uniformly distributed over the span of beams. The
probabilistic characteristics of resistance and load variables are obtained from Table 3.1 and
Table 3.2, respectively. For earthquake load, the cumulative distribution function of peak
ground acceleration is based on seismic hazard in Eq. 3.12.

The seismic performance of this frame is evaluated by calculating component reli-
ability indices at the critical cross-sections. The corresponding limit states are obtained
from flexural action for beams and combined action of axial force and bending moment for

columns. The explicit form of above limit state for beam (Fiexure, R/C, Grade 60) is

9(X) = RuR ~

5 3
CpD+ Y CL'Lapt' + CE E'] (3.29)

=1
in which R, is the deterministic nominal bending strength and R' is the Gaussian random
variable with mean 1.05 and coefficient of variation 11% (Table 3.1). The limit state for

column (Short Column, R/C, Tied) is

(CDD + f: Cr'Laps' + CEE) (\/1 + €q2 )] (3.30)

i=1

9(X) = R.R -

in which

anpu\/]."‘e"z (3.31)

where P, is the nominal axial force strength obtained from the interaction diagram of column
cross-section for 2 nominal eccentricity ratio e, and and R is the Gaussian random variable
with mean 1.05 and coefficient of variation 16% for compression failure and 12% for tension
failure (Table 3.1). In both cases, Cp, C1', and Cg are the influence coefficients representing
either bending moments or axial forces at a specific cross-section due to relevant unit loads.

They can be easily obtained following linear elastic static analysis of structural systems.
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Note that in the above limit states X = {D Lapt’ Lapt® Lapt® Lapt® Lapt® E R’ }T is the

8-dimensional random vector characterizing uncertainty in the loads and resistances.
Discussions on Results

Tables 3.6 and 3.7 show the static reliability indices by FORM, SORM, and Importance
Sampling technique obtained for columns and beams of the 5-story R/C frame structure
designed for seismic zone-2 of 1985 Uniform Building Code with a1 = 0.1g. The smallest
reliability indices by FORM are found to be 2.19 for the beam and 2.25 for the column.
Comparisons of these results with more accurate estimates by SORM and Importance Sam-
pling confirm previous results with slight variation in the values of reliability indices. While
the indices for most of the critical cross-sections of beams are quite low, the ones for the
columns, however, are found to be comparatively large except for external columns at the
top stories. The higher reliability of columns is expected due to the fact that most of the
columns are designed with the minimum reinforcement ratio of 1% specified in the current
ACI code 318-83in spite of considerably lower theoretical requirement. Since the value of ajg
can vary within a same seismic zone {defined by code), similar reliability analyses are also
carried for the same structure when ajp = 0.15¢ and a1p = 0.2g. Results suggest that the
indices based on FORM for zone-2 can be as low as 1.81 if )0 = 0.15¢ and 1.5 if aj9 = 0.2¢.

The static reliability indices are also obtained by various estimates for the 5-story R/C
frame structure designed for seismic zone-3 of 1985 Uniform Building Code with several cases
of ajo = 0.2g, ajp = 0.3g, and aj9 = 0.49. Based on FORM estimate, the smallest values
of the above indices are 2.04 for ajp = 0.2¢, 1.59 for aj0 = 0.3¢, and 1.30 for a;p = 0.4¢.
Comparisons of these results with those for zone-2 structure suggest that that current designs
by 1985 Uniform Building Code is less safe in areas of high seismicity.

It appears that the seismic reliability indices obtained by the static method can be
very low for distribution of peak ground acceleration in Eq. 3.12. According to these results,
(£) current design practice is unconservative when dealing with load combinations including
earthquake because the reliability index is generally 3 — 4 for gravity loads, and (ii) the
seismic reliability estimate can be very different for code-designed structures due to large

possible variation of a9 within a specific seismic zone.
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Table 3.6: Static Reliability Indices for Columns (zone-2, ajp = 0.19)

Cross-section® | FORM SORM Importance Sampling
(Fig. 3.4) | (Eq. 3.21) | (Eq. 3.23) (Eq. 3.26)
1-5 4.29 4.34 3.97
5-1 4.29 4.25 4.25
5-9 3.42 3.36 3.34
9-5 3.63 3.58 3.52
9-13 3.71 3.7 3.71
13-9 3.34 3.34 3.34
13-17 2.99 2.96 2.94
17-13 2.56 2.52 2.48
17-21 3.16 3.13 3.13
21-17 2.25 2.22 220
2-6 4.25 4.24 4.24
6-2 4.70 4.97 4.68
6-10 4.84 5.02 5.02
10-6 4.90 4.92 4.92
10-14 5.33 5.32 5.32
14-10 5.23 5.22 5.22
14-18 5.78 5.78 5.78
18-14 5.64 5.64 - 564
18-22 6.22 6.22 6.22
22-18 5.92 6.09 5.96

* “3 — ;" implies cross-section t of member connected by nodes i and j
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Table 3.7: Static Reliability Indices for Beamns (zone-2, ajp = 0.1¢)

Cross-section* | FORM SORM Importance Sampling
(Fig. 3.4) | (Eq. 3.21) | (Eq. 3.23) (Eq. 3.26)
5-6 2.19 2.15 2.12
6-5 2.32 2.27 2.26
6-7 2.38 2.34 2.33
9-10 2.22 2.18 2.15
10-9 2.32 2.27 2.27
10-11 2.36 2.32 2.31
13-14 2.30 2.35 2.36
14-13 2.37 2.31 2.23
14-15 241 2.36 2.37
17-18 2.46 2.46 2.46
18-17 2.56 2.56 2.56
18-19 2.82 2.82 2.82
21-22 2.63 2.63 2.63
2221 3.31 3.18 3.19
22-23 3.04 3.04 3.04

* “i — ;" implies cross-section i of member connected by nodes i and ;




3.5.2 Example 3.2

Structural Design

Consider two sites A and B in the western U.S. with mean earthquake arrival rates A4 =

0.92/yr and Ap = 0.024/yr [3] shown in Fig. 3.5. Geographically, site A is located in River-

Figure 3.5: Probabilistic Map of a1y for Western U.S.

side and San Diego counties, while site B falls mostly into the Orange county of California.
Both sites lie in the same seismic zone-4 of the Uniform Building Code (100,101] and bhave
the same peak ground acceleration a)o = 0.4g. Consider a special moment resisting frame
structure modeled as simple oscillator with damping ratio { = 0.05, initial natural frequency
wy = 20.944 rad/s (initial fundamental period Tp = 0.3 s), and weight W. The nominal base
shear forces from the 1988 Uniform Building Code and the 1985 Uniform Building Code are
E, = 0.09167TW (Eq. 34) and E, = 0.08W (Eq. 3.6), respectively for zone-4. They are
basedon S =1,1 =1, Ry = 12, K = 0.67, and Z = 0.4 (1988 Uniform Building Code) or
Z =1 (1985 Uniform Building Code).
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The corresponding structural shear strength r and limit displacement z; from the
1988 Uniform Building Code are

_ 4En _ 14 x 0.0916TW

= =0. w .
3 0.9 0.1426 (3.32)
and
_ strength _ 0.1426W
"~ stiffness  wp?W/g 3.19 mm (3:33)

where ¥ = 1.4 and ¢ = 0.9 are the load and resistance factors, respectively. Based on the
1985 Uniform Building Code, r = 0.1251W and z; = 2.8 mm,

Consider the alternative model of seismic hazard discussed in Section 3.3.2. Suppose,
the ground motion in each seismic event can be represented by a zero-mean stationary

Gaussian band-limited white noise £(f) with one-sided mean power spectral density

Gy, O<w<@
C)=4 Ut (3.34)
0, otherwise

waoere Gy is the spectral intensity of noise and © is the cutoff frequency for the band-limited
white noise. Assuming @ = 25x rad/s [179], the spectral moments can be obtained from Eq.
3.14 and are found to be A\j = 78.54Go and A; = 161492G,. From Eqs. 3.13 and 3.15 and
the condition Fr=s0 yr(y = a10) = 0.9, it can be shown that [179]

2

Go = aip .
~157.110g [~ rgkerrlog {1+ 832}

It is equal to 10026 mm?s~3 when A = A4 = 0.92 /yr and 16090 mm3s~3 when A = Ap =

{3.35)

0.024 /yr for a strong motion duration

0.3%
T, = 30exp [-3.254(‘%“) l =283 s (3.36)

as proposed in Ref. [122]. Fig. 3.6 shows the variation of spectral intensity Gy in Eq. 3.35
with mean rate A, Sites A and B are characterized by frequent small seismic events and rare
large earthquakes, respectively. However, designs at both sites are identical according to the
Uniform Building Code [100,101).
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Figure 3.6: Gp versus A
Reliability Analysis

The seismic reliability Ps can be obtained from the probability that seismic load E does not
exceed a deterministic base shear resistance r during the service lifetime 7. The assumption
of deterministic structural characteristics is satisfactory at this level of analysis due to the

large uncertainty in seismic load. Hence, the lifetime reliability

Ps = Pr(E<r)
Pr (1.2YMSW < r)
Rsz

Pr(Yso < yo) (3.37)

in which yo = RToir/ (1.2SW) is the design peak ground acceleration. Using R = 7 for
special moment resisting frames, ypo becomes 0.373¢ and 0.33¢ for 1988 Uniform Building
Code and 1985 Uniform Building Code, respectively. From Eqs. 3.12 and 3.37, the seismic
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reliability of the structure designed by the 1988 Uniform Building Code is [100]

: -23
0.373
P,s = exp [— {m} ] = 0.88 (3.38)

for both sites A and B. The corresponding reliability index is S¢ = ~1(0.88) = 1.175. Ifthe
design is performed by the 1985 Uniform Building Code, the reliability becomes Ps = 0.845
with 3¢ = 1.015.

Site seismicity can be accounted for in a more realistic way if reliability calculations
are based on Eqs. 3.13 and 3.15. According to this method, reliabilities of structure designed
by the 1988 Uniform Building Code are Ps = 0.68825 (8¢ = 0.491) for site A and Ps =
0.8024 (g = 0.85) for site B. The corresponding reliabilities of the structure designed
by the 1985 Uniform Building Code are Fs = 0.098 (8¢ = —1.29) for site A and P =
0.5664 (8¢ = 0.167) for site B.

Discussions on Results

Figure 3.7 shows the distribution F(y) in Eq. 3.13 for sites A and B. Fig. 3.8 shows the
lifetime probabilities Fy(y) in Eq. 3.15 for r = 50 yr for sites A and B and corresponding
lifetime distribution F50(y) in Eq. 3.12 used in Refs. [65] and [149].

Note that all these distributions take on the same values at a9 = 0.4¢ but differ
significantly for other values of peak ground acceleration. Thus designs by the Uniform
Building Code [100,101] at sites with small values of A are relatively safer than those with
large values of A, if the design peak ground acceleration yg is less than ajgo. However, the
above designs become relatively unsafe when yg is greater than ajo.

Designs by the /988 Uniform Building Code have higher reliability than those by the
1985 Uniform Building Code. However, in designs by both codes (i) the reliability indices
are lower than those for gravity loads consistent with findings in Refs. [65] and [149], and

(3%) reliability of structure depends strongly on mean arrival rate A.
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SECTION 4
Dynamic Reliability Of Nondegrading Systems

4.1 Introduction

There is a growing consensus in the earthquake engineering community that a single ground
motion parameter such as peak ground acceleration and the static analysis may not reliably
predict the actual behavior of structure. In addition to earthquake intensity, the evaluation
of seismic performance must account for the details of ground acceleration and the dynamic
structural characteristics. It is thus essential to conduct a parallel dynamic reliability analysis
for an assessment of static reliability measures obtained eatlier.

In this section, dynamic reliability analyses are performed to evaluate the adequacy
of static reliability indices obtained in the previous phase of the work. The analysis involves
(1) stochastic models of seismic ground acceleration, (ii) simple nondegrading models of
structural systems, and (¥i¢) damage related failure criteria. Both linear and nondegrading
nonlinear systems are considered and the reliability estimates are made by using several
failure criteria. The following sections will continue to focus on this evaluation procedure by

including various types of nonlinearity and system degradation process.
4.2 Linear Systems

4.2.1 Equations of Motion

Consider a system of differential equations representing the motion of discrete, linear elastic

multi-degree-of- freedom structures

mig + ci; +kX; = —-mdW, (4.])

in which m is the mass matrix, c is the damping matrix, k is the stiffness matrix, X, €
R* is the generalized displacement vector at time ¢, d € R® is a influence coefficient or
direction vector which contains unity for all degrees of freedom in the same direction of

ground motion(e.g., translations) and zeros for all other degrees of freedom (e.g., rotations),
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and W; is a general real-valued zero mean nonstationary colored process. It is assumed that
the system mechanical properties are deterministic.

Mechanical linear systems can be divided into two classes: systems with proportional
and nonproportional damping. Damping matrix of systems with proportional damping can
be expressed as a linear combination of mass and stiffness matrices. As a result, classical
modes of vibration exist and response characteristics can be obtained from the joint statistics
of the pairs of modal coordinates [80]. This section examines systems with more general
nonproportional damping.

Following the state vector approach [67,94,136] with the designation of 8,y = X and

8= X, the equivalent 2n first order linear differential equations in state variables become

9, = AB; + GW, (4.2)
where
0
g, ={ "%, (4.3)
92,
0
G= , (4.4)
-d
and
0 1
A= . (4.5)

-m 'k -mle

with I representing the n-dimensional identity matrix.

4.2.2 Coordinate Transformation

Consider a general change of physical variables 8; € ®2" into canonical variables Vy € C?*

via the transformation

0, = &V, (4.6)
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which uncouples the real system in Eq. 4.2 intc the following complex modal coordinates

given by

V =EV, + & 'GW, (4.7)

where @ is a complex matrix comprising, eigenvectors of A and E = $~1A® is a complex
diagonal matrix with diagonal elements ¢; € C,k = 1,2, - .,2n as the eigenvalues of A.
Assume that the eigenvalues ¢ and eigenvectors ®, of A are distinct so that the matrix

® = [®,,®,,.- -, ®2,) has an inverse. From Eq. 4.7, the kth uncoupled equation

Vie = eiVis + fiWi (4.8)

with the initial condition V;; = 0 has the solution

t
Vi = fk./o explpi(t — u)]Wadu (4.9)
where Vi ¢ € C and f; € C are the kth componentsof V¢ € C?® and 871G € C?", respectively.
4.2.3 Second Moment Descriptors of Response

Expectation, variances and covariances of pairs of modal coordinates Vi € C2® can be

evaluated using Eq. 4.9 and are given by

E[Via) = 0 (4.10)

EViVid = 171 | du explonlt — ul) [ do Sxplols —sDEWWAWL]  (411)

where the overline denotes the complex conjugate. These results simplify significantly when
the excitation W, is stationary and/or white. The above moments (i.e., means, variances

and covariances) can be assembled into the complex modal mean vector

sy € EV]=0 (4.12)

and complex modal covariance matrix
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Svit,s) € E [V,V,T] (4.13)

where E[-] is the expectation operator. Using Eq. 4.6, the second-moment statistics of

response 8; € R can be found as

po & E[X,] = #E[V{] =0 (4.14)

and

So(t,5) L E[0.0,7] = E [QV.V.TQT] = 8Ty (t,5)87 (4.15)

where py and T(t, s) are real mean vector and real covariance matrix of 8; € ®2®. Suppose,
a response vector process of interest Y, can be related to the physical state vector 8, through

the linear transformation

Y, = B4, (4.16)

where B is an appropriate deterministic matrix of influence coefficients. Then, the second-

moment characteristics of Y; becomes

sy ¥ E[Y:]=BE[6] =0 (4.17)

and

Tr(t,s) ¥ E[Y,Y,T] = E[B0:0,BT| = BE,(t,s)B” (4.18)
where gty and By (t, s) are real mean vector and real covariance matrix of Y.
4.2.4 Seismic Reliability Analysis

Consider a discrete linear system with the state vector 8; satisfying Eq. 4.2 where A and G
are assumed to be time-invariant and deterministic. Consider the model of seismic hazard
discussed in Section 3.3.2. Suppose, the ground motion in each seismic event is modeled

as a zero mean stationary Gaussian white noise {; with one-.sided spectral intensity Gy.
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The seismic performance of structural systems can be evaluated from the condition that the
maximum interstory displacement at the ith story level exceeds an admissible value, For a
N story structure, there are N such failure modes. These failure criteria are usually relevant
when the limit states associated with the serviceability of building systems are considered.

Consider now the ith interstory response vector process A;; = {6, 5.-,,}T where

§ig=Yit -Yic1, (4.19)

bia=Yig — Yicry (4.20)

in which the ith component Y;, of Y; € RY denotes the ith story displacement. The mean

#a and covariance £, (¢, 3) of the interstory response vector A;: € R? becomes

na  ElA]=0 (4.21)
and
Zalt,s) ¥ E[aal, (4.22)
_ | B(Vit = Y1) (Yis = Yiera)  E(¥ir = Yimr,)(Viw = Yicr,0)
(sym) E(‘.,i,t - ‘?i-l,i)(f/l',l - }‘,i—l,l)

which can be easily obtained from the known covariance matrix Xy (¢, s) in Eq. 4.18. Since
the input excitation is Gaussian process, the state vector @, is Gaussian and so are the

responses Y3 and A ;.
Event Reliability

The evcnt reliability Pgi(7,) represents the probability that the maximum ith interstory dis-
placement é; ¢ does not exceed a critical threshold é; .+ during an earthquake of deterministic

strong motion duration T,. Thus, the reliability is
Psi(T) 4 Pr (ni’i?‘r. l6iel < 6.-,“) (4.23)
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which cannot be generally determined exactly. However, it can be approximated by [203,
128)

TI
Psi(T,) ~ exp [—2 jﬂ v(iorit) dt] (4.24)

in which v(; ,; 1) is the transient mean §; .,-upcrossing rate of nonstationary Gaussian ran-
dom process §; ¢ at time ¢. Exact and approximate methods for calculating mean upcrossing

rates of Gaussian processes can be found in the current literature and is given by [184,185)

o 1 'si,cr = ”i.l.) . (I-"i,i. ]
Sicrit) = a; ; Ll LI i
v(bierit) \/2,,(t,t)¢ (\/zu(u))[ R ¢(cr.‘,:' + pi P a__“_) (4.25)

where

o _ Sierlaa(tyt)

Big = —m, (4.26)

2

and IZj;(t,t), ¢,7 = 1,2 is the ijth element of Lx(¢,t) in Eq. 4.23. When §;¢ attains
stationarity, ¥ a(t,t) becomes time-invariant with its constant elements Ij(t,t) = Iy,
12(t,1) =0, and Egs(t, 1) = La2. Consequently, the steady-state mean é; r-upcrossing rate
V3a(6; cr ) simplifies to

2r V2 2¥1
Eqs. 4.25 and 4.28 can be used to substitute »(§;qr;¢) in Eq. 4.24 to obtain event reliability

.2
vu(!si,cr) = 1 [En exp (—— Biscr ) . (4.28)

in Eq. 4.23 when §; ¢ is assumed to be nonstationary and stationary, respectively.
Lifetime Reliability

The lifetime reliability Psi(r) can be defined by the probability that the ith interstory
displacement §; ¢ does not exceed &; ¢r during the lifetime 7 of structural system. This can

be obtained following similar considerations as in Eqs. 3.13 and 3.15. Accordingly, the
reliability is
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Psi(r) = exp [-Ar{1 - Ps;(T.))] (4.29)

where A is mean arrival rate of earthquakes discussed in the previous section.

4.2.5 Numerical Example

Example 4.1

Consider the special moment resisting frames in Example 3.2 designed by both 1988 Uniform
Building Code and 1985 Uniform Buislding Code. The seismic reliability indices of these
frames are already computed by the static method for the two sites A and B which are
characterized by the same value of ajp = 0.4g but different mean earthquake arrival rates
Aa = 092/yr and Ag = 0.024/yr, respectively. In this example, these reliability measures
are evaluated by the dynamic method with linear elastic restoring force.

Consider the model of seismic hazard discussed in Section 3.3.2. Suppose, the ground
motion W; in each seismic event is modeled as stationary Gaussian band-limited white noise
with one-sided mean power spectral density G{w) = G for w < @ and zero otherwise. The
spectral intensity Gy is equal to 10026 mm? s~3 when A = A4 = 0.92 yr~! and 16090

2 5~3 when A = Ap = 0.024 yr~! for a strong motion duration T, = 2.83 s as obtained

mm
earlier. Assume that the frames can be represented by linear oscillator with initial natural
frequency wp = 20.944 red/s and damping ratio ¢ = 0.05.

The event reliability Ps(T,) of the linear oscillator can be obtained from the probabil-
ity that the largest value of displacement response §; of the oscillator with respect to ground
motion does not exceed a critical threshold §, during strong motion duration 7,. Note that
the description of such failure criterion does not uniquely characterize seismic performance.

When §; is stationary and the structural characteristics and strong motion duration 7, are

assumed to be deterministic, the event reliability Ps(T,) obtained from Eq. 4.23 becomes

Ps(T,) = Pr (o'é}:’%. 16| < 5,,.,)

exp [—2044(8cr ) T3] (4.30)

R
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Table 4.1: Reliability of Linear Systems

Design Site Go Vas{bcr) Ps(T,) | Ps(r)

Code (mm?s—3)

(5cr) () (BE) (B)
UBC(85) A 10026 | 8.81 x 10-5 | 0.9998 | 0.991
(19.6 mm) | {0.92/yr) (3.54) | (2.366)

B 16090 6.36 x 10~ | 0.9821 | 0.9787

(0.024/yr) (2.1) ] (2.028)

UBC(88) A 10026 3.1 x 10° | 0.999991 | 0.9996
(22.3 mm) | (0.92/yr) (4.3) (3.35)
B 16090 | 7.98 x 10™* { 0.997744 | 0.9973

(0.024/yr) (2.84) | (2.78)

where the stationary mean é,-upcrossing rate vy,(8) of & can be obtained from Eq. 4.28

_ L [Ba (&t
”11(66") - 2“_ 2" exp ( 22") (4'31)

with Zy; ~ 7Go/4¢we® and Ty =~ 7Go/4Cwy for a sufficiently large bandwidth @ = 25x, as

as

obtained earlier. Correspondingly, the event reliability index B¢ can be defined as

Be = 9 " (Ps(T))) (4.32)

where (-} is the standard Gaussian cumulative distribution function. From Eq. 4.29, the

lifetime reliability Ps(7) of the oscillator becomes

Pg(t) = exp[=A7{l — Ps(T})}]. (4.33)

with the corresponding lifetime reliability index 81 defined as

BL = &1 (Ps(r)). (4.34)

Table 4.1 shows both event and lifetime reliabilities of the special moment resisting
frames for the sites A and B calculated from the Eqs. 4.30 and 4.33 for a strong motion
duration T, = 2.83 s, respectively.  Also included in the table are the corresponding
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reliability indices which are calcalated by using Eqs. 4.32 and 4.34. These reliability measures
by the linear elastic dynamic method are obtained when the design is modified to r* = 7r
in Eq. 3.52 to account for the use of R = 7 in designing the special moment resisting frame
structures [100,101).

Results show that (i) the reliability indices by static and dynamic methods have
significantly different values, (i¢) designs by two editions of Uniform Building Cede [100,
101] have different reliabilities at sites with frequent small earthquakes and infrequent large
earthquakes, although the sites are characterized by the same value of ayq, (iiz) designs by
1988 Uniform Building Code is safer than those by 1985 Uniform Building Code, and (iv)
event and lifetime reliabilities of these designs can differ significantly particularly at sites

with frequent small earthquakes.

4.3 Nonlinear Nondegrading Systems

When studying the effects of yielding on structural response an ideal nondegrading elasto-
plastic (EP) material behavior is often assumed to be the first choice. This simple and
idealized hysteretic restoring force with its vanishing stiffness during yielding is attractive at
least for two reasons. One follows the observation that many materials roughly exhibit this
behavior, at least near ultimate loads. The other reason lies in the mathematical simplicity
of the model which allows analytical treatment feasible for nonlinear random vibration of

hysteretic systems.

4.3.1 Ideal Elasto-Plastic Oscillator

Consider a single-degree-of-freedom (SDOF) lightly damped nonlinear oscillator with mass
m subjected to stationary Gaussian random excitation W, with the relative displacement

response X satisfying the differential equation

Xi + 20X + w0’ Z = =W, (4.35)

In Eq. 4.35, wy is the initial natural frequency, ¢ is the viscous damping ratio, and Z; is the

ideal elasto-plastic hysteretic variable which can be modeled as



Zy = Xy [1 = H(Xe/2y)H(Ze[ 2y — 1) — H(=Xu[29) H(~Z1] 7y — 1)] (4.36)

where z, is the yield displacement of the oscillator, and H({) is a unit step function, i.e.,
H({)=1for § > 0 and 0 for { < 0. Fig. 4.1(a) shows the restoring force characteristics of
the ideal elasto-plastic oscillator. At the start of the motion and until | X;| crosses the yield
level z, for the first time, the solution of Eq. 4.36 becomes Z; = X with the corresponding
restoring force F = wo?X;. Thus, the response of this EP system is identical to that of
an associated linear system with constant stiffness k = wo?m and is shown in Fig. 4.1(b).
Behavior surrounding the onset of the inelastic deformation is equivalent to a first-crossing
problem for the associated linear oscillator [222,224,232,223].

In between yield level crossings, the EP system also behaves like a linear oscillator.
Suppose that at some known time ¢, the most recent yield level crossing brought the total
plastic deformation up to a value X¢? = d. The total displacement at time ¢ will then consist
of a permanent set d and a linear elastic component X;°, i.e., X; = d + X;°. The process
Xi¥ changes rather abruptly whenever inelastic action occurs. For d = 0, i.e., before any
plastic deformation, X; = X;°. A realization of this process X,*® is shown in Fig. 4.2(a). It
is obtained by subtracting the plastic deformation process X;? in Fig. 4.2(b) from the total
displacement process X; in Fig. 4.2(c). The permanent set X,® remains invariant as long as
the absolute value of X;® is smaller than the yield threshold z,. Each time | X;°] exceeds z,,

however, inelastic action is known to occur.

4.3.2 Seismic Performance Evaluation

Consider the seismic hazard model discussed in Section 3.3.2. Suppose, the ground motion in
each seismic event can be modeled as stationary Gaussian random process W, with one-sided
mean power spectral density G(w). The structural and material characteristics are assumed
to be deterministic.

Seismic performance of structural systems can be evaluated in terms of the condition
that a specific response or damage level is not exceeded during ground motion. In this sectibn,

several response quantities of interest along with their stationary probabilistic characteristics
are discussed.

4-10



‘ +Fy -
y
“y 1 7 *y
Ve
v
1 /;/. /- F,
= 2XY
(a) Nondegrading Elasto-Plastic Hysteresis
/l_’ e x® g
=U-ug
% C=2{w, —u
B
/ k=w, m
/—W— Fit)

[dMoNWeNel

NN

g

(b) Associated Linecar System

Figure 4.1: Ideal Elasto-Plastic Oscillator
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Event Reliability

Ductility Factor

One of the most extensively used damage index in seismic analysis is the ductility
factor. If the plastic action occurs during deterministic strong motion duration T, associated

with a seismic event Wy, the ductility factor can be expressed as

P
S | X¢P|
Ty
= 14 M (4.37)
Ty

Ductility Factor % 1+

where M, represents peak inelastic deformation during strong motion duration 7,. The event
reliability Pg(T,) of the nonlinear oscillator can be obtained from the probability that the
ductility factor does not exceed a threshold up during a time interval (0, T, ). Thus, reliability

becomes

Ps(T,) % Pr[Ductility Factor < s
= Pr[M, < zy(po - 1)]
= Fu,(2y(m—1)) (4.38)
in which Fy, () is the cumulative probability distribution of M,. This probability can
be approximated by viewing the upcrossings of the process |X;*| of a fixed threshold 4

as a nonhomogeneous Poisson process with transient mean rate vy, (d;t). The mean rate

vu,(d;t) is proportional to the stationary mean rate v.(zy) of jump occurrence in X? and

can be obtained from

v, (d;1) = ve(zy)p(d; t) (4.39)
where p(d; t) is the probability that a plastic set contribution at time ¢ results in an upcrossing

of the level d. The net result which can be obtained from ihe original reference [222] is the

following approximate expression for Fy,(§)
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Fu(€) = oxp |~ {oxplodan)Ti] - 1) exp (=5 ) (140)

)
where
P
— TXe
8= . (4.41)
and
L fh [ =t (1-exp[-/522]
ve(zy) = 2\ Ao &P [_21\0] 1 —exp|— 2 oxe ) (4.42)
in which
Ai = jo o Gxe(w)dw (4.43)

is the ith spectral moment of X;* with one-sided mean power spectral density G x«(w), and

g is a factor determining the degree of correlation among successive peaks given by

214
g= [1_ Al:lf\z] . (4.44)

Since X;* represents response of the associated linear oscillator, Gx«(w) can be readily

determined from the input spectrum G{w).
Cumulative Plastic Def i

Another useful indicator of seismic damage assessment of structural systems is the
energy dissipated during strong motion duration 7T, of a seismic event [148]. This dissipated
energy is proportional to accumulated absolute plastic deformation A; which is defined as

Ni
A=Y 1A (445)

=1
where |A;| is the absolute plastic set during ith isolated (—z,, +zy)-outcrossing of the dis-
placement response X;° of the associated linear system. Assuming that the damping force
2wy X{ is very small compared with the yield force Fy = wo?mz, in spring (a consequence
of small (), Kammopp and Scharton [114] derived a simple approximate expression
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xs
2‘*’021'

Al = (4.46)

which follows from the argument that all the kinetic energy m,\.’,‘z /2 of the oscillator is
released into work done Fy|A| = wy?mz,|A] due to plastic deformation. The event reliability
Ps(T,) of the oscillator can be similarly obtained from the probability that A7, does not

exceed a threshold d during a time interval (0,7,) and is given by

Ps(T.) % Pr[Ar, < d] (4.47)

In spite of correlated outcrossings, an estimate of above reliability can be obtained by assum-
ing statistical independence of homogenecus Poisson z4-upcrossings of X,® with steady-state

mean rate ¥(z,) = 1/27 \/Ag/Ao exp(—z,2/2A¢). Thus, the reliability becomes

Ps(T,) = Priar, <d]

o X
= Pr (z mz—, < d)

=]

= Zpr(z <dINT.— )Pl’(u‘ =k)

I"]

- S ():X:, <§X—‘i N k) RAEL ot a(a, )

k=0  \i=l
k-1
o o (S0)
= exp[—?u(:l‘:,)T,]-i-kzzl’[o m
k
oxp (226 ) BLEEL ooy (4.48)
where

T(v) % ./o > n°~ ! exp(—n)dn (4.49)

—

is the gamma function, X, i = 1,2, -, kisindependent and identically distributed standard
—~2

Gaussian random variable, and Z,_l f‘ = }:,,, (X Juwoo x') is the chi-squared random

variable with &k degrees of freedom.
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The event reliability index g can be defined as

Be = ¢ (Ps(Ty)) (4.50)

where Pg(T,) is the event reliability which can be obtained from either of the Eqs. 4.38 and
4.47 associated with the failure criteria based on ductility and cumulative plastic deformation,

respectively.

Lifetime Reliability

The lifetime reliability Pg(7) of the oscillator can be obtained following similar considerations

as in Eqs, 3.13 and 3.15. Accordingly, the reliability is

Ps(r) = exp[-Ar{l = Ps(T,)}] (4.51)

with the corresponding lifetime reliability index 3 defined as

BL = #7 (Ps(r)). (4.52)

Note that Eqs. 4.51 and 4.52 can not be applied when the analysis accounts for structural
degradation.

4.3.3 Numerical Example

Example 4.2

Consider again the special moment resisting frames at sites A and B in Examples 3.2 and
4.1 which are designed by both 1988 Uniform Building Code and 1985 Uniform Building
Code. Dynamic method with linear elastic restoring forces are already applied to assess the
adequacy of the static reliability indices for these simple structures. This example continues
to focus on the evaluation of above reliability estimates by considering nondegrading elasto-
plastic hysteresis for the nonlinear oscillator representing the special moment resisting frames.

Assume as before that the ground motion W; in each seismic event is a stationary

Gaussian band-limited white noise with one-sided mean power spectral density G(w) = Gy
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for w < @ and zero otherwise. The spectral intensity Gy is equal to 10026 mm? s—3 when
A= A4 =092 yr=! and 16090 mm? s~3 when A = Ag = 0.024 yr~! for a strong motion
duration T, = 2.83 s as obtained earlier. Assume that the frames can be represented by an
ideal nondegrading elasto-plastic oscillator with initial natural frequency wyp = 20.944 rad/s
and damping ratio ( = 0.05. The yield displacement x, of the EP oscillator is assumed to
be the limit displacement z; (Eq. 3.33) obtained from the Uniform Building Code.

Two different failure criteria depending on ductility factor and cumulative plastic
deformation are employed to obtain the seismic reliability of the EP oscillator representing
the above frames at sites A and B. Fig. 4.3 shows the plots of ductility-based event and
lifetime reliabilities in Eqs. 4.38 and 4.51 of the structures designed by 1988 Uniform Building
Code for different values of g at the sites A and B. They indicate significant differences in
the above reliability measures for the two sites A and B although they are characterized by
the same value of a1 = 0.4¢g. This observation is also exhibited when the reliabilities shown
in Fig. 4.4 are computed from Eqs. 4.48 and 4.51 for a different failure criteria associated
with the cumulative plastic deformation in Eq. 4.45. Figs. 4.5-4.6 provide the similar sets
of plots of event and lifetime reliabilities associated with above failure criteria (ductility and
cumulative plastic deformation) for the structures designed by 1985 Uniform Building Code
at the sites A and B. The above probabilities depend essentially on earthquake intensity and
duration and on structural dynamic characteristics. Thus, designs at sites with the same ajg
can have different reliabilities because such sites may correspond to earthquakes of different
occurrence rate A and spectral intensity Go.

The system factors R and K in the Uniform Building Code depends essentially on
the ductility characteristics of structural systems. However, there is no reliable way of
obtaining corresponding ductility capacity for a code-specific system factors. Therefore, for
several ductility thresholds up = 6,8,10, the event and lifetime reliabilities along with the
associated reliability indices of above designs are shown in Table 4.2. Significant differences
are exhibited when these reliability measures are compared with those obtained by the static
method in Section 3.

Results show that (1) the reliability indices by static and dynamic methods have very
different values, (it) designs by two editions of Uniform Building Code [100,101) have differ-
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Table 4.2: Event and Lifetime Reliabilities of Elasto-Plastic Qscillator for Failure Criteria
Based on Ductility

Design Site pa =6 o =8 po = 10
Code Ps(T,) Ps(f) PS(T,) P,('r) Pg(T,) Ps(T)
(zy) (A) (Be) | (B | Be) | (Bu) | (BE) | (Bi)

UBC(85) A 0.8399 | 0.0063 | 0.9724 [ 0.281 | 0.9955 | 0.8143

(2.8 mm) | (0.92/yr) | (0.99) | (-2.49) | (1.92) [ (-0.58) | (2.62) | (0.89)
B 0.5072 | 0.5536 | 0.8043 | 0.7907 | 0.9326 | 0.9223
(0.024/yr) | (0.02) | (0.14) | (0.86) | (0.81) | (1.50) | (1.42)

UBC(88) A 0.9496 | 0.0982 | 0.9952 | 0.8019 | 0.9996 | 0.9797
(3.19 mm) | (0.92/yr) | (1.64) | (-1.29) | (2.59) | (0.85) | (3.32) | (2.05)
B 0.6965 | 0.6948 | 0.9207 | 0.9092 | 0.9813 | 0.9778

(0.024/yr) | (0.52) | (0.51) | (1.41) | (1.34) | (2.08) | (2.01)

ent reliabilities at sites with frequent small earthquakes and infrequent large earthquakes,
although the sites are characterized by the same value of aje, (iit) designs by 1988 Uniform
Building Code is safer than those by 1985 Uniform Building Cede. and (iv)} event and life-
time reliabilities of these designs can differ significantly particularly at sites with frequent
small earthquakes. Similar observations were noted when the nondegrading linear systems

were considered.
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SECTION 5
Dynamic Reliability Of Degrading Systems

5.1 Introduction

A proper selection of restoring force models for the constituent components of specific struc-
tural systems is one of the major factors governing accurate prediction of seismic response
and reliability [175]. For example, when the reinforced concrete structures are considered, it
is desirable that the hysteretic loops of various components exhibit several significant aspects
such as stiffness degradation, strength deterioration, and pinching behavior, which have all
been observed in the laboratory tests. The system of ordinary differential equations which
represents the motion of these degrading systems due to earthquake ground acceleration
are usually nonlinear with time-dependent coeflicients. Generally, no exact analytic method
exists to obtain the solutions of these nonlinear time-varying systems. For large systems,
the only feasible approach to the deterministic stress analysis is the numerical step-by-step
integration of equation of motion.

This section continues to examine the validity of static reliability indices by con-
ducting seismic analysis of nonlinear degrading systems. The method of analysis is based
on (i) stochastic models of seismic ground acceleration, (if) nonlinear dynamic analysis of
degrading structural systems, and (iii) damage-related limit states. Various failure criteria
based on maximum deformation combined with cumulative load effects and interstory drift
are employed to obtain seismic reliability measures of reinforced concrete frame structures
designed by 1985 Uniform Building Code. Results from these analyses provide a means to
evaluate the adequacy of static reliability indices for the above frames, which were presented

in a previous section of this report.

5.2 Seismic Load Process

The characterization of seismic load process at a site during the lifetime of structure requires

description of all seismic events including pre-shocks, main events, and after shocks. It
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is expected that a code-designed structure will withstand all these earthquakes during its
exposure time. A very simple model of seismic hazard based on a filtered Poisson process was
discussed in Section 3.3.2. This model was applied to obtain dynamic reliability measures
of linear and nonlinear nondegrading systems in Section 4. However, when the structures
are modeled as nonlinear degrading systems, the equation (e.g., Eq. 4.51) used previously
to obtain lifetime reliability from event reliability cannot be applied. Thus, the reliability
analysis becomes much more difficult as it requires to account for the cumulative damage
during consecutive events.

Alternatively, it has been proposed to evaluate seismic performance due to the lifetime
largest load effect. This largest load effect is not physically realizable and it characterizes
only an artificial seismic environment. Nevertheless, such description of hazard is abundant
in the current deterministic and probabilistic seismic analysis. It will be used here in this
section for the initial study to obtain dynamic reliability measures for degrading systems.
The issues related to more realistic hazard model (Section 3.3.2.) and damage accumulation
between consecutive seismic events will be addressed in the following sections.

Consider a site where the lifetime largest load effect during exposure time 7 of seismic
environment can be represented by a nonstationary colored process W, (t) with strong motion
duration 7,. Suppose, the ground acceleration process Wy(t) can be modeled as a uniformly

modulated random process

Wi(t) = o(O)Wr(t) (5.1)

where 1(t) is a modulation function and W, (t) is a zero mean stationary Gaussian colored

noise with one-sided mean power spectral density [113,209,127,144]

2
14+ |2¢ ()

0 [; '] K we(oim)
Glw) = [1-97] + 26 (2] (5.2)

0, otherwise.
The spectrum in Eq. 5.2 is obtained when a stationary Gaussian white noise with one-
sided spectral intensity Gy is passed through a time-invariant linear filter with the frequency
response function in Eq. 2.56 with the spectral parameters (, and w,. Fig. 5.1 shows the
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plots of one-sided Kanai-Tajimi spectrum of W,.

G (w)
A

ey

Figure 5.1: One-sided Kanai-Tajimi Spectra

During the stationary strong motion phase of W,(t), the distribution of lifetime peak

ground acceleration Ysp can be obtained from spectral characteristics of W,(t) as

Fualy) ' Pr ((may Wo(t)] <)

~ exp[-2i(y)T,] (5.3)

in which Fso(y) is the cumulative distribution function of Yio,

12
l

(y) ;r ':\—zexp (—:72)
= (0)exp (-—L) (5.4)

is the stationary mean y-upcrossing rate of Wy(t) with
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so)= L |2

5 (5.5)

as the stationary mean zero-upcrossing rate of W,(t), and J; is ith spectral moment of W, (t)

given by

- I

A= /; ' G (w)dw. (5.6)
When the expression for G(w) in Eq. 5.2 is substituted in Eq. 5.6, the spectral moments Ag
and A; can be obtained as

3o = poGo (5.7)
5«2 = p2Gy (5.8)
in which '
po = :—2”1 [Jo(0*) (1 +4¢,%)] (5.9)
s [2(07) + 4¢,2Ju(")] (5.10)
1,

e Yy T 0'dQ

(b e orar (E1)

* = w*/wy, w* is the cutoff frequency which replaces the upper integration limit of infinity
in Eq. 5.6 [122].

5.2.1 Site Consistent Spectral Intensity

Consider the lifetime peak ground acceleration Yso at a site which has the cumulative dis-
tribution function shown in Eq. 5.3. From this distribution function, it can be shown that

the approximate expected value of Yjo is [57)

E [Yio] ~ (‘/z 10g[25(0)T,] + 2103[;(0)1" ]) i (5.12)
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where v ~ 0.5772 is the Euler’s constant. Consider now the alternative description of the

distribution function of Ygg given by [53,65]

-~ Y -k

Fso(y) = exp [- (;) ] (5.13)
with the parameters k ~ 2.3, and u = 0.38aj9 where ayp is the 10% upper fractile of Ysq.
The expected value of Y50 from this Extreme Type-II distribution function in Eq. 5.13 is

(Yol = ol (1~ -’1;) = 1.58u = 0.60a10. (5.14)

When the two expected values in Eqs. 5.12 and 5.14 are equated, they give rise to an

expression for the site specific spectral intensity

Go=1 08a1o (5.15)

Po | \/210g[25(0)T.] + WO

which is consistent with the site specific value of ajg obtained from the Algermissen-Perkins

map (Fig. 2.22) [3]. For a given T, and spectral parameters w, and {;, po and p2 can be
calculated by using Eqs. 5.9 and 5.10. Using these values, #(0) can be cbtained from Eq.
5.5. Finally, for any site specified value of ayg, the corresponding speciral intensity Gy can
be computed from Eq. 5.15. Note that when the quantities T,, wy, {; are treated as random
variables, Gy also becomes random. However, the same algorithm can be applied by using

their relevant realizations.

5.2.2 Generation of Synthetic Seismograms

An elementary example of the oscillatory process is the uniformly modulated random process

which can represent seismic ground acceleration [32]

Wa(t) = $OW: (1) (5.16)

in which ¥(2) is a slowly varying real-valued deterministic function modulating the amplitude
of W(t), and W,(t) is real-valued, zero mean stationary Gaussian process with one-sided
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mean power spectral density @'(u)' The family of oscillatory functions of the process is

{¥(t)e™*} so that Wy(t) has the following one-sided evolutionary power spectral density

Gi(w) = ¥(t)*G(w). (5.17)

Consider a discrete approximation of G(w) in Fig. 5.1 ooﬁaisting of N, spikes each

of which has magnitude G(w;) at the frequency w; and is shown in Fig. 5.2. The associated

6 (Wk)

!

e G (w,)

|||ll|$

P [y P “k
Dw,

Figure 5.2: Discretization of Kanai-Tajimi Spectra

stationary process W,(t) can thus be represented by a superposition of harmonic components
giving the discrete spectral decomposition of Wy(t) as

N
W.(t) = %(t) kz: ag [Ak cos(wyt) 4+ By sin(uki)] (5.18)
=1

where o} = +/ (:‘(wg)Awh A; and B; are independent and identically distributed standard

Gaussian random variables.



Algorithm for Artificial Accelerograms

The following list provides a procedure for generating artificial seismograms. The input time
series is consistent with site specific spectral parameters and the 10% upper fractile a)o of

lifetime peak ground acceleration.

e Input values of filter parameters w, and (; suitable for the soil condition of site or

generate their samples, if random;
¢ Calculate the quantities pg and p; from Eqs. 5.9 and 5.10.
s Calculate the #(0) of W.(t) from Eq. 5.5.

¢ Input strong motion duration T, or generate its sample, if random. Specify the site
consistent value of ajg and hence calculate the corresponding one-sided mean power

spectral intensity Go from Eq. 5.15.
¢ Discretize the mean power spectral density &(w) into N, spikes

¢ Generate 2N, samples of independent standard Gaussian random variable to obtain a

realization of stationary Gaussian random process Wi (2) .
¢ Multiply with the modulation function ¥(¢) to obtain a realization of nonstationary
random process We(t).
5.3 Nonlinear Degrading Systems
5.3.1 Equation of Motion

Consider a discrete, nonlinear structural system subjected to seismic ground acceleration.
The equation of motion satisfies the following governing system of ordinary differential equa-

tion

mX; + cX; + g ({X,,0 < s < t}; &) = —mdW,(¢t) (5.19)

with the initial conditions
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Xo=0 and X;=0 (5.20)

in which X; € R" is the vector of generalized displacement, m is the constant mass matrix,
¢ is the linear time-invariant viscous damping matrix, g is a vector functional representing
general nonlinear hysteretic degrading restoring forces, a is a constant vector of hysteretic
parameters determining rules for structural degradation, d is an influence coefficient vector,

and W,(t) is a real-valued scalar stochastic process representation of ground acceleration.

5.3.2 Constitutive Law for Reinforced Concrete Structures

The univariate restoring force used to describe the hysteretic behavior of reinforced concrete
structures due to seismic ground shaking depends on the type of structural component to be
modeled. A three parameter hysteretic model developed by Park et al. [156] is used for the
nonlinezt dynamic analysis conducted in this study. This model consists of piecewise linear
segments in the hysteretic loops and is capable of representing various types of reinforced
concrete members with appropriate choice of parameters.

Fig. 5.3 shows a nonsymmetric trilinear backbone curve consisting of generalized force
versus displacement plot to describe the monotonic loading behavior of individual compo-
nents of reinforced concrete structures. The discontinuities in each direction (positive and
negative) correspond to the cracking and yielding points of a critical cross-section and may
occur at different magnitudes due to differential quantities of reinforcing steel at top and
bottom of cross-section (e.g., beams with dissimilar positive and negative steel reinforce-
ments). A wide variety of restoring forces can be achieved through the combination of this
general nonsymmetric trilinear skeleton curve and a general hysteretic rule governed by a
vector a = {1, az,a3}” of hysteretic parameters. The values of the three components of
o determine the properties of (i) stiffness degradation, (ii) strength deterioration, and (iit)
pinching behavior of the material model.

During repeated load reversals due to seismic ground acceleration, the stiffness of
a reinforced concrete component experiences a progressive reduction as the magnitude of
the deformation process increases. The decay in stiffness is usually caused by cracking of

the concrete and bond deterioration of the reinforcing steel-concrete interface [189]. The
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Figure 5.3: Trilinear Backbone Curve

parameter ay specifies the degree of the atiffness degradation.

In addition to stiffness degradation, reinforced concrete members also undergo strength
deterioration under cyclic loading. The strength degradation reduces maximum load capac-
ity of a member and depends essentially on the amount of hysteretic energy dissipated [76,
106,159) a:nd many other structural factors such as the confinement ratio, magnitude of axial
force, and concrete strength, Correlation between commencement of strength decay and the
spalling of concrete cover has also been observed [17]. In the three parameter model, the
rate at which the strength deterioration occurs is determined by the parameter a3.

The restoring force model alsc accounts for the pinching phenomena of reinforced
concrete members by the third parameter a3. This is mainly caused by the slippage of the
reinforcing steel when there is a sudden stress reversal. This behavior is usually pronounced
and become biased for T-beams in reinforced concrete structures where there is substantial
difference in the longitudinal steel ratios between the top and bottom reinforcing bars. The
introduction of pinching leads to a general reduction of hysteretic loop areas and indirectly
to the amount of energy dissipation. An elaborate study of the effects of all the components

5-9



of a can be obtained from the original reference [156].

5.4 Seismic Response and Reliability
5.4.1 Computer Code IDARC

IDARC, which is an acronym for Inelastic Damage Analysis of Reinforced Concrete Struc-
tures, is a deterministic code for structural dynamic analysis and was developed by Park el.
[156]. The program, based on a “three-parameter” hysteretic model described earlier, can
perform both static and dynamic response analyses of reinforced concrete structures under
seismic excitations. A wide variety of structural medels are available that include beam el-
ements, column elements, shear-wall elements, edge-column elements, and transverse-beam
elements. The combination of these five element types allows for a wide variety of struc-
tural configurations that can be analyzed by IDARC. Details of these element types can be
obtained from Ref. [156].

The response and damage analysis in ITDARC are conducted by performing direct
step-by-step numerical integration of the equations of motion {Eq. 5.19). The basic oper-
ation in the step-by-step numerical integration of a system of differential equations is the
approximate conversion to a set of simultaneous algebraic equations. This is accomplished
by introducing a simple relation between displacement, velocity, and acceleration vectors
which may be assumed to be valid for a small time increment. Appendix B provides a
nmerical procedure for the incremental dynamic analysis that was coded in JDARC [23,
145] to compute the nonlinear response characteristics of structural systems. This numerical
scheme with the parameters v; = 1/2 and y; = 1/4 (see Appendix B) is unconditionally
stable. Thus, the determination of the time step At depends only on the accuracy desired in

the numerical integration. In this study, JDARC is used for the structural dynamic analysis.

5.4.2 Seismic Performance Evaluation

Seismic performance of structural systems can be evaluated in terms of the condition that a
specific response or damage level is not exceeded during ground motion W (t). Both ground
acceleration and structural and material characteristics are assumed to be random. Hence,

a realistic assessment requires computation of the non-exceedance probability of a response
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quantity of interest. In this section, several damage indices based on maximum deformation

and cumulative load effects are considered.
Maximum Deformation

The simplest damage index based on maximum deformation is the interstory drift /D which

can be defined as [199,201]

Am
ID==2 (5.21)

in which A, is the maximum relative displacement between two stories and 4 is the story

height {199,201]. The lifetime seismic reliability Ps(r) can be evaluated by the probability

Ps(r) ¥ Pr(ID < &) (5.22)

where § is the allowable threshold of interstory drift. Hence, the corresponding reliability

index becomes

B =471 (Ps(1)). (5.23)
Maximum Deformation and Cumulative Damage

Structural damage during earthquake depends primarily on maximum deformation and the
hysteretic energy dissipated during repeated load cycles [22,47,159,160,157). The damage of
any structural members can be measured by the index {159,160,157]

DI Q, - / dE (5.24)

.where Sm is the maximum deformatlon, 6. is the ultimate deformation under monotonic
loading, Q, is the calculated yield strength, dE is the incremental absorbed hysteretic energy,
and S, is a non-negative parameter which can be estimated from the experimental data.
The probabilistic evaluation of seismic performance based on this damage index requires the

computation of lifetime seismic reliability Ps(r) given by

Ps(r) ¥ Pr(DI < dp) (5.25)
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where dp is the allowable value of structural damage. Accordingly, the reliability index

becomes

Br = &~ (Ps(r)). (5.26)
5.5 Numerical Example

Consider the 5-story, 3-bay R/C planar frames in Example 3.1 which is designed by appropri-
ate provisions of 1985 Uniform Building Code and ACI Code 318-83 for seismic zones-2 and
-3. Design details of these frames and the seismic reliability estimates by static method are
already provided in Section 3. In this example, a dynamic reliability analysis is performed

to obtain benchmark results against which the static reliability indices can be compared.

5.5.1 Structural System

The structural modeling of the frames are done by using beams and columns with critical
cross-sections at their ends. The stiffness matrix of an element is derived from the inverse of
the flexibility matrix with the flexibility distribution assumed to be linearly varying between
the critical cross-section and the point of contraflexure. Details of this model can be obtained
from the original reference [156].

The trilinear backbone curve of a strnictural compénent is defined by various com-
ponent properties, such as cracking moments, cracking curvature, yield moment, and yield
curvature, These quantities are calculated from a number of empirical relations developed
from experimental results of reinforced concrete structures available in the current literature
(156]. The post-yielding stifiness is taken as 1.5% of the initial elastic stiffness of the member.

The uniaxial constitutive law for each individual critical cross-section of the frame can
be described by the trilinear backbone curve and the model parameters a3, ag, and a3 that
determine the properties of hysteretic loops. The stiffness degradation parameter a; is taken
as 2.0 for both beams and columns which is found to be fairly representative for reinforced
concrete structures [156]. The strength deterioration parameter a2 of an individual member
is calculated from the empirically developed expression in Ref. [156]). No slippage of the

reinforcement is allowed either in beam or in column and the pinching parameter a3 is set
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to one extreme value which does not account for pinching effect in the restoring force. A

typical hysteretic rule for beam or columnn element is shown in Fig. 5.4.

Force

= .
yy Displocement

Figure 5.4: A Typical Three Parameter Model with Degrading Hysteresis

The concrete strength f' and yield strength F, of steel reinforcement are treated as
independent random variables with mean 3.39 ksi and 67.5 kst, and coefficients of variation
18% and 9.8%, respectively [105,130]. The probability distribution of f.’ and F, are modeled
as Gaussian and lognormal variables, respectively [65].

Mass is assumed to be lognormal random variable with mean value equal to the
nominal value and coefficient of variation 11% [121,205,175]. The damping property is
specified by damping ratio in the first mode with mean 0.02, coefficient of variation 65%
[121,205,175}, and lognormal distribution function. The uncertainty in the stiffness property
will be determined by the variabilities in the basic parameters such as concrete strength, and
yield strength of steel. Due to common construction and workmanship, each of the random

variables accounting for the masses of system are assumed to be perfectly correlated among
all the stories.
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5.5.2 Seismic Load Process

Consider the seismic hazard discussed in Section 5.2. It is assumed that the ground accelera-
tion can be represented by an elementary Gaussian oscillatory process Wy () which admits a
multiplicative decomposition of a zero mean stationary Gaussian random process W, (2) with
one-sided mean power spectral density G(w) in Eq. 5.2 and a modulation function #(t) in
Eq. 2.75. The Kanai-Tajimi spectral parameters w; and (; are assumed to be independent
random variables with their mean values 16.5 rad/s and 0.8 and coefficients of variation
42.5% and 42.6%, respectively {140,205]. These values are consistent with the intermedi-
ate s0il condition for which the frames are originally designed. The probability distribution
functions of wy and {; are modeled as gamma and lognormal, respectively [122]. The strong
motion duration T, is also treated as a random variable with mean 6.9 s, coefficient of
variation 42% [140,205], and lognormal cumulative distribution function. The modulation
function ¥(t) in Eq. 2.75 is chosen with t; = 0.157,, tz = 1.15T}, and ¢y = 2.0/7,. The
total duration Ty of ground motion is assumed to be 1.5 times the strong motion duration
T,. The artificial earthquakes are generated in accordance with the algorithm described in

Section 5.2.2.

5.5.3 Seismic Performance Evaluation

Seismic performance of 5-story, 3-bay reinforced concrete frame structures are evaluated by
calculating the lifetime reliabilities in Eqs. 5.22 and 5.25 depending on two damage-based
failure criteria discussed in Section 5.4.3. In principle, these probabilities can be calculated
by using statistical linearization method [228,230,20,21,18,172]. This method is based on the
linearization of a system of nonlinear differential equations (Eq. 5.19) via minimization of the
expected value of some error measure. In earthquake engineering, the linearization method
has been applied quite extensively mainly for response and reliability analysis of nondegrad-
ing systems. Recent investigations on the accuracy of statistical linearization for nonlinear
degrading systems, however, reveal that the method may significantly underestimate the
probabilistic characteristics of seismic response [172].

In this study, the reliabilities are estimated by direct Monte Carlo simulation. The

associated deterministic nonlinear dynamic analysis for a particular sample of simulation is
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performed by the computer code IDARC [156) described earlier. This program computes
the deterministic structural response by direct step-by-step numerical integration using the
Newmark algorithm. In brief, the effort in simulation consists of the following steps. First,
the samples of random variables representing mechanical models of structural systems are
generated which are consistent with their probability distribution functions. Second, real-
izations of site-specific seismic ground motions are generated from the algorithm described
in the Section 5.2.2. Third, nonlinear dynamic analyses are conducted by I DARC for each
of these sample structures and earthquake ground motions to obtain samples of several re-
sponse variables of interest. Fourth, standard statistical analyses are performed to determine

probabilistic characteristics of these response or damage variables.
Maximum Deformation

Consider the interstory drift /D in Eq. 5.21 which represents one of many damage indices
based on maximum deformation of structural response. Fig. 5.5 shows the associated lifetime
reliabilities in Eq. 5.22 for the 2nd story of the 5-story frame structure designed for seismic
zone-2., These probabilities are plotted for different values of deterministic threshold §;. The
different plots in each figure correspond to several possible values of ajp = 0.10g, 0.15¢,
and 0.20g within the same seismic zone-2. Fig. 5.6 exhibit the similar results for seismic
zone-3 for several cases of a9 = 0.20g, 0.30¢, and 0.40g. The rightward shift of the plots in
these figures confirm the anticipation that the structural reliability decreases with increasing
values of ajg within a same seismic zone. Reliabilities for other stories, which are not shown

here, can be obtained from the Ref. [171).
Maximum Deformation and Cumulative Damage

Consider the damage index DI in Eq. 5.24 which is based on combined effects of maximum
deformation and cumulative load effects due to seismic ground motion. Figs. 5.7 and 5.8
show the corresponding lifetime reliabilities in Eq. 5.25 of the beam component 2 and the
column component 21 or 26 of the 5-story frame designed for seismic zone-2 (see Section
3). These probabilities are plotted for different values of deterministic allowable damage

threshold dy. The different plots in each figure are associated with several representative
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values of ajp = 0.10g, 0.15¢, and 0.20g within the seismic zone-2.

Figs. 5.9 and 5.10 show the similar sets of above plots for the same frame structure
designed for seismic zone-3 for several cases of of ayg = 0.20g, 0.30g, and 0.40¢. Similar trend
of decreasing seismic reliability is observed due to increase in the value of ajg. The reliability
plots for other structural members of the frame designed for both zone-2 and zone-3, which

are not shown here, are also available in Ref. [171).

5.5.4 Comparison with Static Reliability Indices

One major objective of this numerical example is the evaluation of static reliability estimates
obtained in the previous phase of the study. This can be accomplished by comparing the
static reliability indices with the reliability measures obtained from nonlinear dynamic anal-
yses. The dynamic reliability is estimated both at the member (Eq. 5.25) and story levels
(Eq. 5.22).

Table 5.1 shows the smallest reliability index 81 in Eq. 5.23 based on interstory drift
ID (Eq. 5.21) which is obtained for the 5-story frame designed for seismic zone-2. These
values are tabulated for several cases of ajg = 0.10g, 0.15¢, and 0.20g and critical thresholds
éo = 0.5%, 1.0%, 2.0%, 3.0%, and 4.0%. Table 5.1 also provides the similar information
for designs in seismic zone-3 for several cases of a9 = 0.20g, 0.30g, and 0.40g. Results
show that the conclusions regarding seismic reliability estimates depend significantly on the
critical thresholds for the interstory drift and specific values of a19 within a same seismic
zone.

Table 5.2 shows the smallest reliability index 8 in Eq. 5.26 based on the damage
index DI (Eq. 5.24) which is obtained for the 5-story frame designed for seismic zone-
2. The critical threshold of dg = 0.4 proposed in Ref. [156] is used here to calculate
the above quantities in the table. Table 5.2 also produces similar information when the
frame is designed for seismic zone-3. Although the failure criteria (in static and dynamic
reliability analyses) are different, these member level reliability indices can be compared
with corresponding static reliability measures obtained previously and is summarized in
Table 5.3. Comparisons of minimum reliability indices for the 5-story frame obtained for

various combinations of seismic zone and ajg exhibit significant differences due to the static
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Table 5.1: Dynamic Reliability Indices of 5-story Frame with Failure Criteria Based on
Damage Index /D (Eq. 5.23)

Minimum 3; based on 1D (Eq. 5.23)
dp Zone-2 Zone-3
a10=0.1g | a10=0.15¢ | a10=0.2¢ | a10=0.2¢g | a10=0.3¢ | a10=0.4¢
0.5% 2.55 1.51 0.79 0.90 -0.21 -0.85
1.0% 431 3.29 2.59 2.72 1.38 0.67
2.0% 6.07 2.07 4.38 4.53 2.98 2.19
3.0% 7.10 6.10 5.42 5.59 3.91 3.09
4.0% 783 6.84 6.17 6.35 __L4.57 3.72

and the dynamic methods. Similar results were also found when the nondegrading systems
were considered (Section 4). However, note that the comparisons are valid only when the
component reliabilities are considered. Concepts of system reliability are not explored in
this study.

In a recent work by O’Connor and Ellingwood [149), a similar study regarding ade-
quacy of static reliability indices for simple structural systems was performed. Their findings
suggest that the static method provides satisfactory seismic structural performance when
compared with the dynamic method. However, in Ref. [149], the analysis was based on
elementary stochastic modeling of ground motion in which the peak ground acceleration is
assumed to be random with the cumulative distribution function defined be Eq. 3.12 and the
frequency contents are obtained from an ensemble of actual seismograms. Also their study
involved simple 1-story portal frame and ideal elasto-plastic material model without any
degrading characteristics. It is interesting to note that in this study, static reliability indices
are found to significantly underestimate structural reliability particularly at sites with low

seismicity.



Table 5.2: Dynamic Reliability Indices of 5-story Frame with Failure Criteria Based on
Damage Index DI (Eq. 5.26)

Zone a1 Minimum 5
based on DI (Eq. 5.26)
0.1g 7.69
Zone-2 0.15g 6.57
0.2g 513
0.2g 5.12
Zone-3 0.3g 3.60
0.4g 291

Table 5.3: Static Reliability Indices of 5-story Frame

Zone ax Minimum 8¢,
(Eq. 3.21)
0.1g 2.19
Zone-2 0.15¢ 1.81
0.2g 1.50
0.2g 2.04
Zone-3 0.3g 1.59
0.4g 1.30
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Figure 5.5: Dynamic Reliability of 5-story Frame at zone-2 with Failure Criteria Based on
Interstory Drift
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Figure 5.6: Dynamic Reliability of 5-story Frame at zone-3 with Failure Criteria Based on
Interstory Drift
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Figure 5.8: Dynamic Reliability of 5-story Frame at zone-2 with Failure Criteria Based on
Damage Index DI (Column Member 21 or 26)
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SECTION 6
A Markov Model For Seismic Reliability Analysis

6.1 Introduction

Current methods for evaluating the overall seismic performance of structural systems are
based on global damage indices and lifetime mazimum seismic hazard. The global indices
are obtained by heuristic corubinations of local damage measures, and the seismic hazard is
modeled without any consideration for cumulative damage during consecutive seismic events.
Such a global measure of damage can not characterize structural state uniquely, provides
only a crude estimate of structural performance during seismic evente, 254 cannvi be used to
assess structural vulnerability to future loadings. Since most structures are designed to resist
several earthquakes during their exposure time, the lifetime largest ground motion may not be
meaningful as a design load parameter due to accumulation of damage between consecutive
seismic events. This is particularly true and unavoidable for a series of earthquakes including
pre-shocks, main events, and after-shocks during which repairs of structural systems can not
be performed.

Another important issue in the evaluation of seismic performance is the lack of exact
knowledge in the initial state of structural systems. This uncertainty is primarily caused by
manufacturing processes, errors in design, inadequate construction, unsatisfactory quality
control for new structures, and lack of information concerning damage caused by previous
seismic events for existing buildings. Reliability analysis solely based on current definitions of
global damage indices can not be applied to determine sensitivity to initial state of structural
systems. Hence, any rational assessment of structural performance should simultaneously
account for the mechanical degradation process of all critical cross-sections and components.

The objectives of this section are to evaluate the seismic performance and sensitivity
to initial state of structural systems and determine the vulnerability of structures exposed
to one ot more earthquakes.. A new methodology based on a Markov model is proposed
for seismic reliability analysis. The method of analysis is based on (i) simple but realistic

characterization of seismic hazard, (i) nonlinear dynamic analysis for estimating structural
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response to earthquakes, (ii7) uncertainty in initial state of structural systems, and (iv)
failure conditions incorporating damage accumulation during consecutive seismic events.
Simple structures designed by the Uniform Building Code are used to illustrate the proposed
method. Effects of uncertainty in the initial state of these systems on seismic reliability are

also investigated,

6.2 Seismic and Mechanical Models
6.2.1 Seismic Hazard

Consider a site which is affected by a single seismic source characterized by a mean rate of
earthquake occurrence A. It is assumed that (i) the earthquake arrivals follow a homoge-
neous Poisson process with mean rate A, (i) ground motions in different seismic events are
independent stochastic processes Wi(t), i = 1,2, - -, N(r) where N(7) represents the ran-
dom number of seismic events during lifetime period 7, and (i4i) seismic event i has random
duration . The supposition of stationary Poisson process has the implication that the inter-
arrival times are independent and follow the same exponential distribution. Although this
representation provides an elementary model of the seismic environment, it has been found
to be consistent with historical occurrences for ground motions associated with earthquakes
that are of engineering interest in structural applications [2]. Consequently, the Poisson as-
sumption may still serve as a useful but simple model of seismic hazard [53]. A similar but
simplified version of this filtered Poisson process model was also adopted in Sections 3 and

4 of this report. Fig. 6.1 shows the schematics of seismic environment at a site.

N({r)

oVl Vs

win  wa wit) wh(t)p)

Figure 6.1: Seismic Hazard at a Site
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6.2.2 Nonlinear Degrading Systems

Consider a general multistory framed structure with n, critical cross-sections each of which
has ny parameters to describe the restoring force model, The stochastic seismic modeling of
this multi-degree-of-freedom, hysteretic, and degrading system leads to the matrix differential
equations of the form (Eq. 2.47)

mXi(t) + g ({Xi(s), X'(s),0 < 5 < 1};) = ~mdW'(2) (6.1)

with the initial conditions

Xi(0) =0, and X'(0)=0 (6.2)

where ¢ is the local time coordinate originating at the beginning of seismic event i, X*(t)
is a vector of generalized displacements, g is the vector functional representing general
nonlinear hysteretic restoring forces, m is the constant mass matrix, d is a vector of influence
coefficients, and Wi(t) is the stochastic process representation of ith seismic event. In
earthquake engineering, the total restoring force g* is usually modeled by the superposition

of a nonhysteretic component

8w = € X¥(t) + k' (XF(8)) X¥(0) (6.3)

and a hysteretic component

gy =k (Z(0) XE(t) (6.4)

where c i3 the constant viscous damping matrix, k',3 is the nonhysteretic part of stiffness
matrix, kij is the hysteretic part of stiffness matrix, and Z(t) is the vector of additional
hysteretic variables the time evolution of which can be modeled by a set of general nonlinear

ordinary differential equations

Zi(t) = F* (X(2), XE(2), 2°(2), 8 A'(2)) (6.5)



in which F' is a general nonlinear vector function the explicit expression of which depends
on the hysteretic rule governed by a particular constitutive law, and Af(t) € R* is a damage
state vector which has n = n.n, components equal to the parameters of restoring forces at
all critical cross-section of a structural system at time ¢ during seismic event i and R”" is the
n-dimensional real vector space. Following the state vector approach [67,94,136] with the

designation of

8:'(t) = X'(2)
82'(t) = X'(t)
0:'(t) = Z'(t), (6.6)

the equivalent system of first-order nonlinear differential equations in state variables become

Bi(t) = 8:'(t)
05(t) = —m™[c 024(2) + k' (81°(1)) 0:°(1) + Kc's (05°(0)) 02° ()] —d Wi(2)
05(t) = F(0:°(2),82'(2), 0:°(2), 1; A¥(t)) (6.7)

which can be recast in a more compact form

6'(t) = b (6°(1),1; A¥(1)) (6.8)

with the initial conditions

6'(0)=0 (6.9)

where hi(-) is a vector function, 8(t) is the response state vector, A() € R* is the damage

state vector representing state of parameters in the restoring force, and are given by

@1'(t)
O'(t) =1 6,'(t) ¢» (6.10)
6:'(t)
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and

FROR
A'(2)

A ={  }. (6.11)

. A’.(t) .
When the excitation is random, A'(t) is a vector stochastic process and it characterizes

structural state uniquely.

6.3 Markov Model
6.3.1 Damage State Vector

Consider a damage state vector A* which has n = n.n, components equal to parameters of
restoring forces at all critical cross-sections of a structural system at the end of seismic event

i. It can be obtained from

A' = A'(Y) (6.12)

where A¥(1) is defined earlier in Eq. 6.5. State vector A’ can be conveniently mapped into
a normalized damage state vector D' by the relation

. i
Dif=1- ﬁ'ﬁ (6.13)
Aj

where j = 1,2, -+, n represents the index for the component of vectors A’ € R* and D* € R*.
This simple transformation permits the domain of each component of D* to lie between 0
and 1. Note that the state vector D' provides complete characterization of structural state
at the end of earthquake i. Hence, one needs only D' to perform dynamic analysis and
determine structural performance through a new seismic event.

A duty cycle (DC) is a repetitive period of operation in the life of a structure that

causes an increase in damage. For earthquake resistant structure, each seismic event corre-
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sponds to a DC. If the earthquake is modeled as a filtered Poisson process with each seismic
event assumed to be an independent random process, damage state vector D' at the end of
an ith DC depends only on initial state D=1 at the start of the DC, and on that DC itself.
It is independent of damage and loading history up to the start of that DC. In other words,
the propagation of damage state vector D can be treated as Markov process evolving on
a discrete time scale [169,171,176,177]. The evolution of a discrete vetsion of D can be
described by one-step transition matriz T(i) with the element Tpy(i) representing the prob-
ability that damage changes from state p to state ¢ due to seismic event i. This is explained

in the forthcoming section.

6.3.2 Transition Matrix

Consider a domain D C R" as shown in Fig. 6.2 having Pr(D* € D) ~ 1 with K = [T, {;
cells (states) {Cp} such that D = U,{;IC,, CpNCq =0 (p # q), and [; represents the
number of discretized states of jth component of D* € R". Consider the change in stochastic
vector process D¥ i = 0,1,2,---, N(7), taking values in a finite or countable number of cells
C1,Cs,-++,Ck. Let Pr{D* € Cp) be the probability that damage state vector D' is in cell Cy
after ¢ seismic events. Then row vector P(i) = {Pr(D* € C)),Pr(D* € C3),---, Pr(D* € Ck)}
gives the probability that D* belongs to any of the cells Cy,C3, -+, Ck after i seismic events.

Suppose the seismic events constitute a sequence of independent random processes.
Then the probability Pr(D* € Cy|D~! € C;, past history of structural loading and damage)
is equal to Tpe(i) = Pr(D* € Cg|D'~! € C,) because system performance is completely spec-
ified by the value of damage state vector D'~! at the application of earthquake i. Denote
T(i) = {Tye($)}, p,q=1,2,---, K as one-step transition matrix from time i — 1 to time i as-
sociated with the ith DC. Hence, {D*,¢{ = 0,1,2,...., N(7)} is a discrete-state (DS), discrete-
time (DT) Markov Vector Process, where N(1) designates the total (random) number of
seismic events at a site. Fig. 6.3 shows the schematic diagram of transition probabilities for
Markov process D'.

The estimation of transition probability Ty(i) invoives computation of conditional
probability density of the random vector D|D*~1 € C, for all the cells Cp, p=1,2,-- -, K.
The method of Monte Carla Simulation can be used for this purpose due to unavailability of
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Figure 6.2: Discretization of Sample Space
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event i-| event i

Figure 6.3: Schematic Diagram for Transition Probabilities

6-8



analytic solutions. Each deterministic trial in the simulation method requires nonlinear dy-
namic analysis. Mathematically, this cotresponds to the computational effort for solving the
deterministic initial-value problem in Eqs. 6.8 and 6.9. Various numerical integrators such
as Runge-Kutta method [191,120,87,93,110], Adam’s or Gear’s method [74,194,88], Bulirsch-
Stoer Extrapolation method [38], and several others can be applied to obtain the solution.
The selection of a particular method depends on its computational efficiency, numerical ac-
curacy and stability, and “stiffness” of the nonlinear system of differential equations. In this
study, several numerical schemes are tested and finally the fifth- and sixth-order Runge-Kutta
integrators are determined to be satisfactory and used for structural analysis. Appendix C
summarizes the Runge-Kutta method for step-by-step numerical integration.

It is worth noting that for a small increase in the dimension of damage state vector,
there is a correspondingly large increase in the order of transition matrix. For example, when
the dimension n of D' is increased to n + 1, the order of T{(i) increases from [J}_; I = K to
I'[;':,l l; = lat1K. This observation regarding rapid increase in computational invelvement

suggest the initial use of Markov model for shear beam idealization of framed structures.

6.3.3 Evolution of Distribution of D’

Consider a K-dimensional row vector which prescribes the joint probability mass function
of the random vector D' denoting damage after ith seismic event. The probability of D*

following 1 seismic events is [161,169,171,176,177,178],

P(i) = P(i — )T() , i =1,2,..., N(r) (6.14)

When this equation is used recursively, the distribution of probability of being in state Cp,

p=1,2,3,.-., K after i seismic events becomes

P() = PO) IT T() (6.15)

i=1
where P(0) denotes the initial vector representing probability distribution of D?, In gen-

eral, Eq. 6.15 defines a nonstationary Markov Process due to differential severities of DCs.



However, if one assumes independent and identically distributed random processes for earth-
quakes with same deterministic duration, the Markov process becomes stationary and Eq.
6.15 takes the form

P(i) = P(0O)T* (6.16)

where the index i has been dropped because of the invariance of transition matrix to severities

of DCs.

6.3.4 Lifetime Distribution

The lifetime probability distribution P(7) defined as the distribution of damage index vector
DY i lifetime 7 can be obtained from the theorem of total probability

P(r) = iP(i)Pr{N(r):i}

=0
= i P(z)(‘\’—";)‘ exp (—A1)

[£20)]

‘EP(:)Q‘—TX exp {—At) (6.17)

=0

I’

in which i* is a finite real integer to be determined from the observation that the i*th
component of above summation in Eq. 6.17 is negligibly small. For stationary Markov

process, a more compact form of lifetime distribution can be obtained as

Pi) = SPOTE L eop(-rr)

P(0) exp (~A7) i::o (":—t'r)'
P(0)exp (-Ar[I- T)) (6.18)

where I € £ (RK ) is the identity matrix. Determination of above probability requires

computation of eA where A = —Ar[I — T]. Appendix D describes the evaluation procedures
of linear algebra to calculate eA for a general square matrix A € £ (QK x ﬂK), where
L(RK X RK) denotes a set of linear mapping from RX to RX,
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6.3.5 Mean First Passage Time

Another quantity of engineering interest in seismic performance evaluation is the mean num-
ber of earthquakes before absorption to any undesirable damage state(s). Considering homo-
geneous Markov process with stationary transition probabilities, let 4.4(p) denote the mean
number of seismic events before the system enters a damage set A C D with AVA* =D C R"
(Fig. 6.2) if the initial damage state is C, C A°. Then, the mean first passage time is given
by [169,171,176,177,178]

pa(p) = E[Absorption time|D" € G,]

= Y E[Absorption time[D® € Cp, D! € Cy] Pr(D' € G,|D° € C))
C'EA‘

= 1+ Y E|[Absorption timelinitial state is Cy) Tp,
CreAs

=1+ Y aa@Th (6.19)
CeEA°

When the initial states are uncertain, the mean first passage time can still be obtained
from u_4(p) by averaging relative to the probability of D®. Let 4 represent the mean number
of events the system starting at initial state C, C A° with probability Pr(D° € C,) has to
wait before absorption to damage set A C D. It is given by [169,171,177]

pa= Y palp)Pr(D*€Gp). (6.20)
Greac

6.4 Numerical Example

6.4.1 Seismic Hazard

Consider two sites A and B in the western U.S. with mean earthquake arrival rates A4 =
0.92/yr and Ap = 0.024/yr [3,179]. These sites were also considered in Sections 3 and 4.
Both sites lie in the same seismic zone-4 of the 1988 Uniform Building Code [100] and have
the same peak ground acceleration a9 = 0.4g. The ground motions in different seismic events
are assumed to be independent and identically distributed zero-mean stationary Gaussian
processes W(t) with band-limited while power spectral density G(w) given by
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0, otherwise

Glw) = { Gop O<w<o (621

where the spectral intensity Go is equal to 10026 mm?s=2 when A = A4 = 0.92 /yr and
16090 mm2s—3 when A = Ap

T, = 2.83 5 and bandwidth @ = 25x rad/s as proposed in Ref. [122]. Sites A and B

0.024 /yr for a deterministic strong motion duration

are characterized by frequent small seismic events and rare large earthquakes, respectively.

However, designs at both sites are identical according to the 1988 Uniform Building Code.

6.4.2 Structural System

Consider a special moment resisting framed structure [100] illustrated in Sections 3 and
4 which is modeled here as a hysteretic, degrading Bouc-Wen oscillator [34,228,230] with
linear damping ratio { = 0.05, initial natural frequency wo = 20.944 rad/s, mass m, and is

subjected to the ith seismic event Wi(t) = W(t) giving the equation of motion

mXi(8) + ¢ ({X%(s), X'(5),0 < s S thit) = —mW (1) (6.22)

where X'(t) is the relative displacement of oscillator with respect to ground motion at
time ¢ during seismic event i. The total restoring force ¢* is assumed to admit an additive

decomposition of nonhysteretic component

¢'an (X (), X'(2)) = 2womX'(2) + awn®mX'(2) (6.23)

and hysteretic component

¢s ({X¥(s), X¥(2),0 € 5 < t;1) = (1 - a)un’m2Z¥(2) (6.24)

where the hysteretic variable Z'(t) satisfies the ordinary nonlinear differential equation [34,
228,230]

Zi(t) = A)X(2) - B X (1) |z"(¢)|"'l Zi() -1 X' () |2 )| (6.25)
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in which a quantifies the participation of linear restoring force. The model parameters u, 8,7
are assumed to be constants while the parameter Ai(t) which controls system degradation

has the following implicit time dependency through the dissipated hysteretic energy £; at
local time ¢ [21]

At) = AYT,) = b4 (6.26)

where 64 signifies constant rate of aystem deterioration with &; satisfying the differential

equation

& = (1 — a)u’mZ' () X'(2) (6.27)
Note that the degradation law in Eqs. 6.26 and 6.27 is defined here quite arbitrarily. It
is obtained from one of the main choices available in the current literature. Further study
with more realistic buildings needs to be undertaken to make decisions regarding the proper
selection of structural deterioration. The time-invariant parameters governing hysteresis are
chosen as a = 0.04, g = 1, 8 = 0.1505, and 4 = 0.1505 consistent with the initial stiffness
and strength values of the oscillator [204]. Structural deterioration is permitted by assigning
a small value of 64 = 1.0 x 10~° in Eq. 6.26. The structural characteristics are assumed to
be deterministic.

The state of structutre is represented by A' = AXT,) € R denoting the value of
parameter A¥(t) of restoring force model at the end of ith seismic event. The corresponding
normalized damage index D' = 1 — A'/A® which varies from 0 to 1 is discretized into
K = I; = 16 distinct cells (states) of equal length 0.0625 and is shown in Fig. 6.4. When
this index is calibrated to the observed seismic damage in actual structures, each or group
of these cells can be correlated with common engineering measures such as minor, medium,
severe, reparable, nonreparable, and collapse damage states. Regardless, the discretized
cells Cy, Cy, - - -, Ch¢ in succession denote progressive states of structural damage. Since the
damage is an irreversible process, after each seismic event without any subsequent repair,
the structural state advances only to any of the higher numbered damage states, or it may
remain in the same state. In other words, once D'~ € C,, there is a zero probability that

Die C, when ¢ < pforall p=1,2,--.,16. Specially for p = 16, i.e., for the cell Cis which
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Figure 6.4: Discretization of Sample Space of D' € ®

represent state of largest possible damage, if the damage process ever enters that state, the
probability of remaining in that state becomes unity. This state is known as the “absorbing”

or “trapping” state since once entered the process is never left.

6.4.3 Structural Response and Reliability

As mentioned previously, Eqs. 6.22 to 6.27 can be rewritten as a system of first-order ordinary
differential equations analogous to Eqs. 6.8 and 6.9. This nonlinear system of equations for
the initial value problem is then solved by using step-by-step numerical integration. Fifth-
and sixth-order explicit Runge-Kutta integrators are used to obtain such solutions.

The transition matrix T is constructed by performing several conditional Monte Carlo
simulations each with 1000 samples. In brief, the effort in the simulation consists of the
following three steps. First, the oscillator is pre-assigned a damage index (before seismic
event i) which is associated with the damage state C,. A representative value, such as
the midpoint of the cell Cp, can be used to define this deterministic damage index. This
also defines the initial value A%(0) of the degrading parameter A‘(t) of the hysteretic model
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during the ith seismic event. Second, with the condition D~! € C,, 1000 samples of
random excitation representing the ith seismic event W(t) are artificially generated. Third,
1000 deterministic nonlinear dynamic analyses are carried out with the oscillator subjected
to each of these realizations of W(t). This generates 1000 samples of conditional damage
index D|D*-! € C, following seismic event i from which its histogram can be developed.
Fig. 6.5 shows the histograms of D'|Di-1 ¢ C, for the cells Cp, p=1,2,---,15 obtained for
both the sites A and B. Due to larger speciral intensity Gy, the shapes of above histograms
for site B exhibit more spread than those for site A. These histograms which estimates
the conditional probability densities are used to construct the first 15 rows of corresponding
transition matrix T. Since the cell Ci¢ is absorbing state, the last row of the transition
matrix is calculated by setting T4 = 1 for ¢ = 16 and zero otherwise. Here, no repairs
of structural systems are considered following each seismic event. This has the implication
that T is an upper triangular matrix. In case there is a systematic maintenance program
after each seismic event, the transition matrix will need to be modified based on inspection
and repair methodologies.

The event distribution of damage, starting from any damaged state of system, can be
obtained from the transition matrices described earlier. Fig. 6.6 shows the evolution of this
distribution of D¥, with respect to seismic event i, according to Eq. 6.16 for both sites A and
B starting with deterministic initial state Cp = C; of structural system, [i.e., when P,(0)
representing the pth component of P(0) is 1 for p = 1 and zero otherwise]. However, if the
initial state is uncertain and particularly if it has uniform distribution with Fy(0) = 1/16
corall p=1,2,---,16, the same equation can be used to obtain above evolution of damage
probability P(i). Fig. 6.7 exhibits such probabilities for both sites A and B.

The lifetime probability distribution of damage after N(r) seismic events are com-
puted using Eq. 6.18 with the assumption of iritially undamaged deterministic state of
system, i.e.,, when F5(0) = 1 for p = 1 and zero otherwise. Fig. 6.8 shows the lifetime
probability mass function of D¥("} with r = 50 years for both the sites A and B. Based
on these case-specific studies,. buildings at sites with infrequent large earthquakes appear to
sustain less damage than those at sites with frequent small seismic events. Similar results

were found in Sections 3 and 4 of this report. However, more studies need to be undertaken
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Table 6.1: Mean First Passage Times with Uncertain Initial States

N BA
Damage Set A Site- A Site-B
A7 34.59 753
Az 13.78 4.69
Az 8.34 2.88
Ay 4.59 1.62
As 2.09 0.75

to make a generic conclusion.

Figure 6.9 shows the lifetime probabilities for 7 = 50 years starting from a uniform
distribution of initial damage state for the sites A and B. Due to change in initial condition,
the reliabilities can still be obtained directly from Eq. 6.18 and previous transition matrices.
Results show that the uncertainty regarding initial condition can yield significant variation
on seismic reliability estimates.

Consider several damage sets A;, A3, A3, A4, and Ag which are defined in Fig. 6.4.
These damage sets may represent collections of undesirable damage states, which may be
prescribed for a specific design condition. The mean first passage time providing the num-
ber of seismic events before absorption to these several sets of undcsirable damage state(s)
starting from any deterministic initial damage state is exhibited in Fig. 6.10 for both sites
A and B. For example, when the site B is considered, if the deterministic initial state is C,
(i.e., p = 4), the structure will require 13.4, 9.46, 6.42, 3.74, and 1.23 number of earthquakes
on the average to enter the damage sets Ay, Az, A3, Aq, and As, respectively. They are
computed from Eq. 6.19 and are obtained for both Site-A and Site-B. Due to large difference
in the mean arrival times of the two sites, the mean first passage time for Site-A is found
to be considerably higher than that for Site-B. When the initial state is uncertain and the
probability of D? is uniformly distributed among all states, the corresponding mean absorp-
tion times for the sites A and B can still be calculated from Eqs. 6.19 and 6.20. They are
given in Table 6.1. All these results provide useful information to make decisions for optimal
inspection and repair of structural systems.

The Markov model, developed in this section, can also be applied to evaluate seis-
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mic performance of existing structures that have been exposed to past earthquakes. The
analysis, however, requires calculation of transition matrix which can be performed by two
approaches. In the first approach, the transition probabilities can be computed by carrying
out stochastic dynamic analysis of new structures, as done here. One can then use the same
transition matrix with an appropriate initial state characterizing damage state of the existing
structures. In the second approach, an estimation procedure can be developed by obtain-
ing the preceding probabilities from a suitable database involving observec, performance of

existing structures,

6.4.4 Conclusions

A new methodology based on a Markov model is proposed to evaluate seismic performance
and sensitivity to initial state of structural systems and determine the vulnerability of struc-
tures exposed to one or more earthquakes. The analysis accounts for simple but realistic
characterization of seismic hazard, nonlinear dynamic analysis for estimating structural re-
sponse, uncertainty in the initial state of structural systems, and failure conditions incorpo-
rating damage accumulation during consecutive seismic events.

The method is based on theoretical development using general hysteretic restoring
force characteristics which can be applied to both reinforced concrete and steel structures. It
estimates both event and lifetime reliabilities thus providing a designer more control in seis-
mic performance evaluation. It can be used to determine the damage probability evolution
during several earthquakes allowing investigation on seismic vulnerability of new and exist-
ing structures. The meodel facilitates computation of mean first passage time determining
average number of seismic events before the structure will suffer potential damage. It also
evaluates sensitivity of seismic reliability due to variability in the initial state of structural
systems.

The Markov model developed in this report has been applied to evaluate seismic
reliability measures of simple code-designed structures. Results suggest that designs by the
Uniform Building Code have different reliabilities at sites with frequent small earthquakes
and infrequent large earthquakes, although the sites are characterized by the same value of
ayo. Similar findings were also obtained in the previous sections of this report when the
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reliabilities were calculated for nondegrading systems.

The uncertainty regarding initial condition can yield significant variation on seismic
reliability. Since, variability regarding initial conditions can play a significant role in seismic
reliability estimate, it is essential that any reliability scheme has provisions of uncertain
initial condition(s). Using the Markov structure, this is accomplished here with little effort.

A small increase in the dimension of damage state vector rep;enting state of struc-
tural systems is associated with comparatively large increase in the order of transition matrix.
Correspondingly, the computational involvement in obtaining trarsition probabilities may

become significant.
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SECTION 7
Local and Global Damage Indices

7.1 Introduction

Conventional seismic analysis of discrete, nonlinear structural systems is based on concen-
trated plasticity model, which describes the local restoring force characteristics at the critical
components of interest. For building frames, these restoring force-deformation relations are
defined locally at the member level for shear type buildings (e.g., column shear force versus
relative column end displacement) or at the cross-section level for general yielding frames,
(e.g., bending moment versus curvature or rotation at the end joints of beam-column). Given
a hysteretic model, the parameters of such local restoring forces are usually estimated from
experimental calibration. Using this local model with the restoring forces adequately de-
fined at all critical components, the equations of motion can be directly integrated to yield
various structural response characteristics. However, the inconvenience with regard to the
applicability of local model as a practical analysis tool for large structural systems is not of
minor nature. This is obviously because of the large dimension in which the stress analysis
has to be performed. The computational effort is still significant and time-consuming even
with the recent development of numerical techniques and computational facilities. These
issues become more significant when numerous deterministic analyses are required in a full
probabilistic analysis. It is thus desirable to perform structural dynamic analysis on some
reduced dimension to lessen computational burden without any serious loss of accuracy in
the results. In principle, this can be achieved by using a global model, which describes restor-
ing force-deformation characieristics at a global level (e.g., story shear force versus relative
story displacements for shear type buildings). But, when such a model is to be used, it is
required to know apriori the parameters which govern the global hysteretic characteristics of
structural systems. Currently, there are no rational methodologies available for determining
these global parameters.

In addition, some of the parameters of local restoring forces are usually related to

known physical properties such as strength and stiffness of structural components. Any
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change in the values of these time-variant parameters due to a potential seismic event is
thus indicative of induced damage due to possible structural degradation. This suggests
that conceptual models of local damage indices can be developed from the known state of
local parameters. During a seismic event, such local indizes not only describe progression
of structural damage for seismic performance evaluation, but also provide a unique charac-
terization of structural state due to one-to-one correspondence with the parameters of local
restoring forces. Unless the mechanistic relations between local and global damage indices
are established, the usefulness of seismic performance evaluation based on global damage
indices are very much limited.

This section proposes a global hysteretic model and establishes analytical relations
between the parameters of local and global hysteretic models for seismic analysis of multi-
story shear type buildings. In both models, the analyses involve hysteretic constitutive laws
commonly used in earthquake engineering to represent restoring forces and nonlinear dy-
namic analysis to estimate seismic response and reliability of structural systems. However,
when the global model is used, the dimension of dynamic structural analysis becomes much
smaller, and hence, the computational effort can be reduced significantly. From the proposed
relation between these models, the local hysteretic behavior and damage can be recovered
from analysis based on global models. Several numerical examples based on nondegrad-
ing and degrading characteristics of both single- and multi-degree-r /-freedom systems are
presented to illustrate and validate the proposed methodology.

Once the correlations between local and global damage indices are established, they
are applied to implement the Markov model developed in the earlier phase of this study
for estimating stochastic seismic performance of degrading multi-story structures. Such
a model facilitates a systematic investigation on the validity of current seismic reliability
practice which are based on lifetime largest seismic hazard without any consideration of
cumulative damage during consecutive seismic events. A numerical example of a 5-story
building structure designed by the 198§ Uniform Building Code is presented. Effects of

uncertainty in the initial state of system on the seismic performance are also investigated.
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7.2 Local and Global Models

Consider a shear beam model of N-degree-of-freedom systems shown in Fig. 7.1(a). The
second order differential equation representing the equation of motion of kth mass {floor)

exhibited in Fig. 7.1(b) can be obtained from Eqs. 2.44 and 2.45.

7.2.1 Local Restoring Force

Suppose that the kth story of building consists of n; number of individual columns (Fig.
7.1(c)) each of which may be associated with different stiffness and strength characteristics.
The total restoring force g; at the kth story can be modeled by the superposition of the
nonhysteretic component g;™* (Uk(t), I;'*(t)) = n::;,f];:(t)+)'_‘,}‘="1 aprkiUs(t) and the hysteretic
component g;* ({Us(s), Ua(5),0 < s < 2};t) = Ti*,(1 — owr)kurZu(t) and is thus given by

\ ny ny
gk = aU(t) + Y omknUn(t) + 3 _(1 — o)k Zu(t) (7.1)
l=1 {=1

in which c; is the kth constant damping (viscous) coefficient, ay; is the parameter defining
participation of the linear restoring force, ki is the stiffness, and Zy(t) is the hysteretic
variable all of which are associated with the Ith column of kth story. It is assumed here
that the evolution of Z(t) can be modeled by a first-order nonlinear ordinary differential
equation [34,228,230]

Zi(t) = Au®O0(t) = BulUxOUZu®)1 ~* 2 () — 1alu()|Zu() P (7.2)

where B4, ki, #k are the time-invariant parameters and Ap(t) is the time-varying parameter
of local hysteretic restoring force model. The parameter A;{t), which controls stiffness and

strength degradation, has the following time dependency through the dissipated hysteretic
energy at time 7 [21]

Ap(t) = Ay(0) — da,, /(l ~ ap)ku Zu(t)dUi(t) (7.3)

in which §4,, represents constani rate of local deterioration. As mentioned previ usly, the

degradation law in Eqs. 7.3 is defined here quite arbitrarily. It is obtained from one of the
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many choices available in the current literature. Following the state vector approach with
the designation of state variables 8;4(t) = Us(2), faz(t) = Up(t), and 84(2) = Zy(t),- -
0k 24ny(t) = Zpn,(t) at the kth story, the equivalent system of first order differential
equations corresponding to Eqs. 2.45 and 7.2 becomes

0ia(t) = Ox(t)

) = (1—-6NT=L _ 1414 __"l]g_" 1— 8, ) k41 IR+l o iy
ra(t) ( m)m*_1 + ( kl)mk_l mk+( kn) my mpg; M (t)
bis(t) = Api(t)0e2(t) ~ Brrl0a2(2)]10ka(E))™ ~ 0ha(2) — var Oaa(t)|Ora(t)

O 24ma(8) = Aku, (1)822(t) — Bicmy [002(0)|10k 24my [** 7208 240my = Ve mp Ok2()100 24w, 1" (74)

which can be recast in a compact form

8(t) = h (8(2),; A(2)) (7.5)
with the initial conditions 8(0) = 0, where 8(t) = {- - -,041(t), B33(), Bsa(t), - - -, Ok 24w, (2}, - -}
is a real (2n + T}, ny)-dimensional response state vector, A(t) = {---, An(t), Ag2(t), - -,
Apn,(t), - - -}T is a real (T}, ni)-dimensional damage state vector representing state of
time-variant parameters in the local restoring force, h(-) is a vector function, 0 is a null
vector, and the superscript T is a symbol for transpose of a general vector. At any time ¢
during a potentially damaging seismic event, A(¢) characterizes uniquely state of structural

damage due to any stiffness degradation or strength deterioration.

7.2.2 Glocbal Restoring Force

Suppose that the total restoring force g, at the kth story can be modeled globally by the
superposition of the nonhysteretic component g;** (Ug(t), L'Ik(t)) = Up(t) + o' gk* Ui (1)
and the hysteretic component g;* ({Ug(a),ffk(a),ﬂ <s< !};t) = (1 — ap)k*2*:(t). 1t is
given by

ot = ali(t) + a1k Un(2) + (1 — a®)k": 2" 4(t) (7.6)
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in which a®} is the global parameter defining participation of kth linear restoring force, k*p
is the kth story stiffiness, and Z*;(t) is the single kth global hysteretic variable the evclution

of which can be modeled by a similar first-order nonlinear ordinary differential equation

Z3(t) = AWOUE) — B U OIZH O 2508 — v I 2% (1.T)

where 8%y, 7*;, 4} are the time-invariant parameters and A*;(t) is the time-varying param-
eter of the global hysteretic restoring force model. The parameter A*;(t) which now controls

story stiffness and strength degradation is expected to follow a similar degradation rule

At = A*(0) = 84, [(1 - " R4 Z%4(8) dUR (1) (1.8)

in which 6*4, represents a constant rate of global deterioration. Following designation of
state variables 0*1,(t) = Up(t), 0°23(t) = Up(t), and 8*34(t) = Z*(t), the equivalent system
of first order differential equations corresponding to Eqs. 2.45 and 7.7 becomes

() = 6w

" gk-1 me | & ME41 Gk41

8,(t) = (1-46 -1+l -6 = (1l - b)) ————=— = Wt
1a2(t) ( u)mk_l +( u)mt_l — +(1 = bin) me meas oM (t)
a(t) = AW(B8ka(t) — B L1018 T 8%k3(t) — 78 2 (B0 Ra()F*  (7.9)

which can be recast in a compact form

8°(t) = h* (6°(2),t; A*(t)) (7.10)
with the initial conditions 8*(0) = O, where 8*(t) = {---,0%k(t), 0*12(t), 0*1a(2),- - )7 is
the 3n-dimensional response state vector, A*(t) = {A*(t), A*2(t),- - -,A‘.(t)}T is the n-
dimensional damage state vector representing state of time-variant parameters in the global
restoring force, and h*(-} is a vector function. Note that in both local and global models,
the dynamic structural analysis can be viewed as a nonlinear initial-value problem with the
system of the differential equations described above. But, the dimension of 8°(t) is much
smaller than that of 6(t), particularly when the total number of columns n; for all the
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stories k = 1,2,.++,n is very large. Hence, when the global model is used, the computational
effort in solving the initial value problem can be reduced significantly. Application of the
global model, however, will require estimation of its parameters from the known calibrated

parameters of local model. They are discussed in the forthcoming section.

7.2.3 Relation between Local and Global Parameters

Structural analyses are usually based on local constitutive law. The parameters of these
local models can be calibrated from experimental data. For large structures with many
components, it is however, desirable to perform stress analysis based on global constitutive
law to facilitate practical design [170,176]. This requires estimation of the parameters of
global models. Hence, it is important to establish relations between the parameters of local
and global models.

Consider the kth total restoring force g; in Eq. 7.1 obtained from the local restoring

forces. Following simple algebra, it can be shown that

. ny e
o = al(t)+ 3 wyay 3 ku Ui(t)
=1 =1

ny

" Y whauZu(t) " e

+ 1= wyoy x =4 = Y oka YwnzZu(t)  (7.01)
k k i :
I=1 E wklzkl(t) Z Wk =1 =1
I=1 =1
in which

wy = ,f“‘ (7.12)

3 ku

i=1
is the stiffness-based weighting coefficient. Further simplification of above equation can be

accomplished by noting that

»
3wy Zu(t)
1=1

LTy ny
3 wuZu(t) Y wuaw
=1 =1

-1 (7.13)
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when oy — 0. In earthquake engineering, this is not a significant limitation as the quantity
oy which also represents the ratio of post- to pre-yield stiffnesses is indeed small for realistic
material models. Recent calibration with laboratory data reported in Ref. [205) suggests that
ajt = 0.04 for steel and aj = 0.02 for reinforced concrete. Thus, with this approximation,
Eq. 7.11 takes the form

o = aUi(t) + )i‘wuau )f ku Up(t) + (1 - f: wuau) Z.ku f: wyZu(t) (7.14)

=1 =1 I=1 =1 =1
which when compared with the kth total restoring force g; in Eq. 7.6 obtained from the

global restoring force gives

ny nE ny
a'y = Zw“aﬂ, ke =Y ky and Z*%(t) = szZH(t). (7.15)
=1 i=-1 i=1

Time-Lavariant Parameters

Consider the rate equation of global hysteretic variable Z*;(t) in Eq. 7.15 which can be

expai.ced as following:

Zie) = ':Z.lwuzu(t)
= 'i::wkl [Ake(O)0x(2) — Bl V()| Zeal )™~ Zuale) — 7ttvk(3)lzkt(t)|"']
1

fad 3
Y wuBulZu(t)** ' Zu(t)

Ll . - Rk #r=l
= ) wyAu(t)U(t) - ::ﬂ T, U@)I)3 wuZu(t)]  x

=1 ot I=1

Y wuZu(t) Y wnuZu(t)

=1 i=1

i
- 3 waral Zu(t) - -
S wnZy(t) - a=1.. U (O3 wuZult)| - (7.16)
= > wnZu(t) =
[=1

Comparison of above equation with Eq. 7.7 suggests



)
ph= e, A%W(E) = ’Ew'uﬁu(t) and (7.17)
=1

ng ol 3
Y wrBul Zu )" Zu(t) 3wk Zu ()
ﬂ*k = :i=l res - , 7.k = ‘=1’. — (7.18)
z: wuZH(t) E w“Zu(t) ‘Z w1 Zu(t)
i=1 i=1 =]

Note that the expressions for the global parameters in Eq. 7.18 involve local hysteretic
variables Z;(t) at both numerator and denominator which in turn may be dependent on
external load parameters. This has the immediate bearing that the global parameters 8*;
and 4*; are no longer time-invariant as their counterparts are in the local level. Thus, when
a global modeling is adopted, exact determination of these parameters is not possible due to
lack of apriori knowledge regarding evolution of lacal hysteretic variables.

For earthquake type of loading, it is however, feasible to search for approximate evalu-
ation of above global parameters and still treat them as time-invariant hysteretic parameters.
Two extreme cases based on the magnitude of seismic intensity can be perceived. When the
intensity of seismic noise is not extremely large, the time span during which large differences
in the values of Z;;(t) may occur can be neglected. This will allow approximation of Zg(t)
to be a common time function (say, Z(t)) thus simplifying Eq. 7.18 into

"y "
By~ wyfy and ¥y >3 wy. (7.19)
=1 =1

On the contrary, when the intensity of seismic noise is very large, it can be argued
that Zy(t) assumes its maximum value Zy ey (0) most of the time during ground motion.
The largest value Zi; yq:(0) can be easily obtained by substituting the expression for Z’k,(t)

in Eq. 7.2 into the following equation of maximization

de( 5 2u(t) = % =0 (7.20)
giving [21]
<.
_ Ay(t) |
Zh maz(t) = [_ﬁkl +ml (1.21)
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Following replacement of Z;;(t) in Eq. 7.18 by Zi1 mez(0) in Eq. 7.21 at t = 0 along with the
observation that at any time ¢ the signs of Zy;(t) are the same, another estimate of above

parameters can be obtained as

— Au(0) ] Auf0) ]
gy ~ g:wuﬁu Bu+ . Ewu‘m B+ Y

o oand 9% T
35 [ A ] 5—_*: An(0) ]*
=M Ba+wm "8+

The two sets of estimates of §*, and 4*; given above apply to two extreme cases of load

(7.22)

intensity and can be used as some sort of bounds for the determination of above parame-
ters. When the strength of noise is somewhat intermediate, the appropriate values of these

parameters can be interpolated from these bounds.
Time-Variant Parameter

Consider the infinitesimal total hysteretic energy dissipated at the kth story from the local
mode} {Eq. 7.3) which can be expanded as

:f:(l — o)k Zu(t) dUp(t)
=1

had ]
R 3 wronZu(t) -
= |13 whay x " =1 . % 3 kY wuZy(t) dU()
= Z wHZH(t)E Witk i=1 =1

=1

(I - Z. wuau) z ki Z wi Zi(t) dU(t)

=1 =1 i=1
(1~ o k"6 Z°:(2) dUL(t) (7.23)

due to similar consideration as in Eq. 7.13. From Eq. 7.17 with A(t) in Eq. 7.3,

A%W(t) = !i.:lwu [AM(O) =84y / (1 — ag))kx Zui(t) dUk(i)]

A (0) - ‘ii:wi(&g" /(1 = culkpiZr(t) dUR(t) (7.24)
=]

I
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which can be compared with Eq. 7.8 and the dissipated energy in Eq. 7.23 to yield

g )
3 wiiba, (1 — an)ku / Zu(t)Uy(t)dt
81, = 1= (7.25)

“E.(l — ap)ky j Zu()UL(1)dt
=1

in which the order of integral and summation operators is interchanged in the denominator,
and dU(t) = Uy(2) dt. Again, the exact evaluation of §*,, requires information regarding
time evolution of local hysteretic variables. Following similar consideration as in Eq. 7.19

with small seismic intensity, the above equation reduces to

ny
> wibay, (1 — ar)ku
Bt a, = B . (7.26)
Y (1 = o)kt

i=1
When a4 1s small or if it does not vary within the columns at a particular story, Eq. 7.26

simplifies to

Ry
A= Zwﬂz5AN. (7.27)
=1

When the intensity of noise is large, similar arguments given earlier for time-invariant
parameters may be applied to obtain another equation for §* 4,. However, such estimate may
not be reliable in degrading systems with large seismic intensity. This is because as time
advances, Au(t) — 0, and Zifmee(t) = [A(t)/(Bu + 11)]’™ — 0 at a much faster rate
due to the rapid loss of stiffness and/or strength. At any time during ground motion, it is

difficult to anticipate variation of Z;;(¢) among various columns.
Recovery of Local Hysteresis

Once the global parameters are estimated from the known values of local parameters, prac-
tical seismic analysis can be performed based on global restoring force model. It is however,
desirable to recover the local hysteretic behavior of structural systems. This will allow de-
termination of local damage distribution which is uniquely related to the global model.
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Consider the partitions of local and global response state vectors 8(t) = {81(t), 82(t)}”
and 0*(t) = {0’1(t),0‘2(t)}T in which 8,(t) = 8*1(t) = {- - -, Up(t), Up(2), - - -}T is the 2n-
dimensional traditional state vector (in both local and global models} comprising relative
displacement and velocity of each story mass, and 8x(t) = {- - -, Zy(t),- - -, Zg m, (2),- 3T
and 8%3(t) = {-- -, Z*(2),- - -}T are (3 F.1 ni)- and n-dimensional state vectors consisting of
additional hysteretic variables corresponding to local and global models, respectively. Sup-
pose, at any time t, the state vector 8*(¢) can be cbtained by solving the global initial value
problem in Eq. 7.10. Following extraction of the component state vector 8% (¢} from the
global solution 8°(t), it can be substituted for 8,(t) in the local initial value problem of Eq.
7.5 to yield solution for the state vector 84(t) of local hysteretic variables. This way, the
local hysteretic characteristics and damage of a building frame can be recovered following

structural analysis based on the global model.
7.2.4 Numerical Example

Example 7.1

In this example, a single-degree-of-freedom system with both nondegrading and degrading
restoring forces is investigated to evaluate the adequacy of global hysteretic model in predict-
ing various seismic response characteristics. The nonlinear systems of first-order ordinary
differential equations in the initial value problems of both local (Eq. 7.5) and global (Eq.
7.10) models are solved by the fifth- and sixth-order Runge-Kutta integrators (see Appendix
C)

Consider a 1-story (n = 1) shear building with mass m; = 1, damping coefficient
¢1 = 0 which consists of 4 different columns with the stiffness ky; = 100, k2 = 200,
k13 = 300, k14 = 400, and the strength Fiy = 960, Fiz = 2400, Fy3 = 4800, Fi4 = 9600.
From the above physical properties with the parameter identification procedures proposed
in Ref. [205], the time-invariant parameters of local model are: 4 =1, By = Y1 = 0.05,
Bz = mz2 = 0.04, f13 = 113 = 0.03, iy = 14 = 0.02, and Ay(0) = 1, oy = 0.04,
for all I = 1,2,3,4. Note that the stiffness and strength characteristics are assumed to be
widely different among the columns. Both nondegrading (64,, = 0) and degrading (64,, # 0)
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systems are considered. The above structural and material properties provide complete lacal
characterization of nondegrading system. When the degrading system is considered, it is
assumed to follow the deterioration rule in Eq. 7.3, and the values of additional time-variant
parameters §4,, for all the columns are taken as 5.0 x 107€ in this study.

Suppose that the nonlinear behavior of the building system can be approximated by a
single hysteretic variable describing the restoring force for building system itself. The time-
invariant parameters corresponding to this global model can be calculated from Eqs. 7.15
and 7.17 as k*; = 1000, A*1(0) = 1, a*) = 0.04, and u*; = 1, respectively. Two different
estimates of % and ¥*; are obtained following Eq. 7.19 and Eq. 7.22. They are found to
be #*; = ¥*; = 0.03 and §*, = v*; = 0.027, respectively. Obvicusly when the system is
nondegrading (64,, = 0), the global time-variant parameter §* 4, = 0 (Eq. 7.25 or 7.26). For
degrading system, the global rate of degradation §* 4, is computed to be 1.5 x 10~¢ by using
Eq. 7.26 or 7.27.

A sample of modulated Gaussian white noise of duration 6 s with one-sided power

spectral intensity Gy scaled to unity is shown in Fig. 7.2. This simulated time-series multi-

20 w(t) G, =1

10

T rr.

—y Ty

Figure 7.2: A Sample of Moqulated Gaussian White Noise (Gg = 1)
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plied with varying levels of intensity G = 1.0 x 10* and 1.0 x 107 are used as deterministic

inputs to the single-degree-of-freedom nonlinear oscillator.

Nondegrading System

Figure 7.3(a) shows the time evolution of relative displacement and velocity of the
oscillator due to deterministic forcing function in Fig. 7.2 with G = 1.0 x 10°. Resalts
of both local and global hysteretic models with two different estimates of A%, and 4*; are
shown in the figure. Excellent agreement between these models are obtained irrespective of
the approximations in Eqs. 7.19 and 7.22. No meaningful difference in response is noted
due to closeness of bounds of estimated global parameters. Also shown in Fig. 7.3(b) are
the exact time variations of 8*, and 4*, in Eq. 7.18 in which the local hysteretic variables
Zy11{t) are obtained following dynamic analysis based on local model. It clearly indicates
the accuracy of estimated global parameters 8*; and 7*; from the proposed equations.
The evolution of Z(t) mentioned above is shown in Fig. 7.3(c) which confirms previous
anticipation of negligible time interval during which Z;(t) are different. Accordingly, Eq.
7.19 provides simpler but useful approximation for global parameters. Fig.“ 7.3(c) also

shows the evolution of displacement dependent story restoring forces @1(t) = Z qu(t) with

1=1
qu(t) = aukyli(t) + (1 — aan)kuZy(t) and Q*(t) = a*1k*1U1(t) + (1 — a®1)k*12%(t),

which are obtained from local and global models, respectively. Again, very good agreement
between the results of both models is obtained.

Figure 7.4(a) exhibits the plots of restoring forces ¢y;(t) and Q1(t) versus displacement
Ui(t) which are obtained from local model thus providing hysteretic loops for individual
columns and system itself. For comparison with the results of global model, Figs. 7.4(b) and
7.4(c) show similar kind of plots of restoring force Q*,(¢) and the recovered column restoring
forces ¢*1;(t) = aykuUi(t) + (1 — agi)kpZ*(t) in which the conventional state variables
U1(t) and Uy (t) are calculated from the global model (Eq. 7.10) and the recovered local
hysteretic variables Z*y;(t) are obtained by directly integrating Eq. 7.2. They all indicate
that the global model with both estimates of parameters §*; and v*; can accurately predict
both local and global hysteretic characteristics of structural systems.
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Figures 7.5 and 7.6 show sirnilar sets of plots of various responses for a seismic input in
Fig. 7.2 with a larger intensity Gp = 1.0x 107,  Results of global mode! with both estimates
of parameters ", and v*; are found to be quite satisfactory when compared with those
obtained from local madel. However, when the intensity is very large (Go = 1.0 x 107), the
response characteristics due to global models with estimated parameters g*; = v*, = 0.027
are found to be superior than those obtained with 3*; = 4*, = 0.03. This is due to the fact
that the significant amount of time the values of Zyj(t) as obtained from local model and
exhibited in Fig. 7.5(c) are equal to Z)j mas(0) = [A11(0)/(Brt + 7:)]1/#. Due to the close
proximity of bounds, however, the results based on *; = v*; = 0.03 are still found to be

reasonably good.

Degrading System

Figure 7.7(a) exhibits the time evolution of displacement and velocity responses of

the degrading oscillator for the deterministic input in Fig. 7.2 with intensity Go = 1.0 x 10%.

The results are compared again with those obtained from global models with two different
estimates of A*, and 4*, as discussed earlier. As noted in nondegrading systems, excellent
agreement between results of local and global models are also obtained here for degrading
systems. The exact time evolution of #*;, 4*|, and 4§*4, in Eqs. 7.18 and 7.25 and the
hysteretic variables Zj;(t) obtained from local model are also shown in Figs. 7.7(b) and
7.7(c), respectively.

Figure 7.7(c) also shows the time evolution of restoring forces @1(¢) and @*{(t) ob-
tained from local and global hysteretic models. These story level restoring forces along with
the column restoring forces ¢11(t) and ¢*y;(2) are also plotted against the displacement U (t}
in Fig. 7.8 providing various hysteretic loops. Results suggest that the global model with

appropriate parameters can predict hysteretic structural response with very good accuracy.

7-17



400 4000

200 2000 [
o 0
-200 -2000 |
———— Local Model
400 [ . Glovel Model (p; oy, ~0.027) t -4000 | . alobal Medsl (B, =y, =0.027)
———- Global Model (§, =y, =0.03) —— —- Global Medel (P, =y, =8.03) t
-600 . . . ) -6000 A . . i
3] 1 2 3 4 5 ] 0 1 2 3 4 5 6
(a) Displacament and Velocity Response
0.10 0.10 .
Y,
0.08 0.08 |
0.06 ¢ 0.06 |
0.04 0.04 ” | ” ||| | | l '
0.02 0.02 | t
0.00 0.00 4 -
) 1 2 3 4 5 6 0 1 2 3 4 5 8

(b) Exact Global Paramsters from Local Modal

40000 T
1 Q 1

20000
0
-20000

-40000 [ —-—  istal Mesel (' =y, ~0.927)
—— == Olebal Medel (=Y, 0.03) t
-60000 ° - - + + 4
0 1 2 3 4 $ .1 0 1 2 3 4 5 -]

(c) Hysteretic Variables and Total Restoring Forces

Figure 7.5: Time History of Various Responses for Nondegrading System with G = 1.0 x 107

7-18



-600 -250 0 250 500

(&) Local Mode!l (b) Global Modsl {c) Global Model
@}, v, =0.03) #, =v, =0.027)

Figure 7.6: Hysteretic Loops for Nondegrading System with Go = 1.0 x 107

7-19



500

250
0
250 |
seal | — Local Model
20 1 T ;MI.:‘::‘-: ¢, ~y,=o027} t 500 [ . Glekat lodel (B, -y, ~0.027} t
— ——-  Global Modei (B, =y, =6.03) ———  Giobal Model (B =y, 0.43)
.30 A e i -750 . . . " R
0 i 2 3 4 5 6 0 1 2 3 4 5 6
{(a) Displacement and Velocity Responses
€.30 — 010 —
0.24 B 1 vaa | Y
a.18 ‘ | 0.08
012
g SEPTEDV NIV NG N 11 I T FRTPETRTVT R TR T TN
c.00 T T q 0.08 t
-0.08 0.00
o ¥ H 3 4 ) ] . e ] T 3 - 8 -
{b) Exact Global Paramasters from Local Model
20 15000 [(/——"
Z, 10000 Q,.Q,
10} 5000 |
0 0
-5000 |
.10} . 7 10000 | —— Locel Medel
— 2, i, [ —-— Glokal biedol (5, -y, ~0.027)
—_—Z - Z. t] 15000 | TTTT creai esed (5 oy +0.03) t
-20 + 4 + * 4 -20000 - * . n .
0 1 2 3 4 5 6 0 1 2 3 4 5 6

(c) Hysteretic Variables and Total Restoring Forces

Figure 7.7: Time History of Various Responses for Degrading System with Gy = 1.0 x 10°

7-20



7500

3750

-3750

UI

-30

20 .10 0 10

(a) Local Model

20

7500
3780
0
U‘ -3750
-7500
-0 0 10 20 -30 -20 10 0 10 20
15000 \j
Q
7500
-7500 U, -7500 U|
-15000 -16000
-3¢ 20 10 0 10 20 -3 20 10 0 10 2
(b) Global Model (c) Global Model
(B, = v, =0.03) (B, = v, = 0.027)

Figure 7.8: Hysteretic Loops for Degrading System with Gp = 1.0 x 10

7-21



7.3 Applications to Seismic Reliability Analysis

Current methods for evaluating seismic perfermance of structural systems are based on life-
time mazimum seismic hazard without any provisions for cumnlative damage among all
seismic events during lifetime [169,171,177]. This single largest load effect is not physically
realizable and it characterizes only an artificial seismic environment. Nevertheless, such haz-
ard description is abundant in both deterministic and probabilistic seismic analysis. Since
most structures are designed to resist several seismic events during their exposure time,
the lifetime maximum ground motion may not be meaningful load process due to damage
accumulation between consecutive seismic events, This is particularly true and unavoid-
able for a series of earthquakes including pre-shocks, main events, and after-shocks during
which repairs of structural systems can not be performed. In this section, seismic reliability
of degrading multi-story structures obtained from: the lifetime maximum seismic hazard is

evaluated by a new methodology based on a Markov model proposed in Section 6.

7.3.1 Seismic Hazard

Consider a site affected by a single seismic source characterized by a mean rate of earthquake
occurrence A. It is assumed that (1) the earthquake arrivals follow a homogeneous Poisson
process with mean rate A, (iz) ground motions in different seismic events are independent and
identical stochastic processes Wi(t), i = 1,2, . -, N(r) where N(r) represents the random
number of seismic events during lifetime period 7, and (#ii) seismic event ¢ has the same
deterministic duration 1g.

Consider an elementary representation Wi(t) = Y*w(t) where w(t) is a deterministic
function of time representing either a synthetic or an actual ground acceleration with peak
ground acceleration scaled to unity and Y is the random peak ground acceleration during
ith seismic event with the independent and identical cumulative distribution function F(y).
Therefore, the cumulative distribution function of the largest peak ground acceleration Y,

during a lifetime period 7 is

Fo) 2 pe (| max (V) ) = expl-de(1 - F). &
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According to a study by Ellingwood et al. [65], Fr(y) for = 50 years can also be approxi-
mated by the Extreme Type-1l distribution (see also Cornell [53))

Fso(y) = ezp [— (%)-&] ;Y20 (7.29)
with the parameters k ~ 2.3 and u = 0.38a10, where a;¢ is defined as the 10% upper fractile
of Y50. The peak ground acceleration a;o has been used by Algermissen et al. [3] to develop
hazard maps of the entire continental United States. The distribution in Eq. 7.29 depends
only on aj;p without any explicit regard for the mean arrival rate of earthquakes. These
issues are discussed in the previous sections of this report. Nevertheless, Eq. 7.29 will be
used here as an approximation to the cumulative distribution function of Yzq. When Eq.
7.29 is substituted in Eq. 7.28 {(with 7 = 50 yr), the event distribution F(y) can be obtained

as

Fly)=1- — (E) - (7.30)
50A \u
for y > u(504)~ /% and zero otherwise.

Note that the stochastic model of ground acceleration considered here is quite ele-
mentary. The random nature of excitation is only due to the random variable description
of peak ground acceleration (PGA) without any regard to the variability of its frequency
content. Moreover, the probabilistic characteristics of PGA are also based on approximate
equations. However, these simplified assumptions can be justified on the light of the objec-
tive of this study, i.e. to determine adequacy of current seismic reliability analysis based on
lifetime largest load effect.

7.3.2 Nonlinear Degrading Systems

Consider the shear beam model of building systems in Fig. 7.1. The equation of motion
for these structural systems and the associated hysteretic models are discussed in previous
sections. Assume that all the parameters describing local restoring forces for the columns
are available. Using the proposed equations, the parameters of global hysteretic model (at
the story level) for these nonlinear systems can be readily calculated.
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7.3.3 Current Performance Evaluation

Current estimates of seismic reliability analysis are based on a simplified representation of
seismic hazard obtained from the largest load effect during the exposure time r. Damage
accumulation between consecutive seismic events is not considered in the analysis.
Consider a damage state vector A*™%* € R" obtained at the end of an earthquake
We(t) = Yrw(t) of duration ¢o, where Y; is the maximum peak ground acceleration (random)
in time 7 and R™® is the n-dimensional real vector space. The state vector A*™%* can be
mapped into a normalized damage state vector D™* with components
At maz
D;me* =1~ ‘TO,-’ (7.31)
where j = 1,2, - -,n represents an index for the component of vectors A*™3* € R" and
D™s* € R" and A*C; is the initial value i.e. the jth component of A*(0). Consider a domain
D C R" having Pr(D™** € D) ~ 1 with K = M" cells (states) {Cp} such that D = u;;, Cy,
CpNCq =0 (p+# q),and M represents the number of discretized states of each component
of D™%7 ¢ R". Define a norm || D™*# ]|ﬂ§f mgxf( D;™%* of D™a* representing lifetime largest
story damage with its state space discreti;e-d into M distinct states dy,ds,- - -,dy. Let
Cm C D C R™ define a potential damage set of D™3% € R™ which comprises all the cells
C; € Cm such that the largest component of D™** is in state dy,. Denote @un(T) as the
lifetime probability that || D™ ||€ diy or D™ € Cp. By successive conditioning and

deconditioning, this lifetime probability can be obtained from the equation

() E P (D™ €Cn) = [ ICSy ~ 3 IC Wl w)Am (132)

k=1
where f,(y) = dF,(y)/dy is the probability density function of ¥; and I(C;y;) is an indicator
variable which is equal to one if the sample of D™** due to a realization yzw(t) of ground

motion Yrw(t) is such that D™** € Cp, and zero otherwise.
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7.3.4 Proposed Performance Evaluation

Damage State Vector

Consider a damage state vector A** € R* obtained at the end of ith earthquake Wi(t) =
Y¥w(t) with the deterministic duration to. Similar to Eq. 7.31, the state vector A** can
also be mapped into a normalized damage state vector D* by the relation

At,n’j
A‘,Oj

where j = 1,2, ---,n represents an index for the component of vectors A' € R® and D* € R*.

Dj=1- (7.33)

Note that the state vector Df provides complete characterization of structural state at the
end of earthquake i. Hence, one needs only D' to perform dynamic analysis and determine
structural performance through a new seismic event, because the vector defines the structural
state uniquely.

When the earthquake is modeled as a filtered Poisson process with each seismic event
assumed to be an independent random process, damage state vector D' at the end of an ith
event depends only on initial state D=1 at the start of the event, and on that event itself. It
is independent of damage and loading history up to the start of that event. In other words,
the propagation of damage state vector D' can be treated as Markov process evolving on a

discrete time scale.
Transition Matrix

Consider a domain D C R having Pr(D' € D) ~ 1 with K = M™ cells (states) {Cp}
such that D = UX.,C,, C, NCy =8 (p # ), and M represents the number of discretized
states of each component of D' € R®. Consider the change in stochastic vector process
D',i=0,1,2,---, N(7), taking values in a finite or countable number of cells Cy,Cs, -+, Ck.
Let Pr(D' € C;) be the probability that damage state vector D' is in cell C, after i seismic
events. Then row vector P(i) = {Pr(D* € C1),Pr(D' € C3),- - -,Pr(D* € Ck)} gives the
probability that D* belongs to any of the cells Cy,Cs, - -, Ck.

The evolution of a discrete version of D' can be described by one-step transition
matriz T € L(RX x RK) with the element T, representing the probability that damage
changes from state p to state ¢ due to a single seismic event where L(RX x RX) symbolizes
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a set of linear mapping from R to R¥. This transition probability Ty can be obtained

following similar considerations as in Eq. 7.32 and is given by

T, ¥ Pr(D' € C,ID € Gp) = /:n I(Cy,Cqi y)f(y)dy =~ f:l I(Cy, Coi i) f(ya) Aya
(7.34)
where f(y) = dF(y)/dy is the probability density function of Y* and /(Cy, Cy; ya ) is another
indicator variable which is equal to one if the samples of D* and D*~! due to a realization

yaw(t) of ground motion Y'w(t) are such that D' € C,|D'! € C, and zero otherwise.
Evolution of Distribution of D*

Consider a K-dimensional row vector which prescribes the joint probability mass function
of the random vector D* denoting damage after ith seismic event. The probability of D

following ¢ seismic events is

P(#)=P@i-1)T, i=12,..,N(r) (7.35)

which can be used recursively to reach

P(i) = P(0)T". (7.36)

Consider again a norm || D* || m?a.lxD,"' of D' representing largest story damage
’=

after ith seismic event. As before, suppose that the state space of || D* || can be discretized
into M distinct states dy,dy, - -,dy. Let Cy € D C R™ define a potential damage set of
D' € ®* which comprises all the cells C; € C such that the largest component of D’ is in
state dy. This time, denote Qpm(i) as the event probability that || D! ||€ dwm or D} € Cp
which can be obtained from

Qm(i)= 3 Fii) (1.37)

C; €ECm
in which P;(i) is the jth component of P(i) representing the probability that D* belongs to
the cell C;.
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Lifetime Distribution

The lifetime probability distribution P(7) defined as the distribution of damage index vector

D¥(7) in lifetime T can be obtained as

P(r) = P(0)exp(—-Ar[I-TJ) (7.38)

where I is the K-dimensional identity matrix.

Consider the damage set C C D with the largest component of damage state vector
in state dp,. Denote Q.,(7) as the lifetime probability that | DN¥(") ||€ dp, or D¥(7) € Cp,.
This probability can be obtained from

Qm(r)= 3 Pi(r) (7.39)
C;ECm

in which P;(7) is the jth component of P(7) representing the lifetime probability that DN(r)
belongs to the cell Cj.

7.3.5 Numerical Example

Example 7.2

Structural Sysiem

Consider a 5-story building frame designed according to the Uriform Building Code
[100] for seismic zone-4. The building has 4 columns (n; = 4) at each story and is idealized as
a 5-degree-of-freedom shear beam system (stick model) with one degree of freedom per story.
The lumped masses are m; = mg = m3 = my = 0.0898 kN 52 mm! for the first (bottom) to
fourth stories and mg = 0.0762 kN s? mm™! for the fifth (top) story. The viscous damping
coefficients are c; = 0.844 kN s mm™!, c; = 0.638 kN 3 mm~1, ¢3 = 0.491 kN s mm™},
cs = 0.390 kN s mm™!, and cs = 0.288 kN s mm™? for the bottom to top stories. The
damping is assumed to be proportional to the initial stiffness matrix and the values of above
damping coefficients correspond to 3% of critical for the first mode. Table 7.1 provides
the lateral stiffness and strength properties of columns along with the parameters of local
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Table 7.1: Column Properties and Hystcretic Parameters of Local Model

Story | Column | Stiffness ki | Strength | Ag(0) [ B Tt | B SAy, agt
k) | @ | GNmm) | (kN

1 1 19.22 91.23 1 0.064 | -0.021 | 2 | 3.00E-5| 0.02
2 46.89 272.53 1 0.043 | -0.014 | 2 | 3.00E-5 | 0.02

3 46.89 272.53 1 0.043 | -0.014 ) 2 | 3.00E-5 | 0.02

4 19.22 91.23 1 0.064 | -0.021 ] 2 | 3.00E-5 | 0.02

2 1 19.22 114.45 1 0.041 | -0.014 | 2 | 3.36E-5 | 0.02
2 30.78 22436 1 0.027 | -0.009 | 2 | 3.36E-5 | 0.02

3 30.78 224.36 1 0.027 | -0.009 | 2 [ 3.36E-5 | 0.02

4 19.22 114.45 1 0.041 | -0.014 | 2 | 3.36E-5 | 0.02

3 1 19.22 129.44 1 0.032 [ -0.011 | 2 ] 3.54E-5 | 0.02
2 19.22 161.82 1 0.021 [ -0.0071 2 | 3.54E-510.02

3 19.22 161.82 1 0.021 | -0.007 | 2 | 3.54E-5 | 0.02

4 19.22 129.44 1 0.032|-0.011 ] 2 | 3.54E-5 ] 0.02

4 1 11.34 68.63 1 0.039 | -0.013 | 2 | 3.36E-5 | 0.02
2 19.22 142.42 | 0.026 | -0.009 | 2 [ 3.36E-5 | 0.02

3 19.22 142.42 1 0.026 | -0.009 | 2 | 3.36E-5 ] 0.02

4 11.34 68.63 1 0.039 | -0.013 ] 2 | 3.36E-5 [ 0.02

5 1 11.34 48.17 1 0.080 { -0.027 | 2 | 3.54E-5 | 0.02
2 11.34 58.94 1 0.053 [ -0.018 | 2 | 3.54E-5 | 0.02

3 11.34 58.94 1 0.053 | -0.018 | 2 | 3.54E-50.02

4 11,34 4817 1 0.080 | -0.027 | 2 | 3.54E-5| 0.02

hysteretic model for the columns at each story. All the structural characteristics are assumed

to be deterministic.

Evaluation of Global Hysteretic Model

The information regarding the parameters of local constitutive law for the columns
at each story is used to compute the parameters of the global hysteretic model. The global
model describes the restoring force at each story and its parameters are determined from the
Eqgs. 7.15, 7.17, 7.19, and 7.26 proposed earlier. Table 7.2 provides the estimated values of
these global parameters for each story.

In order to evaluate the global parameters, a numerical investigation is carried out for

this 5-story building structure regarding deterministic structural behavior due to both local
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Table 7.2: Hysteretic Parameters of Global Model

Story k*y B | 7 | W A% A [ %
(k) | (kN/mm)

1 132.22 0.049 | -0.016 | 2 1 | 8.85E-6 | 0.02

2 100.00 0.0321-0.011 ] 2 1 | 8.85E-6 | 0.02

3 76.88 0.026 | -0.009 | 2 1 | 8.85E-6 | 0.02

4 61.12 ¢.0311-0010| 2 1 | 8.85E-6]0.02

5 45.36 0.067 | -0.022| 2 1 | 8.85E-6 | 0.02

and global models. A classical seismogram of 1940 El Centro (NS Component) earthquake
with varying peak ground accelerations (PGA) is used as deterministic input to this system.
The above ground acceleration with scaled PGA equal to 1.0g (1.0g = 9.81 m/s?) is shown
in Fig. 7.9(a).

Consider the normalized damage indices fiz(t) and Ag(t) defined as

4
. > wyAn(t)
Aty =1 —%:E—;)) and Ag(t)y=1-=L (7.40)
A0
Ewu u(0)

in which A*3(¢) and Ag(t) are the time-variant degrading parameters of local and global
restoring forces. In both cases, /‘i;(t) and A(t) represent the damage indices at the kth
story obtained from local and global models, respectively.

Figures 7.9(b)-(f) show the time evolution of the damage indices A}(t) and A(t) at
the kth story (k = 1,2,-,5) which is obtained for deterministic seismic ground acceleration
in Fig. 7.9(a) with various PGA = 0.29, 0.4¢, and 1.0g. It is assumed that A4(0)=1, and
hence, A*3(0) = 1 from Eq. 7.17. Comparisons of results associated with local and global
constitutive law suggest that the global hysteretic model with its parameters estimated from
proposed equations can predict structural damage with very good accuracy.

From the above numerical verification, it is now possible to perform seismic analysis
based on global model. Thus, the story level damage state vector A** or its normalized
version D* (Eq. 7.33) can be assumed to be Markovian thus allowing significant reduction

in the computational involvement for the construction of transition matrices.
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Seismic Envi

Consider two sites C' and D in the western United States with A = 0.36 yr~1, ayp =
0.40g, and A = 0.67 yr~!, ay9 = 0.46yg, respectively. Several counties of California can be
identified with the seismic parameters close to above zites such as Mendocino and Sonomq
(A = 0.3581 yr~! ajo = Q.4¢), Orange (A = 0.3584 yr~! a;q ~ 0.4g), San Diego (A =
0.32 yr~! a0 = 0.41g), Montcrey (A = 0.67 yr~! ayg = 0.469), and others [3]. They
all fall in the same seismic zone-4 of Uniform Building Code [100] resulting in identical
structural designs for buildings. The ground motion in each seismic event is represented by
a deterministic time function multiplied by a random peak ground acceleration. The function
w(t) is assumed to be the scaled 1940 El Centro (NS component) accelerogram truncated
at 11 seconds and is shown in Fig. 7.9(a). The probabilistic characteristics of peak ground

accelerations are obtained from the Eqs. 7.29 and 7.30.

Structural Response and Reliability

Consider a normalized damage state vector D' € 5 with the components describing
story damages after ith seismic event. Suppose, a component D;* (j = 1,2,3,4,5) of DS
representing damage at the jth story is discretized into 4 (M = 4) non-overlapping states
d1 = (0.0,0.2), d; = (0.2,04), d3 = (0.4,0.6), and dy = (0.6,1.0) as shown in Fig. 7.10.
Hence, D’ can take on K = 4% = 1024 number of distinct states (cells) in the domain D € R5.
Thus, the transition matrix T has dimension 1024 x 1024. However, if all the cells associated
with the largest component of D' (i.e.. the largest story damage) being greater than 0.6 are
assumed to be absorbing states (i.e., states once entered they are never left), the dimension
of T dramatically reduces to 244 x 244 (3% 4-1 = 244). In this example, the transition matrix
T is constructed based on the reduced dimension 244 x 244 and its elements are obtained by
using Eq. 7.34. The nonlinear dynamic analysis is carried out by explicit numerical scheme
such as fifth- and sixth-order Runge-Kutta integrators.

Consider the state space of largest story damage || D ||d§‘ tﬁalx D;* which is dis-

cretized into 4 (M = 4) distinct states dy, dz, d3, and dy defined earlier. Fig. 7.11 shows the
evolution of event probability @m(i) = Pr(]| D* ||€ dm), m =1, 2, 3, and 4 of the largest
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story damage || D* || in Eq. 7.37 starting with an initiclly undamaged state for both sites
C and D. The plots provide useful information regarding rates of probability flow among
different damage sets which cannot be obtained unless damage accumulation is permitted
between seismic events. It is assumed that the undamaged state mentioned above can be
characterized by an initial state with Djo € dy for j = 1,2,- - -, 5. This defines the initial
probability vector P(0) in Egs. 7.36 and 7.38 to compute event and lifetime probabilities.

3 4
*—} ——
(0.00 (©.2) (041 (0.6) {Ks}

Figure 7.10: Discretization of Sample Space of Dj‘

Consider several cases of deterministic initial states of structural system. They are
as follows: D;% € dy, j =1,2,---,5 (Case-1); D1® € &3, D;’ € dy, j = 2,3, - -,5 (Case-2);
and D)% € ds, D,'o €di, j=23,---,5(Case-3). In all three cases, the first story is
assigned unabsorbing states of progressive damage (i.c., d;, d;, and d3) while all the top
stories are assigned lowest possible damage state (i.e., di). Table 7.3 shows the lifetime
probabilities @Qum(7) = Pr(|| D¥() ||€ dm), m =1, 2, 3, and 4 of the largest story damage
|| D¥(7) || with 7 = 50 yr starting with various cases of initial states for sites C and D. The
tabulated results are obtained by both Markov model (Eq. 7.39) and current estimate (Eq.
7.32). They indicate that the lifetime probabilities based on lifetime largest load effect can
be both unconservative and conservative depending on site conditions when compared with
that obtained from seismic hazard based on damage accumulation between seismic events.

Table 7.4 illustrates the lifetime probabilities by Markov inodel in sites C and D for
7 =50 yr with a uniform distribution of initial damage state, i.c., when P(0) = 5l;{1,1,--
-, 1}. Due to uncertain initial states, the probabilities can still be obtained directly from Eq.
7.38 and previous transition matrices. Results suggest that the uncertainty in the initial

condition can yield significant variation on seismic reliability estimates.
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Table 7.3: Lifetime Probabilities with Deterministic Initial States

Methods | Cases Qm(7) = Pr(]| DY) ||€ dm)
Site C Site D

m=1m=2|m=3 | m=4{m=1|m=2|m=3{m=4
Markov | Case-1| 0.592 | 0.241 | 0.097 | 0.070 | 0.132 | 0.155 | 0.132 | 0.581
Model Case-2 | 0.000 | 0.482 | 0.209 | 0.309 | 0.000 | 0.079 | 0.065 | 0.856
(Eq. 7.39) Case-3 | 0.000 { 0.000 | 0.304 | 0.696 | 0.000 | 0.000 | 0.015 { 0.985
Current | Case-1 { 0.592 | 0.246 | 0.036 | 0.126 | 0.398 | 0.355 | 0.078 | 0.169
Estimate | Case-2 | 0.000 | 0.417 | 0.292 | 0.291 | 0.000 | 0.299 | 0.323 | 0.378
(Eq. 7.32) | Case-3 | 0.000 | 0.000 | 0.185 [ 0.815 | 0.000 | 0.000 | 0.194 | 0.806

Table 7.4: Lifetime Probabilities with Uncertain Initial States

Sites

Cm(r) = Pr(]| D) i€ dm)

m=1

m=2

m=3

m=4

Site C

0.002427

0.068973

0.427373

0.501227

Site D

0.000539

0.013461

0.060988

0.925012_
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SECTION 8
Conclusions

8.1 Introduction

Research in this study focused on several important issues of probabilistic seismic perfor-
mance of structural systems. Three major directions of research had been pursued. They
involved (z) evaluation of effects of simplifications in reliability-based design codes, (ii) de-
velopment of a new methodology based on Markov model for seismic reliability of degraded
structures, and (¢#) development of an analytical approach to establish relations between
local and global damage indices for seismic analysis of shear type buildings. The conclusions

from each of these studies are summarized below.

8.2 Reliability-Based Design Codes

One of the major objectives of this study was the evaluation of effects of simplifications
used in current seismic design and reliability analysis. The evaluation procedure was based
on both static and dynamic reliability methods. They were applied to determine seismic
reliability of simple siructures modeled as nondegrading systems and multi-story buildings

with degrading material models.

8.2.1 Nondegrading Systems

Reliability measures for simple structures designed by Uniform Building Codes subjected to
earthquake loading were determined using both static and dynamic methods and strength-
based and damage-related limit states. Results showed that:

o reliability depends on the mean arrival rate and the intensity of the seismic load process.
Sites with frequent small earthquakes have very different reliability indices than those
at sites with infrequent large earthquakes, although the sites are characterized by the

same value of a;o;
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o event and lifetime reliabilities of the designs can differ significantly particularly at sites

with frequent small earthquakes; and

o designs at sites with frequent small events have larger event reliabilities than those at
sites with rare large events. However, lifetime reliability suggest that the design can

be either safe or unsafe when the two sites are compared.

8.2.2 Degrading Systems

A 5-story, 3-bay rectangular R/C frame was analyzed and designed in accordance with the
appropriate provisions of 1985 Uniform Building Code (UBC) and ACT Code $18-883 for Seis-
mic Zones-2 and -3. The structural stress analysis was based on linear-elastic static method.
The probabilistic analysis involved elementary strength-based failure criteria at a particu-
lar structural component and was performed by FORM/SORM and Importance Sampling
methods. Effects of structural redundancy, nonlinear dynamic response, and damage accu-
mulation were not included in this simplified approach. It was found by the static reliability
method that the minimum member level reliability indices can be as low as 1.50 and 1.30
for seismic zone-2 (a10 = 0.2¢) and zone-3 (a;p = 0.4g), respectively.

The reliability indices for the above frames were re-evaluated based on nonlinear
dynamic analysis of degrading multi-story buildings. The probabilistic analysis involved
damage-related failure criteria and was performed by direct Monie Carlo simulation. Re-
sults from the dynamic reliability method indicated that the minimum values of component
reliability indices were 5.13 and 2.91 for the two seismic zones mentioned earlier. Compar-
isons between the estimates from the static and dynamic methods indicate that the seismic

reliability is underestimated by the static method.

8.3 A Markov Model For Seismic Reliability
Analysis

A major goal of this research was the development of guidelines for seismic design that
can rationally account for particular features of seismic hazard, mechanical characteristics
of structural systems, and likely failure modes. In this regard, a new methodology based
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on a Markov model was proposed to evaluate seismic performance and sensitivity to initial
state of structural systems and determine the vulnerability of structures exposed to one
or more earthquakes. The analysis involved simple but realistic characterization of seismic
hazard, nonlinear dynamic analysis for estimating structural response, uncertainty in the
initial state of structural systems, and failure conditions incorporating damage accumulation
during consecutive seismic events.

The Markov model, developed in this study, is based on theoretical development using
general hysteretic restoring force characteristics which can be applied to both reinforced con-
crete and steel structures. It can estimate both event and lifetime reliabilities thus providing
a designer mote control in seismic performance evaluation. It can be used to determine the
damage probability evolution during several earthquakes allowing investigation on seismic
vulnerability of new and existing structures. The model can be used to compute mean first
passage time determining average number of seismic events before the structure will suffer
potential damage. It can also evaluate sensitivity of seismic reliability due to the variability
in the initial state of structural systems.

The proposed model was applied to evaluate seismic reliability measures of simple
code-designed structures. Results showed that the designs by the Uniform Building Code
can have very different reliabilities at sites with frequent small earthquakes and infrequent
large earthquakes, although the sites were characterized by the same value of ajg. Similar
findings were also obtained when the reliabilities were calculated for nondegrading systems.

The uncertainty regarding initial condition can yield significant variation on seismic
reliability. Since, variability regarding initial conditions can play a significant role in seismic
reliability estimate, it is desirable that any reliability scheme has provisions of uncertain
initial condition(s). Using the Markov structure, this was accomplished here with little
effort.

A small increase in the dimension of damage state vector representing state of struc-
tural systems is associated with comparatively large increase in the order of transition matrix.
Correspondingly, the computational involvement in obtaining transition probabilities may

become significant.



8.4 Local and Global Damage Indices

A global hysteretic model was developed and the relations between the parameters of local
and global models were established for seismic analysis of multi-story shear buildings. In
both models, the analysis involved hysteretic constitutive laws commonly used in earthquake
engineering to represent restoring forces and nonlinear dynamic analysis for estimating seis-
mic structural response. From the proposed relations, the local hysteretic behavior and
damage can be recovered from analysis based on global models. Using current global indices
based on heuristic combination of local damage measures, this was not possible due to the
lack of unique relation between local and global damages.

Both nondegrading and degrading systems were considered and several numerical ex-
amples on single- and multi-degree-of-freedom systems of shear beam models were presented
to illustrate the proposed methodology. First, a single-degree-of-freedom system with both
nondegrading and degrading restoring forces was investigated to evaluate the adequacy of
global hysteretic model in predicting various seismic response characteristics. Second, a
multi-degree-of-freedom system with more realistic design and earthquake loading was stud-
ied to compare damage measures by both local and global hysteretic models. In all cases,
results showed that the global model can provide satisfactory estimates of seismic response
and damage characteristics when compared with those obtained from the analysis based on
local model. The plots of restoring forces versus displacement, which represent the hysteretic
loops, were also well-predicted by the global model. When the local hysterstic characteris-
tics were recovered from dynamic analysis based on glohal model, they were found to be in
excellent agreement with the results produced by the local model.

In both local and global models, the dynamic stress analysis can be viewed as a non-
linear initial-value problem. However, the dimension of global initial-value problem is much
smaller than that of local initial-value problem. Hence, significant savings of computational
resources, such as Central Processing Units and core memory, can be achieved by using the
proposed global model.

The correlation equations were also applied to implement the Markov modei devel-

oped in the earlier phase of this study for estimating seismic performance of multi-story
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degrading structures. Such model facilitates a systematic investigation on the validity of
current seismic reliability practice which are based on lifetime largest seismic hazard with-
out any consideration of cumulative damage during consecutive seismic events. A numerical
example based on a 5-story building structure designed by the 1988 Uniform Building Code
was presenied. Effects of uncertainty in the initial state of system on the seismic structural
performance were also investigated. Re.ults showed that (f) seismic reliability based on life-
time largest load effects can differ significantly from that obtained from seismic hazard based
on damage accumulation between seismic events and (ii) the uncertainty regarding initial

condition can yield significant variation in the seismic reliability estimate.
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APPENDIX A
FORM/SORM and Importance Sampling

A.1 First- and Second-Order Reliability Methods

Consider a transformation H : X — U where U € R*® denotes an independent standard
Gaussian random vector. The transformation H is necessary if originally, the basic uncer-
tainty vector X has arbitrary joint distribution function Fx(x). For example, when the
Rosenblatt transformation [188] is used, the explicit form of above mapping from original x

space to u space becomes

ur = &®7[Fx,(z1)]
uz = & YFx,(z2|z1)]
H: W . . (A1)
| un = @ [Fx, (znl21, 22, ..o, Tnm1))
in which Fx,(zilz1,22,....., Zi-1) is the cumulative distribution function of X; conditional on
X1 =x1, X3 =22, -+ X;—1 = z;—1 and can he obtained from

£ )

~ v Xio, X (T1y &2, +y Zic1, 8)ds

in(zi|zl;22' ..... ,zi_‘)= f me],XQ, ,X.-],X,( 1s&2, ydi=1y ) (A.2)
fxllxin""xl'—l(zlizzi t "x‘—l)

where fx, x, .- Xx;_,(Z1, %2, -, zi-1) is the joint probability density function of {X;, X3, - - -, X.-_I}T.

The inverse transformation can be obtained in a stepwise manner as

f

z1 = Fx,7'[#(w))
2 = Fx,7'[®(w)ln))
H:¢ . . (A.3)

| T» = Fxn-l[ﬁ(u."z],:g, ---- ’ 3-—1]
which when substituted in Eq. 3.18 yields
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Pr = Prigy(U) < 0] = jw(u)<0¢(u)du (A4)

where #(u) is the standard multivariate Gaussian density function defined as

é(u) = (2,)-E exp (—%uru) (A.5)

and gy(u) = 0 is the new limit state surface in the image u of space x.

First-Order Reliability Method (FORM)

Consider a tangential linearization at the point u* of the limit state surface gy (u) =0

which is given by

gr(u)=al(u—-u*) =0 (A-6)

where u® is the closest point (known as the design point, beta point, etc.) of gy(u) =0 to

the origin of u space, and a € R* is the vector of direction cosines obtained from

Vgy(u*)

= V@)l (A1)

in which

o

V = { (A.8)

[ 22 |

with Vgp(u®) as the gradient of scalar field gy at u*, and

I Vau(u) = |30

s=1

agU . :
0w (A9)
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is the Euclidean L2-norm of a n-tuple vector Vgy(u®). The distance Sy of this point u*
to the origin of u space is referred to as Hasofer-Lind reliability indez [86) and is shown in

Fig. 3.2. By can be obtained from a nonlinear optimization scheme

Byr= inf ||u]=]u*|= aly’ (A.10)
gu(u)

When the linear approximation of limit state in Eq. A.6 is substituted in Eq. A.4, the
estimates of Pr and g by FORM becomes [168]

Pra = ./nuﬂ'(u—u')«)"s(“)dll
= ,/a"u—ﬁm_<o¢(u)du
= ®(-fuL) (A.11)
and
By =BuL. (A.12)

Second-Order Reliability Method (SORM)

Consider a suitable rotational transformation from u space to v space 3o that the the
mapped design point v* has coordinates (0,0, -,~S8g1). Suppose, the transformed vector
v ={v,vg,---, v.}T = {v, v..}T where v = {v,vg,-- -, v._l}T and v, = hy(¥) which is the
root of the mapped limit state surface gy (¥, vs) = 0 in v space. In this way, the limit state
surface gy(v) = gv(V, va) = 0 can be alternatively represented by v, = Ay (V) in the v space.
Consider a second-order approximation gg(v) = 0 to gv(v) = 0 or rather an approximation
Vs = hg(¥) to vy = hy(¥) of the limit state surface. If the quadratic approximant is of

special form such as the rotational hyperparaboloid, it can be shown that [89]

n-=1

hg(¥) = —BuL + ;—, Y xivi? (A13)

i=l
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where &; is the ith principal curvature of the limit state surface at the design point. The

above quadratic is equivalent to the actual vy = hy(¥) in the sense that

hq(v*) = hy(¥v*) (A.14)

T3 = @) (A.15)
Phq (on o v o,

30,31) )= 80.'3:,'(" ) (4.16)

for i,j = 1,2,---,n — 1. When the actual limit state surface is approximated by the
hyperparaboloid in Eq. A.13, the estimate of Pr by SORM becomes [35]

n-—-1

Ppa~ &(- Byz)ﬂ(lvn.ﬁm.) 4 (A.17)

which is asymptotically exact when Sy / . An improvement over above probability
estimate has also been proposed by Hohenbichler [89] which gives

n-1
Pra = ®(—By) ] (1 — mi¥(—Bar))~} (A.18)
1=]
where
¥(-ByL) = g%- (A.19)

Note that when Sy / oo, W(—8u) /" Bui and Eq. A.18 degenerates to Eq. A.17 as
expected, Finally, the corresponding estimate of 8 becomes

Bea=¢"'(-Fra). (A.20)
A.2 Importance Sampling

Consider the Eq. A.4 which can be rewritten in the form

Pr [gy(U) < 0]

Pr = Prlaen(U) <Ol 50 iy < 0]

= Prlggp(U) <0 Cr  (A21)
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where gqpp(U) is either the linear or quadratic approximation to gy{(U) and Cp = Prlgy(U) <
0}/ Pr[gapp(U) < 0] is the correction factor improving the reliability estimate by gepp(U).
When the quadratic approximation in Eq. A.13 is used, Cr can be approximated by simu-

lation with importance sampling. According to Hohenbichler [89], it is given by

Nrs

1
CF o~ -.N—];JECF'J (A.22)
in which
C ._M _lw(ﬁ )E 2. (A.23)
Fj3= Y (ﬁHL) exp 2 HL & xlv"} » .

vi = {14,025, -,121,._1','}T is the jth realization of the independent Gaussian random

vector V € ®*—! with mean and variance of ith component given by
E(Vi)=0 (A.24)

1
[1-w(-AnL)]

and Njg is the total number of samples for simulation. Thus, the estimates of Pr and f¢

Var(‘é/.') = (A.25)

by simulation with importance sampling become

w-1 _ Nis & (ho(¥ -))
~ & _ 3 _1 ( QLV;
PF,3 - Q( ﬁHL) E[ {l xlw(ﬂﬂL)} NIS ,gl d (ﬂHL)
n—1
exp [—%‘l' (Bur) Y. x-‘t'?'.?,,] (A.26)
i=1
and
Bea=®~!(-Pra). (A.27)



APPENDIX B
Incremental Dynamic Analysis

B.1 Incremental Form of Equation of Motion

Consider the nonlinear equation of motion in Eq. 5.19. Let the vector functional g({X,,0 <

8 < t}; a) be expressed in the matrix equation

E({X,,0<s<tlia)=k({X,,0 <s<tl;a) Xy (B.1)

in which k; is the instantaneous stiffness matrix at time t. Note that each component of this
matrix k; is a functional due to hereditary nature of the restoring force. Consider now the

incremental form of equation of motion

mAX, + cAX; + kparXerar — keXy = —md AW, (i) (B.2)

in which At is a finite time increment, AX; = Xy a¢— Xy, and AW, (1) = Wi (¢ + A1) - W (1),
Eq. B.2 is obtained when the equations of motion at times t and ¢ + At combined with the
the matrix equation for restoring force in Eq.B.1 are subtracted from each other. Suppose,
the time step At is sufficiently small during which the change in stiffness characteristics of
structural components can be neglected. Then, the incremental equation of motion takes

the form

mAX, + cAX; + keAX; = —md AW, (1). (B.3)

with the approximation

kivat ({ X, 0<s<t+At);a) =k ({X,,0< s < t}; ). (B.4)

B.2 Numerical Integration of Equation of Motion

Consider the Newmark integration scheme in which the generalized velocity and displacement

vector at time ¢ + At is approximated by following difference equation [23,145]
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Xerar =X + At [(l -n)Xe + 7lit+m] (B.5)

) 1 . .
Xipat = X + AtXy + At [(5 — "/2) X+ ‘an_A,] (B.6)

where v and 72 are parameters determining the accuracy and stability of numerical integra-
tion. When 11 = 1/2, 42 = 1/6 and 11 = 1/2, 2 = 1/4 are used, the above equations corre-
spond to the familiar linear acceleration method and constant-average-acceleration method,

respectively [23]. From Eqs. B.5 and B.6, the incremental acceleration and velocity vectors

can be obtained as
AX,= —= =t _ (B.7)

AX, = (1 - -”—‘) Atk + 2-ax, - 1x, (B.8)
272 72 72
which when substituted in the incremental form of equation of motion (Eq. B.2) gives rise

to the following system of linear algebraic equation

kAN, = AF* (B.9)
where
._ 1 2
and
AF* = —AW,(t)md + [—Xt + — X;] m + [—X. (l - -27) Atx;] (B.11)

When AX, is calculated by solving Eq. B.9, the generalized displacement vector Xy 4 at
time t + At can be obtained as

XH.Ag X: + AX,;. (Bl?)
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This numerical scheme with 1 = 1/2 and 92 = 1/4 is unconditionally stable. Thus, the
determination of the time step At depends only on the accuracy desired in the numerical

integration.
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APPENDIX C
Runge-Kutta Method

C.1 Initial Value Problem

Consider the initial value problem

0(t)
8(0)

h(6(t),1)
8o (C.1)

where t € R and # € R are independent and dependent variables, respectively and 8 is the
initial value of 8(t). A general explicit one-step method for the solution of Eq. C.1 is given
by [124,191,120,87)

Oit1 — 0 = Atop(t;, 0;; At) (C.2)

where t; is a discrete value of independent variable, 8; = 8(%;), and () will be defined later.
The fact that Eq. C.2 does not mention the function A(#,t) which defines the differential
equation, makes it impossible to characterize the order of the method independently of
the differential equation. Traditionally, Runge-Kutta methods are all explicit, although,
recently, implicit Runge-Kutta methods for improving stability characteristics have also been
considered. In this study, however, “Runge-Kutta” will be phrased to imply “explicit Runge-
Kutta” method.

Definition The method in Eg. C.2 is said to have order p if p is the largest integer for
which

Bt + At) - 8(t) - Atg(t, 6(t); At) = O (ae"+!) (C.3)

holds, where 8(t) is the theoretical solution of the initial value problem



C.2 Explicit Ruage-Kutta Method

The general R-stage explicit Runge-Kutta method is defined by Eq. C.2 in which

R
o(t,0;At) =Y A K, (C.4)
r=1
where
K1 = h(t,9)
r—1 r—1
K'- = h (t+AtzBr., a+AtzBf‘K‘) [ r:2,3," ',R (C-s)
=1 =1

with A, and B,, as appropriate constants. Note that an R-stage Runge-Kutta method
involves R function evaluations per step. Each of the functions K.(t,8;At), r = 1,2,..
+, i, may be interpreted as an approximation to the time derivative é, and the functions

#(t,8(t); At) as the weighted average of these approximations.

C.3 Special Cases

There is a great deal of tedious algebraic manipulation involved in deriving the expressions
for above constants A, and B,, for an arbitrary order. Two well-known four-stage fourth

order methods are [124,181]

At
Oiy1 -0 = T(Kl +2K2 + 2K3 + K4y) (C.6)

where

K] = h (ti‘ ol)

1 1

Ky = kb (t. + 00,0+ mel)

Ks = h (t.- + %At,a.- + %AtK-.-)

Ky = h(ti+ A0+ AtKs) .0
and



At
Oiy1—-0i= —8—(K1 +3K2 + 3K3 + Ky) (C.8)

where

Ky = h(t,6)
1 1
K, = h (t. + 3000+ §AtK|)
Ks = & (u + §At,0; - %AtKl + AtKg)
Ki = h(ti+ A48 + AtK, — AtKs + AtKs) (C.9)

The method in Eq. C.7 is the most popular of all Runge Kutta methods. It is frequently
referred to, somewhat loosely, as “the fourth-order Runge-Kutta method”.

Higher-order Runge-Kutta methods usually involve complicated algebra [39,40,41,42).
For examples, the six-stage fifth order method is [124]

Big1 — B = T‘;—;(zax, +125K3 — 81K + 125Ke) (C-10)
where
Ki = h(ti,0)
Ko = b (ti + %At,ﬂ; + %Au’(l)
Ks = h (t; + %At,ﬂ; + -21—5At[4K1 + 61(2])
Ko = h(ti+an6i+ %At[Kl - 12K; + 15K
Ks = & (z.- + %At,ﬂ.- + %At[ﬁlﬁ +90K; — 50K + sm])
Ko = h (t.- + %At,ﬂ; + 71—5At[6K| +36K3 + 10K; + 31(.,]) (C.11)

and the eight-stage sixth order method is [96]

at

Gin—-0;= 540

(41K + 216K3 + 27K + 272K + 27K¢ + 216K + 41Kjs) (C.12)

C-3



where

K
K;

K3
K,
Ks
Ks

Ky

Ks

h(t;,0:)

h (t.- +1At,0;+ lmm)

9
h (i.'+ —At, 9.+ Athx +3K2])

h =At 0 + At[Kl IK; +4K;])

1
9
1
6
( 1
*3
Bt + 348,06 + SAU-5K) + 27K — 24Ka + 6K4))
A (t. + §At b+ Atmm 981K + 867Ky — 102Ky + K,,])
B+ 2at04 —-—At[—183K1 +678K2 — 472K —~ 66Ky + 80K
+3K5])
(1 + A6, + SAUTI6K: - 2079Ks + 10026 + 83K, — 454Ks

~9Ks + 72K7)). (C.13)



APPENDIX D
Evaluation of e?

D.1 Preliminaries

Consider a real K x K square matrix A . A non-zero vector x € CK satisfying the equation

Ax = Ax (D.1)

is called the right eigenvector of A with the associated eigenvalue \. When Eq. D.1 is

written as

XA = Ax (D.2)

the vector x is known as the left eigenvector of A. Suppose, there are K linearly independent
family x{1, x(2), ..., x(X) of either right and left eigenvectors of A. Then there exists linearly
independent right eigenvectors ¢(1), ¢(z)’ e ¢(K ) and linearly independent left eigenvectors
'/:(1), np(’), RN vﬁ(K ), which satisfies orthogonality condition

. . K
(69,900) € Y $ubin = &5 (D.3)

k=1
where ¢ = {1, bz, - -, bix }T, ¥ = {91, %2, - -, i}, ¥, is the complex conjugate
of ¥;i, and §;; is the kronecker delta. Assume that A1, Az,: -, Ak are the eigenvalues {which
may not be distinct) corresponding to the eigenvectors ¢{1), ¢ ... #(X), Then the matrix
A can represented by

A=8AW (D.4)

where



én  én dK1
»- ¢.11 4’.2: 4’{{2
| $1k k- ¢KK_'
Yu Yz YiK .
¥ = 'b'n ¢’.22 ii’z'x
| ¥K1 ¥K2 -+ YKK |
and
[ At 0
0 A 0
A= 2
.. 0
] 0 0 AK
From Eq. D.3, it can be shown that
P =9¥ =1

where 1 is the K-dimensional identity matrix. This immediately gives

A™ = $A™Y
with
M™ 0
A = 0 ™
0 0

(D.5)

(D.6)

(D.7)

(D.8)

(D.9)

(D.10)



D.2 Expansion of e

Consider now the expansion of e® given by

A

mAm
e = —

!
m=0 T

This equation when combined with Eqs. D.9 and D.10 reduces to

A = BATW

't m!
o0 Am
- +(E )
= $ @
where
M D 0 |
0 eM 0
e = c.
: 0
| 0 0 erx

(D.11)

(D.12)

(D.13)
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in the Centrifuge,”

"Paramcter Identification and Implementation of a Kinematic Plasticity Mode! for Frictional Soils,” by J.H.
Prevost and D.V. Griffiths, to be published.

"Two- and Three- Dimensional Dynamic Finite Element Analyses of the Long Valley Dam,” by D.V.
Griffiths and J.H. Prevost, 6/17/88, (PB89-144711).

*Damage Assessment of Reinforced Concrete Structures in Eastemn United States,” by A.M. Reinhom, M.J.
Seidel, S.K. Kunnath and Y.J. Park, 6/15/88, (PB89-122220).

*Dynamic Compliance of Vertically Loaded Strip Foundations in Multilayered Viscoelastic Soils,” by S.
Ahmad and A S.M. [srail, 6/17/88, (PB89-102891).

"An Experimental Study of Seismic Structural Response With Added Viscoelastic Dampers, by R.C. Lin,
Z. Liang, T.T. Soong and R.H. Zhang, 6/30/88, (PB89-122212). This report is available only through NTIS
(see address given above).

*Experimental Investigation of Primary - Secondary System Interaction,” by G.D. Manolis, G. Juhn and
AM. Reinhom, 5/27/88, (PB89-122204).

*A Response Spectrum Approach For Analysis of Nonclassically Damped Strucwures, by JN. Yang, S.
Sarkani and F.X. Long, 4/22/88, (PB89-102909).

*Seismic Interaction of Structures and Soils: Stochastic Approach," by A.S. Veletsos and A M. Prasad,
7/21/88, (PBR9-122196).

"Identification of the Serviceability Limit State and Detection of Seismic Structural Damage,* by E.
DiPasquale and A.S. Cakmak, 6/t5/88, (PB89-122188). This rcport is available only through NTIS (sec
address given above).

*Muiti-Hazard Risk Analysis: Casc of a Simple Offshore Structure,” by B.K. Bhartia and E.H. Vanmarcke,
7/21/88, (PB89-145213).



NCEER-88-0G24

NCEER-88-0025

NCEER-88-0026

NCEER-§8-0027

NCEER-38-0028

NCEER-§8-0029

NCEER-88-0030

NCEER-88-0031

NCEER-88-0032

NCEER-88-0033

NCEER-88-0034

NCEER-38-0035

NCEER-88-0036

NCEER-$8-0037

NCEER-38-0038

NCEER-38-0039

NCEER-88-0040

NCEER-88-0041

“Automated Scismic Design of Reinforced Concrete Buildings,” by Y.S. Chung, C. Meyer and M.
Shinozuka, 7/5/88, (PB89-122170). This report is available only through NTIS (scc address given above).

“Experimental Study of Active Control of MDOF Structures Under Seismic Excitations,” by L.L. Chung,
R.C Lin, T.T. Soong and AM. Reinhom, 7/10/88, (PB89-122600).

“Earthquake Simulation Tests of a Low-Rise Metal Structure,” by J.S. Hwang, K.C. Chang, G.C. Lee and
R.L. Ketter, 8/1/88, (PB39-102917).

"Systems Study of Urban Response and Reconstruction Due to Catastrophic Earthquakes,” by F. Kozin and
H.K. Zhou, 9/22/88, (PB90-162348).

"Seismic Fragility Analysis of Plane Frame Structures,” by HH-M. Hwang and Y.K. Low, 7/31/88, (PB89-
131445).

"Response Analysis of Stochastic Structures,” by A. Kardara, C. Bucher and M. Shinozuks, 9/22/88, (PB89-
174429).

“Nonnormsl Accelerations Due to Yielding in a Primary Structure,* by D.CK. Chen and L.D. Lutes,
9/19/88, (PB89-131437).

"Design Approaches for Soil-Structure Interaction,” by A.S. Veletsos, A.M. Prasad and Y. Tang, 12/30/88,
(PB89-174437). This report is available only through NTIS (sce address given above).

"A Re-evaluation of Design Spectra for Seismic Damage Control,” by C.J. Turkstra and A.G. Tallin,
11/7/88, (PB89-145221).

"The Behavior and Design of Noncontact Lap Splices Subjected to Repeated Inclastic Tensile Loading,”
by V.E. Segan, P. Gergely and R.N. White, 12/8/88, (PB89-163737).

*Seismic Response of Pile Foundations," by SM. Mamoon, P.K. Banerjee and S. Ahmad, 11/1/38, (PB89-
145239).

"Modeling of R/C Building Structures With Flexible Floor Disphragms (IDARC2).* by A.M. Reinhor,
SXK. Kunnath and N. Panahshahi, 9/7/88, (PB89-207153),

"Solution of the Dam-Reservoir Interaction Problem Using a Combination of FEM, BEM with Particular
Integrals, Modal Analysis, and Substructuring,” by C-5. Tsai, G.C. Lec and R.L. Ketter, 12731/88, (PB39-
207146).

"Optimal Placement of Actuators for Structural Control," by F.Y. Cheng and C.P. Pantclides, 8/15/88,
(PB89-162846).

*Teflon Bearings in Ascismic Basc Isolation: Experimental Studies and Mathematical Modeling," by A.
Mokha, M.C. Constantinou and A.M. Recinhom, 12/5/88, (PB89-218457). This rcport is availablc only
through NTIS (scc address given above).

"Seismic Behavior of Flat Slab High-Rise Buildings in the New York City Area,” by P. Weidlinger and
M. Etouncy, 10/15/88, (PB90-145681).

*Evaluation of the Earthquake Resistance of Existing Buildings in New York City," by P. Weidlinger and
M. Ettouney, 10/15/88, to be published.

"Small-Scale Modcling Techniques for Reinforced Concrete Structures Subjected to Scismic Lowds,” by
W. Kim, A. El-Aftar and R.N. White, 11/22/88, (PB39-189623).
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NCEER-88-0042

NCEER-88-0043

NCEER-88-0044

NCEER-88-0045

NCEER-88-0046

NCEER-88-0047

NCEER-85-0001

NCEER-85-0002

NCEER-89-0003

NCEER-89-0004

NCEER-89-0005

NCEER-89-0006

NCEER-89-0007

NCEER-89-0008

NCEER-89-0009

NCEER-89-R010

NCEER-89-0011

NCEER-89-0012

"Modeling Strong Ground Motion from Multiple Event Earthquakes,” by G.W. Ellis and A.S. Cakmak,
10/15/88, (PBE9-174445).

"Nonstationary Models of Seismic Ground Acceleration,® by M. Grigoriu, S.E. Ruiz and E. Rosenblucth,
7/15/88, (PB89-189617).

"SARCF User’s Guide: Seismic Analysis of Reinforced Concrete Frames,” by Y.S. Chung, C. Meyer and
M. Shinozuka. 11/9/88, (PB89-174452).
"First Expert Pancl Mecting on Disaster R h and Pl
9/15/88, (PB89-174460).

ing," edited by J. Paniclic and J. Stoyle,

*Preliminary Studies of the Effect of Degrading Infill Walls on the Nonlinear Seismic Response of Steel
Frames," by C.Z. Chrysostomou, P. Gergely and J.F. Abel, 12/19/88, (PB8%-208333).

“Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and
Opersation,” by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R.N. White, 12/16/88, (PB89-174478).
"Effects of Protective Cushion and Soil Compliancy on the Response of EqQuipment Within a Seismically

Excited Building,” by J.A. HoLung, 2/16/89, (PB89-207179).

"Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures,” by HH-M,
Hwang and J-W. Jaw, 2/17/89, (PB89-207187).

"Hysteretic Columns Under Random Excitation,” by G-Q. Cai and Y.K. Lin, 1/9/89, (PB89-196513).

"Experimental Study of ‘Elephant Foot Buige® Instability of Thin-Walled Mctal Tanks,” by Z-H. Jia and
R.L. Ketter, 2/22/89, (PB89-20719%).

"Experiment on Performance of Buricd Pipelines Across San Andreas Faul,” by J. Isenberg, E. Richardson
and T.D. O’'Rourke, 3/10/89, (PB39-218440). This report is available only through NTIS {see address given
above).

"A Knowlcdge-Based Approach to Structural Design of Earthquake-Resistant Buildings,” by M. Subramani,
P. Gergely; C.H. Conley, J.F. Abel and A H. Zaghw, 1/15/89, (PB89-218465).

"Liquefaction Hazards and Their Effects on Buried Pipelines,” by T.D. O’Rourke and P.A. Lane, 2/1/89,
(PB89-218481).

"Fundamentals of System Identification in Structural Dynamics," by H. Imai, C-B. Yun, O. Maruyama and
M. Shinozuka, 1/26/89, (PE89-207211).

"Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico,” by
A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229).

"NCEER Bibliography of Earthquake Education Materials,” by K.E.K. Ross, Sccond Revision, 9/1/89,
(PB90-125352).

"Ineiastic Three-Dimensional Response  Analysis of Reinforced Concrete  Building
Structurcs (IDARC-3D), Part I - Modeling,” by S.K. Kunnath and A M. Reinhorn, 4/17/89, (PB90-114612),

"Recommended Modifications to ATC-14," by C.D. Poland and J.O. Malley, 4/12/89, (PB90-108643).
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NCEER-89-0013

NCEER-89-0014

NCEER-89-0015

NCEER-89-0016

NCEER-89-P017

NCEER-89-0017

NCEER-89-0018%

NCEER-89-0019

NCEER-389-0020

NCEER-89-0021

NCEER-89-0022

NCEER-89-0023

NCEER-89-0024

NCEER-89-0025

NCEER-85-0026

NCEER-89-0027

NCEER-89-0028

"Repair and Strengthening of Beam-to-Coiumn Connections Subjected to Earthquake Loading,” by M.
Corazao and AJ. Durrani, 2/28/89, (PB90-109885).

“Program EXKAL2 for Identification of Stuctural Dynamic Systems," by O. Maruyama, C-B. Yun, M.
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877).

"Response of Frames With Bolied Semi-Rigid Connections, Part 1 - Experimental Study and Analytical
Predictions,” by P.J. DiCorso, A.M. Reinhom, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89,
to be publishad.

"ARMA Monie Carlo Simulation in Probabilistic Structural Analysis,” by P.D. Spanos and M.P. Mignolet,
7/10/89, (PB90-109893).

*Preliminary Proceedings from the Conference on Disaster Preparcdness - The Place of Earthquake
Education in Our Schools,” Edited by K.E.K. Ross, 6/23/89, {PB90-108606).

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Qur
Schools,” Edited by K.E.K. Ross, 12/31/89, {PB90-207895). This rcport is availablc only through NTIS (sce
address given above).

"Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory Encrgy
Absorbing Devices, by E.J. Gracsser and F.A. Cozzarclli, 6/7/89, (PB90-164146).

"Nenlinear Dynamic Analysis of Three-Dimensional Basc lsolated Structures (3D-BASIS)" by S.
Nagarajaiah, A.M. Reinhom and M.C. Constantinou, 8/3/89, (PB90-161936). This report is available only
through NTIS {sce address given above).

"Structural Contro! Considering Time-Rate of Contrel Forces and Control Rate Constraints,” by F.Y. Cheng
and C.P. Pantelides, 8/3/89, (PB90-120445).

"Subsurface Conditions of Mcmphis and Shelby County,” by K.W. Ng, T-8. Chang and H-H.M. Hwang,
7/26/89, (PB90-120437).

"Scismic Wave Propagation Effects on Straight Jointed Buried Pipelines,” by K. Elhmadi and M.J.
O’Rourke, 8/24/89, (PB90-162322).

"Workshop on Serviceability Analysis of Water Delivery Systems,” edited by M. Grigoriu, 3/6/89, (PB90-
127424),

“Shaking Table Study of a 1/5 Scale Stee!l Frame Composed of Tapered Members® by
K.C. Chang, 1.S. Hwang and G.C. Lee, 9/18/89. (PB90-160169).

"DYNAID: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical
Documentation,” by Jean H. Prevost, 9/14/89, (PB90-161944). This report is available only through NTIS
(sce address given above).

*1:4 Scale Mode! Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection,”
by AM. Reinhom, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukaso, H. Abc and M. Nakai, 9/15/89, (PB%0-
173246).

"Scattering of Waves by Inclusions in a Nonhomogencous Elastic Half Space Solved by Boundary Element
Methods,” by PK. Hadley, A. Askar and A.5. Cakmak, 6/15/89, 0’390-145629),

*Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by HHM.
Hwang, J-W. Jaw and A L. Ch’ng, 8/31/89, (PB90-164633).
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NCEER-89-0029

NCEER-83-0030

NCEER-89-0031

NCEER-89-0032

NCEER-8%-0033

NCEER-89-0034

NCEER-89-0035

NCEER-39-0036

NCEER-89-0037

NCEER-89-0038

NCEER-89-0039

NCEER-89-0040

NCEER-89-0041

NCEER-90-0001

NCEER-90-0002

NCEER-90-0003
NCEER-90-0004

NCEER-90-0005

NCEER-90-0006

*Bedrock Accelerations in Memphis Arca Due to Large New Madrid Earthquakes,” by H.H.M. Hwang,
C.HS. Chen and G. Yu, 11/7/8%, (PB90-162330).

"Secismic Behavior and Response Sensitivity of Secondary Structural Systems,” by Y.Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658).

"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems," by Y. Ibrahim, M.
Grigoriu and T.T. Soong. 11/10/89, {PB90-161951).

"Proceedings from the Sccond U.S. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989," Edited by T.D. O’Rourkc and M. Hamada, 12/1/89,
(PB90-209388).

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Stuctures,” by J.M. Bracci,
AM. Reinhom, J.B. Mander and S.K. Kunnath, 9/27/89.

"On the Relation Between Local and Global Damage Indices,” by E. DiPasquale and A.S. Cakmak, 8/15/89,
(PB90-173865).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silts,” by A.J. Walker and H.E. Stcwart,
7/26/89, (PB90-183518).

"Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York,” by M. Bucdhu, R. Gicse
and L. Bzumgrass, 1/17/89, (PB90-208455'.

*A Deterministic Assessment of Effects of Ground Motion Incoherence,” by A.S. Veletsos and Y. Tang,
7/15/89, (PB90-164294).

*Workshop on Ground Motion Parameters for Seismic Hazard Mapping," July 17-18, 1989, edited by R.V.
Whitman, 12/1/89, (PB%0-173923).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority,” by C.J. Costantino,
C.A. Miller and E. Heymsficld, 12/26/89, (PB90-207887).

*Centrifugal Mudcling of Dynamic Soil-Structure Interaction,” by K. Weissman, Supervised by JH.
Prevost, 5/10/89, (PB90-207879).

"Linearized Identification of Buildings With Cores for Seismic Vulnerability Assessment,” by I-KK. Ho and
A.E. Aktan, 11/1/89, (PR90-251943).

“Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Prieta Earthquake in San Francisco,”
by T.D. O’Rourke, H.E. Stewart, F.T. Blackbum and T.S. Dickerman, 1/90, (PB90-208396).

“Nonnormal Secondary Response Due to Yielding in a Primary Structure,” by D.C.K. Chen and L.D. Lutes,
212890, (PB90-251976).

“Earthquake Education Materials for Grades K-12,” by K.E.K. Ross, 4/16/90, (PB91-251984).
"Catalog of Strong Motion Stations in Eastem North America,” by R.'W. Bushy, 4/3/90, (PB90-251984).

"NCEER Strong-Motion Data Base: A User Manuzl for the GeoBase Release (Version 1.0 for the Sun3),”
by P. Friberg and K. Jacob, 3/31/90 (PB90-258062).

*Seismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake,”
by HH.M. Hwang and C-H.S. Chen, 4/16/90(PB%0-258054).

E-7



NCEER-$0-0007

NCEER-90-0008

NCEER-9%0-0009

NCEER-90-0010

NCEER-90-0011

NCEER-90-0012

NCEER-%0-0013

NCEER-90-0014

NCEER-90-0015

NCEER-9%9-0016

NCEER-%0-0017

NCEER-90-0018

NCEER-90-001%

NCEER-90-0020

NCEER-90-0021

NCEER-90-0022

NCEER-50-0023

NCEER-90-0024

“Site-Specific Response Spectra for Memphis Sheahan Pumping Station.” by HH.M. Hwang and CS. Lee,
5/15/90, (PB91-108811).

"Pilot Study on Seismic Vulnerahility of Crude Oil Transmission Systems,” by T. Ariman, R. Dobry, M.
Grigoriu, F. Kozin, M. O’Rourke, T. O’'Rourke and M. Shinozuka, 5/25/90, (PB91-108837).

“A Program to Generate Site Dependent Time Histories: EQGEN,” by G.W. Ellis, M. Srinivasan and A.S.
Cakmak, 1/30/90, (PB91-108829),

"Active Isolation for Seismic Protection of Operating Rooms,” by M.E. Talbont, Supervised by M.
Shinozuka, 6/8/9, (PB91-110205).

"Program LINEARID for Identification of Lincar Structural Dynamic Systems,” by C-B. Yun and M.
Shinozuka, 6/25/90, (PB91-110312).

*Two-Dimensional Two-Phase Elasio-Plastic  Seismic  Response of Earth Dams,”
Yiagos, Supervised by I.H. Prevost, 620/90, (PBY1-110197).

by AN.

"Sccondary Systems in Basc-Isolated Structures: Experimental Investigation, Stochastic Response and
Stochastic Sensitivity," by G.D. Manolis, G. Juhn, M.C. Constantinou and A.M. Reintorn, 7/1/90, (PB91-
110320).

"Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details,” by S.P.
Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795).

“Two Hybrid Control Systems for Building Structures Under Strong Earthquakes,” by JN. Yang and A.
Danielians, 6/29/50, (PB91-125393).

"Instantancous Optimal Control with Acccleration and Velocity Feedback,” by J.N. Yang and Z. Li,
6/29/90, (PB91-125401).

“Reconnaissance Report on the Northern Iran Earthquake of June 21, 1990," by M. Mehrain, 10/4/90,
(PB91-125377).

"Evaluation of Liquefaction Potential in Memphis and Shelby County,” by T.8. Chang, P.S. Tang, CS. Lee
and H. Hwang, §/10/90, (PB91-125427).

“Experimental and Analyticat Study of a Combined Sliding Disc Bearing and Helical Steel Spring Isolation
System,” by M.C. Constantinou, A.S. Mokha and A.M. Reishom, 10/4/90, (PB91-1253835).

"Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with
a Spherical Surface,” by A.S. Mokha, M.C. Constantinou and A M. Reinhom, 10/11/90, (PB91-125419).

"Dynamic Interaction Factors for Floating Pile Groups,” by G. Gazetas, K. Fan, A. Kaynia and E. Kausel,
9/10/90, (PB91-170381).

"Evaluation of Scismic Damage Indices for Reinforced Concrete Structures,” by S. Rodrigucz-Gomez and
A.S. Cakmak, 9/30/90, PB%1-171322).

*Study of Site Response at & Selected Memphis Site,” by H. Desai, S. Ahmad, E.S. Gazetas and M.R. Oh,
10/11/90, (PB91-196857).

“A User's Guide 1o Strongmo: Version 1.0 of NCEER’s Strong-Motion Data Access Tool for PCs and
Terminals," by P.A. Friberg and C.A.T. Susch, 11/1550, (FB91-171272).



NCEER-90-0025

NCEER-90-0026

NCEER-90-0027

NCEER-90-0028

NCEER-90-0029

NCEER-91-0001

NCEER-91-0002

NCEER.91-0003

NCEER-91-0004

NCEER-91-0005

NCEER-91-0006

NCEER-91-0007

NCEER-91-0008

NCEER-91-000%

NCEER 1. 10

NCEER-91-0011

NCEER-91-0012

NCEER-91-0013

"A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions,” by L-L. Hong
and A_H.-S. Ang, 10/30/90, (PB91-170399).

"MUMOID User’s Guide - A Program for the Identification of Modal Parameters,” by S. Rodriguez-
Gomez and E. DiPasquale, 9/30/90, (PB%1-171298).

*SARCF-II User's Guide - Seismic Analysis of Reinforced Concrete Frames," by S. Rodriguez-Gomez,
Y.S. Chung and C. Meyer, 9/30/90, (PB91-171280).

"Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation," by N. Makris
and M.C. Constantinou, 1272090 (PB91-190561).

"Soil Effects on Earthquake Ground Motions in the Memphis Area,” by H. Hwang, C.S. Lee, K.W. Ng and
T.S. Chang, 82/90, (PB91-190751).

"Proceedings from the Third Japan-U.S. Workshop on Earthquake Resistant Design of Lifcline Facilities
and Countermeasures for Soil Liquefaction, December 17-19, 1990, cdited by T.D. O'Rourkc and M.
Hamada, 2/1%1, (PB91-179259).

"Physical Space Solutions of Non-Proportionally Damped Systems,” by M. Tong, Z. Liang and G.C. Lee,
1/15M91, (PR91-179242).

"Seismic Response of Single Piles and Pile Groups,” by K. Fan and G. Gazetas, 1/1091, (PB92-174994).

“Damping of Structures: Part | - Theory of Complex Damping,” by Z. Liang and G. Lee, 10/1091, (PB92-
197235).

"3ID-BASIS - Nonlincar Dynamic Apalysis of Threz Dimensional Basc [solated Structurcs: Part 11" by S.
Nagarajaiah. AM. Reinhom and M.C. Constantinou, 212881, (PB91-190533).

"A Multidimensional Hysteretic Moda! for Plasticity Deforming Metals in Energy Absorbing Devices,” by
E.J. Gracsser and F.A. Cozzarclli, 4991, (PB92-108364).

"A Framework for Customnizable Knowledge-Based Expert Systems with an Application to a KBES for
Evaluating the Scismic Resislance of Existing Buildings,” by E.G. lbarra-Anaya and S.]. Fenves, /991,
(PB91-210930).

"Nonlincar Analysis of Sicel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method,”
by G.G. Deierlein, S-H. Hsich, Y-J. Shen and JF. Abel, 77291, (PB92-113828),

“Earthquake Education Msierials for Grades K-12," by KEK. Ross, 43081, (PB91-212142).

"Phase Wave Velocities and Displacement Phase Differences in a Harmonically Oscillating Pile,” by N.
Makris and G. Gazews, 7/8/91, (PB92-108356).

"Dynamic Characteristics of a Full-Size Five-Story S*eel Structure and a 2/5 Scale Model,” by K.C, Chang,
G.C. Yao, GC. Lee, D.S. Hao and Y.C. Ych,” 77291, (PB93-1166438).

"Seismic Response of 8 2/5 Scak Steel Structure with Added Viscoclastic Dampers,” by K.C. Chang. T.T.
Soong. 5-T. Oh and M.L. Lai, 51791, (PB92-110816).

"Earthquake Rcsponsc of Rctaining Walls; Full-Scale Testing and Computational Modeling,” by S.
Alampalli and A-W M. Elgamal, 672091, to be published.
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NCEER-91-0014

NCEER-91-0015

NCEER-91-0015

NCEER-91-0017

NCEER-91-0018

NCEER-91-0019

NCEER-91-0020

NCEER-91-0021

NCEER-91-0022

NCEER-91-0023

NCEER-91-0024

NCEER-91-002%

NCEER-91-0026

NCEER-91-0027

NCEER-92-0001

NCEER-92-0002

NCEER-92-00G3

NCEER-32-0004

NCEER-92-0003

“3D-BASIS-M: Nonlincar Dynamic Analysis of Multiple Building Base Isolated Structures,” by P.C.
Tsopelas, 3. Nagarajaiah, M.C. Constantinou and A M. Reinhomn, 5/28/1, (PB92-113885}.

"Evaluation of SEAO!" Design Requirements for Sliding Isolated Structures,” by D. Theodossiou and M.C.
Constantinou, 6/10/91, (PB92-114602).

"Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building,” by H.R.
Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91, (PB92-129980).

“Shakc Table Test of & 1/6 Scale Two-Story Lightly Reinforced Concrete Building,” by A.G. El-Attar, R.N.
White and P. Gergely, 2/28/91, (PB92-222447).

“Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building,” by A.G. El-Attar,
R.N. Whitc and P. Gergely, 2/28/91, (PB93-116630).

"Transfer Functions for Rigid Rectangular Foundations,” by A.S. Veletsos, AM. Prasad and W H. Wu,
7311,

"Hybrid Control of Seismic-Excited Nonlinear and Inelastic Structural Systems,” by J.N. Yang, Z. Li and
A. Daniclians, 8/191, (PB92-143171).

"The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recumrence Relations for
US. Earthquakes Fast of New Madrid," by L. Seeber and J.G. Armbruster, 872891, (PB92-176742).

“Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for
Change - The Roles of the Changemakers,” by K.E.K. Ross and F. Winslow, 7/2341, (PB92-129998).

"A Study of Reliability-Based Criteria for Scismic Design of Reinforced Concrete Frame Buildings.” by
HHM. Hwang and H-M. Hsu, 81091, (PB92-140235).

"Expecrimental Verification of @ Number of Structural System ldentification Algorithms.” by R.G. Ghanem,
H. Gavin and M. Shinozuka, 9/18/%91, (PB92-176577).

“Probebilistic Evaluation of Liquefaction Potential,” by HH.M. Hwang and C.S. Lee,” 11/25/91, (PB92-
143429).

“Instantancous Optimal Control for Lincar, Nonlinear and Hysteretic Structures - Stable Controllers, by
IN. Yang and Z. Li, 11/1581, (PB92-163807).

*Experimental and Theoretical Study of a Sliding Isolation System for Bridges,” by M.C. Constantinou,
A. Kartoum, AM. Reinhom and P. Bradford, 11/1591, (PB92-176973).

"Case Studics of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese Case
Studies,” Edited by M. Hamada and T. O'Rourke, 2/17/92, (PR92-197243).

“Luse Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 2: United Statey
Casc Studies,” Edited by T. O’'Rourke and M. Hamada, 2/179. (PB92-197250).

“Issues in Earthquake Education,” Edited by K. Ross, 2/3/92, (PB92-.22389).

"Proceedings from the First 11.8. - Japan Workshop on Earthquake Protective Systems for Bridges,” Edited
by L.G. Buckle, 2492, (PB94-142239, A99, MF-AD6).

“Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space,” A.P. Theoharis,
G. Deodatis and M. Shinozuka, 1/292, to be published.
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NCEER-92-0017

NCEER-92-0018

NCEER-92-0019

NCEER-92-0020

NCEER-92-0021

NCEER-92-0022

NCEER-92-0023

NCEER-92-0024

“Proceedings from the Site Effects Workshop,” Edited by R. Whitman, 2/29/92, (PR92-197201).

"Engineering Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction,”
by M.H. Baziar, R. Dobry and A-W.M. Elgamal, 372492, (PB92-222421).

“A Procedure for the Seismic Evalua on of Buildings in the Central and Eastemn United States,” by C.D.
Poland and J.O. Malley, 4/2/92, (PB92-222439),

"Experimental and Analytical Study of a Hybrid Isolation Sysiem Using Friction Controllable Sliding
Bearings,” by M.Q. Feng, 8. Fujii and M. Shinozuka, 5/15/92, (PB93-150282).

“Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by A.J.
Dumani and Y. Du, 5/18/92.

"The Hysteretic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under
Cyclic Loading and Strong Simulated Ground Motion,” by H. Lec and S.P. Prawel, 5/11/92, w be
published.

"Study of Wire Rope Systems for Seismic Protection of Equipment in Buildings,* by G.F. Demetriades,
M.C. Constantinou and A.M. Reinhom, 5/20/92.

"Shape Memory Structural Dampers: Material Properties, Design and Seismic Testing,” by P.R. Witting
and F.A. Cozzarelli, 5/26/92.

“Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipclines,” by M.1. O’Rourke,
and C. Nordberg, 6/15/92.

"A Simulation Method for Stationary Gaussian Random Functions Based on the Sampling Theorem,” by
M. Grigoriu and S. Balopoulou, §/11/92, (PB93-1274%6).

~Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and
Detailing Strategies for Improved Scismic Resistance,” by G.W. Hoffmann, S K. Kunnath, A M. Reinhom
and 1.B. Mander, 7/15/92, (PB94-142007, A08, MF-A02).

"Observations on Water System and Pipeline Performance in the Limén Area of Costa Rica Due 1o the
April 22, 1991 Earthquake,” by M. O’'Rourke and D. Ballantyne, 6/30/92, (PB93-126811).

“Fourth Edition of Earthquake Education Materials for Grades K-12," Edited by K.E.K. Ross, 8/10/92.
"Proceedings from the Fourth Japan-11.8. Workshop on Earthquake Resistant Design of Lifeline Facilities
and Countermecasures for Soil Liquefaction,” Edited by M. Hamada and T.D. O'Rourke, 8/12/92, (PB93-
163939).

“Active Bracing System: A Full Scale Implementation of Active Control,” by AM. Reinhom, T.T. Soong,
RC. Lin, M A. Riley, Y.P. Wang, S. Aizawa and M. Higashino, 8/14/92, (PB93-127512).

"Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral
Spreads,” by S.F. Bartleit and T.L. Youd, 8/17/92, (PB93-188241),

“IDARC Version 3.0: Inclastic Damage Analysis of Reinforced Concrete Suuciures,” by S.K. Kunnath,
AM. Reinhom and R.F. Lobo, 8/31/42, (PB93.227502, A07, MF-A02).

"A Semi-Empirical Analysis of Strong-Motion Pcuks in Terms of Seismic Source, Propagation Path and
Local Sitc Conditions, by M. Kamiyama, M.J. O'Rourkc and R. Fiores-Berroncs, 9/9/92, (FB93-150266).

"Seismic Behavior of Reinforced Concrete Frame Structures with Nonductile Details, Part 1. Summary of

Experimental Findings of Full Scale Beam-Column Joint Tests,” by A. Beres, RN. White and P. Gergely,
9/30/92, (PB93-227783, A0S, MF-AOI).
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NCEER-93-0002
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NCEER-93- 004
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"Experimental Results of Repaired and Retrofitted Beam-Column Joint Tests in Lightly Reinforced
Concrete Frame Buildings,” by A. Beres, 5. El-Borgi, R.N. White and P. Gergely, 10/29/92, (PB93-227791,
AD3, MF-A01).

"A Generzlization of Optimal Control Theory: Linear and Nonlinear Structures,” by J.N. Yang, Z. Liand
S. Vongchavalitkul, 11/292, (PB93-188621).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Pan 1 -
Design and Propertics of 2 One-Third Scale Model Structure,” by J.M. Bracci, A M. Reinhom and 1.B.
Mander, 12/1/92, (PB94-104502, A0S, MF-AQ2).

"Seismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part 1] -
Experimental Performance of Subassemblages,” by L.E. Aycardi, }.B. Mander and A M. Reinhom, 12/1/92,
(PB94-104510, AO8, MF-AQ2).

“Scismic Resistance of Reinforced Concrete Frame Structures Designed Only for Gravity Loads: Part 111 -
Experimental Performance and Analytical Study of a Structural Model," by I.M. Bracci, A M. Reinhom
and ).B. Mander, 12/1/92, (PB93-227528, A09, MF-A0Q1).

*Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part | - Experimental
Performance of Retrofitted Subassemblages,” by D. Choudhuri, J.B. Mander and A M. Reinhom, 12/8/92,
(PB93-198307, AO7, MF-A(2).

"Evaluation of Seismic Retrofit of Reinforced Concrete Frame Structures: Part Il - Experimental
Performance and Analytical Study of a Retrofitted Structural Model," by J.M. Bracci, A.M. Reinhomn snd
1.B. Mander, 12/8/92, (PB93-198315, A09, MF-A03).

"Experimental and Analytical Investigation of Scismic Respense of Structures with Supplemental Fluid
Viscous Dampers,” by M.C. Constantinou and M.D. Symans, 12/2192, (PB93-191435).

"Reconnaissance Report on the Cairo, Egypt Earthquake of Dctober 12, 1992," by M. Khater, 12/23/92,
(PB93-188621).

"Low-Level Dynamic Characteristics of Four Tall Flat-Plate Buildings in New York City,” by H. Gavin,
S. Yuan, J. Grossman, E. Pckelis and K. Jacob, 12/28/92, (PB93-188217).

"An Experimental Study on the Scismic Performance of Brick-Infilled Steel Frames With and Without
Retrofit,” by J.B. Mander, B. Nair, K. Wojtkowski and J. Ma, 1/29/93, (PB93-227510, A07, MF-AQ2).

"Social Accounting for Disaster Preparedness and Recovery Planning.” by S. Cole, E. Pantoja and V.
Razak, 2/22/93, (PB94-142114, A12, MF-A03).

"Assessment of 1991 NEHRP Provisions for Nonstructural Components and Recommended Revisions,” by
T.T. Soong. G. Chen, Z. Wu, R-H. Zhang and M. Grigoriu, 3/1/93, (PB93-188639).

"Evaluation of Static and Responsc Spectrum Analysis Procedures of SEAOC/UBC for Scismic Isolated
Structures,” by C.W. Winters and M.C. Constantinou, 3/2393, (PB93-198299).

"Earthquakes in the Northeast - Are We Ignoring the Hazard? A Workshop on Earthquake Science and
Safcty for Educators,” edited by KEK. Ross, 4/2/93, (PB94-103066, A09, MF-A(2).

"Inelastic Response of Reinforced Concrete Structures with Viscoclastic Braces,” by R.F. Lobo, J M.
Bracci, K.L.. Shen, AM. Reinhom and T.T. Soong, 4/593, (PB93-227486, ADS, MF-A02).
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"Scismic Tec:ting of Instellation Mcthods for Computers and Data Processing Equipment,” by K. Kosar,
T.T. Soong, KL. Shen, J.A. HoLung and Y K. Lin, /1293, (PB93-198299).

"Retrofit of Reinforced Concrete Frames Using Added Dampers,” by A. Reinhom, M. Constantinou and
C. Li, to be published.

"Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers,*
by K.C. Chang, M.L. Lai, T.T. Soong, D.S. Hao and Y.C. Ych, 5/1/93, (PD94-141959, A07, MF-A02).

"Seismic Performance of Shear-Critical Reinforced Concrete Bridge Piers,” by J.B. Mander, $.M. Waheed,
M.T.A. Chaudhary and S.S. Chen, 5/12/93, (PB93-227494, A0S, MF-A02).

*3D-BASIS-TABS: Computer Program for Nonlinear Dynamic Analysis of Three Dimensional Base
Isolated Structures,” by S. Nagarajaiah, C. Li, AM. Reinhom and M.C. Constantinou, 8/2/3, (PR%4-
141819, A09, MF-A02).

"Effects of Hydrocarbon Spifls from an Oil Pipeline Break on Ground Water," by O.J. Helweg and HHM.
Hwang, 8/3/93, (PB94-141942, A06, MF-A02).

*Simplified Procedures for Seismic Design of Nonstructural Components and Assessment of Current Code
Provisions,” by M.P. Singh, L.E. Suarcz, E.E. Mathcu and G.C. Maldonado, 8/4/93, (PB94-141827, AO9,
MF-AD2).

"An Energy Approach to Seismic Analysis and Design of Secondary Systems,” by G. Chen and T.T. Soong,
8/6/93, (PB94-142767. All, MF-AD3),

"Proceedings from School Sites: Becoming Prepared for Earthquakes - Commemorating the Third
Anniversary of the Loma Prieta Earthquake,” Edited by F.E. Winslow and K.EK. Ross, $/16/93.

"Reconnaissance Report of Damage to Historic Monuments in Cairo, Egypt Following the October
12, 1992 Dahshur Earthquake,” by D. Sykora, D. Look, G. Croci, E. Karacsmen and E. Karacsmen,
8/19/93, (PR94.142221, A08, MF-A02).

“The Island of Guam Earthquake of August 8, 1993," by S.W. Swan and 5.K. Hamis, 9/30/93, (PB9%4-
141843, A04, MF-A0I).

"Engincering Aspects of the October 12, 1992 Egyptian Earthquake,” by A.W. Elgamal, M. Amxr, K.
Adalier and A. Abui-Fadl, 10/7/93, (PB94-141983, A0S, MF-AO1).

"Development of an Earthquake Motion Simulator and its Application in Dynamic Centrifuge Testing," by
I. Krstelj, Supervised by JH. Prevost, 10/23/93.

"NCEER-Taisei Corporation Research Program on Sliding Scismic Isolation Systems for Bridges:
Experimental and Analytical Study of a Friction Pendulum System (FPS)." by M.C. Constantinou, P.
Tsopelas, Y-S. Kim and S. Okamoto, 11/193, (PB94-142775, AJ8, MF-A02).

*Finitc Element Modeling of Elastomeric Scismic Isolation Bearings,” by L.J. Billings, Supervised by R.
Shepherd, 11/8/93, to be published.

*Scismic Vulnerability of Equipment in Critical Facilitics: Life-3afety and Opcrational Conscquences,” by
k. Porter, G.S. Johnson, M.M. Zadeh, C. Scawthorn and S. Eder, 11/24/93.

"Hokkaidc Nansei-oki, Japan Earthquake of July 12, 1993, by Pl Yancv and CR. Scawthom, 12/2393.

*An Evaluation of Seismic Serviceability of Water Supply Networks with Application to San Francisco
Auxiliary Water Supply System,” by 1. Markov, Supervised by M. Grigoriu and T. O'Rourke. 1/21/54.
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NCEER-94-0002 "NCEER-Taisci Corporation Rescarch Progmm on Sliding Scismic Isolation Systems for Bridges:
Experimental and Analytical Study of Systems Consisting of Sliding Bearings, Rubber Restoring Force
Devices and Fluid Dampers," Volumes 1and I, by P. Tsopelas, S. Okamoto, M.C. Constantinou, D. Ozaki
and S. Fujii, 2/4/94.

NCEER-94-0003 "“A Markov Model for Local and Giobal Damage Indices in Seismic Analysis,” by S. Rahman and M.
Grigoriu, 2/18/94.
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