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PREFACE

The National Center for Earthquake Engineering Research (NCEER) was established to expand and
disseminate knowledge about earthquakes, improve earthquake-resistant design, and implement
seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis is on
structures in the eastern and central United States and lifelines throughout the country that are fuund
in zones oflow, moderate, and high seismicity.

NCEER's research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elements, as shown in the figure below. Element I, Basic Research, is carried out to
support projects in the Applied Research area. Element II, Applied Research, is the major focus of
work for years six through ten. Element III, Demonstration Projects, have been planned to support
Applied Research projects, and will be either case studies or regional studies. Element IV,
Implementation, will result from activity in the four Applied Research projects, and from Demon­
stration Projects.

ELEMENT I
BASIC RESEARCH

• Seismic hazard and
ground motion

• Soils and geotechnical
engineering

• Structu.... and systems

• Risk and reliability

• Protective and Intelligent
systems

• Socletel and economic
studl..

ELEMENT II
APPLIED RESEARCH

• The Building Project

• The Nonstructu....
Components Project

• The Lifelines Project

The Bridge Project

ELEMENT III
DEMONSTRATION PROJECTS

C... Studl..
• Active and hybrid control
• Hoa~ and data proc:nalng

facUItl..
• Short.nd medium span brIdllfl
• Water IUPply ayatema In

Memphis and San Fl'llnclsco
Rqlonal Stud...

• New Vorl( City
• MI..I..lppl Valley
• San Francisco Bay Area

ELEMENT IV
IMPLEMENTATION

• Conr....nceelWorbhopa
• EducatlonlTl'lllnlng cou.....
• Publlcatlona
• PUblic Aware"...

Research tasks in the Bridge Project expand current work in the retrofit of existing bridges and
develop basic seismic designcriteria for eastern bridges in low-to-moderate risk zones. This research
parallels an extensive multi-year research program on the evaluationofgravity-loaddesign concrete
buildings. Specifically, tasks are being performed to:
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I. Detennine the seismic vulnerability of bridge structures in regions of low-to-medium
seismicity, and in particular of those bridges in the eastern and central United States.

2. Develop concepts for retrofitting vulnerable bridge systems. particularly for typical bridges
found in the eastern and central United States.

3. Develop improved design and evaluation methodologies for bridges. with particular empha­
sis on soil-structure mechanics and its influence on bridge response.

4. Review seismic design criteria for new bridges in the eastern and central United States.

The end product of the Bridge Project will be a collection of design manuals, pre-standards and
design aids which will focus on typical eastern and central United States highway bridges. Work
begun in the Bridge Project has now been incorporated into the Higbway Project.

The protective and intelligent systems program constitutes one ofthe important areas ofresearch
in the Bridge Project. Current tasks include the following:

I. Evaluate the perfonnance of full-scale active bracing and active mass dampers already in
place in tenns of perfonnance, power requirements, maintenance, reliability and cost.

2. ComplU'e passive and active control strategies in tenns of structural type, degree of
effectiveness. cost and long-tenn reliability.

3. Perfonn fundamental studies of hybrid control.
4. Develop and test hybrid control systems.

The design ofearthquake resistant structures shouldalways consider the possible use ofprotective
and intelligent devices to enhance their energy absorbing capacity or isolate their dynamic
characteristics away from the damaging frequency range ofan earthquake.

This report describes the results ofan experimental studyofthe behavior ofa bridge seismic sliding
isolation system consisting offlat sliding bearings and fluid restoring force/damping devices.
Earthquake simulator tests have been performedon a model bridge structure both isolated with this
system and non-isolated The experimental results demonstrate a marked increase ofthe capacity
ofthe isolated bridge to withstand earthquakeforces. Analytical techniques are used to predict the
dynamic response of the system and the obtained results are in very good agreement with the
experimental results.
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ABSTRACT

This report describes the results of an experimental study of the behavior of a bridge

seismic sliding isolation system consisting of flat sliding bearings and fluid restoring

force/d~mping devices. Earthquake simulator tests have been performed on a model

bridge structure both isolated with this system and non-isolated. The experimental results

demonstrate a marked increase of the capacity of the isolated bridge to withstand

earthquake forces. Analytical techniques are used to predict the dynamic response of the

system and the obtained results are in very good agreement with the experimental results.
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SECTION 1

INTRODUCTIuN

Seismic isolation systems are typified by the use of e~ther elastomeric or sliding bearings.

Elastomeric isolation systems have been used in the seismic isolation of buildings in Japan

and the United States (Buckle 1990, Soong 1992, Kelly 1993). Several other countries,

such as New Zealand and Italy among others, have a number of applications of

elastomeric isolation systems in buildings (Buckle 1990, Martelli 1993).

Sliding isolation systems in buildings have been widely used in the fonner Soviet Union,

where over 200 buildings are now seismically isolated (Constantinou 19918, Eisenberg

(992). In Japan, Taisei Corporation constructed three buildings on the TASS sliding

isolation system (Kawamura 1988, Constantinou 1991 a). In the United States, sliding

isolation systems have recently been selected for the retrofit of three buildings (Soong

1992, Kelly 1993). In particular, spherical sliding or FPS bearings (Zayas 1987, Mokha

1990b and 1991) have been selected for the retrofit of the U.S. Court of Appeals building

in San Francisco. This historic structure with a floor area of 31 500m2
, will be, when

completed, the largest base-isolated structure in the U.S. and one of the largest in the

world (Soong 1992, Palfalvi 1993).

Seismic isolation of bridge structures has been widely implemented in New Zealand and

Italy (Buckle 1990, Medeot 1991, Martelli 1993). While in New Zealand the application

is exclusively with elastomeric systems, in Italy the application is primarily with sliding

systems. Over 1SO kIn of isolated bridge deck in Italy is supported by sliding bearings

together with various forms of restoring force and energy dissipation devices (Medeot

1991, Constantinou 1991a).

Japan has over 100 concrete railway bridges of the Shinkansen supported by sliding

bearings together with viscous fluid devices, called the KP-stoppers, for restricting

displacements within acceptable limits (Buckle 1990, Constantinou 1991a). This system is

regarded as an early fonn of sliding isolation system.
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More recently. Japan moved towards a cautious implementation of modern seismic

isolation systems in bridges. So far the application is restricted to only longitudinal

isolation using elastomeric systems (Kawashima 1991).

The application of seismic isolation to bridges in the U.S. followed an interesting

development. Until 1989. only six bridges were isolated, of which five were retrofit

projects in California and one was a new construction in Illinois (Buckle 1990). While the

1989 Lorna Prieta earthquake resulted in an accelerated implementation of seismic

isolation systems to buildings. this has not been the case in bridges. Rather, we observe a

renewed interest and new applications of bridge seismic isolation following the

development of specifications for seismic isolation design (ICBO 1991, AASHTO 1991)

and the adoption of seismic design guidelines for bridges in the entire U.S. The lack of

specif!:;ations for the design of seismic isolated structures was regarded as an impediment

to the application of the technology (Mayes 1990). Today (January 1994), 57 isolated

bridges of total deck length exceeding 1~ km are opened to traffic or they are in either the

construction or in the design process in the U.S. The isolation system of these bridges

consists of either lead-rubber bearings or sliding bearings with restoring force devices and

sliding bearings with yielding steel devices. Interestingly, the majority of these bridges are

located in the Eastern United States.

While seismic isolation systems found application to over 200 bridges, large scale testing

of bridge isolation systems has been so far limited to three studies which concentrated on

e1astomeric systems (Kelly 1986, Kawashima 1991) and one specific sliding system

(Constantinou 1991a). All three studies were restricted to models with rigid piers or

abutments and rigid decks. The effects of pier flexibility, pier strength, deck flexibility and

distribution of isolation elements could not be studied in these experimental programs.

Rather, these effects were studied by analytical techniques and found to be significant

(Constantinou 19911, Kartoum 1992).

The study reported herein was carried out as part of the NCEER-Taisei Corporation

research project on bridge seismic isolation systems. This project included the
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development of advanced sliding isolation systems for bridges and a comprehensive testing

program utilizing a flexible pier model. This report concentrates on one of these systems,

which consists of flat sliding bearings and fluid restoring force/damping devices. Results

for other sliding isolation systems studied under this project have been reported by

Constantinou 1993 and Tsopelas 19?4.
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SECTION 2

NCEER-TAISEI CORPORAnON RESEARCH PROJECT ON BRIDGE

SLIDING SEISMIC ISOLATION SYSTEMS

In 1991, the National Center for Earthquake Engineering Research and Taisei Corporation

began a collaborative research project on the development and verific~tion of advanced

sliding seismic isolation systems for bridges (Constantinou 1992). The project included

also the study of established sliding isolation systems such as the Friction Pendulum (or

FPS) system (Zayas 1987, Mokha 1990b and 1991, Constantinou 1993) and the lubricated

sliding bearinglhysteretic steel damper system used in a large number of bridges in Italy

(Medeot 1991, Mariani 1991).

The project had two portions: one concentrated on active systems and was carried out at

Taisei Corporation and Princeton University, and the other concentrated on passive

systems and was carried out at the University at Buffalo and Taisei Corporation. The

BuffalolTaisei portion of the project had the objective of producing a class of advanced

passive sliding seismic isolation systems by modifying andlor adapting existing technology.

Particular emphasis has been given to the adaptation and use of aerospace and military

hardware in either the form of restoring force and damping devices or in the form of high

performance composite materials in the construction of sliding bearings. The following

systems were experimentally studied:

(1) Flat sliding bearings consisting ofPTFE or PTFE-based composites in contact with

polished stainless steel (coefficient of sliding friction at high velocity of sliding in

the range of0.07 to 0.15) and in combination with

(a) Rubber restoring force devices,

(b) Rubber restoring force devices and fluid viscous dampers,

(c) Wire rope restoring force devices, and
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(d) Fluid restoring force/damping devices.

(2) Spherically shaped FPS sliding bearings.

(3) Flat lubricated PTFE-stainless steel sliding bearings in combination with yielding

E-shaped mild steel devices.

This report contains the results of the experimental study, interpretation of the results and

analytical modeling of systems consisting of flat sliding bearings and fluid restoring

force/damping devices.
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SECTION 3

ISOLAnON SYSTEM

3.1 Design Requirements

The studied isolation systems consisted of two components :

(I) Flat sliding bearings to support the weight of the deck and provide a mechanism

for energy dissipation.

(2) Restoring force/damping devices for providing restoring force, that is, recentering

capability and preload for eliminating permanent displacements.

The two components of the isolation system provided load carrying capacity, restoring

force capability and hysteretic and viscous damping which were not interrelated. This

facilitated optimum performance for specific design requirements.

The specific design requirements of the isolation system were to minimize the transmission

of force to the substructure, that is piers and foundation, while bearing displacements in

the scale of the model (length scale factor equal to 4) did not exceed 50 mm and

permanent displacements were nearly zero. These requirements were to be met for

seismic motions representative of bridge design spectra in California (CalTrans) (Gates

1979) and in Japan (Level 2) (CERC 1992) for all ground conditions. Furthermore, the

performance of the isolated bridge should be better, in terms of transmission of force to

the substructure, than a comparable non-isolated bridge under weak seismic excitation,

such as the Japanese Level 1 motions (CERe 1992).

The severe requirement on the maximum bearing displacement (50 mm in the scaled model

or 200 mm in prototype scale) under strong seismic excitation reflects some design and

economic considerations in bridge seismic isolation. A maximum bearing displacement of

200 mm allows the use of short multidirectional expansion joints and eliminates the need

for knock-otT elements. Short expansion joints are less expensive, require less

maintenance and produce less noise on automobile crossing than long ones.
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3.2 Sliding Bearings

Four multidirectional sliding bearings of the disc type were used. Illustrated in Figures 3-1

and 3-2, this bearing consisted of a bottom plate which was supported by a high hardness

Adiprene disc and a shear restriction mechanism. The disc provided rotational capability

to the bottom plate so that the sliding interface was always in full contact.

The sliding interface consisted of austenitic stainless steel, confonning to ASTM A-240,

type 304 requirements and polished to mirror finish. The roughness of the polished

stainless steel surface was measured with a Surtronic 3P instrument (stylus radius=2.S Jlm,

cutofflength=0.8 mm, traverse length=4.S mm) and found to be 0.04 Jlm Ra (Arithmetic

Average, AA. or Center Line Average, CLA).

The bottom plate of the sliding bearing was delivered with a circular recess, which could

accept plates faced with PTFE or other materials. This facilitated easy replacement of the

sliding interface in order to achieve friction coefficients at large velocity of sliding in the

range of 0.07 to 0.15. Specifically, three different interfaces were used in the

NCEER-TAISEI research program (Tsopelas 1994). However, in the testing of this

isolation system only the high friction interface was used. The material was unfilled PTFE

under pressure of 5 MPa (designated as bearing TI). Prior to conducting the tests of the

system with fluid restoring force/damping devices, the bearings were used in about 100

seismic and identification tests which were reported in Tsopelas, 1994. During these tests

the coefficient of friction at high velocity of sliding dropped gradually from an initial value

of 0.15 to a final value of 0.14. This is illustrated in Figure 3-3 which depicts recorded

values of the coefficient of sliding fiiction as function of sliding velocity. It may be seen

that in the initial identification tests and during testing of the test series IDRUN (reported

in Tsopelas 1994) the coefficient of friction at high velocity of sliding is 0.15. However,

during the tests that foUowed (series IDRUN for the system reported herein) the friction

coefficient has the value of 0.14. This behavior is consisted with observations made by

Mokh&, 1988.
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WITH PTFE OR PTFE-BASED
COMPOSITE
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I
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Figure 3-1 Sliding Disc Bearing Design.

Figure 3-2 View of Sliding Disc Bearing.
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The coefficient of sliding friction, Il, followed the relation (Constantinou 1990a)

1.1 =!max -ifmax -!min)exp(-alul) (3-1)

where !""." is the coefficient of friction at high velocity of sliding, !""" is the coefficient

of friction at essentially zero velocity of sliding, a is a parameter controlling the variation

of the coefficient of friction with velocity of sliding and u is the velocity of sliding. A
comparison of experimental results on the coefficient of thction to predictions of the

calibrated model ofEquation (3-1) is presented in Figure 3-3. The parameters are listed in

Table 3-1.

Table 3-1 Properties of Sliding Disc Bearinp

Bearing Characterization of Condition Material Contact Bearing a
Friction Area Pressure I_ I_ (slm)

(mm1 (MPa)

Tl High Friction (HF) First 100 Unfilled PTFE 7090 5.0 0.150 0.055 23.7
Tests

Tl High Friction (HF) Subsequent Unfilled PTFE 7090 5.0 0.140 0.060 24.0
Tests

400300

. .

- fmu. 0.15, PAESSUflE 5.0 MPa (0.751<1I)
• INTlAL ID TESTS (tWWONlC MOTIOM)
• SEISMIC TESTS (IRDRUN)
.. IDTESTS FOLLOWINO 10 SEISMIC TESTS (IDAUN)
C ID TESTS FOLLOWINO 121 SE1SUIC TESTS (TDRUN)

.. .., fINx. 0.14. PAESSURES.O'" (0.751<1I)

100

• •

0.18

0.15
z
0

f3 0.12
if
IL
IL
0

0.09!z
w
(3
ii: 0.06IL
w

8
0.03

0.00
0 200

VELOCITY (mm/s)

Figure 3-3 Coefficient of Friction IS Function of Slidini Velocity of Sliding Disc
Bearinp.
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3.3 fluid Restoring ForceIDamping Devices

Two fluid restoring force/damping devices were coMected between the deck and the two

piers. The construction of these devices is illustrated in Figure 3-4. Each device had a

pin-to-pin length of 380 mm. outside diameter equal to 44 mm, weight equal to 1.7 Kg,

stroke of ±50 mm and output force of about 13.5 kN at peak stroke under dynamic

conditions. Typical force-displacement loops of one device under static and dynamic

loading conditions are shown in Figure 3-5.

Each device features a preload FtJ=4.75 leN, stiffitess KtJ (slope for forces exceeding the

preload) of about 100 N/mm and a viscous force component. Furthennore, the device is

double-acting with identical properties in tension and compressiol1. The preload was

selected to be slightly more than the minimum friction force in the isolation system. That

is, 2Fo (for two devices) equals 9.5 leN, whereas the minimum friction force is I ... Wd

(Wd=143 kN, deck weight) or O.06x143 = 8.58 kN. Under these conditions the two

devices were capable ofrecentering the bridge and eliminate permanent displacements.

PISTON HEAD
WITH ORIF IC~S

CYL I/IOER SLEEVE

Figure 3-4 Construction of Fluid Restoring ForteIDampinl Device.
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·30
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-so

Figure 3-5 Force-Displacement Relationsbip of Fluid Restoring ForcelDamping
Device.

The devices are compressible fluid springs which are pressurized in order to develop the

preload_ Furthermore, fluid orificing is utilized to produce viscous damping force. The

principles of operation of the devi«.;eS are illustrated in Figure 3-6. A hydraulic cylinder is

completely filled with silicone oil. A rod of area A, is forced into the cylinder. Thus, the

volume of the fluid is reduced by A,u, u being the imposed rod motion. The

overpressure p in the cylinder is

(3-2)

and is related to the volume change Ii.V = A,u

p=KAV
V

(3-3)

where K is the fluid bulk modulus and V is the fluid volume.
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U
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Figure 3-6 Principles or Operation or Fluid Restoring ForceIDamping Device.

Therefore,

F=KA~u
V

(3-4)

This relation is depicted in Figure 3-7(a). In general, this relation is nonlinear due to the

dependency of the bulk modulus to the total pressure Pr and the fact that volume V is not

constant but rather equal to Va-A, u, where Va is the fluid volume at zero displacement.

More accurately, Equation (3-4) should be written as

where KCpr) is the pressure dependent bulk modulus.

(3-5)

Friction in the seal of the devices alters the foree-displacement relation to the form

depicted in Figure 3-7(b). By pressurizing the device to an initial pressure of Po' a
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preload Fa develops

Fa =A,Pa (3-5)

r

This preload must be exceeded for the rod to move. The resulting force-displacement

relation is shown in Figure 3-7 (c).

r

(0)
u

FRICTION
or

SEAL

(b)
u

F

(c)
u u

(d)

FigUR 3-7 Components of Force in Fluid Ratorinl FortelDampinl Device.
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The piston head supports the rod and provides resistance to fluid transfer across the head

during stroking. The area and shape of the orifices on the piston head determine the level

and nature of the developed viscous force. This viscous force is, of course, related to the

velocity of the piston rod. A complete force-displacement loop is depicted in Figure

3-7(d). It may be noted that the loop in this figure is ShOY/l1 with the viscous force being

more in one direction than the opposite direction ( this may be also seen in actual loops of

the tested device in Figure 3-5). This behavior is produced by utilizing additional orifice

area in only one dirl'!ction. The behavior is desirable because it provides high damping

force when the stroke increases, that is when needed, while it provides low damping force

on return.

This type of compressible fluid restoring force/damping device has been used by the U. S.

Military since the 1970's. The device that was used in these tests is virtually the same as

that used as the arresting hook centering spring-damper on the carrier based Lockheed S-3

Viking aircraft. Other applications include those of weapons grade shock isolation

systems for the NATO MK49 ring laser gyro navigator, the shipboard version of the

sparrow missile, the MX missile and the Seawolf submarine. Output force ranges for

these applications are between 1 and 1500 kN.

Furthermore, compression-only versions of these devices with designs dating prior to

1970 are still used as shock absorbers in industrial applications. Moreover, such

compression-only shock absorbers have been used in a number of bridge applications in

Italy (Grenier 1991). The devices were used as shock absorbers for preventing impact of

the deck on th~ abutments. One application described by Grenier, 1991 is on a 25000 ton

bridge which utilizes four compression only shock absorbers, each with 500 ton peak

output force at displacement of 500 rom. Thus, the peak force exerted by the shock

absorbers on the deck is 1000/25000 = 0.04 times the weight. This force is very small but

probably appropriate for the rather weak seismisity of the area of application and the

allowed large displacement (500 mm). In contrast, the design of the isolation system in

the tests described herein was based on a peak force of nearly 0.19 times the weight at

displacement (in prototype scale) of 200 rnm. These differences are the result of the
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significantly stronger seismic motions utilized In the tested system and the stringent

displacement constraints.

The design of the isolation system in the tested model was based on the following

considerations:

(a) Preload of 9.5 kN (for two devices) for eliminating permanent displacements.

This was based on the assumption that f min equals to 0.06.

(b) Peak force in the isolation system at displacement of 50 mm equal to about 0.33

of the deck weight. For force of 13.5 kN in each device and assumed value of

f max= 0.15, the peak force is equal to about 0.33W (W = 143 kN, deck weight).

Thus, for displacements of up to 50 rom (or 200 rom in prototype scale) the force

in the isolation system should be close to the minimum value specified in the

Japanese design specifications for the Level 2 earthquake (CERC 1992). It

should be noted that the Japanese specifications require the pier design to be based

on a minimum force of 0.3W even when pier inelastic behavior occurs.

3.4 Behavior of Isolation System

A number of identification tests were conducted in order to determine the

force-displacement characteristics of the isolation system. For this purpose the piers of the

bridge model were braced for increasing their stifthess and the deck was connected to a

nearby erected reaction frame, while on the shake table. The shake table was then driven

at specified sinusoidal motion. Load cens measured the force developed in each restoring

force/damping device. Furthermore, load cells, which supported the sliding bearings,

monitored the friction force.

Figures 3-8 to 3-10 show recorded loops of friction force in each of the sliding

bearings, the force in the two restoring force/damping devices and of the total force.

Tests were conducted at frequencies of 0.03, 0.4 and 1.0 Hz, amplitude of25 rom and for

five cycles. The force in Figures 3-8 to 3-10 is normalized either by the axial load on

each sliding bearing (35.75 leN), in order to directly give the friction coefficient, or by the
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deck weight (143 kN) in the case of the force in the two devices and the total isolation

system force.

It may be seen in Figures 3-8 to 3-10 that the friction force-displacement loops exhibit a

wavy form which has not been observed in the seismic test (see Appendix A). This is not

the actual behavior of the sliding bearings but rather it is the result of flexibilities in the

piers and the laterally supporting reaction frame. In the higher frequency testing, these

flexibilities induced additional high frequency components on the imposed sinusoidal

motion, which caused the irregular wavy form in the friction and total force loops.
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SECTION 4

MODEL FOR EARTHQUAKE SIMULATOR TESTING

4.1 Bridge Model

The bridge model was designed to have flexible piers so that under non-isolated conditions

the fundamental period of the model in the longitudinal direction is 0.25s (or O.5s in

prototype scale).

The bridge model is shown in Figure 4-1. At quarter length scale, it had a clear span of

4.8m (15.7 feet), height of2.53m (8.3 feet) and total weight of 157.8 kN (35.5 kips). The

deck consisted of two AlSC W14x90 sections which were transversely connected by

beams. Additional steel and lead weights were added to reach the model deck weight of

143 kN (32.1 kips), as determined by the similitude requirements. Each pier consisted of

two AlSC TS 6 x 6 x 5/16 columns with a top made of a channel section which was

detailed to have sufficient torsional rigidity. The tube columns were connected \0 beams

which were bolted to a concrete extension of the shake table. In this configuration, the

column loads were transferred at a point located 0.57 m (1.87 ft) beyond the edge of the

shake table. While the overhangs of the concrete shake table extension could safely carry

the column load of over 80 kN (18 kips), they had some limited vertical flexibility which

during seismic testing resulted in vertical motion of the piers and the supported deck.

The piers were designed to have in their free standing cantilever position a period of O. 1 s

(0.2 s in prototype scale) when fully loaded (load cells and bottom part of bearings).

Furthermore, the piers were detailed to yield under the combined effects of gravity load

(40 kN each column) and 50 percent of the gravity load applied as horizontal load at each

bearing location. The stiffuess of each pier was verified by pulling the piers against each

other on the shake table. During the test the piers were also proof-loaded to their rated

capacity and the results were used to calibrate the strain gage load cell of each column.

Identification of the model was conducted by exciting the shake table with a 0-20 Hz

banded white noise of 0.03g peak acceleration. Acceleration transfer functions of each
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free standing pier and of the assembled bridge model with all bearings fixed against

translational movement (but not rotation) revealed the following properties: fundamental

period of free standing pier equal to 0.096s and fundamental period of non-isolated bridge

in the longitudinal direction equal to 0.26s. These values are in excellent agr(Xment with

the design values of O.ls and 0.255, respectively.

Damping in the model was estimated to be 0.015 of critical for the free standing piers and

0.02 of critical for the entire model in its non-isolated condition. Identification tests of the

model were also conducted with white noise input of O.lg peak table acceleration to

obtain a fundamental period ofO.25s and corresponding damping ratio of 0.04 of critical.

The increased damping was the result of hysteretic action, not in the columns of the model

but in the overhangs of the concrete extension of the shake table. During shake table

testing of the non-isolated model, the recorded loops of shear force versus displacement of

the piers displayed hysteretic action (see Section 5). Estimates of damping ratio from

these loops were in the range of 0.04 to 0.08 of critical. Thus while the columns of the

piers remained elastic, the pier system displayed realistic hysteretic action with equivalent

damping ratio of at least 5 percent ofcritical.

The design of the model bridge was based in the similitude laws for artificial mass

simulation (Sabnis 1983). A summary of the scale factors in the model is presented in

Table 4-1.

4.2 Instrumentation

The instrumentation consisted of load cells, accelerometers and displacement transducers.

Figure 4-2 shows the overall instrumentation diagram, whereas Figures 4-3 and 4-4 show

the instrumentation diagrams for accelerometers and displacement transducers,

respectively. A list of monitored channels and their corresponding descriptions are given

in Table 4-11. A total of 55 channels were monitored.
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Table 4-1 : Summary of Scale Facton in Bridge Model

QUANTITY DIMENSION SCALE FACTOR]

Linear Dimension L 4

Displacement L 4

Velocity LT1 2

Acceleration LT2 1

Time T 2

Frequency T 1 0.5

Force F 16

Pressure FL-2 1

Strain --- I

PROTOTVPEIMODEL

4.3 Test Configurations

Testing of the bridge model was performed in four different bridge configurations. Figure

4-5 shows the four bridge configurations. They were:

(1) The sliding bearings were locked by side plates to represent a non-isolated bridge,

as shown in Figure 4-6. In this configuration, the structure was identified in tests

with banded white noise table motion. Furthermore, a selected number of seismic

tests was conducted.

(2) Braces were installed to stiffen the piers (see Figure 4-7) and the deck was

connected by st:ff rods to a nearby reaction frame. In this configuration, the shake

table was driven j" displacement-controlled mode with specified frequency and

amplitude of harmonic motion. This motion was nearly the motion experienced by

the sliding bearings. Loops ofbearing horizontal force versus bearing displacement

were recorded and used to extract the frictional properties ofthe sliding bearings.

(3) Both piers were stiffened by braces so that they represented stiff abutments. In this

configuration, the model resembled a single span isolated bridge (see Figure 4-7).
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Table 4-11 List of Channels (with reference to Figures 4-2 to 4-4)

CHANNEL NOTATION INSTRUMENT RESPONSE MEASURED

I AVDSE ACCL Deck Vertical Accel.-South East Comer

2 AVDCE ACCL Deck Vertical Accel.-East Side at Center

J AVDCW ACCL Deck Vertical Accel.-West Side at Center

4 AVDNE ACCL Deck Vertical Accel.-North East Comer

5 AHDNE ACCL Deck Horizontal Acecl.-North East Comer

6 AHDNW ACCL Deck Horizontal Accel.-North West Corner--
7 AHPNE ACCL Pier Horizontal Acecl.-North East

8 AHPNW ACCL Picr Horizontal AcccJ.-North West

9 AHPSE ACCL Pier Horizontal Accel,-South East

10 AHPSW ACCL Pier Horizontal Accel.-South West

II AHTNC ACCL Table Horizontal AcccI.-North Side at Center

12 AVTSC ACCL Table Vertical Accel.-South Side at Center

IJ AVTNC ACCL Table Vertical Accel.-North Side at Center

14 ATSD ACCL Deck Transverse Accel.-South Side

15 ATND ACCL Deck Transverse Accel.-North Side

16 ATSP ACCL Pier Transverse Accel. -South

I7 ATNP ACCL Pier Transverse Accel.-North

III DHDNC DT Deck Total Horizontal Displ.-North Side Center

19 DHBSF DT Bearing Horizontal Displ.-South East

20 DHBSW DT Bearing Horizontal Displ.-South West

21 DHBNE DT Bearing Horizontal DispI.-North East

22 DHBNW DT Bcaring Horizontal Displ. -North West

23 DHPNE DT Pif:'r Total Horizontal Displ.-North East

24 DHPNW DT Pier Total Horizontal DispI.-North West

25 DHTNC DT Table Horizontal DispI.-North Side at Center

26 DHTDS DT Displ. of Rest. ForcelDarnping Device South Pier

27 DHTDN DT Displ. of Rest. ForcelDamping Device North Pier

28 DHBAV DT Bearing Horizontal Average DispI.

29 DLAT DT Table Horizontal Displ.

30 ALAT ACCL Table Horizontal AcceI.

31 DVRT DT Table Vertical Displ.

32 AVRT ACCL Table Vertical AcceL

33 DROL DT Table Rolling Displ.

34 AROL ACCL Table Rolling Accel.

ACCEL=Accelerometer, DT=Displacement Transducer
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Table 4-0 (Cont'd)

CHANNEL NOTATION INSTRUMENT RESPONSE MEASURED

35 SXI LOAD CELL Shear Bearing Force-South West

36 SX2 LOAD CELL Shear Bearing Force-South East

37 SX3 LOAD CELL Shear Bearing Force-North West

38 SX4 LOAD CELL Shear Bearing Force-North East

39 SCNE LOAD CELL Column Shear Force-North East

40 SCSE LOAD CELL Column Shear Force-South East

41 SCNW LOAD CELL Column Shear Force-North West

42 SCSW LOAD CELL Column Shear Force-South West

43 NISW LOAD CELL Axial Bearing Force-South West

44 N2SE LOAD CELL Axial Bearing Force-South East

45 N3NW LOAD CELL Axial Bearing Force-North West

46 N4NE LOAD CELL Axial Bearing Force-North East

47 SCN LOAD CELL Average Column Shear Force·North

48 SCS LOAD CELL Average Column Shear Force-South

49 DHDSW DT Deck Total Horizontal DispI.-South West Comer

50 DHDSE DT Deck Total Horizontal Displ.-South East Comer

51 LCTDS LOAD CELL Force of Rest.ForcelDamping Device at South Pier

52 LCTDN LOAD CELL Force of Rest.ForcelDamping Device at North Pier

53 LCNE LOAD CELL East Friction Force-North East Comer(ID-test)

54 LCNW LOAD CELL West Friction Force-North West Comer(ID-Test)

55 LCTOT LOAD CELL Average Friction Force(lD-Test)

ACCEL=Accelerometer, DT=Displacement Transducer

(4) A configuration with two flexible piers which resembled portion of a multiple span

bridge between expansion joints. A view of this configuration on the shake table is

shown in Figure 4-8.

A view of the isolation system with details of installation is shown in Figure 4-9. A total

of 55 seismic tests were conducted with two combinations of bridge configurations.

These combinations are listed in Table 4-III.
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Figure 4-6 View of Bridge Model with Sliding Bearings Locked by Side Plates
(Configuration No.1).

4-11



/

./ t'
I JI.'~~-'
(~~

Fignrl' -t-7 '-i{'\\s of Bridgt' 'lode! in Configuration '0. 2 (Identification of
"-rictional I)ropt'rtit's of Sliding Bt'arings).

~-I:



Reproduced from
best available copy

..

l'iClIn' -t-S \ iI'" ofH"iclcl' \Iollt-I ill {onfiClIl'allOlI \\ilh I\\ol-Il'\ihk Pilon.

SI i I 11 '\( I I~ I

I ( ) \/) ( 'I I I

I )I ( f-.

.,.-.--

_._---------
I'll R

',,!...

l'iCllrl' -t- I
) 'i,'\\ of' I'olatillll "~'h'lIl \\ ilh !klaih of' In'lallalion or !'llIiil

I~(-qllrill~ !'urn' Uallll,inl!. Dl'\ in-'.

~ - 1 \



Table 4-11I Bridge and Isolation System Configurations

TEST No. NUMBER PIER CONDITION SLIDING RESTORING FORCE I
OF BEARINGS DAMPING DEVICES

TESTS (Type) (Number)

SOUTH NORTH SOUTH NORTH SOUTH NORTH
PIER PIER PIER PIER

TDRUNOI·24 24 STIFF STIFF Tl TI I I

TDRUN25-55 31 FLEXIBLE FLEXIBLE Tl TI I 1

4.4 Test Program

A total of SS eanhquake simulation tests were performed on the model bridge. Tests were

conducted with only horizontal input and with combined horizontal and vertical input.

The earthquake signals and their characteristics are listed in Table 4-IV. The earthquake

signals consisted of historic earthquakes and artificial motions compatible with:

(a) The Japanese bridge design spectra for Levelland Level 2 and ground conditions

1 (rock), 2 (alluvium) and 3 (deep alluvium) (CERC 1992). In Japan, it is required

that bridges are designed for two levels of seismic loading. In Level 1 seismic

loading, it is required that the bridge remains undamaged and fully elastic. In Level

2 seismic loading, inelastic behavior is permitted. Tables 4-V and 4-VI describe

the shapes of the 5%-damped acceleration spectra of the Japanese Levelland 2

motions.

(b) The California Department of Transportation (CalTrans) bridge spectra (Gates

1979). These motions were identical to those used in the testing of another bridge

model by Constantinou, 1991a.

Each record was compressed in time by a factor of two to satisfy the similitude

requirements. Figure 4-10 to 4-26 show recorded time histories of the table motion in

tests with input being the earthquake signals of Table 4-IV. The acceleration and

displacement records were directly measured, whereas the velocity record was obtained by

numerical differentiation of the displacement record. It may be observed that the peak

ground motion was reproduced well, but not exactly, by the table generated motion.
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Figures 4-10 to 4-26 also show the response spectra of acceleration of the table motions.

The 5% damped acceleration spectrum is compared to the spectrum of the target record

to demonstrate the good reproduction ofthe motion by the table.
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Table 4-IV Earthquake Motions Used in Test Program and Characteristics in Prototype Scale

NOTATION RECORD PEAKACC. PEAK VEL. PEAK DIS,
(g) (mm1sec) (mm)

EL CENTRO SOOE Imperial Valley, May 18 1940, Component 500E 0.34 334,50 108.70

TAFT N21E Kern County, July 21,1952, Component N21E 0.16 157.20 67.10

MEXICO N90W Mexico City, September 19, 1985 SCT building. Component N90W 0.17 605.00 212.00

PACOIMA SI6E San Fernando, February 9, 1971, Component SI6E 1.17 1132.30 365.30

PACOIMA S74W San Fernando, February 9, 1971, Component S74E 1.08 568.20 108.20

HACHINOHE N·S Tokachi, Japan, May 16, 1%8 Hachinohe, Component N-S 0.23 357.10 118.90

MIYAGlKEN OKI Miyaki, Japan, June 12, 1978 Ofunato-Bochi, Component E-W 0.16 141.00 50.80

AKITA N-S Nihonkai Chuubu, Japan, May 23, 1983 Component N-S 0.19 292.00 146.00

JP. LIGl Artificial Compatible with Japanese Level I Ground Condition I 0.10 215.00 90.00

JP. LIG2 Artificial Compatible with Japanese Level I Ground Condition 2 0.12 251.00 69.00

JP. LlG3 Artificial Compatible with Japanese Level I Ground Condition 3 0.14 274.00 132.00

JP. L2GI Artificial Compatible with Japanese Level 2 Ground Condition I 0.37 86400 526.00

JP. L2G2 Artificial Compatible with Japanese Level 2 Ground Condition 2 0.43 998.00 527.00

JP. L2G3 Artificial Compatible with Japanese Level 2 Ground Condition 3 0.45 1121.00 700.00

CALTRANS 0.6g A2 Artificial Compatible with CalTrans 0.6g 8O'-150'Alluvium Spectrum, NO.2 0.60 836,40 282.90

CALTRANS 0.6g 53 Artificial Compatible with CalTrans 0.6g 1O'-80'Alluviurn Spectrum. No.3 0.60 778.00 438.90

CALTRANS 0.6g R3 Artificial Compatible with CalTrans 0.68 R ~k Spectrum. No.3 0.60 571.00 342.40



Table 4-V Spectral Acceleration of Japanese Bridge Design Spectra, Levell

a.c. Spectral Acceleration (SIO) in units ofcm/sec2as Function of
Period T in units of seconds

T, < 0.1 O.I$Tj $1.1 1.1 < T,
I SIO = 431 T,I13 SIO=200 S10=220rr,

SIO ~160

T, <0.2 0.2$Tj $1.3 1.3 < T,
2 S = 427T I13 SIO=250 SIO=325rr,10 ,

SIO ~200

T, < 0.34 0.34$Tj $1.5 1.5 < T,
3 SIO = 430T,I13 SIO=300 S,o=450rr,

SIO ~240

Table 4-VI Spectral Acceleration of Japanese Bridge Design Spectra, Level 2

a.c. Spectral Acceleration (S20) in units of cm/sec2as Function of
Period T in units of seconds

T j $l.4 1.4<T,
1 S20=700 S2o=980rr,

T, <0.18 0.18$Tj $1.6 1.6 < T,
2 S20 = 1506T,l13 S2O=850 S2o=1360rr j

S20 ~700

T, <0.29 0.29$Tj $2.0 2.0<T,

3 S20 ~= 1511Tj
l13 s20=10oo S2o=2000rr j

S20 ~700
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SECTION 5

EARTHQUAKE SIMULATOR TEST RESULTS

5.1 Results for Non-isolated Bridge

Testing of the non-isolated bridge (see Figure 4-5, configuration 1 and Figure 4-6) was

conducted with only horizontal excitation. The experimental results for the bridge in its

non-isolated configuration are summarized in Table 5-1. For each test the peak values of

the table motion in the horizontal direction are given. The displacement and acceleration

were directly measured whereas the velocity was determined by numerical differentiation

of the displacement record. The peak pier drift is given as a percentage of the pier height

which was 1290.3mm. This is the length of the column excluding the stiffeners at the ends

(see Figure 4-1). The peak shear force is given as a fraction of the axial load carried by

the pier (71.5 leN each pier).

5.2 Results for Isolated Bridge

Tables 5-II list the earthquake simulation tests and model conditions in the tests of the

isolated bridge. The excitation in these tables is identified with a percentage figure which

represents a scaling factor on the acceleration, velocity and displacement of the actual

record. For example, the figure 200% denotes a motion scaled up by a factor of two in

comparison to the actual record.

Table 5-III presents a summary of the experimental results of the isolated bridge. The

tables include the following results:

(a) Displacement of bearings located at the south pier (see Figures 4-2 to 4-4). The

transducers monitoring the south bearing displacement were continuously

monitored and not initialized prior to each test. Thus, the instruments recorded

correctly the initial and permanent bearing displacements. Figure 5-1 shows an

example of bearing displacement time history. The initial displacement is the

permanent displacement in the previous test and the initial displacement in the

current test.
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Table 5-1 Summary or Ellperimenta. Results or Non-Isolated Bridge

PEAK TABLE MOTION DECK PIER SHEAR I PIER DRIFT
ACCEL. AXIAL LOAD RATIO (%)

TEST No. EXCITATION DISP. VEL. ACCEL. SOUTH NORTH SOUTH NORTH
(mm) (mm/sec) (g) (g)

FRUN05 EL CENTRO SooE 25% 5,8 40,0 0.095 0.25 0.266 0.271 N/A 0.381

FRUN06 TAFT N21 E 500!o 7,0 32,7 0.069 0.21 0,230 0.234 N/A 0.315

FRUN07 TAFT N21E 75% 10.5 47.7 0.102 0.25 0.273 0,278 N/A 0.385

FRUN08 JP LEVEL 1 G,C.l 100% 16.6 96.0 0.109 0.2] 0.231 0,222 N/A 0.346

FRUN09 JP LEVEL] G,C,2 10OO!o 17.3 113,6 0.110 0.26 0.280 0.269 N/A 0.414

FRUNIO JP LEVEL 1 G.C.3 100% 33.7 158.3 0.130 0.33 0.353 0,354 N/A 0,623

FRUNIl AKITA N-S 15% 25.1 J08.4 0.138 0.26 0.284 0.283 N/A 0.414

FRUNI2 HACHINOHE N-S 500/0 15.8 66.0 0.103 0.18 0.200 0198 N/A 0,311

FRUNI3 MIYAGIKEN OKI E-W 750/1 8.0 38,0 0.080 0.22 0.242 0,235 N/A 0,384

FRUNI4 MEXICO N90W 100% 51.7 303.1 0,169 0.26 0.286 0.284 N/A 0,522

FRUN15 JP LEVEL 2 G.C.I 25% 26.7 114.1 0.104 0.17 0.189 0.181 N/A 0,301

FRUNI6 JP LEVEL 2 G.C.2 25% 25.0 109.8 0,098 0,21 0.232 0.225 N/A 0,365

FRUNI7 IP LEVEL 2 G.C.3 25% 27.6 116.6 0,117 026 0.285 0.283 N/A 0497

FRUN18 PACOIMA S74W 13% 4,0 36,4 0.103 0.2 0.221 0.2]4 N/A 0.346

FRUNI9 PACOIMA S16E 13% 10.4 63,9 0,095 0.17 0.187 0.186 N/A 0,275

FRUN20 CALTRANS R3 0.6g 200!o 23,5 124.8 0.101 0.22 0,227 0.234 N/A 0389

FRUN21 CALTRANS S3 0.6g 20% 32, I 102.4 0.112 0.31 0,320 0.345 N/A 0.565

FRUN22 CALTRANS A2 0.6g 200!o 47,2 128.3 0.104 0.27 0.278 0.298 N/A 0.475



(b) Maximum travel ofbearings located at the North pier. The transducers monitoring

the Nonh bearing displacements were initialized prior to each test so that the initial

displacement appeared always as zero. Thus, only the maximum travel

(MAX.-INIT. in Figure 5-1) could be accurately obtained and not the initial and

permanent displacements.

+

I
IITIAL DISPLACEMENT (NT.)

'~(MAX.)
(MAX-NT.)

~f"tr ,I

r

f'J "-V" . L. TIME

PERMANENT DISPLACEMENT (PERM.)

Figure 5-1 Example or Bearing Displacement History.

(c) Isolation system shear force normalized by the carried weight (143 leN for total

shear force and 71.5 kN for shear force at each pier). The isolation system force at

each pier location was obtained from the sum of the recorded friction forces and

forces in the restoring force/damping devices. For example, the isolation system

force at the south pier location, Vs , was obtained from

Vs=Fft+Fg (5-1)

where Fp is the friction force in the two sliding bearings on top of the south pier

and Fir is the force in the restoring force/damping device. A similar equation is

5-3



valid for the isolation system force at the north pier location, VN . The total

isolation system force, V, was then derived from

(5-2)

Equations (5-1) and (5-2) were used to obtain time histories offorces Vs , VN and

V, from which the peak values were extracted and included in Table 5-III.

It should be noted that for a rigid deck the isolation system force could be directly

obtained from the deck acceleration measurement :

v= Wdad
g (5-3)

where Wd = 143 kN and ad is the recorded deck acceleration. However, the

deck had some flexibility which caused amplification of the recorded deck

acceleration. When Equation (5-3) was used, the loops of isolation system force

(as obtained from the deck acceleration) versus bearing displacement were wavy.

Since the recorded loops of friction force versus displacement did not exhibit a

similar wavy form, it was concluded that the recorded acceleration of the deck

contained additional components caused by the deck's flexibility.

An example of the errors which may be introduced by the use of the deck

acceleration is presented in Figure 5-2. The graph~ compare the recorded deck

acceleration to the measured isolation system force in three tests. For an ideal case

(infinitely rigid deck) the relation between the two quantities should have been a

straight line. In reality it is not. The deviation from the straight line increases with

increasing strength of excitation as a result of amplification of acceleration due to

the deck flexibility and measurement errors due to pier top rotation.

5-4
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(d) Device force normalized by the deck weight carried by each pier (71.5 kN). This

is the force in each of two restoring force/damping devices. This force was

measured directly from load cells placed at the side of the devices which was

connected to the deck. This setup was chosen to minimize any errors in the

measurements of the force that could be introduced from the acceleration of the

load cell (acceleration at the top of piers is higher than the acceleration

experienced by the deck ofthe bridge).

(e) Device displacement. The peak values of displacement of the devices at the south

and north piers are reported There displacements are not identical to the bearings

displacements. The minor difference between the two (see Table 5-11I) is due to

some small flexibility of the mounting arrangements of the restoring force/damping

devices to the deck of the bridge.

(f) Pier acceleration. The peak accelerations of the top of the south and north piers

are reported.

(g) Deck horizontal acceleration.

(h) Pier shear force normalized by axial load. Each column was instrumented with

strain gages to measure the shear force. The reported quantity is the sum of the

shear forces in the two columns of each pier divided by the axial load on each pier

(143/2=71.5 kN). The pier shear force is, in general, different than the isolation

system shear force. The two forces differ by the inertia force of the accelerating

part of the pier between the sliding interface and the location of the strain gages.

The pier shear force in the case of stiff piers could not be measured and is not

reported in the tables. It should be noted that in the case of stiff piers the columns

were braced (see Figures 4-1, 4-5 and 4-8), so that the force measured by the

strain gage load cells of the columns represented only part of the total pier shear

force.

5-6



(i) Pier drift ratio. This is the displacement of the top ofthe pier relative to the shake

table, divided by the length ofthe column (1290.3 mm).

During testing of the model bridge in its isolated condition it was observed that the

overhangs of the shake table extension, which supported the piers (see Figure 4-1),

underwent significant vertical motion even when only horizontal table motion was

imposed. The two overhangs did not move vertically in unison. Rather, the motion of the

two overhangs was anti-symmetric with the two sides moving with different amplitude and

content in frequency. It was concluded that this vertical motion of the overhangs was the

combined result of table-structure interaction, vertical flexibility of the overhangs and

differences in the vertical stifthess of the overhangs (it was later found that on one side of

the concrete table extension the reinforcement was misplaced).

The implications of this phenomenon were to increase the severity of the testing. In effect,

in all tests the piers experienced out-of-phase vertical input at their bases. This caused

changes in the vertical load carried by the sliding bearings, which in tum affected the

friction force of the bearings. This explains the differences in the isolation system shear

force, pier acceleration and pier shear force and drift between the south and north piers

(see Table S-III). Furthermore, it explains the mildly wavy nature of the recorded force

versus displacement loops of the isolation system (see Appendix A).

5-7
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T'" 5-lI Eart" S1mulMlon Tlltllnd Model CondlIionIln T.... with Sliding BNrIngl and Fluid Restoring Foraw'Damplng Devlcea

TEST PEAK TABLE MOTION PIER CONDITION BEARING BEARING FRICTIONAL

No. EXCITATION DIS. VEL. ACC. SOUTH NORTH MATERIAL PRESSURE (MPa PROPERTIES COMMENTS

(mm) (mmlsl lal SOUTH NORTH SOUTH NORTH fmax fmin

TDRUNOI EL CENTRO SOOE 100% 24.0 163.9 0.376 STIFF STIFF T1 T1 5.0 5.0 0.14 006

TDRUN02 EL CENTRO SOOE 200% 48.3 319.8 0.639 STIFF STIFF T1 Tl 5.0 5.0 0.14 0,06

TDRUN03 JP LEVEL 1G.C.l100% 17.2 106.7 0.119 STIFF STIFF T1 T1 5.0 5.0 0.14 006

TDRUN04 JP LEVEL 1G.C.2 100% 17.5 1118 0.131 STIFF STIFF T1 Tl 5,0 5.0 0.14 006

TDRUN05 JP LEVEL 1G.C.3 100% 34.4 169.4 0.172 STIFF STIFF T1 T1 5,0 5.0 0.14 006

TDRUN06 JP LEVEL 2G.C.ll00% 109.1 482.0 0.490 STIFF STIFF T1 T1 5.0 5.0 0.14 0,06

TDRUN07 JP LEVEL 2G.C.2 100% 101.9 448.3 0.504 STIFF STIFF Tl Tl 5.0 5.0 0.14 0.06

TDRUN08 JP LEVEL 2G.C.3 100% 112.2 502.9 0475 STIFF STIFF Tl 11 50 5.0 0.14 0.06

TDRUN09 TAFT N21 E200% 28.6 134.6 0.271 STIFF STIFF T1 TI 5.0 5.0 0.14 0.06

TORUN10 TAFT N21E 400% 57.5 264.8 0.554 STIFF STIFF T1 TI 5.0 5.0 0.14 0.06

TDRUN11 TAFT N21 E600% 86.1 416.8 0.865 STIFF STIFF T1 Tl 5.0 5.0 0.14 0.06

TDRUN12 HACHINOHE N-S 100% 32.4 139.0 0.244 STIFF STIFF T1 Tl 5.0 5.0 0.14 0.06

TDRUNI3 HACHINOHE N·S 200% 64.6 274.1 0445 STIFF STIFF 11 Tl 5.0 5.0 0.14 0.06

TDRUN14 HACHINOHE N·S 300% 96.9 412.8 0.638 STIFF STIFF 11 Tl 5.0 5.0 0.14 0.06

TDRUN15 PACOIMA S74W 100% 29.S 272.8 0.824 STIFF STIFF T1 Tl 5,0 5.0 0,14 0.06

TDRUN16 CALTRANS R30.6g 100% 96.0 307,5 0.674 STIFF STIFF 11 11 5.0 5.0 0,14 0,06

TDRUN17 CALTRANS 53 0.6g 100% 119.9 431,3 0.911 STIFF STIFF T1 Tl 5.0 5.0 0,14 0.06

TDRUNI8 CAlTRANS A2 0.6g 100% 125.9 554.8 0.625 STIFF STIFF T1 T1 5.0 5.0 0.14 O.lltl

TDRUN19 MEXICO N90W 100% 52.7 310.2 0.178 STIFF STIFF T1 T1 5.0 5.0 0,14 006

TDRUN20 MEXICO N90W 120% 63.3 376.5 0.220 STIFF STIFF 11 T1 5.0 5.0 0.14 0.06

TDRUN21 PACOIMA SI6E 75% 61.3 363.6 0.629 STIFF STIFF Tl T1 5.0 5.0 0.14 006

TDRUN22 PACOIMA SI6E 85% 69.2 411.5 0.717 STIFF STIFF T1 T1 5.0 5.0 0.14 0.06

TDRUN23 TAFT N21E HtV 400% 57.7 2692 0.534 STIFF STIFF Tl T1 5.0 5.0 0.14 006

TDRUN24 EL CENTRO SOOE H+V 200% 48.1 317.4 0.648 STIFF STIFF T1 T1 5.0 5.0 0.14 0.06

TDRUN25 El CENTRO SOOE 100% 24.0 156.1 0.259 FLEXiBlE FLEXiBlE T1 T1 5.0 5.0 0,14 0.06

TDRUN26 El CENTRO SOOE 200% 47,6 308.5 0.5n FLEXiBlE FlexiBlE Tl TI 5.0 5.0 0,14 0.06
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Tillie 5-11 Confd

TEST PEAK TABLE MOTION PIER CONDITION Bf.ARING BEARING FRICTIONAL

No. EXCITATION DIS. VEL. ACC. SOUTH NORTH MATERIAL PRESSURE (MPa\ PROPERTIES COMMENTS

lmml (mmlsl lal SOUTH NORTH SOUTH NORTH Imax lmin

TDRUN27 EL CENTRO SOOE 250% 59.3 389.3 0.746 FLEXIBLE FLEXIBLE T1 T1 5.0 5.0 0.14 0.06

TDRUN28 TAFT N21E 200% 28.8 131.6 0.283 FLEXIBLE FLEXIBLE T1 Tl 5.0 5.0 0.14 0.06

TDRUN29 TAFT N21E 400% 57.6 268.0 0.564 FLEXIBLE FLEXIBLE T1 Tl 5.0 5.0 0.14 0.06

TDRUN30 TAFT N21E 500% 71.8 335.7 0.713 FLEXIBLE FLEXIBLE T1 Tl 5.0 5.0 0.14 0.06

TDRUN31 HACHINOHE NoS 200% 64.1 277.7 0.424 FlEXIBLE FLEXIBLE T1 Tl 5.0 5.0 0.14 0.06

TDRUN32 HACHINOHE N·S 300% 96.0 412.1 0.608 FLEXIBLE FLEXIBLE T1 T1 5.0 5.0 0.14 0.06

TDRUN33 PACOIMA S74W 100% 29.5 252.7 0.862 FLEXIBLE FLEXIBLE T1 Tl 5.0 5.0 0.14 0.06

TDRUN34 CALTRANS R3 0.6g 100% 96.9 305.4 0.609 FLEXIBLE FLEXIBLE T1 Tl 5.0 5.0 014 0.06

TDRUN35 CALTRANS 53 0.6g 100% 119.4 4169 0.652 FLEXIBLE FLEXIBLE Tl Tl 5.0 5.0 0.14 0.06

TDRUN36 CALTRANSA20.6g 100% 125.6 553.7 0.506 FLEXIBLE FLEXIBLE Tl Tl 5.0 5.0 0.14 0.06

TDRUN37 JPLEVEL 1G.C.l1oo% 17.3 102.9 0.100 FLEXIBLE FLEXIBLE T1 T1 5.0 5.0 0.14 0.06

TDRUN38 JP LEVEL 1G.C.2100% 17.8 109.8 0.108 FLEXIBLE FLEXiBlE T1 T1 5.0 5.0 0.14 0.06

TDRUN39 JP LEVEL 1G.C.3100% 34.3 163.0 0.111 FLEXIBLE FLEXIBlE Tl T1 5.0 5.0 0.14 0.06

TDRUN40 JPLEVEL2G.C.175% 81.8 357.8 0.280 FLEXIBLE FLEXIBLE Tl T1 5.0 50 0.14 0.06

TDR1JN41 JP LEVEL 2G.C 1100% 109.3 474.1 0.390 FLEXIBLE FLEXiBlE T1 T1 5.0 5.0 0.14 0.06

TDRUN42 JP LEVEL 2G.C2 100% 101.9 446.4 0.405 FLEXIBLE FLEXIBLE T1 T1 5.0 5.0 0.14 0.06

TDRUN43 JP LEVEL 2G.C3 100% 112.3 498.4 0.422 FLEXIBLE FLEXiBlE T1 T1 5.0 5.0 0.14 006

TDRlJN44 PACOIMA S16E 50% 41.2 246.9 0383 FLEXIBLE FLEXIBLE T1 T1 5.0 5.0 0.14 0.06

TDRUN45 PACOIMA S16E 75% 61.0 366.6 0556 FLEXIBLE FLEXIBLE T1 T1 5.0 5.0 0.14 0.06

TDRUN46 MEXICO N90W 100% 52.8 309.1 0.184 FLEXIBLE FLEXIBLE Tl T1 50 5.0 0.14 0.06

TDRUN47 MEXICO N90W 120% 63.3 375.1 0.221 FLEXIBLE FLEXIBLE T1 T1 5.0 5.0 014 0.06

TDRUN48 AKITA NoS 100% 34.2 146.7 0.168 FLEXIBLE FLEXIBLE T1 Tl 5.0 5.0 014 0.06

TDRUN49 AKITA NoS 200% 68.3 295.2 O.~ FLEXIBLE FLEXIBLE T1 T1 5.0 5.0 0.14 0.06

TDRUN50 MIYAGIKENOKI E·W 100% 12.4 739 0.122 FLEXIBLE FLEXiBlE T1 T1 5.0 5.0 0.14 0.06

TDRUN51 MIYAGIKENOKI E·W 200% 24.8 144.5 0.248 FLEXIBLE FLEXIBlE T1 T1 5.0 5.0 0.14 0.06

TDRUN52 MIYAGIKENOKI E·W 400% 493 302.5 0.5ol3 FLEXIBlE FLEXIBLE Tl T1 5.0 5.0 0.14 0.06
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TEST PEAK TABlE MaTICH PIER CONDITION BEARING BEARING FRICTIONAl

No. EXCITATION DIS. VEL ACC. SOUTH NORTH MATERIAL PRESSURE IMPs PROPERTIES COMMENTS
(mm) (ml) (a) SOUTH NORTH SOUTH NORTH Imax lmiI

TDRUN53 MIYAGIKENOKI E·W 6OO'Jl, 73.5 460.9 0.914 FlEXIBLE FlEXIBLE T1 T1 5.0 5.0 0.14 0.06

TDAUH54 TAFTN21EH+V4OO% 57.7 269.9 0.544 FLEXIBLE FlEXIBLE T1 T1 5.0 5.0 0.14 0.06

TDAUN55 EL CENTRO SOOE H+V 200% 47.3 312.6 0.580 FlEXIBLE FlEXiBlE T1 T1 5.0 5.0 0.14 0.06
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TIbIe 5-111 Sunlnwy or ExperillllfMl ResuItI or IsoIIlIld Br/clgI with Sliding a-tnga and fluid ....torIng FClRIiDamping DevIcea

TEST BEARING DISPLACEMENT ISOlATION SYSTEM DECK PIER ACe. PIER DRIFT PIER SHEAR I DEVICE DIS- DEVICE FORCE
No. (mml SHEAR I WEIGHT ACC. (9) (%) AXIAL LOAD PLACEMENT I

DECK WEIGHT

SOUTH NORTH (g) (mml

INIT. MAX. PERM. MAX.- SOOTH NORTH TOTAL SOOTH NORTH SOUTH NORTH SOUTH NORTH SOUTH NORTH SOUTH NORTH
INIT.

TDRUNOI 0.0 -7.3 -0.1 7.2 0.240 0233 0227 0.274 0.454 0.524 NtA 0.06 NlA NlA 7.1 68 0078 0.082

TDRUN02 -n.l 258 0.0 25.8 0.269 0.281 0.272 0.320 0933 1.024 NtA 0.08 NlA NlA 25.7 25.3 0.112 0.102

TDRUI'«l3 0.0 -0.4 0.0 0.5 0.142 0.138 0.139 0.153 0.167 0.156 NtA 0.03 NlA NlA 0.3 0.4 0.050 0.042

TDRUN04 0.0 0.9 0.1 0.9 0.168 0.156 0.162 0.183 0.220 0.234 NlA 0.04 NlA NlA 0.8 0.9 0059 0.058

TDRUNOS 0.1 2.2 -0.1 2.1 o.m 0.180 0.179 0.204 0.298 0.271 NlA 0.04 NlA NlA 2.1 1.8 0065 0.070

TDRUN06 -0.1 -23.6 -0.2 23.5 0.253 0.247 0.245 0.292 0.575 0.544 NtA 0.06 NtA NlA 23.3 23.3 0098 0.094

TDRUN07 -0.1 43.1 0.2 42.8 0.299 0.316 0.304 0.372 0.642 0.597 NlA 0.07 NtA NlA 429 42.3 0142 0.128

TDRU~ 0.2 37.4 0.0 36.8 0.279 0.291 0.284 0.333 0.791 0760 NtA 0.08 NtA NlA 370 36.1 0118 0.121

TDRUN09 0.0 5.5 0.0 5.3 0.211 0.210 0.207 0.256 0.458 0.548 NlA 0.05 NtA HlA 5.3 5.2 0072 0.086

TDRUN10 0.0 18.1 -0.1 17.9 0.247 0.256 0.240 0.303 0.908 0.997 NlA 0.07 NtA HlA 17.8 17.2 0099 0.101

TDRUN11 -0.1 -36.4 -0.3 36.4 0.318 0.332 0.295 0.351 1.336 1.471 NtA 0.09 NtA HlA 36.1 35.8 0.131 0.129

TDRUN12 -0.3 -3.2 -0.0 3.4 0.179 0.206 0.189 0.234 0345 0.417 NlA 0.05 NlA NlA 3.1 3.1 0.080 0.074

TDRUN13 -0.1 -22.0 -0.2 21.9 0.265 0.252 0.252 0.307 0.692 0.717 NlA 0.07 NlA NlA 21.8 21.3 0.087 0.103

TDRUN14 -0.2 -44.7 -0.6 442 0.352 0.310 0.325 0.380 0.963 0.922 NlA 0.08 NlA NlA 44.1 43.5 0124 0.152

TDRUN15 -0.6 -21.9 -0.2 21.2 0.262 0.270 0.254 0.304 0952 1219 NlA 0.07 HlA NlA 21.3 20.9 0.133 0.116

TDRUN16 -0.2 21.9 -0.3 21.8 0.243 0.261 0.252 0.288 0.722 0.859 NlA 0.06 HlA NlA 21.7 21.4 0109 0101

TDRUN17 -0.3 33.1 -0.1 33.2 0.2i6 0.281 0.278 0.326 0.994 1.054 NlA 009 NlA NlA 32.9 325 0145 0.122

TDRUN18 -0.1 -33.1 -01 32.8 0.280 0.290 0.279 0.356 0.817 1.032 NlA 008 NlA NlA 32.5 32.2 0.105 0.122

TDRUN19 -0.1 -2.4 -0.3 2.3 0.151 0.163 0.156 0.181 0.195 0.192 NlA 003 NlA NlA 2.1 1.8 0.059 0064

TDRUN20 -0.3 -12.2 0.0 11.8 0.208 0.216 0.209 0252 0.315 0.292 NlA 0.04 NlA NlA 11.8 11.5 0093 0081

TDRUN21 0.0 -32.6 -0.1 32.6 0.281 0.269 0269 0.330 0.823 0.658 NlA 0.06 NlA NlA 32.4 32.1 0.100 0123

TDRUN22 -0.1 -44.6 -0.1 44.4 0.321 0.292 0,300 0.372 0.961 0.811 NlA 0.07 NlA NlA 44.2 44.1 0.120 0143
TDRUN23 -0.1 18.6 -0.1 18.3 0.254 0298 0.268 0.316 0937 0.845 NtA 0.07 NlA NlA 1834 183 0.102 0097

TDRUN24 -0.1 270 0.0 26.9 0.252 0.282 0.262 0.318 0.947 0.920 NlA 0.09 NlA NlA 26.8 26.2 0.115 0104

TDRUN25 0,0 10.9 0.1 10.5 0.229 0.249 0.228 0.257 1.008 1.002 NlA 0.40 0268 0.325 117 109 0.093 0.089

TDRUN26 0,1 25.4 01 24.3 0258 0.284 0262 0.295 1.525 1.880 NlA 0.42 0.320 0.340 25.6 239 0.104 0109
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TEST BEARING DISPLACEMENT ISOLATION SYSTEM DECK PIER ACC. PIER DRIFT PIER SHEAR I DEVICE DIS- DEVICE FORCE
No. (mm) SHEAR I WEIGHT ACC. (9) ("!oj AXIAL LOAD PLACEMENT I

DECK WEIGHT

SOUTH NORTH (9) (mml

INIT. MAX. PERM. MAX.- SOUTH NORTH TOTAL SOUTH NORTH SOUTH NORTH SOUTH NORTH SOUTH NORTH SOUTH NORTH
INIT.

TDRUN27 0.1 35.2 O.t 34.3 0.274 0.306 0.283 0.319 1.654 2.023 NlA 0.46 0335 0.365 357 34.1 0.126 0.122

TDRUN28 01 86 01 8.1 0.207 0.241 0.218 0.242 0.737 0.698 NlA 0.37 0.244 0.289 92 82 0079 0082

TDRUN29 01 20.5 0.1 19.7 0.244 0.278 0.255 0.297 1.371 1.216 NlA 0.43 0.299 0.340 209 203 0.096 0.101

TDRUN30 0.1 -36.3 0.2 372 0.281 0.293 0.268 0.313 1.582 1.405 NlA 0.46 0.351 0.370 376 37.8 0127 0.134

TDRUNal 0.2 -31.6 0.1 324 0.280 0.262 0.271 0.328 0.791 0.825 NlA 0.46 0.357 0.341 32.6 33.1 0.126 0.130

TDRUN32 0.1 -43.3 01 440 0.318 0.301 0.310 0.371 1.165 1.101 NlA 0.53 0.402 0.399 44.5 44.9 O.ISO 0.164

TDRUN33 0.2 -35.6 .Q.4 361 0.271 0.267 0.267 0.333 1.245 1.191 NlA 0.48 0.344 0.348 36.5 36.7 0.118 0.125

TDRUN34 .Q.4 23.6 0.1 23.2 0.249 0.297 0.271 0.295 0.858 0.809 NlA 0.43 0.314 0354 24.6 23.1 0116 0.116

TDRUN35 0.1 42.4 0.1 41.3 0.281 0.331 0.303 0.342 1.349 1444 NlA 0.46 0.320 0.406 42.6 40.5 0.151 0132

TDRUN36 0.1 -40.2 0.2 40.8 0.299 0.290 0.294 0.378 1.257 1.266 NlA 0.54 0.403 0.392 410 41.5 0.139 0153

TDRUN37 0.2 2.5 0.1 2.3 0.170 0.180 0.173 0.193 0.283 0.228 NlA 0.27 0.203 0.216 3.5 2.6 0.072 0071

TDRUN38 0.1 3.7 0.1 3.7 0.193 0.189 0.187 0.207 0.405 0369 NlA 0.30 0.224 0.226 4.3 3.9 o.on 0077

TDRUN39 0.1 6.5 0.0 5.9 0.197 0.211 0.195 0.212 0408 0.399 NlA 0.32 0.228 0.253 7.1 6.2 0.072 0.077

TDRUN«) 0.0 -25.3 0.1 25.8 0.252 0.269 0.251 0.294 0657 0.556 NlA 0.41 0.294 0.333 26.2 26.6 0.097 0.105

TDRUN41 0.1 -43.6 0.0 44.2 0.289 0.310 0.298 0.372 1.079 0.966 NlA 0.55 0356 0.444 45.2 46.1 0.130 0140

TDRUN42 0.0 52.7 0.1 52.0 0.386 0.385 0.364 0.446 1.186 1.123 NlA 0.58 0.414 0.469 52.3 516 0.310 0.302

TDRUN43 0.1 45.8 0.4 447 0289 0.304 0.295 0.362 1.151 1.204 NlA 0.56 0.364 0451 46.4 44.3 0.161 0.139

TDRUN44 0.4 -20.2 0.5 20.9 02SO 0.253 0.251 0304 0.555 0.605 NlA 0.43 0.310 0.320 216 21.7 0.091 0106

TDRUN<45 0.5 -49.8 0.4 SO.8 0.313 0.320 0.316 0392 1.081 1.173 NlA 0.58 0.421 0.428 51.5 51.7 0.141 0165

TDRUN46 0.5 -6.5 0.4 7.1 0.214 0.203 0.209 0.233 0.379 0.381 NlA 0.33 0.246 0.252 77 7.8 0.069 0082

TDRUN47 0.4 -16.7 04 17.3 0.228 0.244 0.236 0.269 0.S07 0.453 NlA 0.;)8 0.267 0.303 16.1 182 0.086 0.089

TDRUN48 0.4 5.2 0.5 4.2 0.193 0.198 0.190 0214 0.458 0.461 NlA 0.31 0.220 0240 57 4.9 0072 0.076

TDRUN49 0.5 30.1 0.5 29.0 0.262 0.277 0.268 0.308 0.853 0.862 NlA 0.47 0.336 0.365 30.4 294 0116 0.110

TDRUNSO 0.5 0.9 as 0.2 0.142 0.141 0142 0155 0153 0119 NlA 022 0.154 0.169 1.1 0.6 0.062 0061

TDRUNSl 0.5 3.1 0.5 2.0 0.181 0.174 0.178 0188 0319 0242 NlA 0.28 0.202 0.213 3.1 2.3 0.066 0.068

TDRUN52 0.5 22.2 0.4 20.8 0.246 0.272 0.257 0.285 1.141 1.049 NlA 040 0.269 0.319 22.2 212 0.105 0094

o DISPLACEMENT CAPACITY OF RESTORING FORCEIDAMPING DEVICE EXCEEDED

•
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SOUTH NORTH (g) lnvnl

INIT. MAX. PERM. MAX.- SOUTH NORTH TOTAL SOUTH NORTH SOUTH NORTH SOUTH NORTH SOUTH NORTH SOUTH NORTH
INIT.

TDRUN53 0.5 -33.9 0.4 34.9 U18 0.2119 0.299 0.325 1.485 0.659 HlA 0.46 0.320 0.354 35.3 35.7 0.123 0.142

TORUN54 0.5 20.6 0.5 19.3 0.282 0.318 0.299 0.312 1.281 0.554 HlA 0.48 0.326 0.377 20.6 19.5 0.113 0.102

TDRUNS5 0.5 26.0 0.5 24.7 0.273 0.295 0.278 0.319 1.683 0.952 HlA 0.44 0.326 0.332 25.8 24,4 0.121 0.112



SECTION 6

INTERPRETATION OF EXPERIMENTAL RESULTS

6.1 Behavior of Isolation System in Weak Seismic Excitation

The sliding bearings (type Tl, unfilled PTFE) delivered a coefficient of friction at high

velocity of sliding f max= O. 14. The isolation system has been designed for optimum

performance in strong earthquake excitation. Therefore, it may be argued that this system

might be ineffective in weak seismic excitations, such as the Japanese Level I motions.

Figl~re 6-1 compares the recorded hysteresis loops in the piers of the non-isolated and

isolated bridges (case of flexible piers) for the Japanese Level I motions. It is evident that

the isolated bridge response is significantly less sensitive to the frequency content of the

input than that of the non-isolated. Furthermore, drift and shear force in the piers of the

isolated bridge are less so that inelastic pier behavior does not occur.

In another comparison of test results under weak excitation, Figure 6-2 shows the

response of the isolated and non-isolated bridges in the Miyagiken Oki E-W motion. The

isolated bridge is subjected to the actual earthquake motion (recorded table PGA=0.122g).

The isolation system undergoes a very small, only 0.4 mm, displacement. Nevertheless, it

effectively limits the transmission of force to the substructure, resulting in a pier shear

force of 0.17 times the weight and pier drift ratio of 0.22%. The non-isolated bridge,

which is subjected to 75% of the Miyagiken Oki E-W motion, develops a pier shear force

equal to 0.24 times the weight and pier drift ratio equal to 0.38%. Thus, the isolated

bridgt: experiences substructure forces and drifts which are about one half of those of the

non-isolated bridge in a weak. excitation.

The behavior of the isolation system may be explained as follows. In seismic excitation

the isolation system provides resistance to motion at the bearing level for isolation system

force FJ up to the limit

(6-1)
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where r: is lne preload in one of the tW(l restoring force/damping devices and Wd is the

deck weight. Note that the frictional resistance is described by the coefficient fmm which

is much less than fmax • the value at large sliding velocity. For the tested system F,=

0.126 Wd . To reach this level of force at the isolation system it would require a ground

acceleration of 0.126 g for infinitely stiff piers, or about 0.05 g for flexible piers (based

on an average amplification factor of 2.5 - see Table S-I). Thus, the system is activated

even in weak seismic excitation.

TEST No. TDAUN03
STIFF PIERS

0.1-w
u
a: 0.0
~
en
~ -0.1

...,j

~ .0.2 L-~....L.-~--L...._--l._~..L-.................I.....~.--J
- ·3 ·2 ·1 0 1 2 3

SW BEARING DISPLACEMENT (mm)
4 4 ~ 0 1 2 3

SW BEARING DISPLACEMENT (mm)

Figure 6-3 Comparison of bolated System Forte-Displacement Loops or Bridge
with Stiff and with Flexible Pien in the Japanese Level 1, Ground
Condition 1 Motion.

An example demonstrating this behavior is presented in Figure 6-3. The figure shows the

isolation system force-displacement loops in the Japanese level I, ground condition 1

motion, which has peak ground acceleration equal to about O.lg (see Table 5-11). In the

case of stiff piers, the ground acceleration is amplified to a sufficient level to induce some

small amount of sliding. As seen in Figure 6-3 the peak force in the isolation system is

about equal to 0.14 Wd . In the case of flexible piers, the ground acceleration is

amplified and reaches at the pier top a value of 0.228g, which is significantly more than

the critical value (0.126g) needed for sliding to initiate. The result is more sliding

6-4



displacement than the case of stiff piers. The peak force is 0.18Wd as compared to

0.14Wd in the case of stiff piers. The difference is primarily the result of higher friction

force due to higher velocity ofsliding in the case of flexible piers.

6.2 Behavior of Isolation System in Strong Seismic EJ.citation

A comparison of the response of the isolated bridge to that of the non-isolated bridge for

the case of flexible piers is presented in Figure 6-4. The benefits of seismic isolation are

evident. The response of the isolated bridge is maintained at a peak deck acceleration

between 0.15 to 0.438, and a peak pier shear force between 0.15 and 0.45 Wp

(Wp=axial load carried by pier) for all tests. It should be noted that the input had peak

acceleration between 0.1 and nearly Ig, with significantly varying content in frequency.

The tested isolated bridge remained elastic (theoretical yield limit equal to 0.5Wd) while

bearing displacements were maintained at less than about 50 mm (or 200 mm in prototype

scale). In two tests No. TDRUN42 and TDRUN45, with excitation being the Japanese

Level 2 Ground Condition 2 and Pacoima S16E signals, the displacements reached the

maximum stroke of the devices (50 mm). In the first test the displacements demand

exceeded by a small amount the capacity, whereas in the second test the displacement just

reached the capacity. The difference between the two cases may be seen in the isolation

system force loops, which are shown in Figure 6-5. This difference amounts a small

sudden increase in the isolation system force due to impact of the piston head on the

bottom of the cylinder of the restoring force/damping devices.

Figure 6-6 compares the response of the isolated bridge with stiff piers to that of the

bridge with flexible piers in selected earthquakes. The bearing displacements in the bridge

with flexible piers are systematically larger than those of the bridge with stiff piers. The

same is true for the pier acceleration. Actually, the pier acceleration is always larger than

the table acceleration. The amplification of the table acceleration in the piers is an

expected phenomenon and it is related to the pier flexibility.

6-5
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The effects of increasing intensity of seismic excitation on the response of the isolated

bridge are illustrated in Figures 6-7 to 6-8, which depict the response of the isolated

bridge with flexible piers and stiff piers respectively as a function of increasing intensity of

earthquake input. The intensity of the excitation is represented by the peak table velocity,

which is regarded as a better single measure of intensity of input than the peak table

acceleration. This is because the response of isolated structures is primarily influenced by

the amplitude and frequency content of the velocity domain of the response spectrum of

the input. It may be observed that the acceleration and force responses of the isolated

bridge are only marginally affected by the intensity of the input. Rather, we observe a

noticeable effect of input intensity on the bearing displacement. However, the bearing

displacement is always less than the table displacement (typically less than or about equal

to half the table displacement, see Figures 6-7 and 6-8).

The experimental results demonstrated that, for the tested bridge, it was possible to

restrict the isolation system displacement to within 200 mm in prototype scale and

maintain elastic behavior of the piers provided that the piers are designed for a lateral

force between 0.3 and 0.45 times the carried weight. On this we note that piers of isolated

bridges in Japan are designed for seismic coefficient of at least 0.3 to avoid very flexible

structures (CERC 1992). This minimum value of 0.3 includes the effect of inelastic pier

behavior, that is reduction by factor 1/J2Jl.- 1 ,where ~ is the pier allowable ductility

factor.

A different way of demonstrating the effectiveness of seismic isolation is by comparing the

peak accelerations above and below the isolation bearings. The information used in this

case is the one typically obtained from instrumented isolated bridges. A comparison of

these accelerations for the tested bridge is provided in Figure 6-9. The comparison

demonstrates the effectiveness of isolation in strong excitation. However, in weak

excitation the acceleration clbove the bearings is nearly the same as the acceleration below

the bearings. One may casually conclude that the isolation system was ineffective in weak

excitation. However, the system performed better than the comparable non-isolated

bridge in weak excitation (see Figures 6-1 and 6-2). Thus, the best way of demonstrating
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effectiveness is by comparison to the case of the bridge without seismic isolation. One

such comparison, in which the isolated bridge nearly reached the displacement capacity, is

shown in Figure 6-10. Even under this extreme condition, the isolated bridge develops

substructure forces and drifts which are comparable to those of the non-isolated bridge,

except that the input motion is five times stronger.

Another similar comparison is presented in Figure 6-11. The isolated bridge undergoes

nearly the same response as the non-isolated bridge, except that the input is about eight

times stronger.
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6.3 Effect of Vertical Gro'.md Motion

Tests were conducted with only horizontal and with combined horizontal-vertical input.

Even when only horizontal input was applied, the overhangs of the shake table (see

Figure'4-1) underwent significant vertical motion. As seen in Figure 6-12, the vertical

accelerations at the north and south piers in the case of only horizontal input were

out-of-phase with peak values about equal to 1/3 the peak horizontal table acceleration.

In the case of combined horizontal-vertical input, the pier vertical accelerations were

either out-of-phase or in-phase with peak values between 1/2 and 2/3 of the peak

horizontal table acceleration.

Despite the severity of vertical input in the combined horizontal-vertical input, the

response of the isolated bridge was only marginally affected. For example, Figures 6-13

and 6-14 compare the responses of the system to the Taft 400% and El Centro 200%

motions, respectively. Other than the wavy form of the loops in the case of combined

horizontal-vertical input, the vertical motion had either minor or no effect on the peak

response of the tested system.

6.4 Permanent Displacements

The permanent displacements were recorded in all tests and are listed in Table 5-111. The

initial displacement (that is, the permanent at the start of each experiment) was monitored

in all tests. The bridge was never recentered prior to conducting a test. It may be

observed in the result of Table 5-I1I that the permanent displacements are very small. The

maximum recorded permanent displacement is 0.6 mm, a value within the range of

connection tolerances and instrument errors. Practically, the permanent displacements

were zero. Of course, this was expected since the isolation system was designed with

sufficient preload to prevent the occurrence of permanent displacements.

The 1991 AASHTO, Section 12.2 requires that isolation systems are configured to have

sufficient restoring force. Specifically, AASHTO requires that the lateral force at the

design displacement is at least 0.025 Wd (Wd=supported weight) greater than the lateral

force at 50 percent ofthe design displacement. This definition of sufficient restoring force
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by AASHTO is based on the assumption of spring-like restoring force, that is restoring

force which is proportional to the displacement. However, a device with preload may

provide restoring force which is indep, odent of displacement. As demonstrated by the

tests reported herein, such designs provide sufficient restoring force for recentering the

bridge and eliminating permanent displacements.

We conclude that the AASHTO requirements for minimum restoring force are not

generally valid. In addition to the case of preload which is not covered by the AASHTO

specifications, Tsopelas, 1994 addressed the issue of the relation between restoring force

and characteristic strength of isolation systems. It appears that Section 12.2 of the 1991

AASHTO requires a revision.
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SECTION 7

ANALYTICAL PREDICTION OF RESPONSE

7.1 Introduction

Analytical techniques for predicting the dynamic response of sliding isolation systems are

available (Mokha 1988, 1990b and 1991; Constantinou 1990a, I 990b, 1991a 1991b and

1993, Tsopelas 1994). These analytical techniques are employed herein in the prediction

of the response of the tested bridge model. The analytical model accounts for the pier

flexibility, pier top rotation, vertical motion effects on the properties of the sliding

bearings, and characteristics of the restoring force/damping devices.

7.2 Analytical Model

Figure 7-1 shows the analytical model in the case of the bridge with flexible piers, The

degrees of freedom are selected to be the deck displacement with respect to the table, Vd ,

the pier displacements with respect to the table, Vp / and Vpz ' and the pier rotations, epP/

and ellpz .

Each pier is modeled by a beam element of length L
i
, moment of inertia 1; and modulus of

elasticity E; (;=1 or 2). The beam element is fixed to the table and COMected at its top to

a rigid block of height h, mass mpi and mass moment of inertia about the center of mass

(C.M.) [pi' The center ofrnass is located at distance h; from the bottom of the block.

This block represents the pier top.

Free body diagrams ofthe deck and pier tops of the bridge model are shown in Figure 7-2.

ft should be noted that it was assumed that there is no transfer of moment between the

deck and the supporting pier top. In reality, there is transfer of moment due to the

rotational stiffness ofthe supporting disc of the sliding bearings. The equations of motion

are derived by consideration of dynamic equilibrium ofthe deck and piers in the horizontal

direction and ofthe piers in the rotational direction :

(7-1)
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mpl(Upl +Ug-hl~pl)+Fpl -Fbi =0

m p2(Up2 +Ug-h2~p2HFp2 -Fb2 = 0

Ipl~pl +Mpl +Fp1h l +Fbl(h-h)) =0

Ip2~p2 +Mp2 +Fp2hZ+FbZ(h-hz) =0

(7-2)

(7-J)

(7-4)

(7-5)

where Ug is the horizontal table (ground) acceleration, FbI and Fb2 are the lateral forces in

the isolation system (sliding bearings and restoring force/damping devices), and Fl" and

Mp1 are the lateral force and bending moment at the connection of the pier top to the end

of the column:

(7-6)

The first part of Equation (7-6) describes the elastic forces, whereas the second part is

used to account for linear viscous energy dissipation in the piers.

Forces FbI (i=1,2) include a component from friction in the sliding bearings and a

component from the restoring force/damping devices. These forces are described as

follows:

(7-7)

where J.l I = coefficient of sliding friction at pier i, W'I = normal load on two sliding

interfaces at pier; and Fh = force from the restoring force/damping device at pier; .

Funhermore, Ubi is the bearing displacement at pier i :

(7-8)

The coefficient of sliding friction follows tht; relation (Constantinou 199080 see also

Section 3)

(7-9)

with parameters f_ J"",,; and OJ (i =1,2) listed in Table 3-1. The normanoad, W, ,is

given by
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.,,. ( Uy;)". =W· 1+­rig (7-10)

where W; = weight carried by pier i and Uy ; is the table (ground) vertical acceleration of

pier i. Furthermore, variable Z; in Equation (7-7) satisfies the following equation

(Constantinou 1990a):

(7-11)

In this equation, Y,= "yield" displacement (=0.25 mm) and pand y = parameters satisfying

the condition p+y=1.

7.3 Analytical Model for Fluid Restoring ForcelDamping Devices

The force in a restoring force/damping device consists of a preload, the restoring force,

the friction force at the seal and the fluid damping force. Section 3.3 presents a discussion

on the origin of the components and Figure 3-7 illustrates these components. The four

components may be mathematically expressed as follows:

(7-12)

when uu>O
when uu<O

(7-13)

in which Fo is the preload, Ko is the stiffitess, Fmin is the seal friction at zero

displacement and Fd is the fluid damping force, which is dependent on velocity and

direction of motion. Furthermore, Z, is a hysteretic variable governed by an equation

identical to Equation 7-11, u is the device displacement and u is the device velocity

(actually displacement and velocity ofone end ofthe device with respect to the other end).

The term r,Ko Iul accounts for increased friction in the seal as a result of increased

internal pressure during stroking. The seal typically consists ofvery soft material that cold

flows under the internal pressure to seal microscopic surface finish patterns. Thus as

pressure increases during stroking, so does friction. Herein we use a linearly increasing

friction force based on the experimental results. Furthermore, we selected a linear

restoring force (Kou) as an acceptable approximation to the actual condition, which has a
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mild nonlinear behavior, The physical origin of this nonlinearity has been explained in

Section 3.3.

The preload term should, for ideal conditions, be represented by a tenn F"sgn(u). In

reality, the stiffness of the device is not infinitely large at zero displacement. Rather, it is

dependent on the velocity of motion of the piston rod. This behavior is accounted for in

the model by the exponential term for the preload Fp = Fo[l- exp(-~Iul)lsgn(u), in

which 0 is a function ofvelocity. The experimental results suggest an exponential form

for variable b :

(7-14)

It is easily shown that the slope dF,Jdu at zero displacement is equal to F/). It is,

thus, only dependent on velocity.

The damping force is accounted for by the dual term ofEquation 7-13. This difference in

behavior is due to the utilization of lower orifice area when stroke increases than when it

decreases. Approximate expressions for the damping forces FJ and F2 are

(7-15)

This expression was found to be appropriate for the tested device and for velocity up to

about 500 mm1sec. A limitation of this expression is that it predicts constant damping

force at large velocities, which is apparently incorrect. An alternative expression, which

could account for the actual behavior at velocities beyond the range oftesting, is

when lul:S:;;'l
when lui >;'1

(7-16)

with UI equal to about 50 rnmIsec and OJ equal to about 0.3.

The various parameters in the model of Equations 7-12 to 7-15 are illustrated in Figure

7-3. The values of the parameters for the tested device are given in Table 7-1. Figure 7-4

compares the predictions of the calibrated model of Equations 7-12 to 7-15 to

experimental results. The tests consisted of static and dynamic sinusoidal tests at specified
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frequency and amplitude. It may be seen that the model is capable of representing the

behavior of the device with very good accuracy.

Table 7-1 Parameters in Calibrated Model of Fluid Restoring ForcelDamping
Device

Pa.ameter Value

F" (kN) 4.72

F""" (kN) 0.20

FttUJ1(J (kN) 4.50

FttUJ1(,(kN) 2.90

K,,(kN/mm) 0.095

a
o

(mm- I
) 1.78

51 (seclmm) 0.00385

&. (seclmm) 0.007

~(sedmm) 0.005

~ (-) 0.0618

u

Ft L DYNAMICjFo 60

STATIC
Fo l5 (0)

F1' 1

2Fm in ""C K1- 0-- ----
F2

2Fmin+2(Ko~1

Figure 7-3 Definition of Tenns in Model of Fluid Restoring ForteIDamping
Device.
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7.4 Comparison of Analytical and Experimental Results

The equation of motion of the isolated bridge model are Equations (7-1) to (7-11) with

force Fn described by Equations (7-12) to (7-15) and u = Ubi' Thus, we assume that

the device displacement is equal to the sliding bearing displacement. This is not exact

since the height of installation of the device was slightly different than that of the sliding

bearings and the bracing assembly ofthe device exhibited some limited flexibility.

Solution of the governing Equations (7-1) through (7-15) was obtained by first reducing

the equations to a system of first order differential equations and then numerically

integrating the system by using an adaptive integration scheme with truncation error

control (Gear 1971). The initial conditions were specified to be zero due to the fact that

permanent displacement did not occur.

The data used in the analytical model were: deck weight m,g = 143 kN, pier weight m"g

= 8.9 kN, L I = L]= 1600 mm, hi = h]= 98 rom, h = 413 mm, Ipi = Ip]= 38.22 kN S2 mm,

£1 = £] = 200000 MPa, II = I] = 3.022xlO,5 m4 (2 AISC tubes Ts 6x6x5/16). Based on

these data the fundamental period ofeach pier, in its cantilever position, was calculated to

be 0.092s. This is in close agreement with the experimentally determined value of

0.096s. The second mode of the cantilever pier had a calculated frequency of 102 Hz.

This frequency could neither be detected in the tests nor have any significance in the

analysis.

Damping in the piers was described by the second term in Equation (7-6). The fact that

the calculated second frequency of the cantilever pier is much larger than the first

frequency indicates that the second mode of the pier may be neglected. Accordingly,

constant C]pi in Equation (7-6) was set equal to zero and constant CI
,. was assigned a

value equal to 0.0062 kNslmm. Based on this value, the damping ratio in the fundamental

mode of the cantilever pier was ca!.. ulated to be 5% of critical. This is consisted with the

experimental data.
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Comparisons of analytical and experimental results are presented in Figures 7-5 to 7-9 in

the case of tests with only horizontal excitation. The analysis was based on Equations

(7-1) to (7-15) but with tJvi set equal to zero (vertical acceleration effects were

neglected). Evidently, the analytical results are in very good agreement with the

experimental results.

Figures 7-) 0 and 7-11 compare experimental and analytical results in the tests with

combined horizontal-vertical EI Centro 200% and Taft 400010 inputs. The analysis

accounted for the vertical acceleration effects. Again the two sets of results appear to be

in good agreement.
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SECTIONS

CONCLUSIONS

This report presented an experimental study of the seismic response of an isolated bridge and a

comparison of its response to that of a comparable non-isolated bridge. The isolation system

consisted of sliding bearings and fluid restoring force/damping devices. The fluid devices were

pressurized to develop preload. That is, the devices resisted motion by the combination of a

constant force, the preload, a weak restoring force and a viscous damping force. The preload was

selected to be just larger than the minimum friction force in the bearings, so that pennanent

displacements did not occur.

The conclusions of the study are :

(1) While the tested isolation system was designed for strong seismic excitation, it also

performed well in weak seismic excitation. Specifically, the isolated bridge performed

better than the comparable non-isolated bridge in terms of the substructure response and

insensitivity to the frequency content of the input.

(2) In strong seismic excitations the tested isolation system performed in accordance with its

design. That is, displacements were maintained at less than 200 mm in prototype scale and

the isolation system force was restricted to values below 0.33 times the deck weight. Only

in one test with input being the Japanese level 2, ground condition 2 motion, the

displacement exceeded 200 nun and forces reached nearly 0.40 times the deck weight.

(3) The vertical ground motion had minor effects on the peak response ofthe tested system.

(4) Permanent displacements in the tested system were practically zero (maximum recorded

value was 2.4 nun in prototype scale). The development of permanent displacements was

prevented by the preload in the fluid devices, which was selected to just exceed the

minimum friction force in the isolation system.

(5) The preload of the fluid devices alone was sufficient to prevent the occurrence of any

permanent displacements. That is, the spring force of the devices (due to fluid
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compression) was not necessary for preventing the development of permanent

displacements. Nevertheless, the 1991 AASHTO ",ould have classified a system with only

preload as one which lacks restoring force capability and , thus, penalize the system. It is

clear that the AASHTO procedures are not generally valid.

(6) An analytical model has been presented for the fluid restoring force/damping devices,

which is capable of describing their behavior with good accuracy. Analyses (If the

dynamic response of the tested isolated bridge showed very good agreement of

experimental and analytical results.
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APPENDIX A

EXPERIMENTAL RESULTS

This Appendix contains experimental results of the tested bridge model in the non-isolated and the

isolated configuration with either two stiff or two flexible piers. In the case of the non-isolated

bridge (test No. FRUN05 to FRUN22), the recorded time history of the deck displacement with

respect to the table a.,d the loops of the shear force versus deformation of the north pier are

presented. In the case ofihe isolated bridge with stiff piers (tests No TDRUNOI to TDRUN24),

the recorded SW bearing displacement history and the loops of isolation system force versus SW

bearing displacement are presented. The isolation system force was obtained as the sum of the

forces recorded by the four load cells supporting the sliding bearings and the forces in the two

load cells of the fluid restoring force/damping devices. In the case of the isolated bridge with

flexible piers (tests No. TDRUN25 to TDRUN55), the recorded SW bearing displacement

history, the loops of isolation system force versus SW bearing displacement and the loops of shear

force versus deformation of the north pier are presented. The test number and excitation are

identified at the top ofeach page.
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