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PREFACE

‘The National Center for Earthquake Engineering Research (NCEER) was established te expand and
disseminate knowledge about earthquakes, improve earthquake-resistant design, and implement
seismic hazard mitigation procedures to minimize loss of lives and property. The emphasis is on
structures in the eastern and central United States and lifelines throughout the country that are found
in zones of low, moderate, and high seismicity.

NCEER’s research and implementation plan in years six through ten (1991-1996) comprises four
interlocked elements, as shown in the figure below. Element I, Basic Research, is carried out to
support projects in the Applied Research area. Element 11, Applied Research, is the major focus of
work for years six through ten. Element III, Demonstration Projects, have been planned to support
Applied Research projects, and will be either case studies or regional studies. Element IV,
Implementation, will result from activity in the four Applied Research projects, and from Demon-
stration Projects.

ELEMENT | ELEMENT Il ELEMENT HI
BASIC RESEARCH APPLIED RESEARCH DEMONSTRATION PROJECTS
« Sgismic hazard and * The Bullding Project Case Studies
ground motion » Active and hybrid control
* The Nonstructural » Hospital and data processing
+ Soils and geotechnical Components Project facilitios
angineering » Short and medium span bridges
* The Lifelines Project [ > Water supply syatems In
« Structures and systems Memphis and San Francisco
The Bridge Project Regional Studies
* Risk and reliability * New York City
* Mississippi Valley
¢ Protective and intelligent » San Francisco Bay Area
systems
+ Societal and economic 5
s ! iy
Vv ELEMENT IV v
IMPLEMENTATION
+» Conferences/Workshops
+ Education/Training courses
+ Publications

Public Awareness

Research tasks in the Bridge Project expand current work in the retrofit of existing bridges and
develop basic seismic design criteria for eastern bridges in low-to-moderate risk zones. This research
parallels an extensive multi-year research program on the evaluation of gravity-load design concrete
buildings. Specifically, tasks are being performed to:
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4.

Determine the seismic vulnerability of bridge structures in regions of low-to-medium
seismicity, and in particular of those bridges in the eastern and central United States.

Develop concepts for retrofitting vulnerable bridge systems, particularly for typical bridges
found in the eastern and central United States.

Develop improved design and evaluation methodologies for bridges, with particular empha-
sis on soil-structure mechanics and its influence on bridge response.

Review seismic design criteria for new bridges in the eastern and central United States.

The end product of the Bridge Project will be a collection of design manuals, pre-standards and
design aids which will focus on typical eastern and central United States highway bridges. Work
begun in the Bridge Project has now been incorporated into the Highway Project.

One of the key goals of the Bridge Project is the development of reliable analvtical tools so that the
response of a wide variety of structures can be predicted. Currently, nonlinear analysis programs
rely mostly on macromodels and empirical data for the force-deformation relationships of members.
This report summarizes various micromodels and presents important advancements which can be
used to predict nonlinear member behavior. The model can predict low-cycle failure of steel,
confined or unconfined response of concrete, and steel buckling. It provides a significant tool that
will enhance our analytical capabilities related to reinforced and prestressed concrete.
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Abstract

This study is concerned with the computational modeling of energy absorption
(fatigue) capacity of reinforced concrete bridge columns by using a cyclic dynamic Fiber
Element computational model. The results may used with a hysteretic rule to generate
seismic energy demand. By comparing the ratio of energy demand to capacity, inferences of
column damageability or fatigue resistance can be made.

The complete analysis methodology for bridge columns is developed starting from
basic principles. The hysteretic behavior of ordinary mild steel as well as high threadbar
prestressingl reinforcement is dealt with in detail: stability, degradation and consistency of
cyclic behavior is explained. An energy based universally applicable low cycle fatigue
model for such reinforcing steels is proposed.

A hysteretic model for confined and unconfined concrete subjected to both tension or
compression cyclic loading is developed. This concrete siress-strain model is a model
version of the well-known Mander, Priestley uind Park (1984, 1988) model and has been
enhanced ot predict the behavior of high strength concrete. The model is also capable of
simulating gradual crack closure under cyclic loading. A Cyclic Inelastic Strut-Tie (CIST)
model is developed, in which the comprehensive concrete model stress-strain proved to be
suitable. The CIST model is capable of assessing inelastic shear deformations under cyclic
loading with high accuracy.

A fiber element based column analysis program UB-COLA is developed, which is
capable of accurately predicting the behavior of reinforced concrete columns subjected to
inelastic cyclic deformations. A parabolic fiber element with parabolic stress function
element for uniaxial flexure is developed, as well as a rectangular fiber element with a
quadratic interpolation function suitable for biaxial flexure. The axial, flexural and shear
cyclic behavior are modeled, as well as the low cycle fatigue properties of reinforcing and
high strength prestressing steel bars. Fracture of transverse confining steel is modeled
through an energy balance theory. The program proved to be useful in predicting the failure
mode of either low axial load (low cycle fatigue of longitudinal reinforcement) or high axial
load columns (fracture of confining reinforcement and crushing of concrete). For shear
critical columns, the cyclic inelastic behavior is accurately simulated through the CIST
modeling technique.
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Section 1

Introduction

1.1 Background

In order to design or analyze the behavior of bridge substructures (piles and columns of
piers) that may be either reinforced, or fully or partially prestressed concrete, it is essential that
analytical models be developed that accurately reflect the true non-linear dynamic cyclic loading
behavior of those members. Current analytical modeling techniques of structural elements use
either a macro modeling approach (e.g. DRAIN, Kanaan and Powell, 1973; Allahabadi and
Powell, 1988) or micro finite element approach (e.g. ANSYS, Kohnke, 1983). It is considered
that a coarse macro approach in which lumped plasticity within elements is used to predict
response behavior, in many instances, is too crude when looking at detailed behavior of joints
and plastic hinges. On the other hand, sophisticated finite element models may require a mesh
representation that is too fine, thus prohibiting the analysis of large or even moderate size
bridges. It is considered that the most appropriate compromise is to use a combination of the
two. Fiber elements can be used for this purpose. Fiber elements can be incorporated into a
non-linear time-history structural analysis computer program using two different approaches:
direct fiber modeling, or indirect fiber modeling. The first has recently been incorporated into
the latest version of DRAIN-2DX, but is in a relatively crude form and still may require some
further refinement, but the approach shows great promise. The second approach is the subject of
this study for the purpose of use with programs such as IDARC (Park et al., 1987) (or
DRAIN-2DX). A fiber model representation can capture details of features such as the critical
concrete and steel strains as part of the analysis process through the direct integration of
stress-strain response. Most existing time-history computer programs focus on determining the
inelastic demands caused by a given seismic excitation. As part of a fiber element analysis of
components the inelastic capacity of members can also be determined as part of a preprocessing

/ post-processing analysis. Further, as part of a post-processing analysis, the damage sustained
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by components and subassemblages can be determined as the ratio of demand versus capacity.
This investigation focuses on this damageability concept as part of the modeling for bridge

substructures.

1.2 Integration of Previous Research Work

Considerable work has been undertaken by Mander, Priestley and Park (1984) in
developing moment-curvature and force-deformation models based on a fiber approach, directly
integrating stress-strain relations for reinforced concrete members (Mander et al., 1988a, 1988b).
Dynamic reversed cyclic loading of members is accounted for and inelastic buckling of
longitudinal reinforcement, transverse hoop fracture, and concrete crushing modes of failure are
determined from energy considerations. Good agreement has been demonstrated when tested
against a variety of physical model experimental results, This fundamental work was followed
by Zahn et al. (1990) who developed encrgy-based design charts for bridge piers with ductile
detailing.

The need for sophisticated tools to analyze structures subjected to earthquake loadings
has produced a great deal of research. Much of this research is the coordinated effort of many
rescarchers that share a common purpose, to gain insight into this very complex problem. The
complexity of the problem underlies in both the randomness of earthquake motions and the
nonlinear hysteretic behavior of structural components. The end goal is to develop rational
methods of design, that will consider both the demand that the ground motior will impose on the
structure and the capacity of the structure to meet those requirements.

The demand on a structure can be of two types: displacement ductility demand and energy
demand. The former dictates bearing seat width requirements and secondary P-A load effects,
while the latter leads to failure of the constituent materials, steel and concrete, through low cycle
fatigue. It will subsequently be shown that the two are also interrelated. Much of the research
effort had been concentrated on the ductility demand, although energy demand research is
gaining popularity among researchers. The capacity of structural elements is, of course, a
fundamental problem.
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This first report of a two-part series is concerned with the evaluation of seismic capacity
of bridge columns. The purpose is to build on past work and specifically address issues that were
avoided previously, namely:

i} Investigate the behavior and develop appropriate stress-strain models for high
performance reinforcing steels. This study focuses on high strength, high alloy threadbars with
ultimate tensile strengths of 160 ksi (1100 MPa).

ii} To model the low cycle fatigue behavior of reinforcing steels (of both mild steel and
high strength grades) and use such models in predicting the failure modes/life of structural
concrete bridge columns.

iii) To investigate the behavior and develop appropriate stress-strain modeis for high
performance/high strength concrete.

iv} To model the effect of the gradual crack closure of concrete to enable a more reliable
prediction of the moment curvature behavior of bridge columns particularly with low levels of
axial load. This requires a better understanding of the tensile/crack opening/closing behavior at
the constitutive level.

v) To incorporate the above features into a computationally efficient moment-curvature
and force-flexura! deformation model for bridge columns.

vi) To provide a better understanding aﬁd modeling of the nonlinear shear force-shear
displacement behavior of reinforced concrete columns, particularly in the nonlinear cyclic
loading regime.

A computer program to simulate the cyclic behavior of reinforced concrete is presented in
this study. Every major aspect of its development is presented. Advanced models for concrete
and steel are proposed, with improvements over previous models. Mathematical models for the
description of damage in steel elements are incorporated. A uniaxial moment-curvature and
force-deformation micro model is presented as well as a biaxial moment-curvature fiber element
model. A general purpose macro model with system identification for uniaxial
moment-curvature or force deformation was implemented.

These programs can be integrated as part of an analysis methodology outlined in Fig. 1-1.



SEISMIC EVALUATION METHODOLOGY
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Fig. 1-1 Summary of Research Significance of this Study in the

Context of a Seismic Evaluation Methodology.
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1.3 Seismic Evaluation Methodologies

Herein a three level seismic evaluation methodology is proposed. The first is based on
well-known concepts of ductility and uses limit analysis techniques from which capacity/demand
(C/Dj ratios are calculated for structural strength and ductility. This is called first-order approach
as it does not concern itself with cyclic loading effects and is similar to the procedures given in
ATC 6-2. The second is a new approach advanced herein, which is based on fatigue or damage
concepts and is concerned with comparing energy absorption capacities with seismic energy
demands. This is called a second-order approach, as it takes into account the earthquake duration
and would be used when the results from a first-order analysis are in doubt. A third and more
refined analysis level concerns a multi-degree of freedom system analysis, in which rational

hysteretic models are implemented to determine non-linear structural/fatigue performance.

1.4 Scope of Present Investigation

Firstly, this investigation deals with the modeling of the hysteretic and fracture
characteristics of reinforcing steel. The low cycle fatigue behavior of steel is modeled based on
experimental data. The importance of this modeling is that it allows the prediction of the fatigue
life of longitudinal bars in the context of a reinforced concrete member subjected to cyclic
loading. Thus, this modeling allows the failure of a member due to low cycle fatigue to be
predicted, which is predominant on well detailed beams and columns with low levels of axial
load. Numerous examples are presented to show the capacity of the model to simulate both the
stress-strain cyclic behavior and the fatiguc fracture.

Secondly, this investigation deals with the modeling of the behavior of both confined and
unconfined concrete subjected to cyclic compression and tension (Section 2). This is the first
time any model has atternpted to model cyclic behavior of concrete in both tension and
compression. The need for such a model is more obvious when considering shear deformations-
where the tension capacity of reinforced steel plays an important role, as in the Modified
Comptession Field Theory (Collins and Mitchell, 1992), and the Softened Truss Model (Hsu,
1993).
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Section 4 deals with the Fiber Elements modeling of the moment-curvature behavior of a
concrete section and with the assessment of deformations. A cyclic strut-tie model is developed
to assess shear deformations. This cyclic strut-tie model for shear deformation, which makes
good use of the comprehensive constitutive models developed in sections 2 and 3, allows the
behavior of shear dominated members to be simulated.

Finally, some conclusions and recommendations for further research are presented in the
last section. This investigation has shed some light into the need for some well designed

experiments to look into the behavior of some specific variables.
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Section 2

Hysteretic and Damage Modeling of Steel Reinforcing Bars

2.1 Introduction

The hysteretic behavior of the reinforcing and prestressing steel bars influences the
hysteretic behavior of a structural concrete member. Fracture of a reinforcing bar may also be
defined as failure of the member itself. It is very important to thus model both the hysteretic and
the fatigue properties of the reinforcing bars accurately. Tests performed by Kent and Park
(1973), Ma ct al. {1976) and Panthaki (1991) were used io calibrate the stress-strain model
advanced herein. The degrading characteristic of steels with yield stresses ranging from 50 ksi to
120 ksi were studied, and damage relationships were incorporated into the model. The
Menegotto-Pinto equation (1973) used by Mander et al. (1984) is used herein o represent the

loading and unloading stress-strain relations.

2.2 Monotonic Stress-Strain Curve

Numerous tests have shown that the monotonic stress-strain curve for reinforcing steel
can be described by three well defined branches. The corresponding relations for stress ( £, ) and
tangent modulus ( E,) after Mander et. al. (1984) are given as foilows:

2.2.1 The Elastic Branch 0<g, <€,

fi=Es8, (2-1)
E =E, (2'2)
where: €, =<

in which, £, = yield strain, f, = yield stress, E, = Elastic Modulus of Elasticity.
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2.2.2 The Yield Plateau &, <e, <€

fe=fy (2-3)
E =0 2-4)
in which, g, = strain hardening strain.

2.2.3 Strain Hardened Branch ¢, > ¢,

€ —E |P
Js=Ffau+ (fy—fs) ml =
1 (l_l)
f - su P
E! = E.rh Slgn(ee::— :;l ) ; _§: | (2-6)
L] ¥y
—€

in which, €, is the stress at ultimate stress and f;, = ultimate (maximum) stress. These
relations can be represented by a single equation as given in Eq. (2-45)

2.3 The Menegotto-Pinto Equation

The Menegotto-Pinto (1973) (M-P hereafter) is useful for describing a curve connecting
two tangents with a variable radius of curvature at the intersection point of those two tangents, as

shown in Fig. 2-1. The M-P equation is expressed as:

1 —_
Js=fo+Eo(€:—€,){ 0+ g 27

L
—e |®|®
[l+ E.C& ]

E,~—=2
The tangent modulus at any point is given by:

fch "fa

=L OB o)
' 1+ |E 5 =fe
fch_fﬂ

with a secant modulus connecting the origin coordinates (€., f,) and the coordinates of the point
under consideration (g, f;) defined as:
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- f: _fv

Ewc= E;—Ep

(2-9)

in which g; = steel strain, f; = steel stress, g, = strain at initial point, f, = stress at initial point,
E, = tangent modulus of elasticity at initial point, ¢, R and f., are equation parameters to
control the shape of the curve.

It should be noted that as it is presented, Eq. {2-7) has the following properties:
(1) a slope E, at the starting coordinate (€,, f,), (2) it approaches the slope QE, as
g, — o. For computational tractability R needs to be limited to about 25. This essentially

represents a bilinear curve given by a single equation.
To use this equation it is necessary to develop an algorithm 1o compute the parameters Q,

f,and R. A procedure to compute these parameters is presented in the next section.

2.3.1 Computation of Parameters O, f,, and R

Let the denominator in the M-P equation be A such that,

L2 Q=01 R
i ]
1t Lo 15
0.8 F é/ i
-’;h-fo ’ I //
0.4 | -
02}
0 Y i L It L —tl. 2 L A i 1 i PR W S
0 0.5 1 1.5 2 2.5
Ea (E_en)
Son 1o

Fig. Z-1 The Menegotto-Pinto Equation
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The derivarive of 4 is therefore:

Eq. (2-7) can be expressed in terms of A4 as;:

I =f0+E‘,(£:_ED)[Q+ 1 ;Q]

and then the derivative of f; respect 10 £, pives a tangent modulus which is:

_afh 1-9)_ ﬂe_s:&ﬂ)
E"de,‘E°(Q+ A ) E=Z ( A ds,

By substituting Eq. (2-11) into (2-13) and rearranging:

A (s_f sff)

R increases Ef

(g, . f,)

v

Fig. 2.2 Different Curves Having the Same Starting and Ending Properties

24

(2-10)

2-11)

(2-12)

(2-13)



E, _ 1~ Q
E—u =0+ —A—m— 2-14)
By evaluating this equation at £; = €;, and solving for Q,
LT
E,
Q= 1— A~R+D (2-15)
Solving for O in Eq. (2-12),
Egc 4
0= E (2-16)
1-A"1

Eq. (2-15) was obtained from an equation related to the final slope (E,), thus this equation
guarantees that at the target point the slope condition is met E,(g,) = E;. Eq. (2-16) was
derived from the ordinate equation so, by satisfying this equation, the crdinate condition is met
IE p=f. To satisfy both conditions, it is necessary to equate both Egs. (2-15) and (2-16).

— AR+l -l
EI‘Emlla+ +Eo§(l_a_)
-a l-a

=0 (2-17)
wherea = A"

The solution procedure is as follows:

_fi=fe
M) Em =g =c,
Ef— Ewc . . N . . . N a
2) Run= F_E ° the derivation of this expression is given in the next subsection
sec — Lo

2.3.2. It is not possible to reach the point (g, fy) with the slope E; with a value of R<R,,.
Evaluation of the M-P equation for the case of R = R, is only possible by taking the limit of the
expression, so a value of R slightly greater then R, has to be used, in order to apply the
¢xpression as it is shown in Eq. (2-7).

(3) If Ry, =0, it means that the three points are aligned, thus take Q= 1 and fo =f;.
The value of R need not to be modified.

(4) If RS Ryin thentake R=R_, + 0.0l
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(5) Solve for the value of a in the following expression:

R+l —-gR
_l=a™ o a(l-af)
l1-a l-a
To find the value of a the following procedure is used:

(a) Define a function f{a) as:

E-E =0 (2-18)

a(l-a®)
1-a

— R+
f@=E-Eul=8" 1, 2-19)

(b) Evaluate f(1-g)and f(g), where ¢ is a small value (=0.01).
(¢) If f£(1-) * f(€) > 0, no solution is found, so decrcase the value of €

and repeat step (b).

(d) If f(1-e)*f(e) = 0 then a solution is found in this interval. The

quadratically converging Newton-Raphson procedure can then be used to find the solution.
(e) Take as an initial estimate:
Roin

@o=—p~ (2-20)

) If fla,)*R1—€)<0 then replace a, by Ja, until the inequality is
false to ensure proper convergence. If this condition is not met the algorithm will find a solution
outside the meaningful range.

(g) With g, as an initial estimate the following recursive expression
should be applied until convergence is met. It is important to note that the function f(a) has a

singularity at a = 1, so the value of Aa should be the smaller of 0.5(1 -a,}and 0.001.
2f(ai)Aa

Bk = 00 Y A~ flai - Ad) @2
(8) After the value of @ has been defined then,
1
(1 -af)R
b= (2-22)
(9) The values of £, and Q are then calculated as:
E,
fou = fo + =208y — £0) @23)
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2.3.2 Meanegotto-Pinto Equation Limiting Case

(2-24)

In step 2 of the procedure outlined above, a factor R, was introduced. The derivation of
that factor and the relation of the Menegotto-Pinto equation to a power equation is the subject of

this subsection.

The Menegotto-Pinto equation can be expressed by:

1-0

X—X,
(l + lanch —Ye

y=yo+Eo(x—x,)| Q-

-

)

If the curve is to pass through (x,, y,), it can be rewritten as:

and its derivative as:

Er _ (1-0)
E_,,_Q+ ARV
where:
i
x—x, |F\%
A—(1+IEoyCh__yo )
If,

a=A""

then by solving for Q in Eqs. (2-26) and 2-27), the following expression is obtained:

1—- aR+I

a(l-a%) -

EfEsec s

+E, 0

I-a

By solving for a in this equation, the parameters y , and Q are given by:
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(2-28)
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a

Yo = Yo + Ea(Xy~X5) T (2-31)
(1-af)r
and,
E
_,E_f._akﬂ
g= W (2-32)

Eq. (2-30) cannot be evaluated as it is written for @ = 1, but it presents a limit. The limit

value of the fraction in the second term is:

. 1 =gfttt _
alirp - =R+1 (2-33)
while the other limit is:
. a(l-a®) _
dm e =k @-34)
So the limit for the equation when a — 1 is:
Ef—Ewc(R+1)+E,R=0 2-35)

Solving for R, the following equation for the critical value of R can be derived:

Ej—Eu

R = EH-E(.

(2-36)

This value, as can be shown numerically, represents the minimum value that R is to have,
so that a solution to meet the conditions of both slope and ordinate value at the ending point.
What is of interest now, is to know what the limit for the original equation would be. Bothy,,
and Q tend to infinity as a tends to one. Eq. (2-25) can be expressed in terms of a as:

¥ =Yo+Eo(x—xo)[m+ Q(1 —m)] 2-37)

where,



m= , (2-38)

[“ x—x, Rl—a"]i
X=X, a®
Whena — 1,
limm=1 (2-39)

The limit of (X1 - m), is a complicated expression:

ﬂ —ag™ ﬁ _ X
. _ i Ea _ 1 _E X—Xo
allg]‘ QL =m) = allg“ 1 —af*! ! L7 R+1 {x%—Xo (249
14 |X=Xe | L=a® |¥
xf—x., aR
So, Eq. (2-37) can be expressed as:
B,
_ E, X—Xq
y - ya +Eo(x xn) l+ R+1 xf—_xu (2'41)
The final form of the limiting case of the Menegotto-Pinto equation as:
¥ =Yo+Eolx—x,) + Alx = x,)}x - x,|* (2-42)
with,
- 2-43
R E_—FE. (2-43)
and,
A= ELE;; (2-44)
|y~ x|

Eq. (2-42) is dealt with in more detail in section 3.6.3. It is worth noting here that this
equation represents the most "relaxed"” of all the curves given by the M-P equation, but at the

same time, the M-P equation cannot be evaluated for this case, as it is a limit expression.



2.4 Cyclic Properties of Reinforcing Steel

In this section a universally applicable cyclic stress-strain model is advanced for ordinary
reinforcing and high strength prestressing bars. The model is composed of ten different rules,
five for the tension side and five for the compression side. Each of the rules is described

separately in the following sections.

2.4.1 Envelope Branches (Rules 1 and 2)

The envelope branches are defined by the monotonic stress-strain relation which
is relocated and scaled to simulate strength degradation. The shape of the monotonic branch is
kept intact, except that at the points of reversal a scale factor is calculated. This combined model
ensures degradation within local cyclic, a phenomenon which has not been modeled before. The
mode! was calibrated using experimental results given by Panthaki (1991). The stress-strain
relation for the tension envelope curve can be expressed as a single expression by:

Rule 1 (Tension Envelope Branch)

E: € Sign(s.rs - E: ) +1 p et —¢ L
fo= 10701 2 * (fa=FH| 1= i_“’% (2-45a)
{ (Es Esr 3 su— Egp
14| Lete
)
Pt
E_' Sign(t‘." —E:’,) + l . + f-":" _fs pt
El‘ = 1 2 — algn(Em - EIS)E_:h +—+ (2—45b)
(E;c_“)lo f.l'll-fy
14| Bl
y+
where: Eas = £~ Eom (2-45¢)
£t —¢},
pr=EL=— (2-45d)
u y

in which g}, = location of the tension envelope branch. Eq. (2-45) is shown plotted in Fig. 2-3.
Also shown in this figure is the compression envelope branch defined in an analogous form as

follows:
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Rule 2 (Compression Envelope Branch)

E, e, Sign(e,, —€s)+ 1 —"_HP'
fo= - ) B ~ Eu) (fa—fy)| 1- |2ote (2-46a)
10701 2 Emu— e.\‘h
l + [EI 8!5 J
5y
i - 1 u
E, - EJ - + Slgl'l(E;h - e.rd') + aign(e” _ E;u )E;h _f_!:‘d_‘: P (2.46b)
SN 2 f su _f y
14 (Es en)
5
where:
€ =€ ~Eom (2-46d)
- e;u - 8,_-;.
=E, 2-46¢
P * f u _'f y- ( )

in which €;,, = location of the compression envelope branch.

Fig. 2-3 Tension and Compression Envelope Curves
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2.4.2 Reversal Branches (Rules 3 and 4)

When a reversal takes place on an envelope branch, a reversal curve connects this point
of reversal with a target point on the opposite envelope. The curve that connects these two points

will be referred to as a reversal branch. In general, reversal branches are completely defined by
the extremum points: maximum excursion into the tension envelope branch £, , and maximum

excursion into the compression envelope branche,,,, (Fig. 2-6). If a reversal takes place from

within the yield plateau on the tension envelope curve at a coordinate (g7, f;7), with fy =f,
then £,,,, is defined as:

Emax = Ep — €y 2-947)
The target strain on the compressive envelope curve is calculated as:

€1 = Eom + Emin (2-48)
where, Emin =&y + DA€, —E7) (2-49)
and E,m =E, — Lo (2-50)
Eg
. Emax — €5
with, pr=——70" (2-51)
€ —Ey
While the target slope is given by:
E, = ! (2-52)

1 1 1
— + r —_ ——

$ b (E:h E; )
and the target stress if the yield stress on the compressive envelope branch (Fig. 2-5). In the case
when the reversal takes place from the strain hardened curve of the tension envelope branch, then

Eqs. (2-49) through (2-52) are modified as follows. The strain €., is taken as the actual
maximum excursion within the compressive envelope branch but,

|€minl > [€54] (2-53)
The shifted origin abscissa for the compression envelope branch is calculated as:
€om = €5 ki +&5(1 = k7o) @-549)
with:
+ oot + f Y+
€l =Bl tE, —— (2-55)
E,
+ oot f max
E,



in which &, is a factor to locate the compression envelope branch between the €} and €} as
shown in Fig. 2-5, and was found to be:

krey = eXp (—%J (2-57)
5000 (e3)

Finally the target stress and slope f,; and E; are calculated using Eq. (2-46). Similarly, for the
loading reversal branch, the shified tension origin strain is given by:

ey =e5(1 —kp )+ k7 (2-58)
with:
€, =€pm+Ep — —é 2-59)
- - fmi
€5 = Eom+Emin = (2-60)
where:
ki, = exp —k#“lz (2-61)
5000 (g5)
Then the target strain on the tension envelope branch is given by:
€1z = Eom + Emax (2-62)

In a similar way, the target stress f,; and slope E;, on the tension envelope branch is calculated
using Eq. (2-45).

Experiments performed by Panthaki (1991) have shown that the initial Young's modulus

at the point of reversal from the tension envelope branch (unloading) can be expressed as:
E; =(1-3A¢g,)E, (2-63)
While, for a reversal from the compression envelope branch (loading), the initial Young's

modulus can be given by:

E; = (l —AEa)Es (2'64)

The M-P parameter R was also found to be a function of the yield stress, that can be expressed
as:

5

R‘=l6[EJ

11
) (1-10Ae,) (2-65)
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for the unloading branch, and

5

+
R =20( L

113
) (I -20A€g,)

where Ag, = strain amplitude for the cycle and E, = initial Young's modulus for the reversal
branch, as shown in Fig. 2-4. Analytical calibration of these variables are shown in Figs. 2-7 to

2-10 from experiments by Panthaki (1991), and Figs. 2-11 to 2-14 show some of the actual

experimental loops that were used to fit the M-P equation.

The unloading and unloading branch are define as:
Rule 3 (Unloading Reversal Branch)

€43 =Ehm +Ermax

f a3 =f max

Es= E(T

€53 =€y (2-67)
for=fu

Ep=E,

The initial slope E, and the Menegotto-Pinto equation parameter R~ are functions of the strain
amplitude A, of the loop, Egs. (2-63) and (2-65), which is defined as:

Rule 4 (Loading Reverssl Branch)

Af, = e”’—;s“— (2-68)

€44 = €5+ Emin
fad =fmin

Eu=E]

€p4 =€), (2-69)
fu=fa

En=E,

where E} and R* are calculated using Eqgs. (2-64) and (2-66), respectively, by having:

e, = |2t @-70)
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Fig. 2-4 Effect of the Strain Amplitude of the Reversal
on the Equation Parameters

2.4.3 Returning Branches (Rules 5§ and 6)

When partial unloading on the reversal unloading branch (rule 3) takes place, the
reloading branch will be called loading returning branch (rule 5). An analogous branch will exist
when a reversal takes place on the loading reversal branch (rule 4), and unloading is done

through the unloading returning branch (rule 6), as shown in Fig. 2-15. At the occurrence of a
reversal on rule 3, rule 5 will start and the target strain £,5 is calculated as:

€5 = Epm + Emax + AER, 2-7)
with,
+ f ;
AT, =€g3—Eas — 12E, (2-72a)
0gaer <L (2-72b)
"~ 3E,

The target stress f,s and slope E,s; are calculated by using Eq. (2-45). The initial Young's

modulus E,s = E} and parameter Rs = R* are computed similarly by defining:

At = %s_ze.ez (2-73)
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Fig. 2-5 Reversal From Yield Plateau
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Fig. 2-6 Definition of the Reversal Unloading Branch
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In a similar way, a partial loading from the loading reversal branch (rule 4), which defines rule 6,

is calculated as:

€46 = Egm +Epmin + AL/ (2-74)
with,
Are =€as —Eo6 — Sy (2-75a)
o 1.2E,
0z Ag, 2 L (2-75b)
Y

2.4.4 First Transition Branches (Rules 7 and 8)

The curve followed after a reversal from an envelope branch curve has been named
reversal branch, the onc followed by a reversal from a reversal branch is called the returning
branch. The curve then followed afier a reversal from a returning branch is called the first
transition branch and a reversal from this will lead to a second transition branch. These five
types of curves are illustrated in Fig. 2-15. It should be noted that the reversal and the returning
branches form a closed loop and the first and second transition branches cycle inside this loop.

h

5 ]

31 1/

4) 10

1, 2 Envelope Branches
3, 4 Reversal Branches
§. 6 Retuming Branches
7, 8
9, 10

First Transition Branches
Second Transition Branchas

, 1

Fig. 2-15 Sequence of Partial Reversals
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The target strain of rule 5 £, is given in Eq. (2-71). This equation is different from the
starting strain of rule 3 €,3, but if rule 5 would have reached the end, a reversal from this point
would have been the starting point for rule 3 again. It means that in the case of a reversal from

rule 5 {incomplete loading), a redefined rule 3 needs to be calculated. The starting strain for this
redefined rule ought to be between the previous starting strain and the target strain of rule 5. By
using a linear proportion,

Eg71 —Eas Eps — Ea7
€ps —Eas | E€ps— Egs

€3 =Eps (2-76)
It can be noted that if the reversal happens when rule 5 has just started €4 = €45, then from Eq.

(2-76) €, =€,3, what means that an “insinuation” of reversal occurred at rule 3, so the path
followed should be on the unchanged rule 3. While if the reversal occurred at the end of rule 5
when E,7 =&£,s, that means it is already on the envelope branch and a reversal at this point should
lead to rule 3, so £;; =£,s. Both extreme cases are satisfied by Eq. (2-76). Once the modified

starting strain for rule 3 €, has been obtained, the rule is completely defined as described in
section 2.4.2.

The curve following a reversal from rule 5 is the first unloading transition curve (rule 7,

Fig. 2-15), which target point is defined as:
b7 = Eqs 27
Because every rule, except rule 1 and 2 (envelope branches), is defined at a reversal point, the
initial coordinate is always the coordinate of the reversal point. The target stress f;; and

Young's modulus E,; are calculated on the modified rule 3 at a strain €,;. The procedure to
calculate rule 8, is exactly analogous. At a reversal from rule 6, a loading transition curve will

connect the point of reversal with the modified reversal loading branch (rule 4). Where the
modified starting strain for the modified rule 4 is given by:

Eog —Ea6 By Ep6 — Ea8 2-78)

L ]
2 Bl Ty €16 — €a6

2.4.5 Second Transition Branches (Rules 9 and 10)

An incomplete transition from the returning branch to the reversal branch, a reversal on
the first transition branch, is done through the second transition curve. The first transition curve
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(rule 7 or 8) aims the reversal branch (rule 3 or 4), while the second transition branch (rule ¢ or
10) aims the returning branch (rule 5 or 6). The relation among all the rules is shown
diagramatically in Fig. 2-16. Note that a rule can change to another rule either because a reversal
took place or because it reached its target point.

The target point for the second transition branch is calculated in a way similar to that for
first transition branch. A reversal at rule 7 will aim the loading returning branch (rule 5), thus the
target strain for rule 9 is:

€59 = €47 2-79)
The target stress fis and slope Epy are defined by the rule 5, as rule ¢ is a transition branch to
connect the point of reversal with the first loading transition branch (rule §). Rule 10 is defined

in the same way, when a reversal takes place on rule 8. In this case, the target strain £,,9 = €,3.

o o o o

& ¢ d

O

s

Fig. 2-16 Flow of Rules at Every Reversal and Target Strain
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2.4.6 Strength Degradation

Degradation is taken into account by means of a scale factor. This scale factor is updated
every time a reversal takes place. Degradation is directly associated with plastic deformation.
The following proposed relationship proved to be applicable to both normal and high strength

steel bars.

13
k,:(';—f) - 1_m,.(§) [19.55,|23 2-81)
where:
e, =g, -2 (2-82)
p — “a Es

in which m; = factor that depends on the current scale factor, A f = stress drop, €, = total strain
amplitude, f, = stress amplitude, £, = plastic strain amplitude, as shown in Fig. 2-17. The
implementation of degradation through a scale factor ensures that degradation is considered all
the time. Care has been taken to ensure that the model behaves smoothly under all kind of
situations. Through a diagram like the one shown in Fig. 2-16 it is shown that every possible
situation is considered. The model as defined before does not consider strength degradation, this

is done by defining the stress as:

Ji=5i feo (2-83)

with:
5;i =58ic ki (2-84)
m; =1 +exp[-20.0(1 -s,)] (2-85)

where s; is the scale factor that is modified at every reversal, m; is a factor that amplifies
degradation on the firsts reversals. It has been observed experimentally (Panthaki, 1991) that

loop degradation tends to diminish with cycling, as shown in Fig. 2-19. As the material reaches
incipient failure, degradation accelerates dramatically up to failure.

2.5 Stress-Strain Model Verification

Experimental data from Kent and Park, 1973; Ma, Bertero and Popov, 1976; and
Panthaki, 1991, were used to test the model. Reasonable agreement was achieved. Results are
shown in Figs. 2-20 to 2-34.
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Fig. 2-23 Stress-Strain Experiment by Kent and Park (1973), Specimen 15
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Fig. 2-29 Stress-Strain Experiment by Panthaki (1991), Specimen P3
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Fig. 2-31 Stress-Strain Experiment by Panthaki (1991), Specimen P19
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2.6 Damage Modsling

The failure of a reinforced concrete member is intrinsically linked to the fracture of either
the longitudinal reinforcing bars (Mauder ¢t al., 1992) or transverse reinforcement (Mander et al.,
1984, 1988a, b). Thus, the prediction of steel fracture is an important aspect in the modeling of
member behavior, particularly incipient failure.

The strain-life relation to estimate the life of a material is given by the Manson-Coffin
(1955) equation expressed as:

e _ S

T = E(sz)b + E;(ZNI)C (2-86)

where Ae = total strain amplitude, c} = fatigue strength coefficient, b

fatigue strength
exponent, E = Young's modulus, Ny = number of cycles to failure, £/ = fatigue ductility

coefficient and ¢ = fatigue ductility exponent.
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The first term of the right hand side of Eq. (2-86) is known as the high cycle fatigue
component while the second term is the low cycle fatigue component of the strain-life relation.
In the case of earthquake loading, the members of a reinforced concrete structure can be
subjected to inelastic deformations in which the steel reinforcing is subjected to large plastic
reversals. In this case, the bar failure is predominantly due to low cycle fatigue, for which Eq.

(2-86) can be simplified to (Koh and Stephens, 1991):

—A; =e; (2Np)° (2-87)
which can be also be written as:
1
s
1| Ae
Ny==| 25 2-88
~4%) @

A number of different theories has been suggested in the literature to describe the
accumulation of partial fatigue damage. The Palmgren-Miner rule (Palmgren, 1924; Miner,
1945) is the simplest and still the most commonly used of all the cumulative damage models, it
assumes a linear accumulation of damage that can be expressed as:

D= (2-89)
where D; = damage for one cycle of a given amplitude Ae. The total damage accumulated is
given by:

D=XD; (2-90)

Under random cycling, similar to what may be encountered in an earthquake, the problem
of cycle counting and amplitude identification becomes cumbersome. The rain flow cycle
counting method is one of the most popular methods used for this purpose. The method
nevertheless becomes computationally cumbersome for long strain histories as it requires
keeping track of the whole strain history for the problem. Other known cycle counting methods
include the range pair counting, the peak counting, level crossing counting and range counting
methods (Dowling, 1972). Once the cycles have been identified then a equivalent constant strain

amplitude can computed as:

=1 (2-91)



) e |

Mander et al. (1992) have shown that for reinforcing bars and high strength threadbars ccan be
conservatively approximated as -0.5. Thus Eq. (2-92) becomes,

1
#) )] -
()42 &) @5
It can readily be shown that if all the points are used rather than just the peaks,
=2 _ e (2-949)

where es7p is the standard deviation of the strain history response. The following procedure
should be used to compute the standard deviation. At every new strain point, the average strain
for the whole strain history is calculated by:

ly e —6.
 [edel 2 ; (€ +em)le —em|
€=l _ (2-95)
I ¢ 2 lei—eil
Thus the variance of the strain history is calculated by:
l < ed
e—£) dle 3;' i "'I
EE'J'D:I( _[dl)gl I I— ”n 2 (2'96)
z |£l—£l—1|

And the standard deviation is computed as the square root of the variance. Fig. 2-35 shows two
examples of the results using the procedure outlined. Note that for the constant amplitude cycle,
the standard deviation converges on the first complete cycle to a constant value. In the strain

domain the shape of the wave is a triangle and thus,

Estp = %(%) = 0.577(%) 297

An alternative way of computing the standard deviation is considering that the time history will
resemble a sinusoidal movement. In this case, if the time steps are considered to be equally
spaced, the standard deviation can be considered independently of the magnitude of the strain
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changes, and it can be computed in a simple way, just by keeping the summation of strains,

Thus, in the time domain the standard deviation is defined by:

Es1p = Tar (2-98)

n n 2
eip=i X e~ (% pX s.—) (2-99)
i=] i=1
If all the points are used and not only the peaks, then:
€ae = (%) =2 Esm (2-100)

The apparent contradiction between this equation and Eq. (2-94) should not be taken as such.
The standard deviation computed in Eq. (2-94) is in the stress-strain domain and is dependent on
the magnitude of the strain changes, while when Eq. (2-99) is used in the strain-time domain, it
is assumed that the strain-time history shape resembles some form of harmonic loading.
Sinusoidal waves are the time shape used in experiments and most structures will tend to show
sinusoidal strain histories at its natural frequency.

An energy based cumulative damage model is proposed as:
AW;

S (2-101)
with,

AW, =2(fi+ fe)Ei-£0) S @)
and Wi(€ae) = Al€ar)” (2-103)

The experimental data obtained by Panthaki (1991) was reanalyzed and based on these
analyses the following proposed values were obtained:

A B
Reinforcing Bars 1.22 (ksi) -1.06
High Strength Prestressing Bars 1.09 (ksi) -14
after which the following empirical equations are proposed:
A= l;;m(ey)“" (2-i4)
B=-5.7(,)"® (2-105)
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2.7 Damage Model Implementation and Verification

In Fig. 2-51 a comparison of the proposed damage model with experimental results from
Panthaki (1991) is presented. The scattering in the experimental data can be modeled in terms of
the deviation from the average result. An additional factor is used to simulate the effect of

incipient failure upon the stress-strain behavior.

F,=05|1-—%— (2-106)
(14 1ul?)
This factor is used to simulate a normal distribution for which the parameter R was found to be
approximately 3.27. This was obtained by minimizing the variance between both functions
between =0 and u = 3.

The parameter u is a function of the damage index D; and the standard deviation o, and
is defined as:

w=3(2Pa) (2-106)
where, for tension siress,
Dn=1+% (2-107)
and for compression stress,
Dn=12+ ‘—2’ (2-108)
while, for a single bar,
¢=0.2 (2-109)
and for multiple bars,
=04 (2-110)

To the knowledge of the writers, this is the first time that a model has tried to simulate
this phenomenon. The incorporation of steel fracture simulation is a very important factor if the
prediction of failure is desired. Fig. 2-51 shows how the medel compares with experimental
data, while Figs. 2-36 through 2-50 show individual comparisons at different strain amplitude
tests.
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Fig. 2-47 Reinforcing Bar, Specimen RS
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Fig. 2-48 Reinforcing Bars, Specimens R11, R7 and R10
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2.8 Strain Rate Effects

it has been shown experimentally {Mander et al., 1984; Soroushian and Choi, 1987) that
the rate of strain influences the stress-strain behavior of steel. Soroushian and Choi found that it
affects the yield strength, the ultimate strength, the strain at the beginning of strain-hardening and
ultimate strain. Their study showed that the effect of strain rate is different on different types of
steel. The dynamic effect on che yield strength, as given by Soroushian and Choi, was found to
be:

i (1.46—0.451 % 1076 £,) +(0.0927 - 0.920 x 10-5f, )log o €]  (2-111)

By

where f] = dynamic yield strength, f, = quasi-static yield strength and € = strain rate in sec™!,
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Mander et al. found a simpler relationship expressed as a dynamic magnification factor

given by:
é 1/6
D, =0.966(l + |ﬁ| ) @-112)

where D = dynamic magnification factor.

2.9 Conclusions

The following conclusions can be drawn from this section:
(1) A universally applicable model is presented which can simulate the hysteretic behavior of all
types of steel. This is particularly important as steels of higher strength are being used today.
(2) A method for assessing degradation was implemented. Previous models failed in simulating
this phenomenon. This characteristic of the hysteretic behavior of steel is important as it also
influences the degrading characteristics of a reinforced concrete member, Steel fracture leads to
a sudden loss in strength and energy absorption capacity. Therefore reliable modeling of steel
behavior is of paramount importance.
(3) A step by step energy-based damage assessment methodology is presented. This is a simple
alternative to the rain flow counting method to assess damage for random cycle behavior.
(4) Numerous comparisons with experimental results show that both the hysteretic
characteristics and prediction of fracture can be appropriately simulated by the models advanced

herein.
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Section 3

Modeling the Stress-Strain Cyclic Behavior of Concrete

3.1 Introduction

In the context of a coniputer program for the simulation of the cyclic behavior of
concrete members, the implementation of all the hysteretic properties of confined and
unconfined concrete becomes an important part. Many investigators have devoted their time
1o define experimentally and analytically the behavior of concrete.

In this section an advanced rule-based model, to simulate the hysteretic behavior of
confined and unconfined concrete in both cyclic compression and tension for both ordinary
as well as high strength concrete, is developed. Tension cyclic modeling is important when
calculating deformations due to shear as in the Modified Compression Field Theory (Collins
and Mitchell, 1991). The basic elements of a rule-based model are identified, which can be
applied to any general purpose model. Funﬁamental ideas about the nature of degradation
within partial looping is also dealt with; most models deal with degradation in terms of
complete cycles without considering the event of incomplete cycles (as this is the normal
type of experimental data available).

A reinforced concrete structure subjected to working loads might show cracking in
some elements. Experimental tests (Yankelevsky and Reinhardt, 1987b) have shown that
concrete in tension shows a cyclic behavior similar to that in compression. Thus, it was
considered nec~ssary to describe analytically the hysteretic behavior of concrete with
excursions in both compression and tension, Particular emphasis has also been paid to the
transition between opening and closing of cracked zones. This phenomenon has not been
adequately addressed in previous models. Most existing models assume sudden crack
closure with a rapid change in section modulus. Such a rapid change is not supported by

experiments on lighly loaded ¢olumns.
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The desirable characteristics of a general stress-strain relation for concrete are: (1)
the slope at the origin is E_, (2) it should show a peak at the point (¢/,, £) . (3) it should
describe both the ascending and the descending parts of the concrete behavior and (4) it
should have control over the descending (softening) branch. Control over the slope of the
descending branch is important, because its shape is dependent on factors such as the degree
of confinement and the strength of the concrete. Experiments have shown that for
unconfined concrete, both the ascending and descending parts of the curve become steeper
(Saenz, 1964). Tests have also shown that the slope of the descending branch curve for
confined concrete can become very flat (Somes, 1970; [yengar et al., 1970; Burdette, 1971,
Kent and Park, 1971; Scott et al., 1982; Ahmad and Shah, 1982; Mander et al., 1988b).

ASCENDING
BRANCH PEAK

\ DESCENDING

/ BRANCH
STRESS
INITIAL
SLOPE
STRAIN

Fig. 3-1 Characteristics of the Stress-Strain Relation for Concrete

3.2 Review of Previous Work in Stress-Strain Relations for Concrete

3.2, Monotonic Compression Stress-Strain Equation

Historically, it has been commonly accepted that the envelope curve for the cyclic
compressive behavior of confined and unconfined concrete is the monotonic compressive
curve. To develop a suitable hysteretic model it is necessary to have a monotonic

stress-strain curve to describe the envelope curve.



The properties of the monotonic stress-strain curve of concrete has been the subject
of numerous papers. One of the first to proposed a formula to represent the stress-strain
relationship in concrete was Bach (Smith and Young, 1955; Popovics, 1970). He presented
a simple power function in the form:

y=kxm @-1)
where,

i which e_ = concrete strain, f, = concrete stress, f/ = confined concrete strength (peak
ordinate), €’. = the corresponding strain (peak abscissa), k = constant determined by curve
fitting, m = power with a value less than one.

The values of m recommended by Smith and Young (1955) where from 0.45 to 0.70,
the higher values been for higher values of compressive strength. This equation is not

appropriate to describe the monotonic behavior of concrete because: (1) it implies an infinite
tangent at the origin, (2) it does not have a peak at &, =€/, and, (3) it does not have a
descending branch, to describe the behavior after the peak stress has been reached. This

equation is shown in Fig, 3-2.
Young (1960) analyzed three equations, all of which have descending parts at least in
the neightorhood after the peak,

y=x[(n—=2)x*-(2n-3)x+n) 3-2)

y= xel9 3-3)

y=sin (-’251:) (3-4)
where, n= %

in which £_ is the initial modulus of elasticity, x and y were defined in Eq. (3-1). Eqgs. (3-3)
and (3-4) have a fixed value of n, thatis n = e =2.718 and n =n/2, respectively. Eq. (3-2),
on the other hand, can be adjusted by letting n have different values; this is shown in Fig.
3-3. Because Eq. (3-2) is a cubic polynomial it shows a local minimum that makes the
equation unsuitable for values of n greater than about 2.4. Warner, 1969; and Al-Noury and

3.3



Chen, 1982, used this equation for the ascending branch, but they used a parabola for the

descending branch.

Desayi and Krishnan (1964) proposed an equation in the form:
2x
= 3-5
YT e 33)

This equation has a fixed value of n = 2. The shape of this equation after the peak
has the correct tendency, and some generalizations of this equation were proposed afterward.
Kabaila (1964), discussing on the equation by Desayi and Krishnan, proposed a
quartic polynomial relationship in the form:
y=2.0x~1.180x2 +0.1763 x> + 0.0027 x* {3-6)
This equation also shows a fixed value of »n =2, and it has a minimum ne¢ar x = 3, so
the equation could only be used for values of x less than this value. The peak of this
equation is not at x = 1, but rather at x = 1.1333. This type of equation could well fit an
experiment but could not be used as a general equation,
Saenz (i564), also discussing on the equation proposed by Desayi and Krishnan,
presents several other equations:
y=12-x) (%)
This equation had been adopted by the European Concrete Committee and was used
by many investigators to represent the ascending branch of the monotonic stress-strain curve.
This parabola is a particular case of the cubic equation, Eq. (3-2), when the value of n is
taken as 2.
Sagnz also presents another two equations which generalize the equation proposed by
Desayi and Krishnan, Eq.(3-5),

PR /T T 3-8
P ¥ (-)x+ 22 3-5)

This equation has control of the initial tangent parameter », by taking n = 2, it is
reduced to Eq. (3-5). The behaw: . of this equation is presented in Fig. 3-4.

The second equation proposed by Saenz goes a step ahead, by allowing control over
both the ascending and the descending branch. Control over the descending branch is
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achieved by defining a point on the descending branch. The equation proposed, in the

nomenclature used here, is expressed as:

nx
= 3.9
¥ RIn-Dx-Q2R- )22+ R @9
n(R,-1)
where: R=—"—>——
(Re—1)? Re
4
R=1x
'
E
R:=E_':’-‘

(s, fr) = apoint on the descending branch of the curve.
This equation is presented in a very convenient form, because its parameters have

physical meaning. The value of R is defined by a point on the descending branch of the
curve. The behavior of this equation is presented in Fig. 3-6. When the value of R is taken
as zero, Eq. (3-9) reduces to Eq. (3-8), and if in addition the value of » is set to twe, it then
reduces to the Desayi-Krishnan equation, Eg. (3-5).

Tulin and Gerstle (1964), also commenting on the Desayi-Krishnan equation

proposed the equation:
3x
2+x3
This equation is a particular case of Eq. (3-8) for a valueof n=1.5 .

y= (3-10)

They also suggested a more general expression as:

e

They stated that the constants ¢ and r must be selected for best fit. They did not
present any comments regarding how this fitting could be done, but it can be relatively easily

be shown that if this equation is to have a peak at x =1, then r should be taken as r=a +1
and it can be written in the following form.

(3-12)

where r=
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This equation known as Popovics' (1973) (Mander et al., 1988a; Carreira and Chu,
1985 and 1986a; Tsai, 1988) has proven to be very useful in describing the maonotonic
compressive stress-strain curve for concrete. This equation is shown in Fig. 3-5.
Mirza and Hsu (1969) used a relationship in the form:

y=sin(%x)+0.2x(x— D™ -1) xe [0,1] (3-13a)

y=0.226+2.157x— 1.91x? + 0.596x3 — 0.064x* x€ (1,34] (3-13b)

This is a very complex relation and it does not possess control over the initial slope.

Sargin (taken from Ghosh, 1970) proposed a very general formulation, expressed in
the notation used here:
—1 g2
y= nx+(D-1)x - 3-14)
l+(n-2)x+Dx
where, D = factor controlling the slope of the descending branch.

This equation is another generalization of that by Saenz, Eq. (3-8). By taking D as
one, Eq. (3-14) reduces to Eq. {3-8). This equation, as Eq. (3-9), also has control over the
descending branch. This equation, nevertheless, can give negative values of stress, as can
be seen if Fig. 3-7.

FEafitis and Shah (1985) proposed an equation of the form:
y=1-(-x)" x€[0,1] (3-15%)
y=eat-'® x>1 (3-15b)

In this equation the value of a depends on the amount and spacing of transverse
reinforcement.
A modification to the Popovics' relation, Eq. (3-12), was suggested by Thorenfeldt,
Tomaszewicz and Jensen (Collins and Mitchell , 1991) in the form:
rx

r=1+x*
In this equation k takes a value of 1 for values of x less than 1 and values greater than

y= (3'16)

1 for values of x greater than 1. This means that by adjusting the value of & the descending
branch can be made steeper. This approach can be used for unconfined concrete where for
high values of concrete the descending branch becomes very steep, but could not be used for
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the case of confined concrete where the descending branch needs to be flattened. This
equation presents a slope discontinuity at the peak value and the value of & is not continuous.

Tsai (1988) recommended a generalized form of the Popovics' equation,
nx
y =

1+ (n— A )x+ x”
r—1 r—1

where, r = factor to controi the descending branch of the stress-strain relation. By taking

n= ﬁ Eq. (3-17) reduces to Popovics', Eq. (3-12), and by taking r = 2 it is reduced to

3-17)

Saenz', Eq. (3-8). The behavior of this equation is shown in Fig. 3-8.

The continuous equations reviewed can be classified in the following way:

(a) Equations to represent only the ascending branch:

(1) Bach Eq.(3-1)
(2) Mirza and Hsu Eq.(3-13a)
(3) Fafitis and Shah Eq.(3-15a)

(b) Equations to represent the ascending branch and the descending branch

without having control on the initial slope:

(1) Young Eq.(3-3)
{2) Young Eq.(3-4)
(3) Desayi and Krishnan Eq.(3-5)
(4) Kabaila Eq.(3-6)
(5) Saenz Eq.(3-7)
(6) Tulin and Gerstle Eq.(3-10)

(c) Equations to represent the ascending branch and the descending branch

having control on the initial slope:

(1) Young Eq.(3-2)
(2) Saenz Eq.(3-8)
(3) Popovics Eq.(3-12)
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Tsai's Equation
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(d) Equations that have control on both the ascending branch (initial slope)
and the descending branch:

(1) Sacnz Eq.(3-9)
(2) Sargin Eq.(3-14)
(3) Tsai Eq.(3-17)

It should be noted that it is only Tsai's equation that gives reasonable control for all
possibilities, whereas, as seen in Fig. 3-6, in Saenz's equation y > | under certain
circumstances, and in Sargin's equation y < 0.

The equations of the last type are the most flexible and general, and by comparing
their behavior it was concluded that Tsai's equation is the most suitable to represent the

behavior of both confined and unconfined concrete.

nx

y= .
l+(n— r )x+ X

3-17)

r—1 r—1
Furthermore, Mander's original concrete model (1988a) uses Popovics' equation

which is really a special case of Tsai's equation. By adopting Tsai's equation and setting
n= ;:—1, all of the standard data calibrated for Mander's confined concrete model can

continue to be utilized. However, the advantage of using this new relatiotiship gives the
added flexibility of controlling the slope of the falling branch curve. This is particularly
necessary for high strength concrete, and also when high strength transverse confining |
reinforcement is used. The model of Mander et al. (1988a) in its present form has difficulty

coping with these two phenomena.

3.2.2 Initial Modulus of Elasticity

Several formulae for the modulus of elasticity have been proposed in the literature.

Pauw (1960) reported several of these formulac. The first of these equations is the
following:

E.=1,000f! (3-18)
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This equation was in the ACI building code before 1963. Although this equation has

been used extensively because of its simplicity to represent the modulus of elasticity of
normal strength concrete, it overestimates the value of E_ for high strength concrete.
An equation reported by Pauw which was proposed by the ACI-ASCE Committee

323 to estimate the value of £, for normal strength concrete is:
E.=1,800,000+500f! psi
(3-19)
E. = 12,400+ 5001/ MPa
Another equatior nresented by Pauw which was proposed by Jensen in 1943, and is

applicable only to normal strength concrete is:
5 - 5:000,000
T L2000 P

r!

_ 41,000
1+ j{—:,‘
The following linear relationship was developed by Lyse (Pauw, 1960), which is

similar to Eq. (3-19).

(3-20)

E. MPa

E.=1,800,000+460f/  psi
(3-21)
E.=12,400+460f!  MPa

An equation proposed by Pauw (1960) that was adopted into the ACI building code
since 1963, is applicable to both normal and lightweight concrete.
E. =33w!3 Jf! 3-22)
in which f'_is in psi and w in pcf.
For normal weight concrete, the ACI code assumes a weight of 145 pcf and proposes

the following equation:
E.=57000Jf! psi
(3-23)
E.=4,700Jf! MPa
Pauw also presented another two formulae:
E.=13.82w!75f! 044 (3-29)
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E = 158.1w!5!ff 030 (3-25)
in which /' isin psi and w in pcf.

This last equation was obtained when excluding the data for concretes having a
compressive strength less that 2000 psi. And according to the author it is believed to be
more reliable than the one adopted by the ACI code. Note the smaller exponent.

Saenz (1964) suggested the following formula for the modulus of elasticity:

108
© 140006 f!
_ 8,300 f!
C 1400727
Carrasquillo et al. (1981) recommended the following expression for normal weight

congcrete:

psi
(3-26)

E. =40000,/f/ +1000000  psi

E. =3300/f/ +6900 MPa

In more recent years, Klink (1985) has shown that the initial elastic modulus is
greater than that calculated with Pauw's equation, Eq. (3-22). In addition, he showed that the

(327

elastic modulus varies across the section, being the smaller values for the points near the
sides of the specimen. The equation Klink proposes is:

Ec.=146w'" [fl (3-28)
in which f/ is in psi and w in pcf. This equation gives values of E, that are about 50
percent higher than those calculated for the other formulae, for normal weight concrete.

3.2,3 Strain at Peak Stress for Unconfined Concrete

The strain £/. corresponding to the maximum stress f/ for unconfined concrete has
been found to be a function of the maximum stress, although some authors have taken it as a

constant value, normally 0.002 (Park and Paulay, 1975).
Saenz (1964) proposed a function in the form:
el =(31.5-f!03)f102510p-3 psi

(3-29)
€l = (14.3-29.4 f1025)5/ 025105 MPa
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Popovics (1970) reviewed some other expressions:

€} = 0.000546+2.56x 107! psi
(Ros) (3-30)
e/ =0.000546 +3.71 x 10-5f! MPa

/. s .
€<= 680,000+ 2605 P*
(Brandtzaeg) (3-31)
!
/ = fc
te= T+ Mo

el =37x105Jf]  psi
(Jager) (3-32)
el=45x 10 Jf] MPa

S |
€ =790,000+ 39577 P
(Hungarian Code) (3-33)

!
r fc
=—t__ y
€=3as0+305; M@

Carreira and Chu (1985) proposed an expression based on regressicn analysis:

€ =(168+4.88x 10 f/)x 10 psi

(3-39)
e/ =(168+0.708 /) x 10~ MPa
Sulavfani and Lamirault (1987) suggested the following expression:
€L =25x 104046 g
(3-35)

el =8.5x 1074/ %24 pMpq

It has been found that the observed strain at peak stress depends in factors such as
humidity, rate of loading and age [Hughes and Gregory (1972); Dilger, Koch and Kowalczyk
(1984); Soroushian, Choi and Alhamad (1986}, Mander et al. (1984); Bischoff and Perry
(1991)].
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Popovics (1970) reviewed some other expressions;

€} =0.000546 +2.56 x 10-7f!  psi
(Ros) (3-30)
g/ =0.000546+3.71 x 103 f! MPa

I
/ _ fc .
€= 580,000+ 2605, P
(Brandtzaeg) 3-31)
/
/ fc
= —t P,
C = ow+2007] e

e,=37x10°Jf7  psi
(Jager) (3-32)
el =45x10"*Jf! MPa

!
! - f C .
€= 750,000+ 3957, P*
(Hungarian Code) (3-33)
f
g =—Je  Mpa

75,450+ 395/
Carreira and Chu (1985) proposed an expression based on regression analysis:

€/ = (168 +4.88x 1073 f/)x 10~5 psi

(3-34)
el = (168 +0.708 f/)x 1075 MPa
Sulavfani and Lamirauit (1987) suggested the following expression:
el =25x%1074f10246  pgi
(3-35)

el =8.5x 104f/046  MpPq

It has been found that the observed strain at peak stress depends in factors such as
humidity, rate of loading and age [Hughes and Gregory (1972); Dilger, Koch and Kowalczyk
(1984); Soroushian, Choi and Alhamad (1986); Mander et al. (1984); Bischoff and Perry
(1991)].
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3.2.4 Characteristic of the Descending Branch of the Monotonic
Stress-Strain Curve for Unconfined Concrete

Popovics' equation, Eq. (3-12), has been used extensivcly in representing the
complete stress-strain relationship for unconfined and confined concrete. The descending
branch of this equation is very sensitive to the value of n (initial stiffness ratio), so if a good
estimation of the descending branch is needed it is necessary to choose this value carefully,
but by doing so the initial slope is not maintained. Another way of overcoming this problem
has been to use a piecewise continuous curve [Egs. (3-13) and (3-14)].

Kent and Park (1971) proposed a descending linear relationship passing through the
point (g, j}) with:

o _3+00027 .
1= T21,000 ps
¢3-36a)
0.02+0.002 5/
&= T_¢g  MPa
fr=05f! (3-36b)
Sulayfani and Lamirault (1987) suggested a point on the descending curve as:
]
g =(1.68-)el psi
{3-37a)
1]
gr=(168— L)l MPa
fr=085f! (3-37b)
Muguruma et al. (1991) suggested a linear relation for the descending branch that
passes through the point (€., /)
£, =0.004 (3-382)
=0 (3-38b)
Sakai et al. (1991) proposed a linear descending branch that passes through:
g, =0.005 (3-393)
fr=3371°8  psi
(3-39b)

fr=14f1°% MPa
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Collins and Mitchell (1991) used a complete equation to model the descending

branch.

fe= :—1’17 (3-402)
where:
!
r=.8+ ﬁ psi
(3-40b)
=gl
r=8+ 17 MPa
and,
f’
k=0.67+ 9060 psi
(3-40¢)

K
k=067+ MPa

In the previous equation, the value of & is taken as 1 for the ascending branch and is
calculated using Eq. (3-40c) for the descending branch. By using this procedure the
continuity of the tangent ¢lastic modulus is lost, as shown in Fig. 3-12.

Some other models have been presented by Wang et al. (1978), Popovics (1970) and
Tsai (1988).

3.3 Recommended Complete Stress-Strain Curve for Unconfined Concrete

From the data reported by Klink (1985), the following expression for normal
concrete can be derived:
w=98.55 ! 0049 (3-41)
By combining Egs. (3-25) and (3-41) an expression for the modulus of elasticity
suitable for both normal and high strength concrete is obtained. The proposed equation is:
Eo4s = 162,000 fc' 38 psi
(342)
Eo;s = 7, 200_{! e MPa
This relationship is plotted in Fig. 3-9 and is compared with those mentioned
previously, Egs. (3-18) to (3-28).

In the previous equation, the modulus of elasticity has been named E .« because it
is defined as the secant modulus from the origin up to a stress of 45% of the concrete
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strength. Mander et al. (1984) recommend an initial modulus of elasticity E. = 1.1 Egqs. In
this study the initial elastic modulus was found to be between 10% and 18%, with an
average of 15%, greater than the secant modulus. So the recommended initial modulus of
elasticity is given as:

E.=185,000f/*%  psi
(3-43)
E.=8,200 f!33 MPa

Based on the data reported by Sulayfani and Lamirault (1987) the following simpler

equation is proposed:

/114
et
(3-44)
! 11
el = c28 MPa

which will also fit the data for high strength concrete presented by Muguruma et al. (1991).
Thus, this equation may be used to represent the strain at peak stress for both normal and
high strength concrete. Eq. (3-44) is plotted in Fig. 3-10 and compared with those
mentioned previously, (Egs. 3-29 to 3-35).

A simple explicit equation for the parameter r was adopted. The stress-strain curves
obtained compared well with those suggested by Collins and Mitchell (1991). The proposed
{ormula, for the descending branch, is given directly in terms of the parameter r of Tsai's
equation, Eq. (3-17), as:

£
750

r=

-19 psi
(3-45)

’

=dc _
r=i5-19 MPa

In this section, a complete stress-strain curve for unconfined concrete is proposed.
The equation to describe the monotonic compressive stress-strain curve for unconfined

concrete is based on Tsai's equation:

nx (3-469)

y= r x'
l+(n—r_1)x+ 1

where x=-=% and y=
4

& Lc,, n and r are parameters to control the shape of the curve.
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The equation parameter 7 is defined by the initial modulus of elasticity, the concrete
strength and the corresponding strain. The initial modulus of elasticity and peak strain as
they were defined previously are given by:

E.=185,000f/%®  psi

E.=8,200f/3% Mpa
and,

! 1/4

' [4 :
4,000 P

€, =

, v
€= —ﬁ— MPa
Thus the parameter » is defined as:
Ee. E 46 .
n= ;ZC=E,; =fc’3’3 psi

(3-46b)
__1.2
n _fc, 8 MPa
The parameter r as it was defined previously in this section is given by:
L ‘
r=9s0" 19  psi
(3-46¢)

L
r--s.2 1.9 MPa

The relation represented by Eqs. (3-46) is shown graphically in Fig. 3-11 for oridnary
and high strength concrete up to 12000 psi . Analytical stress-strain relations given by
Collins and Mitchell (1991) are presented in Fig. 3-12. In the equation used by them, a
noncontinuous factor is used. The single equation used here has the advantage of being
adaptable for both confined and unconfined concre’., as it allows the descending branch to

shift either upward or downward, using the parameters n and » which are plotted in Fig.
3-13.
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Fig. 3-13 Tsai's Equation Parameters for Unconfined Concrete

3.4 Confinement of Concrete

It has been shown by many investigators and is an accepted fact, that transverse
reinforcement improves both the strength and the ductility of concrete. Several models have
been put forward to describe this effect on the properties of confined concrete, and the
mechanics of passive confinement by reinforcing steel has been explained successfully by
Sheikh and Uzumeri (1980) for square sections with rectilinear hoops, and by Mander et al.
(1988a) for all cases including rectangular sections with hoops and ties, and circular sections
with either spirals or hoops.

The first attempts to describe the effect of confinement on the strength and ductility
of concrete were empirical. Several authors proposed confinement models for rectangular
and circular hoops. It was recognized that circular hoops provided better confinement than
rectangular hoops. Generally, confinement models can be classified as hoop confinement
models and material confinement models. The hoop confinement models are normally
directed to describe the confinement mechanism within the context of a cross section, while
the material confinement models try to explain the effect of biaxial or triaxial state of stresses
on the ultimate strength of concrete.
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3.4.1 Confinement Models

One of the first attempts to define the effect of confinement on the ultimate strength

of concrete was made by Richart et al. (1928). They used active hydrostatic fluid pressure
to confine concrete and proposed the following relationships
=flvkifi (3-46a)
/! —pl ﬁ
el.=¢el1 +k2—;; (3-46b)
[+

Here, f/. and €/, are the confined concrete strength and corresponding strain under

the confining fluid pressure f,, and /7 and €' are the unconfined concrete strength and
corresponding strain. Factor &, was found to be 4.1 while k, = 5 k,. Because of its
simplicity, this equation has been widely applied, and was the basis of the confinement
requirements for concrete columns in ACI-318 (Park and Paulay, 1975).

Balmer (1949) found the value of £, to vary between 4.5 and 7.0. He also used an
active hydrostatic fluid pressure on standard size cylinders, which led him to suggest the

following expression:

25073
= f;(1+9.175 f;) (3-47)

Chan (1955) proposed a trilinear curve dependent on the volumetric ratio of the tie
steel to concrete core to simulate the passive confinement of transverse rectilinear ties. He
considered that this was the only variable affecting the strength and ductility of concrete
confined, and that this was the first attempt to evaluate the effect of the passive confinement

of transverse reinforcement upon the behavior of concrete under eccentric compression. He
used specimens 6x6x 111in. and 6 x32 x 52in.

Blume, Newmark and Coming {1961) proposed an expression for the strength
enhancement due to rectangular hoops. Their equation used the result obtained by Richart et
al. (1928), Eqgs. (3-46), where the confining stress was considered to be given by:

fi= o.s(%) (3-48)
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where the term a is the longer side of the rectangular concrete area enclosed by the hoop and
/. is the stress in the hoop. While s is the hoop spacing and 4, is the hoop cross sectional
area. The reduced efficiency of the rectangular hoop in confining the core coacrete was taken
into account by introducing the preceding 0.5 factor, as shown by Iyengar et al. This s not a
conservative assumption.

Roy and Sozen (1964) proposed a model in which the strength of concrete was not
influenced by the degree of confinement. Their bilinear relaiion only considered an effect of
passive confinement on the descending branch of the stress-strain relationship. This model
was based on data obtained from tests on prisms (5 x 5 x 25 in). Taey considered a strain at
peak stress of 0.002, and the ascending branch was taken linear. The obvious simpiifications
were to be refined by some authors afterward.

Soliman and Yu (1967) suggested a piecewise continuous curve composed of a
parabola for the ascending branch, a honzontal plateau and a descending curve. Their
equations were based on experimental data obtained for rectanguiar binders. They studied
the effect of size, type and spacing of binaers, shape of the cross-section and cover, then

proposed an empirical model based on these variables.

L =f1(1+0.05¢") (3-49a)
el »_ Acore _ AI’I(S_S’)
with: q" = (1.4 = 0.45) FIPCY LT (3-49b)

in which 4 ... = area of bound concrete under compression, 4., = area of concrete under
compression, s/ = longitudinal spacing of transverse reinforcement, 4, = breadth of bound
concrete cross-section, d, = cffective depth of bound concrete cross-section and
B=5, or 0.7d,, whichever it the greater.

Iyengar, Desayi and Reddy (1970) developed some empirical expressions for circular
and square spiral confinement, as well as for stirrup confinement.

The confinement pressure for circular spiral hoops proposed by Iyengar et al. was:

fi= 2A,;L:.(L__,) (3-50)

§ 5
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where s’ is the least lateral dimension. It was assumed that a hoop spacing greater than the
least lateral ditension produces no ductility or strength enhancement. This approach was
also used by Soliman and ru.

For stirrup. the confining pressure was found to be:

24w fnf 1
5=0.174 “a_(s_ s—,) (3-51)
where a was defined in Eq. (3-48). l.ote the preceding factor reflecting the less efficient
confinement of rectilinear ties Their experiments showed less efficiency for rectilinear ties
than that assumed by Blume et al.

They also used a linear relation of the form proposed by Richart et al., Egs. (3-46),
where they found a value of %, =4.6. The coefficient £, for spiral hoops was found to be &,
= 10 &, and for rectilinear ties &, = 88k .

Sargin (1971) proposed three equations to predict the ultimate strength and one
equation o represent the coiesponding strain. A continuous curve was proposed to
represent stress-strain relationship, Eq. (3-14), where the parameters n and D were calibrated
empirically from iest results on square cross-sectional prisms.

Kent and Park (1971) presented 1 piecewise continuous model composed of an
ascending parabola (similar to that proposed by Soliman and Yu), then a linear descending
branch with a slope that depends on the amount of confinement and finally a sustained stress
of 0.2 f'.. Their model did not reficcted any strength enhancement due to the confinement
steel. This model was later modified by Park, Priestley and Gill (1982) to include the effect
of confinement upon the strength of concrete.

This model assumed a peak strain of 0.002 for unconfined concrete. In terms of the
Richart et al. linear relationship Eas. (3-46), Park et al. proposed the coefficients to be k, = k,

= 1, and the equivalent confining pressure given by:

Ji=ps/m (3-52)
where p, is the ratio of hoop reinforcement to volume of concrete core measured to outside

of the hoops.

Leslie and Park (1974) proposed a model for the confinement of circular columns in
which the ascending branch was composed of two parabolas. The descending branch was

3-25



composed of an inclined line with a slope -Z , it was assumed that concrete can sustain a
stress of 0.2 indefinitely, with:

/! )"” 15500 psi
z=N =
fcc(p.fy N1 107 Mpa (3-53)

Vallenas, Bertero and Popov (1977) proposed a model similar to that by Kent and

Park (1971) but the ascending branch reflects the effect of confinement. Instead of the
parabola proposed by Kent and Park, they proposed an expression in which the initial slope
can be specified. The coordinate of the peak proposed by Vallenas et al. is given by:

/= - ) ”ﬂ

el = 0.0024 +0. 0005(1 0.734 h,,) = (3-542)
.fcc ( ( " ) f)’k
7= 1=00091{1~ 0245,1,.) p +Dp I (3-54b)

where p" is the ratio of the total volume of confining transverse reinforcement to the volume
of confined concrete, both only for the confined compressive zone of the beam cross section;
(¢ is the ratio of the cross-sectional area of the longitudinal bars to the total concrete area,
both in the confined compressive zone, 4" is the average dimension of the compressive zone,
defined by the expression 2" = (k") + h",) / 2; where A", and A", are the dimensions of the
compressive zone, measured to outside of the hoops; s is the hoop spacing, d” is the nominal

diameter of the transverse reinforcement and D is the nominal diameter of the reinforcing
bars.

Priestley, Park and Potangaroa (1981) used an expression based on Richart's equation
{1928), which is similar to that by Blume et al. The confining pressure for spirally confined
concrete is assumed to be based on a uniformly distributed tube of steel:

_2Asp fn
Ji= . 5 (3-55)
Sheikh and Uzumeri (1982) proposed a rational model where the geometry of a

square section and the rectilinear reinforcement distribution is directly taken into account.
They then used experimental data to fit a proposed confining coefficient. The final equation

suggested by them for square cross-sections is written as:

Lot 20 ) 5)] 57 es
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where, P,.. =0.85f/(B* - 4,), B = center to center distance of tie of square core, 4, = area
of longitudinal steel, p; = volumetric ratio of transverse steel, f/ = stress in the lateral steel
at the time of maximum resistance of confined concrete, C = center to center distance
between longitudinal bars, s = center to center hoop spacing, » = number of bars on
perimeter of core.

Ahmad and Shah (1982b) presented a model for the confinement of spiral
reinforcement. Their model uses Sargin's equation, Eq. (3-13), and the parameters were

determined by fitting experimental results. They proposed a confining pressure given by:

LY 71 P
fr== (1 J1.25a’cc) (3-578)

r d,
= e (3-57b)
- 6.61 ﬁom (3-57¢)
g
= _0.047 019
ky = T == (3-57d)
Shah, Fafitis and Amold (1988) suggested a model for spirally confined concrete

similar to that by Ahmad and Shah. In their model the envelope curve is composed of two
different equations, one for the ascending branch and another for the descending branch. The

proposed confined concrete strength equations is:

fee=fl+ (l 15+ 3}‘,‘8 )J (3-582)
- _2UAafm(1 1
with, 5= =23 135a) (3-588)

This model assumes that the effect of confinement disappears when the spacing is
greater than about 0.25d, where d is the column diameter. It should be noted that the
experimental data on full size spirally confined columns reported by Mander et al. (1988b)
show that this is an unrealistic implication.

Mander et al. (1988a) proposed an analytical model for confined concrete which used
a plasticity based five parameter failure model after William and Warnke (1975) applied to a
three dimensional (3D) hypoelastic constitutive modei proposed by Elwi and Murray (1979).
The equation used by Popovics, Eq. (3-11), was used to represent the stress-strain
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relationship. In this model the geometry of the section is taken into account by defining an
effectively confined concrete core. This approach is an advanced version of the one used by
Sheikh and Uzumeri (1982). The approach is applicable to any section shape (both
rectangular and circular) and reinforcing type (rectilinear hoops, ties, and spirals or circular
hoops). This model appears to be the only one that incorporates dynamic loading effects as
well as cyclic loading. Details of the model are discussed below.

3.4.2 Confinement Mechanism

The lateral confining stresses are unevenly distributed along the depth of the
compression zone (Soliman and Yu, 1967). The confining pressure comes from the
transverse steel that is passively resisting the lateral expansion of the concrete subjected to
compression. This confining action on the concrete makes it both stronger and more ductile.
The most simple approach is to use empirical formulations to relate the confined strength and
ductility to the unconfined properties of concrete. A more rational approach is to use a
constitutive model to describe the effect of a multiaxial state of stress upon the ultimate
strength of concrete. Many such models have been proposed in the literature, (Mills and
Zimmerman, 1970; Liu, Nilson and Slate, 1972; Kupfer and Gerstle, 1973; Chen, A.C.T and
Chen W.F., 1975; Darwin and Pecknold, 1977, Cedolin, Crutzen and Dei Poli, 1977,
Ottosen, 1979; Kotsovos and Newman, 1979; Elwi and Murray, 1979; Bazant and Kim,
1979; Chen and Ting, 1980; Ahmad and Shah, 1982; Chuan-zhi, Zhen-hai and Xiu-qin,
1987).

3.4.2.1 Confinement of Circular Sections

The model proposed by Mander et al. {1988a) will be adopted herein, as it appears to
be the only generalized model that is applicable to all section shapes. For circular section the
effective lateral pressure is given by:

Ji=3kepsfs (3-59)
with £, is the confinement effectiveness coefficient defined by:
=4
ke=4= (3-60)
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The confining bars are assumed to yield by the time the maximum stress in the
concrete is reached , in which case f, = f,.

The effectively confined area shown in Fig. 3-15 can be calculated as.

L .s.'.)‘
Ae==3 (1 052 (3-61)
where d, = diameter of circular or spiral hoops, s' = clear longitudinal spacing

between spirals in which arching action of the concrete develops, the power & has a value of 2
for circular hoops and 1 for spirals (helix).

The concrete core area is calculated as:

d?
Aee=(1 —pee) R4

(3-62)

p, is the volumetric ratio of the transverse confining steel to the confined core given

by:
_ 44
pr= it (3-63)
P, is the volumetric ratio of the iongitudinal steel in the confined core given by:
Ay
cc = 3-64
Pec="") 2 (3-64)
Thus, the final expression is given by:
s\
1-0.5=
Psfs ( d; )
= 3-65
ﬁ 2 1 - pcc ( )

3.4.2.2 Confinement of Rectangular Sections

The effectively confined area for rectangular sections is shown in Fig. 3-15 and is
given by:

- (w’)2 5 s
Ae=|bede- £ 0 (1-0.51’—:)(1-0.5‘17) (3-66)
The concrete core area is given by:
Aee=bode—Ag (3-67)
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The lateral confinement pressure for rectangular sections can have different values in
cach direction. In this case a general three dimensional state of stress is developed. The

lateral pressure for each direction (x and y) is calculated as:

S =keprfin (3-68)

f{v = ktpyfy" (3-69)
in which,
Asx

Pe= sde
A_ = total area of transverse reinforcement parallel to the x axis.

Fig. 3-15 Confinement Mechanism for Circular and Rectangular
Cross Sections
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3.4.3 Confinement Effect on Strength

The ultimate strength surface proposed by Mander et al. (1988a), led to a plot relating
the confining pressure with the confined strength ratio. The procedure to find this value is
rather complex and an iterative procedure has to be used. The results of this procedures
were presented in a plot to obviate the lengthy calculations involved. In this section an

approximate equation is proposed, that can be use to represent the failure surface proposed
by Mander et al.

The equation proposed is:

L _ -( 09 )
K= 7 =1+ AZ( 0.1+ = (3-702)
with;
c Jirs
= (3-70b)
r i mzf (3-76¢)
Y n=/n
2

A =6.8886 ~ (0.6069 + 17.275r)e %" (3-70d)
B= 4.3 -5 (3-70¢)

3(0.9849-0.6306€™%%) - 0.1

The comparison between the analytical results and the approximate equation

presented above is shown in Fig.3-16.

This equation can be put in the form suggested by Richart et al. (1929):

I =fo+kdfi 3-1)
By taking f as the average of f;, and f,,, this can be rewritten as:
k=tx oy +ki% (3-72a)
fo
with,
ky =A(O 1402 ) (3-72b)
T 1+Bx

For a symmetric triaxial state of stress f;=fn =fn, the analytical confinement
coefficient X given by Mander et al, (1988a) is:
K=-1.254+2.254/1+794% -2.0% (3-73)
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By combining Eqgs. (3-72a) and (3-73) the following equation is obtained:

2.254(‘! 1+794x —1 ) -2.0x

k= = (3-74)
Richart et al. (1929) found this value to be an average:
ky =4.1 (3-75)

While Balmer (1949) found a more complex relationship that can be expressed by:

_(1+9.175%)° - 1

ki 3

(3-76)

Hobbs and Pomeroy (1974) suggested the following modification to the factor given

by Richart et. al., to improve the accuracy for higher levels of confining pressure:
ky =3.7% 01 (3-78)
Recently Saatcioglu and Razvi (1992) have proposed the following expression based
on the data from Richart et al. (1929).
ky =67/ (3-79)
In the previous expression f; is given in MPa. Assuming a concrete strength of

approximately 30 MPa, the following expression is obtained:
ky =3.8x"01 (3-80)
Eqgs. (3-74) through (3-80) are compared in Fig. 3-17.

3.4.4 Confinement Effect on Ductility

When the concrete is subjected to high levels of compressive stress it expands
laterally due to the Poisson effect. In a concrete column, this expansion forces the lateral
hoops outward. The initial behavior of confined concrete should not be different to the
unconfined behavior, because at low levels of axial load the stresses in the hoops are low, as
is the confining pressure. The maximum stress is affected by the amount of confining hoops
as is the strain at which this occurs. The shape of the descending branch of the stress-strain

relationship is also affected. Richart et al. (1929) suggested an expression in the form:
€ce = Ecol( 1 +K2X) (3-81a)
with,
ky=5k (3-81b)
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This expression will be adopted herein because it has been confirmed experimentally

by Balmer (1949), Mander et al. (1988b) and Saatcioglu et al. (1992). For high strength

transverse steel Zahn et al. (1990) found the value of &, to be between 1.7 and 5 times k,, a

value of 3 was used as an average.

3.4.5 Confinement Effect on the Descending Branch

Based on a series of tests performed previously by Mander et al. (1988b) at the

University of Canterbury, the following empirical relationship for confined concrete is

proposed:
er=3¢€h (3-82a)
Jfr=fi-Afe (3-82b)
. 08
th, A o =KA cl e 0.2
" =Koz 3 +02)
{3-82¢)
/
and, K= %
(3-82d)

Where A f, is the stress drop for unconfined concrete for a strain €. = 3¢/, as shown in Fig.
3-19. The confined concrete strength ( f..) is calculated through Eq. (3-70a).

3.5 Concrete in Tension

An accurate estimation of the concrete strength and behavior is important as it is a
main factor in the assessment of shear deformations and stresses by means of the Modified
Compression Field Theory (Vecchio and Collins, 1986; Vecchio, 1989; Collins and Mitchell,
1991), or the Softened Truss Theory (Hsu, 1993). Cracking, which is governed by the
tensile characteristics of concrete, is an important property of concrete, that affects its overall

behavior.
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The strength of concrete in direct tension can be estimated through the equation

suggested by the ACI Committee 209 (ACI 209R-82).

fi=giwi! (3-83)

where w is the specific weight, that for normal weight concrete can be taken as 145 /b//7, the
factor g, is approximate 1/3. This equation gives rather conservative values for the tension
strength of concrete, Carreira and Chu (1986a) recommend to take the g, between 0.45 and

0.55, which results in the equation:

fi=6Jf! psi
(3-84)
f=05/77  MPa

Collins and Mitchell (1991) recommend a lower value, for softened truss analysis:

fi=affl psi

£=033/77 MPa

This formulation implicitly assumes that the average concrete stress between diagonal cracks

(3-85)

is two-thirds of the maximum given by Eq. (3-84). The monotonic tensile stress strain

relationship suggested by Vecchio and Collins (1986) is given by

_f: = ErEU I£L‘| < E;
e o f, el > (3-86)
[l G 4
1+ /500e,
in which J, = concrete tension strength

£, = strain at peak tension stress

oy, 02 = factors accounting for bond characteristics of reinforcement and
sustained or repeated loading respectively.

Hsu (1993) adopted a different relationship for the descending branch suggested by
Tamai et al. (1988),
£\
fe=A{E) 87)
Barnard (1964) dealing with the brittle nature of concrete in tension wrote: "Sudden

rupture is not a property of a concrete specimen but is rather a consequence of the testing
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conditions”. With the use of stiff electrohydraulic-controlled testing machines, the complete
stress-deformation behavior of concrete can be obtained. The shape of the monotonic
tension stress-strain curve has been shown (Carreira and Chu, 1986a; Yankelevsky and
Reinhardt, 1987b) to have a descending branch similar to that of monotonic compression.
Carreira and Chu proposed the use of Popovics equation, but as shown before Tsai's equation

is more general and flexible, so the monotonic tension stress-strain curve will be represented

by the equation:

fe=1i - . (3-88)

l+(n—-l;)x+ A
r-1 r—1
£, E e, .

where, =g, n= ; and r = parameter to control the shape of the descending

r
branch.

It is worth noting that due to the fact that the observed tensile strength depends
strongly on the testing conditions, experimental data on direct tensile strength tends to be
more scattered than data for compression strength of plain concrete. Considerable data
scattering for the descending branch of concrete in tension given by Vecchio and Collins
(1986) makes the choice of any simple equation justifiable, thus Eq. (3-88) was suggested to

be consistent with that of concrete in compression.

3.6 Compression Softening Effect

It has been found that transverse tensile strains substantially reduces the apparent
strength and stiffness of concrete when compared with the uniaxial compression capacity
(Vecchio and Collins, 1986). A number of investigators have addressed this phenomenon
and proposed different constitutive relationships. In 1982 Vecchio and Collins proposed a

modification of both the peak stress and the strain at peak stress by a factor f in the form:

1

= (3-893)
0.87- o.z7é
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where €, = principal tensile strain, and €2 = principal compression strain. The effect of this
model is shown in Fig. 3-18a.
This model was later modified (Vecchio and Collins, 1986) to made it simpler for

design purposes, as:
_ 1

= — (3-89b)
0.80+ 0.34%

where £¢ = strain at peak stress for uniaxially loaded concrete.

Recently Vecchio and Collins (1993) have proposed two new improved models
(Model A and Model B) to account for the softening effects. These new models were
statistically calibrated using a much larger database. In Model A the softening factor is
applied to both strength and strain and is given by:

_ 1
. -€; 0.80
in which: K.= 0.35(—é-2-— -0.28) 210

Kr=0.1825[f/ 21,0
While for Model B the softening factor, applied to strength only, is given as:

__1
P=13x. (3-854)

in which: K.= 0.27(:—; -0,37)

Vecchio and Collins (1993) also presented models proposed by other investigators:
Mikame et al. (1991), applied to strength only:

p= 1 0.167 (3-89%)
027+ 0,96(2—;)

Ueda et al. (1991):
1
= 3-8
P 0.8 +0.6(1000¢; +0.2)°¥ (3-890
Belarbi and Hsu (1991) have proposed different softening factors for strength and ductility
which are functions of the principal tension strain, the orientation of the cracks respect to the
reinforcement (9) and the type of loading:

0.9
g = —— 3_893
P ,/1+K¢el ( )

Be=—L— (3-89h)

JI‘{'Kzel
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Proportional loading
Ko =400, ©=45°90°
K. =550, 0=90°
K. =160, ©0=45°
Sequential loading
Ks;=250, 6=9%0°
s =400, ©6=45°
K:=0; 0 =90°
e =160, ©@=45°

fcz A '-ﬁz A
Hognestad Hogneatad
A = Parabola yA i Parsbota
Bf’ LA "
— > e
Pe, ¢, Ze, ¢,
(a) 1982 Mode! {b) 1986 Model
-f2 'j;z A
4 © Thorenfeld! Thorenteldt
£l Base Curve Base Curve

a4

Pey 24
{c) Model A (1993) (d) Model B {1993)

Fig. 3-18 Softening Models proposed by Vecchio and Collins (1982,1986, 1993)
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Both Model A and Model B presented by Vecchio and Collins (1993) use the
equation by Thorenfeldt et al. (Eq. 3-16) as the "base curve" shown in Figs 3-18¢,d The
Thorenfeldt's equation is identical to Popovics equation (Eq. 3-12) on the ascending branch,
and Popovics equation behave similar to Tsai's equation (Eq. 3-17, Fig. 3-8) in this range.
The equations for the softening parameter given by Vecchio and Collins {1993) were
calibrated over the ascending branch, which in turn means that it would be justifiable to use
Tsai's equation in conjunction with any of the softening parameters suggested by them.

Vecchio and Collins (1993) also show that Models A and B are superior to all
previous models, (Eqs. 3-8%¢ to 3-8%h), with Model A being only marginally better than
Model B. In the present study Model B is adopted for computational simplicity.

3.7 Dynamic Effects on Concrete Behavior

Most dynamic tests on concrete found in literature have been performed on plain
concrete cylinders or small reinforced concrete models. The dymamic effect on full size
reinforced concrete members was studied by Mander et al. [1988a) leading to the following

proposed strength magnification ictor:

] 1/6
, 1+ ]____e > !
D= fea _ __10.035(/1) (3-90)
7 1/6
fe 1 4+ | _0.00001
0.035( £)?

where f, = dynamic concrete strength, f/ = quasi static concrete strength and € = strain

rate in sec™!.
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Fig. 3-19 Falling Branch for Confined Concrete
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3.8 Modeling Hysteretic Behavior

Some general observations are described in this section with respect to the basic

behavior of concrete which dictate the characteristics of a rule based hysteretic model.

3.8.1 Basic Components of a Hysteretic Model

Three basic components can be identified in the hysteretic behavior of any material or

structural element. These are shown diagramatically in Fig. 3-20 and described below.

(1) Envelope curves: can be fixed or relocatable, can also be of constant amplitude or
scaleable. These curves are the "back bones” of the general hysteretic behavior. Shifting and
scaling is used to simulate degradation. Degradation can also be simulated, not by shifting
the entire curve, but by shifling the rerurning poim. This means that the point of return to an

envelope curve is different to the point where the last reversal occurred from.

(2) Connecting curves: are the connection between the envelope curves. There can
be several points of inflection in these curves, as it is used to represent pinching (crack
closure), and other softening or hardening phenomena within the material or structural

element. Normally more than one equation has to be used to represent this kind of curve.

(3) Transition curves: When a reversal from a connecting curve takes place a
transition curve has to be used to make the transition to the connecting curve that goes in the
opposite direction. If the transition curve is taken directly to the envelope curve, the model
can become unstable, presenting unwanted shifting under local looping (common on most
applications).

The terms positive and negative used in the diagram do not refer to the sign of the
ordinate but to the direction of the abscissa change, in other words, the direction of
displacement in the positive or negative direction.
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PEC | POSITIVE ENVELOPE CURVE

NEC : NEGATIVE ENVELOPE CURVE

PCC : POSITIVE CONNECTING CURVE

NCC : NEGATIVE CONNECTING CURVE

PTC : POSITIVE TRANSITION CURVE

NTC : NEGATIVE TRANSITION CURVE
R : REVERSAL

POSITIVE = POSITIVE DIRECTION
NEGATIVE = NEGATIVE DIRECTION

Fig. 3-20 Relationship Between Curves in 2 Rule-Based Model

3.8.2 A General Approach to Assessing Degradation Within Partial
Looping in a Rule-Based Hysteretic Model

A rule-based hysteretic model has normally two ways of assessing degradation. The
first method uses a shifting of the origin of the envelope curve or of the returning point on it,
the second one uses a scaling variable to reduce the amplitude of the envelope curve. Most
models ar¢ calibrated to assess complete loop degradation, normally related to the way in
which experiments are performed, but in some cases they lack the ability for assessing local
loop degradation. In this section a general procedure directed to assess local looping
degradation is advanced.

Let (x,,, y,.,) be an unioading point on the positive envelope curve where a reversal

has occurred. Also let (x,, ,) be the target point on the negative envelope curve, which is
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completely defined by the reversal point and the previous history of the hysteretic behavior.

Finally, let (x,, y,.) be a returning poini  on the positive envelope curve, again this point
should be completely defined by the 1arget point and the previous history, as shown in Fig.
3-21.

3.8.2.1 First partial reversal

The unloading curve connects the unloading point (x,

 Yun) With the target point (x,

'a?

¥,.). should the unloading have been complete, the total displacement undergone would be:

In the case of an incomplete unloading, Fig. 3-22, the total displacement is:

L\AX] ) = Xun = Xro 4+ Xre1 =Xr0 = Xun + Xret — ko (3-91b)
A factor k| can be defined as:
Z |Ax|,
k=g 3-92
LT TlAx, (3-92)

It can be clearly seen that when this factor is zero the actual total displacement is
zero, which means that no degradation is needed because there was no movement at all. At
the other extreme, when the factor has a value of one, the degrading function should take the
retoading curve to the returning point. The actual mapping of the intermediate cases can take
any monotonic shape, a linear mapping being the logical choice, unless it can be calibrated
with actual experimental data This can result in having to solve a non-linear system of
equations, as the factor %, that defines the returning point abscissa is a function of the
modified returning point itself.

If the degrading, function for a complete cycle has the form of a shifting displacement

on the positive envelope curve, then an explicit solution can be given. Let Ax, be this

function, such that the returning point abscissa can be calculated as:

Xre = Xun +AXo (3-93)
Then Eq. (3-91a) becomes:
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I |Ax|g = 2(Xun ~ X)) + Axo (3-94)
The transformed displacement increment Ax, for an incomplete unioading is defined

such that the modified returning point can be calculated by:

Xrel = Xun +Ax) (3-95)
Thus, Eq. (3-91b) becomes:
Z|Ax|, = 2(xun —Xr0) + Ax, (3-96)
A linear proportionality of displacement increments will result in:
Ax) Axo
L 20 3-97
Zi, - E, 37

By substituting Eqs. (3-94) and (3-95) into (3-97) and performing algebraic
manipulations,

Axy = 1SR A, (3-98)

Once the modified displacement has been calculated then the modified returning point
can be calculated by using Eq. (3-95). As a general case this point is defined by solving the
equations that define the returning point uniquely, by applying a mapping function a<

previuosly described.

3.8.2.2 Partial reloading

In the case of a total reloading from an incomplete unloading, the reloading
curve will reach the positive envelope curve at the modified returning point (x,,,, y,.,). An
unloading from this point would aim at a new target point (x,,, ¥,,,) which should be a
function of the retuming point (x,,,, ¥,.;)- If on the other hand an incomplete reloading takes
place, the target point (x,,,, ¥,,,) Needs to be modified. This can be done by defining a new
unloading point (x_,,, ¥,.2)-

The displacement for a total reloading from the point of reloading (x,,, v,) to the

returning point (x,., , ¥,,) is:
Zixly =Xrer — Xr (3-99)
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Fig. 3-21 Target Point and Reloading Point in a Complete Reversal
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Positive Envelope Curve ——’
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Fig. 3-22 Reloading from a Partial Unloading
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Positive Envelope Curve

> ¢ Cund Y ound l

;';(xrel H yrei )

. xr ’y rb )
Positive Envelope Curve

Reloading Curve —

Negative Envelope Curve

(X1a2+ Y1a2)

Fig. 3-23 Unloading from a Partial Reloading

When an incomplete reloading occurs, and the unloading takes place from (x5, ¥rs),
then the total displacement from the reloading point (x _, v, } is:

Z|Ax|; =X —Xro (3-100)
By linear proportionality of the displacement increments:
sz Ax
—_—— = 3-101
ZIAT, - ZiAY], @-10n
By replacing Eqgs. (3-99) and (3-100) into Eq. (3-101):
Ax; = ﬁ;_";: (3-102)
This displacement increment still refers to the unloading point abscissa x,,, , thus:
Xum2 =x.,,+Ax2 (3—103)

347



It should be noticed that if no displacement takes place from the reloading point x,, =
x,, then the displacement increment Ax, is zero which is correct, meaning that the target

point is the original one. At this point the previous unloading abscissa is substituted by that

calculated in Eq. (3-103). The next step is then to look at a partial unloading again.

3.8.2.3 Partial Unloading from a Partial Reloading

The new unloading point (x,,,,, »,,,) calculated in Eq. (3-103) defines a target point
(x,,, ¥,;) and returning point (x,,,, v,,,), just as the unloading from the positive envelope
curve. The difference is that now the starting point is not at the unloading point (x,,,,, ¥,,)
but at the point of reversal (x ;. ¥,,).

Because the unloading point has been replaced by the new unloading point, the "2"

can be dropped from all the definitions. Thus, the displacement increment to reach the

returning point is:

Ax() =Xre2 = Xun? =Xpe = Xun (3'104)

Eq. (3-91a} has to be modified to include the new starting point:
Z|Ax| g = X5 = X102 + Xre2 — Xia2 =Xpp +Xun — 2X 10+ AXo (3-105)
In case of an incomplete unloading from (x,,, y,,) at the reloading point (x,,, ¥,.), a2 new

displacement increment has to be defined.

Axy =Xrel —Xun (3-106)

The total displacement to reach the modified returning point (x,,,, »,,,) is:

Z|Ax|, =Xrb —Xro +Xred —Xro = Xpp +Xun — 2Xrp +AX) (3-107)

Finally by applying linear proportionality,

_Xm + Xun — me

Axy =
Xrty + Xon — lea

Axo (3-108)
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This is the general form of Eq. {3-98). Any other parameter that depends on the unloading
point can then be modified accordingly.

The application of the procedure just described can be summarized as follows:

(1) At the point of unloading (x,_,) from the envelope curve calculate:
(a) The target point (x,))
(b) The displacement increment to reach the returning point (Ax,)
(2) Makex,=x,
(3) In case of a partial unloading (x,,) use Eq. (3-108) to calculate the returning point
06)
(4) In case of a partial reloading (x,;) use Eq. (3-102) to calculate a new unloading
point (x,) and calculate:
(a) The target point (x,)
(b) The displacement increment to reach the returning point (Ax,)

(5) Repeat from step (3).

The procedure was developed in terms of abscissas, and could have been described in
terms of the ordinates, but in some cases the hysteretic behavior observed is not
monotonically increasing but it can present peaks which can in turn represent ambiguities.
This would make the ordinate an unsuitable variable to use. Another approach could be the
use of energy (area under the curve) which is a more rational approach, but this approach

requires much more computation, for sometimes the area has to be calculated numerically.
3.8.3 A Smooth Transition Curve for Mathematical Modeling
The need for a transition curve in mathematical modeling has led some researchers to

propose various equations. Perhaps the most notable of all is the Ramberg-Osgood equation
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Osgood (1935). A kind of inverse form of the R-O equation is the equation proposed by
Menegotto and Pinto (1973), which has also been used extensively. Although useful, these
equations are not simple to use when applied to certain problems, and normally require a
degree of iteration to compute their control parameters.

A general equation that starts from an initial point (x,, y,) with an slope £ and ends
up at a final point (. ) with a slope E, is needed. A cubic polynomial of the form:

y=ax} +bx*+cx+d (3-109)
can be fitted to satisfy the conditions presented, but as it is known a cubic polynomial might
present a change of curvature, what means that it may not represent a monotonic transition.
The curvature is related to the second derivative, which in this case would be a linear
equation, that has to cross the x axis at some point. An equation that does not present this
kind of change in curvature is neceded. The proposed algebraic equation has the general

form:
Y=Yo+Eo(x—x5)+Ax—x,)° (3-110)
By taking derivative,

¥ = E,+AB(x-x,)%! (3-111)
If it is now assumed that the factor B has a value greater than 1, otherwise the first derivative
would be indeterminate at x =x,. Thus,

Y (x0)=E, (3-112)
The derivative at the final point should be E, then:
Y(xp)=E;=Eo+AB(5-x0)"" (3-113)
Also, AB(x;—x,)*' =E;-E, (3-114)
By evaluating the ordinate at the final point,
Yr=Yo+Eo(xs—x2) +A(x!—x.,)' (3-115)
Or,
WY _p g _
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Fig. 3-24 A Smooth Transition Curve

By dividing Eqs. (3-114) by (3-116),

_ Ef-E,
8=Fu=E.
Finally,
_ En—-E.
T (-, )B
where,
g Y Ye
xf-x.,

In a more general form, the final expression is given as:
¥Y=Yo +(x-x.,)[E., +A|x—x,|R]
¥ = Eg+ AR+ 1)|x—x,|*
where,

Eswc—FE,

En.—E,
A= le
ber=xol"

R=

and E_ is given by Eq. (3-119).
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3.9 Cyclic Properties of Confined and Unconfined Concrete

The monotonic curve forms the envelope for the stress-strain cyclic behavior. This
was shown experimentally by Sinha, Gerstle and Tulin (1964) ; and Karsan and Jirsa (1969)
and modeled by Mander et al. (1988a) for unconfined concrete in cyclic compression. For the
case of confined concrete Mander et al. (1988b) also performed tests and validated their
model (1988a). Experiments by Gopalaratnam and Shah (1985), and Yankelevsky and

Reinhardt (1987b) have shown that this is also the case for concrete in cyclic tension.

3.9.1 Compression Envelope Curve (Rules 1 and 5)

The compression envelope curve is defined by the initial slope £_, the peak
coordinate (¢/., f), Tsai's equation r factor and a factor x;, > 1 to define the spalling
strain.

Both the compression and tension envelope curves can be written in non-dimensional

form by the use of the following equations:

- X
—yr
20 = LX) (3-125)
[D(x)]
where,
(x) = S S P o
D) l+(n r-l)”r-l rel 5126
=l4+(n—i+nx)x r=1
Let 7 and x be defined as:
=2 (3-127)
Eee
- EC e{.‘c
= |5 (3-128)
(=
The spalling non-dimensional strain can be calculated by:
- Nxe)
Xop =Xor =25 75 (3-129)
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where €. = concrete strain, f = concrete stress on the compression envelop, €/, =
congcrete strain at peak confined stress, f7. = confined concrete strength, E£. = concrete

initial Young modulus, x~ = non-dimensional strain on the compression envelope, x7, =

non-dimersional critical strain on the compression envelope curve. This strain is used to

define a tangent line up to the spalling strain. x,, = non-dimensional spalling strain, y(x)
non-dimensional stress function, z{(x)= non-dimensional tangent modulus function, f. =

stress in concrete, E; = tangent modulus, # = » value for the compression curve, assumed

to be the same as that of unconfined concrete.

CLMPRESSION

F A Vi — &y >
€ Ecr s
< €, >
B A,
e \\
e ~,
// \
/ ~
f r \\ B
cc \
E
¢ STRAIGHT ~ 7\ .
LINE \\
)5

Not to scale

Fig. 3-25 Tension and Compression Envelope Curves
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The stress and the tangent Young modulus at any given strain on the envelope

compression curve are defined by:

Je=/fo(x)
(3-130)
Ei=E;(x7)
where f(x”) and E;{x") are defined as:
(a) For x” <x°_, (Tsai's equation) (Rule 1):
Jo=feyix) (3-131)
Ef =E. 2(x7) (3-132)
(b)Forx _<x < Xep (Straight Line) (Rule 1):
ST =) +n7 2(x5) (7 —-x3)] (3-133)
E[ =E. z(x) (3-134)
(¢) For x > x_, (Spalled) (Rule S):
fr=E; =0 (3-135)

Once the concrete is considerad to have spalled the stresses are zero from that

moment on. Confined concrete can be considered not to spall, in such a case a large value of

x ., should be defined. Note that the minus superscript is considered to refer to the
compression side of the stress-strain behavior.

3.9.2 Tension Envelope Curve (Rules 2 and 8)

The shape of the tension envelope curve is the same as that of the
compression envelope curve. This curve is shifted to a new origin €, as it is explained later in

this section. The non-dimensional parameters 77 and x given by:

e.—¢€
xt= St (3-136)
nt= E—é ;f' (3-137)
The cracking non-dimensional cracking strain is given by:
+
You =xt, - &) (3-138)

nt z(x%)
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where €, = strain at peak tension stress, f; = concrete tension strength, x* =
non-dimensional strain in the tension envelope curve, n* = n value for the tension envelope
curve, x} = critical strain on the tension envelope curve. This factor is used to defined the
cracking strain. The stress and tangent modulus for any given strain on the tension envelope

curve are similarly defined as:

Je =[x
(3-139)
E, = E;(x*)
where ff(x*) and E}(x*) are defined as:
(a) Forx* <x*_ (Rule 2):
S =fyxt) (3-140)
E! =E. 2(x*) (3-141)
(b) Forx', <x" <x_, (Rule 2):
JE=h10) +0* 2(x) (3 —x5)) (3-142)
Ef =E.z(x}) (3-143)
(c) For x* > x* , (Cracked) (Rule 6):
Sfr=E'=0 (3-144)

Where functions y and z are defined by Eqs. (3-124) and (3-125). When the concrete has
cracked it is considered to no longer resist any tension stress, as a result of crack opening;

but on the other hand a gradual crack closure is considered to take place.

3.9.3 Pre-Cracking Unloading and Reloading Curves

The basic elements of the unloading and reloading curves are deait with in this
section. Every rule is represented by a smooth curve that starts at a starting point with a
given slope and ends up at a target point with an ending slope, and the equation used to

represent the transition is the one derived in section 3.7.3. In terms of stresses and strains:

fe=fi+(€.—en[Er+Alec—el”] (3-145)
E, = gf =E;+ AR+ 1)|e.—&/|* (3-146)
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in which,

Er—Esic
R=—"F—"2x 3-147
Espc - E; ( )
A= Eiﬁc__‘%. (3-148)
ler —€il
with, Esmc=Lt2l (3-149)

where " /" is stress, "e" is strain, "L" is tangent or secant modulus, "¢" means concrete, "/ "
initial, "F'" final, "SEC" secant, "#" tangential and "R" and "A4" are equation parameters.

To define the cyclic properties of concrete, statistical regression analyses were
performed on the experimental data from Sinha, Gerstle and Tulin (1964), Karsan and Jirsa
(1969), Spooner and Dougill (1975), Okamoto (1976) and Tanigawa (1979). The model

parameters looked for are shown in Fig. 3-26, and the results of the analysis were:

—Eﬁ‘;", +0.57
Ege=E | 52 (3-150)
2—';'-& +0.57
[
} €an
Af~ = 0.097; [ -‘Z:—" (3-152)
. €an
VP . B— (3-153)
1.15+2.75 ETI
Eee
The derived variables are then:
=€ - L (3-154)
Joow =fin—&f (3-155)
- Jrew
Ep = . 3-186
= (3-156)
€, =€, +Ae™ (3-157)
.
fi= f‘( ?nl) (3-158)
Eq =E‘( % ] (3-159)
€l
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v

Fig. 3-26 Cyclic Compression Characteristics of Concrete

For cyclic behavior of concrete in tension, some of the properties defined in equations

(3-150) through (3-159) required modification. The hysteretic parameters for cyclic tension

are given by
f+
| +0.67
Eh=E| 7 (3-160)
% +0.67
+ E,
E pl = TE"—;I—"’* (3—161)
IlllE‘ L4 | + l
At =051 (3-162)
Ae* =0.22€}, (3-163)
Similarly,
+
€5 = E€n — EL: (3-164)
]
Sriew =Son = AF* (3-165)
Eg, =T (3-166)
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e, =g, +Aet (3-167)
+
t = f *( Zre Do ) (3-168)

€
e

E‘;‘ - ea
€,

) (3-169)

where €., = unloading strain from an envelope curve, f., = unloading stress, €, = plastic
strain, E, = tangent modulus when the stress is released, f..» = new stress at the unloading
strain, E,., = tangent modulus at the new stress point, €, = strain at the returning point to
the envelope curve, f,. = stress at the returning point, E,. = tangent modulus at the
returning point.

A reversal from the compression envelope curve is done through rules 3, 9 and 8 as
shown. The variables that define this reversal curve are calculated as follows:

(1) Calculate the compression strain ductility as:

3

€t

X, =

(3-170)

(2) Calculate the tension strain ductility,

h  COMPRESSION

5

(El;ll ’ f;l-n )

v

Ec

Not to scale

Fig. 3-27 Complete Unloading Branch
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E;

e:,—eol

{(3)Ifx} <x; then:
Xy =Xy

£,=0
e, =xte,

un =S¢ (xy) using Eq. (3-139)

(4) Calculate
_ _2fm
A, = EL. +E
(5) Finally,
8 =€, +AL — X, &
A COMPRESSION
L 1

(3-171)

(3-172)

(3-173)

(€uns fun)
(€re s fre)

v

Ec

NOt 10 scale

Fig. 3-28 Complete Loading Branch
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and,
Ein =X1E,+E, (3-174)

The rules parameters for the connecting curve for a reversal from the compression

envelope curve are defined by:

E; =€,
Ji=f
E=E,

Rule 3 er =g (3-175)
fr=0
Er=E;

8[=€;1
=0
E/=E, (3-176)
8F=€:,
fF = :ew
Ey =E:¢w

Rule 9

£I=£:n
J1=Srew
E=E}
le 8 new 3-177
Rule 5F=£:¢ ( )
Jr=fe
Er=E}

Similarly, for a reversal from the tension envelope curve:
€1 =€y,
Ji=fa
Ei=£ 17
Rule 4 er=¢, (3-178)
fr=0
E F= E ;,

81=€;,
fi=0
-t
Er=Ey (3-179)
EF=E,,
S =new
Er=E,,
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€1 =By
J1=Faew
E,=E;,
EF=E,,
fr=/z
Er=E,,

Rule 7 (3-180)

3.9.4 Post-Cracking Unloading and Reloading Curves

After complete cracking is considered to have occurred, no tension capacity is
assumed to exist, so the tension side of the hysteresis behavior will also not exist. The after
unloading (rule 3), the crack will open (rule 6), when the direction of loading reverses,

gradual crack closure takes place (rule 13).

E;=E,
Ji=0
Er=0

Er =Eun
Jr=frew
Er=E,.,

Rule 13 (3-181)

A COMPRESSION

Dt

(s;n » j;le_w) 7 1
13

13 3

v

(&5, 0) Ec

> A

(€ ,0)

Fig. 3-29 Loading and Unloading Curve after Cracking
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3.9.5 Pre-Cracking Transition Curves

When a partial loading or unloading within any of the connecting curve

occurs, a transition curve is used. Rules 3, 4, 9 and 10 are connecting curves, so each one

will be considered individually. When a reversal from rule 3 takes place, f,. needs to be
changed, the new stress ordinate is called f,,,., and the returning point coordinate (€;,, f,z)
are also changed to (€;,., f,..). The modified expressions are:

Jrows =i~ Af -2

- _fu;w- _fr;
T e e
€rpe =€y +AET——

Jrov =S (Eres)
Eq.=E- ( %

The curve modified Rule 7 is thus given as:
Rule7*

l&re] S lec| < |ezal

lean| < lec] < lens |

3-62

Eiu

_IM

—£/
e 3-182
= (3-182)

pl

(3-183)

—Er (3-184)
Epl

(3-185)

(3-186)

=€,
Ji=fr

Ei=E. (3-187)
eF = Eun

fF _fucw-t

Ep= news

Er=¢&un
J1=Srews
Er= E;ﬂ,.
EF=¢€.
Jr=free

Er= ree

(3-188)



Similarly for a reversal from rule 4, the modified rule 8 is given as:

Rule 8*

E:a _Eol < Iet'_'eal s IE:PI_EOI

lety —€0| < Ec —€0| < |Efes —Eo|

A COMPRESSION

-~

(El-m ] fn_gw‘) 7

Er=g},
fi=fn
Er=E,
EF =€y
fF=ﬁn+ewo
Er=Eqpm.

el’:etn
J1=Facws
E;= E,f,..,.
EF =E7yn
fF =f;-:t
Ep = E,—t.

Eun> fun)
(E;e'ifr:')

1

(3-189)

(3-190)

v

(8:“ !fr:‘)

Not o scale

Fig. 3-30 Partial Unloading Curves for Tension and Compression



where: et = +—Af‘”i-_ﬁ—:’
. new+ un E+ —E+,
un p
(3-191)
+ ¥
:m.=£!f:é'i (3-192)
+ __pt
Elye SEL, + At 2 " Er (3-193)
© B &y
ﬁ:.:f*( S ) (3-194)
€s—&o
Ei.= E+( e ) (3-195)

A reversal from rule 9 at the point A (€., f5) will target the point B (€5, f5 )through
rule 11, an incomplete loading on rule 11 will target the point 4 (€,, 5 ) again through rule

12. The relation between A and 8 is computed through the relation:
Ea - E— S

- fm TR (3-1%)

€un €y Eun—Ey

E[ = e'-
Ji=f
Ei=E.

Rule 11 Er=Ep (3—197)
Jr=Jo
Er=E(ep)

Er=¢E,;
fi=fe
E!=Ec
EF=g,
fr=fa
Er=E{(e,)

Rule 12 (3-198)

where (€., f.) is the last reversal coordinate.

3.8.6 Post-Cracking Transition Curves

After cracking, the tension envelope curve is zero, and the connecting compression
curve becomes rule 13. A reversal from rule 13 at coordinate (e,, f,) targets the horizontal
axis at strain €, , which is calculated by:
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Fig. 3-31 Transition Curves (Before Cracking)
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Fig. 3-32 Transition Curves (After Cracking)
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Ja

Eo (3-199)
E;=E,
Ji=f
E,=E,

Rule 14 EF=Ep
Jr=0
Er=0

€p=€q—

(3-200)

E; =€,

Jfi=f

E/=E,

er =€, (3-201)
Sr=/fa

Ep=E\e,)

Rule 15

where, again (g,, f;) is the coordinate at last reversal.
Fig. 3-33 summarizes the relation among the rules of the model just presented. The

tension side has been exaggerated for purposes of clarity.

£ A COMPRESSION
[ 44

Fig. 3-33 Relationship Among the Model Rules
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3.10 Model Verification

A subroutine ACONCRETE was implemented for use in a computer program.
Results from the model are shown in Figs. 3-34 to 3-38 for unconfined concrete.
Experimental data from Sinha, Gerstle and Tulin (1964), Karsan and Jirsa (1960), Okamoto
et al. (1976), and Tanigawa et al. (1979) for cyclic compression, were used to test the model.
Fig. 3-39 presents Yankelevsky and Reinhardt {1987b) experimental data for cyclic tension
with small incursions into compression, while Figs. 3-40 and 3-41 show the application of
the model to the Mander et al. (1988b) experimental data for confined concrete in cyclic
compression. Finally Fig. 3-42 shows how the tension branch of the model compares with
the equations given by Collins and Mitchell, Eq. (3-86); and by Hsu, Eq. (3-87). It is to be
noted that no previous model {Mander et al., 1988a; Yankelevsky and Reinhardt, 1987a)

could describe the cyclic behavior of concrete in both tension and compression,

3.11 Damags Analysis

The ultimate rotation capacity at a plastic hinge is a function of the uitimate concrete

compressive strain €.,. Early experimental work led to empirical equations for €., (Park

and Paulay, 1975). More recently, Scott et al. (1982) have proposed that the ultimate

compressive strain be defined by the first hoop fracture. Mander et al. (1584, 1988a)
proposed a rational method for the prediction of the first hoop fracture based on an energy
approach. In this method the energy stored in the hoop is considered to give the additional

energy absorption capacity to the confined concrete. An energy analysis within the core area
(Ac) is as follows:

The strain energy capacity of unconfined concrete U, is given by:
Uer=Acc | :"“ fode (3-202)

where €,,,; = spalling strain of unconfined concrete. As the stress-strain relationship for
unconfined concrete is known, the integral term can be calculated by numerically integrating
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this expression. A good approximation to the volumetric strain energy capacity of plain

unconfined concrete was found by Mander et al. (1984) to be given by:

Ie,,.,,, de = 0.205 . f! psi

. 3-203
o 0017f7  MPa (3-203)
The fracture strain energy of hoop reinforcement is calculated as:
U= p:hAch:;f £.dE, (3-2“4)

where p,, = volumetnic transverse steel content relative to the concrete core; f, and e, =
stress and strain in transverse reinforcement; €4 = fracture strain of transverse
reinforcement. The volumetric fracture strain energy was found by Mander et al. (1984) to
be a constant for all types of reinforcing steel and independent of bar size, that can be taken

as:

i 16 ksi
= 3.20
0 S5 des {10MPa 1 10% (3-205)

The energy balance theory assumes that the energy to fracture the transverse
reinforcement comes from the difference in strain energy capacity between the confined and
unconfined concrete (U, - Ug), plus an additional energy to maintain yield in the

longitudinal steel in compression (U,.). Thus,

Ug=Ue—Uco+ Uy (3-206)
with |

Use = Pecflecf™ fud. (3-207)
and

Uee = Acc] " foc dc (3-208)

in which, p.. = volumetric longitudinal steel content relative to the core concrete, fy =

stress on the longitudinal stress bars, f, = stress on the confined concrete and €., = strain
at fracture (ultimate strain on core concrete).

For eccentric loading, the energy balance theory can be readily applied by assigning a
participation factor to the core concrete and to every steel Jayer. This participation factor is
the proportion of energy absorption in compression that is taken by the critical crosstie. This
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approach was developed and validated by Mander et al. (1988a, b) and has been adopted

herein.

3.12 Conclusions

The following conclusions can be drawn from this section:

1. It has been demonstrated that the equation proposed by Tsai is the most effective
in describing the shape of the monotonic behavior of concrete both in compression and
tension. Other equations may give anomalies in behavior. Tsai's equation can be used for

both confined and unconfined concrete. This cquation is a generalized form of that by
Popovics, requiring four control parameters: €.., f%, E. and r. The fourth parameter

controls the falling branch curve. This is considered important when modeling the behavior

of high strength concrete or when high strength steel is used to confine the concrete.

2. The confinement model developed by Mander ct al. (1984, 1988a,b), applicable to
any general cross-sectional shape, can be further simplified by the use of the given

approximate equation.

3. Calibration of parameters in both confined and unconfined concrete led to some
empirical equations that can be further enhanced as more experimental data become

available.

4. The general components of a rule-based model are identified, and suggestions to

ensure a consistent behavior were presented.

5. The mathematical description of degradation has been examined, and a general
model to describe it is proposed.

6. A mathematical expression to join two slopes is proposed.
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7. A model to describe the behavior of concrete in both cyclic tension and
compression is proposed. To the knowledge of the authors, this is the first time a model to
represent the hysteretic behavior in both tension and compression of confined and
unconfined concrete is proposed. The model proved to be effective in describing the
hysteretic behavior of confined and unconfined concrete, subjected to both compression
cyclic loading and tension cyclic loading. As more experimental data becomes available for
cyclic tension, better equation validation/calibration may be possible. No experiments to
relate cyclic combined tension and compression have been done to this date, except for that
by Yankelevsky and Reinhardt (1987b) for tension cyclic loading with small incursions into
compression. It is necessary to have this kind of experimental data to calibrate the model
more reliably, and is considered essential for robust deterministic damage assessments of

members governed by cyclic flexure-shear effects.
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Fig. 3-34 Unconfined Cyclic Compression Test by Sinha, Gerstle and Tulin (1964)
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Fig. 3-35 Unconfined Cyclic Compression Test by Karsan and Jirsa (1969)
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Fig. 3-37 Unconfined Cyclic Compression Test by Okamoto (1976)
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Fig. 3-39 Cyclic Tension Test by Yankelevsky and Reinhardt (1987)
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Fig. 3-41 Confined Concrete Cyclic Test by Mander et al. (1984)
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Section 4

Damage Modeling of Reinforced Concrete Columns using
Fiber-Element Analysis

4.1 Introduction

A computer program RC-COLA was developed to obtain the moment-curvature and
force-displacement response of structural concrete columns under reversed cyclic flexure and
axial force. The main objective of the program as part of this investigation is to develop an
advanced micro-model analysis program to perform simulated experiments. Experimental
simulation can be used as the input data for the calibration of macro-models that are
commonly used in general purpose non-linear dynamic analysis programs such as IDARC and
DRAIN-2DX. So far, the fine tuning of macro-model parameters have been based
capriciously on the user choice. This arbitrary choice of model parameters generates some
skepticism regarding the validity of such analyses. This problem will be addressed later in the
next section. The present section develops, from first principles, a biaxial "fiber" analysis.
Herein the term "Fiber-Element Analysis" is coined to refer to the entire computational

procedure.

4.2 Moment-Curvature Analysis for Uniaxial Bending

The strain profile is assumed to follow Bernoulli's assumption that plane sections
remain plane, thus the strain at any fiber is given by:

E=E+¢(¥ =)o) (4-1)

where €, = strain at the centroid, y, = ordinate of the origin, € = strain at any ordinate y.

For a given centroidal origin, if no bond slip i3 assumed to occur, the strain in the concrete

and the reinforcing bars will be the same, both being determined from Eq. (4-1).
The axial force and the moment at a given section can be readily calculated as:



P= Ifch +E{fvf ~fei) A (4-2)
Ag i

M=}[(}’—)’o)ﬁ-dz‘l + ?(y:i ~YoX fsi —fei) Asi (4-3a)
M= I yfch +2,y.n' (fn‘ -fci)Asi =¥, P (4-3b)
A, i

where, P = axial load, M = moment about the centroid, A, = gross area, f, = concrete
stress function, i = index to refer to the ith layer of steel, f,; = steel stress, f., = concrete

stress, A;; = area of steel, y,; = ordinate. Note that the origin can be located anywhere, to
make the formulation general.

It is important to note that for a zero axial load section the neutral axis coincides with
the centroid of the transformed section, and as the behavior goes into the inelastic zone, the
centroid shifts. When no axial load is present the point sbout which the moment is defined is
irrelevant. But in the presence of axial load, the point about which the moment is defined is
important. For symmetric sections the geometric centroid is the obvious choice, but for
asymmetric sections two definitions are possible: (1) location of the neutral axis in the
absence of axial load, as mentioned before, this location shifts;, (2) plastic centroid, which is
defined for a constant strain at the material strength capacities.

If the centroidal strain £, and curvature ¢ are known the axial force P and moment
M can be directly calculated by using Eqs. {4-2) and (4-3). But normally the inverse
problem, in which €, and ¢ &re to be determined from known values of P and M, or a mixed
problem is encountered. In this case some degree of iteration may be needed to find the

solution. The Newton-Raphson algorithm can be utilized for this purpose as follows:

Eont | _ | €oi Ag,;
{cbm } {m }"{Aof} “d

where the incremental strain Ae,; and curvature A¢; are determined from

P dP

AP] - an a¢ Asoi

{AM,}' oM oM {A¢,} (4-5)
%, 90 |,
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in which AP, and AM, are the incremental forces needed to reach the specified forces P and
M from the state of stresses i at the section.
The first element of the Jacobian matrix 9P , can be calculated as follows:

' €,
oP _ 0 9 VA .
e, = des | 14+ 5, TSu—Led As (4-6)
2
A Y (T AT ]
2.~ ) 3 e, M3 de Joe “7
where in Eq. (4-7) the chain rule of derivation was applied. From Eq.(4-1)
de
3 =1 (4-8)
By definition the tangent modulus of elasticity for concrete is defined as:
Ee=e (4-9)
and for steel, at layer i,
a 3t
Eui= ai: (4-10)
Both are calculated at a specified strain, thus finally
EdA= — = j E.dA +j(E,,, Eu)Au @11)

where £4 is the instantaneous effective axlal stiffhess.
aP oM

The off-diagonal terms = % and =— %, are equal, what results in a symmetrical stiffhess
matrix. These terms are calculated as follows:
o= | Fed s B St A (+12)
5;? jaﬂaeﬂ+z(aﬁ' 3{:)%,4 (4-13)
A;
and from Eq. (4-1)
ge_q, =y~Yo (4-14)
Thus,
£ j Eu(y=yo)dA+ T (Eui = Eu) (7o) Au (#15)
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Finally, by rearranging,

9P _oM _ (E — FoVA i —
EZ= 3 " 5, j[yE,ch +)'_:y,. (Eisi = Eei) Asi = yo EA (4-16)

The flexural rigidity can be determined in the same way as
M - [YEc -y dd+ [ yulEuEed Gu=y A=y B2 @17)
Ay i

[ YEwda+ L yu(Eui—E)As |-y EZ  (4-18)

Ag

oM 2
W - :‘[yzErch"';yu (Em —Em)A_n —¥a
The expression in brackets in Eq. (4-18) can be found from Eq. (4-16) to be
| YEicdA + E yu(Eui— Ec) A = EZ +y0 EA (4-19)
{

Az
By substituting Eq. (4-19) into Eq. (4-18),

El= %% = I }’ZE;,_.dA +ny; (Em _Eki')A.ﬁ - Zyo EZ—y.z,EA (4—20)
Ay i
Summarizing:
P= ]fch + X (fu—fa)Au (4-212)
Ay i

M= [ yfedd + Tyu(fu=fu) A= yo P (4-21b)

Ay i
E4= J EvdAd + X (Eesi~Ei) Ay (4-21c)

Ay i

EZ= IJ’E:ch + 2 Yu(Em—Ewi)Asi—yo EA (4-21d)

dg i
El=[yEcdA + Ey:(Eoi~Eu) Au - 29.EZ - y}EA (4-21¢)

Ag i

In all the equations listed above, an integral over the area has to be calculated. These
integrals represent the concrete component. Numerically these integrals can be calculated
through the following procedure.
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All the integral terms in Eqs. (4-21) are particular cases of the more general equation:
[yraa = [y roay (4-22)
Ay A

in this equation, f represents either f. or E.., and b is a function representing the width of
the cross-section. This integral can be accurately computed by subdividing the cross-section

into smaller fibers (strips), as:

[y faa = ;jy"fbdy (4-23)
Ay A,

where A; is the height of the strip j (see Fig. 4-1).
In terms of , each fiber contribution can be computed by:

Ay
[redy = [rod (“4-29)
h, 0
Y Ly
[rrody = [ (yo+E)fbd = [E fbdt +yy [rbay (4-25)
h 0 0 h;
b()
1 T
Yo +
y Yo

Fig. 4-1 Definition of Global and Local Coordinates
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'y A, L) A,
[y2rody = [ (yo+EVf0L = [E2fBAE + 2, [EfbdE +y2 [fbdE
A 0 0 h, 0

hl
=[ &2 rbdt + 2y, [ yfody - y2f fody (4-26)
[ A

h} /

Note that integrals over dy are in global coordinates while those over d¢ are in local
coordinates (see Fig. 4-1). For any given strip the integrals can be computed to any desired

degree of accuracy. If parabolic behavior is assumed for f and & then:
f=A+BE+CE? (4-273)
b=D+EEL +FE? (4-27b)

and by evaluating the functions at equal intervals Ay

fo=4 (4-282)
fi =4 +BAy + C(Ay)? (4-28b)
fr =A +2BAy +4C(AY)’ (4-28¢)

also,

bo = D (4-292)
b, = D+ EAy + F{Ay)? (4-29b)
by = D+ 2EAy +4F(Ay)® (4-29¢)

Thus by solving for A, B and C in Eq. (4-28)

A =f (4-302)
BAy = -3fy+2fi-1 /s (4-30b)
can’ =ih-fi+tih (4-30c)

Similarly,
Bo =D = b (4-31a)
By = EAy= -3bo +2b, - b, (4-31b)
B, =FAy)’ =1bo— b1 +1b; (4-3L¢)
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Fig. 4-2 Definition of Variables on a Fiber Element

By applying Eqs. {(4-30) and (4-31) to Eqs. (4-27) and then evaluating the integrals, the
following result was obtained:

:J:&*fbdé -amiy 3

.2n+l+k _ _
(n+l+k)(n+2+k)(n+3+k)[( A+1-8 fo+
d(n+1+k) fi+(n+1+k)?2f:]B;

4-32)

Thus
hl
gfbd«‘; = Ay[d (fo+ 4fi +/2)Bo+ 2811 + 42)B1 + E(~fo + 121 + 9,)B1] (4-332)
or
h;
gfbdg = Ay 3(fo +4f1 +f2)bo + 321 +£2)(-3by +4by —by 1+ (4-331)
%5(fo+ 12 +9£)(bo - 2b1 +52)]
Also,
by
g EfbaE = (Ay) [32£1 +/2)bo + 5(~fo + 121 + 92 )(=3bo +4b) —ba)+ «34)
Z(~fo +8fi +82)(bo — 21+ b7)]
and
4
£ E2fbdt = (Ay)’ [Z(fo+12f1 +9f2)bo+2(=fo +8f1 +8f2)(=3b0 +4b, = ba )+ (&35)

5=(=3f0 + 2011 +2562)(bo — 2b1 + b2)]
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Lack of convergence normally comes from the shape of the stress function and not
from the geometry of the cross-section, so to simplify the integration formulae, it was
assumed that the cross-section had a linear variation profile, instead of a quadratic. The

simplified equations are then:

ki
Jrode = Ay[5(fo+afi +fbo+ 521+ £2) (b2 b0)] (4-36)
0
"l
[ Erode = (83) [22f1 +f2)ba + (Ao + 121 +96:)(b2 — bo) ] 4-37)
0

&y
j' BB =(Ay)’ [ Z(+fo+12h +92)+ E(Hfo +8fi +85)(b2-bo) | (4-38)
0

And for the case of a constant width cross-section these equations can be further

simplified to:
’ffba'ﬁ = Ay(fo+4/1 +f2)bo (4-39)
o
Zifbd& = 2(4y)" (21 +f2)bo (4-40)
]ﬁ EYbdE = Z(AY) (-fo+ 121 +92)bo (4-41)
0

Eq. (4-39) can be easily identified as Simpson's rule of numerical integration.
The procedure to evaluate the concrete components on Eqs. (4-21) is as follows. The

concrete section is divided into discrete fiber elements of confined and unconfined concrete.
For each of these fibers the starting and ending width is specified bo and b; the concrete
stress ( f.) for the starting, middle and ending ordinate is computed ( fo0, /1 and /), the

tangential Young's modulus (£,) is also computed at these locations (£, £:1 and £,2).
The starting ordinate of the element (y,;) and the half-height (Ay) are also identified. Then

the global axis integrals for the element are computed as:
AP, = Ay[ XS +4fa +Sa)bo+ N2 e +f2Xb2 — bo) ] (4-42)
AM, = (8y)° [H2fr +f2)bo+ J(~far + 12 + 92 Xb2 — bo) ] + Yui AP (4-43)
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AEA. = Ay[ {Eio+4E i + Ecalbo + Y2E 1 + Ea)(bz — bo) | (4-44)
AEZ. = (Ay) [U2E e + Eia)bo+ (~Eico + 12E1 +9E 2 )(b: - bo)] + v AEA.  (4-45)

AEL=(Ay)' [ &(~Evo+ 12Eic +9E2)bo + 2(-Eico +8Eic1 +8Eu}(b2 - bo) |

, (4-46)
+ 2)’0,' AEZC —y,,,-AEAc
The total axial force, bending moment and stiffness are then given by:
P=YAPu+ X (fy—fo)dy (4-47)
=l =1
M= ZAMCi + Z[ y.ﬂ‘(.’;j _f;'j)A!j —yoP (4'48)
=1 =
ne ns
Ed= Y AEAy+ X (Ey—Eu)Ay (4-49)
=1 Jmt
ne ns
EZ=YAEZ,+ Y yy(Eny~Eu)Ay - v. EA (4-50)
=1 J=
El= YAEl + X yi(Ey—Eu)Ay -2y, EZ - y2EA (4-51)
=1 =1

4-3 Moment-Curvature Analysis for Biaxial Bending

The same basic concepts outlined in the previous sub-section can be applied to the

case of biaxial bending. The longitudinal strain at any point on the cross-section is given by:

E=+4:(y-ya) - ¢, (x-x,) (4-53)

The axial force is then given by
P=ljfedd+ T (fy-1o) Ay (4-54)

Ag
Mc=[fys da+ Z yu(fy=So Ay =y P (4-55)

Ay
M, = ‘H x f.dA ‘jz Xy (fy—fg)Ag + X0 P (4-56)
A
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Fig. 4-3 Definition of Variables for Biaxial Bending

For a given centroidal strain (g,) and curvatures (¢, and ¢,), the equations are in explicit
form and therefore the axial force P and moments (M, and M,) can be readily ulated. The
inverse problem (P, M, and M, specified) requires iteration to compute (€., ¢.and ¢, ). As
in the case of uniaxial bending, the Newton-Raphson procedure can be applied. Incremental
deformations are related to incremental forces through a stiffness matrix given by:

AP EA EZ, EZ, || As,

AM, b =| Ez, EI, EI, X Ab. (@-57)
aM, | | Ez, E1, EI, || 29,
EA = % =fJEcat + Z (EEw)Ay (4-5%)
4,

Ez,=%=%&= HyE,ch+§y,_,(En,—Eq)Aq—yaEA (4-59)
X a J'
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M,

£z,=9F - = —jj XE.dA - ):,x,,(E,,, ~Eu)Ay+3.EA (4-60)
Y
_OM, _r , (4-61)
Bl=5gt = [[y?Ecda +}; YyEw~Ew)dy = 20.EZ; - y1EA
oy J

M,

El, = W = H x2E, dA + Zxxj(E,,] Eu)Ay+2x,EZ, — x2EA (4-62)
aMI aMy

Ely =50 =30, -ff xyE',ch = X xyYy(Euy— Eu)y +XoEZy ~ Yo EZy + X0y oEA (4-63)
x A i

The formulation specified in Egs. (4-54) through (4-63) have only two assumptions
implicit in them: (1) Plane sections remain plane, Eq.(4-53); (2) The area locations occupied
by the steel reinforcement is very small compared to the concrete area, so that no integration
is necessary and all the properties can be expressed by summations. The concrete
components in these equations, nevertheless, need to be approximated by some integration
technique.

For rectangular sections, an explicit formulation can be given. It is proposed that the
cross-section be divided in a matrix mesh of fibers as shown in Fig. 4-4a. Each rectangular
fiber element had a midpoint node, as shown in Fig. 4-4b. A parabolic interpolation function

can be chosen as;

f=fo+BN+CE+DNE+EN?+ FE? (4-64)
with
BAx=CAy=-2fo+2f;-1 /i (4-65)
DAsAy =fo —fi —fa +fa (4-66)
EA) =L fo+fi~2h+11fu (4-67)
EQAQ) =L foirfs=20+1fs (4-68)

where 1 and £ are the x and y local coordinates axis, that are related to the globat
coordinates axis through:

N=x—X, (4-69)
E=y=Yoi 4-70)
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where x,; and y,; are the coordinates of the lower left comner of the elemcnt, and should
not be confused with the coordinates of the centroid. In terms of local coordinates, each
fiber element contribution to the integrals can be computed as:

Ax Ay

ﬂfdA=f J Jandt @-71)
Ax Ay Ax Ay
lIrfaa= | [(ya+r&rfande=[ [Efande+y.[f raa (4-72)
A, 00 00 Ad
Ax Ay Ax &y
[[xraa=] Jooensande= | [ nsande+x,.ff 7 473)
Ay 0 00 ad

Similarly
Axdy

[[xyfaa= | [ ntsande+x.ffyfaa+y. [ xfda—xaiyof[ faa  @14)
AA 090 AAd Ad ad

Axdy

[[ s*faa= [ [ nipiinde + 25, oftd =[] ras 475
Ax A

JJ yfdd = J J EXfan dE + 20, J [ yfda-y2, jj fd4 (4-76)

The numerical integration of the interpolation function Eq. (4-64) can be computed in
terms of the node values (f,,f1,/2,/5 and f4), resulting:

Ax &y

J I rEYfandt = (Ax)™ (Ap)™! Zatﬁ (4-77)
where
_ 1 [ 1 1 1 (_1
b= e e D m+Dm+3) (n+2xn+3)] 2(m+2)(n+2)\m+1 o) T
n= (m+3)(n+l) (m+2)(n+2) (4-78b)
a2 = (m+l)(n+3) (m+2)(n+2) (4-78¢)
_ 2 2

az_(m+l)(n+2)(n+3)+(m+2)(m+3)(,,+1) (4-78d)
kL, w0

(m+2Xn+2) 4
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Then by giving /m and n the appropriate values :

for m=0 and n=0:
T Ftnat = Stxat o fofo 485450 (479)
for m=1 and n=0:
1’?nfdnd§=:—zmxm(ﬁ+4fa 1) (4-80)
for m=0 and n=1;
t{x?{yéfdnd&ﬁmmy)’(fzﬂfa £ (4-81)
for m=1 and n=1:
I'Afn&fdnd&%mnzmyf(—ﬁ) i+ 12654 5) (4-82)
for m=2 and n=0:
Ag’fnzfmd&='ﬁu\xmy(—4ﬁ+2m - 5£476£5+26£) (4-83)
and, for m=0 and n=2:
TT&’HM&%G XOPAfo-Si+2f+76+26f)  (484)
&

The procedure to evaluate the forces (P, MyandM,) and stiffness
(EA, EZ,, EZ,, El,,, I, and 1,) is summarized as follows.
(1) The geometry of the discretized cross-section is known. For every element the size
(Ax and Ay) and coordinate of the lower-left node (x,;, y.;) are known. The position and
area of reinforcing bars is also specified (x,;, .:), 4.
(2) From Bernoulli's assumption, the strain at every node can be readily computed, for a
given centroidal strain (€,) and curvatures (¢, ¢,), by using Eq. (4-53).
(3) The stress ( f.) and tangential Young's modulus (E,.) can be computed by knowing the

strain and previous history using an appropriate constitutive model. Thus, for every element

Seois feris Jeais Sezis feais fucvis fieri faeris fiesi a0d fiea; are known.
(4) The strain at bar location is calculated, and by using constitutive models for concrete and

steel the stresses and tangential Young's modulus are calculated ( 1y, fo, Eoy Euy)-
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(5) The concrete components for each element are defined by:
AP = SAXAY foo +fer + 2+ 8fcs +/ea)
AMyi = 5AX(AY) (fez + 43 +fea) +7oibPs
AM,; = LAXP AW fur + s + fud) + X0 AP
AEA = SAXAY(E o + Evct + Eiey +BE ey + E )
AEZ,; = LAY (ApY (Buz +4E s + Eia) + Yo AEA,
AEZ,; = L(AX)’ AY(E oy +4E 13 + Eod) + %0 0EA,
AEL; = s5Ax(Ay) (~4E 0 — SEtc] + 27E 2 + T6E 1 + 26E18) + 2y iAEZ s ~ ¥ , AEA,
AEl, = S(AXY AV(~4E oo + 2TE 1 — SE 2 + T6E 3 + 26E 14 ) + 2XAEZ,; — x5, AEA,

AEI,),; = :,%(AXAy)z(—Em) +Efcl +Eld + 12Elc] + SEIH) +xoiAEZxa‘ +ya|'AEZyi _xai}’aiAEAn

(6) Finally the total forces and stiffness for the cross-section are given by
P=3 AP+ (fy—f5)4y
=l =l
ne ns
My =T AMu+ T yylfy —fo)dy —y.P
-l 1
ne ns
M, =3 AM,; - Y, xy(fy —fy)Ay +XoP
=] 7=
EA= f AEA; + Z(E,,j "E,,;j)A,j
=l J=l
sz = E AEZﬂ +}§|y"’(Eq - Elcj)Aaj "yOEA
EZ,= *’"_z: AEZ,, - ;Z"] Xy (Eg = Eu)A g + %, EA
El,= :_z'l AEL, +§ Y2 (Eug = Ex\ y —2V,EZ, — y2EA

Ely= -§ AEl - ;_w"il %Y By = B\ y + %0 EZx =0 EZ, + X0y, EA
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4.4 Force-Displacement Analysis

In the previous sections a procedure to obtain the moment-curvature relationship for
uniaxial as well as Liaxial bending was presented. This section presents a methodology by

which deformation can be assessed. The total deformation A can be expressed in terms of
its various components as:

A=A +A, +A+ Ay (4-103)
where A, is the elastic flexure deformation, A, is the plastic flexure deformation, A, is the
elastic shear deformation and A, is the inelastic shear deformation. In what follows is a

description of each of these components of displacement follows.

4.4.1 Elastic Flexural Deformation
The flexural deformation on a column can be found by taking first moments of the
curvature diagram.
A= i x ¢(x) dx {4-104)
If the moments in the column are caused by a concentrated shear force applied at the top, as

shown in Fig. 4-5, then the moment at any distance x from the top can be found to be:
M,

M = "‘*L— X (4-105)
where L is the length of the column and M, is the maximum moment.
v > ]
X
Ay
N |
x ¢, M,

*M”L
. ML

¢L Additional plastic
curvature from
yield penetration

Fig. 4.5 Flexural Deformation on a Column
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Thus, the relationship given in Eq.{4-104) can be expressed as:

A= (sz Af M o(M) dM (4-106)
=) |

As discrete points on the moment-curvature relationship are calculated, the integral above

can be computed numerically as:

2 n
A= é(MLL) 2 (M;—M;-1)[0; M+ M)+ 0, (M +2M;-)] (4-107)
J=1

For inelastic deformations it is necessary to calculate the elastic and plastic
components separately. Mander et al. (1984) proposed to express the elastic components in
terms of an effective stiffness calculated at first yield, given by:
M, L2

3A,

where A, is the yield displacement calculated from Eq. (4-107) when the moment at the

Ely= (4-108)

base causes a longitudinal bar to yield; and M, is the moment at first yielding. Thus for

deformations beyond the elastic limit, the elastic flexural deformation is calculated as:

-0, LML .
A=0.5=gp- (4-109)

4.4.2 Plastic Flexural Deformation

Based on study of experimental distribution of curvatures, Mander et al. (1984)
proposed a parabolic distribution of plastic curvature. This is adopted herein to assess

plastic deformations. The procedure is as follows:
(a) The magnitude of the plastic curvature (¢, ) at the critical section is given by:

bp=(0-9¢.) (4-110)
where ¢, is the elastic curvature from Eq. (4-109) above.
(b) The length of the plastic curvature distribution L, is given by:

My

@111)

where M. is the maximum moment.
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(c) Some additional plastic curvature from penetration of the yielding of longitudinal

reinforcement is accounted for by defining an empirical length of yicld penetration as:
Ly =635][d, (in)

4-112)
Lpy = 32J£ (mm)
where d), is the longitudinal bar diameter,
(d) The plastic rotation, 8, of the column is calculated as:
8, =9, (%L,,c +L,,,) @-113)
(e) Finally, the plastic deformation is given by:
Ap= OP(L-%L,,C) @-114)

4.4.3 Elastic Shear Deformation

Two methods are considered herein for the assessment of shear deformations. The
first method considers deformations for the elastic and cracked stages, when the member has
not yielded. The procedure outlined by Park and Paulay (1975) to assess elastic shear
deformations was used to calculate the shear deformations for the elastic and cracked zones.
The second method uses a proposed Equivalent Truss Method which has been found
appropriate to assess cyclic inclastic shear deformations.

In what follows is an explanation of the procedure.

(a) Prior to cracking the shear deformation can be computed as:

B = K—‘:‘ @-115)
where V is the applied shear and KX,. is the shear stiffness given by:
AE
Ky = Qf?cﬁ_ {4-116)

in which the factor 0.4 assumes that the Poisson ratio for concrete is v=0.25 and G =0.4E,,
A, is the area that contributes to shear stiffness, and f is a form factor. For rectangular
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cross-sections f=1.2, and for T, I and hollow sections f=1. At this stage of uncracked
behavior the member shows a much greater shear stiffness compared to the cracked stage.
(b) When cracking exists over a length smaller than the hinge zone but no yield has
occurred:
where M, is the cracking moment and K, is the post-cracking shear stiffness within the
plastic hinge region.
The post-cracking elastic shear stiffness is related to the inclination of cracks and is

calculated by the expression given by Park and Paulay (1975):

P, sin*@ sin* (cotB+cot f)
sin*@+np, sin’p

where @ is the angle of inclination of the cracks respect to the longitudinal axis, B is the

K,

Esh,d (4-118)

angle of inclination of the stirrups, normally f§ =90°. E; is the modulus of elasticity of the

. E; . . . . .
hoop reinforcement, n = E—‘ is the modular ratio, E, is the modulus of elasticity of concrete,
[

and p. is the volumetric ratio of hoop reinforcement calculated by:

A
P =Sb.

in which A. is the total area of hoop steel, b, is the with of the concrete web and s is the

(4-119)

hoop spacing.
For transverse reinforcement with B =90°, Eq. (4-118) can be simplified to:
___ bydcotf
Kve=
1 .1
. 4

E;py E.sin'®

{c) When cracking extends beyond the hinge region then the shear deformation is

(4-1200

given by:

_ 1L M, 1L, 1, M, _é@_)]
A,,_VL[ TN A SIS (1 T @121)

where K,; is the shear stiffness within the hinge region calculated by us: 1g Eq. (4-120) for
the hoop spacing s, within the hinge region, while K, is the shear stiffness outside the

hinge region calculated for a hoop spacing s, of the unconfined zone.

4-19



4.4.4 Inelastic Shear Deformation

For squat columns the amount of shear deformation can be significant. Under cyclic
loading some plastic shear deformation may be present, particularly for existing gravity load
designed bridge columns that possess only the nominal minimum amount of fransverse
reinforcement. Thus to correctly assess these plastic shear deformations a suitable model is
needed. Both the Modified Compression Field Theory, MCFT, (Collins and Miichell, 1991)
and the Softened Truss Model, STM, (Hsu, 1993) deal with the problem of inelastic shear
deformations, but as they were developed are suitable oniy for monotonic loading of
membrane type elements. Both models are what Hsu (1993) calls rotating angle models, as
at every stage the inclination of cracks is calculated assuming that they coincide with the
principal axis. This approach has shown good accuracy with experimental results, as some
of its variables are calibrated with experimental data.

In the context of a Fiber Element program for cyclic loading, a more straight forward
constant crack angle model bas been developed, which takes into account the tension
capacity of reinforced concrete that has been incorporated in both the MCFT and the STM.
When examining experimental performance of columns tested by Mander et al. (1984, 1993)
and Ang et al. (1987) it is evident that after cracking the inclination of the cracks remains
unchanged, but they generally grow in length and width as ductility amplitudes increase. It
is thus felt that the model presented in this section that assumes a fixed angle is realistic for
columns members.

The procedure to assess shear deformation in the case of shear dominated members is
described below.

Four defined shear zones are identified as shown in Fig. 4-6. Three of the zones are
elastic, which means that they are independent of the strain history and that the deformations
are proportional to the shear force applied. This does not mean that the siicar displacement
is linear, because as cracking progresses upward, the length over which the different shear
stiffnesses apply is changed.

(1) Elastic Uncracked Zone - the length of this zone can be calculated by:
M,

L.=L
¢ Mo

(4-122)
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Over this zone the shear stiffness is K,, which is given by Eq. (4-115).
(2) Elastic Cracked Zone Qutside the Hinge Region : if cracking has extended

beyond the hinge zone, the length of this zone is calculated as L., = L., —L;, otherwise it is
taken as zero. The stiffness prevalent in this zone K. is governed by the spacing provided
outside the hinge region, which is calculated by wsing Eq. (4-120). The cracked length is
given by:

L,=L-L, (4-123)

(3) Cracked Zone Within the Hinge Region : the shear stiffness K, within this
region is defined by the hinge hoop spacing and calculated by Eq. (4-120), The length of
this zone is given by L4 =Ly —Lpc or by L.y =Ler—Lp if cracking has not extended
outside the hinge region. The vielded zone length L, is given by Eq. (4-111).

(4) Yielded Zone : within this zone shear is considered to behave inelastically, thus
the deformation is history dependent and may not be proportional to the current shear being
applied. A shear deformation 7y is calculated using a Cyclic Inelastic Strut-Tie (CIST)
model developed in the next sub-section.

The elastic shear deformation is thus given by:

= Le  Loc Len .
A“ - V(Kve +,Kv:: + th ) (4 124)
while, the inelastic shear deformation is calculated by:

4.4.4.1 Proposed Cyclic Inelastic Strut-Tie (CIST) Model for
Shear Deformations

The determination of inelastic shear deformations has been one of the most elusive
subjects on reinforced concrete. Recently the Modified Compression Fi ld Theory (Collins
and Mitchell, 1991) and the Softened Truss Model (Hsu, 1993) have gathered a lot of
attention as rational means of assessing shear deformations. Nevertheless, these models
have only been developed for membrane type elements under monotonic shear. In this
subsection a straight forward model is presented which is applicable not only to monotonic

shear but for cyclic inelastic shear as well.
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Fig. 4-6 Shear Deformation on a Column
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Fig. 4-7 Equivalent Strut-Tie Model for Shear Deformations
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It is assumed that the angle of inclination of the cracks remains constant after
cracking. This assumption, as mentioned earlier, is supported by experimental evidence.
The concrete model developed in Section 3 is particularly appropriate for the CIST model, as
it can model the stress-strain cyclic behavior of the concrete struts in both tension and
compression. Of special impartance in this model is the modeling of gradual crack closure.
An equilibrium of external forces in Fig. 4-8a leads to,

V={(F.+F,)sin@ {4-126)
Whereas, an equilibrium of internal forces in Fig. 4-8b gives,

Fu=(F.—F) sin® (4-127)
where F, = compressive force in the concrete strut, F, = tensile force in the concrete tie, F,

= force on the steel hoop and 8 = inclination of cracks. The forces in the concrete and steel
are given by:

F.=fAwcos0=f.jdb, cosO (4-1283a)
Fi=fAy cosO=f,jdb, cos® (4-128b)
Fy = fo An 128 (4-129)

in which f. = compressive stress in the concrete strut, f; = tensile stress on the concrete tie,
[« = stress on the hoopties, A,, = jdb,, = concrete shear area, A,, = area of transverse steel
resisting shear, and s = hoop spacing. It is to be noted that A, cos9 is the shear area

jdcot®

perpendicular to the concrete strut, whereas A ——— is the lumped area of transverse

reinforcement. By combining Eqs. (4-126) through (4-129) and rearranging, the following

expression is obtained:

V=Ay fo %cme + f; jd by cot 6(2sin’6) (4-130)
These equations can be compared with that of the MCFT (Collins and Mitchell, 1991),

V=Aq fo lgco:e+ fijdbycot® (4-131)
It can be seen that Eqgs. (4-130) and (4-131) agree when the inclination angle 6 =45°. For

other angles the error = I —2sin?8, e.g. if 8 = 30°, error = 0.5 = 50% of the concrete tension
contribution. The term that corresponds to the tension capacity of concrete, is normally small

compared to the steel component, which makes Eq. (4-130) a good approximation. The
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simplicity introduced by this appraximation is well worth it, as it will be shown in the
following subsection.

Fig. 4-8c shows the relation between the strains in the longitudinal/transverse
direction and the strains in the struts. The tensile strain in the concrete tie €] is calculated
as:

£} = £0c0520 + £, sin’B+YsinBcos 6 4-132)
whereas the compressive strain on the concrete strut is:

£; = €,,C08?0+€, sin’® -7 sinBcos O (4-133)
in which €, = average longitudinal strain on the concrete struts, €, = strain on the
transverse hoops and y = shear distortion.

The relation between the stresses and strains is given by the constitutive models,

I =fe]) (4-134)
Iz =f(€3.€)) (4-135)
_fsv =fv (Ey) (4-136)

in which f. and f, represent the constitutive relations for concrete and steel respectively.
Note that in Eqs. (4-132) to (4-136) the nomenclature has been changed. The asterisk *
means that they do not represent the true principal strains or stresses, as the MCFT and the
STM assume.

The concrete is modeled in four struts, two for unconfined concrete and two for
confined concrete, in both directions. Although, in the preceding paragraphs the struts and
ties have been referred to as compressive and tensile elements, they actually alternate
between struts and ties as the member is being subjected to cyclic loading.

The implementation of the model in the context of a column analysis program is
given in the following steps:

A. Moment-Curvature Analysis

(a.1) Take a curvature ¢ for which the analysis is going to be performed.

(a.2) Assume a centroidal strain €,. The assumption of this strain may be based on
an incremental analysis estimation, if previous steps of the analysis are known.

(a.3) Perform a section analysis to calculate the axial force P and moment M at the
critical section according to procedure described in subsection 4.2.
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(a.4) If the axial load P does not satisfy the external axial load applied, then repeat
steps 2 and 3 until convergence is satisfied. Increasing the value of €, increases the axial
load value, unless crushing of the concrete occurs. It is possible, that for high valucs of axial
load, or high values of curvature deformation, no centroidal strain could be found to satisfy
equilibrium. This means that the section may not be able to sustain that axial load anymore,
at this point the analysis can be stopped.

B. Flexure Deformations
(b.1) Once the axial load and moment has been defined, the flexural deformations A,

and A, can be calculated according to the procedure given in subsection 4.4.1 and 4.4.2.
(b.2) If no PA effect is being considered, the shear force is calculated as:

v=24 (4-137)

in which L = length of column to the point of contraflexure. In the case where PA is being

considered, a first approximation the deflection may be taken as A=A, +A,, as the shear
deformations are not known at this stage. The shear force can then be calculated as:

_ M+BPA
T L+0fA
where f§ = proportion of PA considered, which depends on geometric characteristics of the
problem; o = is the fraction of the shear force which is added to the axial load. This last
factor is used on a variable axial load problem, as encountered on external columns in a

v (4-138)

frame or multi-column pier seat. In Eq. (4-138) the moment at the critical cross-section is
considered to be:

M=VL-PBPA {4-139)
in which the negative sign implies that the axial load P is positive in tension.

C. Shear Deformations
The elastic shear deformation A, can be calculated by the procedure given in
subsections 4.4.3 and 4.4.4. To calculate the inelastic shear deformation the procedure given

in the following steps is used. These steps summarize the proposed CIST model.
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(c.1) The average longitudinal strain £, for the concrete struts can be computed as
depicted in Fig. 4-9.
(i) The distance from the critical cross-section to the location of the average
longitudinal strain y is taken as the lesser of £ L., and £ jd cot®.
Gi) If M <M, then,
Eoe = Eo + (€L —£0)2m (4-140)

L
in which, €., is the centroidal strain at the limit of the cracked section of the ¢column, that

can be calculated as:

e;cr = elm + (socr - Eou) A—lﬂl ("—l"l)
M.
where M., = moment at the commencement of cracked section, that is calculated as:
M= ML_;’ﬂ (4-142)
in which L., is the length of the cracked section, which is defined by Eq. (4-123).
(iii} If M > M, thene,, is given by:
Lcr -
Eoc = Eler +(By = Eher )t fory 2L, (4-143)
Lcr - Ly
or,
L,~y 2
Epr =Egy +(Es ‘50)')('_’['_) fory <Ly 4-144)
y
where,
M
L= L(l ~ T}) (4-145)

in which &,y is the centroidal strain at the location of the yield moment (Fig. 4-9b).
(c.2) Assume a value of the shear distortion Y, which may be based on previous
steps of the analysis.

(c.3) Assume a transverse strain €,

(c.4) Calculate the stress in the transverse steel, Eq. (4-136).

(¢.5) Calculate the strains in the concrete struts and ties Eqs. (4-132) and (4-133).

(c.6) Calculate the stresses on the concrete struts and ties through the constitutive
model, Egs. (4-134) and (4-135). The stresses should be computed for both the confined and
unconfined concrete.

(c.7) Compute the force components,
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Feet =fc‘c(£;)]dbwt cos0 (4-146)

Foot =fo(€))jd bw, cos O (4-147)
Fea = fee(€3)jdbuc cos8 (4-148)
Fe2= ,;,(E;)jdbm, cos© (4-149)

Fy= Anfn-’;—icotﬂ (4-150)

where jd bw. and jd b.. are the unconfined and confined shear area respectively.
(c.8) Check internal equilibrium,

|Fy+ (Feet + Fooy + Foez + Feg2)sin 8| < tolerance (4-151)
If the equilibrium requirement is not met, repeat from step (¢.3).
(c.9) Calculate shear force,
V=(F.1+Fe — Foz — Fey) 5in0 (4-152)

If the shear force calculated in Eq. (4-152) is not equal, within a given (olerance, to the shear

force given by Eq. (4-138), then the value shear distortion ¥ needs to be adjusted, and the
procedure is repeated from step (c.2).

Once convergence has being satisfied, the shear distortion angle ¥ is used to find the
inelastic shear deflection,

D. Total Deflection
The total deflection on the columns is:
A=A, +Ap+A+ Ay 4-154)

If the PA effect is being considered then the shear force needs to be adjusted by using the
total deflection A in Eq. (4-138), and the whole procedure is to be repeated from step ¢.2.

This procedure account for both PA and variable axial load effect. Of special
importance in this procedure is a robust algorithm to solve the different variables at certain
steps. Iterations are needed to calculate the centroidal strain ¢,, the transverse strain €, and

the shear distortion y. The strategy to solve for these variables includes the following:
(1) Secant Method is used as a first aption. This method is used, because of it higher

order of convergence near the solution, and because the solution is not bracketed. To
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guarantee the stability a maximum step is defined, as the method can get out of bounds if the
derivative of the function gets small. The best solution is always stored, in case the method
does not converge.

(2) If at any given iteration, it is found that a solution exists between two points, then
the method of solution switches to a Regula Falsi approach, as this ensures a solution.

(3) If convergence is not found, then as an alternative, a somewhat slower algorithm
will try to bracket the solution. During every trial value, the best solution is always being
kept track of. It is possible that by specifying too small a tolerance, no convergence can be
achieved, in which case the best solution is returned. If the bracketing routine is successful
in finding a range in which the solution is located, then a Regula Falsi method is applied to
find the solution.

(4) Because of numerical round-off errors it is always necessary to use a counter to
avoid an endless loop.

This method of solution has proven to be effective to give the numerical procedure

good stability, which is particularly important, as so many calcu.ations are being performed.

4.4.4.2 Crack Inclination Angle

The assessment of inelastic shear deformation within the plastic hinge region tmplies
that the fixed angle CIST model has an influence only after the section is fully cracked. To
ensure a tractable solution, limit analysis is adopted herein to define the crack inclination
angle. Limit analyses can define three possible shear failure modes in membrane type
elements (Marti and Meyboom, 1992):

(1) Yielding of both reinforcements, concrete does not crush. Thus,

fs=f (4-155)
fo=fy (4-156)
fe=fe 4-157)
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in which f;, f, = stress and yield stress of longitudinal reinforcing steel, f,, f,v = stress
and yield stress of transverse reinforcement, f., f/. = stress and effective concrete strength

of concrete. In membrane type elements where there is little or no confinement the effective
concrete strength may be lower than the uniaxial strength of plain concrete due to the
softening effect of tension in the perpendicular direction (Collins and Mitchell, 1991). In
this investigation, the effective concrete strength will be taken as the uniaxial strength of
plain concrete, as the confinement effect at the base of a column tends to compensate for the

softening effect. The inclination of the principal compressive strain for this case is

calculated by:
P S
tan9= [——— 4-158
" o fy ( )
in which
= As (4-159)
Ps= b,
and
_An -
Prv== b (4-160)

and the applied shear stress is given by,

Tu = J(PsPs Jy fv) (4-161)

(2) Yielding of reinforcement in weak (transverse) direction, concrete crushes and

reinforcement in strong direction remains elastic. In this case,

sin® = /E%f—“ (4-162)

and,
= UL =Por f)Pov fiv (4-163)
(3) Concrete crushes and both reinforcements remain elastic. For this case,
0=45° (4-164)
and
w=1f! (4-165)

Note that this implies that the element is being subjected to pure shear. To find the

governing mode, the lowest value of T, is taken, and its corresponding inclination angle.
Nevertheless, the crack inclination is not to be taken less than a minimum which is given by,
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Jd .
T (4-166)

which is dictated by the rocking effect as described by Mander et al. (1993). In this analysis

lanﬁmi,, =

it is to be noted that the fixed angle assumed by the model is taken as the inclination angle of
the principal compressive stress at failure, Analyses by Collins and Mitchell (1991) indicate
that this angle does not change significantly after yielding.

4.5 Validation of Fiber-Element Model

A computer program UB-COLA was developed to simulate the cyclic behavior of a
reinforced concrete column. The program incorporates the CIST model for shear
deformations. The concrete model advanced in Section 3, which incorporates the simulation
of concrete in both tension and compression cyclic behavior, and the simulation of gradual
crack closure, for confined and unconfined concrete, was incorporated into the program.
The energy balance theory developed by Mander et al. (1988) for the prediction of first hoop
fracture was also implemented, which makes the program capable of predicting failure by
hoop fracture. The steel model developed in section 2, which incorporates local cyclic
degradation and the proposed fatigue model, was also incorperated. Thus the program is
able to simulate longitudinal bar fracture. Finaliy, the inelastic cyclic shear model presented
in this section was implemented into the program to simulate more accurately the cyclic
behavior of shear critical columns.

Two column specimens tested by Aycardi et al. (1992) were chosen to compare the
fiber element model against; these are Specimens 2 and 4. The prismatic columns had a 4 x
4 in. cross-section embedded into a 20 x 9 x 8 in. reinforced concrete base. The distance
from the column base up to the point of application of the lateral load was 21 in. The
longitudinal reinforcement consisted of four D4 bars (0.225 in. diameter, with an area of

0.04 in?). The transverse reinforcement consisted of a 0.12 in. diameter smooth round wire
(#11 gage) spaced at 4 in., with a cover of 0.5 in. measured to the centerline of the hoop.

The steel and concrete properties are given in Tables 4-1 and 4-2, respectively.
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Table 4-1 Experimental Steel Properties , Aycardi et al. (1992)

Steel Type 5 E; €h Eg, S € €5
(ksi) (ksi) (ksi) (ksi)
D4 65 31050 | 0.0206 750 73 0.107 | 0.15
#11 Gage 56 29800 | 0.014 450 70 0.14 -

Table 4-2 Experimental Concrete Properties, Aycardi et al. (1992)

/
f c,a E < €cp € spall r

(ksi) (ksi)

4135 | 4280 [0.0023| 002 | 244

STRESS 4
{ksi}
—— Experimental
- - - - Analytical

0 0002 0004 ©O06 0008 001 0012 0014 0018 0018
STRAIN

Fig. 4-10 Comparison of the Analytical Stress-Strain Relationship
with the Experimental Behavior of Plain Concrete from
Aycardi et al. (1992) for Specimens 2 and 4.
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Specimen 2 was tested with a constant axial load of 21.2 kips resulting in a load ratio

of ‘,: =0.30. Whereas specimen 4 was tested with a variable axial load where
ciip
P=6.95+2V (kips), which results in a load ratio of ;l;l =0.10. These may be
cflg
considered typical building columns. The columns were tested at incremental cycle

amplitudes of 10.25%,30.5%.,£1%,3+2%,13%,+4% and £5% drift, with 2 complete cycles
at every drift step. Both the analytical model given by Mander et al. (1984) and the
UB-COLA model are successful in predicting the force-displacement relationship for a
columns with high level of axial load (Fig. 4-12), whereas the proposed model gives better
results for low level of axial load due to the gradual crack closure incorporated in it (Fig
4-11).

Three ductile hollow reinforced concrete columns (Columns A, C and D) tested by
Mander et al. (1984) are also compared with the fiber element model. The columns had a
height of 3.2 m and a square cross section of 750 mm with 120 mm thick walls, containing
sixty 10 mm Grade 275 deformed bars (D10) as longitudinal reinforcement giving a
volumetric ration of 0.0155. The longitudinal reinforcement was distributed uniformly
around each face with a cover of 20 mm. The specimens contained different arrangements
of transverse steel in the plastic hinge zone. The cyclic testing consisted of two complet :
cycles at each displacement ductility factor of p =42 14,46 and £8. Column A had a low
axial load P=0.1f/A, and minimum (aniibuckling) steel. Column C had a moderate axial
load P=0.3f/A, and confining steel, whereas Column D had a moderate level of axial load
and minimum steel. For a detailed description of the specimens refer to Mander et al.
(1984).

Of particular interest in this investigation is the capability of the model to simulate
different failure modes. After Column A had been tested at the specified displacement
duciility factors, the specimen was subjected to 40 dynamic cycles up to fracture of the
longitudinal bars. The present model predicted a fracture of the longitudinal reinforcement
after 31 cycles, as shown in Fig. 4-14. It may be noted that the present formulation improves
the simulation of gradual crack closure. Of special importance is the degree of detail that the
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present formulation was capable of simulating, especially concrete failure in Column C, Fig.
4-15. Fig. 4-16 shows the experimental behavior (Fig. 4.16a) compared to the original
model of Mander ct al. (1984) (Fig 4.16b) with the proposed model using the UB-COLA
program (Fig. 4.16¢). Both models predicied the overall behavior quite well as neither shear
nor crack closure concerns dominate in this column.

Finally, a shear critical column was chosen to show the capability of the CIST model
to accurately simulate cyclic inelastic shear behavior. A full size cap-to-column connection
of a shear critical bridge pier tested by Mander et al. (1993) was tested under reverse cyclic
loading. It should be noted that in this test, the cyclic inelastic shear behavior was assessed,
which allows the comparison of the proposed analytical model with actual experimental
behavior. The pier had an average square cross section of 910 mm of side. The longitudinal
reinforcement consisted of 16 #7 bars enclosed by single perimeter hoops at 305 mm centers.
The concrete strength was found to be 7.4 ksi (51 MPa). A detailed description of the
specimen is found in Mander et al. (1993). Figs. 4-17 shows the analytical prediction and
the experimental behavior of the shear critical column. Note how the CIST model was able
to accurately stimulate the inelastic shear behavior. The fiber model proposed by Mander et
al. (1984) was incapable of simulating this shear behavior, as it is based on an elastic shear

model.

4.6 Conclusions

In this section, a Fiber Element approach has been presented which can simulate the
hysteretic behavior of a reinforced concrete column. Equations for uniaxial bending with
quadratically varying dimensions and quadratically varying stress functions were presented,
These higher order elements can both improve convergence and reduce the number of
clements required. Equations for a five node rectangular element for biaxial bending were
also presented, although no implementation of such a model has been included, as no biaxial

experiments with curvature assessment was found in the literature. It is necessary tc
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investigate the biaxial interaction of cracking and yielding to support any assumption to
assess deformations in a biaxially loaded column.

The cyclic inelastic strut-tie (CIST) model presented, was successfully applied to
simulate the shear hysteretic behavior. The fatigue damage model presented in Section 2
predicted a failure by hoop fracture after 31 cycles, compared to 40 cycles found
experimentally. The simulation of gradual crack closure can improve the hysteretic shape on
columns with low levels of axial load, as compared with previous models with sudden crack
closure. With the implementation of robust algorithms for solving for different variables in
the procedure presented, the program presented a very stable performance. It is important to
mention that during the implementation of the program, carc must be taken to ensure
numerical stability during the evaluation of the different equations as underflow or overflow
may occur, particularly when small reversals are attempted by the solving algorithms.

Finally, it is worth making some comparative comments on the program COLUMN
(Mander, et al. 1984) and the program develped in this study, UB-COLA. It is evident that
the differences are often small between the two programs, especially for moderate levels of

!
axial load (P > 0.25f.4;) where crack closure and shear deformations are not of particular
concern. The original program COLUMN was written to predict the performance of well

detailed capacity designed bridge columns in which the transverse shear reinforcement is not
expected to yield. For such columns that program performs satisfastorily - although it
cannot predict a steel fatigue failure.

The new program UB-COLA, was specifically designed to handle issues pertaining
to concrete failure, inelastic shear deformations, steel fatigue and gradual crack closure - all
features of poorly detailed existing columns. The program can also handle new columns
with high strength concrete and steel.
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Fig. 4-11 Comparison of Proposed Fiber Element Model with
Experimental Results from Aycardi et al. (1992)
Specimen 4, P=0.10/' 4,.
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(a) EXPERIMENTAL FORCE-DRIFT
FROM AYCARDI et al. (1992)
SPECIMEN 2

{b) MANDER et al. (1984)
ANALYSIS

-6

(c) PROPOSED FIBER
ELEMENT ANALYSIS

Fig. 4-12 Comparison of Proposed Fiber Element Analysis with
Experimental Results from Aycardi et al. (1992)
Specimen2, P=0.30f' 4A,.
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Section 5

Summary, Conclusions and Recommendations

5.1 Summary

This study has been concerned with the computational modeling of energy
absorption (fatigue) capacity of reinforced concrete bridge columns by using a cyclic
dynamic Fiber Element computational model. The results were used with a smooth
hysteretic rule to generate seismic energy demand. By comparing the ratio of energy

demand to capacity, iuferences of column damageability or fatigue resistance were made.

A complete analysis methodology for bridge columns was developed starting from
the basic principles of nonlinear mechanics of materials. The hysteretic behavior of steel
reinforcement was dealt with in detail: stability, degradation and consistency of cyclic
behavior was explained. An energy based universally applicable low cycle fatigue model
for steel was proposed. A hysteretic model for confined and unconfined concrete
subjected to both tension or compression cyclic loading was advanced, which is also
capable of simulating gradual crack closure. A Cyclic Inelastic Strut-Tie (CIST) model
was developed, in which the comprehensive concrete model proved to be suitable. The
CIST model was shown to be capable of assessing inelastic shear deformations with a
high degree of accuracy, within the context of a Fiber Element (FE) program. A parabolic
fiber element with parabolic stress function element for uniaxial flexure was developed, as
well as a rectangular fiber element with a quadratic interpolation function suitable for

biaxial flexure.
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5.2 Specific Conclusions

1. Steel Stress-Strain Modeling
A universally applicable stress-strain model for mild and high strength
reinforcing steels was developed. This model includes the effects of low cycle fatigue and
is capable of accurately predicting bar fracture-- an important phenomenon in the seismic
damage analysis of bridge columns, The prediction of bar fracture is achieved by tracking
hysteretic energy absorption. This method gives superior results to the best alternative--

the rainflow counting method.

2. Congrete Stress-Strain Modeling
A universally applicable stress-strain model for concrete has also been

advanced. This model is an enhanced version of that originally proposed by Mander et al.
(1988a). Some of the new features include:

(i) An improved monotonic stress-strain idealization using the equation of Tsai

(1988), which can now cater to low to very high strength concrete.

(ii) Enhanced cyclic loading stress-strain relations that couple tensile and

compressive excursions and allows for gradual crack closure. This greatly

improves the moment-curvature, force-displacement prediction of beams and

columns with low levels of axial load.

(iii) Cyclic stress-strain relations in tension. This enzbles the reliable prediction of

cyclic inelastic shear displacements.

3. Fiber-Element Analysis

A computer program UB-COLA was developed that uses "Fiber-Element"
for the prediction of both the non-linear moment-curvature, and force-displacement
behavior of structural concrete beam-columns under dynamic cyclic lateral (shear)
loading, The program is capable of predicting the modes of failure that generally lead to

column collapse, namely:
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(i) Low cyclic fatigue of the longitudinal reinforcement-- common in beams and

columns with low axial loads (P, <0.15 f!A,)

(ii) Fracture of transverse hoops-- common in confined columns with high axial

load (P, >0.2 f/A,)

(iii) Buckling of the longitudinal compression reinforcement and subsequent

crushing of the concrete-- common in columns where the transverse hoop spacing

exceeds six longitudinal bar diameters.

(iv) Shear failure, when the concrete struts crush.

The program has the unique feature of being able to reliably track inelastic shear
displacements in lightly reinforced columns which have not been detailed in accordance

with capacity design principles.

5.3 Recommendations for Future Research

(1) The nature of the cyclic behavior of concrete with incursions into tension and
compression needs to be established. Very limited experimental information exists
regarding the cyclic behavior of concrete,

(2) The fatigue model needs to be calibrated with additional experimental results to
more reliably establish its parameters.

(3) Well-designed experiments to assess shear deformations and crack formation
are needed, to validate or refine the proposed Cyclic Inelastic Strut-Tie model.

(4) The fiber element analysis in its present form is "curvature” controlled. That
is, for a given curvature the moment, and hence shear, is assessed, then the inelastic shear
strain is determined from a "force” (shear) controlled algorithm. This process works well
except for columns failing prematurely in shear. It is therefore recommended that an
inverse form of the solution be explored for such shear-critical elements, where the
response is perhaps "shear-strain” controlled. In this approach shear force would be
determined for a given level of share strain. From the requested moment the curvature
would be assessed from a "force" controlled algorithm.
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(5) Parametric studies to measure the influence of various proposed model
parameters may clarify their range and validity.

(6) A study on the interaction between the orthogonal cracking and yielding on
biaxial flexure is needed.

(7) A modified shear model for the assessment of shear deformation on biaxial
shear needs to be developed.
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"Reinforced Concrete Frame Component Testing Facility - Design, Construction, Instrumentation and
Operation,” by S.P. Pessiki, C. Conley, T. Bond, P. Gergely and R.N. White, 12/16/88, (PB89-174478).
“Effects of Protective Cushion and Seil Compliancy on the Response of Equipment Within & Seismically
Excited Building,” by J.A. HoLung, 2/16/89, (PB89-207179).

“Statistical Evaluation of Response Modification Factors for Reinforced Concrete Structures,” by HH-M.,
Hwang and J-W. Jaw, 2/17/89, (PB89-207187).

“Hysteretic Columns Under Random Excitation,” by G-Q. Cai and Y K. Lin, {/9/89, (PB89-196513).

"Experimental Study of “Elephant Foot Bulge™ Instability of Thin-Walled Mctal Tanks,” by Z-H. Jia and
RL. Ketter, 2/22/89, (PB89-207195).

"Experiment on Performance of Buricd Pipelincs Across San Andreas Fault,” by J. Isenberg, E. Richardson
and T.D. O’Rourke, 3/10/89, (PB89-218440). This report is available only through NTIS (see address given
above).

*A Knowledge-Based Appmach to Structural Design of Earthquake-Resistant Buildings,” by M. Subramani,
P. Gergely, C.H. Conley, 1LF. Abel and A.H. Zaghw, 1/15/89, (PBR9-218465).

"Liquefaction Hazards and Their Effects on Buried Pipelines.," by T.D. O'Rourke and P.A. Lane, 2/1/89,
(PB89-218481).

“Fundamentals of System Identification in Structural Dynamics,” by H. Imai, C-B. Yun, C. Maruyama and
M. Shinozuka, 1/26/89, (PB89-207211).

"Effects of the 1985 Michoacan Earthquake on Water Systems and Other Buried Lifelines in Mexico,” by
A.G. Ayala and M.J. O'Rourke, 3/8/89, (PB89-207229).

"NCEER Bibliography of Earthquake Education Materials,” by K.EK. Ross, Second Revision, 9/1/89,
(PB90-125352).

“Inclastic  Three-Dimensional Response Analysis  of Reinforced Concrete  Building
Structures (IDARC-3D), Part I - Modefing," by S.K. Kunnath and A M. Reinhom, 4/17/89, (PB90-114612).

"Recommended Modifications to ATC-14, by C.D. Poland and 1.0. Mallcy, 4/12/89, (PB90-108648),
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NCEER-89-0013

NCEER-85%-0014

NCEER-89-0015

NCEER-89-0016

NCEER-89-P017

NCEER-89-0017

NCEER-89-0018

NCEER-89-0019

NCEER-89-0020

NCEER-89-0021

NCEER-89-0022

NCEER-89-0023

NCEER-89-0024

NCEER-8%9.0025

NCEER-89-0026

NCEER-89-0027

NCEER-89-0028

"Repair and Strengthening of Beam-to-Column Conncctions Subjected {o Earthquake Loading,” by M.
Corazao and A.J. Durrani, 2/28/89, (PB90-109885).

"Program EXKAL2 for Identification of Structural Dynamic Systems,” by O. Maruyama, C-B. Yun, M,
Hoshiya and M. Shinozuka, 5/19/89, (PB90-109877).

“"Response of Frames With Bolted Semi-Rigid Conncctions, Part | - Experimental Study and Analytical
Predictions,” by P.J. DiCorso, A M. Reinhom, J.R. Dickerson, J.B. Radziminski and W.L. Harper, 6/1/89,
to be published.

"ARMA Montc Carlo Simulation in Probabilistic Structural Analysis,” by P.D. Spanos and M.P. Mignolet,
7/10/89, (PB90-109893).

"Preliminary Proceedings from the Conference on Disaster Preparcdness - The Place of Eanthquake
Education in Qur Schools," Edited by K EK. Ross, 6/23/89, (PB90-108606).

"Proceedings from the Conference on Disaster Preparedness - The Place of Earthquake Education in Our
Schools,” Edited by K.E K. Ross, 12/31/89, (PB90-207895). This repont is available only through NTIS (se¢
address given above).

“Multidimensional Models of Hysteretic Material Behavior for Vibration Analysis of Shape Memory Enetgy
Absorbing Devices, by E.J. Graesser and F.A. Cozzarelli, 6/7/89, (PB90-164146).

“Nonlincar Dynamic Analysis of Three-Dimensional Base Isolated Structures (3D-BASIS)," by S
Nagarajaiah, A.M. Reinhom and M.C. Constantinou, 8/3/89, (PB90-161936). This report is available only
through NTIS (see address given above).

"Structural Control Considering Time-Rate of Control Forces and Control Rate Constraints,” by F.Y. Cheng
and C.P. Pantelides, 8/3/89, (PB90-120445).

"Subsurface Conditions of Memphis and Shelby County,” by K.W. Ng, T-S. Chang and H-H.M. Hwang,
7/26/89, (PB90-120437).

“Scismic Wave Propagation Effects on Straight Jointed Buried Pipelines,” by K. Elhmadi and M.J.
O'Rourke, 8/24/89, (PB90-162322).

“Workshop on Serviceability Analysis of Water Delivery Systems,” edited by M. Grigoriu, 3/6/89, (PB90-
127424).

"Shaking Table Study of a /5 Scale Steel Frame Composed of Tapered Members.” by
K.C. Chang, J.S. Hwang and G.C. Lee, 9/18/89, (PB90-160169).

"DYNAID: A Computer Program for Nonlinear Seismic Site Response Analysis - Technical
Documentation,” by Jean H. Prevost, 9/14/89, (PB90-161944). This report is available only through NTIS
(scc address given above).

“1:4 Scale Model Studies of Active Tendon Systems and Active Mass Dampers for Aseismic Protection,”
by AM. Reinhomn, T.T. Soong, R.C. Lin, Y.P. Yang, Y. Fukao, H. Abc and M. Nakai, 9/15/89, (PB90-
173246).

"Scattering of Waves by Inclusions in a Nonhomogeneous Elastic Half Space Solved by Boundary Element
Methods,” by P.K. Hadlcy, A. Askar and A.S. Cakmak, 6/15/89, (PB90-145699).

"Statistical Evaluation of Deflection Amplification Factors for Reinforced Concrete Structures,” by HH.M.
Hwang, J-W. Jaw and A L. Ch'ng, 8/31/89, (PB90-164633).
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NCEER-89-0031

NCEER-89-0032

NCEER-89-0033

NCEER-89-0034

NCEER-89-C)35

NCEER-89-0036

NCEER-89-0037

NCEER-89-0038

NCEER-890039

NCEER-89-0040

NCEER-895-0041

NCEER-90-0001

NCEER-90-0002

NCEER-90-0003
NCEER-90-0004

NCEER-90-00035

NCEER-90-000¢6

"Bedrock Accelerations in Memphis Area Due to Large New Madrid Earthquakes,” by HH M. Hwang,
C.H.5. Chen and G. Yu, 11/7/89, (PB90-162330).

“Seismic Behavior and Response Sensitivity of Secondary Structural Systems,” by Y.Q. Chen and T.T.
Soong, 10/23/89, (PB90-164658).

"Random Vibration and Reliability Analysis of Primary-Secondary Structural Systems,” by Y. Ibrahim, M.
Grigoriu and T.T. Soong, 11/10/89, (PB90-161951).

“Proceedings from the Second US. - Japan Workshop on Liquefaction, Large Ground Deformation and
Their Effects on Lifelines, September 26-29, 1989, Edited by T.D. O'Rourke and M. Hamada, 12/1/89,
(PB90-20938R).

"Deterministic Model for Seismic Damage Evaluation of Reinforced Concrete Structures,” by J.M. Bracci,
A.M. Reinhom, J.B. Mander and S.K. Kunnath, 9/27/89.

*On the Relation Between Local and Global Damage Indices,” by E. DiPasquale and A.S. Cakmak, 8/15/89,
(PB90-173865).

"Cyclic Undrained Behavior of Nonplastic and Low Plasticity Silis,” by A.J. Walker and HE. Stewart,
7/26/89, (PB90-183518).

“Liquefaction Potential of Surficial Deposits in the City of Buffalo, New York,” by M. Budhu, R. Giese
and L. Baumgrass, 1/17/89, {PB90-208455).

“A Delerministic Assessment of Effects of Ground Motion Incoherence,” by A.S. Veletsos and Y. Tang,
7/15/89, (PB90-164294).

"Workshop on Ground Motion Parameters for Seismic Hazard Mapping,” July 17-18, 1989, edited by R.V.
Whitman, 12/1/89, (PB%0-173923).

"Seismic Effects on Elevated Transit Lines of the New York City Transit Authority,” by CJ. Costantine,
C.A. Miller and E. Heymsficld, 12/26/89, (PB90-207887).

“Centrifugal Modeling of Dynamic Soil-Structure Interaction,” by K. Weissman, Supervised by J.H.
Prevost, 5/10/89, (PB90-207879).

"Lincarized ldentification of Buildings With Cores for Seismic Vulnerability Assessment,” by I-K. Ho and
A.E. Aktan, 11/1/89, (PB90-251943).
"Geotechnical and Lifeline Aspects of the October 17, 1989 Loma Pricta Earthquake in San Francisco,”

by T.D. O'Rourke, H.E. Stewart, F.T. Blackbum and T.S. Dickcrman, 1/90, (PB90-208596).

“Nonnormal Sccondary Response Due to Yielding in a Primary Structure,” by D.C.K. Chen and L.D. Lutes,
2/28/90, (PB90-251976).

"Earthquake Education Materials for Grades K-12.," by K.EK. Ross, 4/16/90, (PB91-251984).
*Catalog of Sirong Motion Stations in Eastern North America,” by R.W. Busby, 4/3/90, (PB90-231984).

"NCEER Strong-Motion Data Base: A User Manual for the GeoBase Release (Version 1.0 for the Sund),”
by P. Friberg and K. Jacob, 3/31/90 (PB%0-258062).

*Scismic Hazard Along a Crude Oil Pipeline in the Event of an 1811-1812 Type New Madrid Earthquake,”
by HH.M. Hwang and C-H.S. Chen, 4/16/90(PB90-258054).
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NCEER-90-0009

NCEER-90-0010

NCEER-90-0011
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NCEER-90-0014

NCEER-90-0015

NCEER-90-0016

NCEER-90-0017

NCEER-90-0018

NCEER-90-0019

NCEER-90-0020

NCEER-9)-0021

NCEER-90-0022

NCEER-90-0023

NCEER-%0-0024

"Site-Specific Response Spectra for Memphis Sheahan Pumping Station,” by HH.M. Hwang and C 8. Lee,
5/15/90, (PB91-108811),

"Pilot Study on Seismic Vulnerability of Crude Oil Transmission Systems.” by T. Ariman, R. Dobry. M.
Gngonu, F. Kozin, M. O'Rourke, T. O’Rourke and M. Shinozuka, 5/25/90, (PB91-108837).

“A Program to Generate Site Dependent Time Histories: EQGEN,” by G.W. Ellis, M. Srinivasan and A.S.
Cakmak, 1/30/90, (PB91-108829).

"Active Isolation for Seismic Protection of Operating Rooms," by M.E. Talbott, Supervised by M.
Shinozuka, 6/8/9, (PB91-110205).

“Program LINEARID for Identification of Linear Structural Dynamic Systems" by C-B. Yun and M.
Shinozuka, 6/25/90, (PB91-110312).

“Two-Dimensional Two-Phase Elasto-Plastic Seismic Response of Earth Dams.”
Yiagos, Supervised by L.H. Prevost, 6/20/90, (PB91-110197).

by AN.

"Secondary Systems in Base-Isolated Structures: Experimental luvestigation, Stochastic Response and
Stochastic Sensitivity,” by G.D. Manolis, G. Juhn, M.C. Constantinou and A M. Reinhom, 7/14990, (PB91.
110320).

"Seismic Behavior of Lightly-Reinforced Concrete Column and Beam-Column Joint Details” by SP.
Pessiki, C.H. Conley, P. Gergely and R.N. White, 8/22/90, (PB91-108795).

"Two Hybrid Control Systems for Building Structures Under Strong Earthquakes,” by JN. Yang and A.
Daniclians, 6/29/90, (PB%1-125393).

“Instantanecus Optimal Control with Acceleration and Velocity Feedback," by IN. Yang and Z. Li,
6/29/90, (PB91-125401).

"Reconnaissance Report on the Northem Iran Earthquake of June 21, 1990,” by M. Mchrain, 10/4/9¢,
(PB91-125377).

"Evaluation of Liquefaction Potential in Memphis and Shelby County,” by T.S. Chang, P.S. Tang, C.S. Lee
and H. Hwang, 8/10/90, (PB91-125427).

"Experimental and Analytical Study of a Combined Sliding Disc Bearing and Helical Steel Spring [solation
System," by M.C. Constantinou, A.S. Mokha and A M. Reinhom, 10/4/90, (PB91-12538%).

“Experimental Study and Analytical Prediction of Earthquake Response of a Sliding Isolation System with
a Spherical Surface,” by A.S. Mokha, M.C. Constantinou and AM. Reinhom, 10/11/90, (PB91-125419).

"Dynamic Intcraction Factors for Floating Pile Groups,” by G. Gazewas, K. Fan, A. Kaynia and E. Kausel,
9/10/90, {PB91-170381).

"Evaluation of Scismic Damage Indices for Reinforced Concrete Structures,” by S. Rodrigucz-Gomez and
AS. Cakmak, 9/30/90, PB91-171322).

"Study of Sitc Responsc at a Sclected Memphis Site,” by H. Desai, §. Ahmad, E.S. Gazetas and MR. Oh,
10/11/90, (PB91-196857).

"A User's Guide lo Strongmo: Version 1.0 of NCEER's Strong-Motion Duta Access Tool for PCs and
Terminals,” by P.A. Friberg and C.A.T. Susch, 11/15/90, (PB91-171272).
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NCEER-90-0025

NCEER-90-0026

NCEER-90-0027

NCEER-90-0028

NCEER-90-0029

NCEER-91-0001

NCEER-91-0002

NCEER-91-0003

NCEER-91-0004

NCEER-91-0005

NCEER-91-0006

NCEER-91-0007

NCEER-91-0008

NCEER-91-0009

NCEER-91-0010

NCEER-81-0011

NCEER-91-0012

NCEER-91-0013

*A Three-Dimensional Analytical Study of Spatial Variability of Seismic Ground Motions,” by L-L. Hong
and A.H.-S. Ang, 1073090, (PB91-170399).

"MUMOID User’s Guide - A Program for the Identification of Medal Parameters,” by S. Redri  gucz-
Go  mez and E. DiPasquale, 9/30/90, (PB91-171298).
"SARCF-1l User’s Guide - Seismic Analysis of Reinforced Concrete Frames,” by S. Rodri  gucz-Go  mez,

Y.S. Chung and C. Meyer, 9/30/90, (PR91-171280).

"Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation," by N. Makris
and M.C. Constantinou, 12/20/90 (PB91-190361).

"Soil Effects on Earthquake Ground Metions in the Memphis Area,” by H. Hwang, C.S. Lee, K.W. Ng and
T.S. Chang, 8/2/90, (PBS1-190751).

"Proceedings from the Third Japan-U.8. Workshop on Earthquake Resistant Design of Lifeline Facilities
and Countermeasures for Soil Liquefaction, December 17-19, 1990," edited by T.D. O’Rourke and M.
Hamada, 2/1/91, (PB91-17925%).

"Physical Space Solutions of Non-Proportionally Damped Systems,” by M. Tong, Z. Liang and G.C. Lee,
1/15/91, (PB91-179242).

"Seismic Response of Single Piles and Pile Groups,” by K. Fan and G. Gazetas, 1/10/91, (PB92-174994).

"Damping of Structures: Part 1 - Theory of Complex Damping.” by Z. Liang and G. Lec, 10/10/91, (PB92-
197235).

"3D-BASIS - Nonlincar Dynamic Analysis of Three Dimensional Base Isolated Structures: Part 11, by S.
Nagarajeiah, AM. Reinhom and M.C. Constantinou, 2/23/91, (PB91-190353).

"A Multidimensional Hysteretic Mode! for Plasticity Deforming Metals in Energy Absorbing Devices,” by
E.}. Graesser and F.A. Cozzarelli, 4991, {(PB92-108364).

"A Framework for Customizable Knowledge-Based Expert Systems with an Application to a KBES for
Evaluating the Seismic Resistance of Existing Buildings,” by E.G. Ibarra-Anaya and $.J. Fenves, 4/9/91,
(PB91-210930}.

"Nonlinear Analysis of Steel Frames with Semi-Rigid Connections Using the Capacity Spectrum Method,*
by G.G. Deierlein, S-H. Hsich, Y-J. Shen and J.F. Abel, 7291, (PB92-113828).

“Earthquake Education Materials for Grades K-12," by K.EK. Ross, 4/30/91, (PB91-212142).

"Phase Wave Vclocitics and Displacememt Phasc Differences in a Harmonically Oscillating Pile,” by N.
Mairis and G. Gazetas, 7/8/91, (PB92-108356).

"Dynamic Characteristics of a Full-Size Five-Story Steel Structure and a 2/5 Scale Model,” by K.C. Chang,
G.C. Yao, G.C. Lee, D.S. Hao and Y.C. Yeh,” 7/2/91, (PB93-116648).

“Seismic Response of a 2/5 Scale Steel Structure with Added Viscoclastic Dampers,” by K.C. Chang, T.T.
Soong, S-T. Oh and M.L. Lai, 5/1791, (PB92-110816).

"Earthquake Response of Retaining Walls; Full-Scale Testing and Computational Modeling,” by S.
Alampalli and A-W.M. Elgamal, 6/20/91, to be published.



NCEER-91-0014

NCEER-91-0015

NCEER-91-0016

NCEER-91-0017
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NCEER-91-0019

NCEER-91-0020

NCEER-91-0021

NCEER-91-0022

NCEER-91-0023

NCEER-91-0024

NCEER-91-0025

NCEER-91-0026

NCEER-91-0027

NCEER-92-0001

NCEER-92-0002

NCEER-92-0003

NCEER-92-0004

NCEER-92-0005

"3D-BASIS-M: Nonlinear Dynamic Analysis of Multiple Building Base Isolated Structures,” by P.C.
Tsopelas, S. Nagarajaiah, M.C. Constantinou and A.M. Reinhom, 5/28/91, (PB92-113885%).

"Evaluation of SEAOC Design Requirements for Sliding Isolated Structures,” by D). Theodossiou and M.C.
Constantinou, 6/10/91, (PB92-114602).

"Closed-Loop Modal Testing of a 27-Story Reinforced Concrete Flat Plate-Core Building.” by H.R.
Somaprasad, T. Toksoy, H. Yoshiyuki and A.E. Aktan, 7/15/91, (PB92-129980).

"Shake Table Test of a 1/6 Scale Two-Story Lightly Reinforced Concrete Building,” by A.G. El-Attar. R.N.
White and P. Gergely, 2/28/91, (PB92-222447).

"Shake Table Test of a 1/8 Scale Three-Story Lightly Reinforced Concrete Building,” by AG. EI-A tar,
R.N. White and P. Gergely, 2/28/91, (PB93-116630).

“Transfer Functions for Rigid Rectangular Foundations,” by A S. Veletsos, A M. Prasad and W.H. Wu,
7/3181.

"Hybnd Control of Seismic-Excited Neonlinear and Inelastic Structural Systems,” by I.N. Yang, Z. Li and
A. Danielians, 8/1/91, (PB92-143171).

"The NCEER-91 Earthquake Catalog: Improved Intensity-Based Magnitudes and Recurrence Relations for
U.S. Earthquakes East of New Madrid,” by L. Seeber and ].G. Armbruster, 8/28/91, (PB92-176742).

"Proceedings from the Implementation of Earthquake Planning and Education in Schools: The Need for
Change - The Roles of the Changemakers,” by K.E.K. Ross and F. Winslow, 7/2191, (PB92-129998).

"A Study of Reliability-Based Criteria for Seismic Design of Reinforced Concrete Frame Buildings,” by
HHM. Hwang and H-M. Hsu, 8/10/91, (PB92-140235).

“Experimental Verification of a Number of Structural System Identification Algorithms,” by R.G. Ghanem,
H. Gavin and M. Shinozuka. 9/18/91, (PBY92-176577).

"Probabilistic Evaluation of Liqucfaction Potential,” by H.H.M. Hwang and C.S. Lee,” 1172591, (PB92-
143429).

"Instantaneous Optimal Control for Linear, Nonlinear and Hysteretic Structures - Stable Controllers,” by
JN. Yang and Z. Li, 11/15/91, (PB92-163807).

"Experimental and Theoretical Study of a Sliding Isolation System for Bridges,” by M.C. Constantinou,
A. Kartoum, AM. Rcinhomn and P. Bradford, 11/1581, (PB%2-176973).
"Case Studies of Liquefaction and Lifeline Performance During Past Earthquakes, Volume 1: Japanese Case

Studies,” Edited by M. Hamada and T. O’Rourke, 2/17/92, (PB92-197243).

"Case Studics of Liqucfaction and Lifeline Performance During Past Earthquakes, Volume 2: United States
Casc Studics,” Edited by T. O'Rourke and M. Hamada, 2/17/92, (PB92-197250).

"Issues in Earthquake Education,” Edited by K. Ross, 2/3/92, (PB92-222389).

"Procecdings from the First U.S. - Japan Workshop on Earthquake Protective Sysiems for Bridges,” Edited
by 1.G. Buckle, 2/4/92, (PB94-142239, AS9, MF-A06).

"Seismic Ground Motion from a Haskell-Type Source in a Multiple-Layered Half-Space,” A.F. Theoharis,
G. Deodatis and M. Shinozuka, 1/2/92, to be published.
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"Proceedings from the Site Effects Workshop,” Edited by R. Whitman, 2/29/92, (PB92-197201).

"Enginecring Evaluation of Permanent Ground Deformations Due to Seismically-Induced Liquefaction,”
by M.H. Baziar, R. Dobry and A-W.M. Elgamal, 3724792, (PB92-222421).

"A Procedure for the Seismic Evaluation of Buildings in the Central and Eastern United States," by C.D.
Poland and J.0. Malley, 4/2/92, (PB92-222439).

"Experimental and Analytical Study of a Hybrid Isolation System lsing Friction Controllable Sliding
Bearings," by M.Q. Feng, 8. Fujii and M. Shinozuka, 5/15/92, (PB93-150282).

"Seismic Resistance of Slab-Column Connections in Existing Non-Ductile Flat-Plate Buildings," by Al
Durrani and Y. Du. 5/18/92.

"The Hysterctic and Dynamic Behavior of Brick Masonry Walls Upgraded by Ferrocement Coatings Under
Cyclic Loading and Strong Simulated Ground Motion,” by H. Lee and S.P. Prawel, 5/11/92, to be
published.

"Study of Wire Ropz Systems for Seismic Protection of Equipment in Buildings," by G.F. Demetriades,
M.C. Constantinou an: A.M. Reinkomn, 5/20/92.

"Shape Memery Structural Dampers: Material Properties, Design and Seismic Testing,” by P.R. Witting
and F.A. Cozzarelli, 5/26/92.

"Longitudinal Permanent Ground Deformation Effects on Buried Continuous Pipelines," by M.J. O'Rourke,
and C. Nordberg, 6/13/92.

"A Simulation Method for Staticnary Gaussian Random Functions Based on the Sampling Theorem,” by
M. Grigoriu and S. Balopoulou, 6/11/92, (PB93-127496).

"Gravity-Load-Designed Reinforced Concrete Buildings: Seismic Evaluation of Existing Construction and
Detailing Strategies for Improved Seismic Resistance,” by G.W. Hoffmann, S.K. Kunnath, A M. Reinhom
and J.B. Mander, 7/15/92, (PB94-142007, A08, MF-A02).

"Observations on Watcr System and Pipeline Performance in the Limén Arca of Costa Rica Duce to the
April 22, 1991 Earthquake,” by M. O'Rourke and D. Ballantyne, 6/30/92, (PB93-126811).

"Fourth Edition of Earthquake Education Materials for Grades K-12," Edited by K.E.K. Ross, 8/10/92.
“Proceedings from the Fourth japan-U.S. Workshop on Earthquake Resistant Design of Lifsline Facilities
and Coumermeasures for Soil Liquefaction,” Edited by M. Hamada and T.D. O’Rourke, 8/12/92, (PB93-
163939).

“Active Bracing System: A Full Scaic Implementation of Active Control,* by A.M. Reinhamn, T.T. Soong,
R.C. Lin, MA. Riley, Y. P. Wang, S. Aizawa and M. Higashino, 8/14/92, (FB93-127512).

"Empirical Analysis of Horizontal Ground Displacement Generated by Liquefaction-Induced Lateral
Spieads,” by S.F. Bartlett and T.L. Youd, 8/1792, (PB93-1838241).

*IDARC Version 3.0: Inclastic Damage Analysis of Reinforced Concrete Structures,” by S.K. Kunnath,
AM. Reinhom and R.F. Lobo, 8/31/92, (PB93-227502, A07, MF-A(2).

"A Semi-Empirical Analysis of Suong-Motion Peaks in Terms of Seismic Source, Propagation Path and
Loca! Site Conditions, by M. Kamiyama, M.J. O'Rourke and R. Flores-Berrones, 9/9/92, (PB93-150266).

*Seismic Behavior of Reinforced Concrete Frame Structures with Nonductile Details, Part 1: Summary of

Experimental Findings of Full Scale Beam-Column Joint Tests,” by A. Beres, RN. White and P. Gergely,
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T.T. Soong, G. Chen, Z. Wu, R-H. Zhang and M. Grigoriu, 3/1/93, (PB93-188639).
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M.T.A. Chaudhary and $.5. Chen, 5/12/93, (PB93-227494, A08, MF-A02).
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