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ABSTRACT

A testing methodology for subjecting full-scale reinforced concrete masonry structures to
simulated seismic Joads under laboratory conditions was developed, and the test method
implementation and verification on three-story full-scale reinforced masonry shear walls are
discussed. The new GSD (Generated Sequential Displacement) test method allows realistic
seismic load simulation and the wrace of higher mode effects, even in the initial undamaged state
of the structure. Problems typically associated with the stiff coupling between servo-controlled
actuators in a multi-degree of freedom system were overcome with the introduction of
elastomeric loading pads, which act as displacement amplifiers in the loading system. Advances
in the on-line actuator control algorithm also allowed testing without artificial numerical damping
in the time integration scheme, thus permitting the tested three-degree of freedom structural
masonry walls to respond with lateral load distribution patterns consistent with the degree of
structural stiffness deterioration. The GSD implementation verification is described in detail

together with seismic response characteristics of the 3-story walls.
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1. INTRODUCTION

Modern design of structural systems for seismic loading relies heavily on inelastic deformations
to absorb the seismic energy input by large inelastic deformations at reliable capacities rather
than by large capacities at small deformation levels. Thus, earthquake resistant structural systems
will experience local distress and need to accommeodate large inelastic deformation cycles without
significant deterioration of design capacity levels. Since the structure is expected to perform well
beyond the proportionality or yield limit state during its lifetime, traditional analysis and design
models, which relate unfactored or factored design loads and linear clastically determined demand
to service or ultimate capacity levels, are no longer appropriate to capture the relevant realistic
structural response. Thus, new analysis and design tools are needed which can (1) realistically
capture the post-yicld to ultimate deformation limit state response, (2) account for realistic
seismic load input and (3) determine the location and nature of local and global failure modes.

A large number of complex nonlinear analysis models and advenced capacity design
models have been developed in the academic research environment, but the quality and usefulness
of these models depends to a large extend on their appropriate verification and calibration. Since
the unpredictable and devastating nature of earthquakes allows gathering of post-yield field data
only to a very limited degree, the validation of these models depends largely on experimental
laboratory testing. These laboratory tests need to be performed at a large or full scale in order
to capture the correct onset and development of failure modes at the local level, and their
complex interaction at the global structural systems level. Since failure mechanisms and their
nonlinear behavior are typically controlied by the structural detailing of joints, connections etc.,
only limited scaling is permissible in the experimental verification. Thus, experimental techniques

are needed, which can take complete full or large scale structural systems under realistic seismic



load input from the undamaged initial state through the yield limit state and the formation of
local mechanisms all the way to the final global collapse mode. Realistic seismic load input to
these full scale models requires not only the application of mass proportional loading but also
the participation of the structure in the load determination, both, in terms of stiffness degradation
effects on the dynamic response characteristics and in terms of higher mode effects.

In an effont to develop new design guidelines for masonry structures in seismic zones, the
TCCMAR[1] (Technical Coordinating Committee for Masonry Research) has conducted extensive
experimental and analytical research in both the U.S. and Japan 1o provide a broad data base for
analysis and design model development. The final verification of the developed procedures and
models is by means of a five-story full scale reinforced concrete masonry building test under
simulated seismic load input. A detailed description of the development of the test procedure for
the U.S.-TCCMAR five-story full scale research building test is provided in the following. After
a brief introduction of the theoretical basis for simulated seismic on-line testing, the GSD
(Generated Sequential Displacement) test procedure is presented, starting with a general
description of the test methodology and the formulation of the test method, followed by the test
method implementation, verification and fine-tuning. and an interpretation of obtained test results
from full scale multi-story reinforced concrete masonry shear wall systems. It should be noted,
that the primary objective of the described work was not the development of new pscudo-
dynamic testing theories or techniques but rather the application and refinement of existing
procedures to allow the on-line testing of stiff multi-degree of freedom systems under seismic
load input.



2. DEVELOPMENT OF ON-LINE TESTING TECHNIQUE

The on-line testing of stiff multi-degree-of-freedom masonry shear wall structure requires
enhancements to the conventional pseudo dynamic testing technique. In this chapter, the

theoretical development of the GSD test procedure is described.

2.1. Pseudo Dynamic Testing Technique

Because real-time testing of full-scale structural systems under seismic excitation is usually not
practical, a combined analytical, experimental technique, called the pseudo-dynamic method, was
developed in Japan[5] and in the U.S.[9] This method quasi-statically simulates seismic response

in the time domain. A brief overview of the governing principles is presented in the following.

2.1.1. General Principle
If the structural system can reasonably be represented by a discrete system, its equation of motion
is expressed by
2.1)
Md(5 + Cd(® + r(t) = 1)
where t: time
M : mass matrix
C : damping matrix
d(?) : structural displacement vector

f(1) : excitation force vector

For a linear elastic structure, the structural restoring force vector r(f) is expressed by the product



of stiffness matrix K and displacement vector d(7) , as

) = Kddo) @2
Given the initial conditions, this equation is solved numerically by an appropriate time integration
scheme, giving structural displacements d{z, ) at discrete time steps (i=1,2....). In the pseudo-
dynamic technique the mass and damping characteristics of the structure are modeled analytically,
whereas the typically nonlinear structural restoring forces r(r, ), are measured experimentally.
After the proper starting procedure, the structural displacements calculated at each time step are
imposed on the test structure by means of servo-controlled hydraulic actuators, and the resulting
restoring forces r(s; ) are measured and used in the analytical model to compute the displacements
at the next time step. A schematic overview of the procedure is shown in Fig.2.1 and the outline

of the algorithm is as follows:

1)  Provide or assume initial conditions for the structure and set time step i=0.

2) Using the input forcing function (i), calculate the displacements d(i) at the next step by
means of a numerical time integration scheme.

3) Impose the calculated displacements to the specimen with servo controlled actuators.

4) Measurc with built-in load cells the restoring forces r(i), see eqn. (2.2).

5) Setitoi+] and go to step 2.

The algorithm may vary slightly according to the particular numerical time integration scheme
used. Explicit and implicit integration schemes have both been used by various rescarchers with
varying degrees of success. In the present work, three numerical integration schemes were used:
the Newmark Explicit method, the Modified Newmark Explicit method and Hilber’s alpha
method. These are outlined in the following.
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Fig. 2.1. Schematic Pseudo Dynamic Test Procedure



2.1.2. Newmark Explicit Method
This scheme can be summarized by

d@i+1) = a() + Arv(d) *AT'zl(f)

v(i+1) = v(n%(-m +a(i+1)) @23)
aG+1) = [M+—‘2—'cr(m+l)-ra+l) -Cvco-%c-(o]

where Az is the integration time interval. The method has no numerical damping and is stable
only if WAz S 2, where o) represents the highest natural circular frequency of the system. Thus,
very small time steps are generally required for numerical stability, particularly for stiff multi-
degree of freedom systems.

2.1.3. Modified Newmark Explicit Method
This method can be described by

di+1) = dmwv(mizf-m

Yi+1) = v+ SE(a(D rati+1)) @4
a(i+1) = MA{fi+1) -aw)rau)+¢rcm+3%(d(o-da+n}

in which a and p are constants. Approximatcly frequency-proportional numerical damping can
be achieved by the appropriate choice of @ and p. It has been shown that this method is less
sensitive to experimental error propagation effects than the central difference method {4,6]. Upper
and lower stability bounds for wAs arc determined by the condition



|_£ < WAt < m (2.5)
&

l+a

with 00 and p<0.

2.1.4. Hilber’s Alpha Method
This implicit integration scheme can be described by

Ma(i+1) = (1+a)fi+1) - af(D - (1 +a)r(i+1) +ar() -(1 +a)Cv(i+1) + &

a1) = dm+Arv<n+Ar’{(%-p)-<o+paa+1) }

v(i+1) = v(f)+ At{ (1-y)a{D) +ya(i+1) } 2.6)

where 0. B and v are integration constants. Although advantages in terms of stability and
numerical energy dissipation can be expected, implementation of this method to pseudo-dynamic
testing requires considerable effort because it is an implicit method ( Note that the definition of
d(i+1) contains a(i+1) ) and requires an iterative procedure, as well as an estimate of the stiffness
matrix. An example of the implementation of this method is given in a paper by Shing and

Manivannan(14].
2.2, Difficulties Found in Pseudo Dynamic Testing

2.2.1. Integration Schemes

Although explicit integration schemes can determine the displacements at the next step from the
current displacements, the maximum time swep for stable operation can be very small, Small time
steps lead to long tests, that in turn introduce other problems such as stress relaxation and the
acceleration of error accumulation and propagation effects. Implicit schemes, in general, have
much better stability characteristics, allowing larger time steps and thus shorter experiments with



less error. However, they inevitably require an iterative process to determine the next
displacement vector, using an estimate of the tangent stiffness of the structure. In spite of the
problem of stiffness determination in nonlinear structures, recent progress has been made [13,14],
and an implicit integration scheme is being developed for use in the testing of TCCMAR 3-Story
rescarch building at University of California, San Diego {22].

2.2.2. Error Propagation Effects

The propagation of experimental errors in measuring structural displacements and restoring
forces, as well as in imposing the calculated displacements on the test structure accurately, can
cause problems in MDOF systems. These problems are manifested in the appearance of spurious
higher mode response. This effect is especially acute for stiff MDOF structures, where very small
errors in imposed displacements can translate to high restoring force deviations. Error propagation
effects have been extensively studied [12,15,16). Integration schemes with numerical damping
can reduce this problem of spurious higher mode response, and various schemes for applying
corrections to the measured structural restoring forces based on measured displacement errors and
an estimate of the tangent stiffness matrix have also been successfully implemented. Nakashima
and Kato [16] proposed new algorithms to suppress the response error growth caused by the
displacement error. In these algorithms, the measured restoring force is modified in accordance
with the detected displacement error and the initial elastic stiffness or the instantaneous stiffness
estimated in each step of loading. This modified restoring force is then incorporated into the
equation of motion to calculate the next displacement level. It appears that improving the
accuracy of the imposed structural displacements and the messurement of the restoring forces,
Tequiring high quality equipment, is still the single most important factor in reducing error
propagation effects in simulated seismic on-line testing.



2.2.3. Problems with Stiff MDOF Structures

The testing of stiff MDOF systems, such as multi-story shear walls, present additional difficulties.
The stability condition (if any) of the integration algorithm for such systems is typically governed
by the highest natural frequency which may be very high for stiff structures, thus requiring small
time steps and the imposition of very small displacement increments at the active or controlled
degrees of freedom. These may easily be beyond the resolution of the hydraulic actuators used
to impose them. Also, the stiff coupling between active DOFs in a stiff MDOF system, combined
with geometric amplification effects conwolled by the systems geomewy, results in actuator
control problems for small displacement levels, since individual actuator adjustments can cause
large deformations in coupled DOFs. Relative displacement errors and resulting restoring force
errors can then be high, resulting in error accumulation and ultimately in erroneous structural
response. Since pseudo-dynamic testing is essentially a displacement-controlled test procedure,
displacement errors and their accumulative effects will be directly reflected in the test results. For
a known load-displacement relationship, one could use a scheme which employs load-controlled
actuators to impose the specified structural displacement, but this idea is irrelevant to a structure
that inherently has highly nonlinear behavior characteristics.

Anather difficulty is the proper simulation of mass proportional inertia loading. While it
is commonly accepted for building systems to apply lateral seismic loads at the floor slabs, long
buildings and particularly coupled shear wall structures require mass proportional load input
along the length of the floor slab which should be independent of the structural deterioration of
the floor system. In addition, the distributed loading system should not constrain or alter the floor
slab rotations or deformations.

The methodology used in testing 3-story reinforced masonry shear walls, as described in
this report, was designed to overcome some of these difficulties. The method entails two essential
features: an improved loading system, and a dual control algorithm for imposing structural
displacements. The detail of the methodology is presented in the following section.



2.3. Generated Sequential Displacement (GSD) Procedure

As a direct extension of the pseudo-dynamic on-line technique, the GSD procedure was
developed for the full scale seismic testing of stiff multi-degree of freedom structures. Since the
method was dévcloped in direct support of models for design guidelines, the test procedure must
allow the test structure to be exposed to seismic input segments which cause structural response
representative of critical design limit states. Thus, a carefully selected sequence of input segments
is developed which will not only provide the structural response o one particular seismic event
but rather a sequence of critical structural response states including higher mode effects which
need to be considered in the design process.

An example of such a sequential load side definition is provided in Fig. 2.2a where the
James Rd 230° componetit of the 1979 Imperial Valley acceleration record was used to provide
input segments of various response characteristics as diagnosed by the corresponding segment
response spectra, see Fig. 2.2b. Based on the measured structural stiffness characteristics, an
appropriate input segment can now be selected and scaled to produce the desired critical design
limit state.

Displacements generated by these input segments through a numerical time integration
scheme must now be applied sequentially to the test structure as mass proportional floor loads.
Thus, the GSD test method consists of four components: (1) the selected sequence of recorded
or generated seismic ground motion input segments, (2) the analytical model and the numerical
time integration scheme (typically referred to as the outer loop of the control system), (3) the
computer-controlled inner loop of the on-line servo-controlled actuator system, and (4) the
actuator and loading system itself with ramp generator and servo-control. Since pseudo dynamic
test applications and developments are reported in detail in [5 to 16), only modifications to the
basic concept are reported in the following.

10
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2.3.1 Elastomeric Pads

The idea behind the use of clastomeric pads is that they act as (a) equal load distributors, and
(b} soft springs between actuators and the specimen (structure). The first feature provides a mass-
proportional loading 1o the specimen, and limited unconstrained structural rotations and
expansions of the floor system, thus allowing structural deterioration without compromising the
mass proportional loading. The second feature, which is illustrawed in Fig. 2.3 on a 2-DOF
system, improves the displacement control of the structure at small displacement levels through
displacement amplification and reduces coupling between DOFs. It also protects the structure
from actuator instabilities during shake down testing. The mechanical displacement amplification

from this soft spring cffect of the ¢lastomeric pads is discussed in the next section.

2.3.2. Displacement Amplification and Error Reduction Effect

In the following, symbols with a hat () refer to "actually measured” or "experimental” values,
while symbols without a hat represent values which are "computed” or "idealized". Consider a
structure with n degrees of freedom, and the actuator displacements as an z-dimensional
vector x_ and structural displacements as an a-dimensional vector x . Let us assume that the
actuators cannot be controlled precisely, resulting in an actuator displacement error £ ,-x, with
an actuator displacement error bound 8 of the form

Jt,-x] < @7
where x, is the calculated actuator displacement vector or command signal, and |} represents
the norm of a vector. The value of the actuator displacement error bound is dependent on the
servo controlled actuator system and cannot be zero. If the actuators are directly connected to the
specimen without elastomeric pads, the (experimental) structural displacement vector & will be
such that

12
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It-x]1 < & @8
This indicates that the error bound for the structural displacement is also & , i.e. the precision
of the structural displacements is equal to the precision of the actuator displacements.

Now, consider the case in which the specimen and the actuators are connected through
elastomeric pads. This situation is described by the model shown in Fig. 2.3. The actuator

displacement vector and the structural displacement vector are related by

%, - Q4 @9
where Q is an axn "displacement amplification matrix", which can be expressed by
Q =1+ lx
k, (2.10)

where &, is the elastomeric pad stiffness, K is the stiffness matrix of the structure. It can be
shown from the above relations that [x,| 2 [x] , so the actuator displacement is greater than
the structural displacement. For a stiff structure, this amplification is substantial due to the large
contribution of the second term in egn. (2.10). In this case where the structural displacement
tends to be small, the amplification effect will be beneficial. Since

.1
%-x = Q' -x,) 2.11)
the structural displacement error can be bounded as follows:
it-xi < Q'L IR, 2,1
QL8 (2.12)

where |-}, denotes the two-norm of a matrix [19]. If the stiffness matrix K is positive definite,

thc mamix Q™' is also positive definite, and in this case, the two-norm of the matrix Q! is

14



simply the largest eigenvalue of Q! , i.c.

Q7L - o L Lot

(2.13)

where A, (i=1,2.....n) is the cigenvalue of the stiffness matrix K for the ith mode, and © is the
matrix consisting of cigenvectors ¢, such that K¢,=A,9, and [eJ=1 . Note that these
eigenvectors coincide with the dynamic mode shapes if the lumped masses are equal for all the
DOFs. Therefore,

It-x| < 8

(2.14)

1+-2

This result indicates that by using a small clastomeric pad stiffness k, , the structural
displacement error vector 2-x can be made smaller than the actuator precision.

2.3.3. Restoring Force Error Reduction Effect

It can also be shown that the elastomeric pads lessen the restoring force error resulting from
inaccurate actuator displacements, and reduce the coupling between structural DOFs, thus almost
eliminating spurious higher mode interaction effects during the initial load stages at which the
structure is undamaged and stiff.

Let £ be the restoring force vector when x, is achieved. The assurnption (2.7) is also used
here to evaluate the error in the restoring forces when the actuator displacement error is not
negligible.

When the actuators are directly connected to the structure, structural displacements are

15



equal to the actuator displacements, and restoring force vectors are given by

f=Kx,
t - Kt, 2.19)

Consequently, the restoring force error can be bounded as follows:

I1t-fL = IK&,-x)L,
< KL R,x, L (2.16)
s KL &

Since K is assumed to be positive-definite, [KI, = (largest eigenvalue of K) = A,. Therefore,

we have

217

B-, < a3

Consider the case where elastomeric pads are applied between the actuators and the test structure.
The apparent stiffness matrix K, including the effect of the elastomeric pads is defined to
satisfy the relation

(2.18)

If the clastomeric pad stiffness is uniform for all the DOFs with the value £,, this apparent

stiffness matrix is given by

2. 1.7
K, - [x “EII (2.19)

and can be diagonalized as

16



1 1 1 r
= vy ®
K "M T T T I T 1 @20
AR M E AL
with thetwo-honn of
1 A,
Kok "1 1" @21)
—_—— 1+-2
A, k

With the same argument as in the previous case, the restoring force error is now bounded by

(2.22)
- s K3
Hence, by eqn. (2.21), we have
Ad
B-fh < — (2.23)
1+=2
y ]

Comparing the results of eqn. (2.17) and egn. (2.23), it can be concluded that the application of
elastomeric pads permits the reduction of the restoring force error by a factor of

‘1 (<1)
1+--2

r

This factor depends on the higher eigenvalue A, of the stiffness matrix K and therefore turns out
to be even smaller than the error reduction factor for structural displacement which appears in

eqn. (2.14) and depends on the lowest eigenvalue of K.

17



2.34. Inner Control Loop
Although the introduction of the elastomeric pads provides the discussed advantages for stiff
multi-degree-of-freedom system. it also adds complications to the actuator control algorithm. For
a highly nonlincar test structure, it is difficult to obtain the actuator displacement which provides
the target structura! displacement specified by the pseudo-dynamic algorithm. An itcrative
procedure to search for the appropriate actuator displacement vector must be implemented.

The inner control loop can be described as follows: After the structural displacement
measurements are compared with calculated target displacement levels in a software control loop,
the structural displacement increments to be imposed are obtained. These increments are then
appropriately scaled {to improve convergence and test speed) and used as the next actuator
displacement increment.

This inner loop algorithm can be expressed by either

(2.24)

(]

x<:~l) x‘,"w(x__”—t‘*’). k=01,..

or

(2.25)

P I V(X s -i""). k=0,1,...

with t denoting the inner loop iteration step and v the displacement increment scale factor.
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3. IMPLEMENTATION OF GSD ON-LINE TESTING FOR THREE-STORY WALLS

The GSD test method was implemented on three-story reinforced masonry shear walls.
Two three-story wall specimens were used, and the schematic test setup is depicted in Fig.3.1.
The loading system of the test structure consisted of three pairs of servo-controlled hydraulic
actuators, load distribution beams and elastomeric loading pads. The actuator forces were reacted
against the UCSD Structural Systems Laboratory's 50 ft (15.24m) reaction strong wall. The six
actuators were controlled and monitored by computers (VAX workstations) through Analog-
Digital and Digital-Analog converters. Since high accuracy was required from the instrumentation
for the test control, this group of instruments was treated separately from other general

instrumentation, which was installed to record structural response characteristics.

3.1. Loading System

To properly simulate mass proportional floor loading, loads have to be uniformly introduced to
the test structure not only along the length of the test building but also over the width. Thus, two
actuators were employed per floor level, which will ultimately also allow the testing of a building
under torsional response as long as the actuators are force coupled, and prevent torsional response
when the actuators are displacement slaved. Two 165-kip (733.9kN) actuators with £6.00 inch
(152.4mm) stroke were used to load the structure at each floor level through the amrangement
shown in the Fig. 3.1. One of the two actuators, designated as "master”, was controlled in
displacement command by the software through a digital interface. The load cell output from the
master actuator was then fed into the load controlled slave actuator as a command signal.
Because of the tight analog coupling, the net effect is that of a single displacement controlled
actuator with uniform loading on both sides of the wall,
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The actuators were connected to the shear wall via stiff load beams and soft 1/2 inch
(12.7mm) thick elastomeric pads. A vertical preload of up to 100 kips (444.8kN) was applied to
each of the elastomeric pads to allow friction based load transfer. There exists the danger that
the actuators reach their stroke limit with this displacement amplification due to clastomeric pads.
However, with the small elastomeric pad thickness of 1/2" used for the tests shown in Fig. 3.1,
higher amplification is obtained at low load levels when displacements are very small, while the
amplification effect decreases with increasing loads due to deformation constraint in the

elastomeric pads at strain levels exceeding 100%.

32, Control Software

The control algorithm developed for the GSD procedure is summarized in Fig.3.2. The essential
feature of the algorithm is the use of an "outer” and an "inner" software loop. The outer loop
calculates the structural displacements to be imposed through the pseudo-dynamic algorithm at
each time-step. These target displacements are provided to the inner loop, which calculates the
necessary actuator displacements.

The inner loop can be described as follows: The actual structural displacements are
measured, and the difference between the target and actual structural displacements is multiplied
by a scale factor, resulting in an incremental actuator displacement for the next sub-iteration. This
increment is added to the current actuator displacement to arrive at the next desired actuator
displacement, which is subsequently applied through a ramp generator to the displacement
controlled master actuator. The structure is moved and the new structural and actuator positions
are measured. The process is then repeated until the measured and target flocr displacements
satisfy certain convergence criteria, such as a specified displacement error tolerance (for example,
10,001 in.= £0,025 mm).

Equations {2.24) and (2.25) were both tested as the inner control Ioop slgorithm, and it
was found that the algorithm in eqn. (2.25) provided faster convergence and less structural
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displacement error than eqn. (2.24) as described in the next chapter. The reason for the better
performance of eqn. (2.25) is in the incompletely linear (and possibly off-biased) relationship
between the command signal ( x‘:’ ) and the actuator displacement ( 1‘:’ ).

It can be shown that if the value of the multiplier v lies between 0 and 2, the convergence
of the structural displacement to the target displacement is guaranteed. However, the most
suitable value of the multiplier depends on the anticipated bearing pad displacement
amplification. The value of the multiplier should be chosen such that oscillation of the structural
displacement increments (i.c. flip flopping) is avoided.

When the desired structural displacements are reached the restoring forces are measured
and are used in the outer loop to calculate the next structural target displacement. This process

is repeated for all required acceleration input segments.

3.3. Shakedown Tests on Steel Frame

Before the three-story wall specimens were tested, a series of simulated GSD tests on a steel
frame were carried out for the purpose of the checking the algorithms and test methods for
MDOF systems and the performance of the physical testing system and equipment. The steel
frame was tested as a 2-DOF system, and pseudo dynamic tests simulating the response of the
steel frame under E! Centro record, under free vibration response etc. were performed. These tests
provided a shakedown of the basic techniques for the GSD procedure for MDOF structures,
including stiffness measurement procedures, which allow the determination of the structural
damage state. After the shakedown tests at lincar-clastic levels of response, the steel frame was
subsequently used as the independent reference frame to measure the structural displacements.

3.4. Three-Story Wall Test Specimen
The RM (reinforced masonry) test specimen, shown in Fig.3.3, was built with 6-inch {(152.4 mm)

hollow block concrete masonry units. All wall reinforcement consisted of No.4 (12mm ¢) bars.
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The horizontal reinforcement bars were spaced at 16 in. (406.4 mm), and the vertical
reinforcement bars were arranged as shown in Fig.3.4. The walls were fully grouted with normal
weight Portland cement concrete with 3/8" max. aggregate size and GroutAid. The base and floor
slabs used No.6 and No.4 bars. All reinforcement was Grade 60. Tapered and greased shear keys
were provided between the wall and the footing (see Fig.3.3) 1o prevent sliding between the base
and the bottom masonry course. The splicing of vertical reinforcement at the wall bases followed
common industry practice and the splice length was 20 inches (508 mm, 40 bar diameters). The
specimen was in contact with the laboratory test fioor through a 0.5-in. (12.7 mm) layer of
hydrostone to provide an even bearing surface. The footing was post-tensioned to the test floor
with 2x8 #10 high strength Grade 150 thread bars on 2-ft (6(9.6mm) centers. This tie down
arrangement resulted in no measurable base sliding throughout the test series. During construction
material test samples were obtained for the grout and 3-course high masonry block test prisms
were built and tested for cach floor. These material tests resulted in a nominal masonry
compressive strength of £, = 1890 psi (13.03 N/mm®). The reinforcement bars were tested for

yield strength, and an average value of 62 ksi (427.5 N/mm?®) was obtained.

3.5. Instrumentation

The instrumentation was designed to provide information in two specific areas: (1) test control
and (2) structural response. The structural displacement and restoring force information required
for the pseudo-dynamic algorithm was provided by 3 LVDTs measuring floor displacements (at
the center of floor slabs) relative to an independent instrumentation column placed between the
specimen and the reaction wall and by 6 load cells attached to the hydraulic actuators, see
Fig.3.1. The LVDTs measuring the structural displacernents had a range of 0.2 in. (5 mm) for
tests on the stiff, undamaged structure. Extended range LVDTs were used to accommodate
greater floor displacements after the structure softened. The analog circuitry of the load cells was
also optimized to the anticipated load levels. To further reduce displacement measurement etrors,
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the average of at least 25 A/D readings for each displacement channel was used in the outer
control loop calculations.

Figures 3.5 and 3.6 show the structural response instrumentation layout. Reinforcing bar
strain gages, see Fig. 3.5, were used on all starter and continuation bars at the first floor level
and in regions of highest expected strains in the second and third story wall penels. Slippage
between the laboratory test floor and wall base, and between floor slabs and walls, was monitored
by a set of LVDTs. Linear potentiometers were installed at the web and flange ends of the first
story wall panel to provide first floor curvature information, as shown in Fig. 3.6. Figure 3.6 also
shows the set of 13 LVDTs installed between the comers of the wall pancls to monitor the

overall deformation modes of the individual wall panels.
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4. TEST DESCRIPTION

A series of GSD tests was performed with the structure and loading system descnbed in the
previous chapters. Two different input excitations were used, namely a scgment of the El Centro
1940 NS component, shown in Fig4.1, and segments of the Imperial Valley 1979, James Road
230" component, already shown in Fig.2.2. The amplitude of the record was adjusted to keep
structural displacements within desired deformation limit states based on linear elastic predictions
made with the measured stiffness after completing the previous loading segments. The initial tests
were deigned to keep the structure below first yield, later the displacement levels were increased
to the yield limit state and maximum capacity limit state simulations, and finally to complete toe

crushing.

4.1. Numerical Modeling

The Pseudo-dynamic algorithms and parameters chosen for the present test series reflect the
issues discussed in Chapter 2. The 3-story wall specimens were idealized as 3-DOF systems, with
the masses lumped at the floor levels. The mass of the floors was adjusted in order to allow a
the time integration interval of at least 0.005 seconds in the conditionally stable algorithms. The
initial structural stiffness (see Section 4.5 for the measurement procedure) and the actual test
specimen mass resulted in natural frequencies of 17.7, 63.1, and 117.5 Hz for the 3-DOF model.
Considering the frequency range of the major source of energy of the earthquake input, and to
provide for integration time steps of reasonable length, the analytical model was adjusted with
contributory mass equal to 15 times the specimen mass, resulting in initial (uncracked) natural
frequencies of 4.6, 16.3, and 30.3 Hz, which permitted the use of integration time interval of
0.005 sec.
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Although the Newmark Explicit method was first applied with 5% modal viscous
damping, cases without numerical damping were also examined for later stages of the tests. When
the Modified Newmark Explicit algorithm was used, the parameters were chosen such that larger
damping effects were obtained in the higher modes, while still providing realistic damping in the
first mode. For the implicit Hilber's Alpha method, a standard set of parameter values (c=0,
B=0.25 and 7=0.5) were used, which leads to the constant-average-acceleration integration

without numerical damping.

4.2. GSD Test Implementation and Verification

The first 3-story shear wall specimen was used to implement and verify the proposed GSD
testing procedure. The El Centro 1940 NS record and the one-second window selected for the
initial series of experiments is shown in Fig.4.1. A scale factor of 0.5 was applied to the input
record to keep the structural response at desired limit states.

First, two experiments were performed using the Newmark Explicit time integration
scheme with a time step of 0.005 sec, constant 5% modal damping, and & structural displacement
error tolerance of 0.001 in.=0.0254mm. The response obtained in Test 9 is shown in Fig.4.2. Both
the displacement and restoring force histories show diverging oscillatory behavior, representing
the uncontrolled growth of spurious higher modes leading to unrealistic relative story shear forces
in the structure, and ultimately to an instability in the loading system. This phenomenon has been
observed in other MDOF pseudo dynamic tests [4]. Following these tests, the time integration
algorithm was changed to the Modificd Newmark Explicit scheme, having frequency proportional
damping to suppress the spurious higher modes. Using the pretest measured stiffness, calculated
damped natural frequencies were 3.8, 15.4, and 28.0 Hz, and the integration parameters were
adjusted to give 3.4, 22.8, and 59% d~mping for the first three modes respectively.

The results of tests at the earliest stage, Tests 13 and 15, along with a prediction, are
shown in Fig.4.3. The noteworthy features of these results are the dominance of first mode
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response, controlled higher modes, and the good reproducibility between the two tests. The latter
feature shows stability of the structural properties at least to the end of Test 13 corresponding
to top floor peak displacement of 0.1 in. with the flange in tension. The results indicate the onset
of nonlinearity at about 0.45 seconds. This coincided with the first observed flexural cracking at
the wall base, resulting in the expected period elongation and amplitude increase over the lincar
elastic prediction, see Fig.4.3.

During these tests elastomeric pad deflections resulted in actuator displacement
amplifications of 3 to 5. The structural displacement errors were kept below the 0.001 in. error
tolerance. Restoring force oscillations remained, despite the lack of significant higher mode
displaccment participation.

The displacement, load, and error histories for the three active DOFs of the full scale 3-
story wall specimen, after a slight degradation in stiffness, are depicted in Fig.4.4. The measured
stiffness resulted in natural frequencies of 3.91, 13.24, 24.2 Hz in this case. The same
acceleration scale factor, integration algorithm, time step, and error limit were used as in Test
13. The response at low disnlacement levels still appears close to linear elastic, but deviates
significantly thereafter. The load oscillations observed earlier persist, although the errors are
reasonably well bounded.

Results of Test 35 on the significantly softened structure are presented in Fig.4.5. Pretest
stiffness measurements gave 1.45, 8.65, and 19.81 Hz for the first three modes, a significant
reduction from the undamaged values for the first two modes. The acceleration scale factor of
0.5 was retained, as were the integration algorithm, time step, and error limit. The top floor
displacement reached 2 in. (50.8 mm) corresponding to a drift of 0.64%. Load oscillations with
about the same frequency remain to about 0.8 sec of the response, but appear with a much lower
frequency thereafter. Significant diagonal cracking and toe crushing occurred at this time.

Wall 1 tests showed that the developed GSD method can simulate seismic loads on stiff
MDOF systems. It was left for investigation on the Wall 2 tests to capture higher mode effects
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and to improve the control of errors and corresponding load oscillations.

4.3. GSD Test Refinements

Wall siaecimcn 2, which was the same as specimen 1 in dimensions and properties, was
used to refine the GSD procedure. Several time integration schemes, such as Newmark Explicit,
Modified Newmark Explicit, and the Hilber’s Alpha method with initial stiffness iteration were
implemented in the outer control loop for comparison. Also, a restoring force correction scheme
[16] was added to the outer loop. In this correction, the difference between the calculated
structural target displacement and the actual measured structural displacement is multiplied by
the initial structural stiffness (measured experimentally at the beginning of the test segment),
yielding a restoring force correction which is added to the measured restoring force in the
subsequent outer loop calculation of the next target displacement.

Specifically, at time step i, the outer loop calculation of the next target displacement

X orgeli+1) used a "corrected” restoring force
) = 5 + Ky(X ppu -2(D) @b
instead of the measured .estoring force ¥(j) . In eqn.(4.1), K, is the initial structural stiffpess
measured experimentally at the beginning of the test segments. Since the restoring force errors
result in spurious higher mode effects, a correction to the restoring fores reduces spurious higher
mode effects and allows for smoother structural response.

Figures 4.6 and 4.7 show the effect of the conrection scheme described above. In both of
the test, the same input acceleration and same integration scheme (Modified Newmark Explicit
method) were used. Figure 4.6, without the correction, shows the kind of load oscillation
observed in the Wall 1 verification tests. On the other hand, the results in Fig.4.7, which reflect
the effect of the restoring force correction, indicate that the load oscillation is largely suppressed,

with a significant reduction in the displacement emor.
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After confirming the effectiveness of the correction scheme, it was used in the following
sequence of tests on the 3-story wall, summarized in Table 4.1. The table shows, in addition to
the acceleration window, the integration scheme and the scale factor, and also the change in the
three natural résponsc periods for the masonry wall prior to the associated test, as well as overall
test speed information.

Three analyticat models were used, as mentioned above, in analyzing the outer loop target
story displacements, namely the Newmark Explicit (NE), the Modified Newmark Explicit (MNE)
and the implicit Hilber’s Alpha (HA) methods. The implicit scheme (HA) allowed constant
damping for all modes without antificially suppressing higher mode effects. With the restoring
force correction, even the NE method showed stable results and was successfully implemented
without any artificial numerical damping, thus capturing all possible higher mode effects. Thus,
for the second wall, the restoring force correction was applied to all integration schemes shown
in Table 4.1.

The computer-controlled inner loop was modified with two special features to improve
testing speed. First, the actuator displacement amplification factor was applied to the difference
between the target and the measured structural displacements to account for the elastomeric
loading pad amplifications and for opposite direction displacements in higher mode response.
Second, since the command signal and the actuator displacement relationship may be off-bias and
not completely linear, the new displacement increment for individual actuator movement is added
to the previous command signal rather than to the measured actuator displacement, thus reducing
the flip-flop phenomena in the inner control loop convergence.

The pre-yield phase was used to compare the effect of the different time integration
schemes, e.g., Tests 19, 20 and 21 in Table 4.1. Response time-histories for the threc tcsts are
depicted in Figs. 4.8. 4.9 and 4.10. As can be seen, Test 19, the MNE scheme (Fig.4.8) results
in a first mode response, since all higher mode effects are numerically demped out. Some higher
mode effects were captured with the HA method (Test 20), with 5% damping per mode. The
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Table 4.1 Representative GSD Tests on Three-Story Wall Specimen No.2

TEST accel, scalc | damping Test Time Test Natural Period maximum top
number window | factor | {,/C/C, | Length speed TJTYT, displacement
(%) (sec) (sec) ratio (sec) push/pull (mm)
TEST 19 2 0s | 6.7/2112 1.0 2575 2575 | 0.23/0.064/0.035 | 0.271/ -0.067
TEST 20 HA 2 0.5 5/5/5 10 9225 9225 0.230.06120.034 | 0.300/ -0.376
TEST 2t NE 2 05 - 10 4289 4289 0.23/0.06120.034 | 0.366/ -0.452
TEST 31 MNE 2 6.0 6.7/24/58 0.74 7856 10616 | 0.23/0.070/0.038 | 3.752/ -1.952
TEST 44 NE 3 25 - 092 11046 12007 | 0.29/0.087/0.046 | 3.878/ -7.684
TEST 48 NE 4 025 - 1.66 7622 4592 | 0.30/0.094/0.050 | 10.045/ -5.401
TEST 36 NE 6 03 - 1.64 9055 5521 0.42/0.122/0.055 | 31.688/ -11424
TEST 60 NE 7 1.5 - 0.75 4790 6387 0.38/).139/0.059 | 35458/ -35.141
TEST 65 NE 8 0.6 . 1.82 5745 3157 0.85/0.174/0.060 | 28.902/ -56.667
TEST 66 NE 8 09 - 0.40 1405 3513 | 0.85/.174/0.060 | 102.308/ -0.036
TEST 67 NE 8 09 - 0.39 1570 4025 | 0.85/.174/0.060 | 0.0356/ -100.83
_

*

MNE : Modified Newmark Explicit method
HA : Hilber's Alpha method (implicit)
NE : Newmark Explicit method
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higher mode response is visible in Fig.4.9 in the displacement time-history and in the increased
restoring forces. Finally, the NE scheme, without any numerical damping, featured the largest
second mode contributions, as can be seen in Fig.4.10. The displacement error can be tightly
controlled by Speciﬁed error tolerances (note the three different levels in Fig.4.10c), where the
error tolerance was adjusted in three steps.

The above discussed modifications to conventional on-line testing techniques have allowed
the testing of stiff masonry wall systems with GSD using reliable integration schemes such as
NE without introducing artificial numerical damping and resuited in pseudo-dynamic test rates
of one to four thousand times the real seismic event, or in test durations of typically less than
one hour per one second of earthquake time-history, see Table 4.1.

In the tests at the later stage, the Newmark Explicit method was mainly used, up to final

toe crushing of wall specimen 2.

d4.4. Inverse Triangular and Uniform Loading Tests

Since design criteria for buildings in seismic zones are often compared with the hysteretic load-
displacement envelopes for specified load distribution patterns, the second 3-story wall specimen
was subjected to uniform and inverse triangular loading patterns following each GSD segment
and loaded to the previously obtained maximum building drift level. Results from these fixed
load distribution patterns are discussed in Chapter 5.

4.5. Stiffness Measurement Test

As mentioned in Chapter 2, the natural frequencies of the test structure are the most fundamental
parameter to carry out the GSD test procedure, since the stability of the numerical integration
scheme is determined by the natural frequencies. The stiffness matrix ptt:;videsnotonly this vital
information, but also a good measure of the damage state of the test structure during the GSD

test sequence. For this reason, stiffness matrix measurements by means of static loading tests
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were performed prior to the GSD tests.

Since the 3-story wall is modeled as 3-DOF discrete system, the dimension of its stiffness
matrix is 3x3. The measurement procedure is as follows. A specified small displacement is
imposed to one of the floors while fixing the other floors using the loading system, and the loads
are measured for all the floor levels. By performing this loading at each floor level, 3 sets of the
measured displacement vector and the measured restoring force vector are obtained. These
measured displacement vectors and the measured restoring force vectors are arranged columnwise
in a measured displacement matrix b'{ (dimension 3x3) and a measured restoring force
matrix B (dimension 3x3), respectively. In principle, the stiffness matrix K. can then be
obtained by calculating

£, - &% 42)

The small applied displacement is typically chosen to be £0.005in. = 0.127mm in the push or
pull direction. However, the value of the stiffness matrix given by eqn. (4.2) depends on the
direction of the imposed displacement, since the behavior of the 3-story wall in the push direction
and in the pull direction is slightly different. For the appropriate representation of the behavior
of the wall during the GSD tests in which the wall moves in both directions, the stiffness
measurements are individually done in both, the pushing and pulling directions. The average of
these two matrices is interpreted as the overall or average stiffness matrix. Furthermore, the
symmetric part of the matrix is extracted by taking the average of the matrix and its transpose,
since a symmetric stiffness matrix is theoretically correct and convenient for the computations.
The result of this procedure is used as the measured stiffness matrix of the 3-story wall.
Table. 4.2 shows the representative result of the stiffness measurement tests for the second
3-story wall specimen. Because the stiffness matrix measurement was performed prior to the GSD
tests, the data shown in the table describes the characteristics of the 3-story wall at the beginning
of each GSD test. The main diagonal stiffness values and the natural frequencics were observed
to decrease as the test sequence proceeded, clearly indicating the accumulated damage and the
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Table 4.2. Result of Representative Stiffncss Measurement Tests

Naturat Frequencies®,
Ist, 2nd and 3rd
Modes (Hz)

15.74, 28.37

¢ Assumed Mass = 0.08586 kN-sec’/mm (ist & 2nd DOF), 0.05687 kN-sec’/mm (3rd DOF)



stiffness deterioration of the structure.
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5. BEHAVIOR OF THREE-STORY WALLS

In this Chapter, the behavior of the second 3-story shear wall for several representative GSD and
subsequent Inverse Triangular Loading and Uniform Loading tests is described.

5.1. Global Structural Displacement Response

5.1.1. Time History

Floor displacements, floor loads and displacement error time histories are shown in Figs. 5.1
through 5.8. Test 31, Test 44 and Test 48 have some higher mode response. In summary, the
GSD method allowed the testing of stiff three-story walls for selected displacement time histories
without artificially climinating higher mode cffects.

5.1.2. Moment and Base Shear vs. Displaceinent Hysteresis

Two types of hysteresis loop plots, namely base shear vs. top displacement and base moment vs.
top displacement are shown from Figs. 5.9 to 5.16, When structural response is dominated by 1st
mode, {later stage of Test48, Test56, Test 60 and Test 65), nonlincar hysteretic behavior,
cspecially stiffness degradation is revealed. In the final tests (Test 66 and Test 67), stuctural
failure is clearly visible. When the structure is exited with higher modes (Test 31, Test 44,
earlier stage of Test 48), these plots do not provide readily useful information.

5.1.3. Inverse Triangular Loading Tests and Filtered Data

Results of fixed load pattern tests (Inverse Triangular Loading and Uniform Loading tests) sre

depicted in Fig. 5.17. Since pseudo-dynamic shear wall tests result in constantly changing

moment and shear ratios, additional filtering is needed to correlate psendo-dynamic test data with
50
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design models. It can be seen form Figs. 5.9 to 5.16 that the hysteresis loops obtained in pseudo
dynamic tests often contain higher mode response, which make it difficult to directly compare
the pseudodynamic test results with conventional load distributions such as inverse triangular or
uniform loadiﬁg. In order to make a comparison possible, data points which represent dominant
1st mode response are selected using "filtering” {23]. First, the effective loading hzight of the
resultant lateral load at each time step is calculated and checked if the height falls within the
region corresponding to inverse triangular loading (that is 2/3 of the total height) and uniform
loading (1/2 of the total height). The width of the band is taken as 10" (0.25m), 20"(0.51m) and
30"(0.76m) for different levels of filtering. Results of this filtering indicated that few of the
pseudodynamic test data points fall within the band around the uniform loading pattern, while
inverse triangular filtering can obtain a significant data population. Hence, the filtering using the
inverse triangular loading pattern is considered here. Figure 5.18 shows superimposed filtered
data and envelope data for the hysteresis curves obtained from both loading pattern tests. In Fig.
5.18a, the band of 10" width (10" filter) was used to select the data points, while the result of
the 20" filter and 30" filters are shown in Fig. 5.18b and 5.18c, respectively. These figures
indicate that the GSD tests well represent the behavior of the shear wall under 15t mode response
which produces the load pattern close to the inverse triangular shape loading. Incidentally, the
last two tests, Test 66 and Test 67 are excluded from the GSD data points because of the large

residual displacerent offsets at the beginning of these GSD tests which make a comparison of
the displacements difficult.

§.2. Individual Panel Deformations

Based on the work by Saffarini and Wilson [17], a method was developed that allows the
determination of overall deformation mode shapes of each story height wall panel, and even the
displacements of the individual DOFs. This mode-shape information can be a valuable aid for
the development of structural analysis models, such as the flexible zone method [17]. A brief
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description of the underlying theory is presented, and representative results for the experiments
reported above are shown.

5.2.1. Decomposition of Behavior Modes
The basic idea is to assume linear deformation modes for a wall panel and decompose the overall
deformation shape into a combination of 5 simple independent modes, as shown in Fig. 5.19. The

5 deformation quantities can be obtained from the 8 nodal displacements u,, (Fig. 5.20) through

a 5x8 transformation matrix:

by,
ul,
y) [+ .2 1 1 1 1 1 1]
2H 2D 2H 3D 2H 2D 2H ||,
6, 1 o 1 o 1 o -1,
H A H H
le | . 1 1 1 1
y 1 Q0 > 0 D 0 D 0 D 3 (5.1)
1 1 1 1
-— 0 -— 0 — o0 2 9
€ 2D 2D 2D 2D
1 1 1 1
€, O 27 % 2 ® 25 0 3
L.
| Yoy

Since the uy are difficult to measure in practice, these mode shape quantities are expressed in
terms of the easily measurable quandties {, defined in Fig. 5.20. To do this, the nodal
displacements are expressed in terms of the relative displacements {,, then substituted into egn.
(5.1) 1o get the desired relationship. Of the six [,, only five are needed to uniquely define the

mode shapes. However, a more general approach, using all six, was taken as foliows. First, the
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{i are expressed in terms of the 8 quantities u,, which in general gives non-linear relationships.
Next, recognizing that the {, can not provide rigid body translation or rotation information, three
of the quantities uy are restricted based on experimental constraints,. With the reasonable

assumption of rigid floor slabs relative to the wall panels, the choice was

o, =0
Ky =0 (5.2
ky =0
With this assumption, after appropriate linearization, the following relationship between the {,
and the remaining 5 v, is obtained:
, -1 0 1 0 0 His
4 0 1 0 0 0
A 0 0 0 1 0 *o
A 0 0 0 0 1 \ G-3)
1 = 4 >
& 0 0 D o 0 “
Cs JD!+H5 JD’!-H’
D H D ‘o
c‘ ) - 0 0
| yD+H* (D*+H? YDI+H? | u,
Equation (5.3) can be expressed as
1=Tad (54)

Since this is an overdetermined system, the singular value decomposition is used to obtain a
solution in & least squares sense [18]. The least squares solution is defined as the @ that
minimizes the error defined by
e’ = (T,f - x)'(T, - 2). (5.5)
The singular value decomposition is used to obtain the least squares solution. The matrix T, is
factorized as
T, = UWV', (5.6)
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where

U = a column orthogonal matrix of dimension 6 x 5,
W = diag(w,, ... w9,

V = an orthogonal square matrix of dimension 5.

The least squares solution then is calculated by

0= VWiU2 3.7
Finally, @ is combined with (5.2), then (5.1) to give the desired result, The advantage of using
the least square method with all six possible relative displacernent measurements §,, is that this
way the method allows the freedom to restrict any one of the {, arbitrarily, without changing the
formulation. For example, zero elongation of both upper and lower floor slabs for a wall panel
can casily be accommodated.

5.2.2. Test Results

Representative results, using the technique described above, are shown in Figs. 5.21 through 5.28.
It should be noted that, of the 5 deformation modes, shear ¥, flexure 6, and vertical expansion
¢, are dominant. When the test structure is exercised to large deformation, the vertical expansion
component e, has a tendency to grow in the positive direction, rather than staying around the
2¢ro value, which corresponds to flexural growth of reinforced concrete members in the plastic

region.

$.3. Curvature Distributions

Figures 5.29 through 5.36 show the measured curvature distribution over the bottom region of
the 15t story wall. As can be seen from these figures, a localized stiff region is observed between
8 in.=0.20m and 16 in.=0.41m up from the basc. This stiffening effect is due to the lap splice
and the increased amount of reinforcement in this region.
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5.4. Rebar Strain

Several rebar/strain distribution time histories are shown in Figs. 5.37 through 5.40. The first
figure, Fig. 5.37, shows strain gage readings during Test 18, briefly described in the previous
chapter, alongAthc rebar sirain gage locations 1 through 8 in Fig. 3.5. This figure represents the
rebar strain  behavior when the deformation is relatively small (maximum strain is about 370p).
It can be observed that there is a neutral position where strain is always zero, similar to the
neutral axis in linear bending. Figure 5.39, showing Test 44, represents the strain distribution
when the peak strain exceeds the yield strain (maximum strain is about 3100p). The strains tend
to distribute uniformly on the tension side. In Fig. 5.40 (Test 48), tension becomes dominant over

the strains on compression side.

8.5, Repair and Retest of 3-Story Wall

After testing of the 3-story wall to the point of toe crushing, the wall was repaired and retested
to investigate the effectiveness of repair measures. The repair measures consisted of rebuilding
the crushed compression toe with polymer concrete, epoxy injecting all flexural cracks in the first
story wall and overlaying 3 layers of 45° bidirectional woven glass fiber fabric/epoxy composites
on both sides of the first story wall. In Figs, 5.41 through 5.44, the load/displacement hysteresis
plots under inverse triangular loading of the repaired 3-story wall are shown. Narrow hysteresis
loops and capacity drops are indicative of lep splice debonding or the wall reinforcement. This
phenomenon is also captured by Figs. 5.45 and 5.46 which show the curvature distributions of
the repaired 3-story wall during Test 76 and Test 77, respectively. It can be observed that flexural
action is largely concentrated in the joint to the base of the wall.
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6. DEVELOPMENTS FOR THE TCCMAR 5-STORY BUILDING TEST

The principal goal of the 3-story shear wall test was the development of the GSD testing
procedure for the full-scale testing of a reinforced concrete masonry 5-story building [22], shown
in Fig. 6.1. Several observations made during the 3-story shear wall tests suggest problems which
would be encountered in the testing of the 5-story building. In the early stages of the 3-story
wall tests, the restoring force time-histories indicated considerable level of higher mode response
even though the displacement error tolerance was tght. One can expect that this tendency might
be more severe in the case of a 5-story building test, since the stiffness of the structure is higher,
and the number of degrees of freedom is larger. In the following, theoretical considerations on
the convergence of the MDOF testing system and its consequences are developed, followed by

an outline for improvements.

6.1. Convergence Analysis

It can be shown that the convergence of the structural displacement to the target displacement
is obtained when the inner control loop algorithm is given by expression (2.24) or (2.25). For
simplicity of the analysis, it is assumed that the system is linear (stiffness matrix of the test
structure is K , elastomeric pad stiffness is &), and that

w0 6.1)
.

s =X

for all iteration steps k. This implies that the actuators perfectly follow the displacement
command signals. Then algorithms (2.24) or (2.25) result in the following equation:
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6.2)
0 = xP v (x et k0L,
where v is a scalar multiplier such that v>1 , X is the structural displacement vector
to be achieved, x%* and x® are the actustor and structural displacement vectors at iteration
step k, respectively.
Assuming & linear system as above, and substituting eqn. (2.9) in egn. (6.2), a difference
equation for the structural displacement is obtained as
6.3
x®D = (I-vQ H)x® +vQ "x_’ k=0,1... ©3)
along with the initial condition, x@ .
If the target structural displacement vector X g is constant during the iteration, this

difference equation can be solved in the following manner. The equation is rearranged to the

form
. - (6.9)
X Y = @-vQ )% g2
Hence, if
6.5
wWoex_ o x®, k=0, €3
is defined and substituted into eqn.(6.3), it is casy to show that u® is given by
W = @-vQ W™ k=gl,. 66)
and the solution of (6.3) is expressed by
®=x - g® ©7

torgwt

Since the matrix Q has the same cigenvectors as the stiffness matrix K, and the corresponding
cigenvalues are 1+ Jk ( A, = the cigenvalue of K ), the solution can be decomposed into
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modes using the eigenvectors of the stiffness matrix, as

wh = iw®, k-0, @9
where w® is the ith mode component in the vector uw® |, i.e.

o = ow® @9
and

Wel-—r, 12 (6.10)

1+_‘

Therefore, if |p,|<1 (preferably Osp,<1 ), all the components of u® converge to zero
as k-~e _ The numbers B, (i=12,...n) correspond to the rate of convergence of the structural
displacement to the target displacement in the ith mode. As can be seen in the above
expression, W, is larger for a higher mode (with larger A, ), thus the convergence is slower.

As an example, Fig. 6.2 illustrates the convergence behavior of the 2-DOF model shown
in Fig. 2.3. Several simulated structural displacement paths are shown, starting from different
initial structural displacements. Only the first seven iterated points are shown in the figure. In the
two degrees of freedom displacement domain shown in Fig. 6.2, convergence along a positive
slope comresponds to dominant first mode response while convergence along a negative slope
indicates dominance of second mode contribution. In Fig. 6.2, it can be seen that the second
mode (the highest mode in this case) becomes dominant in the displacement error vector near the
target displacement point. Also, overshooting of individual DOFs can be observed which slows
down the convergence behavior.,
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6.2. Improvement of Convergence

Since the higher mode converges slower than other modes, as shown in the previous section, the
residual strucﬁxral displacement error at the end of the inner loop iteration will contain
predominant highest mode components. This may induce unrealistically large higher mode
response, and it also significantly slows down the speed of convergence.

Hence, one of improvements considered to the inner control loop algorithm is to
compensate the slow convergence of higher modes. In order to accomplish this, the inner control
loop algorithm takes on the form

xD = 4%, N(X rgee - 1%) (e
where N is an nxn scaling matrix. By choosing the value of N , the convergence properties
of the algorithm can be controlled. The algorithm used in the three-story wall tests can be treated
as & special case where

6.12)

N = vI

In the above 2-DOF linear system example, if the matrix Q is known through measurements,
the choice
N - 6Q (6.13)
where ® is a reduction factor, gives the structural displacement paths shown in Fig. 6.3. Note
that all the modes have the same convergence mate in this case, and no overshooting is
encountered.

In the actual testing, it is advantageous to set the matrix N based on the real-time
mcasurement (or pre-test instrumentation) of the amplification matrix Q. This approach poses

other technical issues with the measurement and on-line update of the estimated structural
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stiffness mawix. These issues will be addressed in subsequent papers.

These latest improvemeats to the inner loop algorithm of the GSD procedure are
implemented and tested for the 5-story full scale masonry research building test. Due to the stiff
nature of the proposed 5-story research building, explicit integration schemes would require
severe restrictions on the time step to maintain numerical stability, thus, implicit integration
schemes with the discussed error comrection are implemented. Some of these improved

implementations are described in [22).
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7. CONCLUSIONS

A testing methodology for full-scale reinforced concrete or masonry structures subjected to
simulated seismic loads under laboratory conditions was developed, and the implementation and
verification on three-story full-scale reinforced masonry shear walls was discussed. The new test
method allows realistic seismic input simulation and trace of higher mode effects, even in the
initial undamaged state of the structure. Problems typically associated with the stff coupling
between servo-controlled actuators in a multi-degree of freedom system were overcome with the
introduction of elastomeric loading pads, which act as displacement amplifiers in the loading
system. Advances in the actuator control loop also allowed testing without numetical damping
in the time integration scheme, thus permitting the tested three-degree of freedom masonry shear
walls to respond with lateral load distribution patterns consistent with the degree of structural
stiffness deterioration.

With selected seismic ground motion input segments, stiff multi-degree of freedom
structures can now be tested under realistic seismic loads to any predetermined critical design
limit state. The Generated Sequential Displacement testing technique is also applied in the first
U.S. full-scale buikling test on a five-story reinforced concrete masonry building.
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