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Abstract

Vibration analyses of structural systems are concerned with accurately predicting the

natural frequencies and mode shapes of the vibrating system. This analysis process

involves two general parts: the dynamic finite element model of the physical system

and the numerical algorithm for determining the frequencies and mode shapes from

the model. The finite element model establishes the number of equations of motion

(degrees-of-freedom) needed to accurately define the behavior of the vibrating system,

and the numerical algorithm extracts the frequencies and mode shapes of the system

from the resulting eigenproblem. To optimize the effectiveness of a dynamic analysis

procedure, both the finite element model and the eigensolution technique must be

chosen such that the desired accuracy can be obtained with the most efficient use of

computer resources.

The research presented here is in four parts, addressing separate aspects of free

vibration analysis. Part one of this study presents a frequency dependent finite ele-

ment modeling procedure that is more accurate than the conventional finite element

models, and a nonlinear eigensolver for determining the natural frequencies and mode

shapes from finite element models. The new solution methodology is based upon the

ability to evaluate a specific set of parameterized nonlinear eigenvalue curves through

an implicitly restarted Lanczos technique. Numerical examples illustrate that this

method coupled with a secant based zero finder accurately evaluates the exact ~latu-

ral frequencies and modes of the nonlinear eigenproblem and is more computationally
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efficient than the determinant search technique.

Part two presents a performance comparison of the frequency dependent mixed

finite element formulation with the h- and p-formulations of the conventional fi­

nite element method for free vibration analysis. Performance is evaluated through

a detailed study of accuracy and computational efficiency in obtaining the natural

frequencies and modes of skeletal systems. Additional studies compare the com­

putational effectiveness of the mixed finite element formulation with the dynamic

element method which involves use of a quadratic eigenvalue problem. Results show

that for lower accuracy requirements, the h-formulation is more efficient than the

p-formulation but this trend is reversed for higher accuracy requirements. When very

high accuracy is needed, especially for higher-order modes, the mixed formulation is

more computationally efficient than both the h- and p-formulations.

Part three formulates the interior eigenvalue problem that is used to extract fre­

quencies higher than a specified shift. The eigensolver is modified to solve the non­

positive definite eigenproblem and to extract eigenvalues from the interior of the

spectrum. A numerical example is presented to demonstrate the effectiveness of this

method. It is also shown that beyond a threshold it is economical to solve the shifted

eigenproblem despite the increased cost of factoring a nonpositive definite matrix.

The last part of this study extends the mixed finite element method to model

nonclassically damped structures. A new form of frequency dependent damping ma­

trix is presented that better models the nonhomogenous nature of the energy loss

mechanisms in structures. The eigenproblem resulting from this model is unsymmet­

ric; the k-step Arnoldi method with implicit restart is used to extract the complex

frequencies and mode shapes without resorting to costly complex arithmetic.
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CHAPTER 1

Introduction

This chapter presents an introduction to modeling linear beam, frame and truss

structures for undamped and damped free vibration analysis using the various fi­

nite element formulations. Section 1.2 is an introduction to finite elements models

used for undamped free vibration analysis. Section 1.3 describes the damped free

vibration problem, the associated quadratic eigenvalue problem and its transforma­

tion to state-space formulation. Eigensolution techniques typically used to solve the

undamped and damped free vibration problems are presented in Section 1.4. This

section also presents a brief summary of existing methods for solving frequency de­

pendent (nonlinear) eigenvalue problems in structural dynamics, their disadvantages

and the need for better, more efficient, and more robust eigensolvers that are scal­

able to large problems. Section 1.5 presents motivation for the current research and

outlines its objectives. This chapter concludes with the outline for the remainder of

this dissertation.

1.1 Problem Description

The first step in studying the vibrating behavior of structures subjected to seismic ex­

citations, wind loading or other transient, dynamic loads is to derive a mathematical

1



Chapter 1: Introduction 2

model of the dynamical system. The differential equations of motion thus obtained

describe the behavior of the physical system subject to modeling assumptions. These

equations can be solved in closed form only for some structures with very simple

geometry and boundary conditions. For a majority of analysis and design problems,

these differential equations of motion are discretized in the space and/or time do­

main, using well established and thoroughly researched methodologies such as finite

difference, finite element and boundary element methods. This research pertains to

spatial discretization using the finite element method. Any such discretization has

to accurately model the structural systems, and, in order to be useful to the engi­

neer, must require a minimum of computational resources with results obtainable to

a specified accuracy.

In analysis and design of structures subjected to dynamic loads, it is a common

practice (often a necessity) to perform a free vibration analysis before performing a

forced vibration analysis. Free vibration analyses of structural systems are concerned

with accurately predicting the free vibration modes and frequencies of the vibrating

system. This analysis process involves two general parts: the dynamic finite element

model of the physical system and the numerical algorithm for determining the modal

shapes and frequencies from the model. The finite element model establishes the

number of equations of motion (degrees-of-freedom) needed to accurately define the

behavior of the vibrating system, and the numerical algorithm extracts the vibration

modes and frequencies of the system from the resulting eigenproblem. The effective­

ness of a dynamic analysis procedure depends on careful selection of both the finite

element model and theeigensolution technique.
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1.2 Undamped Free Vibration Analysis

3

Accurate representation of the displacement field is the main consideration in de­

veloping an effective finite element representation of the dynamical system. The

displacement field is used to derive the shape functions and, ultimately, element and

system stiffness and mass matrices. Przemieniecki [39] showed that the shape func­

tion matrices derived from element displacement fields can be expressed by a series

expression as a function of the natural irequency w as follows

(1.1 )

where N(w) is the exact, frequency dependent shape function matrix based on the

solution to the differential equation of motion for the continuous system, No is the

shape function matrix based on the static displacement, and Nt, N 2 ,'" are the shape

function matrices representing the dynamic correction terms, and are obtained using

a Taylor series expansion of the exact, frequency dependent shape function.

For skeletal systems, the stiffness and mass :matrices derived using the shape

functions of Eq. (1.1) can also be expressed by series expressions as a function of w

K(w) = Ko +w4 K 4 +wSKs + .

M(w) = M o +w2M 2 +w4M 4 + .
(1.2)

where K(w) and M(w) are the exact, frequency dependent stiffness and mass ma­

trices, Ko and Mo are the stiffness and mass matrices based on the element's static

displacement field, and K4, K e,"', and M2, M4,"', are the corresponding dynamic

corrections terms. Note that the only nontrivial terms in K(w) and M(w) are of the
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type w4n and w2n , respectively.

1.2.1 Conventional Finite Element Method

4

The conventional finite element model, which uses only the static displacement field

to derive the element shape functions and system matrices, is equivalent to using

only the first terms from each of the two series in Eqs. (1.1) and (1.2). The resulting

eigenvalue problem is

KX=AMx (1.:3)

where A = w2 (circular natural frequency squared) is the eigenvalue and x is the

mode shape. After rigid body modes have been eliminated, both the stiffness and

mass matrices in Eq. (1.3) are frequency independent, symmetric and positive definite.

Since the conventional model uses only the static displacement field to discretize

the dynamic problem, the associated structural model is stiffer than the actual system.

Consequently, the natural frequencies obtained from Eq. (1.3) are higher than the

actual vibrating frequencies of the structure. Thus, the conventional finite element

solution provides an upper bound to the exact natural frequencies, where the solution

difference is referred to as discretization error. It should be noted that this error

increases for higher modes. This formulation is further discussed in the following

chapter in Section 2.3.

There are at least two basic parameters that can be varied to reduce the discretiza­

tion error and improve the solution accuracy and convergence of the conventional

finite element method: h-refinement, where the number of degrees-of-freedom used

to model the system is increased by refining the finite element mesh parameter h; and
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p-refinement, where the order of the polynomial defining the element displacement

field is increased. As the mesh parameter h approaches zero, that is, as the number

of degrees-of-freedom approaches infinity, all discretization error is avoided and exact

solutions are obtained. However, as the number of degrees-of-freedom increases, so

does the computational intensity. The discretization error can also be systematically

reduced by increasing the order of the polynomial in the displacement field used to

derive shape functions and element stiffness and mass matrices. Zienkewicz [73] has

analyzed the situation when these parameters vary independently (h --+ 0, p --+ 00)

and has presented estimates for asymptotic reduction in the discretization error. The

case where both these parameters are varied simultaneously is less understood in

terms of error analysis. Details of three levels of the h- and p-formulations and

numerical examples to compare their relative accuracy and computational intensity

are presented in Chapter 4.

Babuska [5, 6] has presented theoretical results that suggested that exponential

rate of convergence can be achieved with an 'optimal' combination of variation of

the hand p parameters for a special class of one-dimensional problems. Rachowicz,

Oden and Demkowicz [40, 41] have presented an approximate technique to vary the h

and p parameters simultaneously in some optimal sense. A systematic approach for

optimally varying these parameters simultaneously with respect to a prespecified level

of accuracy is not available. A practical implementation of the optimal h-p strategy

poses very difficult requirements on meshing. Zienkiewicz [74, 75] has provided some

heuristics while noting that no commercial or research finite element codes exist that

are satisfactory.
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1.2.2 The Exact Method

6

Another way to reduce the discretization error is to use the frequency correction terms

in Eqs. (1.1) and (1.2); thus, effectively retaining all the terms in the series expansion.

This results in a nonlinear eigenvalue problem

IC(A)X= A~(A)X (1.4)

in which terms of both the stiffness and the mass matrices are transcendental func­

tions of the eigenvalue parameter A. Provided this eigenvalue problem can be solved,

exact results would be obtained for the system frequencies and mode shapes with

no inherent discretization error for prismatic members. The frequency dependence

of both the system matrices means that at each (linearized) step of the eigenvalue

analysis, reformulation and redecomposition of a full matrix is required. Kolousek

first applied this method to dynamic analysis of frames [31, 32]. This method has

been studied further by Williams and Wittrick [68, 69, 71, 67], Swannell [6:3, 62],

Richards and Leung [43], Hallauer and Liu [26], and others [3, 2, 69]. While this

method provides more accurate solutions than the conventional formulation, it can

be very computationally intensive and impractical for large problems.

1.2.3 Dynamic Element Method

In an effort to circumvent the computational intensity of the exact method, Gupta [21,

22] formulated a dynamic element method that uses the correction terms up to w4 •
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The corresponding eigenvalue problem takes the form

7

(1..5)

where Ko and M o are the conventional stiffness and mass matrices, respectively, and

K 4 and M 2 are the corresponding correction matrices [22].

In the dynamic stiffness formulation, force-displacement relationships are used to

construct the dynamic stiffness matrix from dynamic displacement fields in a manner

analogous to the construction of the static stiffness matrix using static displacement

fields. The dynamic stiffness formulation has the form

[D(w)] {6} = P (1.6)

where {6} and P are the nodal displacement and nodal force vectors, respectively.

For free vibration, a nontrivial displacement solution is sought for no prescribed loads

(P =0). This results in an 'implicit' eigenvalue problem

D(w)x = 0 (1.7)

where D(w) is the dynamic stiffness matrix. Swannell [62, 63] has presented free and

forced vibration analysis procedures for skeletal elastic structures using the dynamic

stiffness formulation. paz [37, 38] established that the stiffness and mass matrices

(as well as the geometric matrix used for buckling analysis) obtained from the static

displacement considerations used in the conventional finite element analysis are the

first order terms in the expansion of the dynamic stiffness matrix.
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1.2.4 Mixed Finite Element Method

8

The mixed formulation developed by Melosh and Smith [34] and Smith [.52, .5:J, .54]

used both the exact and polynomial displacement fields in formulating the vibration

eigenproblem. In this formulation, inertial forces are computed exactly using the

frequency dependent shape functions, and an equivalent load theory is used to repre­

sent the exact element inertia forces at the element nodes. The resulting eigenvalue

problem is

[K - -\M(-\)] x = 0 (1.8)

where K =Ko, thus only the mass matrix is a frequency dependent matrix. The iter­

ative procedure to determine a few eigenvalues and eigenvectors of Eq. (1.8) requires

repeated solution of a linear system involving one of the matrices and matrix vector

products with the other matrix. These computations are arranged such that the so­

lution to the linear system involves only the frequency independent stiffness matrix,

and the matrix vector product computations involve the frequency dependent mass

matrix. This turns out to be a very important advantage of the mixed formulation as

it requires the stiffness matrix K to be factored only once throughout the entire eigen­

value computation, thus lessening the computational intensity considerably [.55, 56].

The mixed formulation is discussed in detail in Section 2.4.

The mixed formulation utilizes the closed form solution to the governing partial

differential equations of motion as a basis for frequency dependent shape functions.

Therefore, modifications are necessary in cases where a closed form solution is not

available even for the simplest geometry, such as free vibration of a plate or a mem­

brane. However, both these p:-oblems have an infinite series solution and it is possible
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to reduce discretization error by using additional terms from the series solution as

a basis for the finite element shape functions. Gupta [23] has presented one such

example for a square cantilevered plate..

1.3 Damped Free Vibration Problem

In dynamic analysis of linear structures subject to seismic excitations, it is generally

assumed that the systems has either no damping or it is classically damped, meaning

the damping matrix can be diagonalized by the eigenvectors of the undamped system.

It should be noted, however, that in most real structures the energy dissipation mech­

anism is not homogeneous; thus, the modal equations are coupled by the damping

term and cannot be diagonalized using the undamped mode shapes. Such structures

are said to be non-proportionally or non-classically damped systems. The differential

equation of motion for a damped structure is written as

Mv +Cv +Kv = p (1.9)

in which v and p are the displacement and force vectors, respectively, and M, C

and K are the system mass, damping and stiffness matrices, respectively. For free

vibration, the damping matrix coupling in Eq. (1.9) results in a quadratic eigenvalue

problem of the form

[~2M +~C +K]x = o.

where ~ is the complex frequency and x is the complex mode shape.

(1.10)
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Clough and Mojtahed [9] presented a procedure for evaluating earthquake re­

sponse of non-proportionally damped structures using a variation of direct integra­

tion of Eq. (1.9) that is commonly used for the classically damped case. Warburton

and Soni [66] developed a criterion to determine when the response calculated by

proportional damping assumption is unacceptably large. Igusa et al. [29] developed

a modal decomposition methodology for the non-proportionally damped systems and

gave closed form solutions for the the case of response to a white noise. Singh and

Ghafory-Ashtiany [49] used a complex-valued modal time history analysis to compute

the forced vibration response. Damped free vibration using the mixed formulation is

presented in Chapter 6.

1.4 Eigensolution Techniques

The eigenvalue problems associated with the finite element models described in Sec­

tion 1.2 all have the basic form

Ax= ABx (1.11)

where A and B are, in general, large, sparse, A-dependent, unsymmetric matrices.

Specific simplifications result for individual models: for example, for the conventional

finite element (and its h- and p-refinements), after rigid body modes have been

eliminated, both A and B are frequency independent, symmetric and positive definite;

for the mixed formulation, while A is frequency independent, symmetric and positive

definite, B = B(A) is frequency dependent and symmetric but not necessarily positive

at arbitrary A. However, from energy considerations, it is inferred that B(A) is positive

definite in the neighborhood of an admissible solution.
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Wilkinson [70] and Parlett [36] have extensively discussed the various mathemat-

ical properties of the generalized and symmetric eigenvalue problems, respectively.

See Golub and van Loan [16] for a detailed overview of various numerical techniques

used to solve the symmetric and unsymmetric eigenvalue problems.

1.4.1 Linear, Symmetric Eigenproblem

The Jacobi method (circa. 1850) for the symmetric eigenvalue problem is perhaps the

earliest algorithm to solve an eigenvalue problem. In this method, the 'norm' of the

off-diagonal terms are systematically reduced by applying a set of Jacobi rotations.

For computing only a few extreme eigenvalues, power methods are often used; in

structural dynamics applications, the lowest eigenvalue (first natural frequency) is

of importance and inverse power methods are used. Mathematical properties and

convergence analysis of this and other related methods like QRand LR are discussed

in detail in the above mentioned books by Wilkinson and Parlett and Golub and van

Loan.

For a real symmetric n x n matrix A there is the very well recognized form of

the one-sided Lanczos recursion that generates a set of column vector which form

an orthogonal basis for the Krylov subspace {Vb AVb A 2Vb ... , Aj-Ivt}. Thus, for

j = 1,2, ... ,m

j3 '+IV'+1 - Av' - a'v, - j3·v· I = f·J J - J J J J J- - J (1.12)

where aj = vJ(Avj - j3jVj-d and j3j+1 = IIfj ll. The iteration is started with a

randomly generated vector VI. The recursion in Eq. (1.12) maps a real symmetric
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matrix A into a set of real symmetric, tridiagonal matrices
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a·3

such that eigenvalues and eigenvectors A can be computed by solving for eigenvalues

and eigenvectors of the reduced system. For the generalized eigenvalue problem

Ax = ..\B(..\)x (1.14)

the matrix A in the above formulation can be replaced by (A -1 . B(..\)). Since only

matrix vector products of the form w +- (A-1. B(..\))x are required, the matrix A is

never inverted.

The above form of the Lanczos algorithm has been used extensively to solve large,

sparse symmetric eigenvalue problems in structural dynamics. The Lanczos process

may be viewed as a truncation of the complete reduction to tridiagonal form. Typi-

cally the extreme eigenvalues appear well before the reduction of matrix A is complete,

making this method especially suitable for engineering applications where only a few

extreme eigenvalues are required. Some of its main drawbacks are loss of orthogonal-

ity among the basis vectors and appearance of spurious eigenvalues. Various schemes

have been proposed to overcome these problems ranging from recognizing and cast­

ing out spurious eigenvalues to selective re-orthogonalization techniques [12, :3.5, :36].
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Block versions of the basic Lanczos recursion have been used by Gupta [23] to solve the

quadratic eigenvalue problem of Eq. (1.5) associated with the dynamic finite element

formulation. Cullum and co-workers [10, 11, 12, 13] investigated generalized non­

symmetric Lanczos procedures for large, sparse problems. Rajkumar and Rogers [42]

presented a two-sided Lanczos recursion to the unsymmetric generalized eigenvalue

problem in which the recursion is performed in real arithmetic while complex arith­

metic is employed only in the QR step of the transformed eigenvalue problem.

1.4.2 Nonlinear, Symmetric Eigenproblem

The eigensolution techniques mentioned in the previous section for the case when

both matrices A and B are frequency independent can also be used for the frequency

dependent case as the 'inner iteration' in which the nonlinear problem is solved via

successive linear problems. A zero finding technique can be coupled with the linear

eigensolver to function as the 'outer iteration.'

A number of researchers have presented alternate ways to solve the eigenvalue

problem associated with the exact and mixed finite element formulations and the

dynamic stiffness formulation. Simpson [46] presented a Newtonian procedure ro

solve for eigenvalues and eigenvectors for the D(w)x = 0 formulation. An eigenvalue

analysis method for large structures by component synthesis was also developed by

Simpson and Tabarrok [47]. In this method, the structure is torn apart into conve­

niently sized subsystems whose receptance matrices are then obtained in series form

by solving the subsystem eigenvalue problems [48]. Williams and Wittrick [68, 71,67],

and Williams and Kennedy [69] have presented a determinant search technique that

is applicable to both the eigenvalue dependent and eigenvalue independent problems.
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This method sta.rts with a guess for the parameter .\, say .\0, followed by the factor­

ization of [A(.\O) - .\°B(.\O]. The sign count (inertia) of the factored matrix as well

as the value of the determinant det I[A(.\O) - .\°B(.\O)]1 are considered to improve

the starting guess using an iteration technique such as bisection or quadratic inter­

polation. Gupta [24, 25] has presented a variation of the determinant search method

in which the determinant search technique is used until all the eigenvalues of inter­

est have been uniquely bounded. Afterwards, an inverse power iteration or Rayleigh

quotient inverse iteration is used to converge to the desired eigenvalue.

1.4.3 U nsymmetric Eigenproblem

As discussed previously in Section 1.3, the damped free vibration analysis requires

solving an eigenvalue problem of the form

[~2M +~C +K]x = 0 (1.15)

which is quadratic in t Likewise, Gupta's dynamic element method results 111 a

quadratic eigenvalue problem even for the undamped problem.

(1.16)

In both of these formulations, the mass matrices M, Mo and M2 and stiffness

matrices K, Ko and K4 are real, symmetric and positive definite; the damping matrix

C is symmetric, but not positive definite. (If any part of the structure is spinning, the

Coriolis force may be significant and the damping matrix may not even be symmetric;

however, this problem is not addressed in the present work.) Frequency w is real
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while the damped eigenvalue A is, in general, complex. For computational purposes,

Eqs. (1.15) and (1.16) can be represented as

(1.17)

One way to solve Eq. (1.17) is to group the matrices Band C together into a

fL-dependent matrix such that

and rewriting Eq. (1.17) as

(1.18)

In this formulation, matrices A and D are still symmetric, but the latter is com­

plex valued. Furthermore, eigenvalues fL and eigenvectors x are complex as well.

Thus, if the solutions methods discussed in Section 1.4.2 are to be employed, all

the arithmetic will have to be done in complex form, which increases computational

intensity significantly. In addition, the zero finding techniques are more difficult to

safeguard in the complex domain.

Another way to reduce the quadratic eigenvalue problem into a standard form is

to use state-space type transformations. This technique transforms a quadratic eigen­

value problem of size N into an equivalent linear, possibly unsymmetric, eigenvalue

of size 2N. This problem can be solved using the two-sided Lanczos method which

is a generalization of the Lanczos method for symmetric problems. This method has

been usedJor hoth the standard and generalized unsymmetric problems [70, 13, 42].
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Given an n x n unsymmetric matrix A and two arbitrarily chosen vectors VI and

. WI such that WrVI = 1, two sets of Lanczos vectors Vi = {VI, V2, ... , vi} and Wi =

{WI, W2,.·., Wi} are generated from the right and left Krylov sequence of vectors

given by {vI,Avt,A2VI , ... ,Ai-IVd and {wt,(AT)wt,(AT)2wt, ... ,(AT)i-IWd,

respectively. Together the two sets of Lanczos vectors form the biorthonormal bases

for subspaces onto which the given matrix A is projected. These vectors are generated

using the following recursive equations

(1.19)

for j = 1,2, ... ,n. Note that IIVO = ,8n+IVn+I = 0 and ,8IWO = In+IWn+I = O. The

biorthonormality of the left and right Lanczos vectors implies that the scalars aj, /3j

and Ij are given by

OJ = wJAVi, vJwi = 1 and ,8i+Ili+I = rJPi (1.20)

This process transforms A into a set of real unsymmetric, tridiagonal matrices

Ii

a·J

The j complex eigenvalues of the unsymmetric tridiagonal matrix T i approximate j
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eigenvalues of the matrix A at one end of spectrum. However, unlike the symmetric

Lanczos recursion, the two-sided Lanczos recursion is an oblique projection and the

convergence properties of A(Tj) are poorer than that of the symmetric case.

The two-sided Lanczos recursion also suffers from some of the drawbacks of the

symmetric Lanczos, such as loss of biorthonormality among the left and right Lanczos

vectors and severe ill-conditioning of V and W. More importantly, the two-sided

Lanczos suffers from a more severe drawback: the entire recursion process needs to

be halted if r;pj = 0 for some j. In such an event, the entire process is restarted

with a new set of VI and WI.

Another projection-type of method for unsymmetric eigenvalues is the Arnoldi

method. It can be considered as an extension of the one-sided symmetric Lanczos

recursion to an unsymmetricmatrix A. A set of Arnoldi vectors V j = {VI, V:,h"" Vj}

are generated that are the basis for the right Krylov subspace {VI, Av}, ... , Aj-Ivd

associated with the matrix A and the initial random starting vector VI. The Arnoldi

vectors are generated using the following recursion

j

vj+Ihj+I,j - AVj - L hijVi =f j
i=I

(1.22)

where h ij = vTAVj and hj+I,j = IIfj ll. Theoretically, each new Arnoldi vector Vj+I is

orthogonal to the set of all the preceding Arnoldi vectors Vj.
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This process transforms A into a set of real upper Hessenberg matrices

H·}

hU-I),j

18

(1.2:3)

h ..
},}

The eigenvalues of the reduced matrices H j approximate part of the spectrum of

the eigenvalues of A. Sorensen has presented an implicitly restarted k-step Arnoldi

method to overcome the loss of orthogonality among the Arnoldi vectors associated

with the above recursion scheme of Eq. (1.22). The residual vector fj is recognized as

a function of the starting vector VI and an attempt is made to iteratively update VI

in such way as to force the residual vector f j = f(vd to zero. The total number of

Arnoldi steps is limited to a fixed prescribed value k, usually two to three times the

number of eigenvalues desired. This fixes and limits the total storage requirements.

By virtue of the fixed small number of Arnoldi vectors, it is computationally

feasible to maintain full numerical orthogonality among the basis vectors. Typically

one step of iterative refinement of the residual vector fj , at a very minimal cost, is

sufficient to enforce orthogonality among the Arnoldi vectors. A set of polynomial

filters are constructed and applied implicitly to cast out unwanted portions of the

spectrum of eigenvalues of A. The complete details of this process and construction

leading to the proof of convergence are presented in Sorensen [,58]. Application of

this technique to compute complex frequencies and mode shapes for damped free

vibration is presented in Chapter 6.



Chapter 1: Introduction

1.4.4 Interior Eigenproblem
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In engineering analysis and design, usually only the first few eigenvalues are of interest.

The solution methods outlined above are designed to take this into consideration. For

example, in computing the forced response of a structure subject to seismic loading,

usually only the first few modes participate in the response. However, there are many

situations when there is a need to accurately solve for some set of eigenvalues that lie

in the interior of the spectrum. A common application is to determine if any of the

higher-order modes of a building are close to some vibrating machinery that might

be inside the building, so as to avoid any possibility of resonance.

For the eigenvalue problem of the conventional finite element, a shift and invert

strategy is used that transforms the eigenvalues from the interior of the spectrum to

the ends of the spectrum. Specifically, for some prespecified shift u

(1.24)

1
where 11 = (..\ _ u)' As a result of this transformation, eigenvalues ..\ from the interior

that are in the vicinity of the shift u are the new extreme eigenvalues in the 11

spectrum. It should be noted that in the above formulation, matrix inverse is used

only symbolically. In the actual implementation, a banded LU factorization of the

matrix [K - uM] is used to solve linear system.

For the eigenvalue problem of the mixed formulation, the mass matrix is eigenvalue

dependent. This necessitates an LU factorization of the matrix [K - uM(..\)] at

each iteration of the solution procedure. Thus, the simple shift and invert method

is computationally very intensive and inefficient for the frequency dependent case.
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One way to overcome this difficulty is to decompose M(A) into A-independent and

A-dependent parts. Chapter 5 discusses constraints that must be imposed on any

such decompositions in order to make the algorithm convergent. In this research, a

decompositions of the following form for Ao = 0 and Ao = (j are used.

(1.25)

1.5 Scope and Outline of Current Research

The goal of this research has been to develop an eigensolution technique that can be

used for structural dynamics problems, specifically, the nonlinear eigenvalue problems

associated with the free vibration analysis of trusses and frames using the mixed

formulation introduced in Section 1.2, and to present a performance comparison of

the mixed finite element formulation and the conventional finite element formulation

with its h- and p-refinements. Furthermore, it is desired to extend the development

and implementation of the nonlinear eigensolution technique to solve the eigenvalue

problem for damped free vibration analysis. This problem is quadratic, with a state­

space transformation which yields a linear, but unsymmetric eigenvalue problem.

Lastly, the nonlinear eigensolution technique is modified to solve for eigenvalues in

the interior of the spectrum.

This dissertation is organized in seven chapters. The following chapter formulates

the governing differential equations of motion for a two-dimensional Bernoulli-Euler

beam. Chapter 2 also presents the spatial discretization of these equations of motion

for free vibration analysis. A power series expansion is used to show the equivalence
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between the eigenproblems of the mixed formulation and the dynamic stiffness method

for axial vibration.

Chapter 3 presents the implicitly restarted Lanczos technique and a secant proce­

dure that is used as the 'outer iteration' for the nonlinear eigenvalue problem. Brief

details of the determinant search method are also presented here. Chapter 4 is a per­

formance comparison study of the conventional formulation, its h- and p-refinements

and the mixed formulation. Chapters 5 and 6 describe the extension of the implicitly

restarted eigensolution technique to solve the interior eigenvalue problem and damped

free vibration problem, respectively. Numerical examples are presented at the end

of each of Chapters :3, 4, 5 and 6. Chapter 7 presents the overall summary for this

research.

The first seven chapters are supplemented by two appendices. Appendix A lists

the displacement fields, shape functions and stiffness and mass matrices for all the

two-dimensional finite element formulations used in this research for axial and lateral

vibrations of Bernoulli-Euler beam. Appendix B shows ~quivalence using a series

expansion between the eigenproblems of the mixed finite element formulation and

the dynamic stiffness formulation for lateral vibrations.





CHAPTER 2

Dynamics of Continuous Systems

This chapter describes the continuous form of the governing partial differential equa­

tions of motion for free vibration analysis of trusses, beams and frames. In Sec­

tions 2.2-4, these equations are first decomposed into two ordinary differential equa­

tions in the space and time domains using separation of variables. The ordinary

differential equation in space domain is transformed to the Galerkin form using ap­

proximate, finite element displacement fields; this discretization leads to the matrix

form of the governing equations. For undamped, free vibrations these equations lead

to the generalized eigenvalue problem of the form Ax = )'Bx. In Section 2.,) equiv­

alence between eigenproblems of the dynamic stiffness matrix and the mixed finite

element formulation is established using a series expansion in powers of w.

2.1 Governing Equations

The governing equations for free vibration of a two-dimensional, undamped, linear,

elastic, Bernoulli-Euler beam element with uniform properties can be obtained by

establishing the dynamic equilibrium of a differential element dx of the beam, as

shown in Figure (2.1). As shown in the figure, axial deformation occurs along the

beam's x-axis and is indicated by u. Lateral vibration in the y-direetion and rotation

22



Chapter 2: Dynamics of Continuous Systems

V(X,t)~ .
') 9 (x,t)

u(x,t)
y

x

0z
~k-

dx

(a)

°1,PI °3,P3 .

°2,P2 a4, P4r- f)...
aI' PI 0

a2' P2

~k-
dx

(b)

23

M

v t a2v
(mdx)-
. a~

f'Il-~_---dx--->I

(c)

avv + axdx

Figure 2.1: Axial and lateral vibrations of a Bernoulli-Euler beam
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about the z-axis are indicated by v and 0, respectively. The equilibrium equations

are found in the horizontal direction for axial vibration and in the vertical direction

for lateral vibration. It is assumed that the axial and lateral vibration behaviors are

independent and that no coupling takes place between u and v. Using Hooke's law

and elementary beam theory, the equations governing axial and lateral vibration take

the following form

(2.1 )

(2.2)

.where A is the cross-sectional area of the beam, m is the uniform mass distribution,

E is the material modulus of elasticity, and / is the beam moment of inertia about

the z-axis. It is quite easy to show that partial differential Eqs. (2.1) and (2.2) possess

nontrivial solutions only if the quantities ;A and ;/ are positive, which is indeed

the case for structural dynamics.

For the axial vibration problem, solution of the form u(x, t) - U(x)sinwt will

result in a harmonic motion of amplitude

U(x) = C1 cos bx +C2 sin bx

where

-~b-yEX

and C1 and C2 are constants of integration.

(2.:3)

(2.4)

To obtain the dynamic matrix for this problem, the following boundary conditions
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are imposed
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U(O) = hI,

U'(O) = _ PI
EA'

U(I) = h2

U'(I) = P2

EA

(2.5)

where hI and h2 are the displacements and PI and P2 are the forces, respectively, at

the nodal coordinates of the beam segment as shown in Figure (2.1).

By substituting the boundary conditions of Eq. (2.5) into Eq. (2.3), solving for

constants of integration, and simplifying the resulting expression, the dynamic matrix

for an axially vibrating beam segment is obtained. Thus,

{

PI} ( cot bi
- EAb

P2 - csc bi

- csc bI] { hI }

cot bi h2

(2.6)

subject to the condition that sin bi #- O. The square matrix on the right hand side of

Eq. (2.6) is the dynamic matrix for axial vibrations, Da(w).

In a similar fashion, for lateral vibrations, v(x,t) = V(x)sinwt results in a har-

monic motion of amplitude

V(x) = 01 cos bx + O2 sin bx + 03 cosh bx + 04 sinh b

where

(2.7)

(2.8)

and OI, O2, 03 and 04 are constants of integration. To obtain the dynamic coefficients

for the beam segment, displacement and force boundary conditions are imposed. The

displacement boundary conditions take the form
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V(O) = 8I, V(l) = 83

V'(O) = 82 , V'(l) = 84

and the force boundary conditions take the form

26

(2.9)

V"'(O) = PI
. EI'

V"(O) = P2

EI'

V"'(l) = _ P3

EI

V"(l) = _ P4

EI

(2.10)

with 81 , 82 , 83 and 84 representing the amplitudes at the nodal coordinates and PI,

P2 , P3 and P4 representing the corresponding harmonic forces and moments.

Combining Eqs. (2.7), (2.9) and (2.10) in a manner analogous to the formulation

of Eq. (2.6) and simplifying results in

PI 1j2(cS + sC) symmetric

P2 bsS (sC - cS)
=B

P3 _1j2(S + S) b(c - C) h2(cS + sC)

P4 -h(c - C) (S - s) -hsS (sC - cS)

where,

81

82

(2.11 )
83

84

B -

s = sin hi,

c = cos hi,

hEI
(1 - cos bl cosh bl)

S = sinh hi

C = cosh bl

subject to the condition that (1 - cos hi cosh hi) =1= O. The square matrix on the right
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hand side of Eq. (2.11) is the dynamic matrix for flexural vibrations, DJ(w).

2.2 Finite Element Models

27

In the finite element method, the element displacement field represents the solution

to that element's differential equation of motion. Since the element displacement field

is used to derive the shape function matrices from which the system matrices of the

vibration eigenproblem are formed, the choice of this field plays a crucial role in both

solution accuracy and efficiency.

There are three classes of finite element models which are capable of discretizing

a structural system for dynamic analysis: the conventional finite element model, the

exact displacement model, and a mixed model proposed by Melosh and Smith [:34].

These models can be distinguished by the shape function utilized by the model.

As discussed in Chapter 1, shape function matrices are derived from element dis­

placement fields and can be expressed through series expressions in ascending powers

of w, the natural circular frequency of the system [39]. Equation (1.1), repeated here

for completeness, takes the form

(2.12)

where N(w) is the exact, frequency dependent shape function matrix based on the

solution to the differential equation of motion; No is the shape function matrix based

on the static displacement field; and Nt, N 2 , ••• are the shape function matrices

representing the dynamic corrections. Derivation of the dynamic correction terms for

the shape function, stiffness, and mass matrices can be found in Przemieniecki [:39]
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and Zienkiewicz [73].

The eigenproblem resulting from the exact modeling formulation is eigenvalue de­

pendent in the sense that the eigenproblem matrices are dependent on the natural

frequencies of the system. Therefore, although fewer degrees-of-freedom are associ­

ated with the exact displacement model than with the conventional finite element

model, the re-formation and re-decomposition of the matrices for each iteration of

the eigenvalue analysis cause the exact model to be computationally intensive. This

eig~nvalue-dependenteigenproblem takes the form

[K(A) - w2 M(A)]x = o. (2.13)

Kolousek [31, 32] was the first to apply the exact displacement model to dynamic

analysis of frames. This problem has been studied by Przemieniecki [39], Williams

and Wittrick [68, 69, 71,67], Swannell [63,62], Richards and Leung [43], Hallauer and

Liu [26], and others [3, 2,69]. Bergman and McFarland [7] studied the differential

equation of motion for continuous vibrating beams, but formulated the corresponding

eigenvalue problem using Green's function.

Williams and Wittrick's formulation [67, 71] used Green's functions to discretize

the governing differential equations; they solved the resulting nonlinear eigenvalue

problem by successive determinant evaluation and interval halving. Yang [72] used a

Jacobi-type method to solve a nonlinear eigenvalue problem in which the nonlinear

terms are second order polynomials. However, neither of these two methods are

suitable for the nonlinear eigenproblem associated with the mixed formulation due to

the transcendental nature of frequency dependent shape functions, and computational
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complexity of large problems, particularly when higher modes are desired.
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The mixed model discussed by Melosh and Smith [34] uses both the exact and

polynomial displacement fields in formulating the vibration eigenproblem [.52,53,54].

This formulation is based on exact representation of element inertia forces and obtains

exact natural modes and frequencies of vibrating systems.

The element inertia forces are found by taking the derivative of the element ex-

ternal work expression with respect to each degree-of-freedom. The external work

expression for an element of uniform cross-section takes the form

(2.14)

where W is the element external work, d is the vector of continuous element axial,

lateral or rotational displacements and F is the vector of element inertia forces. The

element in~rtia forces can be expressed as F = -md (where m is the uniform mass

distribution over the element). Assuming harmonic motion, d = -w2d, the above

equation becomes F = w2md. Introducing the exact shape function matrix N e gives

and the external work expression becomes

(2.15)

where the subscript e indicates use of the exact displacement field.

The inertia forces can be expressed at the nodes without approximation usmg
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equivalent loads. The displacement due to these inertia force equivalent loads can

be represented exactly using the polynomial shape functions. Therefore, Eq. (2.1.5)

becomes

(2.16)

where the subscript p indicates use of the polynomial displacement field.

Equivalent load theory is used to represent the exact element inertia forces;

thereby, the vibrating system is modeled quasi-statically. The frequency indepen-

dent stiffness matrix of the conventional finite element model is used to represent

the stiffness of this quasi-static system without introducing discretization error. The

eigenvalue problem of this model takes the form

(2.17)

Previous studies show that for vibration analysis of skeletal systems with lumped,

uniform, or nonuniform mass distributions, the mixed formulation is more coml:mta-

tionally efficient than the exact displacement and conventional finite element models

particularly when accuracy requirements are high [53, 54]. These studies use the in-

verse power method to extract the system's first mode and frequency and orthogonal-

ity conditions to obtain the second and subsequent modes and frequencies. However,

this eigensolution technique is not well suited for larger problems and higher modes.
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2.3 The Matrices of the Conventional Formulation
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Using separation of variables, where u{x, t) = u{x)h{t), the equation of motion for

axial vibration, Eq. (2.1), can be reduced to two ordinary differential equations. The

resulting equation in the space domain is

tPu{x) 2 m -( ) - 0
dx 2 +w EAU x - (2.18)

where u{x) is the exact axial displacement given by Eq. (2.3) in Section 2.1. The con-

ventional finite element uses polynomial shape functions to approximate the solution

to Eq. (2.18), u{x), by a polynomial displacement field, up{x). Thus,

u{x) ::::::: up{x)

[1 xl {~:}

[1 x] [~t :] t:} (2.19)

- [(1- 7) TIt:}
= Npa

where N p is the polynomial shape function matrix and a is the vector of nodal degrees-

of-freedom based on the polynomial element displacement field for axial displacement.

Using the expressions for strain and kinetic energy, the above shape function ma-

trix is related to element stiffness matrix kp and element mass matrix m p , respectively.
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where prime denotes transpose of a matrix. The element matrices kp and m p are

assembled into global matrices K p and M p using standard finite element procedure.

Therefore, the resulting eigenvalue problem for the conventional finite element case

takes the form of Eq. (2.22).

(2.22)

Similarly, using separation of variables, where v(x, t) = v(x)g(t), the equation of

motion for flexural vibration, partial differential Eq. (2.2), can be reduced to two

ordinary differential equations. The equation in the space domain is

d4v(x) 2 m _
dx4 +w Elv(x) = 0 (2.2:3)

where v(x) is the exact lateral displacement given by Eq. (2.7) in Section 2.1. Using

the conventional cubic polynomial shape functions

(2.24)
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where TJ = 7' and expressions for strain and kinetic energy, the element stiffness and

mass matrices for a 2-D system takes the form

12 61 -12 61

- EI 61 412 -61 2J2

kp= [3 (2.25)
-12 -61 12 -61

61 2J2 -61 412

and

156 221 54 -131

ml 221 4J2 131 -3[2

fup = 420 (2.26)
54 131 156 -221

-131 -312 -221 4J2

For the lowest circular natural frequency of an axially vibrating cantilever beam,

a one-element discretization results in

compared to the exact value of

Thus, the one element approximation has over 10% error, due to the discretization

process. This error reduces as the number of elements increases and the system is



Chapter 2: Dynamics of Continuous Systems 34

modeled with more degrees-of-freedom. As the number of degrees-of-freedom ap-

proaches 00, theoretically the discretization error will vanish. However, as the num­

ber of elements increases, the solution complexity increases by approximately O(bn2
),

where n is the number of degrees-of-freedom and b is the bandwidth.

2.4 The Matrices of the Mixed Formulation

In this formulation, in addition to the polynomial based shape function matrix N p ,

a frequency dependent shape function matrix N e , based on the exact solution of

Eq. (2.18) is also used. Thus, using the solution given by Eq. (2.3)

u(x) - ue(x)

- C1 cos bx +C2 sin bx

- [cos bx sinbx] {~:}

[cos bx sin bx] [ _ c:,. bl
siL] {::}

(2.27)
-

sin bi

( sin bX) ( si.n bX) ]r}- [ cos bx - tan bi
S111 bi

a2

= Nea

where a is the vector of nodal degrees-of-freedom based on the exact element dis-

placement field for axial displacement.

Again using the virtual work principle and the procedure outlined by Melosh

and Smith [54], both the shape function matrices are related to element stiffness
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and mass matrices. Only the polynomial shape functions are used to compute the

element stiffness matrix and hence, ke = kp is same as given by Eq. (2.20). Both the

polynomial and the frequency dependent exact shape functions are used to compute

the element mass matrix as given below.

(
1 cos bi )

[

(bi)2 - bi sin bi
mi

(bi s:n bi - (b~)2)

(2.28)

The element stiffness and mass matrices ke and me are assembled into the global

stiffness and mass matrices K e and Me using standard finite element procedure.

Therefore, the resulting eigenvalue problem for the conventional finite element case

takes the form

(2.29)

For lateral vibrations the shape function matrix Ne , and the element stiffness and

mass matrices ke and me are derived using Eqs. (2.7) and (2.2) in a manner analogous

to the above.

v(x) ve(x)

- C\ cos bx +62 sin bx +63 cosh bx +64 sinh b
(2.:30)
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Expressions for Ne , ke and me are given in Appendix A.

36

For the axially vibrating cantilever beam of the previous section, a one element

discretization using the mixed formulation to compute the lowest circular natural

frequency results in

EA 2 (1 cos bl )
-1- - w (blF - bl sin bl = O.

Substituting bl = wJ;~ and simplifying,

EA _ w2(m/) ( ~A ) (1 - w~ 1= 0
1 w

2
mP Jm/2

tanw EA

or,

(
EA) r;:;;r

w 1 YEAr;:;;r = 0

tanwYEA

or,
r;;;r

cosWYEA = 0

or,

which is the exact circular naturally frequency for the first mode. Thus, by using

both the polynomial based shape functions and the frequency dependent exact shape

functions, the discretization error for this problem has been completely eliminated.
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2.5 Power Series Expansion of the Dynamic Matrix

:37

As derived in Section 2.1, for an axially vibrating beam, the dynamic stiffness matrix

ffl 1 -1

[
tan bl sin1bl ] .D a = EAb
-1

sin bl tan bl

Using the trigonometric power series for cot x and cscx, and bl = wJ~~ results in

and

and finally,

EAb cot bl

-EAb cscbl

_ EAb(~- bl_ (bl)3 _ ...)
bl 3 45

EA 2m1 4m1 [2
-1- - w 3 - w 45 EA - ...

__ EAb (~ + ~~ _ 7(bl)3 _ ...)
bl 6 :360

-EA 2 ml 4 7 [2
-- - w - - w -ml- -1 6 45 EA ... ,

1

_ EAb [tanbl
-1

sin bl

-1

Si: bl ]

tan bl

EA [ 1
1 -1

(2.:31 )

Comparing the two sides of Eq. (2.31), it can be inferred that for larger values of
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nondimensional quantity (W~~i2), i.e, for higher modes and/or nonslender beams,

the formulation based only on polynomial shape functions will approximate the dy-

namic matrix rather poorly and the results will be increasingly more inaccurate due

to the neglect of nonlinear terms. On the other hand, for the formulation based on

both polynomial shape function and frequency dependent exact shape function gives

the following.

E A 2 (1 cos bi )
ken - w

2
m en - -i- - w mi (bi)2 - bi sin bi

{
I mi [1 cot bi] }

EAb bi - EAb (bi)2 - bl

{
II mP mP }

- EAb bi - bi EA(bi)2 + EA(bi)2 cot bi

- EAbcot bi

EA 2 (1 1)
--i- - w mi (bi) sin bi - (bl)2

= -EAbcscbi.

Hence k e - w2 m e = D a ; thus, the mixed formulation based on both the polynomial

shape functions and frequency dependent exact shape functions does not lead to any

discretization error.

For the transverse vibrations, the dynamic matrix elements are much more compli-

cated than the above terms and, hence, a direct manipulation to show the equivalence

between the eigenproblems of the mixed finite element formulation and the dynamic

matrix for flexural vibrations is impossible even using symbolic manipulation tools.

In Appendix H, the equivalence between fiJ and ke - w2me is established using a
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Taylor series expansion about w = 0 and matching the terms with like powers of w in

the two series expressions.



CHAPTER 3

Eigensolution Techniques for Nonlinear

Eigenproblems

The linear, positive definite, symmetric eigenvalue problem can be solved for the

system natural frequencies and modes using conventional eigensolution techniques.

However, the eigenproblem of Eq. (2.17) is needed if exact solutions are sought which

are free of discretization error. This chapter describes two eigensolvers for obtaining

the natural frequencies and modes of Eq. (2.17). The first solution technique is based

upon a variant of Lanczos method that has been derived from the more general im­

plicitly restarted Arnoldi method developed by Sorensen [58]. The second method

is the determinant search method using qualified parabolic interpolation as proposed

by Williams and Kennedy [69], with some modifications to solve the nonlinear eigen­

problem.

3.1 Conventional Lanczos Methods

Lanczos methods have been used extensively to solve large, sparse symmetric eigen­

value problems Ax = AX. In its most basic form, using exact arithmetic, the Lanczos

process is a scheme to tridiagonalize a symmetric A E ~lIXll. After j steps of the

40
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Lanczos process, an orthonormal n x j matrix V j and a symmetric tridiagonal matrix

T j are produced such that

AV· - V·T· +f'e~J- J J J J (:3.1)

where f j is a vector of length nand ej is the jth co-ordinate vector of length j with

VJfj = O. This is easily shown to be a truncation of the complete orthogonal reduc­

tion of A to tridiagonal form that typically precedes the implicitly shifted tridiagonal

QR iteration.

The eigenvalues of T j approximate a subset of eigenvalues of A. If (Il, y) is an

eigenpair for Tj (i.e., Tjy = YIl) then (Il, x = Vjy) is an approximate eigen-pair for

A and the error of approximation is given by

(:3.2)

In particular, the approximation is exact when fj = O. Eigenvalues and eigenvectors

of the symmetric tridiagonal matrix T j are determined using either the symmetric

QR method or by bisection.

The Lanczos process has been used to solve engineering dynamics problems for

two main reasons: the Lanczos process only requires matrix vector products involving

A together with a few vectors of storage in main memory, and the largest and the

smallest eigenvalues tend to emerge well before the tridiagonalization is complete

making this method especially useful for structural dynamics problems where usually

ouly a few of the smallest eigenvalues are desired.

Unfortunately, the Lanczos process also has some drawbacks: In its original form,

roundoff errors severely affect the iteration, resulting in loss of orthogonality among
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the Lanczos vectors produced while tridiagonalizing the matrix A and the appearance

of spurious eigenvalues in the spectrum of T. Various schemes have been proposed to

overcome these problems ranging from recognizing and casting out spurious eigenval­

ues to selective re-orthogonalization techniques [12, 36]. Another problem is that in

order to recover the eigenvectors corresponding to the computed approximate eigen­

values, it may be necessary to store a very large dense matrix on an auxiliary device

because all of the Lanczos basis vectors are required to compute an approximate

eigenvector.

3.2 The Implicitly Restarted Lanczos Method

The method outlined in Sorensen [58] addresses the drawbacks of the Lanczos process

listed in the previous section. The underlying idea is to recognize that the residual

vector at any step of the Lanczos process is a function of the initial starting vector

(i.e., the first column of Vj). The total number of Lanczos steps is limited to a

fixed prescribed value k and the starting vector is iteratively updated in a way that

forces the norm of the residual vector f k to converge to zero. This limits storage

requirements and allows full numerical orthogonality of the Lanczos basis vectors to

be enforced due to the limited computational costs.

The iteration involves repeated application of 'polynomial filters' to the starting

vector and an in-place updating of the k-step Lanczos factorization. The filters are

designed to purge undesirable eigenvector components from the starting vector forcing

it into an invariant subspace. The construction and application of these filters, how

to update in-place, and other related mathematical details are explained in Ref. [58].
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The technique is analogous to the implicitly shifted QR iteration for dense matrices

and shares most of the important numerical properties associated with that process.

Thus, this approach has the following inherent advantages.

• Fixed space: In this scheme, the number of Lanczos basis vectors is never

larger than a pre-specified number that is proportional to the number of eigen­

values sought. Because of this, peripheral storage of basis vectors is not required.

Moreover, as in the basic Lanczos process, only matrix vectors products are re­

quired with A.

• Orthogonal eigenvectors: By virtue of the fixed modest number of Lanczos

vectors, it is computationally feasible to maintain full numerical orthogonality

among the basis vectors. The maintenance of orthogonality ensures that no

spurious eigenvalues are computed.

• Convergence: As demonstrated in Ref. [58], convergence is guaranteed for the

linear eigenproblem Ax = ..\Bx.

This general approach has been used successfully by Sorensen [,58] to solve large

eigenproblems arising from discretization of convection-diffusion problems, linearized

Navier-Stokes problems and a composite membrane problem up to the order of 10,000

degrees-of-freedom on a number of different computer architectures. In a subsequent

study, Sorensen, Vu and Tomasic [60] used the k-step Arnoldi on a structural analysis

problem with 250,000 degrees-of-freedom.
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3.3 Solving the Nonlinear Eigenproblem
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The features described above lend themselves naturally to an effective solution scheme

for the nonlinear problem. With this new scheme it is possible to evaluate a specified

subset of the eigenvalues of a matrix function F(A) and to treat these as individual

scalar functions of A. Applying a simple zero finding technique to each of these in

turn provides solutions to the nonlinear problem, where information from a converged

eigenvalue may be used to initialize the iteration for the next one. Moreover, as shown

below, the stiffness matrix is only factored once and only matrix vector products are

required of the frequency dependent mass matrix.

The nonlinear eigenproblem has been approached in the past through linearization

via Taylor series and solving through various forms of of Newton's method [30,44, 72]

applied directly to this system through a subspace iteration closely related to the Q R

method.

Dnly one of the matrices in Eq. (2.17) has a dependence on A which leads to

eigenvalue dependent problems problems of the form

F(A) = A - AB(A) (3.:3)

where A is a fixed symmetric positive definite matrix and B(A) is symmetric. The

goal is to compute a few of the algebraically smallest roots A. Our approach will be·

to use the variant of the Lanczos method described above to track the eigenvalues of

F( A) as functions of the parameter A and solve a scalar nonlinear equation for each

of the nonlinear eigenvalues of interest. The new variant of the Lanczos process is

well suited to this approach.
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To take this approach, it is much better to cast this problem in the form

1
B(A)X = lAx

In this formulation, the factorization becomes

B(A)V = AVT(A) + feleT

45

(:3.4)

(:3.5 )

with the columns of V being A-orthogonal, and T tridiagonal. Subscripts on V, T

and f and the A-dependence of V and f have been suppressed for simplicity. Let

JLl(A) be the algebraically largest eigenvalue of T and let Yl be the corresponding

eigenvector. An approximate solution to Eq. (3.4) is obtained when

(:3.6)

The implicitly restarted Lanczos technique provides the ability to satisfy the side

condition, viz., IIfllleleT Yll < fJLl. Moreover, the convergence of this inner iteration

is expected to be very rapid since the eigenvalues of interest in the spectrum of

the transformed problem are well separated and at the large end. This is the ideal

situation with respect to convergence of the Lanczos method. Finally, the stiffness

matrix K need only be factored once, throughout the entire nonlinear iteration. Only

matrix vector products are required of the frequency dependent mass matrix M.

It is readily seen that JLl(A) is a root of a polynomial whose coefficients are ra­

tional functions of the matrix elements of B( A) and A, and the components of the

first column of V. Thus, the function JLl(A) typically will inherit the smoothness of
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the elements of B(A) near a solution, even though certain difficult cases cannot be

ruled out. Technically, any appropriate root finding technique may be applied to the

solution of Eq. (3.6).

In this research, a safeguarded secant method is used to solve Eq. (3.6). Before

describing the iteration, it is helpful to consider the graph in Figure 3.1. This graph

shows three J.lj(A) curves plotted as a function of the paramettr A for axial vibra-

tions of a representative cantilever beam. The solutions to the nonlinear problem of

Eq. (3.4) are those values of A at which the curves J.lj{A) intersect the curve ±. Note

that these curves are nearly linear in the neighborhood of interest. Moreover, these

functions are strictly increasing in this region. Thus, it is likely that a secant type of

method should work well.

The secant method that is used may be described as follows: first, the linear

eigenproblem at AO = 0 is solved and then Al is set equal to ~(). The mass matrix
J.lI 0

M(AI) is formed and a new linear eigenproblem is solved to calculate J.lI (Ad. A

linear interpolation between these two successive points will intersect the curve ±
at a point A2 due to the increasing of the J.l curve and the convexity and decreasing

of the curve ±. Again the mass matrix is re-evaluated and a linear eigenproblem

is solved to evaluate J.lI (A2) where another linear interpolation is made between the

points (AI, J.lI (Ad) and (A2' J.l2(A2)). Once this pattern has been set, the technique

continues to form these secant approximations using the latest two A points. This

strategy has been quite successful for the structural dynamics problems. It typically

converges to ten digit accuracy within four iterations. If the J.l-curves behave as shown

in Figure :3.1 this simple secant method is guaranteed to converge to the solution.

Each iteration of the zero finder requires a determination of J.ll (A) such that
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IIflilekT Yll < fJ.Ll through the implicitly restarted Lanczos process. Hence, this may

be regarded as an inner iteration to the root finding technique. Once the value of >. is

updated within the root finder, the next evaluation of J.Ll may use the first column of

V to begin the new restarted Lanczos process. Note that for two-dimensional skele-

tal systems, after the rigid body modes have been eliminated, there are no repeated

eigenvalues problems and thus the J.Lj(>') curves never intersect each other. This lends

to an easy safeguarding of the iterative zero finding proceSG. (Theoretically, if the

plan of a three-dimensional structure is completely symmetric about two mutually

perpendicular axes then there could be modal beating and the J.Lj(>') might intersect

each other.)

This process may be repeated using the existing k-step Lanczos factorization from

the previous step to great advantage. Once a solution >'j to the jth nonlinear problem

(:3. 7)

has been found, the entire k-step Lanczos factorization that is in place from the final

iterative step to solve the jth problem may be used to initiate the (j +1)st problem.

This provides an excellent starting guess to begin the zero finding iterations for >'j+1'

The accuracy of the solutions to the linear subproblems is assured by the implicitly

restarted Lanczos iteration. Accuracy and consistency of the computed solutions

to the nonlinear problem can be checked by the extension of Sturm sequence for

nonlinear eigenvalue problems [17].
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3.4 Determinant Search Method
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Determinant search method is one of a family of nonlinear eigensolution techniques

that are generally referred to as 'frequency scanning' methods. The simplest of these

methods determines the eigenvalues of interest by looking at a plot of the charac­

teristic polynomial versus the eigenvalue parameter A. This involves evaluating and

plotting the detl [A - AB] I at fine intervals of A. The jth zero-crossing on the plot,

counting from the origin, is the jth eigenvalue. In addition to being computationally

very intensive, this method also suffers from numerical scaling difficulties as the de­

terminant of a matrix is generally a very fast varying function. This method fails if

poles are present near the desired eigenvalues, or if eigenvalues are clustered close to

each other.

Williams and Kennedy [69] combined the determinant evaluation with a sign count

(inertia) of the matrix, and an update technique (bisection or quadratic interpolation)

to improve upon the basic method outlined above. This method consists of several

stages outlined below for the case when extreme eigenvalues are desired.

The first stage, called overall bounding stage, establishes global lower and upper

bounds on the set of eigenvalues required. It is assumed that a consecutive set of

eigenvalues AI, A2 , ••• ,Am are required. The global lower bound is established by

computing the sign count of the matrix

D(A) - [A - AB(A)]

_ LDLT
(3.8)

using a symmetric factorization. Number of negative diagonals of the matrix i> is
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the same as number of negative eigenvalues of the matrix D(A), the latter being

\I ~ AI
the sign count of the matrix D(A). The current bound is updated as A"---- ,

a

where a E (1,2) is a prespecified scaling factor, until sign(D(AI )) = o. Similarly,

the global upper bound is established by successively updating AU +- (Au. a) until

sign(D(A)) = signeD) ;:::: m. In the second stage, local lower and upper bounds are

established for each eigenvalue of interest. A hashed table is used to store and retrieve

the previously computed (sign(D(A)), A) pairs. Using bisection and table lookup, a

set of A~ and Ai are determined such that the following set of inequalities hold.

The third stage is called qualified parabolic interpolation and its objective is to use

sign(D(A)) and ID(A)I at the current lower bound A~ and at the current and previous

upper bounds, Ai and Aiu to converge on Ai more rapidly than would bisection alone

between points A! and Ai. To avoid the disastrous possibility of using quadratic

interpolation in case there is a pole between the current lower and upper bounds,

Williams and Kennedy's method uses a heuristic approach. Define the parameters 0,

(3 and, as

max {
distance

VAi E [AL Ai]
{ ID(A:)I- chord ( ID(.\i'lI, ID(.\rU)1 ) }}

!3 - distance { ( ID(Ai)I- ID(Ai)1 ) }

, I~I

then a pole is assumed to lie between the current lower and upper bounds if , > ,*
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for some specified ,* < 1. This method also monitors convergence rate and reverts

back to bisection method if the convergence rate is slower than a specified value O.

One major drawback of this method is that there is no systematic way of choosing the

parameters u, ,* and o. In addition, the symmetric factorization may require pivoting,

in which case, PD(A)PT = LDLT destroys the banded nature of the problem.

3.5 Implementation Details

The finite element formulations and eigensolution techniques described in Chapters 2,

:3 and 4 have been implemented in Fortran 77 on a DEC 5000 workstation with MIPS

compiler and Vltrix 4.2 operating system. To maintain scalability, portability and

modular nature of all computations, linear algebra subroutines from BLAS [:3:3] levels

1,2 and:3, LAPACK [1] and ARPACK [.59] libraries have been used wherever possible.

Noting that in Fortran two-dimensional arrays are stored in a column-wise format,

whenever possible, various algorithmic details of the finite element modeling and

eigensolution technique have been restructured to perform SDOTO and SAXPYO

type of operations, and to access storage sequentially with unit stride. All matrix

computations were performed in banded form and in order to keep the programs

portable, system specific calls and vendor specific language extensions have been

avoided.

The program can perform undamped or damped, extreme or interior, free vibra­

tion analysis of two- and three-dimensional trusses, beams and frames. The structure

can be discretized using one or more of the following finite element formulations:

the conventional formulation, three levels of the h-- and p-formulations and the
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frequency dependent mixed formulation. Three different choices are available for

solving linear and nonlinear eigenproblems: the implicitly restarted Lanczos/Arnoldi

method, the determinant search method and, for small problems, dense eigensolvers

from LAPACK. The program can use a modal superposition analysis to compute

forced vibration response as well.

3.6 Numerical Results

This section presents examples where the lowest few natural frequencies of two­

dimensional frame-type structures are determined. In the first example, solutions

obtained using the mixed finite element model of Eq. (2.17) are compared on the ba­

sis of accuracy with solutions obtained using the conventional finite element model.

The eigenvalue problems of both models are solved using the implicitly restarted

Lanczos method presented in the previous section. Section 3.6.2 compares the com­

putational efficiency of the implicitly restarted Lanczos eigensolver with the multiple

determinant parabolic interpolation method developed by Williams and Kennedy [69]

for solving frequency dependent vibration eigenproblems.

3.6.1 Comparison of the Mixed and Conventional Formu­

lations

In this example, the first ten natural frequencies are found for a four story plane frame

with 36 unconstrained degrees-of-freedom shown in Figure 3.2. Simpson [46] reports

these frequencies obtained both experimentally and numerically using a variation of

the exact model with Kron's eigenvalue procedure [48].
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Kron's procedure is a method for piecewise eigenvalue analysis of dynamic sys­

tems. The original system matrix is successively 'torn' into a multiplicity of smaller

subsystems, each of which is analyzed by standard eigensolution methods. The sub­

matrices are transformed such that the eigenvalues of the composite system can be

determined via a frequency scanning process. However, th.is method requires inverting

a matrix (of size equal to the number of physical connections between subsystems)

at each stage of frequency scanning. Thus, it becomes quite unwieldy even for a

moderately sized problem.

Table 3.1 summarizes the results from Simpson [46] and compares them with

results obtained using the conventional model and the mixed model. As shown, the

conventional finite element model shows large error particularly for the higher modes.

The sharp increase in error for the fifth frequency for the first discretization pattern

is due to the inability of the conventional finite element model to represent higher­

order member deformation when discretized with only one element per member. This

problem is eliminated when two elements per member are used. The mixed model

and the model used by Simpson use one element per structural member. The relative

tolerance for eigenvalue convergence was specified as 10-9
•

The mixed model results are nearly exact when compared to the results reported

by Simpson. The apparent difference between the experimental results and analytical

results is due to inaccuracies inherent in modeling the exact material and sectional

properties of the test specimen. Notably, the mixed model with the new nonlinear

eigensolver gives superior results for higher and clustered frequencies.
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a = 0.50 in. a

b = O. 125 in. 1<-----;>--1~
L = 10.0 in. b

E = 30 X 10 6 psi (Young's modulus) T
m = 7.619 x 10-4 Ibm/in.3 (mass per unit volume)

Figm(' :3.2: 170m story plane frame
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Table 3.1: First 10 frequencies for four story plane frame

Frequency Finite Element Results (Hz) Reference [46] Results (Hz)
Number Conv l Cony;! Mixed Kron's Method Experimental

1 7.86 7.86 7.86 7.88 8.18
2 24.8 24.8 24.8 24.9 25.7
3 44.2 44.1 44.0 44.2 45.9
4 62.7 62.5 62.5 62.6 65.6
5 128.3 11.5.5 11.5.0 11.5.,5 118.:3
6 148.8 130.0 129.:3 130.0 1:33.6
7 153.9 13:3.3 1:32.6 133.0 1:36.5
8 180.6 150.1 149.1 150.0 154.2
9 192.3 156.5 155.4 155.:3 16:3.1
10 194.7 157.9 1.56.7 156.,5 16:3.1

lOne element per structural member
2 Two elements per structural member

55
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3.6.2 Comparison of Implicitly Restarted Lanczos and De­

terminant Search Techniques

In these examples, seven frame-type structures involving 48, 75, 162, 270, :3:30, .58fi,

and 960 unconstrained degrees-of-freedom are modeled for free vibration analysis us­

ing the frequency dependent mixed finite element formulation. The first ten natural

frequencies and modes of each system are obtained using the Lanczos-based tech­

nique with secant interpolation presented here and a determinant search technique

used by Williams and Kennedy [69]. The purpose of these examples is to illustrate

the computational efficiency of the implicitly restarted Lanczos technique for large­

order problems and to compare the method with the determinant search eigenvalue

techniques used most frequently in exact vibration analyses.

The multiple determinant parabolic interpolation eigenvalue technique was devel­

oped for use with exact finite element models where both K and M are comprised of

frequency dependent transcendental functions. This method uses the number of eigen­

values lying between zero and a trial value together with eigenvalue curve plotting

and interpolation techniques to successively improve bounds on the desired eigenvalue.

As described previously in Section 3.4, an interpolation criterion decides whether the

subsequent trial value should be obtained by bisection or parabolic interpolation.

This method uses parabolic interpolation by default. However, if the determinant of

the dynamic stiffness matrix [K - AM] evaluated at the newly interpolated value of

A differs significantly from the chord joining the upper and lower eigenvalue bounds,

the presence of a pole is suspected and the bisection technique is used. Use of a
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qualified parabolic interpolation procedure offers significant computational improve­

ment over bisection techniques used in traditional determinant search methods espe­

cially for higher accuracy requirements. Results from Williams and Kennedy show a

10% decrease in computational intensity when compared with Simpson's Newtonian

method [46]. However, the multiple determinant parabolic interpolation eigenvalue

technique is primarily intended for nonlinear eigenproblems and is not well-suited for

conventional frequency independent free vibration analyses. In addition, for large

nonlinear eigenproblems computing the determinant of the dynamic stiffness matrix

is impractical due to the computational intensity of evaluation and also due to the

potential erratic behavior of the determinant function. In contrast, the J1(A) - ,X

curves in Figure 3.1 exhibit a very mild behavior of the functions J1j('x) appearing in

Eq. (3.7) for the Lanczos-based method.

Figures :3.:3 and 3.4 graphically depict the total computational time needed to

obtain ten natural frequencies as a function of problem size. Figure :3.:3 illustrates

that for smaller problems (with fewer than approximately 120 degrees-of-freedom),

the multiple determinant parabolic interpolation technique is competitive with the

Lanczos-based nonlinear eigenvalue technique using secant interpolation. However, as

the problem size increases, the Lanczos-based technique becomes increasingly more

efficient as shown in Figure 3.4. In particular, for problems approaching 1000 degrees­

of-freedom, the computational time needed by the determinant search technique is

more than one order of magnitude greater than the time needed by the implicitly

restarted Lanczos method.
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Figure 3.3: Computation time comparisons - I
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3.6.3 Discussion of Results

60

As illustrated in the first example presented here and in previous publications [:34,52],

the mixed finite element formulation which involves a frequency independent K and

a frequency dependent M obtains exact natural modes and frequencies of frame and

truss-type structures. This method presents advantages over the computationally

intensive exact vibration model where both K and M are frequency dependent and

the conventional finite element model which involves spatial discretization error.

The nonlinear eigensolution technique presented here exploits the unique form of

the eigenproblem of Eq. (2.17) associated with the mixed finite element model. In

general, the Lanczos-based method is well suited to this class of nonlinear eigenvalue

problems on several counts and has clear advantages in the large scale setting over

determinant search methods; One advantage seems to be that the parameterized

eigenvalue curves are much better behaved in the solution region than the parame­

terized determinant curves that are associated with the determinant search methods.

Moreover, the determinant search method requires a factorization of the entire ma­

trix to evaluate the determinant (or its sign) at each step of the search (i.e., at each

successive guess to the solution). In contrast, the Lanczos-based technique only re­

quires matrix vector products to evaluate the eigenvalue curves at each iteration and

the number of matrix vector products required is nearly independent of problem size.

Finally, reliable error estimates for the quality of the approximate solutions to the

discrete problem are readily available.

The implicitly restarted Lanczos method also has been compared with a state of

the art block Lanczos code from the Boeing Computing Services Library [18]. The

tests included a number of problems from the Harwell-Boeing test set and also three
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problems from automotive and aerospace modeling. All of these arise from struc­

tural vibration analysis applications with problem sizes ranging from 800 to over

2,50,000 degrees-of-freedom. Several of these problems involved significant cluster­

ing of eigenvalues. One such problem is BCSSTK25/BCSSTM2,5, which has 15,439

degrees-of-freedom and 3 clusters of 64 eigenvalues involving multiple roots. These

eigenvalues were computed without difficulty when the stiffness matrix was factored

just once and used in regular inverse mode as described earlier. The new method was

comparable to the block Lanczos code on all of the problems and excelled consider­

ably in the large scale cases involving over 50,000 degrees-of-freedom. This method

outperforms the block Lanczos method in these large scale cases because the latter

needs to factor large matrices several times [60]. This example further emphasizes the

advantages of the k-step Arnoldi method for eigenproblems in structural dynamics.



CHAPTER 4

Performance Comparison of the Mixed, h- and

p--Formulations

This chapter presents a performance comparison study of the frequency-dependent

mixed finite element formulation with the conventional finite element method using

h- and p-formulations for free vibration analysis. Performance is defined through

a detailed study of accuracy and computational efficiency in obtaining the natural

frequencies and modes of skeletal systems. The accuracy of the conventional finite

element method, which results in discretization error through use of the approximate

shape functions, is increased using two formulations: the h-formulation, where the

structural model is improved by increasing the model degrees-of-freedom; and the

p-formulation, where the order of polynomial shape functions are increased to better

define element deformation.

4.1 Finite Element Formulations

For the conventional finite element formulations, the polynomial shape functions used

to discretize the continuous problem are derived from the approximate solution to

the governing equations of motion. For the Bernoulli-Euler beam theory, the shape

62
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functions describing bending behavior are derived from a 3rd order polynomial dis­

placement field of the form

(4.1 )

where the superscript h denotes approximation and subscript Pc denotes (conven­

tional) polynomial basis. Shape functions thus obtained are the Hermite polynomials

given by Eq. (2.24). This discretization process results in the element stiffness and

mass matrices of Eqs. (2.25) and (2.26).

For axial vibrations, the conventional formulation uses a linear displacement field

of the form

(4.2)

and the corresponding shape functions and element stiffness and mass matrices are

given by Eqs. (2.19), (2.20) and (2.21). For a general frame element, the bending and

the axial degrees-of-freedom are combined together to give 6 x 6 element stiffness and

mass matrices which are assembled following the standard finite element process to

get the overall system matrices. This results in the following generalized eigenvalue

problem

Kx=.-\Mx (4.:3)

where K is the system stiffness matrix and M is the system mass matrix. Complete

derivation of the matrices of the conventional formulation is presented in Section 2.:3.

In this formulation, stiffness and mass matrices are both frequency independent,

symmetric and positive definite, provided rigid body modes have been eliminated.
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However, as shown in Section 2.3, use of polynomial shape functions inherits dis­

cretization error and the system frequencies are overestimated. This error is partic­

ularly severe for higher-order modes. Exact accuracy is obtained in the conventional

formulation only as the number of degrees-of-freedom approaches infinity, leading to

computational intensity when high accuracy solutions are sought.

In the h-formulation, the discretization error is reduced by successively using an

increasing number of degrees-of-freedom in defining the system. For the present inves­

tigation, discretization is done such that all finite elements modeling any structural

member are of the same length. Thus, in the local coordinate system, all the finite

elements in anyone structural member have the same stiffness and mass matrices.

Furthermore, the form of element matrices remains the same as given by Eqs. (2.2.5)

and (2.26), except for the change in the element length. The first three levels of

additional discretization, referred to as HI, H2 and H3 , correspond to 2, 3 and 4

elements per member, respectively.

In the p-formulation, the finite element approximation is enriched by using higher­

order displacement approximations, by introducing internal nodes. Thus, the conven­

tional polynomial basis given by Eq. (4.1) can be thought of as a p-formulation with

zero internal nodes. For the present investigation, three different levels of enrichments

are studied with 1, 2 and 3 internal nodes, referred to as H, P2 and P3, respectively.

In the PI formulation, the finite element has one additional node at the mid-point,

in addition to the two end nodes; thus, a total of 3 axial and 6 bending degrees-of­

freedom are associated. The axial displacement in a finite element is represented by
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a 2nd order polynomial of the form

(4.4)

and the corresponding bending displacement is represented by a 5th order polynomial

of the form

h ~. b b 2 b 3 b 4 b 5
V p1 = V() + IX + 2X + 3X + 4X + 5X (4.5)

Combining the axial and bending degrees-of-freedom results in a 9 x 9 element stiffness

and mass matrices.

Analogous to the above, the P2 formulations has two internal nodes at 1points

from the element ends and uses 3rd and 7th order polynomials to represent the axial

and bending displacements, respectively. The element stiffness and mass matrices for

a general frame element are of order 12 x 12. Finally, the P3 formulation has three

internal nodes and uses 4th and 9th order polynomials to represent the axial and

bending displacements, respectively. Complete details of all three formulations PI,

P2 and P3 are given in the Appendix A.

For the exact finite element formulation, the shape functions used to discretize

the continuous problem are derived from the exact, frequency dependent solution to

the governing differential equations of motion. Both the system stiffness and mass

matrices derived from this formulation are frequency dependent and the resulting

eigenvalue problem

K(.\)x = .\M(.\)x (4.6)

cannot be solved using conventional numerical techniques. As mentioned before in
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Section 2.2, it is computationally very intensive to evaluate the natural frequencies

and mode shapes from this formulation since a matrix decomposition has to be per­

formed at each iteration of the eigenvalue analysis.

The mixed formulation uses both the exact and the conventional polynomial shape

functions, v~~ and v;c' in formulating the vibration eigenproblem. This formulation is

based on a quasi-static representation of element inertia forces. Exact element inertia

forces are represented using the frequency dependent shape functions; however, the

quasi-static representation based on equivalent load theory allows the displacement

due to the inertia force equivalent loads to be represented using the polynomial shape

function. The resulting eigenproblem

Kx = 'xM('x)x (4.7)

while still nonlinear, is computationally much easier to solve than Eq. (4.6) where

both the system matrices are frequency dependent. Derivation of the matrices of the

mixed formulation is presented in Section 2.4.

Although the preceding paragraphs describe the details of approximating the

transverse displacement v, a completely analogous procedure is used to approximate

the axial deformation u.

4.2 Eigensolution Techniques

Equation (4.:3) is a linear, positive definite, symmetric eigenvalue problem which can

be solved for the system natural frequencies and modes using conventional eigensolu­

tion techniques such as the Lanczos method. However, the eigenproblem of Eq. (4.7)
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has to be solved if exact solutions are sought which are free of discretization error.

In the present study, the frequency dependent eigenproblem is linearized and solved

using a variant of the Lanczos method that has been derived from the more gen­

eral implicitly restarted Arnoldi method developed by Sorensen [.58]. The solution to

the linearized eigenproblem is iteratively updated using a secant based zero finding

technique.

The Lanczos methods works well in engineering dynamics problems for two pri­

mary reasons; only matrix vector products of the system matrices are required, and

the largest and smallest eigenvalues tend to emerge prior to completion of the tridi­

agonalization (which is particularly useful in structural dynamics applications where

typically only the smallest few natural frequencies are desired). The implicit restarted

Lanczos method treats the residual vector at any step of the Lanczos process as a

function of the initial starting vector and iteratively updates the starting vector in a

way that forces the norm of the residual vector to converge to zero.

Mathematical and implementation details of the conventional Lanczos method,

the implicitly restarted k-step Arnoldi method and the secant based zero finder are

presented in Chapter 3.

4.3 Numerical Results

In this section two examples are presented to evaluate the efficiency of the fre­

quency dependent mixed formulation, the dynamic element method, and the h­

and p-formulations of the conventional finite element method. In the first example,

a simple cantilever beam problem is studied to assess the solution accuracy of the



Chapter 4: Performance Comparison of the Mixed, h- and p-Formulations 68

formulations. An eight story portal frame example is studied later to evaluate more

thoroughly both the solution accuracy and computation efficiency of the formulations.

4.3.1 Cantilever Beam Example

A cantilever beam was analyzed using a varying number of finite elements to study the

solution convergence for the various formulations. The eigenvalues obtained are then

compared to the exact theoretical solution. Rotary inertia effects were included for

the elemental mass matrix for the conventional and h-formulations only. Material

and geometric properties of the cantilever beam are: length, 1 = 24 in; cross­

sectional area, A = 0.5 in2
; modulus of elasticity, E = 30 X 106 lb/in2

; moment

of inertia, I = 0.260417 X 10-2 in4 ; and mass density, p = 0.724637 X 10-3 lb/in3
.

Results obtained by Gupta [21] using the DEM formulation, with rotary inertia effects

included, are also presented.

Based on these structural properties and the closed-form solution for natural fre-

quency, the exact theoretical frequencies for this cantilever beam are

(4.8)

(2n - 1)1r/ EI
2 m[2

)
(axial),

- {13317.1, 39951.2, 66585.4, ... } rad/.sec

W n -

and

2mIa --
n Tnl4

- {89.6:3f>l, 561.734, 1572.87, 3082.20 (bending), (4.9)

5095.10,7611.19,10630.5, 14153.0, ... } rad/.sec
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where an is the nth solution to the transcendental equation (1 + cos a . cosh a) = O.

Table 4.1: Natural frequencies for the cantilever beam

Freq. h-formulation p-formulation DEM [21] Mixed
1 89.641 89.635 89.6:36 89.6:35
2 563.480 561.742 561.672 561.7:34
3 1591.90 1573.36 1573.78 1.572.87
4 3583.95 3273.08 3200.20 3082.20
5 6741.77 5699.08 .5801.82 5095.10

Looking at the frequency distribution of Eqs. (4.8) and (4.9), it is apparent that

the seven lowest modes of vibration are all flexural modes, and the first axial mode

corresponds to the eighth system mode. Thus, to define uniquely the contiguous set of

the lowest five mode shapes, a minimum of five bending degrees-of-freedom (or three

finite elements) are needed and used for all analyses here. Table 4.1 presents the

results of the free vibration analyses using the different finite element formulations.

The natural frequencies for the first five modes are computed for a problem size

N = 9 for each formulation. As shown in Table 4.1, the p-formulations gives more

accurate results than the h-formulations, even when rotary inertia effects have not

been included in the former. While the DEM formulation performs better than the

h-formulation, it is less accurate than the mixed formulation, especially for the higher

modes.

Figure 4.1 graphically compares the error percentage for each of the five modes.

The accuracy of the mixed formulation results is clearly greater than that obtained

by the other three formulations.
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4.3.2 Portal Frame Example

Numerical results for a three bay, eight story portal frame originally studied by ref­

erence [27] and shown in Figure 4.2 are presented. The first fifteen natural fre­

quencies are tabulated in Table 4.2 for the conventional, mixed, h-formulation and

p-formulations along with the solutions obtained from reference [27] which is based

on the exact finite element formulation. For the conventional and the mixed for­

mulations, the minimum number of finite elements needed to define the geometry is

used (i.e., one element per member) leading to a 96 degree-of-freedom model. In the

h-formulation, three different discretization patterns are used: HI, with 2 elements

per structural member leading to a 264 degree-of-freedom model; H2 with 3 elements

per member leading to a 432 degree-of-freedom model; and H3 with 4 elements per

structural member leading to a 600 degree-of-freedom model. The p-formulation

uses 1 element per member, but Pt, P2 , and P3 contain 1, 2, and :3 internal nodes,

respectively; thus, Hi and Pi have the same number of degrees-of-freedom. Due to

use of higher-order interpolations, the p-formulation requires internal nodes to rep­

resent the higher-order displacement fields and leads to system matrices with larger

bandwidths.

Referring to Table 4.2, it is seen that, as expected, the conventional formulation

results are an upper bound to the exact results of the mixed formulation and that of

the reference [27]. Furthermore, the higher modes have much larger errors indicat­

ing that the conventional formulation is unable to adequately represent higher-order

element deformations. The mixed formulation solutions agree with the results of
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Table 4.2: First 15 frequencies (rad/sec) for eight story portal frame

Freq. Conv Mixed PI P2 P3 HI H2 H3 Ref. [27]
N 96 96 264 432 600 264 432 600 96
1 11.21 11.21 11.21 11.21 11.21 11.21 11.21 11.21 11.21
2 34.80 34.79 34.79 34.79 34.79 34.79 34.79 34.79 34.79
3 61.79 61.74 61.74 61.74 61.74 61.74 61.74 61.74 61.74
4 92.58 92.41 92.41 92.41 92.41 92.44 92.42 92.41 92.41
5 108.29 104.39 104.39 104.39 104.39 104.62 104.43 104.40 104.39
6 123.01 118.07 118.07 118.07 118.07 118.38 118.13 118.09 118.07
7 127.63 127.16 127.16 127.16 127.16 127.24 127.19 127.17 127.16
8 147.89 142.08 142.09 142.08 142.08 142.55 142.18 142.11 142.08
9 161.45 160.33 160.33 160.33 160.33 160.80 160.43 160.37 160.33
10 165.85 164.77 164.77 164.77 164.77 165.00 164.84 164.80 164.77
11 202.57 176.58 176.71 176.58 176.58 177.88 176.86 176.67 176.58
12 220.90 187.23 187.40 187.23 187.23 188.79 187.57 187.34 187.23
13 231.85 194.76 194.95 194.76 194.76 196.51 195.14 194.88 194.76
14 243.85 198.18 198.27 198.18 198.18 199.12 198.43 198.28 198.18
15 262.42 203.43 203.65 203.43 203.43 204.95 203.84 203.57 203.43
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reference [27] for all fifteen frequencies. The h- and p-formulation results are pro­

gressively better than the conventional formulation results and approach the exact

results as the total number of degrees-of-freedom in the model increases.

Figures 4.3 and 4.4 illustrates the performance comparison between the finite

element formulations in terms of computational time and percent error for the 5th and

15th modes. Comparing hand p curves for both the plots, it is seen that for relatively

low precision requirements (error ~ 0.3 - 0.5%), the h-formulation performs better

than the p-formulation. This is primarily due to the larger bandwidth associated

with the latter formulation. However, as indicated by the slope of the p curves,

the rate of convergence for the p-formulation is much greater than that for the

h-formulation. This is due to the use of the higher-order polynomial shape functions

in the p-formulation. Furthermore, comparing the h-formulation curves in the two

plots of Figures 4.3 and 4.4, shows that the two curves are nearly identical except for

the initial shift. This indicates that the asymptotic rate of convergence is similar for

both low and high frequency modes.

The mixed formulation, with frequency dependent mass matrix, is computation­

ally more intensive and, therefore, uncompetitive when accuracy requirements are

low. However, for moderate and high accuracy requirements, it outperforms all the

other formulations. This method is particularly very cost effective in obtaining higher

modes. For the I.5th frequency, the mixed formulation is about 6 times less intensive

than the p-formulation and more than an order of magnitude less intensive than

h-formulation.
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4.3.3 Discussion of Results

Results and conclusions of the previous section show that the conventional formulation

inherits discretization error, unacceptably large for higher modes. The h-formulation

attempts to reduce these discretization errors by introducing more degrees-of-freedom;

whereas, the p-formulation uses higher-order polynomials to approximate the dis­

placement field in addition to introducing more degrees-of-freedom. For moderate ac­

curacy requirements, the h-for~ulationis more efficient than the p-formulation due

to the increased bandwidth associated with the internal nodes of the p-formulation.

However, for high accuracy requirements, the p-formulation, despite its high band­

width, performs superior to the h-formulation. When very accurate results are

required, the mixed formulation out performs both the h- and p-formulations. Nu­

merical results are presented for a three bay, eight story frame to to support these

conclusions.



CHAPTER 5

Interior Eigenvalue Problem

This chapter discusses application of the implicitly snifted Arnoldi-based eigensolver

for computing the eigenvalues from the interior of the spectrum. In most structural

dynamics analyses, where a structure is subject to natural loadings such as wind

or earthquakes, usually only the lowest few vibrating modes are of interest. The

frequency content of these natural loadings is usually in a range such that the higher

order structural modes cannot be excited. However, there are situations when there

is a need to accurately solve for some set of frequencies that lie in the interior of the

eigenvalue spectrum. A common application is to determine if any of the higher-order

modes of a building are close to some vibrating machinery that might be inside the

building, so as to avoid any possibility of resonance.

5.1 Conventional Formulation

In its simplest form, the interior eigenvalue problem involves determining a set of

eigenvalues Aj and eigenvectors Xj of

(5.1 )

for j - 1, 2, ... ,m such that all the Aj'S are greater than a specified threshold u.

78
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Omitting the subscript j for simplicity, and rewriting Eq. (5.1) in terms of the inverse

of the eigenvalue, results in the standard eigenvalue problem discussed in Chapter :3

which is repeated here for clarity

p(A)X = l(-l~(A)X (5.2)

For the eigenvalue problem of the conventional finite element, a shift and invert

strategy is used that transforms the eigenvalues from the interior of the spectrum to

the ends of the spectrum. Specifically, for some prespecified shift (j, subtracting (j~x

from both sides of Eq. (5.1) gives

[I( - (j~]x = (A - (j)~x

or,

(5.:3)

(5.4)

where jJ, = (A ~ (j) As a result of this transformation, eigenvalues from the interior

that are in the vicinity of the shift (j are the new extreme eigenvalues in the p

spectrum. It should be noted that in the above formulation, the matrix inverse is

used only symbolically. In the numerical implementation, banded matrix factorization

and banded matrix vector multiplication is used in place of inversion.

The shifted stiffness matrix :K = [I( - (j~] may no longer be positive definite

and, thus, the Cholesky factorization cannot be used. Pivoting is required during

factorization to avoid large error growth. The drawback is that pivoting increases the
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bandwidth of the shifted stiffness matrix and the resulting LU factors require three

times as much storage space as the unshifted stiffness matrix, even when factorization

is done in-place.

5.2 Mixed Formulation

For the eigenvalue problem of the mixed formulation the mass matrix is frequency

dependent and, hence, the shifted stiffness matrix, K(A) is also frequency dependent.

This necessitates an LU factorization of the matrix K(A) at each iteration of the solu­

tion procedure. Thus, the simple shift and invert strategy used for the linear interior

eigenvalue problem is computationally very intensive and inefficient for the nonlinear

interior eigenvalue problem associated with the mixed finite element formulation.

An alternate approach is to factor the unshifted stiffness matrix K and shift the

mass matrix. Subtracting uKx from both sides of the inverse eigenvalue problem

results in

It(A)Kx = M(A)X

(It(A) - u)Kx = [M(A) - uK]x

(.5 ..5)

(5.6)

Defining jl(A) = It(A)-U and M(A) = M(A)-O'K results in the shifted eigenproblem

in the form

jl(A)Kx =M(A)X (5.7)
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which is similar to the extreme eigenvalue problem. From an implementation view-

point, we need factor K only once, just as in the case of extreme eigenvalue computa-

tion. Furthermore, since the unshifted stiffness matrix is positive definite, a Cholesky

decomposition, K = LLT , can be used and, thus, Eq. (.5.7) can be transformed into

an equivalent symmetric standard eigenvalue problem. However, in engineering prob-

lems, it is natural to specify a shift value (7 in the A spectrum, whereas the transformed

eigenproblem above requires a shift ij in the Jl spectrum. A simple substitution like

ij = .!. often does not work. In other words, this shift technique does not change the
(7

separation of the eigenvalue spectrum and exhibits poor convergence properties when

used with ARPACK [59].

Another way to overcome this difficulty is to decompose M(A) into A-independent

and A-dependent parts.. In this research, a decomposition of the form

is used for AO = 0 and AO = (7. Substituting Eq. (5.8) into Eq. (5.1) gives

Kx = A[Mo + M1(A)]X

where Mo = M(.Ao). Applying a shift at A = (7,

or,

Jl(A)X = K- 1
• M(A)X

(5.8)

(5.9)

(5.10)

(5.11 )
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where

K - [K - O"Mo]

M(A) - [(1 -~) Mo+Mt(A)]

82

(.5.12)

The above equation avoids the need for an LV factorization at each step of the

iteration, and satisfactory results are obtained for a number of eigenvalues close to

the shift value 0". A slight variation in the above allows a considerable speed up in

convergence for this problem. Defining

A 1
p = (p-t - 0")

and rewriting Eq. (5.10) results in

[K - O"Mo]x - A[(1- ~) Mo+Mt(A)] x

- (A - 0") [Mo + (A ~ O")Mt(A)] x

(A - ,,) [(A ~ ,,)M(A) - (A:") MO] x

or,

jJ,(A)X = K- t . M(A)X

(.5.13)

(5.14)

(5.15)

where M(A) is the shifted frequency dependent mass matrix given by the bracketed

expression on the right hand side of Eq. (5.14). As before, the eigenvalue problem

of Eq. (5.15) requires only one factorization. This property is exploited to make the

zero finder converge very quickly to the intersection of curves jJ,(A) and (A ~ 0")

Figures 5.1 shows the plots of the inverse eigenvalues pj (A) versus the parameter
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,X for axial vibration of a cantilevered rod. Eigenvalues of the frequency depen­
1

dent problem correspond to the intersection points of these curves with the ~ curve.

These points are marked as 'A', 'B', 'e' and 'D' on the graph and correspond to the

first through fourth eigenvalues, respectively, of the unshifted eigenproblem given by

Eq. (5.5). For the same cantilevered rod problem, Figure 5.2 shows the plots of the

{lj('x) curves which are solution to the shifted eigenvalue problem given by Eq. (5.15).

The parameter ,X is varied in the range 0 < ,X < 1.6 which includes the entire range

of interest for the first four eigenvalues for both the unshifted and shifted cases. The

shift value of (1 = 0.4 lies between the second and third eigenvalues. Note that the

shifted problem is singular at the shift point (i.e., {lj('x) curves have a pole at ,\ = (1).

The intersection of the {lj('x) curves with (,X ~ (1) correspond to the eigenvalues of

the shifted problem and are marked by points 'E' and 'F' in Figure 5.2. It should

be noted that points 'E' and 'F' for the shifted problem correspond to the points 'e'

and 'D' for the unshifted problem, respectively.

5.3 Numerical Results

This section presents an example where eigenvalues from the interior of the spectrum

for a two-dimensional frame are computed using the shifted formulation. First a

large contiguous set of natural frequencies of the structure is determined using the

standard eigenvalue formulations presented in Chapter :J with one finite element per

structural member. For the same finite element model eight different shifts are used

to formulate the interior eigenvalue problems. In each shifted case, ten eigenvalues

higher than the specified shift are computed. In all cases, the mixed finite element
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formulation and implicitly shifted Arnoldi method are used. The solution method is

implemented on a DEC 5000 workstation using the libraries and in the environment

described in Section 3.5.

5.3.1 Santa Clara County Building

The Santa Clara County Office Building, designed in 1972 and constructed by 1976,

is a nearly square thirteen story structure consisting of a steel moment resisting frame

with members encased in fire proofing and plaster. The building stands 188 feet in

height with sides each measuring 147.5 feet. This structure has been instrumented for

strong motions since its construction in 1976. Through conventional system identifica­

tion techniques the building's natural modes of vibration have been identified from its

response to several earthquakes. Using the building's blueprints, a two-dimensional

finite element model of the frame number 12, shown in Figure 5.3, was generated.

The two-dimensional model has 140 nodes and 247 general frame elements with

various material and geometric properties. After eliminating the boundary conditions,

the building has 390 degrees-of-freedom. In this study, first the lowest 50 eigenvalues

are determined using the unshifted formulation. Next, a set of eight shifted problems

are solved such that

where i = 1,2"",8 (i.e., ~4 < 0"1 < ~5; ~9 < 0"2 < ~10, etc.). In each shifted

case, all the eigenvalues greater than the shift value and up to the 50th eigenvalue

were computed. Figure 5.4 shows solution times for each of these cases, with curve 1

referring to the shift value 0"1, curve 2 referring to the sh~ft value 0"2, etc. The solution
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--

10 0.) 13 feet

17.5 feet

Figure .5.:3: Two-dimensional model of t.he Santa Clara County Building
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times for the unshifted problem is denoted by the curve marked with '0' points.

5.3.2 Discussion of Results

89

Referring to Figure 5.4, the curves associated with the shifted analyses have a larger

slope (particularly, early in the analysis) than the '0' marked curve associated with

the unshifted analysis. This is due to the additional computational costs associated

with factoring the non-positive definite sh}fted stiffness matrix K and solving trian­

gular system with larger bandwidth. However, if only a few eigenvalues close to the

shift are required, the shifted analyses are more computationally efficient than the

unshifted analysis. When the 0'0 (i.e., unshifted analysis) curve crosses the shifted

analyses curves, it becomes more efficient to extract a contiguous set of eigenvalues

using the unshifted formulation. This threshold where the curves cross becomes larger

for higher-order modes, which is as expected given the time devoted to obtaining the

undesired lower eigenvalues of the unshifted formulation. For example, it is prefer-

able to compute all of the first 10 or 15 eigenvalues using the unshifted formulation of

Chapter 3, rather than AlO through A15 using the shifted formulation with 0'2. Alter-

nately, for 0'5, computing eigenvalues in the range A25' ... ,A30 requires up to 4 times

less time than using the unshifted formulation and computing all the eigenvalues up

This threshold, however, is most likely problem dependent, where the slopes of

these curves and their intersection with the unshifted curve may change depending on

eigenvalue clustering. It should be noted that if a shift is sufficiently close to an eigen­

value, then the solution point, which is the intersection of curves /J,j(A) and (A ~ 0')'

may lie in a region where /J,j(A) is not monotonically increasing (see Figure 5.2). In
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addition, in some instances the safeguarded secant method converges very slowly for

the shifted problem. Therefore, for this example, it is advantageous to use multiple

shifts and compute ouly a few eigenvalues with each shift.





CHAPTER 6

Damped Eigenvalue Problem

The dynamic response of linear systems, such as el.::l.Stic structures subject to seismic

loading, generally is determined using the modal superposition method which is based

on uncoupling the equations of motion for an Norder multi-degree-of-freedom system

into an N set of single degree-of-freedom equations. By performing a free vibration

analysis on a classically damped system, the modal orthogonality properties are used

to uncouple the system of equations. If the structural model cannot be assumed

classically damped, where the damping matrix is represented as a function of the

mass and stiffness matrices, this uncoupling of the multi-degree-of-freedom equations

of motion cannot be performed.

In finite element analysis, the stiffness and mass matrices are derived based on the

expressions for potential and kinetic energy, respectively, where individual element

matrices are assembled to form the system matrices after appropriate coordinate

transformations are performed. However, due to lack of knowledge concerning damp­

ing mechanisms which induce nonconservative forces, it generally is not possible to

derive the damping matrix in a similar way. Most often estimates are made of the

damping ratios associated with the first few lower modes, where these ratios are spec­

ified as a percentage of critical modal damping. If this approach is followed, it is

91
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possible to construct a damping matrix as a function of the stiffness and mass matri­

ces (referred to as proportional damping) such that its use would result in uncoupled

equations when eigenvector orthogonality is considered.

6.1 Introduction

This assumption of proportional damping requires that the damping matrix be or­

thogonal to the free vibration eigenvectors of the structure. In physical terms, this

means that the energy loss mechanism is homogeneous throughout the structure. For

several applications in civil engineering, such as analyses of soil-structure systems,

this assumption is not reasonable and, consequently, the system must be analyzed as

nonclassically damped. In addition, it is possible that the damping matrix is propor­

tional for various substructures of a model, where the proportionality constants vary

from substructure to substructure. Specifically, individual elements may be modeled

as possessing proportional damping that is a function of the element's stiffness and

mass matrices. However, since the proportionality constants vary from one structural

member to another, upon completion of the assembly process. the system damping

matrix is no longer proportional to the system stiffness and mass matrices.

Clough and Mojtahedi [9] presented a procedure for evaluating earthquake re­

sponse of nonproportionally damped structures using a variation of direct integration

of the coupled equations of motions, analogous to the classically damped case. War­

burton and Soni [66] developed a criterion to determine when the response calculated

by proportional damping assumption is unacceptably large. Igusa et al. [29] devel­

oped a modal decomposition methodology for the nonproportionally damped systems
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and gave closed form solutions for the the case of response to a white noise. Singh and

Ghafory-Ashtiany [49] used a complex-valued modal time history analysis to compute

the forced vibration response. Gupta and Jaw [19, 20] presented a response spectrum

method for nonproportionally damped coupled systems.

For a proportionally damped system, the eigenvectors governing the free vibration

response of the undamped system diagonalize the equation of motion governing the

damped system. However, for nonproportionally damped systems, decoupling of the

damped equation of motion requires use of the (complex) eigenvectors associated with

the damped problem; thus, demanding solution of the nonproportionally damped free

vibration problem. Solutions to the uonproportionally damped free vibration problem

usually involve transforming the original quadratic eigenproblem of order N into an

eigenproblem of order 2N. This eigenproblem is nonsymmetric and cannot be solved

using the conventional Lanczos methods.

6.2 Proportional Damping

In finite element analysis, the system stiffness and mass matrices are assembled from

the element stiffness and mass matrices. The element matrices are derived using the

finite element shape functions and using virtual work principles. However, it is gen­

erally not possible to build the element damping matrix in a similar way. Most often

estimates are made of the damping ratios associated with the first few lower modes,

based on previous experience or experimental results. These ratios are specified as

a percentage of critical modal damping. If this approach is followed, it is possible

to construct a damping matrix as a function of the stiffness and mass matrices such
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that its use would result in uncoupled equations in the following way.
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Consider a N - degrees-of-freedom finite element discretization of a structure. The

undamped eigenvalue problem has the form

(6.1 )

where >..?, Xi for i = i, 2, ... , N are the eigenvalues and mass-orthonormalized eigen-

vectors, respectively. By definition, the mass-orthonormality relation gives

{

0 i =I j
XJMXi =

1 i = j

Premultiplyingboth sides of Eq. (6.1) by xJKM~1 gives

(6.2)

x:fKM-1Kx' - >"i(xJKM-I )MXi
3 '

>"?XJKXi
(6.:3)

Ci=lj
-

z=)

The left hand side in Eq. (6.3) can be rewritten as

(6.4)

Substituting Eq. (6.3) into Eq. (6.4) and repeatedly premultiplying Eq. (6.:3) by

xJKM-I, the following family of generalized orthogonality relationships are obtained
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for m = 0, ±l, ±2, ... , ±oo.
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z=)
(6.."i)

A detailed derivation of Eq. (6.5) is presented in Humar [28].

The above generalized orthogonality relationship can be used to construct a damp-

ing matrix in such a way that the modal equations are uncoupled. The simplest case

is mass proportional damping given by

·C = ooM

where 00 is the constant of proportionality. It is easily verified that

(6.6)

xfCXj - ooxTMxjJ

Ci#j
-

z=)
(6.7)

{ 2{~W;
i#j

-
z=)

where ei and Wi are the modal damping and natural frequency for the ith mode. In

the form given by Eq. (6.7), there is one free parameter 00 which can be selected so

as to obtain a desired modal damping in anyone mode. Damping in all other modes

is inversely proportional to the undamped free vibration frequencies. Thus, if the

damping is fixed is at .5% in the first mode, then 00 = 2(0.05) WI and ej = 0.05 (WI) for
Wj

j = 2,3, ... ,n. A second form of proportional damping, called stiffness proportional
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damping, is given by
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(6.8)

in which the damping matrix C is orthogonal to the eigenvectors x/so In this case also,

the one free parameter 0'1 can be selected so as to obtain a desired modal damping in

anyone mode. Damping in any other mode is proportional to the natural frequency

for that mode.

Using the generalized orthogonality relationship given by Eq. (6.5), desired modal

damping can be specified in p modes using the following proportional damping matrix

p

C - E ajM(M-1 K)i
j=O (6.9)

The Rayleigh damping corresponds to truncating the above series at j = 2, thus

including the effects of both the mass proportional and stiffness proportional damping.

6.3 Nonproportional Damping

The energy loss mechanisms which are operative in the response of a structure to

transient loads such as seismic excitations are not well defined, and it is often difficult

to evaluate them precisely. Nevertheless, it is evident that damping has a major

influence on the amplitude of response which may be developed and, thus, damping

must be included in the finite element model of a structure.

In order for the proportional damping assumptions of the previous section to be

valid, it is necessary that the energy loss mechanism be homogeneous throughout
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the structure. In many structures there is a significant variation between energy

absorption rates of materials in different parts of the structure. For example, beam­

column structures in seismic zones are detailed such that plastic hinges are formed

in beams and avoided in columns. This causes the distribution of damping forces

to be quite different from that of the elastic and inertial forces, since a large part of

energy dissipation is provided by formation of plastic hinges and yielding. For a finite

element discretization, this means that the damping matrix C is not proportional to

the stiffness and mass matrices K and M, even in the generalized sense of Eq. (6.9).

It is also possible that the damping matrix is proportional for various substructures

of a model, but the proportionality constants vary from substructure to substructure.

Another important class of problems to which the concept of nonproportional

damping applies is the coupled primary-secondary systems. Typically, the primary

systems (structures) have higher damping values than the secondary systems (inte­

rior substructures). Even if the individual systems are assumed to be proportionally

damped, when they are coupled together, the overall system no longer has propor­

tional damping.

The eigenvalue problem associated with damped free vibration is given by

-X2Mx + -XCx -I- Kx = 0 (6.1O)

Iterative procedures like the Lanczos and Arnoldi methods converge to eigenvalues in

the part of the eigenvalue spectrum with the largest relative gap. For most structural

dynamics problems the eigenvalue spectrum is such that the part with the largest

relative gap also corresponds to the part with the largest magnitude. However, for
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engineering analyses and design, typically the first few eigenvalues with the smallest

magnitude are of greater interest. Thus, it is advantageous to compute the reciprocal

of the eigenvalues. Substituting Il = ±into Eq. (6.10) the equivalent eigenvalue

problem is

Eq. (6.11) is a quadratic eigenvalue problem of size N. Defining

Mx = IlY

and substituting it into left hand side of Eq. (6.11) gives

(6.11 )

(6.12)

o
(6.1:3 )

or, -Cx-y

Equations (6.12) and (6.13) can be combined to give a generalized eigenvalue

problem of size 2N

(6.14)

where I and 0 are N x N identity and zero matrices, respectively. The stiffness

matrix K is symmetric and positive definite. Therefore, the eigenvalue problem of
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Eq. (6.14) is equivalent to

Av = J.Lv

99

(6.15)

where

and

v - C)

(6.16)

(6.17)

Matrix A is real but unsymmetric and, therefore, its eigenvalues J.L and eigenvectors

v will occur in complex conjugate pairs. The implicitly shifted Arnoldi method can

be used to compute the desired eigenvalues.

6.4 Eigensolution Technique

As described briefly in Chapter 1, the basic Arnoldi factorization can be viewed as a

truncated reduction of a matrix A E ~nxn to an upper Hessenberg form, such that

the desired part of the eigenvalue spectrum is contained in the reduced matrix. After

j steps of this process, the factorization is given by

AV·J
(6.18 )

where V j E ~nxj, VJ . V j = Ij, H E ~jxj is the upper Hessenberg matrix, and

fj E ~n is the residual vector. Equation (6.18) can be alternately written as
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where

1
{3 - Ilf·11 and v· - -f·- J J - {3 J.
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(6.19)

(6.20)

(6.21 )

From this representation, it can be seen that Eq. (6.19) is just a truncation of the

complete reduction

A (Hj Gj
)V· )

J {3ete; iIj

where (Vj Vj ) is an orthogonal n x n matrix and Hj is an (n - j) x (n - j) up-

per Hessenberg matrix. The Arnoldi factorization (6.18) can be advanced one step

through sequential application of the following recursive formulas.

(6.22)

(6.2:3)

(6.24)

(6.25)
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£;+1 - W; - V;+1 (:)

= (I - Vj+! \tj~I) Wj

From this development it is seen that

101

(6.26)

(6.27)
AVj+I - Vj+IHj+I + fj+IeJ+I

VJ+Ifj+I - 0

Eigenvalues and eigenvectors of the reduced system are computed by the H QR

method. It should be noted that the above procedure requires repeated formation

of matrix vector product of the form W = Av. This product is formed as outlined

below:

1. Decompose v into VI = v(1 : n) and V2 = v(n + 1 : 2n)

2. Use banded matrix multiplication and banded Cholesky factorization to solve

KWI = -(CVI +V2)

3. Use banded matrix multiplication to form W2 = MV2

4. Recompose WI and W2 into W as w(1 : 2n) = [WI(1 : n), w2(1 : n)]

6.5 Mixed Formulation

In the previous section, all the equations were presented for the conventional fOfl1lU­

lation where both the stiffness and the mass matrices are frequency independent. At
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the element level, the damping matrix is formed from the stiffness and mass matri-

ces using specified proportionality constants. The assembled system damping matrix

remains frequency independent too.

As discussed in Chapter 3, in the mixed formulation, both polynomial basis and

the frequency dependent exact basis are used, and hence the mass matrix is frequency

dependent. This allows for representing inertia forces exactly and eliminates the

discretization error associated with the conventional formulation. For damped free

vibrations, the eigenvalues (frequencies) are complex. Let the complex frequency be

A = Ar + jAi, where j = J=T, then the pseudo undamped natural frequency and

pseudo modal damping are defined as

(6.28)

The frequency dependent shape functions derived in Chapter 2 are used for the

damped free vibration problem with the parameter w replaced by w. Thus, the

parameter band bin Eq3. (2.4) and (2.8) are given as

ffl (6.29)b= -EA

and

1

b= (~~2)4 (6.:30)

The frequency dependent mass matrix M(w) is assembled using the new definition

of the parameters band b. In the mixed formulation for damped free vibration, the
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damping matrix is also frequency dependent and a function of the pseudo undamped

natural frequency. The rest of the assembly process for matrices M(w) and C(w)

remains unchanged. The resulting eigenproblem is given by

where

A(A)

A(A)V(A) = Jl(A)V(A)

[

-K-1C(W) -K

o

-1
]

M(w)

(6.31 )

(6.:J2)

The secant zero finder is used in conjunction with the implicitly restarted Arnoldi

method to compute the eigenvalues and eigenvectors of the nonlineareigenproblem

given by Eq. (6.32). The secant iteration is carried out using the procedure described
1

in Chapter 3, with the exception that IJlAA)1 = 7. The iteration process stops when
w

the values of w used to formulate M(w) and obtained at the end of the Arnoldi process

are within the prescribed tolerance.

6.6 Numerical Results

This section presents examples where the lowest few damped free vibration frequencies

are determined. In the first example, a shear building with a damper is analyzed and

the solution accuracy is verified with the results presented by Veletsos [65]. This

example demonstrates the effect of nonproportional damping. The second example

compares the solution accuracy of the mixed formulation to three different levels of

discretization using the conventional formulation.
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6.6.1 Lumped Parameter Shear Building

104

A three story building frame with a damper in the bottom story (case 1) and top story

(case 2) is presented. The structure is modeled as shear building with uniform story

stiffnesses, k, and with floor masses m, m and ; on floors 1, 2 and 3 respectively.

The damping coefficient c of the dashpot is expressed as c = a (k m) t. The stiffness,

mass and damping matrices are as given below.

K

2 -1 0

k -1 2 -1

o -1 1

1

M - m

1

1

o

1
2

(6.:3:3)

Cca"el - a(km)t o

o

Ccase2 - a (km)t o (6.:34)

Table (6.1) lists the complex eigenvalues and modal damping factors for two dif-

ferent levels of damr;ing, a = 0.5 and 1.0 for each of the two configurations, where

eis the percentage modal damping obtained from the damped free vibration analy­

sis. This example was studied by Veletsos [65] as part of a forced vibration analysis.

Results presented in Table (6.1) match exactly with the results obtained by Veletsos

using library routines from EISPACK. As expected, higher modal damping is ob­

tained when the dashpot is at the top story. Equivalent modal damping in each of

the three modes for both cases are shown in Figures 6.1 and 6.2.
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Figure 6.1: Equivalent modal damping for the damped shear building - case 1
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Figure 6.2: Equivalent modal damping for the damped shear building - case 2
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Table 6.1: Comparison of modal damping factors

Case 1 Case 2
a Mode ,xi ei ,xi ei

1 -0.0420 + 0.5207i 0.081 -0.1836 + 0.5143i 0.336
0.5 2 -0.1724 + 1.4022i 0.122 -0.1940 + 1.3901i 0.138

3 -0.0356 + 1.9159i 0.019 -0.1224 + 1.841Oi 0.066

1 -0.0861 + 0.5313i 0.159 -0.5893 + 0.3619i 0.852
1.0 2 -0.3685 + 1.3425i 0.265 -0.3252 + 1.1173i 0.279

3 -0.0454 + 1.8870i 0.024 -0.0855 + 1.7553i 0.049

6.6.2 Eight Story Frame Building

107

In this section damped free vibration of the three bay, eight story portal frame shown

in Figure 4.2 is considered. This problem was originally studied by Hooper et al. [27]

using the exact finite element formulation for undamped free vibration. The first

ten complex eigenvalues are tabulated in Table 6.2 for the conventional, mixed and

h-formulations, and compared in terms of solution accuracy. For the conventional

and the mixed formulations, the minimum number of finite elements needed to define

the geometry is used (i.e., one element per member) leading to a 96 degrees-of-freedom

model. In the h-formulation, three different discretization patterns are used: HI with

2 elements per structural member leading to a 264 degrees-of-freedom model; H 2 with

3 elements per member leading to a 432 degrees-of-freedom model; and H3 with 4

elements per structural member leading to a 600 degrees-of-freedom model.

As expected, the conventional formulation results are an upper bound to the



Table 6.2: First 10 complex frequencies for eight story portal frame

Conventional Mixed h-brmulations
CI)

""C:l formulation formulation HI H 2 Ha0

:E N=96 N=96 N =264 N =432 N = 600

1 -0.203 + 11.204 i -0.203 + 11.204 i -0.203 + 11.204 i -0.203 + 11.204 i -0.203 + 11.204 i
2 -1.053 + 34.784 i -1.053 + 34.775 i -1.053 + 34.777 i -1.053 + 34.776 i -1.053 + 34.775 i
3 -2.963 + 61.735 i -2.958 + 61.684 i -2.959 + 61.693 i -2.958 + 61.688 i -2.958 + 61.686 i
4 -6.095 + 92.435 i -6.072 + 92.264 i -6.078 + 92.295 i -6.077 + 92.276 i -6.076 + 92.270 i
5 -6.058 + 108.121 i -5.634 + 104.238 i -6.042 + 104.489 i -6.039 + 104.303 i -6.038 + 104.271 i
6 -8.150 + 122.757 i -7.490 + 117.841 i -8.068 + 118.180 i -8.061 + 117.929 i -8.060 + 117.886 i
7 -10.667 + 127.305 i -10.592 + 126.836 i -10.622 + 126.922 i -10.618 + 126.869 i -10.616 + 126.854 i
8 -12.189 + 147.421 i -11.286 + 141.659 i -12.156 + 142.176 i -12.144 + 141.814 i -12.142 + 141.750 i
9 -15.910 + 160.709 i -15.757 + 159.604 i -15.904 + 160.081 i -15.889 + 159.721 i -15.886 + 159.654 i

10 -16.715 + 165.184 i -16.497 + 164.103 i -16.643 + 164.337 i -16.622 + 164.185 i -16.618 + 164.148 i
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exact results of the mixed formulation, and the results obtained from the HI and

H2 formulations. Furthermore, the higher modes have much larger discretization

error indicating that the conventional formulation is unable to adequately represent

higher-order element deformations.

6.6.3 Discussion of Results

Results show that the Arnoldi-based eigensolver can be used effectively to solve the

eigenvalue problem associated with the nonproportionally damped system. A full

reduction of the system, which is computationally very intensive, is not required. In

addition, the unsymmetric version of the implicitly restarted Arnoldi method avoids

use of complex arithmetic, even though the eigenproblem is unsymmetric and the fre­

quencies and mode shapes are complex. T.herefore, this method requires less storage

space and still avoids use of costly complex arithmetic.

It should be noted that for damped free vibration, even the mixed formulation

results are only approximate. For undamped free vibration the frequency dependent

shape functions derived from the exact solution to the governing differential equations

of motion are able to represent the inertia forces exactly. However, that is no longer

the case for the damped free vibration problem due to the presence of the damping

term in the equations of motion. Even with this limitation, the results of the mixed

formulation are more accurate than the conventional formulation, or h-refinements

which involve more degrees of freedom than the mixed formulation. This improve­

ment is due to the frequency dependence of the mass and damping matrices. The

advantages of the frequency dependent mass matrix in being able to represent inertia

forces has been enumerated previously. The new damping matrix C(W) used here
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helps improve the solution accuracy due to its ability to represent varying amounts

of energy dissipated in a finite element. In physical terms, a frequency dependent

damping matrix means that the energy dissipated in each finite element varies with

frequency. This is useful for civil engineering structures as it is believed that more

energy is dissipated at higher frequencies.



CHAPTER 7

Summary and Conclusions

Analysis of civil structures subject to transient loads such as wind forces or earthquake

excitations is a very important part of the overall design process. For frame and truss

structures, the governing partial differential equations of motion are usually derived

based on Bernoulli-Euler beam theory. These equations cannot be solved continuously

in all but some very simple cases. Numerical solution to this problem involves deriving

a mathematical model of the physical system and solving for the characteristics of

this model that are needed in the design process. A free vibration analysis usually is

the first step in the dynamic analysis.

The finite element method is a very valuable and much used technique to formulate

mathematical models of structures. This method uses locally defined shape functions

that are approximate solutions to the governing differential equations, and establishes

the number of equations of motion needed to ~ccurately define the behavior of the

vibrating system. A numerical algorithm is used to solve for frequencies and mode

shapes (eigenvalues and eigenvectors) for free vibration. Thus, the development of

accurate, efficient dynamic models and eigensolution techniques is crucial to free

vibration analysis.

The conventional finite element formulation uses polynomial shape functions and

111
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introduces discretization error that gets progressively worse for higher-order modes.

As a result of this, the mathematical model is stiffer than the physical model, and com­

puted eigenvalues are too high. The discretization error is reduced by h-refinement,

where the number of degrees-of-freedom used to model the structure is increased,

and by p-refinement where higher-order shape functions are used. Once the rigid

body modes have been eliminated, the eigenproblems of the conventional formulation

and h- and p-refinements are linear and the matrices are symmetric and positive

definite.

The exact model uses the (frequency dependent) exact element displacement fields

and, therefore, obtains exact frequencies and modes. Both the stiffness and mass

matrices derived from this formulation are frequency dependent and the resulting

eigenvalue problem is computationally very intensive. The quadratic model a is mod­

ification of this method in that it expands the frequency dependent stiffness and mass

matrices in a Taylor series and retains the terms up to the order of w4
• This process

increases the problem size two fold.

The mixed formulation uses both the polynomial shape functions and the fre­

quency dependent exact shape functions and models the vibrating system quasi­

statically. Inertia forces are represented exactly and the equivalent load theory is

used to compute displacements due to these forces. In this formulation only the

mass matrix is frequency dependent. It is shown that this formulation provides exact

free vibration frequencies and mode shapes for truss and frame type structures. For

the mixed formulation, the eigenvalue problem is nonlinear and requires use of iter­

ative zero finding technique in addition to a linear eigensolver to extract the system

frequencies and mode shapes.
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Mathematically, eigenvalues are roots of the characteristic polynomial, and eigen­

vectors generate a subspace that is invariant with respect to multiplication by the

system matrix. Eigenvalue computation involves reducing down the given problem

into a collection of smaller eigenvalue problems via a set of similarity transforma­

tions. In engineering applications typically only a few eigenvalues, often the lowest

few, are of interest and, thus, a full, dense reduction of the system matrices is not de­

sirable. Lanczos methods have been used extensively to solve large, sparse symmetric

eigenvalue problems. It reduces a given (large) matrix into much smaller tridiagonal

system whose eigenvalues approximate the eigenvalues of the original system. This

process also has a few drawbacks like appearance of spurious eigenvalues and the loss

of orthogonality among the basis vectors.

The implicitly restarted k-step Arnoldi method eliminates the major drawbacks

of the conventional Lanczos method such as loss of orthogonality among basis vectors

and appearance of spurious eigenvalues, by recognizing that the residual vector at

any step of the Lanczos process is a function of the initial starting vector. The

starting vector is iteratively updated using polynomial filters such that the residual

vector converges to zero. This method forms the inner iteration for extracting the

frequencies and mode shapes from the nonlinear eigenproblem of mixed formulation.

A safeguarded secant method is used as the zero finder in the outer iteration to

advance the eigenvalue computation one step further, until convergence.

Numerical examples have been presented to demonstrate the implementation and

advantages of this method. The mixed formulation models the physical system ac­

curately with a minimum number of finite elements, and the nonlinear eigensolution



Chapter 7: Summary and Conclusions 114

technique takes advantage of the unique form of the eigenproblem of this formula­

tion. The eigensolutioll technique presented is well suited to this class of nonlinear

eigenvalue problems 011 several counts and has clear advantages in the large scale

setting over the determinant search methods traditionally used. The parameterized

eigenvalue curves are much better behaved in the solution region than the parameter­

ized determinant curves that are associated with the determinant search methods. It

is demonstrated that for large problems, the present method requires solution times

that are over an order of magnitude less than the time required by the determinant

search methods. Reliable error estimates for the quality of the approximate solutions

to the discrete problem are readily available.

The mixed formulation is extended to model nonproportionally damped structures

for damped free vibration, and the eigensolution technique is modified to solve for the

complex frequencies and mode shapes associated with this model. It is shown that the

mixed formulation, with a minimum number of finite elements, models the vibrating

system more accurately than the conventional formulation and h-refinements.

Finally, the eigensoll1.~ion technique is modified to extract the frequencies for a set

of higher-order modes from the interior of the eigenvalue spectrum without solving

for all the eigenvalues below a given threshold, the shift value. The usual shift and

invert procedure is not very efficient for the eigenproblem associated with the mixed

formulation due to the frequency dependence of the mass matrix, which causes the

shifted stiffness matrix to become frequency dependent as well. A decomposition

approach is used to reformulate the problem in such a way as, to render the shifted

stiffness matrix frequency independent. This eliminates the need to factor a large

non-positive matrix at each step of eigenvalue computation. Results show that the
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modified solution technique can extract eigenvalues from the interior of spectrum of

the nonlinear eigenproblem in an efficient manner.

The research presented in this dissertation shows that mixed formulation effec­

tively models the structure, and the Arnoldi-based eigensolution technique, coupled

with a safeguarded secant zero finder, extracts the desired frequencies and mode

shapes for undamped and damped free vibration efficiently, requiring much less time

than the methods conventionally used. Together this model and solver provide a pow­

erful analysis tool for determining the free vibration behavior (involving low-order and

higher-order modes) of undamped, proportionally damped, and nonproportionally

damped skeletal structures.
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ApPENDIX A

Shape Functions and Element Matrices

A.I Conventional Formulation

• Node Locations: Nodes are located at the element ends 1/ = 0,1 where

1/ = .y is the nondimensional spanwise coordinate.

• Displacement Fields:

• Shape Functions for Axial Vibration:

(A.l )

1 - 1/

1/
(A.2)

• Shape Functions for Lateral Vibration:

Nt 1 - 31/2 + 21/3

N2 - 1(1/ - 21/2 +1/3)

N3 - 31/2 - 21/3

N4 - 1(-1/2 +1/3)

• Element Stiffness and Mass Matrices for Axial Vibrations:

f(e = EA [1 -1]
Pc 1 -1 1

126

(A.:3)

(A.4)
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Me - ml [2 ~] (A.5)pc 6 1

• Element Stiffness and Mass Matrices for Bending Vibrations:

12 61 -12 61

EI 61 412 -61 2[2
Ke -

[3
(A.6)pc -12 -61 12 -61

61 212 -61 4[2

156 221 M -131

ml 221 4[2 131 -3[2
Me - (A.7)

Pc 420 54 131 156 -221

-131 -3[2 -221 4[2
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Figure A.l: Shape functions for the axial, lateral and rotational degrees-of-freedom
for the conventional formulation
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A.2 PI Formulation

• Node Locations: Nodes are located at the element ends TJ = 0,1 and at the

midpoint TJ = ~.

• Displacement Fields:

129

bo + btx + b2 x2

bo+ btx + b2 x2 + b3 x3 + b4 x4 + b5 x5 (A.S)

• Shape Functions for Axial Vibration:

1 - 3TJ + 2TJ2

-TJ + 2TJ2

4(TJ - TJ2)

(A.9)

• Shape Functions for Lateral Vibration:

1 - 2:3TJ2 + 66TJ3 - 68TJ4 + 241]5

1(TJ - 6TJ2 + 1:31]3 - 121]4 + 41]5)

71]2 - 341]3 + 52TJ4 - 241]5

l( _TJ2 + 5TJ3 - 81]4 +41]5)

161]2 - 321]3 + 161]4

1( -8TJ2 + :32TJ3 - 40TJ4 + 16TJ5)

(A.10)

• Element Stiffness and Mass Matrices for Axial Vibrations:

i(e
PI

EA [ ~
:31

-8

1 -8]
7 -8

-8 16
(A.11)

m1 [~1 ~1 ~]
:30

2 2 16
(A.12)
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• Element Stiffness and Mass Matrices for Bending Vibrations:

5092 11381 -1508 2421 -3584 19201

11381 33212 -2421 3812 -8961 320[2

EI -1508 -2421 5092 -11381 -3584 -19201
(A.l:3)Ke -

3513 33212PI 2421 3812 -11381 8961 320[2

-:3.584 -8961 -:3.584 8961 7168 0

19201 32012 -19201 320[2 0 128012

2092 1141 262 -291 880 -1601

1141 812 291 -3[2 881 -1212

inl 262 291 2092 -1141 880 1601Me - -- (A.14)PI 13860 -291 -3[2 -1141 8[2 -881 -1212

880 881 880 -881 56:32 0

-1601 -12[2 1601 -12[2 0 128[2
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for the Pt formulation



Appendix A: Shape Functions and Element MatriceB

A.3 P2 Formulation

• Node Locations: Nodes are located at the element ends.,., = 0,1 and at the

one-third points.,., = !,~.

• Displacement Fields:

132

U;2 - Co + CIX +C2X2 + C3x3

v
h

rn + CI X + C2 X2 +C3 X3 + C4X4 +C5X5 + C6X
6 + C7 X 7

P2 '"'V

• Shape Functions for Axial Vibration:

• Shape Functions for Lateral Vibration:

(A.15)

(A.16)

N1

N2

N3

N 4

N5

N6

N7 -

Ng

1
4(4 - 291.,.,2 + 1691.,.,3 - 4230.,.,4 +5418.,.,5 - 348:3.,.,6 + 891.,.,7)

1
-(4.,., - 44.,.,2 + 193.,.,3 - 432.,.,4 + 522.,.,5 - 324.,.,6 + 81.,.,7)
4
1
4(48.,.,2 - 476.,.,3 + 1800.,.,4 - 3231.,.,5 + 2754.,.,6 - 891.,.,7)

1
4( _4.,.,2 + 40.,.,3 - 153.,.,4 + 279.,.,5 - 243.,.,6 + 81.,.,7)

~(972.,.,3 - 4860.,.,4 + 8991.,.,5 - 7290.,.,6 + 2187.,.,7)
4

~(-108.,.,2 + 864.,.,3 - 2619.,.,4 + 3807.,.,5 - 2673.,.,6 + 729.,.,7)

1 '
4(243.,.,2 - 2187.,.,3 + 7290.,.,4 - 11178.,.,5 +8019.,.,6 - 2187.,.,7)

i( _54.,.,2 + 513.,.,3 - 18367]4 + :3078.,.,5 - 2430.,.,6 + 729.,.,7)
4

(A.17)
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• Element Stiffness and Mass Matrices for Axial Vibrations:

148

EA -13
401 -189

.54

-13

148

.54

-189

-189

54

432

-297

.54

-189

-297

4:32

(A. IS)

ml
1680

128

19

99

-36

19

128

-36

99

99

-:36

648

-81

-36

99

-81

648

(A.19)

• Element Stiffness and Mass Matrices for Bending Vibrations:

EI
6160[3

3994320

5.537401

-746625

726001

-841995

13632301

-2405700

6415201

-841995

-2187001

-2405700

2624401

7085880

9185401

-3838185

1640250/

5537401

98512[2

-726001

6893[2

-2187001

148959[2

-2624401

66096[2

13632301

148959[2

-6415201

66096[2

9185401

723168[2

-16402501

490617[2

-746625

-726001

3994320

-5537401

-2405700

-6415201

-841995

-13632301

-240.5700

-2624401

-841995

2187001

-3838185

-16402501

7085880

-918.5401

726001

6893[2

-5.537401

98.51212

2624401

66096[2

2187001

14895912

641.5201

66096[2

-1 :36:32301

148959[2

16402.501

490617[2

-918.5401

72:316812

(A.20)



Appendix A: Shape Functions and Element Matrices 134

339312 105201 23034 -14961

105201 41612 14961 -9012

23034 14961 339312 -105201

ml -14961 -9012 -105201 41612

Me -
86670 51841 82944 -45361P2 3843840

-331561 -156612 110161 -43212

82944 45361 86670 -51841

-1l0161 -43212 331561 -156612

(A.21 )
86670 -:331561 82944 -1l0161

51841 -156612 4.5361 -4:32[2

82944 110161 86670 3:31561

-45361 -43212 -51841 -156612

944784 -174961 275562 -87481

-174961 1555212 87481 6:31812

27.5562 87481 944784 174961

-87481 6318[2 174961 15.5.5212
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Figure A.3: Shape functions for the axial, lateral and rotational degrees-of-freedom
for the P2 formulation
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A.4 P3 Formulation

• Node Locations: Nodes are located at the element ends." = 0,1 and at the

quarter- and mid-points." = ~,~~.

• Displacement Fields:

136

(A.22)
• Shape Functions for Axial Vibration:

N1 ~(3 - 25." + 70.,,2 - 80.,,3 + 32.,,4)

1
N2 "3( -3." + 22.,,2 - 48.,,3 + 32.,,4)

1
N3 "3(48." - 208.,,2 + 288.,,3 - 128.,,4)

1
N4 - "3(-36." + 228.,,2 - 384.,,3 + 192.,,4)

N 5 ~(16'" - 1127]2 + 2247]3 - 1287]4)

• Shape Functions for Lateral Vibration:

N 1 = 2
1
7(27 - 4365.,,2 + 403107]3 - 1717247]4 + 4162007]5

-607360.,,6 + 5286407]7 - 2529287]8 + 512007]9)

N 2 2
1
7 (277] - 4507]2 + 31357]3 - 119407]4 + 272767]5

-384007]6 + 326407]7 - 1.53607]8 + 3072.,,9)

N3 - 2
1
7(4777]2 -74467]3 +475167]4 -1607127]5

+3119367]6 - 3484167]7 + 2078727]8 - 51200.,,9)
1

N4 27 (-277]2 + 42:37]3 - 27127]4 + 92287]5

-180487]6 + 203527]7 - 122887]8 + a072.,,9)

(A.2:3)

(A.24)
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1 .'
N5 - 27(-4608772 + 86016773 - 541184774 + 1682432775

-2914304776 + 2871296777 - 1507328778 + 327680779)
1

N6 - 27 (-1728772 + 21888773 - 113088774 + 311808775

-498432776 + 463872777 - 23:3472778 + 491.52779)
1 '

N7 - 27 (3888772 - 49248773 + 238896774 - .566784775

+ 705024776 - 442368777 + 110592778)

N8 2
1
7(-1944772 + 28512773- 168696774 + 522288775

-919296776 + 926208777 - 497664778 + 110592779)

N9 - 2
1
7(4608772 - 69632773 + 426496774 - 1371136775

+2504704776 - 2609152777 + 1441792778 - 327680779)

NlO - 2
1
7(-576772 + 88:32773 - .55104774 + 181248775

-340224776 + 365568777 - 208896778 + 49152779)

• Element Stiffness and Mass Matrices for Axial Vibrations:

(A.24)

- . EA
K;3 - 9451

4925

347

-6848

3048

-1472

347

4925

-1472

3048

-6848

-6848

-1472

16640

-14208

5888

3048

3048

-14208

22320

-14208

-1472

-6848

5888

-14208

16640

(A.25)

ml
.5670

292

-29

296

-174

56

-29

292

56

-174

296

296

56

1792

-384

256

-174

-174

-384

1872

-:384

56

296

2.56

-:-:384

1792

(A.26)
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• Element Stiffness and Mass Matrices for Bending Vibrations:

138

7129230844 6913045741 -959155196 642682861 3929022464

6913045741 8537173212 -642682861 419639412 1576919041

-959155196 -642682861 7129230844 -691:3045741 -566,rj202176

642682861 419639412 -6913045741 8,537173212 4229160961

3929022464 1576919041 -5665202176 4229160961 232:35:395584
Ke = a

24500920321 19240704012 -8361492481 5979801612 39329464321P3

-44:3389,5936 -3618120961 -4433895936 3618120961 -44:378:35776

24009:350401 18116524812 - 24009350401 18116,5248[2 685891,58401

-5665202176 -4229160961 3929022464 -1576919041 -17061 :380096

8361492481 5979801612 - 24,500920321 19240704012 :34988:359681

24500920321

19240704012

-8361492481

59798016[2

39329464321

119866982412

- 204805:32481

1447538688[2

-349883,59681

602652672[2

where

-4433895936

-3618120961

-4433895936

:3618120961

-44:37835776

-20480532481

17743463424

o
-4437835776

20480,532481

24009350401

181165248[2

- 24009350401

181165248[2

685891,58401

1447538688[2

o
2,572985088[2

-68589158401

14475:38688[2

-5665202176

-4229160961

3929022464

-1576919041

-17061380096

-34988359681

-44:378:35776

-68589158401

23235395.184

-39:329464321

8361492481

59798016[2

- 24.100920:321

192407040[2

349883.19681

6026.12672[2

20480532481

1447.5:3868812

-39:329464:321

119866982412

(A.27)

EI
a = ----:-:-

364864513
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Figure A.4: Shape functions for the axial, lateral and rotational degrees-of-freedom
for the P3 formulation
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A.5 Mixed Formulation

• Node Locations: Nodes' are located at the element ends ry = 0,1.

141

• Displacement Fields: The mixed formulation uses two sets of displacement fields:

the polynomial displacement fields given by Eq. (A.l), and the frequency dependent

displacement fields U e and Ve based on the exact solution to the governing differential

equations of motion.

eo cos bx +e1 sin bx

eo cos bx + e1 sin bx + e2 cosh bx + e3 sinh bx
(A.29)

_r;;;:Ji
where b - VEA and

• Shape Functions for Axial Vibration: The polynomial based shape functions

given by Eq. (A.2) and the frequency dependent shape functions

(0)
sin(Ory)

cos ry - 0
tan

sin(Ory )
sin 0

vw2m12
where 0 = EA'

(A.:30)

• Shape Functions for Lateral Vibration: The polynomial based shape functions

given by Eq. (A.3) and the frequency dependent shape functions

N1e - 2~ ( C1 cos(<pry) - C2sin(<pry) +C3cosh( <pry) +C2sinh( <pry) )

N2e - 2~~ ( C4 cos(<pry) +C3 sin(<pry) - C4 cosh(<pry) +C1 sinh(<pry) )

N3e - 2~ ( Cs cos(<pry) + C6 sin(<pry) - Cs cosh(<pry) - C6 sinh( <pry) )

N4e - 2~~ ( C7 cos( <PTJ) + Cs sin( <pry) - C7 cosh(<pry) - C"s sinh( <pry) )

. (A.:31)



Appendix A: Shape Functions and Element Matrices 142

where

1

4> (W~~14) i-

~ - (1- cos¢>cosh¢»

C1 - 1 +sinh ¢> sin ¢> - cosh ¢> cos ¢>

C2 sinh ¢> cos ¢> + cosh ¢> sin ¢>

C3 1 - sinh ¢> sin 4> - cosh ¢> cos ¢>
(A.:32)

-
0 4 - cosh ¢> sin ¢> - sinh 4> cos ¢>

Cs - cos ¢> - cosh ¢>

C6 - sin ¢> +sinh ¢>

C7 - sinh ¢> - sin ¢>

• Element Stiffness and Mass Matrices for Axial Vibrations:

j(e - EA [ 1 ~1 ]e 1 -1
(1 cosO)

(Os:n 0 - ;2)02 0 sin 0
Me mle

(Os:n 0 - ;2) (1 COSO)
02 0 sin 0

• Element Stiffness and Mass Matrices for Bending Vibrations:

12 61 -12 61

EI 61 412 -61 2[2
Ke - [3e -12 -61 12 -61

61 2[2 -61 412

Mn M12 M13 M14

Me ml M21 M22 M23 M24
-

2~
e M31 M32 M33 M34

M 41 M42 M43 M44

(A.:3:3)

(A.34)

(A.35)

(A.:36)
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where
- C1/t - C2!2 + C3h + C2!4

1
4> (C4 /t +C3h - C4h +Ct!4)

- CS!l +C6!2 - Csh - C6 !4
1

4> (C7/t +Csh - C7h - CS!4)

C1!s - Cd6 + C3h + C2!s
1

4> (C4!s +C3!6 - C4h +ct!s)

- Cs!s +C6!6 - Csh - C6!s
1

- 4> (C7!s + CS!6 - C7h - Cs/s)

C1!9 - C2!to +C3!11 +Cd12
1

4> (C4!9 + C3!to - C4!11 + Ct!12)

CS!9 +C6!to - CS!11 - C6!12
1

4> (C719 + Cs!to - Cd11 - CS/t2)

C1/t3 - C2!14 + C3!lS +C2!16
1

- 4> (C4 f13 + C3/t4 - C4/ts + Ct!16)

CS/t3 +C6!14 - Cs/ts - C6!16
1

- 4> (C7!13 + CS!14 - C7!lS - CS/t6)

(A.:37)

and

/t -
12 6 sin <p 12 cos <p

<p4 <p3 <p4

1 6 6cos<p 12sin<p
4> + <p3 - <p3 - <p4

12 6 sinh <p 12 cosh <p
<p4 <p3 <p4

(A.:38)

1 6 6 cosh <p 12 sinh <p
h - - 4> + <p3 - <p3 - <p4
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15 1 (~ _ ~ _ 2sin </> _ 6cos </> )
</>4 </>2 </>3 </>4

16 1( -.£ 2cos </> _ 6sin </> )
</>3 + </>3 </>4

17 1(~ ~ 2sinh </> _ 6cosh </»
</>4 + </>2 + .</>3 </>4

Is 1 ( -.£ 2cosh </> _ 6sinh </»
</>3 + </>3 </>4

19
12 sin</> 6sin</> 12cos</>
</>4 +~ + </>3 + </>4

110
6 cos </> 6cos </> 12 sin </>

- </>3 - -</>- - </>3 + </>4

12 sinh </> 6sinh </> 12 cosh </> (A.:38)
111 - </>4 + -</>- - </>3 + </>4

112
6 cosh ¢ 6 cos </> 12 sinh </>

- - </>3 + </> - </>3 + </>4

113 1 (~ cos </> _ 4 sin </> _ 6cos </> )
</>4 + </>2 </>3 ¢4

114 1 (~ sin </> 4 cos </> _ 6sin ¢)
¢3 + ¢2 + </>3 </>4

115 1 (~ _ cosh </> 4 sinh </> _ 6 cosh ¢)
</>4 ¢2 + ¢3 </>4

116 - 1 (~ _ sinh </> 4 cosh </> _6 sinh ¢)
¢3 </>2 + ¢3 </>4





ApPENDIX B

Taylor Series Expansion of the Frequency

Dependent Matrices

B.1 The Dynamic Stiffness Matrix

The dynamic stiffness matrix for lateral vibrations is derived in Section 2.1 from the

exact harmonic solution to the governing partial differential equation of motion and

IS gIven as

b2(c8 +8C) bs8 -b2(s +8) -b(c - C)

b88 (sC - c8) b(c - C) (8 - s)
D B

-b2(s +8) b(c - C) b2 (c8 + sC) -bsS'

-b(c - C) (8 - "') -bs8 (,c;C - c8)

where,
1

bEl
b C~~2) 4 B

(1 - cos hI cosh hI)

s sin bi 8 sinh bi

c cos bI C cosh bI

(B.1 )

(B.2)

subject to the condition that (I-cos bl cosh bl) i- O. For series expansion, it is better to

145
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2 4 t
work with the nondimensional variable ¢> = (w E~i ) . The first step in this analysis

is to write the Taylor series expansion about ¢> = 0 for elementary trigonometric and

hyperbolic functions as given below.

sin hi - sin ¢>
¢>3 ¢>5 ¢>7 ¢>9

¢> - 6" + 120 - .5040 + 362880

¢>11
39916800 +O(¢>13)

sinh hi - sinh ¢>
¢>3 ¢>5 . ¢>7 </J9 </J11.. 13

¢> +6" + 120 + .5040 + 362880 + ;39916800 +O( </J )

cos hi cos ¢>
¢>2 ¢>4 ¢>6 ¢>8 ¢>10 ¢>12 13 (8.:3)

1 - "2 + 24 - 720 + 40320 - ;3628800 + 479001600 +O( ¢> )

cosh hi - cosh ¢>
¢>2 ¢>4 ¢>6 ¢>8 ¢>10 ¢>12 0 '13

1 + "2 + 24 + 720 + 40320 + 3628800 + 479001600 + (<P )

~ - (1 - cos ¢> cosh ¢>)
¢>4 ¢>8 ¢>12 . 13
6" - 2.520 + 7484400 + O( ¢> )

Substituting the above elementary series into Eq. (8.1) gives the following power

series expressions for each element of the 4 x 4 dynamic stiffness matrix.

D11 - e: (t )3(cos¢> sinh ¢> + sin ¢> cosh ¢»

12 El 1:3 EI ¢>4 59 EI ¢>8 .551 EI ¢>12 13
-13- - 3513 16170013 794593800 [3 +O( 1> )

D12 e: (t)2(sin ¢> sinh ¢»

6 EI 11 El ¢>4 223 EI ¢>8 3547 EI ¢>12
r - 210 J2 - 2910600 J2 - 2:3837814000 J2 +O( ¢>13)

(8.4)
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- - ~ (t)3(Sin 4> +sinh 4»

-12 BI 9 EI 4>4 1279 EI 4>8
13 70 13 3880800 13

5801 EI4>12
847566720013 + O( 4>13)

3547 EI 4>12
2383781400012 + O( 4>13)

EI 4> 2
- -~(1) (cos 4> - cosh 4»

6 EI 1:3 EI 4>4 1681 EI4>8 1126:31 EI4>12 13
- [2 + 42012 + 2328480012 + 76281004800012 + O( 4> )

D21 - ~(t)2(sin4>sinh4»
6 EI 11 EI 4>4 223 EI 4>8--- 12 210 12 2910600 [2

D22 - ~ (t)(sin 4> cosh 4> - cos 4> sinh 4»

4 EI EI4>4 71 EI4>8 127 EI 4>12 13
- -1- - 1051 - 436,5900 1 :3972969000 1 + O( 4> )

EI 4>- ~(l )2(COS 4> - cosh 4»

-6 EI 13 EI 4>4 1681 EI4>8
P 420 12 23284800 12

112631 EI4>12 13
762810048000 P +O( 4> )

(B.4)

D24 - ~ (t)(sinh 4> - sin 4»

2 EI EI 4>4 1097 EI 4>8 899 EI 4>12 . 13
- -/- + 140 1 + 69854400 1 + 282,52224000 1 + O( 4> )

- - ~ (t)3(sin 4> +sinh 4»

-12 EI 9 EI 4>4 1279 EI 4>8
13 70 13 3880800 13

EI(4) 2- ~ 1) (cos 4> - cosh 4»

-6 EI 1:3 EI 4>4 1681 EI4>8
/2 420 P 2:3284800 12

5801 EI4>12
847566720013 + O( 4>13)

1126:31 EI 4>12
762810048000/2 + O( 4>13)
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D33 - e: (t )3(cos </> sinh </> + sin </> cosh </»

12 EI 13 EI </>4 ,59 EI </>8 551 EI </>12 0 13
-13- - 35 13 161700 13 794593800 13 + (</> )

EI( </»2( . . hD34 - - ~ 7 S111 </> S111 </>)

-6 EI 11 EI </>4 223 EI </>8 3547 EI </>12 O( 13)
[2 + 210 [2 + 2910600 [2 + 23837814000 [2 + </>

EI </»2(D41 - ~ (7 cos </> - cosh </»

6 EI 13 EI </>4 1681 EI </>8 112631 EI </>12 O( 13)
- P + 420 [2 + 23284800 [2 + 762810048000 [2 + </>

D42 - e:(tHsinh</>-sin</»

2 EI EI </>4 1097 EI </>8 899 EI </>12 O( 13)
-z- + 140 Z + 69854400 Z+ 28252224000 Z+ </>

D43 - - ~(t)2(sin</>sinh</»

-6 EI 11 EI </>4 223 EI </>8 :3547 EI </>12 O( 13)
[2 + 210 [2 + 2910600 [2 + 23837814000 [2 + </> .

D44 - ~ (t Hsin </> cosh </> - cos </> sinh </»

4 EI EI </>4 71 EI </>8 127 EI </>12 O( 13)
- -Z- - 105 Z - 4365900 Z 3972969000 Z+ </>

(B.4)

Note that the first term in the above power series expansion is constant for all elements

of the dynamic stiffness matrix. Furthermore, the matrix formed by the constant

terms is exactly the same as the stiffness matrix of the conventional formulation

given by Eq. (A.6). Hence, for </> = 0 (i.e., w = 0) the dynamic stiffness matrix

reduces to the polynomial based conventional stiffness matrix.
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B.2 The Mixed Formulation Mass Matrix

In the mixed formulation both the polynomial based shape functions and frequency

dependent shape functions are used to form the mass matrix. The general form of this

matrix for lateral vibrations is given by Eq. (A.37). Each element of the 4 x 4 mixed

formulation mass matrix is expressed in terms of some of the parameters C1 through

0 7 and /1 through /16, Using the tri~onometricand hyperbolic series of Eq. (8.:3),

the power series for these parameters are derived as below.

C1 - 1 + sinh </1 sin </1 - cosh </1 cos </1
2 </14 </16 </18 </110 </112 13

- </1 +6" - 90 - 2)j20 + 113400 + 7484400 + 0(</1 )

C2 - sinh </1 cos </1 + cosh </1 sin </1
. </1S </19 13

- 2</1 - 15 + 11340 +0(</1 )

C3 - 1 - sinh </1 sin </1 - cosh </1 cos </1
2 </14 </16 </18 </110 </112 13

- -</1 +6" + 90 - 2520 - 113400 + 7484400 +O( </1 )

C4 - cosh </1 sin </1 - sinh </1 cos </1
2 </13 </17 </111 13 (8.5)

- 3 - 315 + 623700 + 0(</1 )

Cs cos </1 - cosh </1
</16 </110

- </12 O(</113)
- - 360 - 1814400 +

C6 - sin </1 +sinh </1

- 2 </1</1S </19 O(</113)
+ 60 + 181440 +

C7 - sinh </1 - sin </1
</13 </17 </111 13
"3 + 2520 + 199.58400 + O( </1 )
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12 6 sin 4> 12 cos 4>
4>4 4>3 4>4

1 14>2 14>4 14>6 14>8 14>10
- 2 - 30 + 1120 - 75600 + 7983360 1210809600

14>12
+ 249080832000 + O( 4>13)

1 6 6 cos 4> 12sin4>
h - ~ + 4>3 - 4>3 - 4>4

3 14> 14>3 14>5 14>1 14>9
- 20 - 168 + 8640 - 739200 + 94348800

14>11
-16765056000 +O( 4>13)

h -
12 6 sinh 4> 12 cosh 4>
4>4 . 4>3 4>4

1 14>2 14>4 14>6 1¢8 14>10
- 2+ :30 + 1120 + 75600 + 798:3360 + 1210809600

14>12
+249080832000 +O( 4>13)

1 6 6 cosh 4> 12 sinh 4>
14 - - ~ + 4>3 - 4>3 - 4>4

3 14> 14>3 14>5 14>1 14>9
- 20 ~ 168 + 8640 + 739200 + 94348800

14>11
+167650.56000 + O( 4>13)

12 [24>2 [2 4>4 [2 4>6 [2 4>8 [2 4>10

- 12 - 120 + 4032 - 259200 + 26611200 3962649600

124>12
+804722688000 +0 (4>13)

(8.6)
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1'6 1(~ 2 cos <jJ _ 6sin <jJ)
JI - <jJ3 + <jJ3 <jJ4

[2 <jJ 12<jJ3 12 <jJ5 12 <jJ7 12<jJ9

- 30 - 630 + 30240 - 2494800 + 311351040

12<jJII
- 54486432000 + O( <jJI3)

f7 1(~ ..!... 2 sinh <jJ _ 6 cosh <jJ)
- <jJ4 + <jJ2 + <jJ3 <jJ4

12 [2 <jJ2 [2 <jJ4 12<jJ6 12 <jJs [2 <jJIO

12 + 120 + 4032 + 259200 + 26611200 + 3962649600

12 <jJI2
+804722688000 + O(<jJI3)

's 1(~ 2 cosh <jJ _ 6 sinh <jJ)
J: - <jJ3 + <jJ3 <jJ4

[2 <jJ 12 <jJ3 12 <jJ5 12 <jJ7 [2 <jJ9 (B.6)

- 30 + 630 + 30240 + 2494800 + 311351040

12<jJll
+54486432000 +O(<jJI3)

12 sin <jJ 6 sin <jJ 12 cos <jJ
<jJ4 +~ + <jJ3 + <jJ4

1 21<jJ2 51<jJ4 1<jJ6 l<jJs I<jJIO

- "2 -15 + 672 - 5400 + 380160 41277600

1<jJI2
+6386688000 +O( <jJI3)

6 cos <jJ 6 cos <jJ 12 sin <jJ
Ito - - <jJ3 - -<jJ- - <jJ3 + <jJ4

71<jJ 1<jJ3 11 1<jJ5 13 1<jJ7 1<jJ9
- 20 - 28 + 8640 - 554400 + 3773952

171 <jJll
- 8382.528000 +O(<jJI3)
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12 sinh 4> 6 sinh 4> 12 cosh <jJ
Itt - - <jJ4 + -<jJ- - <jJ3 + <jJ4

1 21<jJ2 .51<jJ4 1<jJ6 1<jJ8 l<jJtO
- 2+15 + 672 + 5400 + 380160 + 41277600

1<jJ12
+6386688000 +O( <jJ13)

6 cosh 4> 6 cos 4> 12 sinh <jJ
1t2 - - <jJ3 + <jJ - <jJ3 + <jJ4

714> 14>3 111 <jJ5 131 <jJ7 1<jJ9
- 20 + 28 + 8640 + .554400 + 3773952

171<jJll .13

+ 8382528000 + O( <jJ . )

113 1(~ cos 4> _ 4 sin <jJ _ 6 cos <jJ)
- <jJ4 + <jJ2 4>3 <jJ4

_12 Z2 4>2 12<jJ4 Z2 <jJ6 [2 <jJ8 [2 <jJ1O
- 12 +~- 1344 + 64800 - 5322240 + 660441600 (B.6)

[2 <jJ12
- 114960384000 + O(<jJ13)

I t4 1(~ sin 4> 4 cos <jJ _ 6 sin <jJ)
- <jJ3 + 4>2 + <jJ3 <jJ4

[24> Z2 <jJ3 124>5 Z2 <jJ7 [2 <jJ9

- - 20 + 252 - 8640 + 554400 - 56609280

[2 <jJll
+8:382528000 +O(<jJ13)

1(
~ _ cosh <jJ 4 sinh <jJ _ 6 cosh <jJ)

It5 - <jJ4 <jJ2 + <jJ3 <jJ4

_12 12<jJ2 12<jJ4 Z2 4>6 12<jJ8 [2 <jJI0
- ----------

12 60 1344 64800 5322240 660441600

[2 <jJ12

114960:384000 + O( <jJ13)
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116
I (~ _ sinh <jJ 4 cosh <jJ _ 6 sinh <jJ)

- <jJ3 <jJ2 + <jJ3 <jJ4.

12<jJ 12<jJ3 12<jJS 12<jJ7 Z2 <jJ9
- - 20 - 252 - 8640 - 554400 56609280 (8.6)

12<jJll
8382528000 +O(<jJ13)

Substituting the power series expressions for C1 through C7 and It through !16 into

Eq. (A.37), and simplifying and regrouping equal powers of <jJ gives the power series

expansion of the mass matrix.

ml
Mil - (2Ll) (C1!1 - C2h +C3h + C2!4)

131m 59/m<jJ4 551lm<jJ8 13
- 3'5 + 161700 + 794593800 +O( <jJ )

M1e2

ml I
- (2Ll)~ (C4!1 +C3h - C4h +Cd4)

11 P m 223 P m <jJ4 354712m <jJ8
-

210 + 2910600 + 23837814000

4215149/2m <jJ12
+14228886527856000 +O(<jJ13)

Mi3
ml (8.7)

- (2Ll) (CS!l +C6h - C5 !3 - C6!4)

9/m 1279/m<jJ4 5801/m<jJ8
- -ro-+ 3880800 + 8475667200

4173292731 m <jJ12 13

+303549579260928000 +O(<jJ )

Mi4
ml I

- (2Ll)~ (G7!1 +CS!2 - C7!3 - CS!4)

-13/2m 1681 Pm <jJ4 11263112m tjJ8
-

420 23284800 762810048000

4146091112m <jJ12
-140099805812736000 + O(<jJ13)
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M21
ml

- (2~) (Cds - C2/ 6 + C3h + C2/ S)

1112 m 223 j2 m </>4 354712 m </>s
- 210 + 2910600 +23837814000

4215149 j2 m </>12 13
+ 14228886527856000 + O( 1> . )

M22
ml I

- (2~)~ (C4/ S + C3/ 6 - C4h + Cds)

13m 7113m1>4 12713m1>S
- 105 + 4365900 + 3972969000

20403571 [3 m </>12
+ :320149946876760000 + O(1>13)

M23 - (:~) (Cs/ s + C6 / 6 - Csh - C6 / S)

13 j2 m 1681 j2 m 1>4 112631 [2 m 1>S
(B.7)- 420 + 23284800 + 762810048000

4146091112m 1>12
+ 140099805812736000 + 0(1)13)

M24
ml 1

- (2~)~ (Cds + CS/ 6 - C7h - Cs!s)

- (13 m ) 1097 [3 m 1>4 899 [3 m 1>S
---

140 69854400 28252224000

5220181117[3m</>12 . 13
81958386400450560000 + O( 1> )

M31
ml

- (2~) (C119 - C2/ 1O + C3/ 11 + Cd12)

9 1m 12791 m 1>4 5801 1Tn 1>8
- ~ + 3880800 + 8475667200

417:3292731 m 1>12 . 13
+ 303549f579260928000 + O( 1> )
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ml 1
M32 - (2~)~ (C4!9 +C3!10 - C4!n +C1/t2)

1312m 168112m 4>4 11263112m 4>8
- 420 + 23284800 + 762810048000

4146091112m 4>12
+140099805812736000 +0(4)13)

ml
M33 - (2~) (CS!9 +C6!10 - Cs!n - C6!12)

131m 591m4>4 5511m4>8
- 35 + 161700 + 794593800

7536891 m 4>12 13
+547264866456000 +O( 4> )

ml 1M34 (2~)~ (C7 fg +Cs/to - Cdn - CS!12)

-11 [2m 22:312m 4>4 :3547 [2 m 4>8
(B.7)-

210 2910600 2:3837814000

421514912m 4>12
-14228886527856000 +O( 4>13)

ml
M:1 - (2~) (Ctf13 - Cd14 +C3!1S +Cd16)

-1:312tn 1681 [2 m 4>4 1126:31 12 rn 4>8
-

420 2:3284800 762810048000

4146091112m 4>12 . 13
-140099805812736000 +0(4) )

ml 1M:2 - (2~)~ (C4/t3 +C3!14 - C4!1S +C1!16)

- (13m) 109713m 4>4 899 [3 m 4>8
-

140 69854400 28252224000

5220181117 [3 m 4>12 13
- 81958:386400450560000 +O( 4> )
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Mi3
ml

- (2~) (CS!I3 +C6!I4 - CS!IS - C6!I6)

-1l12 m 223 J2 m <jJ4 :3547 J2 m <jJ8
-

210 2910600 2:38:37814000

4215149/2m <jJI2
14228886527856000 +O(¢JI3)

ml 1 (8.7)
Mi4 (2~)¢; (CdI3 +CS!I4 - CdIS - CS!I6)

[3 m 71[3 m <jJ4 127 [3 m <jJ8
- 105 + 4:365900 + :3972969000

20403571 [3 m <jJI2
+320149946876760000 +O(<jJI3)

From Eqs. (B.4) and (8.7) it is seen that the final power series expressions for both

the dynamic stiffness matrix and the mixed formulation mass matrix involve on ¢J4n

( )

1 ( )nw2m[4 'i m[4
terms. As defined before, <jJ = EI ' hence, <jJ4n = EI w2n

. Therefore, the

foregoing analysis verifies that only even powers of the natural frequency w appear in

expansion of the frequency dependent mass and stiff matrices.

Term by term comparison shows that i,j E {1,2,:3,4},

£;). _ D·· - (KI!. - w2MI!·)
• t) t) t)

(8.8)

where D is the dynamic stiffness matrix and Ke and Me are the mixed formulation

stiffness and mass matrices. Additional analyses shows that the difference Cij can be

made arbitrarily small by using more and more terms i~ power series expansions.
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