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ABSTRACT Illlllpl!!l! |||£| |3 | J!L" |

Site-specific hazard estimation requires the modeling of the occurrences of
carthquakes on any faults with the potential to impact the site. Previous earthquake
occurrence models have assumed either spatial independence or temporal independence
or both. However, for large magnitude earthquakes (approximately moment magnitude
6.5 and above) occurring infrequently on long faults, evidence indicates that the
assumptions of temporal and spatial independence are not valid. A new fault behavior
model incorporating temporal and spatial dependence is needed to estimate site-specific
hazard in areas subject to such earthquakes.

This research develops an earthquake occurrence model that is a generalized
semi-Markov process (GSMP) and allows for the simulation of the fault behavior through
time. The fault is discretized into short cells; the model traces through time the slip
accumulated on each cell and the amount of slip relcase on cach cell due to earthquake
occurrences.~The size of each simulated earthquake is related to the amount of slip that is
released. In order 1o apply the model 1o a fault, the following data must be known for
each cell along the entire length of the fault: the slip rate, the mean and standard
deviation of the earthquake interarrival times, and the time of the last earthquake.
Additionally, the time of the last carthquake that ruptured the entire fault must be known.
The model can then simulate the sizes and locations of earthquakes occurring along the
fault for the time period of interest.

Application of the model to the northern San Andreas fault (the portion of the
fault that ruptured in 1906) implies that there are two distinct processes at work. The
North Coast section generates large earthquakes (approximately moment magnitude 7.7
to 8.1}, and the South Santa Cruz Mountains segment generates somewhat smaller
earthquakes (approximately moment magnitude 6.8 to 7.4). The San Francisco Peninsula
segment represents a transition between these two behaviors.

The model is relatively insensitive to the cell size chosen, 1o the distribution
chosen to model the times between earthquakes triggering at a given place on the fault,
and to the choice of a scgmentation model that subdivided the San Francisco Peninsula
segment. The moment magnitude of the largest earthquakes simulated are sensitive to the
slip rate. The results for individual segments are highly sensitive to the mean interarrival
times, but the aggregate results are much less sensitive.
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This research develops an earthquake occurrence model that is appropriate for
cstimating hazard due to large, spatially and temporally dependent carthquakes. Because
smaller magnitude earthquakes can also be important in scismic hazard analysis,
however, this model must be combined with another designed to model lower magnitude
seismicity (perhaps a Poisson model) in order to estimate the 1otal site-specific hazard.
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CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

The goal of seismic hazard analysis is to estimate the risk to a structure at a given
site due to the occurrence of carthquakes. The steps involved in scismic hazard analysis
include identifying carthquake sources, modeling the occurrences of carthquakes on these
sources, determining the bedrock moticn at the site due to an earthquake’s occurrence,
evaluating the soil’s amplification of the motion at the site, and determining the structural
response. This research is concerned with the second step outlined above; namely, the
modeling of earthquake occurrences.

Specifically, this research models the occurrences of earthquakes that exhibit both
temporal and spatial dependence. Such earthquakes typically have large seismic
moments (cormresponding to approximately moment magnitude 6.5 or greater) and occur
infrequently on long faults. They usually have rupture zones on the order of tens or even
hundreds of kilometers and are frequently associated with surface rupture. Though there
is a pattern in time and in space to the rupture zones associated with these earthquakes, it
is not always deterministic. Characteristic carthquakes, which repeatedly rupture the
same section of fault with earthquakes of similar magnitudes, often display temporal and
spatial dependence. Since temporally and spatially dependent earthquakes are a
significant class of earthquakes capable of inflicting serious damage to structures, the
ability to model them is an important 100 for s¢ismic hazard analysis. There is a need for
a new earthquake occurrence model because previous models have assumed either time
independence or space independence or both.

This research develops an earthquake occurrence model that includes both
temporal and spatial dependence which can be applied to specific faults that generate
carthquakes displaying such behavior. The types of information that can be obtained by
using this model to simulate the occurrences of earthquakes on a fault can be divided into
two main categories: short-term results and long-term results. Short-term results are
those that estimate the probabilities of earthquakes occurring within a short time frame
(such as the economic life of a structure) starting from the present time. Long-term
results characterize the fault’s behavior over many thousands of years in order to
estimate, for example, the largest carthquake that the fault can generate and the pattern of

1



Chapter 1. Introduction 2

scismicity on the fault. Both types of results are important in asscssing the carthquake
hazard at a site.

1.2 SEISMIC HAZARD ANALYSIS

As previously noted, earthquake occurrence modeling is only one component of
seismic hazard analysis. To clarify the role of earthquake occurrence models, the five
basic steps in seismic hazard analysis are explained below and illustrated in Figure 1.1.

1.2.1 IDENTIFICATION OF SOURCES

The first step in seismic hazard analysis is to identify all sources of earthquakes
that can affect the chosen site. Earthquake sources can be modeled in three ways. Point
sources repeatedly gencrate carthquakes from cxactly the same point. Since the
cpicenters of repeated carthquakes in a region usually display some scatter, such sources
arc rare. Earthquake faults are frequently modeled as two-dimensional line sources; they
generate earthquakes whose epicenters lic in a narrow band along a line. In some arcas,
there is definite seismicity that is not attributable to a well-defined fault. Such seismicity
can be modeled as arising from a three-dimensicnal area source, in which the
earthquakes™ epicenters are scattered within a well-defined area. Area sources can also
model the scatter of earthquakes’ epicenters occurring along a subduction zone.

1.2.2 EARTHQUAKE OCCURRENCE MODELING

The second step in seismic hazard analysis is to model the occurrence of
earthquakes on each source. Many different earthquake occurrence models have been
proposed; the following briefly discusses the major classes of models. A more complete
review of earthquake occurrence models can be found in Anagnos and Kiremidjian
(1988).

Poisson Models

Poisson models (e.g., Comnell, 1968; Der Kiureghian and Ang, 1977), which
assume that earthquakes occur independently in time, space, and magnitude, form the
simplest class of earthquake occurrence models. The rate of earthquake occurrences is
uniform and estimated from the Gutenberg-Richter equation

log N(m)=a—-bm (1.1)
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where
m = the magnitude of the earthquake
N{m) = the number of events with a magnitude 2 m during a given time period
a,b = constants.

Poisson models have a constant hazard rate, which is the probability of an earthquake in a
time period (¢, + Ar) given that there were no earthquakes in the time period (0, ¢).

Poisson models are applicable to regions characterized by frequent, smaller
magnitude earthquakes which display neither temporal nor spatial dependence. Gardner
and Knopoff (1974) examined the earthquake record for Southern California and found
that when aftershocks are removed, the sequence of earthquakes with magnitudes smaller
than 5.8 is Poissonian. However, cyclic patterns, indicating dependence between
earthquakes, have been noted by many authors (e.g., Bufe, et. al., 1977; Shimazaki and
Nakata, 1980; Sykes and Quittmeyer, 1981). Regions displaying such patterns with
large, rare earthquakes are not adequately described by Poisson models.

Time-Predictable Models

Time-predictability (Shimazaki and Nakata, 1980) is the correlation of the size
(measured by seismic displacement) of an earthquake with the amount of time until the
occurrence of the next earthquake. Models based upon time-predictability introduce time
dependence into earthquake occurrence modeling (Anagnos and Kiremidjian, 1984).

§ stress stress release threshold

FIGURE 1.2 Time-predictable modcl
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They describe a mechanism for earthquake occurrences involving a fixed stress threshold
at which earthquakes occur. The rate at which stress accumulates is assumed to be
constant. When an earthquake occurs, a random amount of stress is released. Since the
stress release threshold is fixed, knowing the amount of stress released during an
earthquake allows prediction of the time, though not the size, of the next earthquake.
Figure 1.2 shows a sample time history of stress accumulation and release for the time-
predictable model.

Several regions, primarily along plate boundaries, have been noted 10 display
time-predictability (Bufe, et. al., 1977; Shimizaki and Nakata, 1980; Mogi, 1981; Sykes
and Quittmeyer, 1981). It is important to realize, however, that time-predictable models
describe earthquakes repeatedly rupturing the same section of fault but do not attempt to
describe any spatial pattern in the earthquake sequence.

Slip-Predictable Models

Slip-predictability is the correlation of the time between earthquakes with the size
of the earthquake at the end of the time interval (Shimazaki and Nakata, 1980). Models
based upon slip-predictability also incorporate time dependence (Kiremidjian and
Anagnos, 1984). As in the time-predictable model, the rate of stress accumulation is
assumed to be constant. Earthquakes occur at random times, with all stress accumulated
above a given threshold being released during each earthquake; the state of stress on the
fault following each earthquake is the same. Given the time between earthquakes, the

4 stress

time

FIGURE 1.3 Slip-predictable model
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amount of stress released, though not the interarrival time, can be predicted. Figure 1.3
illustrates a time history of swress accumulation and release for a slip-predictable model.
Earthquakes along the Middle America Trench, Mexico, display a slip-predictable
pattern (Wang, et. al,, 1982). Similar to time-predictable models, slip-predictable models
address temporal dependence but not spatial dependence. Therefore, neither class of
models completely describes the true behavior of large, rare earthquakes.

Random Slip Rate Models

Both the time-predictable and slip-predictable models assume a constant slip rate.
However, a study of large earthquakes in Alaska (Li and Kisslinger, 1985) and
experimental studies of rock fractures (Price, 1981; Ranalli, 1987) suggest that non-linear
slip accumulation mechanisms may be important, particularly in long-term earthquake
prediction models.

Random slip rate models include the effects of a non-uniform stress accumulation
rate as well as inhomogeneous fault properties. Suzuki and Kiremidjian (1988B) assume a
random slip accumulation rate for each successive earthquake on a given section of fault.
Though the value of the slip accumulation rate is random after each earthquake, it is
constant between earthquakes. Figure 1.4 shows a sample time history of stress
accumulation and release for the random slip rate model. As with time-predictable and
slip-predictable models, random slip rate models incorporate temporal dependence but
not spatial dependence.

A stress

FIGURE 1.4 Random slip ratc model
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1.2.3 MOTION AT BEDROCK

Once a suitable earthquake occurrence model has been chosen, the next step is to
determine the motion at bedrock resulting from a given :arthquake. There are two main
ways to do this: attenuation relationships (e.g., Joyner and Boore, 1988) and geophysical
models (e.g., Suzuki and Kiremidjian, 1988). Attenuation functions are developed by
fitting curves to available data. They have the limitations of being biased toward the data
and of being applicable only to arcas with similar geology. Attenuation relationships
frequently predict ground motion parameters directly, rather than separating the
prediction of bedrock motion from the soil amplification.

Geophysical models are based upon source mechanisms and wave-propagation
theory. They have an advantage over attenuation relationships in that they are specific 10
the area under study. However, they require extensive data to describe the geology not
only of the site, but also of the area between the site and the earthquake source. Data
describing the source characteristics, such as the rupture area, seismic moment
distnibution, and stress drop, are also needed for these models. In addition, they are
computationally more complex than attenuation functions, making them difficult to

implement in a site hazard analysis.

1.2.4 SOIL AMPLIFICATION

Local soil conditions play a crucial role in determining the ground motions
experienced at a site (¢.g., Seed and Idriss, 1969; Sced, et. al., 1976; Idriss, 1991).
During the Loma Pricta earthquake of 1989, waterfront areas of San Francisco Bay
experienced significant damage due to amplification of ground motion and liquefaction of
the soil (Borcherdt, 1990; USGS Circular 1045, 1989). In order to estimate the effects of
soil amplification at a specific site, knowledge of the soil profile from bedrock to the
surface is needed. Methods for predicting the surface motion from the bedrock motion
that incorporate information on the soil properties in depth are presented in Kiremidjian,
et. al., 1991,

1.2.5 STRUCTURAL RESPONSE

One purpose of seismic hazard analysis is to determine the response of the
structure at the site. Many methods for evaluating struciural response due 10 earthquakes
are based on one parameter, such as the peak ground acceleration. Current methods,
however, use response spectra to represent ground motion content at different frequencies
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in order to more completely describe the structural response. Seismic hazard analysis
allows determination of the structure’s response, which is part of seismic risk evaluation.

1.3 IMPETUS FOR A NEW EARTHQUAKE OCCURRENCE
MODEL

Mounting evidence suggests that many large earthquakes display not only
temporal dependence, but spatial dependence as well. Since the previously mentioned
madels do not include both temporal and spatial dependence, a new model is needed.

1.3.1 TEMPORAL DEPENDENCE

Tempcra! independence is the property of the distribution of earthquake
interarrival times being the same throughout time. Implicit in the concept of temporal
independence is the idea that no matter what the earthquake history, the probability of an
earthquake occurring in a small time increment is the same. Deduced from the elastic
rebound theory is the idea that immediately following an earthquake, the probability of
another earthquake rupturing the same area is small, and the probability of another
earthquake increases as time passes. Thus, the elastic rebound theory supports the idea of
temporal dependence because the distribution of earthquake interarrival times changes
through time.

Figure 1.5 shows a space-time plot of seismicity of magnitude S or greater along
the northem part of the San Andreas fault system. Following each of the large magnitude
earthquakes in 1857 and in 1906, there is a period of low earthquake activity along the
rupture zone, which is denoted by a vertical line. This pattern of activity, with few
carthquakes following a major one, lends credence to the elastic rebound theory. A
model that attempts to describe setsmicity due to faults displaying behavior similar 1o that
of the northern San Andreas fault must then incorporate temporal dependence.

1.3.2 SPATIAL DEPENDENCE

Spatial independence is the property of carthquake rupture zones being randomly
distributed along the length of the fault. It has been recognized that long faults do not
rupture completely during a single earthquake. This has given rise to the concept of fault
segmentation, which divides long faults into segments, each of which is capable of
rupturing independently. There are studies suggesting that physical controls in the fault
zone define the ends of segments, and that these segments persist through many seismic
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cycles (Schwartz, 1988). Large earthquakes on long faults exhibit spatial dependence
because the rupture zones depend upon the physical controls governing the segmentation
rather than being uniformly distributed over the length of the fault.

Figure 1.6 shows onc proposed scgmentation model of the San Andreas fault,
suggesting that it generates spatially dependent earthquakes. Furthermore, Figure 1.5
also demonstrates that earthquakes along the northern San Andreas fault are spatially
dependent, as the rupture zones arc not evenly scattered along the fault's length. Figures
1.5 and 1.6 together demonstrate that carthquakes on the northern San Andreas fault are
both temporally and spatially dependent. The presented model will not only describe the
behavior of the northern San Andreas fault, but also the behavior of other faults whose
carthquakes are temporally and spatially dependent.

1.4 SCOPE OF THIS RESEARCH

In this disseniation, a model is developed for temporally and spatially dependent
carthquake occurrences that utilizes the generalized semi-Markov process. The model
will be applied to the northern San Andreas fault to estimate probabilities of earthquake
occurrences in specified time periods and to describe the long-term behavior of the fault.
Sensitivity of the model to input data will be studied. Finally, extensions to this research
and future areas of investigation will be suggested. '
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FIGURE 1.5 Space-time plot of M 2 5 seismicity along the northemn San Andreas system
(from Ellsworth, et. al., 1981)
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1.5 ORGANIZATION OF PRESENTATION

Chapter 2 discusses the generalized semi-Markov process (GSMP), which is the
mathematical process that underlies the earthquake occurrence model. The model
formulation is described in Chapter 3. The data required for the simulation of the model
is presented in Chapter 4. The model’s application to the northern San Andreas fault is
the subject of Chapter 5. In Chapter 6, the sensitivity of the results is investigated.
Finally, Chapter 7 summarizes the thesis and presents conclusions, as well as suggesting
areas of future study.




CHAPTER 2
GENERALIZED SEMI-MARKOV PROCESSES

2.1 INTRODUCTION

Generalized semi-Markov processes (GSMPs) are a class of stochastic processes
that are well-suited to a variety of problems. Like the semi-Markov process, the GSMP
moves from state to state at random times. In the GSMP, there are several events that can
oceur in a given state. The first of those events to occur is called the trigger event, and it
determines the time until the state transition and the probability distribution for the next
state. The semi-Markov process is a special case of the GSMP in which there is only one
event associated with each state and hence with each state transition.

The GSMP is well-studied within the field of Operations Research (e.g., Shedler,
1987; Whitt, 1980). Because of the complexity inherent in the GSMP, it can be used to
model many different phenomena, including queues and machine availability. It can also
be used to model fault behavior and provides a convenient framework for simulating the
underlying stochastic process.

2.2 SPECIFICATION OF A GSMP

In order to uniquely describe a GSMP, six different components must be
specified: the state space, the event set, the event set mapping, the event scheduling
mechanism, the clock speeds, and the state transition mechanism. These components can
be thought of as “building blocks™ that are used to construct a GSMP. Each of these
building blocks will be discussed within the context of modeling fault behavior in order
to clarify them and describe how they fit together. The fault whose behavior is to be
modeled will be discretized into several cells of uniform length, each of which
accurnulates strain due to the passage of time and periodically releases it in the form of an
earthquake. Since strain accumulation and release are difficult to measure, the model is
developed to track coseismic slip.

A GSMP is composed of one or more state variables, whose values characterize
the process. The values of the state variables, called the state of the process, change with
time, reflecting changes in the process itself. In modeling fault behavior, each cell has an
associated state variable whose value characterizes the amount of slip accumulated at that
point on the fault. A state variable of zero means that there is currently no slip

12
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accumulated at that location; an earthquake has just occurred and ruptured that portion of
the fault. A state variable of two means that, at the present time, there is enough slip
accumulated at that point on the fault to rupture a length of two cells should an
carthquake trigger on that cell. This is not a prediction of an earthquake, but merely a
characterization of how much slip is accumulated. The building blocks of a GSMP tell
what values the state variables can assume and detail the mechanisms that change the

state of the process.

2.2.1 STATESPACE

The set of all values that the state variables can assume forms the state space, S.
Because the state space must have a finite or countable set of states, the state variables
cannot take on a range of real numbers, but instead are restricted to discrete values. In
the fault model, each state variable can assume any value in the set composed of zero and
the integers up to and including the number of cells on the fault. The minimum amount
of slip that can be released during an earthquake corresponds to zero, i.e., no rupture is
possible. The maximum amount of slip that can be released corresponds to a rupture of
the entire fauli.

2.2.2 EVENTSET

All the cvents that can occur and cause a siate transition form the event set, E.
The event set must contain all events that can occur in any state of the process, though it
is not necessary for all events to occur in every state. The event set must be finite. The
event that occurs first in the current state, called the trigger event e, will cause the state
transition. If more than one event occurs simuitaneously, then the trigger event is a set
called E°.

In the fault behavior model, each cell has two events associated with it. The first
is that the value of the variable representing the amount of accumulated slip on the cell is
incremented. This event takes place when the amount of clapsed time allows the
accumulation of enough slip to rupture a portion of the fault that is longer by the length of
one cell. The second event occurs when the cell triggers an earthquake. The time of
occurrerice of an earthquake is governed by a probability distribution describing the time
between earthquakes originating on the cell. Each time there is an earthquake, the value
of the state variable for the triggering ccll tells how many cells can rupture.
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2.2.3 EVENT SET MAPPING

As mentioned above, not all events necessarily occur in every state of the process.
The event set mapping, E(s), describes which events can occur in each state. In the fault
behavior model, the event that the amount of accumulated slip on a cell is incremented
will be scheduled unless that cell can already rupture the entire fault (i.e., unless its state
variable is already equal (o the number of cells on the fault). In addition, each cell will
have the event that it triggers an earthquake scheduled in all states.

2.2.4 EVENT SCHEDULING MECHANISM

In each state, the events are scheduled by determining the time until they occur.
The event scheduling mechanism can depend on the event being scheduled, the trigger
event, the old state, and the new state. Since the GSMP is a stochastic process, the events
will not always be scheduled deterministically. In many cases, the time until the event
occurs is simulated by choosing a random number from a probability distribution that
describes the interarrival times for that event.

In the fault behavior model, the rate at which slip accumulates is assumed to be
constant. The relationship between slip accumulated and length of fault ruptured is
described by an empirical equation. Given the slip rate, the length of a cell, and the
current amount of accumulated slip, the amount of time it takes for each cell to increment
its accumulated slip is deterministic. Therefore, the events that a cell increments its
amount of accumulated slip are scheduled deterministically.

The time until a given cell triggers an carthquake is random. Such an event is
scheduled by simulating a random number from a probability distribution that describes
the times between a given cell triggering an earthquake.

22,5 CLOCK SPEEDS

Associated with each scheduled event is a clock that tells the amount of time
remaining until that event occurs. The clocks run at a finite, deterministic speed that
must be specified and be greater than or equal to zero. A clock speed equal to unity
means that the rate at which the clock runs is the same as the rate at which time passes.
Thus, a clock showing 62 days on it would take exactly 62 days to run to zero. By
convention, the clock speeds of events that are not scheduled are zero,
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While it is possible for a GSMP to ublize clock speeds other than unity for
scheduled events, this is not the usual case. In the fault behavior model, the clock speeds
for all scheduled events are unity.

2.2.6 STATE TRANSITION MECHANISM

A state transition occurs when the clock of an event (or set of events) reaches
zero. When this trigger event or trigger event set occurs, the GSMP moves into a new
state. The sltate transition mechanism gives the probability function of the process
moving into each possible new state, given the old state and the trigger event.

In the fault behavior model, assume that the trigger event is an event that the
amount of accumulated slip on a cell is incremented. The new state would be the same as
the old state except that the state variable corresponding to that cell would be increased
by one. If the trigger event is that a cell causes an earthquake, then the state variable of
that cell tells how many cells must rupture. Rules that will be detailed in the next chapter
determine exactly which cells rupture and what the new values of their state vaniables will
be. The new state is then the same as the old state except for the cells that rupture during
the earthquake.

2.3 FORMULATION OF THE GSMP

A GSMP provides a convenient framework for simulating the underlying
stochastic process. Since GSMPs are used to describe complex phenomena, there is
usually no closed form equations for the probabilities associated with the various states of
the process. For example, the probability that a certain cell ruptures during a specified
time period could be a quantity of interest in the fault behavior model. These
probabilities can be estimated by simulaton.

Figure 2.1 shows how a GSMP can be simulated. To begin the simulation, all the
state variables must be sct 1o some beginning configuration. In the fault behavior model,
this beginning configuration could be all zeroes, meaning that there has just been an
earthquake that ruptured the entire length of the fault. It is also possible for the beginning
configuration to represent some state of accumulated slip, such as the current state.

The event set mapping tells which events can occur in the current state of the
process. After determining these events, they are scheduled using the event scheduling
mechanism. The event with the shortest time scheduled on its clock is the trigger event,
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(This assumes that all the clocks run at the same rate. If this is not the case, then the
trigger event is determined by dividing the time on each clock by its speed. The event
with the smallest ratio will be the trigger event.) When some of the events are scheduled
deterministically, more than one event can occur simultaneously. The trigger event can
then be a set of all events occurring at the shortest time scheduled on any of the clocks.

The time of the simulation is advanced to the time at which the trigger event (or
trigger event set) occurs, and the new state is determined from the old state and the
trigger state using the state transition mechanism. If the simulation is to continue, the
events to be scheduled in the new state are determined from the event set mapping, and
the cycle begins again.

Set the state variables to
their beginning

configuration and set the
time of the simulation to
zero.

{

Determine which events can Yes | Determine if the s:mulauor]

occur in this state using the
event set mapping. should continue

1

Schedule these events using
the event scheduling
mechanism.

Find the new state using the
state transition mechanism.

4

Find the trigger event or Advance the time of the
trigger event set (the event simulation to the time at
or events with the shortest which the trigger event {or

time on their clocks). trigger cvent set) occurs,

FIGURE 2.1 Using the GSMP framework to simulate the underlying process
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The probabilitics of interest can be estimated through this simulation procedure.
For example, consider the probability that a given cell on the fauit ruptures during a given
time period. The behavior of the fault will be simulated for the given time period for
many cycles. This is an example of the independent, identically distributed (i.id.)
sampling problem. For each cycle, a random variable will either have a value of O (the
given cell did not rupture during the cycle) or 1 (the cell did rupture). These random
variables are i.i.d. if the same initial conditions are used each time. The probability of the
given cell rupturing during any given cycle is estimated as the ratio of the number of
times that the cell did rupture during a cycle divided by the total number of cycles
simulated. In this manner, the simulation of the GSMP can yield estimates of desired
probabilities. Simulation will be the 100l used 10 estimate probabilities that describe the
behavior of faults generating temporally and spatially dependent earthquakes.




CHAPTER 3
THE FAULT BEHAVIOR MODEL

3.1 INTRODUCTION

The GSMP framework is useful for modeling spatially and temporally dependent
carthquakes. The random time between state transitions provides the temporal
dependence needed for the model. In order to introduce spatial dependence into the
model, a complex state space is utilized. The basic physical quantity that the fault
behavior model tracks is accumulated slip. Since it can be calculated from the slip rate
and elapsed time, the amount of accumulated slip is a convenient way to describe the
state of the fault. In addition, the slip released during an earthquake can be directly
related to the moment release and thus the moment magnitude of the earthquake. The
fault is discretized into short cells, and the amount of slip accumulated on each of these
cells is represented by one state variable. The array of state variables represents the
configuration of accumulated slip on the fault.

As time progresses, the model keeps track of the slip accumulated and released
through carthquakes. There are two different processes at work--constant slip
accumulation and occasional slip release. In addition, the slip can be released (i. ¢., an
earthquake can nucleate) at any point along the length of the fault. The GSMP
framework allows for different events to “compete” to trigger the next state transition and
thus can be used to describe the behavior of the fault.

3.2 SPECIFICATION OF THE GSMP UNDERLYING THE FAULT
BEHAVIOR MODEL

The GSMP framework will be used to describe the stochastic process underlying
the fault behavior model. Define {X ()12 0} 1o be a stochastic process where

X(@)={(A ) B,(0), (A1), B, (D)), ... (Ay(2), By(1))} (3.1)

Each cell j has two state variables associated with it, A,(¢) and B,(r). At time 1,
A (f)=k if cell j is capable of rupturing k cells. This means that at time ¢, there is
enough slip accumulated on cell j to cause a rupture with a length of k cells. Since j is
an index on the cell number, it can assume values from one to N, where N is the
maximum number of cells. Since & refers to the number of cells that cell j can rupture,

18
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it can assume values from zero to N, where zero corresponds to no rupture possible and
N corresponds to rupturing the cntire fault. The relationship between accurnulated slip
and rupture length is determined from an empirical equation and will be discussed in
Chapter 4.

3.2.1 STATE SPACE
All the values that the process X(r) can assume form its state space $.

§= {((aava)' (@ 8,), ..., (ax. b)) € ({0. l'"'*N}"{Ovl})”} (3.2)

Equation 3.2 states that each of the g; variables may take on values in the set
{0,1,..., N}, and each of the b, variables may take on values in the set {0,1}. (The
lower case a; and b, are used, rather than the upper case A () and B, (r) used above, to
denote specific values of the state variables, rather than their values through time.) There
are no restrictions on the permissible values of the state space within the 2N -dimensional
space defined above.

3.22 EVENTSET

In order to determine how and when the process X(¢) moves between states, it is
necessary to enumerate the event set E, which contains all the different events that can
occur in the process. The event set E for the fault behavior process is

E={e ...y €. .. i3 €y} (3.3)

For each cell j, the event ¢, is the event that cell j increments by one the number of
cells that it is capable of rupturing. This occurs when, due to the passage of time, cell
has accumulated sufficient slip to rupture a length of fault that is longer by the length of
one cell.

For each cell j, the events ¢;, and e, arc cvents that cell j triggers an
carthquake. Duplicate events are used (rather than only one event) to circumvent the fact
that the GSMP framework requires that the only events that can be rescheduled after a
state transition are the trigger events. In the fault behavior model, the cell that triggers
the earthquake ruptures. In addition, neighboring cells may rupture because the
triggering cell had a value of a, greater than one, meaning that a length of fault longer
than one cell ruptures during the earthquake. The events that each of the ruptured cells
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triggers an carthquake now need to be rescheduled. However, for the cells that did not
trigger the carthquake but did rupture, these cvents arc old cvents and cannot be
rescheduled under the GSMP framework. To get around this problem, event ¢, is
scheduled whenever it is necessary to reschedule event e,, and vice-versa. The B, (1)
variables in the state transition are used 10 tell whether event ¢, or e, is scheduled at
time r. When b, =0, event ¢, is scheduled; when b, =1, event e, is scheduled.

3.2.3 EVENT SET MAPPING
When the process X(r) is in a given state 5 (that is, of necessity, a subset of the

entire state space), the events that can occur and trigger a transition into the next state
must be determined. This set of events E(s) is a subset of the emire event set E defined
above. The event set mapping tells how to determine which events are in E(s) for any

state s.

For s={(a.b). (a.B). ..., (ay. by)} € S:
e, € E(s)ifandonlyifa, = N
¢, € E(s)ifandonlyif b =0
e, € E(s)ifand onlyif b, =1 3.4)

Equation 3.4 states that for each cell j, the event e, (that cell j increments the amount
of slip accumulated on it) is scheduled unless there is already enough accumulated slip on
cell j to rupture the entire fault. As mentioned above, event ¢,, (thatcell ; triggers an
earthquake) is scheduled when b, =0, and the duplicate event e, is scheduled when

b =1.

3.2.4 EVENT SCHEDULING MECHANISM

After determining which events are to be scheduled in the current state, the clocks
of each of the events must be set. For event e, (incrementing the amount of slip
accumulated on cell j), the clock is set deterministically according to an equation of the
form:

log(d)=a+blog(!) 3.5)
where

d = the average surface displacement in meters
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the surface rupture length in kilometers
constants,

{
a b

"

For example, suppose that the amount of time that slip must accumulate to cause a
rupture length of one cell during an earthquake is desired. The average displacement
during the earthquake is calculated from the regression equation using a rupture length of
one cell. Dividing the average displacement by the slip rate yields the desired quantty.
In order to determine the additional amount of time it takes to accumulate enough slip to
rupture n cells when currently a-1 cells can rupture, the above calculation is done for
rupture lengths of n cells and n -1 cells. The time increment is the desired quantity.

The above procedure makes several assumptions. The first is that the average
surface displacement will be the same as the slip released on the cell on which the
carthquake originates. The second is that the surface rupture length is the same as the
length of cells that rupture. While these assumptions will not always be true in every
earthquake, they allow the rupture length to be calculated deterministically from the time
elapsed since the last earthquake. It would be possible 1o specify probability distributions
relating surface rupture length and true rupture length and relating average slip
displacement and slip accumulated at the epicenter of the earthquake. The rupture length
would then be determined probabilistically from the elapsed time since the last
earthquake. While this could be more representative of the actual situation, the simpler
deterministic method is used in this research.

To set the clock corresponding to event ¢;, (the cvent that cell j triggers an
earthquake), a random number is simulated from D,, the distribution of times between
earthquakes triggering on cell j. This distribution differs from the distribution of
interarrival times for cell j rupturing during an earthquake because cell j can break due
10 rupture “spilling over” from an adjacent cell. As will be shown in Chapter 4, the mean
and standard deviation of D, are determined by trial and error based upon the estimated
mean and standard deviation of the earthquake interarrival times.

Weibull distributtons (e.g., Kiremidjian and Anagnos, 1984; Anagnos and
Kiremidjian, 1984) and lognormal distributions (e.g., USGS Working Group, 1990) have
been used to represent interarrival time distributions. There are no data describing the
distributions of triggering earthquakes, D;. For this reason, it is suggested that D, be
modeled by either the Weibull distribution or the lognormal distribution, in an analogous
manner with the interarrival time distributions.
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The clock corresponding to event ¢, is set using the same procedure outlined
above for event ¢;,. When cell j breaks and b, =0, event ¢; is scheduled by simulating
its time from D,. If b, =1, the event ¢, is scheduled in the same way. Events e, and
e,y are alternately scheduled each time cell j ruptures, regardless of whether cell j
triggered the earthquake.

3.25 CLOCK SPEEDS
In the GSMP describing the fault behavior process, the clock speeds for all events
are unity.

3.2.6 STATE TRANSITION MECHANISM

The final component that must be specified to completely describe the fault
behavior process is the state transition mechanism, which is summarized by a flowchant
in Figure 3.1. The state transition mechanism tells how the new state s of the process
X(r) is determined when the old state s and the trigger event set £° causing the state
transition are known. In Figure 3.1, events of the form e, are referred to as type 1 events
(that is, events in which the amount of slip accumulated on a cell is incremented). Events
of the forms ¢, and e, are referred to as type 2 events (that is, events that a cell triggers
an earthquake).

Figure 3.1 refers to the “rules for rupture” in determining which cells rupture
during an earthquake. When an carthquake triggers on cell j at time 1, the value of A, (1)
is the number of cells that rupture during that earthquake. The following rules for
determining which cells rupture were developed based upon observations from past
earthquake ruptures. It is assumed that rupture begins on the cell that originates the
earthquake and is confined to one segment whenever possible. The rupture is assumed
continuous, and it does not jump over any cclls. It is further assumed that cells with more
accumulated slip will break before cells with less accumulated slip. The following cases
demonstrate the rules for determining which cells rupture. Figures 3.2-3.5 illustrate these
cases with a fault composed of five cells divided into two segments.

Case #1: Triggering cell j has a, =1 at time of carthquake
In this case, only one cell, the triggering cell, can rupture during the earthquake.
The position of the cell within the segment and the amount of slip accumulated on

surrounding cells do not affect the rupturing cell.
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Figure 3.2(a) shows the state of accumulated slip on the fault directly before an
carthquake triggering on cell 4. The only cell that ruptures is cell 4, as scen in Figure
3.2(b). Because all slip accumulated on cell 4 is released during the carthquake, g, =0 in

the new state.

Case #2: Triggering cell j has a, =m, the number of cells on its segment

In this case, the earthquake triggers on cell j, which is capable of rupturing m
cells, where m is the number of cells on the segment containing cell j. The rationale for

(Arc there any type 1 events Yes For each cellj for which
in E*? there is a type 1 event:
Nol a.(ins’)=a, (ins) +1
Rémaove the type 1 events
from E*.

Are there any type 2 events

remaining in E*?
ch[ | No w
END
If there is more than one \\
type 2 event in E*, randomly
choose one.
Choose the cells that rupture Determine how many cells hav
using the rules for rupture. Ik 0. Call this number .
Remove the type 2 event 4 Seta, (ins)= }
| that has just been simulated . ()’
*
fromE®, max {aj (n 5)—n

bj (ins’)= b (in s) —I|
for all cells that rupture

\.

FIGURE 3.1 State transition mechanism
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FIGURE 3.2 Ilustration of casc #!1 demonstrating rules for rupture

segmenting a fault is that the ends of the segments are delineated by some physical
change in the fault, such as a change in strike, and that each segment is capable of
rupturing independently. Therefore, whenever possible, the model limits rupture to a
single segment.

Figure 3.3 illuswrates this case. Figure 3.3(a) shows the state of accumulated slip
directly before the earthquake. Since a, =3, three cells must rupture during the
earthquake. Because the segment containing cell 3 has exactly three cells on it, those
three cells rupture. Figure 3.3(b) shows that all slip is released on cells 1, 2, and 3 during
the earthquake. Therefore, in the new state, @, =0 and a, =0 and a, = 0.

Case #3: Triggering cell j has a; = m, fewer than the number of cells on its segment

The earthquake triggers on cell j, which is capable of rupturing m cells, where
m is a number that is smaller than the number of cells on the segment containing cell j.
In this case, the choice of cells to rupture is governed by their relative accumulated slip.
Whenever possible, the cell with more accumulated slip will rupture.

Figure 3.4(a) shows the state of accumulated slip directly before the earthquake.
In this case, a, =2, meaning that two cells must rupture during the earthquake. Because
the segment contains three cells, a choice must be made between rupturing cell 1 or cell
3. Since a, > a,, cells 1 and 2 rupture during the earthquake. Figure 3.4(b) shows the
new state. If g, = a,, there is no reason to favor rupturing one cell over the other as they

o sz} g |oJolo]i]2]
Ccl]#lll |3|4| | Cc11#|||2|3|4|5|
(a) State of slip before earthquake {b) State of slip after earthquake

FIGURE 3.3 Illustration of case #2 demonstrating rules for rupture
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are on the same segment and have the same amount of accumulated slip. In that case, onc
of the cells is randomly chosen 10 be the one that ruptures along with the trigger cell.

These three cases can be used to determine the rupture whenever an earthquake
occurs. If the state of the triggering cell is greater than the number of cells on the
segment, then the scgment containing the triggering cell ruptures first. Then the next cell
to rupture is chosen using case #3. In other words, the cells at the ends of the rupture are
examined and the one with the greater accumulated slip ruptures. Then the entire
segment containing the chosen cell must rupture before rupture can continue to another
segment. In this way, the rupture propagates from segment to segment until the number
of cells indicated by the state of the trigger cell have ruptured.

Because all the cases discussed above involve the total release of all accumulated
slip on the rupture cells, the new state for all ruptured cells is zero. This is not always the
case, however, as illustrated in Figure 3.5. In this case, cell 2 wiggers the earthquake.
Since @, =5, the entire fault must rupure. At the time of the earthquake, a, =0,
indicating that recently an carthquake has released all the slip on cell 4. By the time the
current earthquake occurs, there is not even enough slip accumulated on cell 4 to rupture
a length of one cell. Therefore, cell 4 releases very little slip even though it ruptures
during the carthquake. For this reason, only four of the cells release slip. The new state
of the process is determined by counting the number of rupturing cells with a state greater
than zere. This number is subtracted from the old statc of cach of the rupturing cells, and
the larger of this number and zero is the new state of the process. In Figure 3.5(b), cells 2
and 3 retain some accumulated slip after the earthquake while the other cells release all
their accumulated slip.

The reasoning behind this procedure is that there is enough energy at the
triggering cell to rupture five cells. Since one of the cells has very little accumulated slip,
the rupture actually releases slip on only four cells, There must then be some
accumulated slip left on the fault after the rupture. Cells with a large amount of
accumulated slip will retain some of it after the carthquake.

4 l2flz2]1fr]2] g lojorfr]2]
Ce11#|113[3|4|5| Ccll#lllfl3|4|5'

(a) State of slip before earthquake (b) Staie of slip afler earthquake
FIGURE 3.4 Illustration of case #3 demonstrating rules for rupture
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As mentioned above, these "rules for rupture” are based upon intuition about how
fault rupture can propagate. One assumption made by the rules presented here that may
be debatable is that a cell in the rupture zone with no accumulated slip will not terminate
the earthquake's rupture. As was illustrated in Figure 3.5, the number of cells that
rupture is determined solely by the state of the variable describing the amount of slip
accumulared on the trigger cell at the time rupture begins. The cells that break are chosen
according 10 the scheme outlined above. The fact that a cell in this rupture zone has a
state of zero when the earthquake occurs means only that some of the cells will retain
some accumulated slip after the earthquake.

The implication of this assumption in the model is that large earthquakes
rupturing the same section of fault tend to cluster together in time. One large earthquake
occurs but does not rupture the entire fault. Another earthquake then triggers shortly
afterward on a part of the fault that did nat rupture during the first earthquake. According
1o the assumptions made, the section of fault that broke in the first earthquake can break
again.

It is possible, however, that the presence of a cell with no accumulated slip will
serve to terminate the rupture of an earthquake. In that case, the rupture zone would be
smaller, and more cells would retain accumulated slip after the earthquake. The
implication of this assumption is that the fault will tend to generate a greater number of
earthquakes that break the entire fault and fewer smaller magnitude earthquakes.
Suppose an earthquake triggers on a cell with enough accumulated slip 1o rupture the
entire fault, and that the cells adjacent to the trigger cell recently experienced an
earthquake and have no slip accumulated. Following the given assumption, the cells with
no accumulated slip would be sufficient to terminate the rupture even though a large
amount of slip is accumulated on the trigger cell.

If this is indeed the case, then the rules of rupture should be changed. The logic
of the model remains the same; the only change is in the method for deciding which cells

¢ |2fs]s]o]4] 4 Jojr]i]o]o]
Cell#'1|313|4]5| Ccll#lllzl3l4lSI
(a) State of slip before earthquake (b) State of slip after earthquake

FIGURE 3.5 lllustration of a non-zero new state
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break and how much slip is accumulated after the carthquake occurs. In other words, the
state transition mechanism of the GSMP would be modified.

The state transition mechanism describes how the state of the process changes
when slip is accumnulated and released. Slip accumulation causes the state variables to be
incremented by one. Slip release, in the form of an earthquake, causes certain cells to
rupture and release some or all of their accumulated slip. The “rules for rupture”
determine which cells rupture, and the state of accumulated slip on the rupturing cells
determines the new state of the process. The state transition mechanism is the last
component that must be specified in order to completely describe the GSMP underlying
the fault behavior model.




CHAPTER 4
MODEL SIMULATION

41 INTRODUCTION

The purpose of developing fault behavior models is to characterize the
occurrences of earthquakes along actual faults, allowing the estimation of seismic hazard
at a particular site. In order to do this, data describing the physical fault are used to
determine the parameters that define the fault behavior model. In theory, closed form
solutions could be developed for any desired quantity, such as the probability of an
earthquake of a given magnitude or greater originating at a certain place on the fault
during a given period of time. However, the complexity of the model presented in
Chapter 3 makes closed form solutions either non-existent or very difficult to obtain.

For this reason, simulation will be used to apply this model to actual faults. In
simulation, the initial conditions (the state of slip accumulated when the simulation
begins) and the time horizon are selecied. Many repetitions of the model are then
simulated for the time horizon of interest and the average results (or the distribution of
results) reported. The advantages to this scheme for analyzing fault behavior include the
ability to apply a complex model not amenable to closed form solutions and the
observation of earthquakes’ occurrences through time.

4.2 DATA REQUIRED FOR MODEL APPLICATION

In order to apply this model, four different classes of information are needed.
These are: data describing the fault’s configuration, data describing the slip accumulation
and release mechanisms, the carthquake histc-y of the fault, and equations relating slip
release with other quantities of interest.

The fault whosc behavior is to be modcled must generate earthquakes displaying
temporal and spatial dependence and be capable of completely rupturing during one
carthquake. This requirement allows for the simulation of the fault's behavior from a
“time zero,” that is, from the time of the last carthquake that ruptured the entire length of
the fault and released all accumulated slip. This, in tum, allows the current state of
accumulated slip to be estimated (based on the earthquake history) so that the
probabilitics of carthquakes within time frames beginning at the present can be assessed.

28
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If a fault is not capable of completely rupturing in one earthquake but does
display spatial and temporal dependence, it is possible that the model may apply to a
portion of the fault. For example, the entire San Andreas fault does not rupture in one
earthquake. However, the northern portion of the San Andreas ruptured completely
during the 1906 earthquake and generates carthquakes displaying temporal and spatial
dependence, as was discussed in Chapter 1. In Chapter 5, the model is applied to this
section of the San Andreas fault.

4.2.1 DATA DESCRIBING THE FAULT’S CONFIGURATION

The data describing the fault’s configuration include the length of the chosen
fault, its depth, and its segmentation. Each segment is assumed to have homogenecus
properties; that is, each cell on a segment has the same slip rate, the same interarrival time
mean and standard deviation, and the same distribution of times between triggering
earthquakes. The lengths and locations of any segments on the fault must be known. If
the entire fault has homogeneous properties, no segments need be specified.

In applying the model, the fault’s length is discretized into short units called cells.
Each segment (and the fault as a whoie) is made up of an integer number of cells.
Theoretically, the smallest magnitude earthquake that the model generates corresponds to
a rupture length of one cell. In reality, however, a model with very short cells does not
generate earthquakes with much smaller minimum magnitudes than a model with very
long cells provided that the earthquakes’ interarrival time statistics remain constant, as
will be discussed more completely in Chapter 6. Because the amount of time required to
complete each simulation increases with the number of cells, the choice of cell length
must balance this consideration with the need to accurately represent the length of each
segment with an integer number of cells.

Figure 4.1 shows the segmentation suggested by the USGS Working Group
(1990) for the portion of the San Andreas fault to which the model is applied. This
segmentation divides the northern San Andreas into three segments; the North Coast
segment, the San Francisco Peninsula segment, and the South Santa Cruz Mountains
segment. The 340 km North Coast is by far the longest segment, stretching from offshore
in the northwest to San Andreas Lake in the southeast, and i1 is judged by USGS to be
capable of generating earthquakes with a maximum magnitude of 8.
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The San Francisco Peninsula segment begins at San Andreas Lake and runs 61 km
1o the southeast; it has a maximum magnitude of 7. This segment can be considered to

have two subsegments: the Mid-Peninsula subsegment and the North Santa Cruz

Santa Cruz

T T T I T T

12230 122

FIGURE 4.1 Northern San Andreas fault segmentation
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Mountains subsegment. USGS considers two separate scenarios; one in which the
Peninsula segment is undivided and one in which it is divided into the two subsegments.
The results presented in Chapter 5 consider the segmentation in which the San Francisco
Peninsula segment is undivided. As part of the sensitivity analysis presented in Chapter
6, the alternate segmentation is considered.

The South Santa Cruz Mountains segment is 39 km long and lics at the southeast
end of the northern San Andreas fzult. The 1989 Loma Prieta carthquake originated on
this segment and generated a magnitude 7 earthquake.

The choice of cell length determines how quickly the simulation can be carried
out and how accurately the lengths of the scgments can be represented. In this research,
results using cell lengths of 10 km, 20 km, and 30 km will be obtained and compared.
The fault depth is taken as 20 km.

42.2 DATA FOR THE SLIP ACCUMULATION AND RELEASE

MECHANISMS

The slip rates, the interarrival time statistics, and the form of the distribution of
the times between triggering earthquakes are the data that describe the slip accumulation
and release mechanisms. The slip rate is a measure of how quickly the sides of the fault
are moving in reiation to each other and therefore of how quickly stress is accumulating
in the fault zone. In the same way that segmentation determination is inexact, slip rate
estimates differ from researcher to researcher. The fault behavior model requires that
each cell within a given segment have the same slip rate, though the slip rate may vary
from segment to segment. This research assumes that the slip rates remain constant
throughout time, though this may not be the case.

The mean and standard deviation are the interarrival ume statistics and describe
how often earthquakes occur. They are based on scarce historical data and sometimes
also on geologic occurrence data, which can be obtained by wenching to date prehistoric
carthquakes. Another method for estimating recurrence time is 10 divide the slip released
coseismically by the slip rate. All these methods introduce uncertainty because of lack of
data. Despite the problems in determining slip rate and interarrival time statistics, these
data have been estimated for many faults capable of producing large earthquakes
displaying spatial and temporal dependence.

Even if there were no uncertainty in determining the interarrival time statistics of
carthquakes, the interarrival times would not be deterministic. The form of the
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distribution of the times between triggering carthquakes is another piece of data required.
As mentioned in Chapter 3, lognormal and Weibull distributions are possible choices. In
the results presented in Chapter 5, it is assumed that the times between triggering
earthquakes have a lognormal distribution. A comparison with results obtained from
using the Weibull distribution will be made in Chapter 6. The slip rate estimated by the
USGS Working Group (1990) for the entire northern portion of the San Andreas fault is
19 + 4 mm/year. In Chapter 6, results will be computed and compared for slip rates of
15, 19, and 23 mm/year.

The interarrival times are estimated by USGS to be 237 + 73 years for the North
Coast segment, 138 + 40 years for the San Francisco Peninsula segment, and 84 + 24

years for the South Santa Cruz Mountains segment. However, the fault behavior model
requires as input not the interarrival time statistics, but instead the statistics of the times
between earthquakes triggering on each cell of the fault. These statistics are referred to as
the input mean and input standard deviation, while the interarrival time statistics are
referred to as the output mean and output standard deviation.

Tables 4.1, 4.2, and 4.3 show the input statistics and the output statistics for each
scenario considered. The third column, titled “Other Info.,” tells when the scenario
considers interarrival time means other than those estimated by USGS or distributions
other than the lognormal for the trigger times. “Seg | - refers to segment | having a
mean interarrival time equal to the mean value listed above minus one standard deviation.
The coefficient of variation is the same for the new mean as it was for the unchanged
mean. Similarly, “Seg 1 +" refers to the mean listed above plus one standard deviation,
with an unchanged coefficient of variation. “Weibull" refers to using the Weibull
distribution to model the trigger times.

Since there has been no attemnpt to directly estimate the input statistics from the
fault itself, it is nccessary to determine them by trial and error 10 make the output
statistics close 1o the estimated interarrival time statistics. As there is no requirement that
all cells on a segment break during an earthquake, each cell can have unique output
statistics. The value reported in the tables for the output mean for a given segment is the
average of the output means for all the cells on that segment. Thus, some parts of the
segment will rupture more often than the output mean would suggest while others will
break less often. The reported output standard deviation for a given segment is the
average of the output standard deviations of all the cells. It is thus a measure of the
average amount of variability on the segment, but it is not a true standard deviation.
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TABLE 4.1 Input and output statistics for segment 1 (North Coast)

cll _gnp—-ﬁhcr Input Input &pul Output | VSGS | U
Size Rate Info. Mean | St. Dev.] Mean |St. Dev.| Mean | St. Dev.
km | mm/yr yr r yr b b4

T 1 40 | 0 | 26 ] 1

10 19 430 50 238 125 237

10 23 416 80 238 77 237
20 15 430 15 234 101 237

20 19 443 75 235 119 237 73
20 19 {Segl- 300 25 164 95 164 51
20 19 Seg 1+ 445 50 308 105 310 96
20 19 }Seg2- 417 75 238 81 237 73

20 19 Seg 2 + 425 75 236 112 237 73

20 19 [Seg3- 435 75 236 B2 237 73

20 19 Seg3+ 420 75 237 105 237 73

20 19 | Weibull] 465 75 238 116 237 73

20 23 395 80 238 78 237 73
30 15 430 75 238 100 237 73

30 19 418 75 237 115 237 73

30 23 400 90 1 237 83 237 73

TABLE 4.2 Input and output statistics for segment 2 (San Francisco Peninsula)

Input utput
St. Dev. [ Mean

5utput
St. Dev.

U
Mean

U
St. Dev.

yr

B

4()

S0 40

0 40

50 40

50 40

Segl- 50 40

20 19 Seg 1+ 395 50 40

20 19 | Seg2- 185 S0 28

20 19 |Seg2+ 700 30 52

20 19 [Seg3- 250 S0 40

20 19 |Seg3+ ] 2000 0 40

20 19 [Seg3+¢§ 2000 0 40

20 23 | Weibull] 350 50 40

30 15 240 75 40

30 19 600 100 40
30 23 2000 0 40 '
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TABLE 4.3 Input and output statistics for segment #3 (South Santa Cruz Mountains
Segment)

1p er nput nput utput lnput USGs | U
Rate Info. Mean | St. Dev.d Mean | St. Dev.| Mean | St. Dev.
mm/yr yr yr % yr yr yr yr 4
15 125 45 3 23 84 24
19 123 40 83 23 84 24
23 127 45 83 23 84 24
15 100 30 83 22 84 24
19 105 30 84 24 84 24
19 |Segl- 105 30 84 24 84 24
19 |Segl+ 105 30 86 23 84 24
19 |Seg2- 103 30 85 22 84 24
19 [Seg2+ 103 30 83 24 84 24
19 |Seg3- 76 30 60 21 50 17
19 [Seg3+ 132 35 108 30 108 it
19 | Weibull] 100 20 84 23 108 3t
23 104 30 84 24 84 24
15 %6 20 84 21 84 24
19 88 20 85 24 84 24
23 87 22 84 25 84 24-4

4.2.3 EARTHQUAKE HISTORY OF THE FAULT

One of the requirements for applying the fault behavior model is that the fault be
capable of completely rupturing during one earthquake. This allows the simulation to
begin at a specified time after the last earthquake that ruptured the entire fault. When
estimating the carthquake hazard within a relatively short period of time compared to the
interarrival times of the earthquakes, it is important to take into account where in the
carthquake cycle the specified time period lies. For example, the hazard immediately
following a large earthquake is relatively small and increases as time passes. Knowing
the earthquake history of the fault allows an estimate of hazard beginning at a specified
time,

In addition to estimating hazard within a given time frame, it is also possible to
use the fault behavior model to determine the long term behavior of the fault. For
cxample, by simulating the model for a long period of time, the number of earthquakes
per year as a function of magnitude can be estimated. This gives information about the
relative numbers of earthquakes of different magnitudes that can be expected and also
about the maximum magnitude earthquake that can be expected on the fault. For this
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type of information, the carthquake history of the fault from the last carthquake rupturing

the entire fault is not necessary.

For the northern San Andreas fault, the last earthquake rupturing the entire fault
occurred in 1906. The only sizable earthquake since then is the Loma Pricta earthquake
of 1989, which ruptured segment #3 of the fault. These data will be used in the results
presented in the next chapter.

424 RELATIONSHIPS BETWEEN RELEASED SLIP AND OTHER

QUANTITIES OF INTEREST

The basic quantity tracked in this model is accumulated slip. Other quantities of
interest are calculated from it. The relationship between slip released and rupiure length
will be used 1o determine how long it takes to increment the amount of slip accumulated
on cach cell. When an earthquake occurs, the amount of slip released will be related to
the amount of moment released in order to determine the moment of the earthquake. The
moment magnitude is then calculated from the moment.

As noted in Chapter 3, an empirical equation is used to relate slip released and
rupture length. The specific equation used in this research is from Wells and
Coppersmith (1991):

log(d) = ~1.33 + 0.84 * log(!) (4.1)
where

d = the average surface displacementinm

I = the surface rupture length in km.

Table 4.4 shows the application of this equation in determining the transition times for
slip accumulation events. 7(j,k) is the amount of time it takes for cell j to accumulate
enough slip to rupture k cells when currently there is enough slip accumulated to rupture
k-1 cells. As the model simulation proceeds, each cell accumulates slip. At any given
time, it is possible to calculate the length of fault that would rupture should an earthquake
occur. Since only an integer number of cells can break, the length of fault that ruptures
must be rounded to the nearest integer number of cells. Thus, T(j,1) corresponds to the
amount of time it takes to accumulate cnough slip to break a length of fault equal to 0.5
of a cell. If there is enough slip accumulated to break a rupture length of 0.5 of a cell,
rounding to the nearest integer number of cells would yield a rupture length of one cell.



T(j,2) is the amount of time it takes to accumulate enough slip to break a length of 1.5
cells minus 7(J,1), etc.
The slip released coseismically can be related to the seismic moment of the

earthquake using the equation

M, = uuA = yulD (4.2)
where

M, = the seismic moment of the carthquake in dync-cm

H = the modulus of rigidity for rock (3x10'' dyne /cm?)

u = the average slip released coscismically in cm

L = the length of rupture in km

D = the depth of the fault in km.

TABLE 4.4 Transition times for slip accurnulation eveats (20 km cells)

1 Incre-

Rup. Disp. | mental |Slip Rate k T(i,k) | Cum.
Len. (m) Disp. | (mm/yr) (M Time
(km) {m) (¥)
10 0.32 0.32 1 1 17. 17.

30 0.R1 0.49 19 2 258 429
50 1.25 044 19 3 230 65.8
70 1.66 0.41 19 4 21.5 87.3
%0 2.05 0.39 19 5 205 107.8
110 243 0.38 19 6 19.8 127.6
130 279 0.37 19 7 19.2 146.9
150 3.15 0.36 19 8 18.8 165.6
170 3.50 035 19 9 184 184.0
190 3.34 0.34 19 10 180 202.0
210 4.18 034 19 11 127 219.7
230 4.51 033 19 12 17.5 237.2
250 483 033 19 13 17.2 254.4
270 5.16 032 19 14 17.0 2714
290 548 032 19 15 16.8 288.2
310 579 032 19 16 16.6 304.8
330 6.10 0.31 19 17 16.4 321.2
350 641 0.31] 19 18 16.3 337.5
370 6.72 031 19 19 16.1 353.6
390 7.02 0.30 19 20 16.0 369.6
410 7.32 0.30 19 21 159 385.5
430 7.62 0.30 19 22 15.7 401.2
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When an earthquake breaks more than one cell, the amount of moment released by each
cell is calculated separately, as the cells can release different amounts of slip. The
seismic moment of the earthquake is the sum of the moment released by each cell
rupturing during the earthquake.

The seismic moment calculated from equation 4.2 is related to the moment
magnitude using the relationship proposed by Hanks and Kanamori, 1979:

M_ = }log(M,)-10.7 (4.3)

where

M, the moment magnitude
M, the seismic of the earthquake in dyne-cm.

Equations 4.2 and 4.3 allow the estimation of the seismic moment and moment
magnitude of earthquakes whose occurrence is simulated with the model.

4.3 IMPLEMENTATION OF THE MODEL

In order to implement the fault rupture model, a simulation procedure is
developed. Figure 4.2 outlines the procedure for simulating the sequences of earthquakes
in ime and for computing various quantities of interest. Each of the steps in this figure is
explained in the following discussion.

The data required for the simulation of the fault rupture model were described in
Section 4.2. These data included the fault length, the fault depth, the segmentation
model, the slip rate for each segment, the interarrival time statistics for each segment, the
distnbution type of the times between each cell triggering an earthquake, and the
carthguake history of the fault.

In addition to the data, several functional relationships need to be defined. These
include the relationships between accumulated slip and rupture length, between slip
released and seismic moment, and between seismic moment and moment magnitude.
The specific relationships were given in equations 4.1, 4.2, and 4.3.

The cell size must be chosen such that an integer number of cells will adequately
characterize the length of each segment and yet the computational effort will not be
prohibitive due to the large number of cells. The input mean and standard deviation for
each segment are the input parameters to the model. They are determined by trial and
error, as noted above.
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Once these data have been estimated, sequences of earthquakes can be simulated
and their properties and statistics siudied. Appendix A contains a chart describing how
the various portions of the computer program used to simulate this model relate to each
other.

Several different types of output are of interest when studying the fault behavior.
By simulating a sample of earthquake sequences in time and in space, the times at which
cach state transition (incrementing the amount of accumulated slip or triggering an
earthquake) occurs and the state of the variables after each transition can be traced. The
number of times each cell ruptures and the output mean and standard deviation for each
cell provide additional information. The average and standard deviation of the output
means and of the output standard deviations of the cells on each segment are reported in
order to compare their values to the input parameters. Other quantities calculated
include:

* the probability of any part of the fault rupturing during an earthquake

» the probahility of any part of a given segment rupturing during an
earthquake

* the probability of a given cell rupturing during an earthquake
¢ the probability of an earthquake triggering on a given segment
* the probability of an earthguake triggering on a given cell

» the probability of more than 50% of a given segment rupturing during
one earthquake

In addition to the above, other quantities reported include different distributions
for each cell, for each segment, and for the entire fault. The probabilities of observing
different interarrival times are obtained by multiplying the distribution of interarrival
times by the probability of occurrence of an earthquake. The distribution of rupture
lengths multiplied by the probability of cccurrence of an earthquake gives the probability
of observing different rupture lengths. The moment release distribution multiplied by the
probability of occurrence gives analogous information. Finally, the number of
earthquakes per year of a given magnitude or greater shows not only the relative numbers
of earthquakes of different magnitudes but also the expected cutoff magnitude.
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In Chapter 5. the results from the application of the model 1o the northern San
Andreas fault are presented. Some of the output information described above is reported
in order to analyze the behavior of the fault.



CHAPTER 5
RESULTS OF MODEL APPLICATION

5.1 INTRODUCTION

This chapter presents the results obtained from applying the fault behavior model
10 the northern San Andreas fault. The data used in applying this model were discussed
in Chapter 4. Results are presented for the case of 20 km cells, a slip rate of 19 mm/yr,
and interarrival time means as estimated by the USGS Working Group (1990). The
lognormal distribution is assumed in modeling the earthquakes’ trigger times. The
sensitivity of the results to the cell size, to the slip rate, and to the interarrival times will
be the subject of Chapter 6. In addition, an alternate segmentation and the use of the
Weibull distribution for modeling the earthquakes’ trigger times will be considered in
Chapter 6.

The distinction was drawn in Chapter 4 between input statistics and output
statistics. The input statistics are adjusted so that the output means averaged over each
segment are close 1o the estimated mean interarrival times. Figure 5.1 shows the input
and output means for each cell for the base case. Note that the vaniability in the output
means over the cells in segment #1 (North Coast) and in segment #3 (South Santa Cruz
Mountains) is relatively small. However, segment #2 (San Francisco Peninsula) shows
significant variability among the cells. This suggests that segment #2 is a transition
segment in which the character of the fault changes from the longer interarrival times to
the north to the shorter interarrival times 1o the south.

Figure 5.2 shows the input and output standard deviations for cach cell. Adjusting
the input parameters allows the average of the output means over each segment to
correspond closely to the USGS estimated mean interarrival times. However, the output
standard deviations cannot be adjusted in this way. Because there are several cells on
cach segment, there is only a loose correlation between the input standard deviation and
the output standard deviation. For example, the Nonth Coast segment contains 17 cells.
Each of these cells generates earthquakes according to a probability distribution
characterized by the input mean and input standard deviation. When the simulation
begins, the time until cach cell triggers an carthquake is simulated from this distribution.
The time until the next earthquake triggers on the scgment is the smallest of these trigger
times. In effect, there are 17 samplings (because there are 17 cells) from the distribution,

41
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and the smallest number controls the time until the next earthquake. Raising or lowering
the mean of this distribution will then affect the time until the next earthquake. Given
enough simulations, the time until the next earthquake will be longer when the mean of
the distribution is higher.

When the input standard deviation i changed, however, the major effect is on the
output mean, not the output standard deviation. This is because a greatcr variability in
the distribution, characterized by the larger standard deviation, increases the chances that
one of the 17 samplings will be low and thus decreases the time until the next earthquake.
Given enough simulations, increasing the standard deviation lowers the time until the

next earthquake.

These observations imply that the output standard deviation is largely intrinsic to
the model and has more to do with rupture spilling over from adjacent cells than with the
input standard deviation. Note that the cells on segment #3 are an exception because the
mean interarrival time of earthquakes on segment #3 is short compared to the mean
interarrival times of segments #1 and #2. Most of the earthquakes in the simulation
therefore initiate on segment #3, making the input parameters more closely associated
with the output parameters than on the other segments.

5.2 SAMPLE SIMULATION

One of the strengths of simulation is that it allows analysis of the statistics of
many simulations and also of the sample path of individual simulations. This can provide
clues 1o the behavior of the fault that are sometimes obscured by looking only at
summary statistics. In Figure 5.3, a typical simulation of the base case, the time and
moment magnitude of each earthquake are listed on the left. The heavy lines denote the
cells that ruptured during each earthquake; the asterisk above each heavy line shows the
cell on which the earthquake originated. Figure 5.3 shows the earthquake history from
time O years, at which there is no slip accumulated anywhere on the fault, to time 3309
years, at which there is an earthquake that ruptures the entire fault.

Most of the earthquakes displayed in Figure 5.3 (67%) originated on segment #3.
23% of the earthquakes originated on scgment #1, with the remaining 10% originating on
segment #2. The ecarthquakes originating on segment #3 typically have a moment
magnitude between 7.0 and 7.4 (though larger or smaller magnitude earthquakes do
occur). Larger magnitude earthquakes originate on segments #1 and #2 at longer
intervals, and their typical magnitude range is 7.8 to 8.1. Some clustering of these larger
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earthquakes occurs; if a large earthquake does not rupture all of segment #1, there is
frequently another earthquake shortly thereafier. Most of the earthquakes rupturing
segment #2 spill over from another segment.

These observations suggest that carthquakes similar to the Loma Pricta
earthquake occur rather regutarly and more frequently than larger earthquakes. While
carthquakes similar 10 the 1906 San Francisco earthquake are less common, they do occur
and rupture a longer portion of the fault. The San Francisco Peninsula segment does not
often originate an earthquake, but does frequently rupture when other earthquakes spill

over onto it.

5.3 FREQUENCY OF EARTHQUAKES

Figure 5.4 shows the number of earthquakes per year based upon a simulation of
1,000,000 years. The x-axis is the moment magnitude of the earthquakes, while the y-
axis is the number of earthquakes per year with a given moment magnitude or greater.
Most of the smaller magnitude earthquakes originate on segment #3, while the larger
magnitude earthquakes originate on segmenis #1 and #2. This confirms the behavior
observed in the sample simulation in Section 5.2.1.
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The average number of earthquakes per year with a moment magnitude exceeding
6.5 is 0.0155, or one eanhquake every 64.5 years. The annual rate of occurrence of
earthquakes with 2 moment magnitude of 7.9 or greater is 0.0029, or one earthquake
every 345 years. Earthquakes falling into this moment magnitude range are of a size that
is on the order of the 1906 carthquake. The 345 year recurrence interval predicted by this
model is higher than the approx.inately 150-200 year recurrence interval estimated by
others (Ellsworth, et. al., 1981; Thatcher and Lisowski, 1987). One possible reason may
be that the other recurrence interval estimates were made for earthquakes rupturing the
San Francicso Peninsula section, which may not necessarily be of the same magnitude as
the 1906 earthquake.

54 PROBABILITY OF EXCEEDING A GIVEN MAGNITUDE

DURING A GIVEN TIME HORIZON

An important quantity for site hazard analysis is the probability of exceeding a
given magnitude level during a given time period. The given magnitude level will
usually be related to a ground motion parameter, such as peak ground acceleration, at the
site. The probability of exceeding a given magnitude level can be used to estimate the
probability of exceeding a given ground motion level at a site. The probability of
exceeding given magnitude levels will be estimated for fixed time intervals as a function
of momen: magniwude. The same probability will also be estimated for fixed magnitude
levels as a function of time.

5.4.1 FORECASTS FOR FIXED TIME INTERVALS

Figure 5.5 shows the probability of experiencing an earthquake with a moment
magnitude m or greater during time intervals of 50 and 100 ycars. The results are based
on a simulation of 10,000 cycles of the fixed time interval. It is assumed that at time
equal to zero, an earthquake occurs that ruptures the entire fault and releases all
accumulated slip. Review of the simulations revealed that all the earthquakes that
vecurred originated on segment #3.  The carthquake history of carthquakes triggering on
scgment #3 is then the same as the history of carthquakes triggering anywhere on the
fault. As a consequence, Figure 5.5 applics to segment #3 and to the entire fault as a
whole.

The probability of earthquakes with a moment magnitude greater than or equal to
6.5 is 0.0117 for a time period of 50 years and 0.735 for a time period of 100 years. Note



that for a time period of 50 years, the largest carthquakes observed have a moment
magnitude between 6.8 and 6.9. In a time period of 100 years, the largest earthquakes
have moment magnitudes of 7.2 10 7.3. Since the simulation begins at the zero slip level,
it is not possible for enough slip to accumulate within 50 or 100 years to cause

carthquakes with larger magnitudes than this.

5.4.2 FORECASTS FOR FIXED MAGNITUDE LEVELS

Figures 5.6-5.9 show the probability, as a function of time, of the occurrence of an
earthquake exceeding certain magnitude levels for the entire fault as a whole and for
carthquakes originating on each segment separately. These graphs are based on 10,000
simulations of each time period (20 years, 40 years, etc.) In these graphs, it is again
assumed that an earthquake rupturing the eatire fault and releasing all accumulated slip
occurs at me zero.

Note that in Figure 5.6, the graphs corresponding to moment magnitudes 6.5 and
7.0 differ only by a probability of approximately 0.1. Thus, there are not many
carthquakes whose moment magnitudes fall into the range from 6.5 to 7.0. The graph
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corresponding to moment magnitude 7.5 does not begin to rise until approximately 140
years and reaches a final probability of 0.083 at time 300 years.

In Figures 5.7 and 5.8, the graphs comresponding to all three magnitude levels are
the same because only earthquakes with a moment magnitude level of 7.5 or higher are
actually observed. Comparing the two figures shows that segment #1 triggers more
earthquakes than segment #2 as it has a higher probability of experiencing an carthquake.
In a time period of 300 years, an earthquake originates on segment #1 with a probability
0.182 whereas the probability of an carthquake originating on segment #2 is 0.114.

Figure 5.9 shows that the earthquakes with magnitude less than 7.5 originate on
segment #3. While this segment is responsible for the greatest number of earthquakes,
they are almost all of smaller magnitude than those originating on the other segments.
Figures 5.6-5.9 confirm the observations of the behavior of the northern San Andreas

fault noted in previous sections.

55 HAZARDRATE

The hazard rate is defined as the probability that an earthquake exceeding a given
magnitude level occurs in the time period (4,¢ + At) given that there were no earthquakes
in the period (0,¢). Figure 5.10 shows the hazard rate for the entire fault using At = 10
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FIGURE 5.10 Harard rate for the base case ( Ar = 10 years)
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years. All the carthquakes whose occurrences are reflected in this graph triggered on
segment #3 because Af is chosen to be short enough that only one earthquake is observed
in each time period (#,7 + Af). As segment #3 has the shortest mean interarrival time, it is
the segment that triggers each earthquake in this simulation. If the behavior of the fault
were simulated for longer than the 10 year period, earthquakes would be observed on

other segments as well.

Note that for earthquakes with a moment magnitude of 6.5 or greater, the hazard
ratc begins to rise at 30 years. At 75 years, the hazard rate is the same for earthquakes
with magnitudes exceeding 6.5 as it is for earthquakes with magnitudes exceeding 7.0.
This reflects the fact that at = 75 years, all the carthquakes that occur within the
additional 10 years have a moment magnitude of 7.0 or greater. The same phenomenon
occurs at ¢ = 150 years; all the earthquakes occurring within the additional 10 years have
a moment magnitude of 7.5 or greater. This is a reflection of the fact that the longer the
time since the last earthquake, the greater the amount of slip that will be released when
there is an earthquake, As discussed above, all earthquakes in this simulation triggered
on segment #3, These factors combine to cause the magnitudes of the simulated
earthquakes to fall into narrow ranges.

Because the mean time for earthquakes originating on segment #3 (105 years} is
significantly smaller than for those originating on segment #2 (350 years) and segment #1
(443 years), the hazard rate calculated above is difficult to interpret. As the amount of
time since the last carthquake increases past the mean interarrival time for segment #1,
the hazard rate as calculated above begins to lose its meaning. The probability that 2 gap
time of 150 years would be observed in this model is small. For the model using 20 km
cells and a slip rate of 19 mm/yr, the mean trigger time for cells on scgment #3 is 105
years, with a standard deviation of 30 years. Assuming the lognormal disaibution, the
probability of no carthquake being triggered by a cell in segment #3 during the 150 year
time period following a large carthquake releasing all accumulated slip is less than
0.05%. However, a gap time of 150 years for earthquakes originating on segment #1 and
segment #2 would be expected, since the mean trigger times for cells on those segments
are much higher.

The most probable scenario then would involve an earthquake originating on
scgment #3 during a 150 year time period, with no earthquakes triggering on the other
segments during those time frames. This scenario, however, does not lend itself to
computing a quantity that resembles the hazard rate as defined above. The hazard rate for
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the entire fault is driven by the hazard rate for the segment with the smallest interarrival
time for triggering earthquakes. Due to the spill over of earthquake from segment to
segment, it is difficult to treat each segment separalely and compule a hazard rate for cach
one. In this model, the hazard rate does not have a meaning when it is calculated
assuming a gap time that is unrealistic for the segment generating earthquakes most

frequently.

A Poisson model has a constant hazard rate, which would be a horizontal line on
the graph. Figure 5.10 demonstrates that this model has an increasing hazard rate for gap
times up to 105 years., (As discussed above, the hazard rate is not a meaningful quantity
as the gap time increased much past the trigger time mean of the segment most often
triggering earthquakes.) The elastic rebound theory implies that immediately after an
carthquake, the probability of another earthquake is low. For large magnitude
carthquakes, this mode! incorporates that idea.

5.6 COMPARISON WITH USGS ESTIMATES

The USGS Working Group (1990) has estimated the probabilities of earthquakes
rupturing more than 50% of each of the northern San Andreas fault segments during the
time period 1990-2020. The Working Group assumed a renewal model based on a
lognormal distribution of interarrival times. Their estimates will be compared 1o the
estimates obtained with this model. Both the Working Group and this model application
result in the probabilities of an earthquake on the South Santa Cruz Mountains segment
(segment #3) that are virtwally zero during this time period. The Working Group
estimates the probability of an eartiquake on the North Coast (segment #1) to be 0.02
during this ime frame. The corresponding probability obtained from this model is
virutally zero. The Working Group states that they do not consider differences of
probability less than 0.1 to be significant. Therefore, this model and the Working Group
are in agreement regarding segment #1 as well as segment #3,

The Working Group and this mode! differ in the assessment of the probability of
an earthquake on segment #2, the San Francisco Peninsula segment. The Working Group
estimates this probability to be 0.23 because this segment is thought to have ruptured on
its own in 1838. Since i1 is known to have ruptured 68 years later in 1906, it is quite
possible that is will rupture again during the 114 years between 1906 and 2020. The
presented model views the San Francisco Peninsula segment quite differently, however,
Nearly all the simulated earthquakes that rupture this segment originated on a different
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scgment. Because this model finds the probability of an earthquake originating on cither
segment #! or segment #3 to be virlually zero, the corresponding probability of rupturing
more than 50% of segment #2 is also very small.

5.7 CONCLUSIONS

The results based on 20 km cells, a slip rate of 19 mm/yr, and intcrarrival time
means cqual to the USGS estimates support the idea of two distinctly different behaviors
on the northemn San Andreas fault. The South Santa Cruz Mountains segment generates
carthquakes with a moment magnitude that is usually in the range of 6.8 10 7.4. The
North Coast segment generates earthquakes less frequently, but the moment magnitudes
of those earthquakes are usually in the range of 7.7 10 8.1. The San Francisco Peninsula
section acts as a transition between those two segments; it more often breaks due to an
earthquake spilling over from an adjacent segment than due to an earthquake originating
on it. If this is true, then the San Francisco Peninsula segment has a greater capacity for
stress accumulation than either the North Coast segment or the South Santa Cruz
Mountains segment. This contrasts the view expressed by the Working Group, which felt
that this segment has a greater, rather than smaller, chance of rupturing during the time
period 1990-2020.

This model predicts a mean interarrival time of earthquakes with a moment
magnitude of 7.9 or greater of 345 years. Eanthquakes in this magnitude range are similar
in size to the 1906 earthquake. In addition, this model shows an increasing hazard rate
for gap times of 165 years or less. For larger gap times, the hazard rate is difficult to
define for this model and is therefore not estimated.



CHAPTER 6
SENSITIVITY OF RESULTS

6.1 INTRODUCTION

In Chapter 5, the results for the base case model for the northern San Andreas
fault were presented. The base case considered 20 km cells, a slip rate of 19 mm/yr, and
mean interarrival times equal to the USGS estimates of the mean interarrival times. In
the base case, it was assumed that the times between carthquakes triggering on a given
cell were lognormally distributed. In reality, though, neither the slip rate nor the mean
interarrival time values are known precisely. Furthermore, the choice of cell size is made
to allow accurate represcntation of the segment lengths and could easily be changed.
Each of these quantities will be varied in order to observe their effect on the results.

in addition, the times between earthquakes will be modeled as a Weibull, rather
than a lognormal, distribution. Finally, an alternate segmentation model, which divides
the San Francisco Peninsula segment inta two segments, will be considered.

6.2 SENSITIVITY TO CELL SIZE

The cell size is a parameter that is chosen based upon the geometry of the fault.
Table 6.1 gives the length of each segment when modeled with 10 km cells, 20 km cells,
and 30 km cells. It should be noted that any of the three cell lengths enable the accurate
representation of the entire fault. In addition, both 10 km cells and 20 km cells allow the
lengths of the segments to be accurately represented. However, the length of segment #3,
and 1o a lesser extent, the length of segment #1 are not accurately represented by 30 km
cells. In Chapter S, the number of carthquakes per year and the probability of an
carthquake exceeding a given magnitude during a given time horizon (for fixed time
intervals) were estimated by using 20 km cells. These results will be compared to those
obtained by considering cell sizes of 10 km and 30 km, keeping the slip rate and the mean
intcrarrival times constant.

Figures 6.1-6.4 show the number of carthquakes per year for each segment and for
the entire fault for each cell size. For the entire fault and for segment #1, the results are
not sensitive to the cell size. On segment #2, the results are similar for 10 km cells and
for 20 km cells. Using 30 km cells, however, leads to cumulative numbers of
carthquakes an order of magnitude lower than those obtained from using the other cell

4
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sizes. The maximum moment magnitude observed for earthquakes originating on
scgment #3 differs depending upon the cell size.

Figures 6.5 and 6.6 show the probability of an carthquake occurring that exceeds a
given magnitude dunng time periods 50 and 100 years long, respectively. Each of these
time periods begins when a large carthquake ruptures the entire fault and relcases all
accumulated slip. In these figures, all the earthquakes that occurred originated on
scgment #3. Figure 6.5 shows that using 30 km cells leads to carthquakes of only two
different magnitude levels during the S0 year ime horizon. This is due to the fact that
only discrete numbers of cells can rupture during an carthquake. The larger the cell size.
the more the moment magnitudes of the carthquakes tend to cluster together. The results
for 10 km cells and 20 km cells do not differ radically. Figure 6.6 again shows similar
results for all cell sizes except at the very largest magnitudes.

TABLE 6.1 Lengths of each segment using different cell sizes

10 km Cells | 20 km Cells | 30 km Cells

Segment #1 # of Cells 34 17 12
(North Coast) | Model Length (km) 340
USGS Length (km) 340

% Diff. in Model 0.0 %

Segment #2 # of Cells 6
(SF Peninsula) | Model Length (km) 60
USGS Length (km) 61

% Diff. in Model -1.6 %
Scgment #3 # of Cells 4

(S SC Mountains) | Model Length (km) 40
USGS Length (km) 39
% Diff. in Mode) 26%
Entire Fault # of Cells 44
Model Length (km) 440
USGS Length (km) 440
% Diff. in Model - 0.0%
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A cell size of 30 km does not appear to be a good choice for modeling the
northern San Andreas fault because this cell size does not accurately represent the lengths
of the segments. Based upon the results presented here, there is no clear reason to prefer
either 10 km cells or 20 km cells. The results from these two cell sizes are similar and
differ only at the largest magnitude levels, at which the estimates are the most uncertain
due to the relatively few observations of the largest earthquakes.

The length of time it takes to simylate the mode! depends in part upon the number
of cells, as the number of events in the model is directly related to the number of cells.
Each cell has two events associated with it--incrementing the amount of accumulated slip
and triggering an earthquake. When the cell size 1s halved, twice as many events must be
scheduled and tracked. This causes the computation time 10 roughly double for the
smaller cell size.

Based on these observations, the 20 km cell size appears to be best suited for
application to the northern San Andreas fault. This cell size models the lengths of the
segments closely. It produces results similar to those obtained with the 10 km cells but
avoids the additional computation time.

6.3 SENSITIVITY TO SLIP RATE

The results in Chapter 3 were computed assuming that the slip rate is 19 mm/yr.
Slip rates, however, are difficult to estimate from the available information and reported
values can vary greatly. The USGS Working Group (1990), for example, assigned a slip
rate on the northern San Andreas fault of 19 + 4 mm/yr.

In order to study the effect of slip rate on the results obtained by this model,
results computed with slip rates of 15 mm/yr, 19 mmy/yr, and 23 mm/yr are compared,
assuming that the cell size is 20 km and that the mean interarrival times are the same as
the USGS estimates of these mean values.

Figure 6.7 shows that for the entire fault, the results are not sensitive to the slip
rate except at the highest magnitudes. The highest cutoff magnitudes were observed for
the case when the slip rate is 23 mm/yr, and the lowest cutoff magnitudes were observed
for the case when the slip rate is 15 mm/yr. When the interammival times are kept constant,
as they were in this example, the larger slip rate will have more accumulated slip when an
eanhquake occurs and hence a larger moment magnitude. Figure 6.8 shows similar
behavior for earthquakes originating on segment #1.
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Figure 6.9 shows that the number of earthquakes per year triggering on segment
#2 is sensitive to slip rate. When the slip rate is 23 mm/yr, no earthquakes triggered on
segment #2 during the simulation time frame (1,000,000 years). This is due to the fact
that at that high slip rate, segment #2 breaks frequently due to rupture spilling over from
adjacent segments. Even without triggering any earthquakes itself, segment #2 has an
average interarrival time of 107 years, which is smaller than the USGS estimate of 138

years.

When the slip rate is 15 mm/yr or 19 mm/yr, segment #2 docs trigger some
carthquakes. The cutoff magnitude is again influenced by the choice of slip rate, with the
larger cutoff magnitude corresponding to the larger slip rate. In addition, there is a larger
number of earthquakes per year with the smaller slip rate. Since a smaller slip rate is
associated with smaller magnitude carthquakes, fewer cells rupture during each
carthquake. Thus, when the slip rate is smaller, there must be a greater number of
earthquakes to rupture all the cells with the same mean interarrival time.

Figure 6.10 shows that segment #3 is also sensitive to the slip rate. As noted
previously for the other segments, the size of the cutoff magnitude is dependent upon the
choice of slip rate.

Figures 6.11 and 6.12 show the probability of an earthquake occurring that
exceeds a given magnitude during time periods of 50 and 100 years, respectively. (As
noted before, an earthquake occurred at time zero that ruptured the entire fault and
released all accumulated slip.) In these figures, all the earthquakes originated on segment
#3. Figure 6.11 demonstrates that within 50 years, there are few earthquakes observed,
and they have a narrow magnitude range. As before, the smallest slip rate is associated
with the largest probability of earthquake occurrence and with the smallest moment
magnitude. The largest slip rate is associated with the largest moment magnitude.

Figure 6.12 shows similar behavior for the 100 year time horizon. The cutoff
magnitude is highest when the slip rate 1s 23 mm/yt and lowest when the slip rate is 15
mm/yr.

The results display considerable sensitivity to slip rate. When the ship rate is
higher, the largest observed carthquakes have a higher moment magnitude. In addition,
the lowest slip rate is associated with more earthquakes occurring, though they are of
somewhat smaller magnitude. The average recurrence interval for earthquakes with a
magnitude of 7.9 or greater is 1495 years for a slip rate of 15 mm/yr, 345 years for a slip
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rate of 19 mm/yr, and 278 years for a slip rate of 23 mm/yr. The extremely large
recurrence interval for the 15 mmy/yr case is a reflection of the fact that at the lower slip
rate, the largest earthquakes simulated have a lower magnitude. The difference in
recurrence interval between the 19 mm/yr and 23 mm/yr cases is much smaller. These
results suggest that the major effect noted when the slip rate is varied is the change in the
cutoff magnitude of the largest earthquakes.

6.3 SENSITIVITY TO INTEF ARRIVAL TIMES

All the results presented thus far are for the mean interarrival times as close as
possible to those estimated by the USGS Working Group (1990). Figures 6.13-6.18
demonstrate the effect of varying the mean intcrarrival times. In the legends of these
figures, “Mn" refers to all segments having mean interarrival times as estimated by
USGS. *1 -" refers to segment #1 having a mean equal to the mean estimated by USGS
minus one standard deviation, or 164 years. The mean values of segments #2 and #3 are
kept constant under the scenario designated as “1 -”. Similarly, “1 +” refers 10 segment
#1 having a mean interarrival time equal to the USGS mean plus one standard deviation,
or 310 years, while the mean values of the other 1wo segments are kept constant.
Segment #2 has a mean of 98 years in the scenario “2 -” and a mean of 178 years in the
scenario "2 +.” Segment #3 has a mean of 60 years in “3 - and a mean of 108 years in
“3I+7

Figures 6.13 and 6.14 demonstrate that for the entire fault and for earthquakes
originating on segment #1, the choice of mean interarrival time does not have a large
impact on the results. The cutoff magnitude varies slightly depending on the scenario,
but that effect is quite small. In addition, the cumulative number of earthquakes per year
varics from scenario 1o scenario, but this variance is less than an order of magnitude.

Figure 6.15 shows that the cumulative number of carthquakes originating on
segment #2 is highly dependent on the interarrival time scenario selected. When scenario
*3 +” is chosen, there are no carthquakes triggering on segment #2. Under scenarios in
which earthquakes do trigger on segment #2, “2 +" corresponds to the fewest cumulative
number of earthquakes. In this scenario, the mean interarrival time of segment #2 is
higher, while the mean values of the other segments are kept constant. Therefore, there
should be fewer earthquake triggering on segment #2 in scenario “2+" than in other
scenarios. Scenario “2 - is associated with the largest number of earthquakes triggering
on segment #2 because its mean interarrival time is decreased. The cutoff magnitudes are
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also slighily smaller under the scenario “2 -™ as the faster triggering earthquakes do not
have as much slip accumulated and are therefore smaller.

Figure 6.16 shows that the primary effect on carthquakes triggering on segment
#3 is on the cutoff magnitude. The scenario “3 - has the smallest cutoff magnitude since
the earthquakes occur more frequently and are therefore smaller. As would be expected,
the scenario “3 +" is associated with the highest cutoff magnitude. The cumulative
number of earthquakes per year is highest under the scenario *3 -” and lowest under the
scenario 3 +7, but that is not a large effect.

Figure 6.17 shows the results for a 50 year time horizon starting at time zero. For
this short time horizon, all observed earthquakes originated on segment #3. The results
are highly dependent upon the scenario chosen. The highest probabilities of an
earthquake occur when the mean interarrival ime on segment #3 is lowered. When the
mean interarrival time on segment #3 is increased, the probability of an earthquake
decreases dramatically. For all other scenarios, the probabilities are comparable.

Figure 6.18 shows a similar graph but for a time horizon of 100 years. In this
case, lowering the mean interamrival time on segment #3 results in a smaller probability of
earthquakes with a moment magnitude above 7.0 and with a higher probability of
carthquakes with smaller moment magnitude.

These results point out how the behavior of each scgment influences the others.
Even though the resulis on segments #2 and #3 vary widely depending upon the chosen
interarrival time scenario, the results for the entire fault do not vary greatly. This is
because lowering the number of earthquakes that trigger on one segment tends to raise the
number of earthquakes that trigger on the other segments. The statistics of the overall
fault may not be changed significantly, but the spatial distribution of the earthquakes will
be altered by the choice of mean interarrival time.

6.4 SENSITIVITY TO TRIGGER TIME DISTRIBUTIONS

As discussed in Chapter 3, earthquake interarmival times have been modeled in the
past with both the lognomal distribution and the Weibull distribution. The results
presented in Chapter 5 assume that the times between earthquakes triggering on a given
cell are lognormally distributed. Figures 6.19-6.24 compare those results with the results
obtained by assumning that the earthquake trigger times are Weibully distributed.



10E-1
10E-2
10E3 4
1.0E4 4 v
1.0E-s 4

1.0E6 4

Cum. # of Earthquakes per
Year

' 4 'y re 4 i d i
L -y v

1.0E-7 +—
6566 67 6869 707172737475 76177178 7980 81 82
Moment Magnitude Mw

Lognormal ——0—Weibull

FIGURE 6.19 Number of carthquakes per year for varying trigger time distributions--
Entire fault

1.0E-1

1.0E-2

1.0E-3 4

1.0E4 4

v

10E-5 4

L

1.0E-6 4

Cum. # of Earthquakes per
Year

10E7 +—1"—t——b+—¢+—+—"+—"+——"+—"+——+—4+——+—+—+—1—

6566 67 6869 707172737475 7677 78 7980 81 82
Moment Magnitude Mw

Lognormal —0—— Weibull

FIGURE 6.20 Number of carthquakes per year for varying trigger time distributions--
Segment #1



Chapter 6: Sensitivity of Results 70

10E-1
10E2 4
1.0E-3 §

1.0E4 +

Ll

LOE-5 4 C

1.0E6 +

Cum. # of Earthquakes per
Year

1 4 n 1 I 4 i I i i [l I i N 1 i
]OE'7 s L] ¥ ¥ 14 : LS ¥ ¥ ¥ 1 v L | 4 1}

65 66 67 6869 70 71 72 73 74 75 76177 7.8 7.9 8.0 8.1 8.2
Moment Magnitude Mw

*~— Lognormal —8— Weibull

FIGURE 6.21 Number of earthquakes per year for varying trigger time distributions--
Segment #2

1.0E-]
g 1oe2¢
o
L 1.0E-3 4+
g’i
= 1.0E4 +
5»
P 1.0E-5 ¢
E
g 10E%-
S
1.0E-7 Attt
6566 67 68 69 70 7.1 72 23 74 75 76 7.7 7.8 7.9 8.0 B.1 82

Moment Magnitude Mw

——i—— L ognormal ——&— Weibuil

FIGURE 6.22 Number of earthquakes per year for varying trigger time distributions--
Segment #3



_Chapter 6. Sensitivity of Results 1

1.OE-1
%‘ u-—o—o—«:r—-o\_u_ku
€ 1024 ——
E JEe- l‘———l——-l\.
Y
b
B

10E-3 + + } = + -+ +

62 6.3 6.4 6.5 6.6 6.7 63 6.9 7.0
Moment Magnitude Mw

#—— Lognormal ——0-—— Weibull

FIGURE 6.23 P{M 2 m] during the time interval (0,50) for varying trigger time

distributions

10 E+0
_ Ne—a
= 0
s
€ 10E1
E [
N
=
(-9

1.0E.2 + — + + } + ' $ 4

63 64 6.5 66 67 6B 69 70 71 7.2 73
Moment Magnitude Mw

——&— Lognommal ——0-— Weibull

FIGURE 6.24 P{M 2 m] during the time interval (0,100} for varying trigger time
distributions



Chapter 6. Sensitivity of Results 12

Figures 6.19-6.21 demonstrate that the number of carthquakes per year triggering
anywhere on the fault, triggering on segment #1, and triggering on segment #2 are
relatively insensitive to the choice of trigger t'me distribution. Figure 6.22 shows a slight
sensitivity to the trigger time distribution chosen for earthquakes that initiated on segment
#3. On that scgment, the lognormal distribution shows a cutoff magnitude that is slightly
higher than the cutoff magnitude associated with the Weibull distribution.

Figures 6.23 and 6.24 show the probability of an earthquake excecding a given
magnitude level during time periods of 50 years and 100 years after an earthquake that
ruptures the entire fault and releases all accumulated slip. All the carthquakes in these
graphs triggered on segment #3. (This is due to the short time horizons selected.
Earthquakes would trigger on other segments if the time horizon were longer.) Figure
6.23 shows that the Weibul! distribution yields a higher probability of occurrence. Figure
6.24 shows little difference between the results based upon the distribution chosen, but
the Weibull distribution is associated with slightly higher probabilities of occurrence.

The Weibull distribution is broader than the lognormal distribution for the same
mean and standard deviation. There is therefore more probability in the tails of the
Weibull distribution than in the lognormal distribution. That implies that the chance of
simulating a low number from the Weibull distribution is greater than the chance of
simulating a low number from the lognormal distribution. Each segment is composed of
many cells, each of which has its trigger time set by simulating from the distribution.
The smallest trigger time initiates the next earthquake. The Weibull distribution, with its
wider tails, will tend to have a shorter trigger time than the lognormal distribution. This,
in turn, leads to smaller interarrival times with smaller magnitude earthquakes,
confirming the behavior observed above.

6.5 SENSITIVITY TO SEGMENTATION

Adopting the segmentation proposed by the USGS Working Group (1990), it was
assumed in the results presented in Chapter § that the Northern San Andreas fault is
composed of three segments: the North Coast segment, the San Francisco Peninsula
scgment, and the South Santa Cruz Mountains segment. The Working Group also
considered an alternate segmentation in which the San Francisco Peninsula segment was
composed of two subsegments, the Mid-Peninsula segment and the North Sania Cruz
Mountains segment. Table 6.2 shows the length of each segment in the altermate
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TABLE 6.2 Lengths of segments in alternate segmentation model

Segment umber e .
Name of Cells Length Length in Model
(km)
oast
Mid-Peninsula 2 4] 40 .
I N. Santa Cruz Mountains] 1 20 20 00%
[ S. Santa Cruz Mountains || 2 39 40

scgmentation as estimated by USGS and as modcled in this dissertation. Table 6.3 shows
the input and output parameters for the alternate segmentation.

Figure 6.25 shows the input and output means for the alternate segmentation. The
data for the base case scenario was given in Figure 5.1, For the North Coast segment, the
alternate segmemation is associated with more variability in the means than is the base
case. The mean interarrival times of the San Francisco Peninsula segment can be more
closely modeled by the aliernate segmentation, which divides the segment into two
subsegments. Both segmentation models allow the mean interarrival time for
earthquakes on the South Santa Cruz Mountains segment to be accurately modeled.

Figure 6.26, which is analogous to Figure 5.2, shows the input and output
standard deviations for the alternate segmentation. In general, the standard deviations are
more closely modeled in the alternate segmentation than in the base case. This is
especially true of the North Coast segment, which shows an average output standard
deviation of 90 years, as contrasted with the base case’s value of 119 years.

Figures 6.27-6.30 show the number of earthquakes per year for the base case and
for the alternate segmentation. For the entire fault, for the North Coast segment, and for

TABLE 6.3 Input and output statistics for the altemate segmentation

! Segment Input | Input “Output | Output | UGS USE]

Name Mean | St. Dev.] Mean |St. Dev.|] Mean | St. Dev.
yr r r yr yI yr
North Coast 6

Mid-Peninsula 229 50
N. Santa Cruz Mountains | SO0 50
n §. Santa Cruz Mountains 103 30

130 70 129 49
91 36 95 44 I
85 22 84 24 |
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the South Santa Cruz Mountains scgment, the results from the two scgmentations are
comparable. Figurc 6.29 shows that for the San Francisco Peninsula scgment, the
alternate segmentation yiclds smaller maximum magnitudes and more frequent
carthquakes. All the earthquakes reflected in the aliernate segmentation part of the graph
triggered on the Mid-Peninsula subsegment. Because the North Santa Cruz Mountains
scgment ruptures frequently when rupture spills over from another segment, its input
mean is very high, which prevents it from triggering earthquakes.

The USGS Working Group estimaltes the mean interarrival time on the Mid-
Peninsula scgment 0 be 129 years and the mean interarrival time on the North Santa
Cruz Mountains segment 1o be 95 years. For the base case, however, these two scgments
were both considered to be part of the San Francisco Peninsula segment, for which the
Working Group estimated the mean interarrival time to be 138 years. Since the alternate
segmentation has a smaller mean interarrival time on the San Francisco Peninsula than
the base case, the number of earthquakes per year should be larger for the smaller
magnitudes and smaller for the larger magnitudes. This confirms the behavior shown in
Figure 6.29.

Figures 6.31 and 6.32 show the probability of earthquakes within time periods of
50 years and 100 years, respectively. Due to the short time periods, the carthquakes
shown on these graphs triggered on the South Santa Cruz Mountains scgment. The
figures show that the resulis are similar for the two segmentation. It is not surprising that
the results for the two segmentations are comparable since the aliernate segmentation
does not involve changing the configuration of the segment that is gencraling the
earthquakes.



CHAPTER 7
CONCLUSIONS

7.1 SUMMARY

This research develops an earthquake occurrence model that applies to faults that
generate earthquakes displaying temporal and spatial dependence. These are generally
large magnitude earthquakes (approximately moment magnitude 0.5 and greater) and
occur infrequently. However, because they have a large magnitude, they are potentially
catastrophic when they do occur. The ability to accurately model the occurrences of
these earthquakes is an important tool for analysis of site specific seismic hazard.

The presented model is a generalized semi-Markov process, which is a stochastic
process that has been previously used in applications such as queue theory. In this
dissentation, the GSMP is brought into the field of earthquake engineering with its
application to earthquake occurrence modeling.

The application of this model to the northern San Andreas fault predicts that the
fault can be expected to repeatedly generate earthquakes similar in size and space to the
Loma Prieta earthquake with an interarrival time that is on the order of 80-100 years.
Larger earthquakes similar to the 1906 earthquake can also be expected, but with a much
larger interarrival time (on the order of several hundred years). The San Francisco
Peninsula segment appears to be a transition segment in this model, which repeatedly
ruptures as part of an earthquake that initiates on an adjacent segment but does not often
trigger an carthquake on its own.

This model describes temporally and spatially dependent carthquakes, which
usually have moment magnitudes of approximately 6.5 and greater. Smaller magnitude
carthquakes can also cause damage, particularly near the epicenter. In order to
completely describe the earthquake hazard in arcas subject to temporally and spatially
dependent earthquakes, the presented model must be combined with & model designed to
describe the lower magnitude seismicity.

7.2 CONCLUSIONS
The generalized semi-Markov process is a well-studied stochastic process that is
applicable to the problem of modeling temporally and spatially dependent earthquakes.

79
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The advantages of using the GSMP include its ability to have a complex state space, its
random time belween state transitions, and its convenient framework for simulation.

7.2.1 MODEL APPLICATION

Scveral conclusions can be drawn from the application of this model to the
northern portion of the San Andreas fault. The predictions made include:

+ Segment #1 (North Coast) generates primarily large earthquakes with a

moment magnitude of approximately 7.8 or greater.

+ Segment #3 (South Santa Cruz Mountains) generates somewhat smaller
canhquakes with a moment magnitude of approximately 6.9 to 7.2.

» Segment #2 (San Francisco Peninsula) does not frequently irigger an
carthquake but ruptures due to spill-over from the two adjacent
segments.

+ The largest earthquakes observed have a moment magnitude of 8.1 to
8.2.

These results imply that the North Coast segment has a large capacity for stress
accumnulation and therefore generates carthquakes less frequently. Because the slip rate is
the same for all three segments, the North Coast earthquakes have the most stress
accumulated and hence the largest magnitudes. The carthquakes on the South Santa Cruz
Mountains segment have the smallest magnitudes since this segment has the least
capacity for siress accumulation.

The San Francisco Peninsula segment does not generate many earthquakes in the
model due to its relatively short average interamrival time (138 years) and proximity to a
segment with a 84 year interarrival time (South Santa Cruz Mountains). If this were true,
it would imply that the segment has a high potential for stress accumulation (because it
does not trigger earthquakes) that is rarely realized. The behavior of this segment is
critically important given its proximity to the highly populated San Francisco Bay region,
and it deserves further study.

7.2.2 MODEL SENSITIVITIES

In order to understand which input data most influence the results, the cell size,
slip rate, and interarrival time statistics were varied. Similarly, the Weibull distribution
was assumed for the trigger time distribution instead of the lognormal distribution used in
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the base case. An alternate segmentation model was also considered as part of these
sensitivily studies. The types of results that were compared were the number of
earthquakes per year and the probability of an earthquake with 2 magnitude exceeding a
given level during fixed time intervals. The major conclusions are:

« The results are insensitive 1o cell size except at the highest magnitudes
provided that the chosen cell size accurately represents the lengths of
the segments.

+ The moment magnitude of the largest observed earthquakes is most
sensitive to slip rate.

* The results for individual segments are highly sensitive to interarrival
times, but the aggregate results for the entire fault are much less

sensitive to this parameter.

+ The use of the Weibull distribution, rather than the lognormal
distribution, affects the results only minimally.

+ The results based upon the alternate segmentation were similar to those
obtained using the base case.

The lack of sensitivy to the cell size is a desirable property of the model. Since
the model is a mathematical construct developed to explain observed behavior, changing
the parameters of the model itself should not have a major impact on the results.

The aggregate results for the entire fault are not very sensitive to any of the data
varied in the sensitivity study. Since the three segments influence each other, increasing
the activity on on¢ segment (by decreasing its mean interarrival time) decreases the
activity on the other segments, The results for the entire fault are then rather insensitive
1o changing the input parameters, except at the largest magnitudes.

The results for each individual scgment are much more sensitive than the results
of the entire {ault. The most imponant parameters for the results on each segment are the
slip rate and the interarrival time statistics. Obviously, changing the mean interarrival
time for a segment will affect the results obtained for that segment. It is also logical that
the size of the earthquakes simulated is closely related to the assumed slip rate. What is a
little more obscure, however, is how changing the behavior of one segment affects the
others. For example, if the mean interarrival time of the South Santa Cruz Mountains
segment is increased, the San Francisco Peninsula segment begins to trigger more
earthquakes because there is not as much rupture spilling over from the other segnients.
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This model treats the fault as one entity made up of several segments. While
modifying the behavior of one of the segmenis will change the results for each segment,
the ovarall results for the entire fault do not change very much.

7.3 FUTURE WORK
Several questions still remain regarding the model and its application, In
addition, the model can be extended to include other earthquake characteristics not

considered in this research.

7.3.1 EXTENSION TO SITE HAZARD

As mentioned in Chapter 1, one of the reasons for developing earthquake
occurrence models is to enable site-specific hazard to be estimated. This model could
easily be extended to do this. An empirical attenuation function or other ground motion
propagation model for estimating the hazard at a site is needed. Many attenuation
functions require as input the distance from the rupture zone to the site and the size (for
example, the magniwude) of the earthquake. In the current model, each time that an
canthquake is simulated, these data are known. The space-time model can then be
extended 1o include this capability relatively easily.

For site hazard estimation purposes it is necessary to specify a forecast time
period. Thus, the length of each simulation period can be chosen to coincide with the
time period for which the hazard estimate is desired. When the model simulates the
occurrence of an ¢arthquake, the value of the ground motion parameter at the site can be
calculated. The largest value of the ground motion parameter at the site during each
simulation should be recorded. After many simulations, it is possible to construct a plot
of the probability of exceeding a given value of the ground motion parameter as a
function of the parameter’s value. This plot is then a measure of the site specific hazard.

While the preceding discussion assumed that the ground motion parameter desired
at the site was a single value, it is also possible to use a similar methodology to develop
the spectra at the site.

7.32 VARIABLE SLIP RATE

Through development of this dissertation, it was assumed that the slip rate for
cach cell was constant throughout time. As noted in Chapter 1, however, this may not be
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the case. Following Suzuki and Kiremidjian (1988}, the slip rate for each cell could be
simulated from a distribution and then kept constant until the next earthquake, at which
time it would again be simulated. It would also be possible to specify the slip rate as a
function of time, which would be useful if the slip rate were to vary between the
occurrence of two earthquakes. Either of these schemes for considering a variable slip
rate could be incorporated into the model. The only thing that would change is the
calculation of the amount of time until a cell accumulates enough slip 1o increment the

number of cells that it is capable of rupturing.

7.3.3 VARIABLE CELL SIZES

In this research, the chosen cell size is uniform for all segments. For the northern
San Andreas fault, the North Coast segment is much longer than the other two segments.
Using a uniform cell size requires the long segment to be composed of many cells. In
order to reduce computation lime, it would be desirable to vary the cell size from segment
to segment. Short segments generating earthquakes more often could utilize a smaller
cell size than longer segments that generate earthquakes less often.

In order for this model to use variable cell sizes, the way in which the state of
each cell characterizes the amount of slip accumulated must be modified. Currently, the
state of the cell tells how many cells would rupture if an carthquake were to occur. If
non-uniform cell sizes were used, the state of the cell would need to give information
about the length of rupture possible in units of kilometers, rather than in units of cells.
This is a straightforward modification that would allow the determination of the cells that
rupture even if they have differing lengths.

734 TWO-DIMENSIONAL MODEL

One assumption made in this model is that the entire depth of the fault rupturcs in
each earthquake. This can be an unrealistic assumption, as demonstrated by the lack of
surface faulting in the 1989 Loma Prieta earthquake (Plafker and Galloway, 1989). In
order to model the situation in which only part of the fault’s depth ruptures during an
earthquake, a two-dimensional model is needed. In such a mndel, not only would the
length of the fault be discretized into cells, but so would the depth. The place on the fault
at which the rupture begins would be specified by its distance along the fault and by its
depth below the surface. Rules for rupture would have to be developed that determine
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when rupture propagates toward the fault’s surface and away from the fault’s surface as
well as determining when rupture propagates along the length of the fault.

Such a two-dimensional model would be much more computationally intensive
than the one-dimensional mode! developed here. In addition, it may be difficult to
develop rules for rupture owing to a lack of understanding about how rupture propagates.
Nevertheless, a two-dimensional model has the potential to more realistically represent
the rupture zones of the earthquakes.

7.3.5 APPLICATION TO OTHER FAULTS

The fault behavior model is developed to apply to faults that generate earthquakes
displaying temporal and spatial dependence. In order to test the model’s general
applicability, it should be applied to faults other than the northern San Andreas. The
general criteria for choosing faults to which to apply the model is that the fault generate
temporally and spatially dependent earthquakes. In addition, the data described in
Chapter 4 must be available.

One candidate for model application is the Alaska-Aleutian island arc, which
marks the subduction of the Pacific Plate under the North America Plate. Temporal and
spatial patterns have been noted for great {(magnitude 7.4 and above) carthquakes
occuring in subduction zone (Sykes, et. al., 1981). Since rupture on subduction zones is,
by nature, at depth and docs not usually cause surface rupture, the tvo-dimensional
model discussed above would be particularly applicable to this arca.

71.3.6 INTERACTION BETWEEN FAULTS

The northern San Andreas fault is not the only fault that ruptures along the
boundary between the Pacific plate and the North American plate. Other faults in the San
Andreas fault system include the Hayward and Calaveras faults. It is possible that a
rupture on any of the three faults could affect the state of stress on the other two. If this is
the case, then modeling the earthquakes occurring on each fault separately is not
sufficient. A more complex model would be needed to model the behavior and
interactions of all the faults simultaneously. Unfortunately, data describing the
interaction between faults is very limited, making the development of such a model
difficult.



APPENDIX A
DIAGRAM OF THE COMPUTER PROGRAM

This chart shows how the various portions of the computer program used to
simulate this model relate to each other. An arrow pointing from program module A to
program module B indicates that module A calls module B. The comments in the listing
of the computer program (Appendix B) explain the function of each program module.

The program module SIMMAIN, located in the center of the diagram, is the main
program. The modules whose names are contained in rectangles with rounded corners
are subroutines. The module RANGEN, whose name is in a rectangle, is a function. The
modules DATE and TIME are FORTRAN-supplied subroutines.

Chpcalc cycle datapr ( decrem ) C flagck fileop
probpr probstat
datard probcaic

sample

SIMMAIN

pmcalc gamma

header

<> p
sched) statc) ( stcalc ) magnit

unif cgsim moment ’

rangen choose update
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