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Site-specific hazard estimation requires the modeling of the occurrences of

earthquakes on any faults with the potentia) to impact the site. Previous eanhquake

occurrence models have assumed either spatial independence or temporal independence

or both. However, for large magnitude earthquakes (approximately moment magnitude

6.5 and above) occurring infrequently on long faults, evidence indicates that the

assumptions of temporal and spatial independence are not valid. A new fault behavior

model incorporating temporal and spatial dependence is needed to estimate site-specific

hazard in areas subject to such earthquakes.

This research develops an earthquake occurrence model that is a generalized

semi-Markov process (GSMP) and allows for the simulation of the fault behavior through

time. The fault is discretized into short cells; the model traces through time the slip

accumulated on each cell and the amount of slip release on each cell due to earthquake

occurrences;~The size of each simulated earthquake is related to the amount of slip that is

released. In order to apply the model to a fault. the following data must be known for

each cell along the entire length of the fault: the slip rate. the mean and standard

deviation of the earthquake interarrival times, and the time of the last earthquake.

Additionally, the time of the last earthquake that ruptured the entire fault must be known.

The model can then simulate the sizes and locations of earthquakes occurring along the

fault for the time period of interest.

Application of the model to the northern San Andreas fault (the ponion of the

fault that ruptured in 1906) implies that there are two distinct processes at work. The

Nonh Coast section generates large earthquakes (approximately moment magnitude 7.7

to 8.1), and the South Santa Cruz Mountains segment generates somewhat smaller

earthquakes (approximately moment magnitude 6.8 to 7.4). The San Francisco Peninsula

segment represents a transition between these two behaviors.

The model is relatively insensitive to the cell size chosen, to the distribution

chosen to model the times between earthquakes triggering at a given place on the fault,

and to the choice of a segmentation model that subdivided the San Francisco Peninsula

segment. The moment magnitude of the largest eanhquakes simulated are sensitive to the

slip rate. The results for individual segments are highly sensitive to the mean interarrivaJ

times, but the aggregate results are much less sensitive.
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This research develops an eanhquake occurrence model that is appropriate for

estimating hazard due to large, spatially and temporally dependent earthquakes. Because

smaller magnitude earthquakes can also be important in seismic hazard analysis,

however, this model must be combined with another designed to model lower magnitude

seismicity (perhaps a Poisson model) in order to estimate the total site-specific hazard.
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CHAPTER 1
INTRODUCTION

1.1 OVERVIEW

The goal of seismic hazard analysis is to estimate the risk to a structure at a given

site due to the occurrence of earthquakes. The steps involved in seismic hazard analysis

include identifying eanhquake sources, modeling the occurrences of earthquakes on these

sources, detennining the bedrock motion at the site due to an eanhquake's occurrence,

evaluating the soil's amplification of the motion at the site, and detennining the structural

response. This research is concerned with the second step outlined above; namely, the

modeling of earthquake occurrences.

Specifically, this research models the occurrences of eanhquakes that exhibit both

temporal and spatial dependence. Such earthquakes typically have large seismic

moments (corresponding to approximately moment magnitude 6.5 or greater) and occur

infrequently on long faults. They usually have rupture zones on the order of tens or even

hundreds of kilometers and are frequently associated with surface rupture. Though there

is a pattern in time and in space to the rupture zones associated with these earthquakes, it

is not always deterministic. Characteristic earthquakes, which repeatedly rupture the

same section of fault with earthquakes of similar magnitudes, often display temporal and

spatial dependence. Since temporally and spatially dependent earthquakes are a

significant class of earthquakes capable of inflicting serious damage to structures, the

ability to model them is an important tool for seismic hazard analysis. There is a need for

a new earthquake occurrence model because previous models have assumed either time

independence or space independence or both.

This research develops an earthquake occurrence model that includes both

temporal and spatial dependence which can be applied to specific faults that generate

eanhquakes displaying such behavior. The types of infonnation that can be obtained by

using this model to simulate the occurrences of earthquakes on a fault can be divided into

two main categories: short-term results and long-term results. Shon-term results are

those that estimate the probabilities of earthquakes occurring within a short time frame

(such as the economic life of a suucture) staning from the present time. Long-teno

results characterize the fault's behavior over many thousands of years in order to

estimate, for example, the largest earthquake that the fault can generate and the pattern of

1



Ch4pru J. Introduction 2

seismicity on the fault. Both types of results are imponant in assessing the earthquake

hazard at a site.

1.2 SEISMIC HAZARD ANALVSIS
As previously noted, eanhquake OCCWTence modeling is only one component of

seismic hazard analysis. To clarify the role of earthquake occurrence models, the five

basic steps in seismic hazard analysis are explained below and illustrated in Figure 1.1.

1.2.1 IDENTIFICATlON OF SOURCES

The (ltst step in seismic hazard analysis is to identify all sources of earthquakes

that can affect the chosen site. Earthquake sources can be modeled in three ways. Point

sources repeatedly generate earthquakes from exactly the same point. Since the

epicenters of repeated earthquakes in a region usually display some scatter, such sources

are rare. Earthquake faults are frequently modeled as two-dimensional line sources; they

generate earthquakes whose epicenters lie in a narrow band along a line. In some areas,

there is definite seismicity that is not attributable to a well-defined fault. Such seismicity

can be modeled as arising from a three-dimensional area source, in which the

eanhquakes' epicenters are scattered within a well-defined area. Area sources can also

model the scatter of earthquakes' epicenters occurring along a subduction zone.

1.2.2 EARTHQUAKE OCCURRENCE MODELING

The second step in seismic hazard analysis is to model the occurrence of

earthquakes on each source. Many different earthquake occurrence models have been

proposed; the following briefly discusses the major classes of models. A more complete

review of eanhquake occurrence models can be found in Anagnos and Kiremidjian

(1988).

Poisson Models

Poisson models (e.g., Cornell, 1968; Der Kiureghian and Ang, 1977), which

assume that earthquakes occur independently in time. space, and magnitude, (onn the

simplest class of earthquake occurrence models. The rate of earthquake occurrences is

uniform and estimated from the Gutenberg-Richter equation

JogN(m) =a-bm (1.1)
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FIGURE 1.1 Steps in seismic hazard analysis
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where

m =the magnitude of Ihe eanhquake

N(m) = the number of events with a magnitude ~ m during a given time period

a, b = conslants.

Poisson models have a conSlant hazani rate, which is the probabilily of an eanhquake in a

time period (1.1+.1t) given that there were no earthquakes in the time period (0, I).
Poisson models are applicable to regions characterized by frequent, smaller

magnitude earthquakes which display neither temporal nor spatial dependence. Gardner

and Knopoff (1914) examined the earthquake record for Southern California and found

that when aftershocks are removed. the sequence of earthquakes wilh magnitudes smaller

than 5.8 is Poissonian. However, cyclic panerns, indicating dependence between

earthquakes, have been noted by many authors (e.g.• Bufe. et. aI., 1971; Shimazaki and

Nakata. 1980; Sykes and Quittrneyer, 1981). Regions displaying such panerns with

large, rare earthquakes are not adequately described by Poisson models.

Time-Predictable Models

Time-predictability (Shimazaki and Nakata, 1980) is the correlation of the size

(measured by seismic displacement) of an earthquake with the amount of time until the

occurrence of the next earthquake. Models based upon time-predictability introduce time

dependence into earthquake occurrence modeling (Anagnos and Kiremidjian, 1984).

stress stress release threshold

------- ---,--- ---

time

FIGURE 1.2 Time-predictable model
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They describe a mechanism for earthquake occurrences involving a fixed stress threshold

at which earthquakes occur. The rate at which stress accumulates is assumed to be

constant. When an eanhquake occurs, a random amount of stress is released. Since the

stress release threshold is fixed, knowing the amount of stress released during an

earthquake allows prediction of the time, though not the size, of the next earthquake.

Figure 1.2 shows a sample time history of stress accumulation and release for the time

predictable model.

Several regions, primarily along plate boundaries, have been noted to display

time-predictability (Bufe, et. aI., 1977; Shimizaki and Nakata, 1980; Mogi, 1981; Sykes

and Quittmeyer, 1981). It is important to realize, however, that time-predictable models

describe eanhquakes repeatedly rupturing the same section of fault but do not attempt to

describe any spatial pattern in the earthquake sequence.

Slip-Predictable Models

Slip-predictability is the correlation of the time between earthquakes with the size

of the earthquake at the end of the time interval (Shimazaki and Nakata. 1980). Models

based upon slip-predictability also incorporate time dependence (Kiremidjian and

Anagnos, 1984). As in the time-predictable model, the rate of stress accumulation is

assumed to be constant. Earthquakes occur at random times, with all stress accumulated

above a given threshold being released during each earthquake; the state of stress on the

fault following each earthquake is the same. Given the time between earthquakes. the

stress

FIGURE 1.3 Slip-predictable model
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amount of stress released. though not the interarrival time, can be predicted. Figure 1.3

illustrates a time history of stress accumulation and release for a slip-predictable model.

Earthquakes along the Middle America Trench, Mexico, display a slip-predictable

pauem (Wang, et. al., 1982). Similar to time-predictable models, slip-predictable models

address temporal dependence but not spatial dependence. Therefore, neither class of

models completely describes the trUe behavior of large, rare earthquakes.

Random Slip Rate Models

Both the time-predictable and slip-predictable models assume a constant slip rate.

However, a study of large earthquakes in Alaska (Li and Kisslinger, 1985) and

experimental studies of rock fractures (Price, 1981; Ranalli, 1987) suggest that non-linear

slip accumulation mechanisms may be important, particularly in long-tenn eanhquake

prediction models.

Random slip rate models include the effects of a non-uniform stress accumulation

rate as well as inhomogeneous fault properties. Suzuki and Kiremidjian (1988) assume a

random slip accumulation rate for each successive earthquake on a given section of fault.

Though the value of the slip accumulation rate is random after each earthquake, it is

constant between earthquakes. Figure 1.4 shows a sample time history of stress

accumulation and release for the random slip rate model. As with time-predictable and

slip-predictable models, random slip rate models incorporate temporal dependence but

not spatial dependence.

stress

FIGURE 1.4 Random slip rate model
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1.2.3 MOTION AT BEDROCK

7

Once a suitable earthquake occurrence model has been chosen. the next step is to

detennine the motion at bedrock resulting from a given :anhquake. There are two main

ways to do this: attenuation relationships (e.g.• Joyner and Boore, 1988) and geophysical

models (e.g.• Suzuki and Kiremidjian. 1988). Attenuation functions are developed by

fitting curves to available data. They have the limitations of being biased toward the data

and of being applicable only to areas with similar geology. Attenuation relationships

frequently predict ground motion parameters directly. rather than separating the

prediction of bedrock motion from the soil amplification.

Geophysical models are based upon source mechanisms and wave-propagation

theory. They have an advantage over attenuation relationships in that they are specific to

the area under study. However, they require extensive data to describe the geology not

only of the site. but also of the area between the site and the eanhquake source. Data

describing the source characteristics, such as the rupture area. seismic moment

distribution, and stress drop, are also needed for these models. In addition, they are

computationally more complex than attenuation functions. making them difficult to

implement in a site hazard analysis.

1.2.4 SOIL AMPLIFICATION

Local soil conditions playa crucial role in determining the ground motions

experienced at a site (e.g., Seed and Idriss. 1969; Seed. et. a1.. 1976~ Idriss. 1991).

During the Lorna Prieta earthquake of 1989, waterfront areas of San Francisco Bay

experienced significant damage due to amplification of ground motion and liquefaction of

the soil (Borcherdt. 1990; USGS Circular 1045. 1989). In order to estimate the effects of

soil amplification at a specific site, knowledge of the soil profile from bedrock to the

surface is needed. Methods for predicting the surface motion from the bedrock motion

that incorporate information on the soil propenies in depth are presented in Kiremidjian,

el. a1., 1991.

1.2.5 STRUCTURAL RESPONSE

One purpose of seismic hazard analysis is to determine the response of the

structure at the site. Many methods for evaluatins strut.ural response due to earthquakes

are based on one parameter. such as the peak ground acceleration. Current methods,

however. use response spectra to represent ground motion content at different frequencies
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in order to more completely describe the structural response. Seismic hazard analysis

allows detennination of the structure's response. which is pan of seismic risk evaluation.

1.3 IMPETUS FOR A NEW EARTHQUAKE OCCURRENCE
MODEL

Mounting evidence suggests that many large earthquakes display not only

temporal dependence. but spatial dependence as well. Since the previously mentioned

models do not include bom temporal and spatial dependence. a new model is needed.

1.3.1 TEMPORAL DEPENDENCE

Tempera! independence is the property of the distribution of earthquake

interarrival times being the same throughout time. Implicit in the concept of temporal

independence is the idea that no matter what the earthquake history. the probability of an

earthquake occurring in a small time increment is the same. Deduced from the elastic

rebound theory is the idea that immediately following an earthquake. the probability of

another earthquake rupturing the same area is small. and the probability of another

earthquake increases as time passes. Thus, the elastic rebound theory supports the idea of

temporal dependence because the distribution of earthquake interarrival times changes

through time.

Figure 1.5 shows a space-time plot of seismicity of magnitude 5 or greater along

the northern part of the San Andreas fault system. Following each of the large magnitude

eanhquakes in 1857 and in 1906. there is a period of low eanhquake activity along the

rupture zone, which is denoted by a venical line. This panern of activity, with few

earthquakes following a major one. lends credence to the elastic rebound theory. A

model that attempts to describe seismicity due to faults displaying behavior similar to that

of the nonhern San Andreas fault must then incorporate temporal dependence.

1.3.2 SPATIAL DEPENDENCE

Spatial independence is the property of earthquake rupture zones being randomly

distributed along the length of the fault. It has been recognized that long faults do not

rupture completely during a single eanhquake. This has given rise to the concept of fault

segmentation, which divides long faults into segments, each of which is capable of

rupturing independently. There are studies suggesting that physical controls in the fault

zone define the ends of segments, and that these segments persist through many seismic
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cycles (Schwartz, 1988). Large earthquakes on long faults exhibit spatial dependence

because the rupture zones depend upon the physical controls governing the segmentation

rather than being unifonnly distributed over the length of the fault.

Figure 1.6 shows one proposed segmentation model of the San Andreas fault,

suggesting that it generates spatially dependent earthquakes. Funhermore, Figure 1.5

also demonstrates that earthquakes along the northern San Andreas fault arc spatially

dependent, as the rupture zones are not evenly scattered along the fault's length. Figures

1.5 and 1.6 together demonstrate that earthquakes on the northern San Andreas fault are

both temporally and spatially dependent. The presented model will not only describe the

behavior of the nonhern San Andreas fault, but also the behavior of other faults whose

earthquakes are temporally and spatially dependent.

1.4 SCOPE OF THIS RESEARCH

In this dissertation, a model is developed for temporally and spatially dependent

earthquake occurrences that utilizes the generalized semi-Markov process. The model

will be applied to the northern San Andreas fault to estimate probabilities of earthquake

occurrences in specified time periods and to describe the long-tenn behavior of the fault.

SenSitivity of the model to input data will be studied. Finally, extensions to this research

and future areas of investigation will be suggested.
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FIGURE 1.6 Segmentation model for the San Andreas fault
(from Schwartz, 1988)
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I.S ORGANIZATION OF PRESENTATION
Chapter 2 discusses the generalized semi-Markov process (GSMP), which is the

mathematical process that underlies the earthquake occurrence model. The model

formulation is described in Chapter 3. The data required for the simulation of the model

is presented in Chapter 4. The model's application to the nonhern San Andreas fault is

the subject of Chapter S. In Chapter 6. the sensitivity of the results is investigated.

Finally, Chapter 7 summarizes the thesis and presents conclusions. as well as suggesting

areas of future study.



CHAPTER 2
GENERALIZED SEMI-MARKOV PROCESSES

2.1 INTRODUCTION
Generalized semi-Markov processes (GSMPs) are a class of stochastic processes

that are well-suited to a variety of problems. Like the semi-Markov process. the GSMP

moves from state to state at random times. In the GSMP. there are several events that can

occur in a given state. The fJrst of those events to occur is called the trigger event, and it

detennines the time until the state transition and the probability distribution for the next

state. The semi-Markov process is a special case of the GSMP in which there is only one

event associated with each state and hence with each state transition.

The GSMP is well-studied within the field of Operations Research (e.g., Shedler,

1981; Whitt, 1980). Because of the complexity inherent in the GSMP, it can be used to

model many different phenomena, including queues and machine availability. It can also

be used to model fault behavior and provides a convenient framework for simulating the

underlying stochastic process.

2.2 SPECIFICATION OF A GSMP
In order to uniquely describe a GSMP, six different components must be

specified: the state space. the event set. the event set mapping, the event scheduling

mechanism, the clock speeds. and the state transition mechanism. These components can

be thought of as "building blocks" that are used to construct a GSMP. Each of these

building blocks will be discussed within the context of modeling fault behavior in order

to clarify them and describe how they fit together. The fault whose behavior is to be

modeled will be discretized into several cells of uniform length. each of which

accumulates strain due to the passage of time and periodically releases it in the form of an

eanhquake. Since strain accumulation and release are difficult to measure. the model is

developed to track coseismic slip.

A GSMP is composed of one or more state variables, whose values characterize

the process. The values of the state variables, called the state of the process, change with

time, reflecting changes in the process itself. In modeling fault behavior, each cell has an

associated state variable whose value characterizes the amount of slip accumulated at that

point on the fault. A state variable of zero means that there is currently no slip

12
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accumulated at that location; an eanhquake has just occurred and ruptured that ponion of

the fault. A state variable of two means that, at the present time, there is enough slip

accumulated at that point on the fault to rupture a length of two cells should an

earthquake trigger on that cell. This is not a prediction of an earthquake, but merely a

characterization of how much slip is accumulated. The building blocks of a GSMP tell

what values the state variables can assume and detail the mechanisms that change the

state of the process.

2.2.1 STATESPACE

The set of all values that the state variables can assume fonns the state space, S.

Because the state space must have a finite or countable set of states, the state variables

cannot take on a range of real numbers, but instead are restricted to discrete values. In

the fault model. each state variable can assume any value in the set composed of zero and

the integers up to and including the number of cells on the fault. The minimum amount

of slip that can be released during an eanhquake corresponds to zero, i.e., no rupture is

possible. The maximum amount of slip that can be released corresponds to a rupture of

the entire fault.

2.2.2 EVENT SET

All the events that can occur and cause a state transition fonn the event set, E.

The event set must contain all events that can occur in any state of the process, though it

is not necessary for all events [0 occur in every state. The event set must be finite. The

evem that occurs first in the current state, called the trigger event e·, will cause the state

transition. If more than one event occurs simultaneously, then the trigger event is a set

called E".

In the fault behavior model, each cell has two events associated with it. The flrst

is that the value of the variable representing the amount of accumulated slip on the cell is

incremented. This event takes place when the amount of elapsed time allows the

accumulation of enough slip to rupture a portion of the fault that is longer by the length of

one cell. The second event occurs when the cell triggers an earthquake. The time of

occurrence of an earthquake is governed by a probability distribution describing the time

between earthquakes originating on the cell. Each time there is an earthquake, the value

of the state variable for the triggering cell telJs how many cells can rupture.
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2.2.3 EVENT SET MAPPING

14

As mentioned above, not all events necessarily occur in every state of the process.

The event set mapping, £(s), describes which events can occur in each state. In the fault

behavior model, the event that the amount of accumulated slip on a cell is incremented

will be scheduled unless that cell can already rupture the entire fault (i.e., unless its state

variable is already equal to the number of cells on the fault). In addition, each cell will

have the event that it triggers an earthquake scheduled in all states.

2.2.4 EVENT SCHEDULING MECHANISM

In each state, the events are scheduled by detennining the time until they occur.

The event scheduling mechanism can depend on the event being scheduled, the trigger

event, the old state, and the new state. Since the GSMP is a stochastic process, the events

will not always be scheduled detenninistically. In many cases, the time until the event

occurs is simulated by choosing a random number from a probability distribution that

describes the interarrival times for that event.

In the fault behavior model, the rate at which slip accumulates is assumed to be

constant. The relationship between slip accumulated and length of fault ruptured is

described by an empirical equation. Given the slip rate, the length of a cell, and the

current amount of accumulated slip, the amount of time it takes for each cell to increment

its accumulated slip is detenninistic. Therefore, the events that a cell increments its

amount of accumulated slip are scheduled detenninistically.

The time until a given cell triggers an earthquake is random. Such an event is

scheduled by simulating a random number from a probability distribution that describes

the times between a given cell triggering an earthquake.

2.2.5 CLOCK SPEEDS

Associated with each scheduled event is a clock that tells the amount of time

remaining until that event occurs. The clocks run at a finite, detenninistic speed that

must be specified and be greater than or equal to zero. A clock speed equal to unity

means that the rate at which the clock runs is the same as the rate at which time passes.

Thus, a clock showing 62 days on it would take exactly 62 days to run to zero. By

convention, the clock speeds of events that are not scheduled are zero.
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While it is possible for a GSMP to utilize clock speeds other than unity for

scheduled events, this is not the usual case. In the fault behavior model, the clock speeds

for all scheduled events are unity.

2.2.6 STATE TRANSITION MECHANISM

A state transition occurs when the clock of an event (or sel of events) reaches

zero. When this trigger event or trigger evenl set occurs, the GSMP moves into a new

stale. The state transition mechanism gives the probability funclion of the process

moving into each possible new state, given the old stale and the trigger event.

In the fault behavior model. assume that the trigger event is an event that the

amount of accumulated slip on a cell is incremented. The new state would be the same as

the old state except that Ihe state variable corresponding to that cell would be increased

by one. If the trigger event is that a cell causes an earthquake. then the state variable of

thai cell tells how many cells must rupture. Rules that will be detailed in the next chapler

determine exactly which cells ruplure and what the new values of their state variables will

be. The new state is then the same as the old state except for the cells thai rupture during

the earthquake.

2.3 FORMULATION OF THE GSMP
A GSMP provides a convenient framework for simulating the underlying

stochastic process. Since GSMPs are used to describe complex phenomena, there is

usually no closed fonn equations for the probabilities associated with the various states of

the process. For example, the probability that a certain cell ruptures during a specified

time period could be a quantity of interest in the fault behavior model. These

probabilities can be estimated by simulation.

Figure 2.1 shows how a GSMP can be simulated. To begin the simulation, all the

state variables must be set to some beginning configuration. In the fault behavior model,

this beginning configuration could be all zeroes, meaning that there has just been an

earthquake that ruptured the entire length of the fault. It is also possible for the beginning

configuration to represent some state of accumulated slip, such as the current state.

The event set mapping tens which events can occur in the current state of the

process. After detennining these events, they are scheduled using the event scheduling

mechanism. The event with the shonest time scheduled on its clock is the trigger event.
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(This assumes that all the clocks run al the same rate. If this is not the case. then the

trigger event is determined by dividing the time on each clock by its speed. The event

with the smallest ratio will be the nigger event.) When some of the events are scheduled

deterministically. more than one event can occur simultaneously. The nigger event can

then be a set of all events occurring at the shortest time scheduled on any of the clocks.

The time of the simulation is advanced to the time at which the trigger evenl (or

trigger event set) occurs, and the new slate is determined from the old state and the

trigger state using the stale transition mechanism. If the simulation is to continue. the

events to be scheduled in the new state are determined from the event set mapping. and

the cycle begins again.

r Set the state variables to
......

their begiMing
configuration and set the END
time of the simulation to

zero.

""
I,

no

Determine which events can yes Determine if the simulationoccur in this state using the -
event set mapping. should continue.

"" ~ \..

•,
......

Schedule these events using Find the new state using thethe event scheduling
mechanism state transition mechanism.

\,. .,;

•,
Find the trigger event or Advance the time of the

trigger event set (the event - simulation to the time at
or events with the shortest which the trigger event (or

time on their clocks). trigger event set) occurs.
~ "" .,;

FIGURE 2.1 Using the GSMP framework to simulate the underlying process
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The probabilities of interest can be estimated through this simulation procedure.

For example, consider the probability that a given cell on the fault ruptures during a given

time period. The behavior of the fault will be simulated for the given time period for

many cycles. This is an example of the independent, identically distributed (ii.d.)

sampling problem. For each cycle, a random variable will either have a value of 0 (the

given cell did not rupture during the cycle) or I (the cell did rupture). These random

variables are i.i.d. if the same initial conditions are used each time. The probability of the

given cell rupturing during any given cycle is estimated as the ratio of the number of

times that the cell did rupture during a cycle divided by the total number of cycles

simulated. In this manner, the simulation of the GSMP can yield estimates of desired

probabilities. Simulation will be the tool used to estimate probabilities that describe the

behavior of faults generating temporaUy and spatially dependent eanhquakes.



CHAPTER 3
THE FAULT BEHAVIOR MODEL

3.1 INTRODUCTION

The GSMP framework is useful for modeling spatially and temporally dependent

earthquakes. The random time between state transitions provides the temporal

dependence needed for the model. In order to introduce spatial dependence into the

model, a complex state space is utilized. The basic physical quantity that the fault

behavior model tracks is accumulated slip. Since it can be calculated from the slip rate

and elapsed time, the amount of accumulated slip is a convenient way to describe the

state of the fault. In addition, the slip released during an earthquake can be directly

related to the moment release and thus the moment magnitude of the earthquake. The

fault is discrctized into shon cells, and the amount of slip accumulated on each of these

cells is represented by one state variable. The array of state variables represents the

configuration of accumulated slip on the fault.

As time progresses, the model keeps track of the slip accumulated and released

through eanhquakes. There are two different processes at work--constant slip

accumulation and occasional slip release. In addition, the slip can be released (i. e., an

eanhquake can nucleate) at any point along the length of the fault. The GSMP

framework allows for different events to "compete" to trigger the next state transition and

thus can be used to describe the behavior of the fault.

3.2 SPECIFICATION OF THE GSMP UNDERLYING THE FAULT
DEHAVIOR MODEL

The GSMP framework will be used to describe the stochastic process underlying

the fault behavior model. Define {X(I), t ~ o} to be a stochastic process where

(3.1)

Each cell j has two state variables associated with it, A,(I) and 8/(1). At time I,

Aj(l) =Ie if cell j is capable of rupturing Ie cells. This means that at time I, there is

enough slip accumulated on cell j to cause a rupture with a length of Ie cells. Since j is

an index on the cell number. it can assume values from one to N, where N is the

maximum number of cells. Since Ie refers to the number of cells that cell j can rupture,

18



ChRplcr J: Ilv Faull BdllYior MOOd 19

it can assume values from zero to N, where zero corresponds to no rupture possible and

N corresponds to rupturing the ~ntirc fault. The relationship between accumulated slip

and rupture length is detennined from an empirical equation and will be discussed in

Chapter 4.

3.2.1 STATE SPACE

All the values that the process XCI) can assume fonn its Slate space S.

(3.2)

Equation 3.2 states that each of the Qj variables may take on values in the set

{O, 1..... N}. and each of the bj variables may take on values in the set {O.l}. (The

lower case Q j and bj are used. rather than the upper case AJCI) and BICI) used above. to

denote specific values of the state variables. rather than their values through time.) There

are no restrictions on the pennissible values of the state space within the 2N -dimensional

space defined above.

3.2.2 EVENT SET

In order to detennine how and when the process XCI) moves between states. it is

necessary to enumerate the event set E, which contains all the different events that can

occur in the process. The event set E for the fault behavior process is

(3.3)

For each cell j, the event tjl is the event that cell j increments by one the number of

cells that it is capable of rupturing. This occurs when, due to the passage of time. cell j

has accumulated sufficient slip to rupture a length of fault that is longer by the length of

one cell.

For each cell j, the events tj'l and tjS are events that cell j triggers an

earthquake. Duplicate events are used (rather than only one event) to circumvent the fact

that the GSMP framework requires that the only events that can be rescheduled after a

state transition are the trigger events. In the fault behavior model. the cell that triggers

the earthquake ruptures. In addition. neighboring cells may rupture because the

triggering cell had a value of Q j greater than one. meaning that a length of fault longer

than one cell ruptures during the earthquake. The events that each of the ruptured cells
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biggers an eanhquake now need to be rescheduled. However. for the cells that did not

trigger the earthquake but did rupture. these events are old events and cannot be

rescheduled under the GSMP framework. To get around this problem. event ei3 is

scheduled whenever it is necessary to reschedule event e l2 and vice-versa. The BI(t)

variables in the state transition are used to tell whether event el2 or ei3 is scheduled at

rime t. When bi =O. event ei2 is scheduled; when bi =I. event ei3 is scheduled.

3.2.3 EVENT SET MAPPING

When the process X(t) is in a given state s (that is. of necessity. a subset of the

entire state space). the events that can occur and bigger a transition into the next state

must be determined. This set of events £(s) is a subset of the entire event set £ defined

above. The event set mapping tells how to determine which events are in £(s) for any

state s.

For s={(al'~)' (~.~)..... (aN.bN )} E S:

til E £(s) if and only if al ~ N

t l2 E £(s) if and onl)' if bi =0

t i3 E £(s) if and only if bl =I (3.4)

Equation 3.4 states that for each cell j. the event ell (that cell j increments the amount

of slip accumulated on it) is scheduled unless there is already enough accumulated slip on

cell j to rupture the entire fault. As mentioned above. event el2 (that cell j triggers an

earthquake) is scheduled when b
l
=O. and the duplicate event e

l3
is scheduled when

bi = 1.

3.2.4 EVENT SCHEDULING MECHANISM

After determining which events are to be scheduled in the current state. the clocks

of each of the events must be set. For event ell (incrementing the amount of slip

accumulated on cell j). the clock is set detenninistically according to an ~uation of the

fonn:

where

log(d) = a + blog(l)

d = the average surface displacement in meters

(3.5)
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I = the swface rupture length in kilometers

a, b = constants.

21

For example, suppose that the amount of time that slip must accumulate to cause a

rupture length of one cell during an earthquake is desired. The average displacement

during the earthquake is calculated from the regression equation using a rupture length of

one cell. Dividing the average displacement by the slip rate yields the desired quantity.

In order to determine the additional amount of time it takes to accumulate enough slip to

rupture n cells when currently n -1 cells can rupture, the above calculation is done for

rupture lengths of n cells and "-1 cells. The time increment is the desired quantity.

The above procedure makes several assumptions. The first is that the average

surface displacement will be the same as the slip released on the cell on which the

earthquake originates. The second is that the surface rupture length is the same as the

length of cells that rupture. While these assumptions will not always be true in every

earthquake, they allow the rupture length to be calculated detenninistically from the time

elapsed since the last earthquake. It would be possible to specify probability distributions

relating surface rupture length and true rupture length and relating average slip

displacement and slip accumulated at the epicenter of lhe earthquake. The rupture length

would then be determined probabilistically from the elapsed time since the last

earthquake. While this could be more representative of the actual situation, the simpler

deterministic method is used in this research.

To set the clock corresponding to event eJ2 (the event that cell j triggers an

earthquake), a random number is simulated (rom OJ' the distribution of times between

earthquakes triggering on cell j. This distribution differs from the distribution of

interarrlval times (or cell j rupturing during an earthquake because cell j can break due

to rupture "spilling over" from an adjacent cell. As will be shown in Chapter 4, the mean

and standard deviation of OJ are determined by trial and error based upon the estimated

mean and standard deviation of the earthquake interarrival times.

Weibull distributions (e.g., Kiremidjian and Anagnos, 1984; Anagnos and

Kiremidjian, 1984) and lognormal distributions (e.g., USGS Working Group, 1990) have

been used to represent interarrival time distributions. There are no data describing the

distributions of triggering earthquakes, D,. For this reason, it is suggested that OJ be

modeled by either the Weibull distribution or the lognormal distribution, in an analogous

manner with the interarrival time distributions.
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The clock corresponding to event eil is set using the same procedure outlined

above for event ej2 • When cell j breaks and bJ =0, event eil is scheduled by simulating

its time from Dj , If bj =1, the event ej2 is scheduled in the same way. Events (/2 and

(/) are alternately scheduled each time cell j ruptures, regardless of whether cell j

triggered the earthquake.

3.2.5 CLOCK SPEEDS

In the GSMP describing the fault behavior process, the clock speeds for all events

are unity.

3.2.6 STATE TRANSITION MECHANISM

The final component that must be specified to completely describe the fault

behavior process is the state transition mechanism, which is summarized by a flowchart

in Figure 3.1, The state transition mechanism tells how the new state s' of the process

X(t) is determined when the old state s and the trigger event set E· causing the state

transition are known. In Figure 3.1, events of the form ell are referred to as type 1 events

(that is, events in which the amount of slip accumulated on a cell is incremented). Events

of the forms ej2 and ej3 are referred to a:; type 2 events (that is. events that a cell triggers

an earthquake).

Figure 3.1 refers to the "rules for rupture" in determining which cells rupture

during an earthquake, When an earthquake triggers on cell j at time t. the value of Aj(t)

is the number of cells that rupture during that earthquake. The following rules for

determining which cells rupture were developed based upon observations from past

eanhquake ruptures. It is assumed that rupture begins on the cell that originates the

earthquake and is confined to one segment whenever possible. The rupture is assumed

continuous, and it d'Jes not jump over any cells. It is funher assumed that cells with more

accumulated slip will break before cells with less accumulated slip. The following cases

demonsttate the rules for determining which cells rupture. Figures 3.2-3.5 illustrate these

cases with a fault composed of five cells divided into two segments.

Case #1: Triggering cell j has (Jj =I at time of earthquake

In this case, only one cell, the triggering cell, can rupture during the earthquake.

The position of the cell within the segment and the amount of slip accumulated on

surrounding cells do not affect the rupturing cell.
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Figure 3.2(a) shows the state of accumulated slip on the fault directly before an

earthquake triggering on cell 4. The only cell that ruptures is cell 4, as seen in Figure

12(b). Because all slip accumulated on cell 4 is released during the eanhquake, ". =0 in

the new state.

Case #2: Triggering cell j has tJj =m, the number of cells on its segment

In this case, the earthquake triggers on cell), which is capable of rupturing m

cells, where m is the number of cells on the segment containing cell j. The rationale for

( Are there any type I events 1 Yes r For each cell) for which "....
in £*1 there is a type I event:

No aj (in s')= aj (in s) +I

., Remove the type 1 events

..I Are there any type 2 events "-
from E-.

remaining in £-?

Yes I No - ".
~~- END,
~~If there is more than one "

type 2 event in ~, randomly

"- choose one.
~

• r
Choose the cells that rupture .. Determine how many cells have:
using the rules for rupture. - aj > O. Call this number n. ~

• •
r Remove the type 2 event Setaj (in.r')=

that has just been simulated ....
fromE-.

-
max {~j 6n s)-n"-

bj (in S')=~. On s) -11
for all cells t~at rupture

~

FIGURE 3.1 State transition mechanism



Chapter 3: The fault Behayior Model 24

a· 1 3 1 2 a. 1 3 0 2J J
Cell' 2 3 4 5 Cell • 2 3 4 5

• •
(a) State of slip before earthquake (b) State of slip after earthquake

FIGURE 3.2 Dlustration of case'l demonstrating rules for rupture

segmenting a fault is that the ends of the segments are delineated by some physical

change in the fault, such as a change in strike, and that each segment is capable of

rupturing independently. Therefore, whenever possihle, the model limits rupture to a

single segment.

Figure 3.3 illustrates this case. Figure 3.3(a) shows the state of accumulated slip

directly before the earthquake. Since ~ =3, three cells must rupture during the

earthquake. Because the segment containing cell 3 has exactly three cells on it, those

three cells rupture. Figure 3.3(b) shows that all slip is released on cells I, 2, and 3 during

the earthquake. Therefore, in the new state, a,. = 0 and Q2 = 0 and ~ = o.

Case #3: Triggering cell j has Qj = m, fewer than the number of cells on its segment

The eanhquake triggers on cell j, which is capable of rupturing m cells, where

m is a number that is smaller than the number of cells on the segment containing cell j.

In this case, the choice of cells to rupture is governed by their relative accumulated slip.

Whenever possible, the cell with more accumulated slip will rupture.

Figure 3.4(a) shows the state of accumulated slip directly before the earthquake.

In this case, ~ =2, meaning that two cells must rupture during the earthquake. Because

the segment contains three cells, a choice must be made between rupturing cell 1 or cell

3. Since a,. >~, cells I and 2 rupture during the earthquake. Figure 3.4(b) shows the

new state. If a,. = ~, there is no reason to favor rupturing one cell over the other as they

2

3

3
•

4

2

5

a. 0 0 0 I 2
J t--t--+--......-oot-....

Cell' I 2 3 4 5
•

(a) State of slip before earthquake (b) State of slip after eanhquake

FIGURE 3.3 Illustration of case '2 demonstrating rules for rupture
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are on the same segment and have the same amount of accumulated slip. In that case, one

of the cells is randomly chosen to be the one that ruptures along with the trigger cell.

These three cases can be used to detennine the rupture whenever an earthquake

occurs. If the state of the triggering cell is greater than the number of cells on the

segment, then the segment containing the triggering cell ruptures first. TIten the next cell

to rupture is chosen using case 13. In other words, the cells at the ends of the rupture are

examined and the one with the greater accumulated slip ruptures. Then the entire

segment containing the chosen cell must rupture before rupture can continue to another

segment. In this way, the rupture propagates from segment to segment until the number

of cells indicated by the state of the trigger cell have ruptured.

Because all the cases discussed above involve the total release of all accumulated

slip on the rupture cdls, the new state for all ruptured cells is zero. This is not always the

case, however, as illustrated in Figure 3.5. In this case, cell 2 triggers the earthquake.

Since az =5, the entire fault must rupture. At the time of the earthquake, a4 = 0,

indicating that recently an earthquake has released all the slip on cell 4. By the time the

current earthquake occurs, there is not even enough slip accumulated on cell 4 to rupture

a length of one cell. Therefore, cell 4 releases very little slip even though it ruptures

during the earthquake. For this reason, only four of the cells release slip. The new state

of the process is detennined by counting the number of rupturing cells with a state greater

than zero. This number is subtracted from the old state of each of the rupturing cells, and

the larger of this number and zero is the new state of the process. In Figure 3.5(b), cells 2

and 3 retain some accumulated slip after the eanhquake while the other cells release all

their accumulated slip.

The reasoning behind this procedure is that there is enough energy at the

triggering cell to rupture five cells. Since one of the cells has very little accumulated slip,

the rupture actually releases slip on only four cells. There must then be some

accumulated slip left on the fault after the rupture. Cells with a large amount of

accumulated slip will retain some of it after the earthquake.

a. 2 2 1 I 2
J t--+-....~....-+--t

CellI 1 2 3 4 S
•

a. 0 0
J

Cell 1 I 2
•

3 4

2

S

(a) State of slip before earthquake (b) State of slip after earthquake

FIGURE 3.4 Illustration of case 13 demonstrating rules for rupture
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As mentioned above, these "rules for rupture" are based upon intuition about how

fault rupture can propagate. One assumption made by the rules presenred here that may

be debatable is that a cell in the rupture zone with no accumulated slip will not tenninate

the earthquake's rupture. As was illustrated in Figure 3.5, the number of cells that

rupture is detennined solely by the state of the variable describing the amount of slip

accumulated on the trigger cell at the time rupture begins.Il1e cells that break are chosen

according to the scheme outlined above. The fact that a cell in this rupture zone has a

state of zero when the eanhquake occurs means only that some of the cells will retain

some accumulated slip after the eanhquake.

The implication of this assumption in the model is that large earthquakes

rupturing the same section of fault tend to cluster together in time. One large earthquake

occurs but does not rupture the entire fault. Another eanhquake then triggers shonly

afterward on a part of the fault that did not rupture during the first earthquake. According

to the assumptions made, the section of fault that broke in the first earthquake can break

again.

It is possible. however, that the presence of a cell with no accumulated slip will

serve to tenninate the rupture of an earthquake. In that case, the rupture zone would be

smaller. and more cells would retain accumulated slip after the eanhquake. The

implication of this assumption is that the fault will tend to generate a greater number of

eanhquakes that break the entire fault and fewer smaller magnilUde earthquakes.

Suppose an eanhquake triggers on a cell with enough accumulated slip to rupture the

entire fault, and that the cells adjacent to the trigger cell recently experienced an

earthquake and have no slip accumulated. Following the given assumption. the cells with

no accumulated slip would be sufficient to tenninate the rupture even though a large

amount of slip is accumulated on the trigger cell.

If this is indeed the case, then the rules of rupture should be changed. The logic

of the model remains the same; the only change is in the method for deciding which cells

a. 2 5 5 0 4
J ........._00+-_.-....._ ..

CellI 1 2 3 4 5
...

a. 0 1 0 0
J I---t~--f--+--+--I

CellI I 2 3 4 5
...

(a) State of slip before eanhquake (b) State of slip after earthquake

FIGURE 3.5 Illustration of a non-zero new state
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break and how much slip is accumulated after the earthquake occun. In other words. the

state transition mechanism of the GSMP would be modified.

The state transition mechanism describes how the state of the process changes

when slip is accumulated and released. Slip accumulation causes the state variables to be

incremented by one. Slip release. in the form of an earthquake. causes cenain cells to

rupture and release some or all of their accumulated slip. The "rules for rupture"

determine which cells rupture. and the state of accumulated slip on the rupturing cells

determines the new state of the process. The state transition mechanism is the last

component that must be specified in order to completely describe the GSMP underlying

the fault behavior model.



CHAPTER 4
MODEL SIMULATION

4.1 INTRODUCTION
The purpose of developing fault behavior models is to characterize the

occurrences of eanhquakes along actual faults, allowing the estimation of seismic hazard

at a particular site. In order to do this, data describing the physical fault are used to

detennine the parameters that define the fault behavior model. In theory. closed fonn

solutions could be developed for any desired quantity, such as the probability of an

earthquake of a given magnitude or greater originating at a certain place on the fault

during a given period of time. However, the complexity of the model presented in

Chapter 3 makes closed fonn solutions either non-existent or very difficult to obtain.

For this reason, simulation will be used to apply this model to actual faults. In

simulation, the initial conditions (the state of slip accumulated when the simulation

begins) and the time horizon are selected. Many repetitions of the model are then

simulated for the time horizon of interest and the average results (or the distribution of

results) reported. The advantages to this scheme for analyzing fault behavior include the

ability to apply a complex model not amenable to closed fonn solutions and the

observation of earthquakes' occurrences through time.

4.2 DATA REQUIRED FOR MODEL APPLICATION

In order to apply this model, four different classes of infonnation are needed.

11lese are: dala describing the fault's configwation, data describing the slip accumulation

and release mechanisms, the earthquake histc')' of the fault, and equations relating slip

release with other quantities of interest.

The fault whose behavior is to be modeled must generate eanhquakes displaying

temporal and spatial dependence and be capable of completely rupturing during one

earthquake. This requirement allows for the simulation of the fault's behavior from a

"time zero," that is, from the time of the last earthquake that ruptured the entire length of

the fault and released all accumulated slip. This, in tum, allows the current state of

accumulated slip to be eSlimated (based on the earthquake history) SO that the

probabilities of eanhquakes within time frames beginning at the present can be assessed.

28
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If a fault is not capable of completely rupturing in one earthquake but does

display spatial and temporal dependence, it is possible that the model may apply to a

ponion of the fault. For example, the entire San Andreas fault does not rupture in one

eanhquake. However, the northern portion of the San Andreas ruptured completely

during the 1906 earthquake and generates earthquakes displaying temporal and spatial

dependence, as was discussed in Chapter I. In Chapter 5, the model is applied to this

section of the San Andreas fault.

4.2.1 DATA DESCRIBING THE FAULT'S CONFIGURATION

The data describing the fault's configuration include the length of the chosen

fault, its depth, and its segmentation. Each segment is assumed to have homogeneous

properties; that is, each cell on a segment has the same slip rate, the same interarrival time

mean and standard deviation, and the same distribution of times between triggering

earthquakes. The lengths and locations of any segments on the fault must be known. If

the entire fault has homogeneous propenies. no segments need be specified.

In applying the model, the fault's length is discretized into shon units called cells.

Each segment (and the fault as a whole) is made up of an integer number of cells.

Theoretically, the smallest magnitude earthquake that the model generates corresponds to

a rupture length of one cell. In reality, however, a model with very shon cells does not

generate earthquakes with much smaller minimum magnitudes than a model with very

long cells provided that the eanhquakes' interarrival time statistics remain constant, as

will be discussed more completely in Chapter 6. Because the amount of time required to

complete each simulation increases with the number of cells, the choice of cell length

must balance this consideration with the need to accurately represent the length of each

segment with an integer number of cells.

Figure 4.1 shows the segmentation suggested by the USGS Working Group

(1990) for the portion of the San Andreas fault to which the model is applied. This

segmentation divides the nonhern San Andreas into three segments: the North Coast

segment, the San Francisco Peninsula segment. and the South Santa Cruz Mountains

segment. The 340 km North Coast is by far the longest segment. stretching from offshore

in the northwest to San Andreas Lake in the southeast. and it is judged by USGS to be

capable of generating earthquakes with a maximum magnitude of 8.
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The San Francisco Peninsula segment begins at San Andreas Lake and runs 61 km

to the southeast; it has a maximum magnitude of 7. This segment can be considered to

have two subsegments: the Mid-Peninsula subsegment and the North Santa Cruz

San Jose
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HGVRE 4.1 Nonhern San Andreas fault segmentation
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Mountains subsegment. USGS considers two separate scenarios; one in which the

Peninsula segment is undivided and one in which it is divided into the two subsegments.

The results presented in Chapter 5 consider the segmentation in which the San Francisco

Peninsula segment is undivided. As part of the sensitivity analysis presented in Chapter

6, the alternate segmentation is considered.

The South Santa Cruz Mountains segment is 39 kin long and lies at the southeast

end of the northern San Andreas fault. The 1989 Loma Prieta eanhquake originated on

this segment and generated a magnitude 7 eanhquake.

The choice of cell length detennines how quickly the simulation can be carried

out and how accurately the lengths of the segments can be represented. In this research,

results using cell lengths of 10 kin. 20 km, and 30 km will be obtained and compared.

The fault depth is taken as 20 km.

4.2.2 DATA FOR THE SLIP ACCUMULATION AND RELEASE

MECHANISMS

The slip rates, the interarrivaJ time statistics, and the form of the distribution of

the times between triggering earthquakes are the data that describe the slip accumulation

and release mechanisms. The slip rate is a measure of how quickly the sides of the fault

are moving in reiation to each other and therefore of how quickly stress is accumulating

in the fault lone. In the same way that segmentation detennination is inexact, slip rate

estimates differ from researcher to researcher. The fault behavior model requires that

each cell within a given segment have the same slip rate, though the slip rate may vary

from segment to segment. This research assumes that the slip rates remain constant

throughout time, though this may not be the case.

The mean and standard deviation are the interarrival time statistics and describe

how often earthquakes occur. They are based on scarce historical data and sometimes

also on geologic occurrence data, which can be obtained by uenching to date prehistoric

earthquakes. Another method for estimating recurrence time is to divide the slip released

coseismically by the slip rate. All these methods introduce uncertainty because of lack of

data. Despite the problems in determining slip rate and interarrival time statistics, these

data have been estimated for many faults capable of producing large earthquakes

displaying spatial and temporal dependence.

Even if there were no uncertainty in determining the interarrival time statistics of

earthquakes, the interarrival times would not be deterministic. The form of the
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distribution of the times between triggering earthquakes is another piece of data required.

As mentioned in Chapter 3, lognormal and Weibull disuibutions are possible choices. In

the results presented in Chapter 5, it is assumed that the times between triggering

earthquakes have a lognormal disuibution. A comparison with results obtained from

using the Weibull disuibution will be made in Chapter 6. The slip rate estimated by the

USGS Working Group (1990) for the entire nonhern ponion of the San Andreas fault is

19 ± 4 mm/year. In Chapter 6, results will be computed and compared for slip rates of

15, 19, and 23 mmlyear.

The interarrival times are estimated by USGS to be 237 ± 73 years for the Nonh

Coast segment, 138 ± 40 years for the San Francisco Peninsula segment, and 84 ± 24

years for the South Santa Cruz Mountains segment. However, the fault behavior model

requires as input not the interarrival time statistics, but instead the statistics of the times

between eanhquakes triggering on each cell of the fault. These statistics are referred to as

the input mean and input standard deviation, while the interarrival time statistics are

referred to as the output mean and output standard deviation.

Tables 4.1, 4.2, and 4.3 show the input statistics and the output statistics for each

scenario considered. The third column, titled "Other Info,," tells when the scenario

considers interarrival time means other than those estimated by USGS or distributions

other than the lognormal for the trigger times. "Seg I ." refers to segment I having a

mean interarrival time equal to the mean value listed above minus one standard deviation.

The coefficient of variation is the same for the new mean as it was for the unchanged

mean. Similarly, "Seg I +" refers to the mean listed above plus one standard deviation,

with an unchanged coefficient of variation. "Weibull" refers to using the Weibull

distribution to model the trigger times.

Since there has been no attempt to directly estimate the input statistics from the

fault itself, it is necessary to determine them by trial and error to make the output

statistics close to the estimated interarrival time statistics. As there is no requirement that

all cells on a segment break during an eanhquake, each cell can have unique output

statistics. The value reponed in the tables for the output mean for a given segment is the

average of the output means for all the cells on that segment. Thus, some pans of the

segment will rupture more often than the output mean would suggest while others will

break less often. The reported output standard deviation for a given segment is the

average of the output standard deviations of all the cells. It is thus a measure of the

average amount of variability on the segment, but it is not a true standard deviation.
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TABLE 4.1 Input and output statistics for segment 1(Nonh Coast)
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Cell Slip Other Input Input Output Output USGS USGS
Size Rate Info. Mean St. Dev. Mean St. Dev. Mean Sl. Dev.
km flU1\Iyr yr yr yr yr yr yr

10 15 420 .50 236 103 237 73
10 19 430 50 238 125 237 73
10 23 416 80 238 77 237 73
20 15 430 75 234 101 237 73
20 19 443 75 235 119 237 73
20 19 Seg 1 . 300 25 164 95 164 51
20 19 Seg 1 + 445 50 308 105 310 96
20 19 Seg 2· 417 75 238 81 237 73
20 19 Seg 2 + 425 75 236 112 237 73
20 19 Seg 3- 435 75 236 82 237 73
20 19 Seg 3 + 420 75 237 105 237 73
20 19 Weibull 465 75 238 116 237 73
20 23 395 80 238 78 237 73
30 15 430 75 238 109 237 73
30 19 418 75 237 115 237 73
30 23 400 90 237 83 237 73

TABLE 4.2 Input and output statistics for segment 2 (San Francisco Peninsula)

Cell Slip Other Input Input Output Output USGS USGS
Size Rate Info. Mean 51. Dev. Mean 51. Dev. Mean 51. Dev.
km mmlyr yr yr yr yr yr yr

10 15 240 50 136 54 138 40
10 19 380 50 140 80 138 40
10 23 2000 0 108 56 138 40
20 15 220 :'iO 13M 56 138 40
20 19 350 50 139 77 138 40
20 19 Seg 1. 285 50 139 64 138 40
20 19 Seg 1+ 395 50 139 80 138 40
20 19 Seg 2- 185 50 96 48 98 28
20 19 Seg 2 + 700 30 176 103 178 52
20 19 Seg 3- 250 50 139 70 138 40
20 19 Seg 3 + 2000 0 127 58 138 40
20 19 Seg 3 + 2000 0 127 58 138 40
20 23 Weibull 350 50 137 73 138 40
30 15 240 75 139 66 138 40
30 19 600 100 133 73 138 40
30 23 2000 0 96 43 138 40
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TABLE 4.3 Input and output statistics for segment *3 (South Santa Cruz Mountains
Segment)
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Cell Slip Other Input Input Output Input USGS USGS
Size Rate Info. Mean St. Dev. Mean St. Dev. Mean St. Dev.
Ian mm/yr yr yr yr yr yr yr

10 15 125 45 83 23 84 24
10 19 123 40 83 23 84 24
10 23 127 45 83 23 84 24
20 15 100 30 83 22 84 24
20 19 105 30 84 24 84 24
20 19 Seg 1 - 105 30 84 24 84 24
20 19 Seg 1 + 105 30 86 23 84 24
20 19 Seg 2- 103 30 85 22 84 24
20 19 Seg 2+ 103 30 83 24 84 24
20 19 Seg 3- 76 30 60 21 60 17
20 19 Seg 3 + 132 35 108 30 108 31
20 19 Weibull 100 20 84 23 108 31
20 23 104 30 84 24 84 24
30 15 86 20 84 21 84 24
30 19 88 20 85 24 84 24
30 23 87 22 84 25 84 24

4.2.3 EARTHQUAKE HISTORY OF THE FAULT

One of the requirements for applying the fault behavior model is that the fault be

capable of completely rupturing during one earthquake. This allows the simulation to

begin at a specified time after the last earthquake that ruptured the entire fault. When

estimating the earthquake hazard within a relatively short period of time compared to the

interarrival times of the earthquakes, it is important to take into account where in the

eanhquake cycle the specified time period lies. For example, the hazard immediately

following a large earthquake is relatively small and increases as time passes. Knowing

the eanhquake history of the fault allows an estimate of hazard beginning at a specified

time.

In addition to estimating hazard within a given time frame, it is also possible to

use the fault behavior model to determine the long term behavior of the fault. For

example, by simulating the model for a long period of time, the number of earthquakes

per year as a function of magnitude can be estimated. This gives information about the

relative numbers of earthquakes of different magnitudes that can be expected and also

about the maximum magnitude earthquake that can be expected on the fault. For this



ChQpter 4,' Model Simulation 35

type of information, the eanhquake history of the faull from the last eanhquake rupturing

the entire faull is not necessary.

For the nonhem San Andreas fault, the last eanhquake rupturing the entire faull

occurred in 1906, The only sizable eanhquake since then is the Lorna Prieta eanhquake

of 1989, which ruptured segment '3 of the fault, These data will be used in the results

presented in the next chapter.

4.2.4 RELATIONSHIPS BETWEEN RELEASED SLIP AND OTHER

QUANTITIES OFINTEREST

The basic quantity tracked in this model is accumulated slip. Other quantities of

interest are calculated from it. The relationship between slip released and rupture length

will be used to determine how long it takes to increment the amount of slip accumulated

on each cell. When an eanhquake occurs, the amount of slip released will be related to

the amount of moment released in order to determine the moment of the eanhquake. The

moment magnitude is then calculated from lite moment.

As noted in Chapter 3, an empirical equation is used to relate slip released and

rupture length. The specific equation used in this research is from Wells and

Coppersmith (1991):

where

log(d) =-1.33 + 0.84 ·log(/)

d = the average surface displacement in m

1 = the surface rupture length in km.

(4.1)

Table 4.4 shows the application of this equation in determining the transition times for

slip accumulation events. T(j,k) is the amount of time it takes for cell j to accumulate

enough slip to rupture k ceUs when currently lItere is enough slip accumulated to rupture

k - 1 cells. As lite model simulation proceeds, each cell accumulates slip. At any given

time, it is possible to calculate lite length of faull that would rupture should an eanhquake

occur. Since only an integer number of cells can break, the length of fault that ruptures

must be rounded to the nearest integer number of cells. Thus. TU,I) corresponds to the

amount of time it takes to accumulate enough slip to break a length of fault equal to 0.5

of a cell. If there is enough slip accumulated to break a rupture length of 0.5 of a cell,

rounding to the nearest integer number of cells would yield a rupture length of one cell.
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T(j,2) is the amount of time it takes to accumulate enough slip to break a length of 1.5

cells minus T{j,I), etc.

The slip released coseismically can be related to the seismic m')ment of the

earthquake using the equation

where

Mo :: the seismic moment of the earthquake in dyne-em

J.l :: the modulus of rigidity for rock (3 x 1011 dyne I em2
)

-U :: the average slip released eoseismicaJly in em

L :: the length of rupture in km

D :: the depth of the fault in km.

TABLE 4.4 Transition times for slip accumulation events (20 km cells)

(4.2)

Incre·
'of Rup. Disp. mental Slip Rate Ie T(j,le) Cum.
Cells Len. (m) Disp. (mmlyr) (yr) Time

(km) (m) (yr)

0.5 10 1r.32 0.32 19 1 17.0 17.0
1.5 30 0.81 0.49 19 2 25.8 42.9
2.5 50 1.25 0.44 19 3 23.0 65.8
3.5 70 1.66 0.41 19 4 21.5 87.3
4.5 90 2.05 0.39 19 5 20.5 107.8
5.5 110 2.43 0.38 19 6 ]9.8 127.6
6.5 130 2.79 0.37 19 7 ]9.2 146.9
7.5 150 3.15 0.36 19 8 ]8.8 165.6
8.5 ]70 3.50 0.35 ]9 9 ]8.4 184.0
9.5 190 3.84 0.34 19 10 ]8.0 202.0
10.5 2]0 4.18 0.34 ]9 11 17.7 219.7
11.5 230 4.51 0.33 19 12 17.5 237.2
12.5 250 4.83 0.33 19 13 17.2 254.4
13.5 270 5.16 0.32 19 14 17.0 271.4
14.5 290 5.48 0.32 19 ]5 ]6.8 288.2
]5.5 310 5.79 0.32 19 16 16.6 304.8
16.5 330 6.10 0.31 19 17 16.4 321.2
17.5 350 6.41 0.31 19 18 16.3 337.5
18.5 370 6.72 0.31 ]9 19 16.1 353.6
19.5 390 7.02 0.30 19 20 16.0 369.6
20.5 410 7.32 0.30 ]9 21 15.9 385.5
21.5 430 7.62 0.30 19 22 15.7 401.2
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When an earthquake breaks more than one cell. the amount of moment released by each

cell is calculated separately. as the :ells can release different amounts of slip. The

seismic moment of the earthquake is the sum of the moment released by each cell

rupturing during the earthquake.

The seismic moment calculated from equation 4.2 is related to the moment

magnitude using the relationship proposed by Hanks and Kanarnori. 1979:

where

M.. =tlog(Mc;)-1O.7

M.. = the moment magnitude
MQ = the seismic of the earthquake in dyne-em.

(4.3)

Equations 4.2 and 4.3 allow the estimation of the seismic moment and moment

magnitude of earthquakes whose occurrence is simulated with the model.

4.3 IMPLEMENTATION OF THE MODEL

In order to implement the fault rupture model. a simulation procedure is

developed. Figure 4.2 outlines the procedure for simulating the sequences of eanhquakes

in time and for computing various quantities of interest. Each of the steps in this figure is

explained in the following discussion.

The data required for the simulation of the fault rupture model were described in

Section 4.2. These data included the fault length, the fault depth. the segmentation

model. the slip rate for each segment. the interarrival time statistics for each segment. the

distribution type of the times between each cell triggering an earthquake. and the

earthquake history of the fault.

In addition to the data. several functional relationships need to be defined. These

include the relationships between accumulated slip and rupture length. between slip

released and seismic moment. and between seismic moment and moment magnitude.

The specific relationships were given in equations 4.1, 4.2. and 4.3.

The cell size must be chosen such that an integer number of cells will adequately

characterize the length of each segment and yet the computational effon will not be

prohibitive due to the large number of ceUs. The input mean and standard deviation for

each segment are the input parameters to the model. They are determined by trial and

error. as noted above.
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Once these data have been estimated. sequences of earthquakes can be simulated

and their properties and statistics studied. Appendix A contains a chan describing how

the various portions of the computer program used to simulate this model relate to each

other.

Several different types of output are of interest when studying the fault behavior.

By simulating a sample of earthquake sequences in time and in space. the times at which

each state transition (incrementing the amount of accumulated slip or triggering an

earthquake) occurs and the state of the variables after each transition can be traced. The

number of times each cell ruptures and the output mean and standard deviation for each

cell provide additional information. The average and standard deviation of the output

means and of the output standard deviations of the cells on each segment are reported in

order to compare their values to the input parameters. Other quantities calculated

include:

• the probability of any part of the fault rupturing during an earthquake

• the probability of any part of a given segment rupturing during an

earthquake

• the probability of a given cell rupturing during an earthquake

• the probability of an earthquake triggering on a given segment

• the probability of an earthquake triggering on a given cell

• the probability of more than 50% of a given segment rupturing during

one earthquake

In addition to the above. other quantities reported include different distributions

for each cell. for each segment. and for the entire fault. The probabilities of observing

different interarrival times are obtained by multiplying the distribution of interarrival

times by the probability of occurrence of an earthquake. The distribution of rupture

lengths multiplied by the probability of occurrence of an eanhquake gives the probability

of observing different rupture lengths. The moment release distribution multiplied by the

probability of occurrence gives analogous information. Finally. the number of

earthquakes per year of a given magnitude or greater shows not only the relative numbers

of earthquakes of different magnitudes but also the expected cutoff magnitude.
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In Chapter 5. the results from the application of the model to the northern San

Andreas fault are presented. Some of the output infonnation described above is reported

in order to analyze the behavior of the fault



CHAPTER 5
RESULTS OF MODEL APPLICAnON

S.l INTRODUCTION
This chapter presents the results oblained from applying the fault behavior model

fO the northern San Andreas fault. The data used in applying this model were discussed

in Chapter 4. Results are presented for the case of 20 kin cells. a slip rate of 19 mrnIyr,

and interarrival time means as estimated by the USGS Working Group (1990). The

lognonnal distribution is assumed in modeling the earthquakes' trigger times. The

sensitivity of the results to the cell size, to the slip rate, and to the interarrivaJ times will

be the subject of Chapter 6. In addition, an alternate segmemation and the use of the

Weibull distribution for modeling the earthquakes' trigger times will be considered in

Chapter 6.

The distinction was drawn in Chapter 4 between input statistics and output

statistics. The input statistics are adjusted so that the output means averaged over each

segment are close to the estimated mean interarrivaJ times. Figure 5.1 shows the input

and output means for each cell for the base case. Note that the variability in the output

means over the cells in segment.l (North Coast) and in segment "3 (South Santa Cruz

Mountains) is relatively small. However, segment 412 (San Francisco Peninsula) shows

significant variability among the cells. This suggests that segment '2 is a transition

segment in which the character of the faull changes from the longer interarnvaJ times to

the north to the shorter interarrivaJ times to the south.

Figure S.2 shows the input and output standard deviations for each cell. Adjustin,

the input parameters allow'> the average of the output means over each segment to

correspond closely to the USGS estimated mean interarrival times. However, the output

standard deviations cannot be adjusted in this way. Because there are several cells on

each segment. there is only a loose correlation between the input standard deviation and

the output standard deviation. For eumple, the Nonh Coast segment contains 17 cells.

Each of these cells generates eanhquakes according to a probability distribution

characterized by the input mean and input standard deviation. When the simulation

begins. the time until each cell triggers an eanhquake is simulated from this distribution.

The time until the next eanhquake triggers on the segment is the smallest of these trigger

times. In effect. there are 17 samplings (because there are 17 cells) from the distribution,

41
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and the smallest number controls the time until the next eanhquake. Raising or lowering

the mean of this distribution will then affect the time until the next earthquake. Given

enough simulations. the time until the next eanhquake will be longer when the mean of

the distribution is higher.

When the input standard deviation i~ changed. however. the major effect is on the

output mean. not the output standard deviation. This is because a greater variability in

the distribution. characterized by the larger standard deviation. increases the chances that

one of the 17 samplings will be low and thus decreases the time until the next eanhquake.

Given enough simulations. increasing the standard deviation lowers the time until the

next earthquake.

These observations imply that the output standard deviation is largely intrinsic to

the model and has more to do with rupture spilling over from adjacent cells than with the

input standard deviation, Note that the cells on segment #3 are an exception because the

mean interarrival time of earthquakes on segment #3 is shon compared to the mean

interarrival times of segments #1 and 112. Most of the eanhquakes in the simulation

therefore initiate on segment 113. making the input parameters more closely associated

with the output parameters than on the other segments.

5.2 SAMPLE SIMULATION

One of the suengths of simulation is that it allows analysis of the statistics of

many simulations and also of the sample path of individual simulations. This can provide

clues to the behavior of the fault that are sometimes obscured by looking onlj' at

summary statistics. In Figure 5.3. a typical simulation of the base case. the time and

moment magnitude of each earthquake are listed on the left. The heavy lines denote the

cells that ruptured during each eanhquake; the asterisk above each heavy line shows the

cell on which the earthquake originated. Figure 5.3 shows the earthquake history from

time 0 years. at which there is no slip accumulated anywhere on the fault. to time 3309

years. at which there is an eanhquake that ruptures the entire fault.

Most of the earthquakes displayed in Figure 5.3 (67%) originated on segment 113.

23% of the earthquakes originated on segment III. with the remaining 10% originating on

segment 112. The earthquakes originating on segment '3 typically have a moment

magnitude between 7,0 and 7,4 (though larger or smaller magnitude earthquakes do

occur). Larger magnitude earthquakes originate on segments 4'1 and 112 at longer

intervals. and their typical magnitude range is 7.8 to 8.1. Some clustering of these larger
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earthquakes occurs; if a large eanhquake does not rupture aU of segment 'I, there is

frequently another eanhquake shonly thereafter. Most of the eanhquakes rupturing

segment '2 spill over from another segment

These observations suggest that earthquakes similar to the Lorna Prieta

earthquake occur rather regularly and more frequently than larger earthquakes. While

earthquakes similar to the 1906 San Francisco earthquake are less common, they do occur
and rupture a longer ponion of the fault. The San Francisco Peninsula segment does not

often originate an earthquake. but does frequently rupture when other earthquakes spill

over onto it.

5.3 FREQUENCY OF EARTHQUAKES

Figure 5.4 shows the number of earthquakes per year based upon a simulation of

1,000.000 years. The x-axis is the moment magnitude of the earthquakes, while the y

axis is the number of earthquakes per year with a given moment magnitude or greater.

Most of the smaIJer magnitude earthquakes originate on segment '3. while the Jarger

magnitude earthquakes originate on segmenrs Itl and '2. This confinns the behavior

observed in the sample simulation in Section .5.2.1.
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AGURE 5.4 Number of earthquakes per year for the base case



'wr"$: Resulrs qfMQdd Amzljcarion 46

The average number of eanhquakes per year with a moment magnitude exceeding

6.S is O.OISS, or one eanhquake every 64.S years. The annual rate of occurrence of

earthquakes with a moment magnitude of 7.9 or greater is 0.0029, or one earthquake

every 345 years. Earthquakes falling into this moment magnitude range are of a size that

is on the order of the 1906 eanhquake. The 34S year recWTence interval predicted by this

model is higher than the approx, mately 150-200 year recurrence interval estimated by

others (Ellsworth, et. al., 1981; Thatcher and Lisowski, 1987). One possible reason may

be that the other recurrence interval estimates were made for earthquakes rupturing the

San Francicso Peninsula section, which may not necessarily be of the same magnitude as

the 1906 earthquake.

5.4 PROBABILITY OF EXCEEDING A GIVEN MAGNITUDE
DURING A GIVEN TIME HORIZON
An important quantity for site hazard analysis is the probability of exceeding a

given magnitude level during a given time period. The given magnitude level wiu

usually be related to a ground motion parameter, such as peak ground acceleration, at the

site. The probability of e"ceeding a given magnitude level can be used to estimate the

probability of exceeding a given ground motion level at a site. The probability of

exceeding given magnitude levels will be estimated for fixed time intervals as a function

of moment magnitude. The same probability will also be estimated for fixed magnitude

levels as a function of time.

5.4.1 FORECASTS FOR FIXED TIME INTERVALS

Figure 5.5 shows the probability of experiencing an earthquake with a moment

magnitude m or greater during time intervals of 50 and 100 years. The results are based

on a simulation of 10,000 cycles of the fixed time interval. It is assumed that at time

equal to zero, an earthquake occurs that ruptures the entire fault and releases all

accumulated slip. Review of the simulations revealed that all the earthquakes that

liCcurred originated on segment'3. The eanhquake history of earthquakes biggering on

segment '3 is then the same as the history of earthquakes triggering anywhere on the

fault. As a consequence, Figure S5 applies to segment '3 and to the entire fault as a

whole.

The probability of earthquakes with a moment magnitude greater than or equal to

6.5 is 0.0117 (or a time period o( 50 years and 0.735 for a time period of 100 years. Note
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that for a time period of 50 years, the largest earthquakes observed have a moment

magnitude between 6.8 and 6,9. In a time period of tOO years, the largest eanhquakes

have moment magnitudes of 7,2 to 7.3. Since the simulation begins at the zero slip level,

it is not possible for enough slip to accumulate within 50 or 100 ),ears to cause

earthquakes with larger magnitudes than this.

5.4.2 FORECASTS FOR FIXED MAGNITUDE LEVELS

Figures 5.6-5.9 show the probability. as a function of time. of the occurrence of an

earthquake eltceeding cenain magnitude levels for the entire fault as a whole and for

eanhquakes originating on each segment separately. These graphs are based on 10,000

simulations of each time period (20 years. 40 years, etc.) In these graphs, it is again

assumed that an eanhquake rupturing the entire fault and releasing aU accumulated slip

occurs at time zero,

Note that in Figure 5,6. the graphs corresponding to moment magnitudes 6.5 and

7.0 differ anI)' by a probability of approximately 0.1. Thus, there are not many

eanhquakes whose moment magnitudes fan into the range from 6.5 to 7.0. The graph
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FIGURE 5.5 P[M 2 m] during the time intervals (0.50) and (0,100) for the base case
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corresponding to moment magnitude 7.5 does not begin to rise until approximately 140

years and reaches a final probability of 0.083 at time 300 years.

In Figures 5.7 and 5,8, the graphs corresponding to all three magnitude levels are

the same because only earthquakes with a moment magnitude level of 7.5 or higher are

actually observed. Comparing the two figures shows that segment '1 triggers more

earthquakes than segment *2 as it has a higher probability of experiencing an earthquake.

In a time period of 300 years, an earthquake originates on segment '1 with a probability

0.182 whereas the probability of an earthquake originating on segment'2 is 0.114.

Figure 5.9 shows that the earthquakes with magnitude less than 7.5 originate on

segment '3. While this segment is responsible for the greatest number of earthquakes,

they are almost all of smaller magnitude than those originating on the other segments.

Figures 5.6-5.9 confirm the observations of the behavior of the nonhern San Andreas

fault noted in previous sections.

S.S HAZARD RATE
The hazard rate is defined as the probability that an earthquake exceeding a given

magnitude level occurs in the time period (C,t +6t) given that there were no eanhquakes

in the period (0. t). Figure 5.10 shows the hazard rate for the entire fault using lit = 10
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years. All the earthquakes whose occurrences are reflected in this graph triggered on

segment'3 because I:iJ is chosen to be shan enough that only one earthquake is observed

in each time period (1.1 + /:il), As segment '3 has the shonest mean interanival time. it is

the segment that triggers each earthquake in this simulation. If the behavior of the fault

were simulated for longer than the 10 year period. earthquakes would be observed on

other segments as well.

Note that for earthquakes with a moment magnitude of 6.5 or greater. the hazard

rate begins to rise at 30 years. At 75 years, the hazard rate is the same for earthquakes

with magnitudes exceeding 6.5 as it is for earthquakes with magnitudes exceeding 7,0.

This reflects the fact that at t = 75 years. all the earthquakes that occur within the

additional 10 years have a moment magnitude of 7,0 or greater. The same phenomenon

occurs at t = 150 years; all the eanhquakes occurring within the additional 10 years have

a moment magnitude of 7.5 or greater. This is a reflection of the fact that the longer the

time since the last eanhquake, the greater the amount of slip that will be released when

there is an earthquake. As discussed above. all eanhquakes in this simulation triggered

on segment '3. These factors combine to cause the magnitudes of the simulated

earthquakes to faU into narrow ranges.

Because the mean time for earthquakes originating on segment '3 (105 years) is

significantly smaller than for those originating on segment #2 (350 years) and segment #1

(443 years), the hazard rate calculated above is difficult to interpret. As the amount of

time since the last earthquake increases past the mean interarrival time for segment #1,

the hazard rate as calculated above begins to lose its meaning. The probability that a gap

time of ISO years would be observed in this model is small, For the model using 20 kIn

cells and a slip rate of 19 mrn/yr, the mean trigger time for cells on segment '3 is 105

years, with a standard deviation of 30 years. Assuming the lognormal distribution, the

probability of no earthquake being triggered by a cell in segment '3 during the 150 year

time period following a large earthquake releasing all accumulated slip is less than

0.05%. However, a gap time of 150 years for earthquakes originating on segment #1 and

segment '2 would be expected, since the mean trigger times for cells on those segments

are much higher.

The most probable scenario then would involve an eanhquake originating on

segment '3 during a ISO year time period. with no earthquakes triggering on the other

segments during those time frames. This scenario, however, does not lend itself to

computing a quantity that resembles the hazard rate as defined above. The hazard rate for
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the entire fault is driven by the hazard rate for the segment with the smallest interarrival

time for triggering earthquakes. Due to the spill over of eanhquake from segment to

segment, it is difficult to treat each segment separately and compute a hazard rate for each

one. In this model, the hazard rate does not have a meaning when it is calculated

assuming a gap time that is unrealistic for the segment generating eanhquakes most

frequently.

A Poisson model has a constant hazard rate, which would be a horizontal line on

the graph. Figure 5.10 demonstrates that this model has an increasing hazard rate for gap

times up to 105 years. (As discussed above, the hazard rate is not a meaningful quantity

as the gap time increased much past the trigger time mean of the segment most often

triggering earthquakes.) The elastic rebound theory implies that immediately after an

earthquake, the probability of another earthquake is low. For large magnitude

earthquakes, this model incorporates that idea.

5.6 COMPARISON WITH USGS ESTIMATES

The USGS Working Group (1990) has estimated the probabilities of earthquakes

rupturing more than 50% of each of the northern San Andreas fault segments during the

time period 1990-2020. The Working Group assumed a renewal model based on a

lognonnal distribution of interarrival times. Their estimates will be compared to the

estimates obtained with this model. Both the Working Group and this model application

result in the probabilities of an earthquake on the South Santa Cruz Mountains segment

(segment *3) that are vinually zero during this time period. The Working Group

estiMates the probability of an ean:-'quake on the Nonh Coast (segment *1) to be 0.02

during this time frame. The corresponding probability obtained from this model is

virutally zero. The Working Group states that they do not consider differences of

probability less than 0.1 to be significant. Therefore. this model and the Working Group

are in agreement regarding segment *1 as well as segment *3.

The Working Group and this model differ in the assessment of the probability of

an eanhquake on segment *2, the San Francisco Peninsula segment. The Working Group

estimates this probability to be 0.23 because this segment is thought to have ruptured on

its own in 1838. Since it is known to have ruptured 68 years later in 1906, it is quite

possible that is will rupture again during the 114 years between 1906 and 2020. The

presented model views the San Francisco Peninsula segment quite differently, however.

Nearly all the simulated eanhquakes that rupture lhis segment originated on a differenl
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segment. Because this model finds the probability of an eanhqualce originating on either

segment 4U or segment '3 to be virtually zero, the corresponding probability of rupturing

more than 50% of segment'2 is also very small.

5.7 CONCLUSIONS
The results based on 20 k.m cells. a s!ip rate of 19 mm/yr. and interanival time

means equal to the USGS estimates suppon the idea of two distinctly different behaviors

on the northern San Andreas fault, The South Santa Cruz Mountains segment generates

eanhquakes with a moment magnitude that is usually in the range of 6.8 to 7.4. The

North Coast segment generates eanhquakes less frequently, but the moment magnitudes

of those eanhquakes are usually in the range of 7.7 to 8.1. The San Francisco Peninsula

section acts as a transition between those two segments; it more often breaks due to an

eanhquak~ spilling over from an adjacent segment than due to an earthquake originating

on it. If this is true. then the San Francisco Peninsula segment has a greater capacity for

stress accumulation than either the Nonh Coast segment or the South Santa Cruz

Mountains segment. This contrasts the view expressed by the Working Group, which felt

that this segment has a greater, rather than smaller, chance of rupturing during the time

period 1990-2020.

This model predicts a mean interarrival time of eanhquakes with a moment

magnitude of 7.9 or greater of 345 years. Eanhquakes in this magnitude range are similar

in size to the 1906 earthquake. In addition. this model shows an increasing hazard rate

for gap times of 165 years or less. For larger gap times. the hazard rate is difficult to

define for this model and is therefore not estimated.



CHAPTER 6

SENSITIVITY OF RESULTS

6.1 INTRODUCTION
In Chapter 5, the results for the base case model for the nonhern San Andreas

fault were presented. The base case considered 20 km cells. a slip rate of 19 mmIyr, and

mean interarrival times equal to the USGS estimates of the mean interarrival times. In

the base case, it was assumed that the times between eanhquakes triggering on a given

cell were lognonnally distributed. In reality, though, neither the slip rate nor the mean

interarrival time values are known precisely. Funhermore, the choice of cell size is made

to allow accurate representation of the segment lengths and could easily be changed.

Each of these quantities will be varied in order to observe their effect on the results.

In addition. the times between eanhquakes will be modeled as a Weibull. rather

than a lognonnal, distribution. Finally. an alternate segmentation model. which divides

the San Francisco Peninsula segment into two segments, will be considered.

6.2 SENSITIVITY TO CEI,L SIZE
The cell size is a parameter that is chosen based upon the geometry of the fault.

Table 6.1 gives the length of each segment when modeled with 10 km cells. 20 km cells,

and 30 km cells. It should be noted that any of the three cell lengths enable the accurate

representation of the ~ntjre fault. In addition, both 10 km cells and 20 km cells allow the

lengths of the segments to be accurately represented. However, the length of segment *3.

and to a lesser extent. the length of segment *1 are not accurately represented by 30 km

cells. In Chapter 5, the number of earthquakes per year and the probability of an

earthquake exceeding a given magnitude during a given time horizon (for fixed time

intervals) were estimated by using 20 km cells. These results will be compared to those

obtained by considering cell sizes of 10 km and 30 km, keeping the slip rate and the mean

interarrival times constant.

Figures 6.1-6.4 show the number of eanhquakes per year for each segment and for

the entire fault for each cell size. For the entire fault and for segment 4ft. the results are

not sensitive to the cell size. On segmenl '2, the results are similar for 10 km cells and

for 20 km cells. Using 30 km cells. however, leads 10 cumulative numbers of

earthquakes an order of magnitude lower than those obtained from using the other cell
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sizes. The maximum moment magnitude observed for eanhquakes originating on

segment 13 differs depending upon the cell size.

Figures 6.S and 6.6 show the probability of an eanhquaJce occulTing that exceeds a

given magnitude during time periods SO and 100 years long, respectively. Each of these

time periods begins when a large eanhquake ruptures the entire fault and releases all

accumulated slip. In these figures, all the eanhquakes that occurred originated on

segment 13. Figure 6.5 shows that using 30 km cells leads to earthquakes of only two

different magnitude levels during the 50 year time horizon. This is due to the facl that

only discrete numbers of cells can rupture during an eanhquake. The larger the cell size.

the more the moment magnitudes of the eanhquakes tend to cluster together. The results

for 10 km cells and 20 km cells do not differ radically. Figure 6.6 again shows similar

results for all cell sizes except at the very largest magnitudes.

TABLE 6.1 Lenglhs of each segment using different cell sizes

10 km Cells 20 km Cells 30 krn Cells

Segment II I of Cells 34 17 12

(Nonh Coast) Model Length (km) 340 340 360

USGS Length (km) 340 340 340

% Diff. in Model 0.0% 0.0% 5.9%

Segment #12 I of Cells 6 3 2

(SF Peninsula) Model length (km) 60 60 60

USGS Length (km) 61 61 61

% Diff. in Model -1.6% -1.6% -1.6%

Segment #13 #I of CellS 4 2 1

(S SC Mountains) Model Length (km) 40 40 30

USGS Length (km) 39 39 39

% Diff. in Model 2.6% 2.6% -23.1 %

Entire Fault lofCells 44 22 IS

Model length (km) 440 440 450
USGS length (km) 440 440 440

% Diff. in Model 0.0% 0.0% 2.3%
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A cell size of 30 km does nOI appear to be a good choice for modeling the

nonhem San Andreas faull because this cell size does not accurately represent the lengths

of the segments. Based upon the results presented here, there is no clear reason to prefer

either 10 km cells or 20 km cells. The results from these two cell sizes are similar and

differ only at the largest magnitude levels. at which the estimates are the most uncertain

due to the relatively few observations of the largest earthquakes.

The length of time it takes to simulate the model depends in pan upon the number

of cells, as the number of events in the model is directly related to the number of cells.

Each cell has two events associated with ito-incrementing the amount of accumulated slip

and triggering an eanhquake. When the cell size is halved. twice as many events must be
scheduled and tracked. This causes the computation time to roughly double for the

smaller cell size.

Based on these observations. the 20 km cell size appears to be best suited for

application to the northern San Andreas fault. This cell size models the lengths of the

segments closely. It produces results similar to those obtained with the 10 k.rn cells but

avoids the additional computation time.

6.3 SENSITIVITY TO SLIP RATE

The results in Chapter 5 were computed assuming that the slip rate is 19 mm/yr.

Slip rates, however, are difficult to estimate from the available information and reported

values can vary greatly. The USGS Working Group (1990). for example, assigned a slip

rate on the nonhem San Andreas fault of 19 ± 4 mm/yr.

In order to study the effect of slip rate on the results obtained by this model,

results computed with slip rates of 15 mmlyr. 19 mm/yr, and 23 mm/yr are compared,

assuming that the cell size is 20 km and that the mean interarrival times are the same as

the USGS estimates of these mean values.

Figure 6.7 shows that for the entire fault. the results are not sensitive to the slip

rate except at the highest magnitudes. The highest cutoff magnitudes were observed for

the case when the slip rate is 23 mm/yr. and the lowest cutoff magnitudes were observed

for the case when the slip rate is 15 mm/yr. When the interarrival times are kept constant,

as they were in this example, the larger slip rate will have more accumulated slip when an

eanhquake occurs and hence a larger moment magnitude. Figure 6.8 shows similar

behavior for eanhquakes originating on segment Itl.
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Figure 6.9 shows that the number of earthquakes per year triggering on segment

#2 is sensitive to slip rate. When the slip rale is 23 rnrn/yr, no earthquakes triggered on

segment 112 during the simulation time frame 0,000.000 years). This is due to the fact

that at that high slip rate, segment #2 breaks frequently due to rupture spilling over from

adjacent segments. Even without triggering any earthquakes itself, segment 112 has an

average interarrival time of 107 years, which is smaller than the USGS estimate of 138

years.

When the slip rate is 15 mmlyr or 19 mm'yr. segment 112 does trigger some

earthquakes. The cutoff magnitude is again influenced by the choice of slip rate, with the

larger cutoff magnitude corresponding to the larger slip rate. In addition, there is a larger

number of earthquakes per year wilh the smaller slip rate. Since a smaller slip rate is

associated with smaller magnitude eanhquakes. fewer cells rupture during each

earthquake. Thus, when the slip rate is smaller, there must be a greater number of

earthquakes to rupture all the cells with the same mean interarrival time.

Figure 6.10 shows that segment 113 is also sensitive to the slip rate. As noted

previously for the other segments, the size of the cutoff magnitude is dependent upon the

choice of slip rate.

Figures 6.11 and 6.12 show the probability of an eanhquake occurri:tg that

exceeds a given magnitude during time periods of 50 and 1m years, respectively. (As

noted before, an earthquake occurred at time zero that ruptured the entire fault and

released all accumulated slip.) In these figures, all the earthquakes originated on segment

#3. Figure 6.11 demonstrates that within 50 years, there are few earthquakes observed.

and they have a narrow magnitude range. As before, the smallest slip rate is associated

with the largest probability of earthquake occurrence and with the smallest moment

magnitude. The largest slip rate is associated with the largest moment magnitude.

Figure 6.12 shows similar behavior for the 100 year time horizon. The cutoff

magnitude is highest when the slip late is 23 mrn/yr and lowest when the slip rate is 15

mm/yr.

The results display considerable sensitivity to slip rate. When the shp rate is

higher, the largest observed eanhQuakes have a higher moment magnitude. In addition,

the lowest slip rate is associated with more earthquakes occurring. though they are of

somewhat smaller magnitude. The average recurrence interval for earthquakes with a

magnitude of 7.9 or greater is 1495 years for a slip rate of 15 mm/yr. 345 years for a slip
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rate of 19 mm/yr. and 278 years for a slip rate of 23 mmlyr. The eXb"Cffiely large

recurrence interval for the 15 mm!yr case is a reflection of the fact that at the lower slip

rate, the largest earthquakes simulated have a lower magnitude. The difference in

recurrence interval between Ihe 19 mmlyr and 23 mm!yr cases is much smaller. These

results suggest that the major effect noted when the slip rate is varied is the change in the

cutoff magnitude of the largest earthquakes.

6.3 SENSITIVITY TO INTEIJ ARRIVAL TIMES

All the results presented tIlus far are for the mean interarrivaJ times as close as

possible to those estimated by the USGS Working Group (1990). Figures 6.13-6.18

demonstrate the effect of varying the mean interarrivaJ times. In the legends of these

figures, "Mo" refers to all segments having mean interarrival times as estimated by

USGS. "1·" refers to segment III having a mean equal to the mean estimated by USGS

minus one standard deviation, or 164 years. The mean values of segments #2 and 113 are

kept constant under the scenario designated as "I .... Similarly, "I +" refers to segment

III having a mean interarrivaltime equal to the USGS mean plus one standard deviation,

or 310 years, while the mean values of the other two segmems are kept constant.

Segment 1#2 has a mean of 98 years in the scenario "2 ." and a mean of 178 years in the

scenario "2 +." Segment,3 has a mean of 60 yecm in "3 ." and a mean of 108 years in

"3 +."

Figures 6.13 and 6.14 demonstrate that for the entire fault and for earthquakes

originating on segment Ill, the choice of mean interarrival time does not have a large

impact on the results. The cutoff magnitude varies slightly depending on the scenario,

but that effect is quite small. In addition, the cumulative number of eartllquakes per year

varies from scenario to scenario, but this variance is less than an order of magnitude.

Figure 6.15 shows that the cumulative number of earthquakes originating on

segment '2 is highly dependent on the interarrival time scenario selected. When scenario

"3 +" is chosen, there are no earthquakes triggering on segment 112. Under scenarios in

which earthquakes do trigger on segment #2, "2 +" corresponds to the fewest cumulative

number of earthquakes. In this scenario, the mean interarrival time of segment 112 is

higher. while the mean values of the other segments are kept constant. Therefore, there

should be fewer earthquake triggering on segment 112 in scenario "2+" than in other

scenarios. Scenario "2 ." is associated with the largest number of eartllquakes triggering

on segment 112 because its mean interarrival time is decreased. The cutoff magnitudes are
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also slightly smaller under the scenario "2 -" as the faster triggering earthquakes do not

have as much slip accumulated and are therefore smaller.

Figure 6.16 shows that the primary effect on earthquakes triggering on segment

_3 is on the cutoff magnitude. The scenario "3 ." has the smallest cutoff magnitude since

the eanhquakes occur more frequently and are therefore smaller. As would be expected,

the scenario "3 +" is associated with the highest cutoff magnitude. The cumulative

number of earthquakes per year is highest under the scenario "3 0" and lowest under the

scenario "3 +", but that is not a large effect.

Figure 6.17 shows the results for a 50 year time horizon starting at time zero. For

this short time horizon. all observed earthquakes originated on segment #3. The results

are highly dependent upon the scenario chosen. The highest probabilities of an

earthquake occur when the mean interarrival time on segment #3 is lowered. When the

mean interarrival time on segment #3 is increased, the probability of an earthquake

decreases dramatically. For all other scenarios, the probabilities are comparable.

Figure 6.18 shows a similar graph but for a time horizon of 100 years. In this

case, lowering the mean interarrival time on segment _3 results in a smaller probability of

earthquakes with a moment magnitude above 7.0 and with a higher probability of

earthquakes with smaller moment magnitude.

These results point out how the behavior of each segment influences the others.

Even though the results on segments #2 and _3 vary widely depending upon the chosen

interarrival time scenario, the results for the entire fault do not vary greatly. This is

because lowering the number of earthquakes that trigger on one segment tends to raise the

number of earthquakes that trigger on the other segments. The statistics of the overall

fault may not be changed significantly, but the spatial distribution of the earthquakes will

be altered by the choice of mean interarrival time.

6.4 SENSITIVITY TO TRIGGER TIME DISTRIBUTIONS

As discussed in Chapter 3, earthquake interarrival times have been modeled in the

past with both the lognormal distribution and the Weibull distribution. The results

presented in Chapter 5 assume that the times between earthquakes triggering on a given

cell are lognormally distributed. Figures 6.19-6.24 compare those results with the results

obtained by assuming that the earthquake trigger times are Weibully distributed.
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Figures 6.19-6.21 demonstrate that the number of earthquakes per year triggering

anywhere on the fault, triggering on segment 1# I, and triggering on segment 1#2 are

relatively insensitive to the choice of trigger fme distribution. Figure 6.22 shows a slight

sensitivity to the trigger time distribution chosen for earthquakes that initiated on segment

*3. On that segment, the lognormal distribution shows a cutoff magnitude that is slightly

higher than the cutoff magnitude associated with the Weibull distribution.

Figures 6.23 and 6.24 show the probability of an earthquake exceeding a given

magnitude level during time periods of 50 years and 100 years after an earthquake that

ruptures the entire fault and releases all accumulated slip. All the earthquakes in these

graphs triggered on segment *3. (This is due to the short time horizons selected.

Earthquakes would trigger on other segments if the time horizon were longer.) Figure

6.23 shows that the Weibull distribution yields a higher probability of occurrence. Figure

6.24 shows little difference between the results based upon the distribution chosen, but

the Weibull distribution is associated with slightly higher probabilities of occurrence.

The WeibuJl distribution is broader than the lognormal distribution for the same

mean and standard deviation. There is therefore more probability in the tails of the

Weibull distribution than in the lognormal distribution. That implies that the chance of

simulating a low number from the Weibull distribUlion is greater than the chance of

simulating a low number from the lognormal distribution. Each segment is composed of

many cells, each of which has its trigger time set by simulating from the distribution.

The smallest trigger time initiates the next earthquake. The Weibull distribution, with its

wider tails, will tend to have a shorter trigger time than the lognonnal distribution. This,

in turn, leads to smaller interarrival times with smaller magnitude earthquakes,

confirming the behavior observed above.

6.5 SENSITIVITY TO SEGMENTATION
Adopting the segmentation proposed by the USGS Working Group (1990), it was

assumed in the results presented in Chapter 5 Ihal the Northern San Andreas fault is

composed of three segments: the North Coast segment, the San Francisco Peninsula

segment, and the South Santa Cruz Mountains segment. The Working Group also

considered an alternate segmentation in which the San Francisco Peninsula segment was

composed of two subsegments, the Mid-Peninsula segment and the Nonh Santa Cruz

Mountains segment. Table 6.2 shows the length of each segment in the alternate



Chapter 6,' Sen.sjtiviO' ofResults

TABLE 6.2 Lengths of segments in alternate segmentation model

73

egment
Name

ountatns
1 20 20

in Model

0.0%

segmentation as estimated by USGS and as modeled in this dissertation. Table 6.3 shows

the input and output parameters for the alternate segmentation,

Figure 6.25 shows the input and output means for the alternate segmentation. The

data for the base case scenario was given in Figure ~.1. For the North Coast segment, the

alternate segmentation is associated with more variability in the means than is the base

case, The mean interarrival times of the San Francisco Peninsula segment can be more

closely modeled by the alternate segmentation, which divides the segment into two

subsegments. Both segmentation models allow the mean interarrival time for

earthquakes on the South Santa Cruz Mountains segment to be accurately modeled.

Figure 6.26, which is analogous to Figure 5.2, shows the input and output

standard deviations for the alternate segmentation. In general, the standard deviations are

more closely modeled in the alternate segmentation than in the base case. This is

especially true of the North Coast segment, which shows an average output standard

deviation of 90 yeani, as contrasted with the base case's value of 119 years.

Figures 6.27-6.30 show the number of earthquakes per year for the base case and

for the alternate segmentation. For the entire fault, for the North Coast segment, and for

TABLE 6.3 Input and output statistics for the alternate segmentation

egment
Name

44
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the South Santa Cruz Mountains segment. the results from the two segmentations are

comparable. Figure 6.29 shows that for the San Francisco Peninsula segment, the

alternate segmentation yields smaller maximum magnitudes and more frequent

earthquakes. All the earthquakes reflected in the alternate segmentation part of the graph

triggered on the Mid-Peninsula subsegment. Because the North Santa Cruz Mountains

segment ruptures frequently when rupture spills over from another segment, its input

mean is very high. which prevents it from triggering earthquakes.

The USGS Working Group estimates the mean interarrival time on the Mid

Peninsula segment to be 129 years and the mean interarrival time on the North Santa

Cruz Mountains segment to be 95 years. For the base case, however, these two segment..

were both considered to be pan of the San Francisco Peninsula segment, for which the

Working Group estimated the mean interarrivaJ time to be 138 years. Since the alternate

segmentation has a smaller mean inlCrarrival time on the San Francisco Peninsula than

the base case, the number of earthquakes per year should be larger for the smaller

magnitudes and smaller for the larger magnitudes. This confinns the behavior shown in

Figure 6.29.

Figures 6.31 and 6.32 show the probability of earthquakes within time periods of

50 years and 100 years. respectively. Due to the short time periods. the earthquakes

shown on these graphs triggered on the South Santa Cruz Mountains segment. The

figures show that the results are similar for the two segmentation. It is not surprising that

the resulls for the two segmentations are comparable since the alternate segmentation

does not involve changing the configuration of the segment that is generating the

earthquakes.



CHAPTER 7
CONCLUSIONS

7.1 SUMMARY

This research develop~ an earthquake occurrence model that applies to faults that

generate earthquakes displaying temporal and spatial dependence. These are generally

large magnitude earthquakes (approximately moment magnitude o.~ and greater) and

occur infrequently. However, because they have a large magnitude, they are potentially

catastrophic when they do occur. The ability to accurately model the occurrences of

these earthquakes is an imponant tool for analysis of site specific seismic hazard.

The presented model is a generalized semi-Markov process, which is a stochastic

process that has been previously used in applications such as queue theory. In this

dissenation, the GSMP is brought into the field of earthquake engineering with its

application to earthquake occurrence modeling.

The application of this model to the northern San Andreas fault predicts that the

fault can be expected to repeatedly generate eanhquakes similar in size and space to the

Loma Prieta earthquake with an interarrival time that is on the order of 80-100 years.

Larger earthql1akes similar to the 1906 earthquake can also be expected. but with a much

larger interarrival time (on the order of several hundred years). The San Francisco

Peninsula segment appears to be a transition segment in this model, which repeatedly

ruptures as part of an earthquake that initiates on an adjacent segment but does not often

trigger an earthquake on its own.

This model describes temporalJy and spatially dependent earthquakes, which

usually have moment magnitudes of approximately 6.S and greater. Smaller magnitude

earthquakes can also cause damage, particularly near the epicenter. In order to

completely describe the eanhquake hazard in areas subject to temporally and spatially

dependent earthquakes, the presented model must be combined with a model designed to

describe the lower magnitude seismicity.

7.2 CONCLUSIONS

The generalized semi-Markov process is a well-studied stochastic process that is

applicable to the problem of modeling temporally and spatially dependent earthquakes.
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The advantages of using the GSMP include its ability to have a complex state space, its

random time between state transitions, and its convenient framework for simulation.

7.2.1 MODEL APPLICATION

Several conclusions can be drawn from the application of this model to the

northern portion of the San Andreas fault. The predictions made include:

• Segment III (North Coast) generates primarily large earthquakes with a

moment magnitude of approximately 7.8 or greater.

• Segment 113 (South Santa Cruz Mountains) generates somewhat smaller

earthquakes with a moment magnitude of approximately 6.9 to 7.2.

• Segment'2 (San Francisco Peninsula) does not frequently uigger an

earthquake but ruptures due to spill-over from the two adjacent

segments.

• The largest earthquakes observed have a moment magnitude of 8.1 to

8.2.

These results imply that the North Coast segment has a large capacity for stress

accumulation and therefore generates earthquakes less frequently. Because the slip rate is

the same for all three segments, the North Coast earthquakes have the most stress

accumulated and hence the largest magnitudes. The earthquakes on the South Santa Cr~z

Mountains segment have the smallest magnitudes since this segment has the least

capacity for stress accumulation.

The San Francisco Peninsula segment does not generate many earthqualces in the

model due to its relatively short average interarrival time (138 years) and proximity to a

segment with a 84 year interarrival time (South Santa Cruz Mountains). If this were true,

it would imply that the segment has a high potential for stress accumulation (because it

does not trigger earthquakes) that is rarely realized. The behavior of this segment is

critically important given its proximity to the highly populated San Francisco Bay region,

and it deserves further study.

7.2.2 MODEL SENSITIVITIES

In order to understand which input data most influence the results, the cell size,

slip rate, and interarrival time statistics were varied. Similarly, the WeibuJi distribution

was assumed for the trigger time distribution instead of abe lognonnal distribution used in
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the base case. An alternate segmentation model was also considered as part of these

sensitivity studies. The types of results that were compared were the number of

earthquakes per year and the probability of an eanhquake with a magnitude exceeding a

given level during fixed time intervals. The major conclusions are:

• The results are insensitive to cell size except at the highest magnitudes

provided that the chosen cell size accurately represents the lengths of

the segments.

• The moment magnitude of the largest observed earthquakes is most

sensitive to slip rate.

• The results for individual segments are highly sensitive to inrerarrival

times, but the aggregate results for the entire fault are much less

sensitive to this parameter.

• The use of the Wei bull distribution, rather than the lognormal

distribution, affects the results only minimally.

• The results based upon the alternate segmentation were similar to those

obtained using the base case.

The lack of sensitivy to the ceJl size is a desirable property of the model. Since

the model is a mathematical construct developed to explain observed behavior, changing

the parameters of the model itself should not have a major impact on the results.

The aggregate results for the entire faulr are not very sensitive to any of the data

varied in the sensitivity study. Since the three segments influence each other, increasing

the activity on one segment (by decreasing its mean interarrival time) decreases the

activity on the other segments. The results for the entire fault are then rather insensitive

to changing the input parameters. except at the largest magnitudes.

The results for each individual segment are much more sensitive than the results

of the entire (<lult. The most imponant parameters for the results on each segment are the

slip rate and the interarrival time statistics. Obviously. changing the mean interarrival

time for a segment will affect the results obtained for that segment. It is also logical that

the size of the earthquakes simulated is closely related to the assumed slip rate. What is a

little more obscure. however. is how changing the behavior of one segment affects the

others. For example. if the mean interarrival time of the South Santa Cruz Mountains

segment is increased. the San Francisco Peninsula segment begins to trigger more

earthquakes because there is not as much rupture spilling over from the other segments.
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This model treats the fault as one entity made up of several segments. While

modifying the behavior of one of the segments will change the results for each segment,

the overall results for the entire fault do not change very much.

7.3 FUTURE WORK

Several questions sti)) remain regarding the model and its application. In

addition, the model can be extended to include other earthquake characteristics not

considered in this research.

7.3.1 EXTENSION TO SITE HAZARD

As mentioned in Chapter 1, one of the reasons for developing earthquake

occurrence models is to enable site-specific hazard to be estimated. This model could

easily be extended to do this. An empirical attenuation function or other ground motion

propagation model for estimating the hazard at a site is needed. Many attenuation

functions require as input the distance from the rupture zone to the site and the size (for

example, the magnitude) of the eanhquake. In the current model, each time that an

eanhquake is simulated, these data are known. The space-time model can then be

extended to include this capability relatively easily.

For site hazard estimation purposes it is necessary to specify a forecast time

period. Thus, the length of each simulation period can be chosen to coincide with the

time period for which the hazard estimate is desired. When the model simulates the

occurrence of an eanhquake, the value of the ground motion parameter at the site can be

calculated. The largest value of the ground motion parameter at the site during each

simulation should be recorded. After many simulations, it is possible to construct a plot

of the probability of exceeding a given value of the ground motion parameter as a

function of the parameter's value. This plot is then a measure of the site specific hazard.

While the preceding discussion assumed that the ground motion parameter desired

at the site was a single value, it is also possible to use a similar methodology to develop

the spectra at the site.

7.3.2 VARIABLE SLIP RATE

Through development of this dissenation. it was assumed that the slip rate for
each cell was constant throughout time. As noted in Chapter I, however, this may not be
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the case. Following Suzuki and Kiremidjian (1988), the slip rate for each cell could be

simulated from a distribution and then kept constant until the next eanhquake, at which

time it would again be simulated. It would also be possible to specify the slip rate as a

function of time, which would be useful if the slip rate were to vary between the

occurrence of two earthquakes. Either of these schemes for considering a variable slip

rate could be incorporated into the model. The only thing that would change is the

calculation of the amount of time until a cell accumulates enough slip to increment the

number of cells that it is capable of rupturing.

7.3.3 VARIABLE CELL SIZES

In this research, the chosen cell size is uniform for all segments. For the northern

San Andreas fault. the North Coast segment is much longer than the other two segments.

Using a uniform cell size requires the long segment to be composed of many cells. In

order to reduce computation time. it would be desirable to vary the cell size from ~egment

to segment. Shon segments generating earthquakes more often could utilize a smaller

cell size than longer segments that generate earthquakes less often.

In order for this model to use variable cell sizes, the way in which the state of

each cell characterizes the amount of slip accumulated must be modified. Currently, the

state of the cell tells how many cells would rupture if an earthquake were to occur. If

non-uniform cell sizes were used, the state of the cell would need to give information

about the length of rupture possible in units of kilometers, rather than in .Jnits of cells.

This is a straightforward modification that would allow the detennination of the cells that

rupture even if they have differing lengths.

7.3.4 TWO-DIMENSIONAL MODEL

One assumption made in this model is that the entire depth of the fault ruptures in

each earthquake. This can be an unrealistic assumption. as demonstrated by the lack of

surface faulting in the 1989 Loma Prieta earthquake (Plafker and Galloway, 1989). In

order to model the situation in which only part of the fault's depth ruptures during an

earthquake. a two-dimensional model is needed. In such a model. nol only would the

length of the fault be discretized into cells, but so would the depth. The place on the fault

at which the rupture begins would be specified by its distance along the fault and by its

depth below the surface. Rules for rupture would have to be developed that detennine
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when rupture propagates toward the faull's surface and away from the faull's surface as

well as determining when rupture propagates along the length of the fault

Such a two-dimensional model would be much more computationally intensive

than the one-dimensional model developed here. In addition, it may be difficull to

develop rules for rupture owing to a lack of understanding about how rupture propagates.

Nevertheless, a two-dimensional model has the potential to more realistically represent

the rupture zones of the eanhquakes.

7.3.5 APPLICATION TO OTHER FAULTS

The fault behavior model is developed to apply to faults that generate eanhquakes

displaying temporal and spatial dependence. In order to test the model's general

applicability, it should be applied to faults other than the nonhero San Andreas. The

general criteria for choosing faults to which to apply the model is that the fault generate

temporaIly and spatiaIly dependent earthquakes. In addition. the data described in

Chapter 4 must be available.

One candidate for model application is the Alaska-Aleutian island arc, which

marks the subduction of the Pacific Plate under the North America Plate. Temporal and

spatial patterns have been noted for great (magnitude 7.4 and above) earthquakes

occuring in subduction zone (Sykes, et. al., 1981). Since rupture on subduction zones is,

by nature. at depth and does not usually cause surface rupture, tht two-dimensional

model discussed above would be particularly applicable to this area.

7.3.6 INTERACTION BETWEEN FAULTS

The northern San Andreas fault is not the only fault that ruptures along the

boundary between the Pacific plate and the North American plate. Other faulls in the San

Andreas fault system include the Hayward and Calaveras faults. It is possible that a

rupture on any of the three faults could affect the state of stress on the other two. If this is

the case. then modeling the earthquakes occurring on each faull separately is not

sufficient. A more complex model would be needed to model the behavior and

interactions of all the faults simultaneously. Unfortunately, data describing the

interaction between faults is very limited. making the development of such a model

difficult.



APPENDIX A
DIAGRAM OF THE COMPUTER PROGRAM

This chart shows how the various ponions of the computer program used to

simulate this model relate to each other. An arrow pointing from program module A to

program module B indicates that module A calls module B. The comments in the listing

of the computer program (Appendix B) explain the function of each program module.

The program module SIMMAIN, located in the center of the diagram, is the main

program. The modules whose names are contained in rectangles with rounded comers

are subroutines. The module RANGEN, whose name is in a rectangle, is a function. The

modules DATE and TIME are FORTRAN-supplied subroutines.
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