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Abstract 

In this research a new a.nalysis procedure is proposed which integrates system iden­

tification objectives and fuzzy set mathematics to formulate an adaptive analysis 

model capable of considering the changes a structure f'xperiences during it.s lirt'span. 

The adaptive models ({uantify the uncertainti,·s associat.ed with dynamic parameters 

at three stages during the structure's lifespan; calibration, degradation, and dam­

age. The adaptive model proposed here, unlike conventional system identificatiop. 

techniqut's, does not require experimenta.l response data from the as-huilt structure. 

Instead, fuzzy set mathema.tics is used to reprpsent the level of confiden(·p of vari­

ous design assumptions, and the vertex method is uspo to dew'lop a fuzzy set which 

bounds the structure's dynamic paramt'ters. 

The calibration model, the first of the three cat.egories considprpd in tlH' adap­

tive model, quantifies the error betwf't'n th{' dynamic parampters predidpd hy the 

analytical structural model and those of the actual structure. Tlw error ill Iht' .Iy­

namic paralneters is based on the modding uncertainties for tht' strnel IIral mass('s 

and the struct lIral stiffness. Quantifiration of t ht> fundamental UllrNt aillt it's and the 

use of the ralibration model makes it possible to prt>dirt tht> potential valu!'s of the 

higher-level dynamic parameters. The degradation mode! Wi('S the f('suits from the 

calibration model and uncertainty in the rate of degradation of fundamental param­

eters to predict the uncertainty in tht> dynamic parameters during the structurt>'s 

lifespan. 

It has been well a.ccepted that. the t'xcitation arting on a struel ure (du(' to an 

earthqu;~ke) is dependent on the liit{"s proximity to tht' fault rupturt', earthquake 

magnitude, and local site conditions. In this study tht> unct'rtainty in the excitation is 

modeled through the development of tht> fuzzy respollst' spect.!'a. Tht> fuzzy sp('ctrulIJ 

used in tht> dynamic analysis is se/t'rted bast'd on the loral soil conditions and the sit("s 

proximity to thf' potentia.l earthquake. Earh spectrum provides the analyst with a 

ii 



range of frequency content and maximum responses for the possible earthquake. The 

forced vibration analysis is performed by superimposing the fuzzy spectrum with th~ 

ada.ptive models (which quantify the potentia.lsources of error in structure's dynamic 

properties) to quantify the uncertainty in the response for the structure. 

A case study of the Santa Clara County Office Building, located is San Jose, 

California, is presented. This structure's dynamic beha.vior has been studied ext .. n­

sively since its instrumentation with the Ca.lifornia Strong Motion Instrumenta.tion 

Program. The dynamic parameters obtained from the ca.libration model and the 

ground motion models are compared to the actual parameters of the structure. It 

is found that the calibration model is capable of bounding the dynamic properties 

(natural frequencies and maximum building response) of th .. structure at high levels 

of confidence. 
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CHAPTER 1 

Introduction 

Engineers spend considerable amounts of time in the design and analysis of struct IIrt's 

to withstand dynamic loads. The structural design process ensurt>s that the st rllctural 

members will be able to resist the required loads, and that. the structllr(":; dynamic 

behavior will be appropriate. Engineering codes have b_n developed to help struc· 

tural engineers and designers make dt>cisions pertaining to the self'ctioll of structural 

members. In addition to being a.ble to withstand their own loads, thes/' st fIIct \In's also 

must be able to resist loads due to external fadors such a.., winds amI eart hquakes. 

Very often, the engineer will ca.lculate determinist.ic values for design paranH'ters alld 

compare them to what the codes present as a.cceptable. These co(les an' d('\'f'loped 

solely for the maintenance of human life and do lIot considt>T additional factors sl\<h 

as nonstructural damage and occupant comfort. Ignoring tht>se a.dditiollal factor:-; in 

the dynamic ana.lyses increases the uncertainty inlwrent in the analytical modt'!. 

By studying the dynamic behavior of a structure, till' analyst assl'ss('s lhe .... cc('pl· 

ability of accelerations and drifts at various st.ory Ill'ights. Stifff'ning the structure, 

which will reduce the st.ory drifts, also will increa.<;t" the accelerat ions and at tract 

higher levels of dyna.mic forces to the -tructure. Consequently, the selected structural 

members must be able to resist these nf'W forcf's. In the ca..,(' of st fllct ural dynamics. 

very often decisions can be made which can f('duc(' the damag(' 10 a struftllft" al· 

though the codes rarely address such issues. In order to improve tht> decision making 

capabilities of the structural engineer, a nwt hod is Ilet'ded which quanl ifit's the {'fror 

associated with the parameters used in design. Tht' desigut"r nf't'cls a mt"thod which 

can be applied easily and intuitively to aid in his (lpcision m;" kldg process. 

System ident.ification techniqups have bf't'll used to dett"rmine t he dynamic 1)('· 

havior of a constructed facility. Tht>se techniqut>s have helpf'd rese'l.rclwr~ 1I0t ( nly 
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determine the true dynamic characteristics of the building, but to evaluate the poten­

tial changes of the structure's dynamic characteristics. There are numerous structures 

which have been instrumented for use in this type of research. Through the identifica­

tion of the dynamic characteristics of these structures, it is possible to study the possi­

ble degradation and damage characteristics of a particular structure due to dynamic 

loa.dings such as earthquakes. Implementation of system identification procedures 

require an instrumented building and a dynamic excita.tion, with the "identified" re­

sults typically including the natural frequencies, mode shapes, and modal damping 

characteristics. 

Much work in the past has focused on understanding and quantifying the various 

sources of modeling error using system identification and probabilistic techniques. 

However, more important than understanding the errors themselves, is an accurate 

understanding of the implications of the errors and their effects on structural response. 

Errors in the analytical model can cause the response predicted by the original model 

to differ significantly from the response of the prototype structure. 

In structural engint'ering and design, there are two major sources of uncertainty in 

analysis: uncertaint,ies associated with the representation of the structural model and 

uncertainties associated with the representation of the excitation acting on the struc­

ture. Previous research has focused on quantifying uncertainties in excitation models 

including development of stochastic techniques for estimating dynamic loading timf' 

histories. Since most of the uncertainty in the dynamic response of a structure is due 

to the uncertainty in the dynamic loading (such as earthquakes and extreme winds), 

relatively little work has been done to quantify the approximations associated with 

structural models. Since the characterization for the input motion is extremely com­

plex, a significant part of the design codes is devoted to the adequate representation 

of the earthquake load. Consequently, the designer performs the dynamic analyses 

(in the case of noncritical structures) assuming that the finite element representa­

tion of the structure accurately predicts the structural dynamic properties. However, 

the assumptions mad,. by the engineer and those inherent in the analysis procedurt's 

can cause the predicted response to deviate significantly from the actual structural 

behavior. 
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Dynamic analysis of a structural design typically only considers the dynamic prop­

erties of the "as-designed" structure while ignoring the dynamic characteristics that 

may occur during the structure's lifespan. Dyna.mic structures are typically designed 

and constructed with a design life of 50 to 60 years. However, ma.ny of these structures 

have already been standing much longer than their design life. Many enginft'ring of­

fices in Japan [Hay95] are designing buildings which will sland for st'wral hundrt'd 

years. Consequently, an understanding of the degradation and damage potential for 

the structural members will ht>lp the analyst make decisions pertaining to thp struc­

tural design which consider the structure's lifespan. Additionally, an understanding 

of the long-term degradation properties for t he fundamental paranwtt'rs will {,lIahle 

the designer to predict the structure's dynamic propt'rtit's as a function of t imp. This 

will enable the structure to be designed with its t'ntirt"' lifespan in considf'ral ion, Ilf'n("(' 

an adaptive design of the structure. 

This thesis addrf'sses the issues reiatt'd 10 !ht' quantifIcation of IJllcertainty in 

dynamic parametf>rs through tht' df>veJopmt'nt. of a methodology ha..<.;t'o 011 fllzzy logic 

which is capable of managing uncertainties. Section 1.1 dt'fillt's tht' prohlem to b(' 

addr('ssed in this work. The scopt' for this rf>st'arch is aodressed in St'ctioJl 1.2. Finally, 

the organization for tht' rt'mainder of this thesis is presented in Section 1.3. 

1.1 Statement of the Problem 

The ohjediVt" of this thesis, is to develop an analysis methodology capahle of quall­

tifying dynamic unct'rtainties throughout. the structure's lift'span. This method· ,logy 

is applied to three stagt's of t.he structur("s life: cali bration, degradat iOll, and dam­

age. These three typt's of error [SW92] TPprt'sent tht' potential sourn's of discrepancy 

between the initial (finitt' element) dt'sign mudel for a structure and ib a.,,-iluilt char­

acteristics. Calibration error is the discrepancy bt'tween the design model alia tilt' 

as-built system ill its prist-int' {"Qndition. Degradation error oc("urs dl)f' to the griui­

ual degradation of structural characteri~tics as tht' Imilding ages, alld wprt'sents tlw 

uncertainty betwt't'll the aged structur(' and tht' calihratec:1 as-built slrud Uft'. Dam­

age efror represents the difference bt'tWf'f'll the degraded calihrat.t'd structUf(' and tht' 
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structure after a damaging event. 

By dividing the lifespan of a structure into these three categories, it is then possi­

ble to quantify the uncertainty of the dynamic parameters as errors in the analytical 

model. Calibration error, occurs due to simplifications and assumptions made in 

formulating the design finite element model. Sources of calibration error are approx­

imations in discretizing the structure in the finite element representation, failure to 

represent aLcurately the connections between structural members, and inability to 

represent effectively various characteristics such as structural damping and founda­

tion conditions. Often, for example, there are inconsistencies on the construction 

site which affect the stiffness of various structural joints (such as tightening joints to 

proper specifications) which contribute to tile cal;bration error. 

Degradation error occurs due to the gradual degradation of structural character­

istics a.s the building ages. During the lifespan of a structure, fatigue and the aging of 

the building materials causes a gradual decrease in structural st.iffness and an increase 

in structural damping [Tar88, Cif84J. Thus, in addition to the calibration error be­

tween the design model and the as-built structure, there is an increasing disnepancy 

between the characteristics of an aged structure and the pristine, as-built structure. 

The final form of discrepancy between the initial design model and the real-life 

structure is damage error which occurs when a building undergoes a major excitation 

such as an earthquake, hurricane, or other design-level event. Though the structure's 

original design spf'cifications allow certain levels of these events to occur without 

causing significant structural damage, the accumulation of damage and the occasional 

eVf'nt which exceeds design specifications can inflict drnstic changes in a structure and 

alter its serviceability and structural integrity. 

Calibration errors are denoted by an initial misrepresentation of the actual dy­

namic characteristics of the structure by the st.ructural model. The additional errors 

due to degradation and damage to t,he structure increase the uncertainty in the ana­

lytical model's prediction of the dynamic paramett'rs. Tht'se thret- errors are depicted 

in Figure 1.1 which denotf's the possiblf' change in natural frequency OVer a structure-s 

lifespan. The calibration f'rror is representf'd by the initial pre-calibrated frequency. 

""0' and the possible calibration error, fea/' Thf' long-term aging characteristics of the 
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Calibrated Frequency. We 

o Structural Lifespan lime 

Figure 1.1: Illustration of uncert.ainty in frt>qupllcy over structural lifespan. 

structure are reprE"sente<i by the gradual dt'crea.se ill the frequency and is go\'ernpd 

by the slope b shown in the figure. Degradation {'rror (which is a fundion of t illl(') 

prior to a <lamaging event is denot.ed as Crlrgo The pOlisible damage to 1 he structure 

is represented by Llwd which is the drastic changp ill freqllf'llcy ane! occurs dup to a 

damaging event such as an earthquake at time t = f •. Finally, the degradation prorelil' 

will wntinue after the structure has bf'f'n damat;pd. This degradatioll i~ reprf'sentf'd 

in the figure by the error, [~<9' and slope, b' . 

By providing the enginf>t'r with a mathematical represf'ntation of the modeling 

errors, this procedure helps t>liminate the uncertaiutit's that typically arp considered 

using engineering judgement alone. The proposed analysis methodology must havt> 

the following charactt>ristics: 

1. Have flat' pott'ntial to be standardized for liSt' on lIlallY sl ruet ures. 
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2. Be intuitive and straight-forward such tha.t the method can be implemented by 

a practicing engineer. 

3. Conta.in t.he infoJTt1ation and ,",-curacy required for the de&igner's decision mak­

ing purposes. 

4. Minimize the computations necessary in its implementation. 

5. Consider the uncertainty in the input motion to the structuft'. 

6. Facilitate the incorporation of !\titiitional unct>rtainties into th~ models as the 

practitioner sees fit. 

The iterative design process and the sources of un<:ertainty to this process must 

be considered in the dev<'lopment of the adaptive design models. The shaded regions 

ill Fig. 1.2 denote the stages i/l the iterative design process which are considert'd 

in the adapt.ive analysiE models. There are a number of uncerta.inties contributing 

to structural analysis which must be considered in the development of the modeling 

proct'dures. For the purpose of illustration, these uncertainties have been divided into 

those contrihuting to calibration error and degradation/damage error and are shown 

in FIgs. 1.3 and lA, respt"("tiVf·ly. Finally, t.he uncertainty associated with tht· input 

motion to the structure is shown in Fig. 1.5. Due to the large numbt'r of contributing 

uncertainties information (shown in these figures), the following section presents a 

refined S(i)pt' for this thesis. 

1.2 Scope of the Project 

The parameters consider~d in this project are tht' mooal parameters of it structure 

characteristic of its dynamic behavior and the responst' of the struct.ure. The param­

eters include the natura.l frequencies of the structure, w)", where 71 df'notes the mode 

of vibration, the frequency ratios (the ratio of tltt' iIlput frequency to w,,) which a.re 

denotf"d by jJn , and the structural response of the degrees of freedom, x,. ill and Xi 

where i rlenotes the degree-of-frredom. 
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Sialic Analysis \0 Determine 
Demands using Bolh Hand and 
Compulc:r Based Calculations 

Re-define Dc.ign Based on 
Results from Analysis 

Dynamic Analysis To 
IXlerminc StrucIl1rI:'S Dynamic 

Characteristics 

.... ~---4.., ... Stall" Loading) 

-------, 
"'1o-4--~...t D)'nam,~. nadtng 

Complctc:d Siruciural lJc,i~n 
with Member Forces and 

D)-~ami.c Prllpt-Ttics 

Figure 1.2: The iterative design proCf'dIlTf' and sources of uncertainty, 
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-- ~ Con~lJUcti'm Techniques 

f 
Modeling Techniques r -

Calibration f4-Uncertainty 
( r - Input Mution 

- Design P .... ameters 

f Finite Elcmeni 

• Material Properties Modeling of: 

• Statio;: Loading Conditions • Structural JOInt, 

• Member Geometry r See Figure on I""WI 
- Structural Mcml,,,,, 

r - Flo"r SpICIlI\ 
Molion Un.cerlaillly 

Figure 1.3: Possiblt' sourct's of uncf'rtainty contributing to caliLrat ion error. 

Degradation I 
Damage Uncertainty 

Calibration 
Uncenainties 

Intended 
Struclural Use 

Input 
Motion 

External 
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See Fig"" Oil CalibratIOn 
UlICerrailllies 

-Change in Mass 
• Fati,ue Due \0 lise 
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Figure 1.4: Possible sources of unn·rtainty contributing to dt·gradat iOIl and damagt' 
errors. 
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I Input Motion I UncertainlY 

j 

Dynamic Charllctfri.~tics 

l ...l Earthquake CharacleriS{i~s Site Chara.:tcnsl"" 
Seismic 

Excitation 1 
• Intcr - Arrival Time • S"il Predominant P~Titld 
• Focal Depth • SU11 Damping 
• Magnitude • Epic~ntral Di'lam:~ 
• Ruplure Mccham,m 

Figure l,,~: Sourct's of ullcertainty associated with seismic input motion. 

Thesf' tllrt>e parameters (frt'C{Ilt'ncy, freqlU'l\c y rat io, illUI H'SP()II~(,) aTP depPlI(knl 

on fundamental errors. associated wi t Ii huilding mass, st iffllt'sS propert it,S, damping. 

etc; therefore, these errors Illllst also hI' qllantified. Tlw t hn'(, error 1Il()(lt-ls ,HI' dl'\'I']' 

ope~. in a conceptual framework. In this tlwsis, tilt' ('rrorS for tilt' tllfl'f' paraJlH'lprs 

prt's,>ntt'o an' quant ified at tht' cali brat io,: and dt'?;radat ion .'il agt's; t hils. gi '"ing t Iw 

eng,;U>f'f fht' tools necessary to ma.k(' decisions reql\ired of tlwlIl in practict'. 

T:J pu·dict tlw uncertainty in the structural r{'spOllse. it is Jlen'ssary 10 (llJantify 

th,' uncert.ainty a.ssociated with tIlP input to tilt' structUTt'. TIlt' dynam:r input lJIotioll 

in this scope is an t'arthquake tillle history. {'Ilft'rtaillty is quantifit·<! for tlU' possihk 

earthquake grollnd motioll t hrou~h till' d,'vt'loplIlt'llt of fuzzy sP"ct ra. Tlw!-w fllzzy 

sl)ectra, which quantify the 1\l1Ct>r1 aillty a....;sociatt't\ wit it tilt' illPllt 1II0t ion. art' "11'11 

uscd in tilt' analysis modt'ls to prt'oid tIll' IIIlCt-rtaility ill tht, structural rrspollsP. 

The adaptive analysis proccsst's opscril)('d ill this t Iwsis an' hroad alld call cOllsidt'r 

a large lIlunber and different types of ullct'rtaillti«'s. For thp purpost's of Tesf'arch allel 

development, the scopt' of the proj"ft m1lst lit' "narrow~ e!lough to n>ll~iclt'r and 
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develop a thorough and concise process. Figure 1.6 shows the sources of uncertainty 

considered for this thesis. 

Prediction of earthquake inter-arrival time and magnitude is necessary in the re­

duction of earthquake hazard mitigation and the prediction of damage as a function 

of a structure's lifespan. However, such predictions are very complicated and are 

not fully understood. For these reasons, the damage model will be conceptually 

formulatt'd but not completely developed. This model is discussed briefly in Sec­

tion 7.2 which is devoted to the presentation of future research areas. Additionally, 

the calibration and degradation models are developed without considering the inter­

arrival time of earthquakes and their potential magnitudes. The fundamental t'rrors 

considered in the calibration model a.re: the modulus of elasticity, joint rigiditif's, 

st.atic loading conditions, stiffness of the floor system, and input motion bast"d on the 

method devt'loped in this ttw:;is. Tht'se fundamental errors are modified to include d 

dependency in time and are used in the developml'nt of the degradation modd. 

1.3 Thesis Organization 

An overview of uncertainty methods in structural engineering is presented in Chap­

ter 2. Uncertainty and information processing methods are reviewed. A motivation 

for the use of fuzzy mathematics in the development of the adaptive analysis modds 

is provided, and the fundamentals of fuzzy mathematic:; is prf>sented. 

Chapter 3 presents the theoretical development of the calibration model. Solution 

methods based on the uncertainty analysis for both frre-vibration and forct"d-\'ibration 

ana.lysis are presented. Thc development of the fundamental errors contributing to 

the dynamic uncertainty of the structural model also is presentt'd. 

In addition to the uncertainty in the model and its fundamental uncertainties, the 

structura.l response is dependent also on the input motion to the structural system. 

Development of tilt' input motion uncertainties as fuzzy response spectra is presentC'd 

in Chapter 4. Included in this chapter is a complete explanation pertaining to t hI' 

dl'velopment of fuzzy spectra for the Loma. Prieta earthquake and a discussion of the 

results. 
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Uncertainty 
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Figure 1.6: Sources of uncertainty considert'd ill this tht>sis. 
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The proposed methodology is implemented in Chapter 5 in two illustrative ex­

amples. The first example is a two dimensional plane frame. A case study is used 

to validate the calibration model on the Santa Clara County Office Building which 

is located in San Jose, California. Quantification of the uncertainties based on fuzzy 

mathema.tics is compared to a probabilistic method demonstrating the efficiency of 

the proposed methodology. Monte Carlo simulation is used to simulate the dyna.mic 

response based on a probabilistic representation of the fundamental uncertainties. 

The probabilistic and fuzzy methods produce histogra.ms and fuzzy sets, respectively, 

to represent the resulting uncertainty. The chapter concludes with a discussion com­

paring the two methods. 

Chapter 6 presents the theoretical development of the degradation model. This 

chapter discusses both the solution of the dynamic equations of motion and the quan­

tification of the fundamental errors as a function of time. Examples are presented 

with demonstrate the implementation of the degradation model based on initial (pre­

calibrated) uncertainties and uncertainty in the rate of degradation for the structure's 

fundamental properties. 

This work is concluded with recommendations for future work in Chapter 7. 



CHAPTER 2 

Uncertainty Analysis Methods 

The purpose of this chapter is to present an overview of the uncertainties typically 

inherent in structural engineering applications. Section 2.1 contains a discussion 

motivating the study of uncertainty analysis techniques. Methods typjcally uSf'd to 

model uncerta.inties are presented in Section 2.2. Arguments towards the use of fuzzy 

mathematics for the approach presenif'd in this t.hesis are presellted in Section 2.:l. 

The fundamentals of fuzzy mathematics are reviewed in Section 2.4, the conclusion 

'If this chapter. 

2.1 Uncertainty in Structural Engineering 

Uncertainty exists in every aspf'ct of structural enginf'ering problem!'.. The ullcertainty 

inherent in such a problem can be evaluated with r('sperl to the following aspects: (1) 

the analytical model, (2) the loads applied to the system (both std.t ic and dynamic), 

(3) the ability for the structure to rt'sist the loads, and (4) the N'SP071St of til{' st ruet ure 

due to thf' combination of the first three asperts. 

In general, modeb uSf'd to analyze processes III structural engineering call lw 

analytical, empirical, or a combination of the two. Analytical models are <ieri\'t'd from 

first principles and are a.~sumed to hI' detf'rministic. For example, the strf'sgf'S within 

a beam can be solved relatively accurately if the analyticai model truly r('presents 

the real system. However, in most eMes, assumptionl'l must hf' maop to facilitate 

the solution process. These assumptions, such as tllt> modeling of end conditions, 

contribute to the inexadnesli of the proLlem solution. Many analytir:-al modeliul!; 

tools, such as the finite element method, art> derived basf'd on apr roximat ions. 

Empirical models are developt>d from historical data. Since tlws(' models art' ba.l'It'd 

13 
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almost completely on past behavior, appropriate use of these models must be con­

strained to the same systems used in its development. However, use of other models 

can provide an independent assessment of the empirical model's validity. Often in 

engineering applications, empirical and ana.lytical models are combined. For example, 

the structural response can be determined a.nalytically, however, the representation 

of the dynamic input motion may be obtained from an empirical model. 

Loads applied to a structural system can be divided into three general categories: 

dead, live, and dynamic. Representation of each of these three types of loads in­

volve approximations where the dynamic loads are the most uncertain. Typically, (in 

LRFD) for the purposes of structural design, the uncertainty in the loads has been 

considered in terms of load factors. Thus, the loads are increased by a factor permit­

ting the problem to be solved conservatively. Although conservative for the purposes 

of design, the lise of such factors contribute greatly to the misrepresentation of the 

structural system's dynamic response. 

The ability for the structural system to resist loads is based on knowledge about 

the material and connection properties of the structure. Information about these 

properties is typically determined through repeated experimentation. To compensate 

for the uncertainty in the resistance capability of the structure, resista.nce factors 

a.re used to reduce the structure's strength capacity. Although these factors are 

appropriate for the purposes of design, they can provide misleading values for the 

response of the system. 

It is well acknowledged that the uncertainty which exists in each of the three 

aspects mentioned above contributes greatly to the inaccuracy inherent in the struc­

tural response. Therefore, models capable of handling uncertainties are needt'd to 

quantify the uncertainty in the response. In the uncertainty analysis, it is important 

to understand the sources of uncertainty for each of the contributing factors. 

Boissonnade [Boi85] and Chiang [Chi88] have considered the uncertainty in the 

engineering problem to consist of the stimulus, physical entity, and response. The 

loads which act as a stimulus onto the structure, or physical entity, create a struc­

tural response. Figure 2.1, adapted from Boissonnade's and Chiang's works, depicts 

how uncertain information frequently available in the framework of an engineering 
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Figure 2.1: Representation of uncertainty in an f'ngineering system (adapted from 
Boissonnade and Chiang). 

problem can influence the resulting uncertainty. The stimulus, physical entity. and 

response are represented by either deterministic, probabilistic, or fuzzy models. If 

all of the information in the problem is deterministic, the resulting response will bf' 

deterministic. However, if the problem contains uncertain information, then appro­

priate models must be used to describe the uncertainty. The uncertain information 

un he represented by fuzzy sets, probabilities, or by ignoring them all together (a 

deterministic representa.tion). For example, if the problem is dependent on parame­

ters which can be best modeled as both deterministic and probabilistic, tht' response 

will he uncertain and, in general, best modeled probabilistically. Fnrthermore, if the 

problem is based on which are described best by both probabilistic and fuzzy modf'\s, 
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in addition to the deterministic values, the uncertainty in the result will be represen­

tative of fuzzy information. This presentation considers equally contributing factors 

of uncertainty. However, in most cases, there will be many varying contributions to 

the uncertainty of the stimulus. In such a. case, tracking the various types of un­

certainty through the problem is more difficult. Additionally, it is also importa.nt to 

understand the sensitivity of the result to the individual contributing uncertaintie:-. 

2.2 Methods Used to Model Uncertainties 

The primary focus of tbis thesis pertains t.o the quantification of uncertainties in the 

applicatlOIl of structura.l dynamic problems. Tht'!"efore, deterministic systems will not 

be discussed further. Tht' following is a discussicn about methods uSt'd to model both 

probabilistic and fuzzy uncertainties. Traditionally, uncertainties in structural model 

parameters have been studied probabiJisticaJly using stochastic processes. Proba­

bilistic methods will be presented first, where a tremendolls amount of research has 

been done in this field. Only relevant information is presented to demonstrate typical 

probability based techniques. 

2.2.1 Probabilistic Techniques 

Aside fr-om the fael that information must often be inferred from similar (or evrn dif­

ferent) circumstances or derived through modeling, and thus may be in various degrees 

oj imperJection, many problems in engineering ;nrlOb'e natural processes and phenom­

ena that arE inherently random; the state of such phenQmt'JIU are naturally indeter­

minate and thus cannot be described with dejinit etlf:SS. - Ang & Tang (pg. 1) [AT75a] 

Probabilistic methods have been widely used in engineering fields. More sperifi­

cally, in the field of structural engineering, probability has been used to better under­

stand loading conditions and to establish the reliability of structures against failure. 

Reliability methods have been used to develop factors of safety currently ust'd in 

the. engineering codes. Additionally, probability has been used to better understand 

and design a structure for unknown loads such as earthqllakes, winds, live loads, 

snow loads, etc. There have bt>t>n a large numbt'f of probabilistic methods applied 
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to structural engineering applications which consider the statistical properties of the 

structural system and the randomness of the loads (static and dynamic) applied to the 

system. Research in this area is overwhelming; consequently, the work presented here 

represents relevant research pertaining directly to the objectives of this thesis. The 

two types of methods presented, moment a.nd simulation techniques, were originally 

considered as optional solution techniques for the adaptive analysis models developed 

through this research. 

The use of first and second order moment techniques give estimations for the mean 

and variance of the resulting distributions for the parameter in quest.ion. The first 

order approximations based on a Taylor series expansion [AT75aJ are shown for a 

function of a single random variable in Eqs. 2.1 and 2.2. 

where, 
y 

E(Y) 
X 

Il 

VAR 

VAR(Y) ~ VAR(X _ Jlx) (:~) 2 

= g(X); 

first·order approximate mean of Y; 

= dependent variable; 

= mean; and 

= variance. 

(2.1 ) 

(2.2) 

Estimates for the variance of a gent·ral function requires solution of thl" function's 

derivatives with respect to each random variable. This quickly becornf's computa· 

tionally intensive in the case of nonlinear and matrix equations. 

Liu et a1. [LBM86] recognized the complexity involved with solving the most sim· 

pie (a single degree-of-freedom) dynamics problem probabilistirally. Thf'ir work has 

focused on the development. of a probabilistic finite element method which considers 

uncerta.inty in the materia.l properties only, while the mass of thf' system is a.ssumed 

to be constant. The proposed solution is performed in the time domain and is hased 

on implicit time integrations for unconditional stability. This succ('ss of the solution 
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method is demonstrated with two examples. The authors have provided a compu­

tationally efficient solution technique for the dynamic equations of motion based on 

uncertain parameters; however, it does not incorporate the uncertainty in the dyna.mic 

input motion and has difficulty when the method considers structural damping. 

Pai and Chamis have studied the probabilistic approach to structural dynam­

ics [Pai90, PC91] in their work at NASA Lewis. Their probabilistic models include 

uncertainties in primitive variables such as nodal coordinates, material stiffness, and 

external loads. Definition of these primitive variables requires knowledge about their 

distributions including type, mean, and variance. Results consist of cumulative den­

sity functions for nodal displacement, member forces, and structural frequency. Ad­

ditionally, a solution is formulated t.o determine the ultimate load for a structural 

truss based on probabilistic analy:-;is and repeatf'd member failures. 

In the 1950's and 1960's quite a bit of work was devoted to the solution of I he 

probabilistic free vibration problem. A few examples of this work are given as rder­

ence here lCT69, HH72, HS71J. In each of the papers, t.he authors address different 

issues associated with the probabilistic solut ion. Howe\'{"f, to solV(' for t he variance 

of the eigenvalue problem's frPt' vibration properties, it is necessary to solve for the 

derivative of the eigenvalues with respect to the random variants. Thus, for larger 

structural systems the solution process can become intense. 

Monte Carlo simulation techniques have been a popular solution to the statistical 

finit.e e1t'mf'nt problem. Thf'sf' techniquf's require the simulation of thf' dt'pendent 

random variables ba.. .. ed on their individual statistical properties. The solution pro­

cess is then performed detf'rministically based on tht' simulatt'd variables. Ultimately. 

a distribution is obtained from the results of repeated solutions each with simulated 

variablf's. Tens of thousands (or more) solutions may be required to obtain an ac­

ceptable distribution for the resulting parameter. The numbel' of solutions required 

increases based on the number random variables in thf' problem. Techniques have 

been employed (such as Latin Hypf"fcube [AL8!)]) to reduce the required number 

of solutions. Regardless, there remains a high amount of computational intt'nsity 

required for a typical multi degrt>e-of-freedom structural dynamics problt'm. 

Udwadia [Udw86, Udw87a, Udw87bJ investigated the dynamic response of linear 
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systems with uncertain parameters using probability theory. Closed form expressions 

for the probability density functions were developed for natural frequency, percent­

age of critical damping, and damped natural frequency under the assumptions that 

only the upper and lower bounds of mass, stiffness, and damping values are ava.il­

able. It was shown in these studies that the stochastically modeled mean response of 

the system with uncertain parameters differs from the response of the system with 

stochastically modeled mea.n pa.rameters. Furthermore, these studies were performed 

for single degree-of-freedom systems with deterministic dynamic loa.ds. 

Determination of structural reliability is one of the most popular applications 

of these probabilistic techniques. These techniques are typically computationally 

expensive and are used in the most critical circumstances such as the design of a 

nuclear power plant or aeronautical structures. Reliability of a structure against 

failure is determined either through the solution of the fir:;t and second order methods 

or simulations, both of which are computationally expensive. 

Dong et a1. [DCW87] investigated the propagation of uncertainties through a 

deterministic system using three different methodologies: interval, fuzzy, and random. 

The authors conclude that the selection of an uncertainty met.hod is dependent upon 

the type of information available (i.e., is it random or does it contain ignorance?). 

Selection of an uncertainty method must be based on the intended use of the results. 

2.2.2 Fuzzy Uncertainty Analysis 

A.~ the complexity of a system increasfs, our ability to make prfcise and Yft significant 

statements about its brhat,iour diminishes until a thrfshold is N'ached bf'yond u,hich 

precision and significance (or relevance) become almost mutually erclusit,( characffr­

istics. - Zadeh, 1973 [Zad73] 

The literature summarized above presents methods applicable for quantitatively 

well understood uncertainties. However, uncertainties may not always be ea.sily mea­

sured or quantified and may be better described through the use of an expert. The 

expert can establish bounds on the uncertainty at various levels of confidence ha.~d on 

his experience. Fuzzy mathematics is capahle of handling such uncertaint.ies. In fad, 

fuzzy mathematics can support uncertain variables which are linguistic or nllmf'ric. 
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Section 2.4 presents a more detailed description of fuzzy mathematics. 

A considerable amount of work has been done by Dong et a1. !DW86a, DW86b, 

DW86cj, Wong et al. [DR85], and Chiang et at (CDW87, CDSW88] pertaining to 

the use of fuzzy set mathematics to model structural uncerta.inties. In these papers, 

the authors have motivated the need and application of fuzzy ma.thematics in tht' 

area of structural t'ngineering. They have df'monstrated the complexity of simplt' 

structural dynamic problems when solved probabilistically. Additionally, they have­

shown that the probabilistic solution is too descriptive of the structural response, 

allowing information to be inff'rred that may not be compktely accurate. 

Lamarre and Dong [LD86] used a fuzzy algorithm in the evaluation of seismic 

hazard. They dt'velopf'd a methodology for rwismic hazard evaluation basf"d on f'xpert 

knowledge. Approximate reasoning is ust'd to int.erpret the t'xpt'rt's opinion about 

ground shaking, soil conditions, ano ground rupture for various sites. This study 

(although highly confined) proved to be applicable to the ('valuatiOll of seismic risk. 

Fuzzy sets have been used in a number of applications in civil enginf>ering to 

approximate the vagueness in linguistic terms. Shibata [Shi85] used fuzzy seL, as 

linguistic variables to model possible human design errors. SOllflis and Grivas [SG86j 

used fuzzy sets to establish a rdationship betwf't'u damage statt's and earthquake 

load. Hinkle [Hin85] used fuzzy logic to assess tht' (iamage to butt welds (Iue to the 

complex and uncertain fatigue phenornf'ua. 

Shiraishi and Furuta [SF85j \lst'd fuzzy S(·t tht'OfY to evaluate strudural damage 

and to predict structural deterioration. Damage was ('valuated using a fuzzy bast'd 

multi-critt'ria analysis dnd deteriora.tion is prffiicted using fuzzy logic within an ex­

pert system. III a. cornprehensivl' ('valuation of structural damage, Furuta [Fur9:3] 

demonstrates his proposed method by ordering a set of bridges based on the sever­

ity of earthquake damage. Due to the high il.mbiguity in su('h a procf'SS, ordering 

is suggested to provide the information rf'<]uirt'd ill the sdwduling of rt'pair. Fur'lt a 

et a1. [FSFY85j lise fuzzy redSoning t.o evaluatt' tl\f' potential annoyanc{' to humans 

due to vibrations. The authors dt'fine fuzzy st>ts for linguistic variablt>s df'scribing 

levels of disturban('e because or the high variabilit.y in human pt'f('eption of vibra­

tions. Fuzzy rt'asoning is used to interpret tht' It>vel of annoyance for vibration duf' 
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to the orientation of the person and the free-vibration characteristics of the dynamic 

nlOtion. 

In 1985 the National Science Foundation and the School of Engineering at Purdue 

University sponsored a workshop perta.ining to the use of fuzzy logic in civil engineer­

ing applications. This workshop [BCPY85] addressed. in part, futuff" applications 

and needed work in the application of fuzzy sets to civil engineering problems. Fuzz), 

set theory often is the appropriate tool to use in many civil t'ugineering problems with 

vague information. Additionally, there may be applications when fuzzy set theory is 

a valid alternate to the more rigorous and commonly used probabilistic methods. 

2.3 Use of Fuzzy Mathematics for the Adaptive Analysis 

Models 

All unnrtaintit s, whether they ar'(' as .• ocillttd 'Il'ith mhfTf nt '!(lriubiiity or with pn dic­

tion ('rror, may bf asses.~t·d i1l statistiC'll/ tf rms. (HId the t'l'Il/Ufltioll of thtir 8ig7lljicflTln 

on engineering design accomplished USi71g c07lcepts and methods that art nnboditd 171 

thf' thf'ory of probability. - Aug &, Tang (pg. 11) [ATi5aJ 

It is true that all uncertainties can bf modt'lt'd with the ust' of prohabilistic meth­

ods. In the initial developmf'ut of the aoaptive analysis models bot h probabilist if and 

fuzzy approaches were considere<i for the cornplt'te model dt'wlopmt'llt. The df"cision 

to use fuzzy mathematics wa .. , made bast'd 011 tht' criteria t'stablished ill S('ctioll 1.1. 

The purpose of this section is to provide the reader with argulllf'nts towards the elt'c­

lion to use fuzzy mathematics. Since these arguments are made bt'fow prf"sent ing 

fuzzy mathematics and til(" adaptive models in more detail, thf' points illustratpd 

here will become more evident later in this thesis. 

It is possiblt' to implement statistical methods to tht' 4daptiv{' analysis lIIodpls hy 

using statistical calculus (more specifically first or s{'cond ordt'r reliability ll1t't hods) or 

by simulation methods. Each statistical uwthod requires distrihutions to Iw defillt'd 

for the fl!ndau1t'ntal ulIcNtain variables (ill sf at istics random variables). Applicnt ion 

of statistical calculus becomt's cumbersome when wiving complt>x relations such a."i 
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the eigenvalue problem which must be solved numerically. Furthermore, the reliabil­

ity methods produce a. probability that a desired value for a higher-level parameter 

will be exceeded. The process must be repeated a number of times to establish a 

complete evaluation of the potentia.l values the higher-level parameter may take. For 

the minimum amount of accuracy, simulation methods require thousands of computer 

runs to quantify the uncertainty (or the desired higher-level parameters. 

Fuzzy mathematics does not provide the rigor that comes with statistical methods. 

However, one of the objectives of this thesis is that the results "contain the accuracy 

required for the designer's decision making purposes" which, with the excrption of 

hazard analysis, does not r('quire the rigor providt>d by statistical methods. Addition­

ally, use of fuzzy mathematics lends itself to the other objectivell: (1) Both methods 

can be standardized for use on many structures by applying uncertainty models to 

the finitt' element represf'ntation of the structural system; (2) Fuzzy mathematics is 

by fa.r a more intuitive method for the practicing engineer. Quantification of uncer­

tainty using fuzzy mathematics requires the establishmt>nt of bounds at various levels 

of confidence. The practicing engineer already thinks in terms of hounding extreme 

responSf'Sj (3) Since thf' designer selects thf' fundamental fuzzy sets, then he is in con­

trol of the a.ccuracy in his results. Use of probabilistic methods adds an additional 

level of complexity to the solution, and the practitioner may not have a complete un­

derstanding of the reSUlting accuracy. Furthermore, there are so many uncerta.inties 

involved in the design processes that the application of the fuzzy methods may give 

the practitioner a more intui~ive understanding of tht' potential dynamic character­

istics of the structure; (4) Use of fuzzy mathematics, by fa.r, reduces the numbpf of 

computations nt'Ccssary. The problem is solved repetitively with different parameters. 

but there is no need for linear or nonlinear convolutions. Section 2.4 and Chapter 3. 

which fonow, present a detailed explanation of thp solution processes required for 

the dynamic equations of motion; (5) Use of the fuzzy response spectra developf'd in 

this thesis incorporates the uncertainty of the input motion to the structure into thf" 

dynamic a.nalyst's; (6) Use of the fuzzy methods also permits additional uncertaintif's 

to be consIdered in the analysis with minimal f'ffort on the part of tht' analyst. The 
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crisp set fuzzy set 

Figure 2.2: Visual comparisons of crisp and fuzzy st'ts. 

only modifications necessary are additional solutions which considf'T HlP new unCf'"r­

tain parameters. 

A statistician will argue the simplicity of the use o( prohability in sudl a problt'm, 

and their arguments may be valid; however, ust' of probability no longn makes the 

method straight -forward and easily applied in pract ice. Additionally, if tilt' llll(ert ain­

ties do not warrant a higher-level of accuracy, a method which requires (pwn compu­

tations is more preferable. Ust' of fuzzy mathematics gives us a difft'rent approach to 

the typt's of problems which haw bN'n traditionally SOh'ffl probabilistically. 

2.4 Review of Fuzzy Mathematics 

This section providt's the reader wit h the lhroretical knowlt .. dge of fuzzy Jllat ht'­

matics used in the dt'velopment of t.his thesis. Much of the information prt'sented 

here is fundamt'ntal knowledge within the field of fuzzy mathematics. St'wrnl rp((>f­

ences [TASm, DP88. KFR8, Sch84, Zirn91. Don86] Wf'rf' \llltod in the preparation of 

this section. 

ParalTlPt I"T unc-ert ainty in traditional interval analysis T«'quirt's the «'xpt"rt (pngi­

nf't'r) to provide absolute parametric hounds. Thf' rharactf'fistic function. -"04("")' 

depicted in Figure 2.2, describes the intt'rval sizt'o In traditional interval analysis the 

,..bara<:teristic fundion defim's a nisp st't, meaning lilt' interval bounds an' sharp, not 
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incorporating any additional parametric information. In the following ca.lculations 

all parametric va.lues, regardless of where they lie in the crisp interval, are treated 

the same. Solutions may result in a larger interval, conta.ining very little relevant 

information. In many engineering applications, although the engineer may not have 

enough parametric information to produce a probability density function for use in 

probabilistic methods, the engineer may be able to provide information about the 

likelihood of the parameter falling within particular bounds. Fuzzy mathematical 

modeling is designed to consider such additional information. 

In fuzzy mathematics, the parameter (frequency, w, in this example) is represented 

as a fuzzy set with the use of a membership function, JlF(W). The membership 

function describes the shape of the fuzzy set, shown in Figure 2.2, and represents the 

likelihood of the parameter falling within specific intervals. The mt>mbership fun("tion 

of Equation 2.3, 

(2.3) 

where, 

Jl = the membership function; 

f = the frequency fuzzy set; and 

w = natural circular frequency (uncertain parameter). 

was first proposed by Zadeh [Zad6.1] and must be within the bounds 0 and 1. The 

alpha-cut, denoted by fa, is an interval at a level of confidence 0 which must be 

between 0 and I. 

In comparing the crisp and fuzzy ~ets in Figure 2.2 note that the crisp set has 

abrupt boundaries while the fuzzy set has smootht>r boundaries representing the vari­

able interval bounds. When a parameter is described as being "about" or "around" 

a specific value it is useful to describe its behavior with a fuzzy set utilizing variable 

interval bounds. 

As an example, the first fundamental frequency of a structure may be desrribf'd 

as a trapezoidal fuzzy set with the membership function in Equation 2.4. 
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fuzzy set 1uzzy set 

Figure 2.3: Trapezoidal fuzzy st't and alpha-cuts. 

101 - 4 45w55 
1 55w56 

P= 
-101+ 7 6:5101$7 

(2.4) 

0 W < 4 and w> 7 

The graphical representation of the membership function is shown in Figure 2.3. An 

alternative for mathematically representing the fuzzy set for the fundam<>nt al nat ural 

frequency is shown in Eq 2.5. 

where. 

'I:" ~ PF(Wi) 0.1 0.5 1.0 1.0 0.5 0.1 
.r =L-:::: --= -+ -+ -+ -+ -+-

;=1 w, 4.1 4.5 5.0 6.0 6.5 6.9 

:F :::: the fuzzy set representing fundamental frequency; 

JlF :::: level of membership; and 

Wi = value for the natural frequency. 

(2.5 ) 

Although the membership function shown here is symmetric, unsymmetric functions 

are also possible. 

The a-cut represents parametric confidence it"vels. An a-cut defines a crisp set of 
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elements which belong to the fuzzy set for the fundamental natural frequency, f, at 

a membership level Ct as depicted in Eq. 2.6. 

(2.6) 

where, 

:Fa = the crisp set of values, w, from the fuzzy set :F at membership level a. 

An a-cut level of I denotes a high level of confidence on the part of the expert 

where, in tht> case of Fig. 2.3, the paramt>ter will most likely fall within the interval 

w E (5,6). An a-cut level of 0.5 represents the interval w E [4.5,6.51 as possible 

frequency values for a proportionally lower level of confidence. The lowest possible 

level of membership corresponds to an a-cut level of o. Based on Eq. 2.6 the resulting 

crisp set contains three intervals of values for the parameter, w. The first intervals 

are all values for a > 0, corresponding to w E [4,7}. Since the a-cut includes va.lues 

for w with a level of membership equa.l to and greater than a, the set contains two 

additional intervals, (-00,4) and [7,+00). The suppDrt (shown in Eq. 2.7) Df F is a 

crisp set, fa=o+, which cDntains all values of w in the fuzzy set, :F. 

(2.7) 

where, 

Fo+ = a crisp set denoting all values of w, with membership greater than o. 

Fuzzy sets dO' not need to be trapezoidal shapes as denoted in Fig. 2.3. In fact, a 

crisp set is a specialized fuzzy set where the hounds df'fined at a-cut 1 and a-cut 0+ 

are the same. The shape of a fuzzy set denotes the relationship Df the confidence 

bounds at the different levels of membership. For example, in the case of a triangular 

or rectangular fuzzy set the rate at which the bounds increase with respect to mem­

bership is constant. In other words, the slope of the line connecting the lower hound 

of a-cut 1 and the lower bound of a-cut 0+ is cOllsta.nt. Similarly, the slope of the line 

connecting the upper bounds is constant also, although the slopes of the upper a.nd 
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1 1 

Convex Fuzzy Set Non-convex Fuzzy Set 

Figure 2.4: Normal convex and nonconvex fuzzy sets. 

lower bounds need not be the Sd.l:1e. It is importa.nt to consider tha.t the lowest level 

of membership in fuzzy logic represents the most extreme (but rea.listically) possible 

values for the fuzzy parameter. Therefore, it is feasible that a fuzzy set represents 

much higher unu~rtainty for the lowest levels of membership. This is especially the 

case when there .. fe a number of factors contributing to the parameter's uncertainty. 

Figure 2.4 gives examples of two different types of fuzzy sets. 

A fuzzy set is normal only if the highest level of membership in the set is one. 

The fuzzy set on the left in Fig. 2.4 is a normal convex fuzzy set, while the set 011 the 

right is a normal nonconvex fuzzy set. A fuzzy set is convex if the bounds provided 

by an a-cut at membership It>vel :r are contained completely within the bounds givt'n 

by the a-cut at membership level y where x > y. In other words, there must he a 

single crisp set deEned by each a-cut. This states that thf' crisp set df'flnt"d by an 

a-cut will a.lways be a. subset of the crisp set defined by an a-cut at a lower It-vel 

of membership. For example, the extreme bounds (bounds at a membership It've/ 

slightly greater than 0, 0 = 0+) for the fundamental frt'quf'ncy of a structure must 

fully contain the bounds established by the most possible occurrence. This thesis will 

be confined to the lise of convex fuzzy sets, unless otherwise specified. 

Typical set operil'"lOns such as interst'ction, union, and complement can be per­

formed on the membership functions which define fuzzy sets. Figure 2.5 depicts the 

resu1ting fuzzy sets from the intf'rsection, union, and complf'ment of t.wo fuzzy Sf'ts. 
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membership membership membership 

IntersGction Union Complement 

Figure 2.5: Intersection, Union, dnd Complement of two fuzzy sets, A & B. 

The intersection (the logical "and") of two fuzzy !;ets A and B is a fuzzy set C of 

values which are in both fuzzy sets A and B. Comparatively, the union (the logical 

"or") of two fuzzy sets A a.nd B is a. fuzzy set D which contains all the values in each 

of the two fuzzy sets. The complement of two fuzzy sets A and B is a fuzzy set E 

which contains all values not contained in fuzzy set A. This is analogous to ordinary 

set theory. However, in addition to the values within the fuzzy sets, it is also impor­

tant to consider the level of membership for the intersection, union and complement 

operations. Equations. 2.8, 2.9, and 2.10 define the resulting membership functions 

for the operations described in Fig. 2.5. 

Intersection: 

I'c(x) = PAn8(X) = min {PA(X),PB(X)},X EX 

Union: 

Complement: 

where, 
JJA = the membership function describing fuzzy set A; and 

x = the values contained by the fuzzy set. 

(2.8) 

(2.9) 

(2.10) 
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membership membership I a-cut: ~ I 

Figure 2.6: Illustration of the Rf'solution Principlt'. 

Membership functions can be devdoped bast'd on expert opinion or quantitative 

data. Whether a fuzzy set is developed bao>ed on qualitative or quantitative data, 

it is necessary to enforce the assignment of fllembership levels consistently. This is 

of utmost importance when many fuzzy sets are being used in the same application. 

The crisp set defined by o-cut 1 bounds the most possible occurrences for the fuzzy 

set. The crisp set defined at level of membership slightly greater than 0 corresponds 

to 0 = 0+ and bounds all possible values (which are realistic) for the fuzzy set. In a 

similar manner, the crisp set defined by o-cut 0.5 bounds values which arp possible 

proportionately to membership Icvf'ls 0+ and 1. This logic must bf' implemented 

when using either qualitative or quantitative data in the definition of a fuzzy st't. 

The resolution principle uses o-cuts to define a membership function. Complete 

definition of the membership function using the resolut.ion principlt' requires an infinite 

number of o-cuts. However, the memhership of a fuzzy set can be defined with a finite 

number of a-cuts. Use of the resolution principlE' is illustrated in Figure 2.6 in two 

examples. In the first case, the membership fUliction is dt>fined at two membership 

levels between 0 and 1. The s{'cond ca.'i{, is a less a.mbiguous result because the two 

levels of membership used to define the (uzzy set are 0+ and 1. If more than two levels 

of membership are used then it is possible t.o define the curvature of the membership 

function in more detail. 
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2.4.1 The Vertex Method 

Traditional mathematical operations can be performed on membership functions 

through function mapping. There are several techniques used for fuzzy and inter­

val mathematics, the vertex method, developed by Dong et al. [DS87, DW87], is 

used in the adaptive analysis models and is the only method discussed in detail in 

this thesis. Typical mapping procedures will involve a function of several uncertain 

parameters which mayor may not be associated with membership functions. The ob­

jective of function mapping is to produce a fuzzy set or membership function for the 

resulting parameter. Zadeh IZa.d65] first introduced the Extension Principle, which is 

used for mapping functions and can be equivalent to a nonlinear programming prob­

lem [BK77]. The vertex method applies traditional function mapping to uncertain 

fuzzy parameters while allowing the analysis to be performed deterministically. The 

mapping procedure is iterative and is repeated at different a-cut values. The resulting 

membership function resolution is related directly to the number of a-cuts used in 

the mapping. Typically, mapping is performed at a-cut values of 1.0, 0.5, and 0.0+. 

If higher resolution is de~ired and the integrity of the membership function exists, 

additional a-cuts may be used. 

The number of iterations necessary for each <l-cut is 2ft, where n is the number of 

fuzzy parameters use in the mapping. The function is solved 2ft times representing 

all possible para.metric combinations based on the intervals bounds at an a-cut level. 

The best way to explain the vertex method is by a numerical example. The following 

example demonstrates the use of the vertex method to obtain the fuzzy set for "r 

where: 
(+F/ 

1=--
2( 

(2.11) 

The fundamental fuzzy sets for ( and '1 a.re defined at two a-cut levels and are 

presented in Table 2.1. Fuzzy sets throughout this thesis will be defined in the same 

manner in tables. The values used for ( and" and the resulting "r values are provided 

in Table 2.2. The last column in Table 2.2 distinguishes whether or not the resulting 
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Table 2.1: Fuzzy parameters ( and '7. 

a-cut lower Bound ( upper Bound ( lower Bound '7 upper Bound '7 
0.0+ 2.0 6.0 12.0 20.0 
1.0 3.0 5.0 18.0 18.0 

Table 2.2: Values for ( and '7 used in the vertex method. 

a-cut ( " 'Y Resultil:g Bound 
0.0+ 2.0 12.0 3.5 Not a Bound 
0.0+ 2.0 20.0 5.5 Upper 
0.0+ 6.0 12.0 1.5 Lower 
0.0+ 6.0 20.0 2.2 Not a Bound 
0.5 2.5 15.0 3.5 Not a Bound 
0.5 2.5 19.0 4.:1 UpPf'f 
0.5 5.5 15.0 1.9 Lower 
0.5 5.5 19.0 2.2 Not a Bound 
1.0 3.0 18.0 3.5 Upppr 
1.0 5.0 18.0 2.3 Lower 

I values is a bound in the fuzzy set defining 'Y. The resulting fuzzy set for '"'1 is givpn 

in Table 2.3. Using the vertex method at thrPe a-rut levf'ls (0' = 0.0+, 0.5. anrl1.0), 

the function which defines "I is performpd 10 limps. Sinrp "r is a function of two 

parameters, a-cuts 0.0+ and 0.5 each H'(luirt' the function to be solw'd 4 time-so The 

function 'Y only needs to be solved twice at a-cut 1 because '7 is a triangular fuzzy 

set. 

Table 2.3: Rpsuiting fuzzy number j. 

a-('ut lower Bound ""I upper BOllnd I 
0.0+ 1.5 5.5 
0.5 1.9 4.:1 
1.0 2.3 3.5 
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Figure 2.7: Schematic Representation of the Vertex Method. 



Chapter 2: Uncertainty Allalysis Methods 33 

The results from the 10 solutions are th~n compared to produce the resulting 

interval for each a-cut level. The minimum and maximum solutions will be the 

resulting limits for the interval at the corresponding a-cut. In the case of a nonlinear 

ma.pping function, an additional iteration is calculated at the point of extremity. 

Use of the vertex method is confined to convex fuzzy sets. The vertex method is 

then repeated at the remaining a·cuts. Realizing that the vertex method is iterative, 

almost to the point of redundancy, this method is much more efficient than using 

the alternative method of nonlinear programming. Further expla.nation of the vertex 

method can be found in the reference [DS87]. An exhaustive solution using the vertt"x 

method, such as the one shown here, may not always be necessary. However, omitting 

solutions from the application of the method must be done very carefully and requires 

a thorough understanding of the behavior of the mapping function. 



CHAPTER 3 

Formulation of the Calibration Model 

This chapter contains a detailed presentation of the calibration model which is the 

first of the three models considering dynamic beh.wior during the lifespan of a struc­

ture. Development of the calibration model requires thorough consideration of the 

dynamic analysis techniques as well as the sources of uncertainty contributing to the 

modeling errors. Section 3.1, which follows, presents the formulation of the dynamic 

equations used in the modeling of calibration errors. The fuzzy representation of the 

calibration model is presented in Section 3.2. Careful consideration must hI" made 

in the establishment of the fundamt"ntal errors contributing to the modeling prror. 

Section 3.3 gives a presentation of the development of fundamental uncertainties. Fi­

nally, an advantage of the calibration model is its generality and its ability to be 

applied to almost any structural system, where thest:' aspects are discussed in detail 

in Section 3.4. 

3.1 Dynamic Formulation for the Calibration Model 

The calibration model e~1 illlates the modt>ling error t hat occurs due to the approxima­

tions and assumptions inherent in a dynamic finite elemellt model. The paramett>fs 

considered for calibration are the structural modal propt"rties {natural frequencies. 

dynamic frequency ratios, and maximum structural response) which are used to cal­

ibrate the structural response using modal superposition analysis. The analysis used 

to establish the ca.libration model is based on the multi degree-of-freedom (MDOF) 

equation of motion. The equation of motion governing a linear ."II degree-of-frN'dom 

system takes the form: 

Mv + Cv + Kv = F(t) (3.1 ) 

34 



Chapter 3: Formulation of the Calibration Model 

where, 

M 

C 

K 

v 

= 
= 
= 
= 

system (NxN) mass matrix; 

system (NxN) damping matrix; 

system (NxN) stiffness matrix; 

(Nxl) vector containing system displacement 

(the 1st and 2nd time derivatives denote system velocity 

and acceleration, respectively); and 

F(t) = (Nxl) vector containing the time dependent forcing 

function acting on the structure. 

35 

Th,· natural frequencies and mode shapes are found by solving the undamped (ree 

vibration problem corresponding to the eigenproblem: 

(3.2) 

where, 
<1>,. = is the nth eigenvector corresponding to the nth system mode shape; and 

w,. = is the ith natural flequency. 

Taking advantage of the eigenvectors' orthogonality and assuming proportional damp­

ing. Eq. 3.1 can be uncoupled using the eigenvectors found in Eq. 3.2 into a set of N 

single degree-of-freedom (SnOF) equations. The resulting SnOF equations of motion 

take the form: 

where, 
the modal coordinate (or time dependent response); 

the modal critical damping factor; 

(3.3) 

the modal mass term, (\tTM.), where. is the (Nxm) modal matrix 

containing m mode shape vectors, ¢; 

F* = the moda.l forcing function, .T F(t); and 

n == the subscript indicating modal response of the nth mode. 
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In the calibration model, the solution for the modal coordinate, Yn, in Eq. 3.3 is 

obtained using fuzzy site-dependent response spectra which are developed in this the­

sis. Given the frequency and damping properties for an SDOF system, the respons(' 

spectrum gives the maximum values for the system wsponse. Further explanation of 

the fuzzy spectra is given in Chapter 4. The rf'sults are applicable for the excitation 

conditions for which the spectrum was developed. The modes are then superimposed 

to obtain an estimate for the maximum structural response. Use of a response spec­

trum in modal analysis gives the maximum response for each mode. Thf'refore, a 

superposition method which simply sums the maximum modal participation to ob­

tain the maximum response for the structural system is highly conservative bt"cause 

it assumes that the maximum response for each mode will occur at precisely the 

same time. In reality, the maximum response of one mode will not coincide with the 

maximum response of the other excited modes. The metho(i of superposition seleded 

for use in this application is SRSS (Square Root of the Sum of Squarf'l\) as shown in 

Eq. 3.4. 
m 

IVrnaxl = L (en4>nS,,(fI)~ (3.4 ) 
n=) 

where, 

en = the earthquake participation factor for mode '1 wher(' en == 4>nM{ I}; 

S,,(n) = the maximum velocity obtained from a Vt'locity respons(' spectrum; 

m = the number of modes superimposed; and 

V max = the maximum velocity for the structurt'. 

Although SRSS is us('d hf're, there are other techniques which can bt- useo in 

the response spectrum method. These tt"chniques also can be used in the calibration 

model. For example, in the case of closely spaced modes a solution using CQC' 

(Complete Quadratic Combination) [DK79, WDKB81} may he more appropriate. A 

solution using CQC is similar to SRSS ('xC"ept two mooes are considered in f'ach \('"rm 

of the summation as shown in Eqn. 3.5. 
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m "' 

IVmaxl = L: L: C.Ci~;~iStl(i)Stl(j)Pjl (3.5) 
;""1=1 

where, 
P,; = {actor representing the coupling between two modes i and j. For modes 

. h al d' Ill(l+r)rl' h ~ 
Wit equ ampmg Pi; = (a_;:t)i+4(fr (l+r )' were, r == "', 

for IN; > IN •• 

Implementation of CQC with the vertex method is possible; however, it is more com­

plicated due to the combination of the additional variables use<l ir. the formulation. 

Therefore, for this application SRSS is used to illustrate the procedure {or the super­

po~itjon of modal responses. 

The frequency ratio is defined by tht' ra.tio of the forcing frequencies to the natural 

frequency for each mode n and is denoted by fJ... A fJ .. value equal to 1.0 indica.tes 

the possibility of a resonance condition for a mode and is to be avoided. When the 

~" is dose to or equal to 1.0, it is necessary to verify that there is enough damping by 

examining the dynamic a.mplification factor {or P... This is illustrated in Figure 3.1 

which &how5 the gra.phical rela.tionship of the dynamic amplification factor with re­

spect to frequency ratio, p, and modal damping, e. Each line in the figure repreSf'nts 

a different amount of damping in the system. There are 11 values of damping where 

the line with the lowest values for D is obtained from { = 1.0. The highest values of 

D occur when there is no damping ({ -= 0.0) in the system. The intermediate lines 

represent values of e incremented by 0.1. 

where, 

D.. = the dynamic amplification factor for mode n; and 

~.. = the model damping factor for mode n. 

(3.6) 
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4 ".5 5 

Frequency Ratio, {3 

Figure 3.1: Dynamic amplification factor as a function of ~ and iJ. 
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The equa.tions presented here give deterministic predictions for the dynamic re­

sponse of the structure. Calibra.tion errOl, the difference between the analytical pre­

diction found using the structural model and the experimental measurement ta.ken 

from the as-built structure, typically has been addressed using system identification 

techniques. However, these system identification techniques have relied 011 the use 

of measured response values to quantify deficiencies in the ana.lytical model. The 

majority of system identification procedures can be computationally intensive and 

can suffer from significant drawbacks such as dependence on a good initia.l analyti­

cal model and failure to achieve a unique solution. It has been proven through the 

use of system identification techniques that dynamic parameters (modal frequencies 

and shapes) of the as-built structure ca.n differ by 50% from the finite element rep­

resentation of the structure [TAS8]. In addition, beca.use experimental data from the 

constructed system is required for the a.nalysis, identification techniques cannot be 

used at the time tha.t they are most needed, i. e., during the design of the system. 

The equations presented in this chapter govern the dynamic analysis in the calibration 

model. Since the uncertainties in the structural model are represented as fuzzy sets, 

these dynamic equations arl' solved using the fuzzy (rather than deterministic) param­

eters. The vertex method alJows the dynamic equations to be solved deterministically 

a number of times based on the fuzzy parameters. Section 3.2 contains the complete 

development of the calibration model based on fuzzy mathematics. 

3.2 Fuzzy Representation of the Calibration Model 

Through the use of fuzzy mathematics, bounds are established on the structural pa­

rameters found from the original model. Information concerning the a priori knowl­

edge of site conditions, structural design, etc. are used to develop a quantitative basis 

for determining the potential inaccuracies in the initial pre-calibrated model and to 

develop the fuzzy set for the structural para.meters. A membership function is found 

for each structural parameter. For the sake of illustration, structural natural fre­

quency is the parameter used for the development of the fonowing ada.ptive equations. 
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For natural frequency, the equation governing parametric uncertainty takes the form: 

where, 
Fe 

Q 

""0 

fY,., 

f~, 

= 
= 

= 

= 

uncertainty in calibrated frequency at a membership level, 0; 

original uncalibrated natural frequency based on a deterministic 

calculation, which is, therefore, constant for all a-cuts; 

(3.7) 

calibration error for a membership level equal to a which increases the 

initial estimate, ""0; 

calibrhtil)n error for a membership level equal to a which decreases the 

initial estimate, ""0; and 

a, b = lower and upper bounds, respectively, for eacho-cut. 

Equation 3.7 translates the deterministic value, wo , to a-cuts, F~\ which represent 

the calibrated natural frequency. The fuzzyness in the calibrated natural frequency 

represents the range of possible values for the natural frequency. After the structure 

has been constructed and a sy,1 "'11 identification performed, it is possihle to reduce 

the initial uncertainty to include only the uncertainty inherent in the system iden­

tification procedure. However, since this calibration procedure is performed before 

construction, the uncertainty in the a.ctual value for the natural frequency also must 

include the unkllowns in the analytical model for the structural system. 

Figure 3.2 shows a possible fuzzy set representing natural frequency for the cali­

bration model. The uncertainty in the initial estimate Wo is represented with uppt"r 

and lower bounds for the error, (cal. In theory, an infinite number of estimates for 

the calibration error, fcal' defines a smooth membership fundion for the fuzzy set. 

Sint:e it is virtually impossible to obtain an infinitt' number of estimates, the fUZlY 

set will be defined using the resolution principle with errors at membership levels 

0+ and 1. Implementing the vertex method with membership functions defining the 

parametric uncertainties, it is possible to obtain values for the calibration error at 

the membership levels of interest. 
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Figure 3.2: Fuzzy set for frequency used in calibration model. 
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The amount of uncertainty in the result is based directly on the amount of un­

certainty in the contributing factors. As shown in Figure 3.3, uncertain fundamental 

parameters are combined using an eigensolution coupled with the vertex method to 

solve for fuzzy sets for the natural frequency of the analytical structural model. There­

fore, it is of vital importance to develop membership functions for the fundamental 

para.meter~ based on the best information available to the analyst. This is addressed 

in more detail in Section 3.3. 

Structural response is dependent on both the dynamic characteristics inherent to 

the building and the characteristics of the applied load. The dynamic characteristics 

(modal properties and damping capacity) of a building are dependent on the prop­

erties of its structural and non-structural elements and, once determined (either by 

detailed dynamic analysis or system identification), can be assumed to remain un­

changed through a short duration of the structure's lifespan. The applied load to the 

structure is the time history created by the earthquake and is impossible to predict due 

to the random nature of earthquakes. The ultimate error in the structura.l response 

is due to the approximations inherent in the models used to predict the structure's 

dynamic characteristics and to represent the excitation a.cting on the strllcture. The 
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Fundamental Errors 
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Figure 3.:l: Fundamental parametric uncertainty in the calibration model. 

error associated with the prediction of the excitation forces is quantified through the 

formulation of the fuzzy respollse spectra is given in Chapter 4. 

To illustra.te the solution of the dynamic t'quations with fuzzy paramt'ters the nat­

ural frequency is obtained for the axial vibrations of the cantilevered beam shown in 

Figure 3.4. The distributed m.ISS, m, and tht' stiffnpss for the spring, K, at support B 

for the bea'Il are fuzzy quant.ities while the other properties for tht' b"'un are assumt'd 

to be deterministic. Values fN the beam's deterministic properties are given in the 

figure. Table 3.1 gives the va.lues for the fuzzy parameters. These fuzzy parameters 

may be interpreted as a distributed mass close to 10 and a spring stiffness about equal 

to the axial stiffness of this continuous systf'm is solved in dosed-form [Hum90j based 

on elementary beam theory assumptions and is given in Eq. 3.8. 

w = 2.03/1: JEA 
EA m 

(3.8) 

where, 
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Figure 3.4: Cantilevered bf'am with a linear spring at support B. 

fundamental natural circular frequency (fuzzy); 

modulus of elasticity for thf' beam (df'terministic); 

beam '5 cross-sectional area (deterministic); 

distributed mass (fuzzy); 

linear spring stiffness, where K = ~ and L is the beam length; and 

dimensionless parameter (fuzzy) used to scale the spring stiffness. 
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In this example, the vertex method is applied to levels of membership at 0+ and 

1. Since the fundamental fuzzy sets in this example are triangular, one solution is 

required for membership levell. An exhaustive implementation of the vertex method 

requires 4 solutions at membership If'vel 0+. The natural frequency IS highest when 

the mass is low and the stiffness multiplier is high. Similarly, the natural frequency is 

lowest when the mass is high and tbe stiffness multiplier is low. Therefore, the solution 

at membership It'vel 0+ can be obtained by performing 2 solutions. Table 3.2 gives the 

values for the two fuzzy parameters and tbe frequency obtained from each solution. 

The extreme va.lues for the fundamenta.l frequency at each level of mt'mbership are 

used to define the fundamental fre'luency fuzzy set. 
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Table 3.1: Alpha-cut bounds for the mass and spring stiffness triangular fuzzy sets. 

a-cut lower bound I upper bound lower bound I upper bound 
m, slugs/ft "Y 

1.0 10 I 10 1.0 
j 

1.0 
0.0+ 8 14 0.6 1.2 

Table 3.2: Parametric values for each solution and the corresponding fundamental 
frequency. 

I a-cut" m I "Y "Funda.mental Frequency I 
slugs/ft Hz Bound 

1.0 10 1.0 0.64 upper & lower 
0.0+ 8 0.6 0.43 nont' 
0.0+ 8 1.2 0.86 upper 
0.0+ 14 0.6 0.0.5 none 
0.0+ 14 1.2 0.32 lower 
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3.3 Quantification of Fundamental Uncertainties for the 

Free-Vibration Problem 
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In the calibra.tion model, fundamental fuzzy sets representing uncertainty in structural 

stiffness and mass values are used in conjunction with the eigenvalue problem of 

Eq. 3.2 to develop a membership function representing w. Using the fuzzy set for w 

and an additional fuzzy set representing uncertainty in forcing frequency (0) defined 

in Chapter 4, a membership function is developed for /3. The vertex method is used 

in conjunction with solving Eq. 3.3 to determine a membership function for Yn. These 

modal responses are superimposed using the sass in Eq. 3.4 to obtain the higher level 

fuzzy set for the total maximum building response, Vrnax. This section discusses the 

procedure used to determine the membership functions for the modal properties and 

the structural response. 

There are two types of fundamental fuzzy sets used in the calibration model: 

normal crisp and normal trapezoidal. The crisp sets are developed when there is 

a significant lack of knowledge about the parameter's behavior at various levels of 

confidence where the same extreme parametric values establish the same interval at 

o-cuts 0+ and 1. To develop the normal trapezoidal fuzzy set, it is necessary to 

define two intervals of confidence. This study defines intervals at o-cut 0+ and o-cut 

1, where the interval at o-cut 0+ defines the most possible values of the para.meter 

a.nd the interval at o-cut 1 defines extreme (but realistically possible) va.lues of the 

parameter. 

3.3.1 Natural Frequency 

The natural frequencies of a structural system are found through the solution of the 

undamped, fr~ vibration eigenvalue problem given in Eq. 3.2. It is assumt'd that 

uncertainties inherent in the natural frequencies a.re due to uncertainties associated 

with modeling the system stiffness and inaccurate representation of design loads. U n­

certainty in the stiffness ma.trix is a. (unction of uncertainty in the material properties 

(flexural and axial rigidity) and inaccurate representation of joint rigidities (fixed \'s. 

pinned connections). The skeletal mass of thr structure is assumed to be constant (or 
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the purposes of this analysis; however, the uncertainty in design loads (weight of floor, 

partitions, scaffolding, etc.) is considered. An additional type of uncertainty associ­

ated with the finite element model is due to discretization error where exact natural 

modes and frequencies are obtained only iI.'! the number of elements representing the 

structural system approaches infinity. 

As discussed earlier, fundamental membership functions are developed to represent 

the uncertainty in stiffness, mass, and finite element modeling and the vertex method 

is used to combine these membership functions into a higher level fuzzy set for the 

natura.l frequencies. The result is a membership function which describt>s the complete 

behavior of the fundamental frequency due to the contributing errors. 

The quantified errors for the free-vibration analysis combined wit h the quantified 

error associated with the input motion to the structure are used to determinf' the 

resulting error in structural response. This section presents the developmf'nt of the 

potential fundamental errors inherent in vibration analysis of steel frame type systems. 

Fundamental membership functions. denoting fundamental errors. arf' d('vf'lopf'd 

to represent the uncertainty in stiffness and mass. These uncertainties art> funda.­

mental sources to the ultimate errors in the analytical building behavior. The Vt>rtt>x 

method is used to combine these membership functions into higher If'vel fuzzy sets 

for the natural frequencies. The result is a membership function for t>ach of the 

desired natural frequencies which describes the complete behavior of the structurf"s 

frequencies due to the contributing t>rrors. 

Alt.hough these four sources of error are modeled a." uncoupled in their effects on 

natural frequency, the vertex method in conjunction with re-analysf's of the eigenvalue 

problem is used to develop a single Cuzzy set which combines the effects of all tht' 

uncertainties. The resulting fuzzy set is used by the analyst to determine wllf'ther 

or not the resulting range in natural frequency is acceptab1 
... A discussion devoted 

to the application and use of the results from the calibration model is presented in 

Chapter 7. 

The natural frequencies of a structur(' are obtained through the eigensolution 

of the undamped free-vibration prohlf'm originally given in Eq_ 3_2. Fundamental 

uncertainties presented in this section arf' confined t.o the structural stiffness and 
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mass properties, denoted by K and M respectively. The stiffness matrix, K, for the 

multi degree-of-freedom problem is the assembledge of contributing stiffness elements 

which have a functional dependence on the individua.l element properties represented 

as 

K = f(E,l/,I,A,J) 

where, 
E = modulus of elasticity for the structural material; 

v = Poisson's ratio for the structural material; 

I = moment of inertia about the strong and weak neutral axes; 

A ;:; cross-sectional area; and 

I :::: element length. 

(3.9) 

The uncertainty in the mass matrix, M, is also a result of the uncertainty at the 

elemf'nt level. The dependencies for the mass of an element are represented as 

where, 
m = distributed mass of a structural element; 

Ld = dead loads considered in the structural analysis; and 

L/ = live loads considered in the structural analysis. 

(3.10) 

The fundmental uncertainties (errors contributing to analysis unc~rtainty at the ele­

ment level) considf'red in the calibration of thf' natural frequencies which are quanti­

fied in this study are: 

• material modulus of elasticity. 

• cross-sectional moment of inertia for the consideration of stiffness duf' to con­
crete slabs, 

• dead loads, 

• live loads, and 

• joint stiffness (not explicitly a.ddressed a.hove). 
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The remaining contributions to stiffness and mass (Poisson's ratio, cross-sectional 

area, length, and distributed mass) are considered to be constant for the purposes 

of this study. However, the consideration of any uncertainty related to these factors 

can be implemented in a similar manner to the one presented here. The following 

subsections present the methodologies used to develop the fundamental fuzzy sets. 

3.3.2 Modulus of Elasticity 

Uncertainty associated with material propertips has bf't'n widely published for lise in 

probabilistic analysis. Conse<juently, the bt'st information availablp for lise in the de­

velopment of a fuzzy set denoting uncertainty ill modulus of pla.sticity is probabilistic. 

In this thesis, a mapping function is used to translatt> a probability density function 

to a normal trapezoidal fuzzy set, thus quantifying uncertainty in matt-rial properties. 

The modulus of elasticity is the only material propt'rty whkh is considered to vary; 

Poisson's ratio for the structural members is assumed to remain constant. 

The mapping to the normal trapezoidal fuzzy set is performed by defilJing a-cuts 

at mf'mbcrship values of 0+ and 1. The resolution principle is then uspd to define the 

fuzzy set's membership function. Since the a-cuts are defi(lf·d at memhf'rship l<,v<,ls 

of 0+ and 1, the shape of the resulling membership functioll will bp a trapezoid. 

Extensive research has been performt"d to establish an acceptable mean value and 

coefficient of variance for the modulus of elasticity for steel [GR78]. For the purposes 

of the mapping procedure, the distribution i!\ a!\sumf'd to hf' lognormal (a rt'a.-;onable 

assumption since it is impossible for the modulus of elasticity to have it. negative 

value). The bounds which contain 99% of tht' area underneath tht' probahility density 

function tr;jnslate to the bounds at a-cut 0+. Although it is a,-;sullwd that th(' tail 

of the probability dellsity function is infinite, it is reasollabl(' to assume t hat the 

corresponding a-cut 0+ will bound all physically and realistically possible valucs of 

the modulus of elasticity. Thus, the resulting interval at a-cut 0+, Eo+, is defined by 

Eq.3.11. 

Eo+ == {EIP(a 'S E'S b) = 99%} (l.ll) 

where, 
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E = modulus of elasticity; 

Eo+ = {EII'(E) > O}; 

a = the threshold such that P( E ~ a) = 99.5%; and 

b = the threshold such that P( E ~ b) = 0.5%. 

Alpha-cut 1 corresponds to the set containing the most likely values for E. Therefore, 

this a-cut should contain more than half of the possible values for the modulus. A 

similar procedure defines the interval of confidence for a-cut 1, Eh by calculating the 

bounds which ('ontain 51% percent of the area underneath the probability density 

function. Thus, 

El == {EIP(c $ E $ d) = 51%} 

where, 

El {EII'(E) ~ I}; 

c = the threshold such that P( E 2 a) = 75.5%; and 

d = the threshold such that P(E 2 b) = 24.5%. 

(3.12) 

For steel, the recommended values for mean and coefficient of variance are 29,000 

kips per square inch and 0.06, respectively, resulting in a very narrow distribution. 

Given these statistical properties, Figure 3.5 is a schematic of the mapping procedure 

and the resulting normal trapezoidal fuzzy set describing the uncertainty inherent 

in the modulus of elasticity for structural steel. Table 3.3 gives the probability of 

occurrence for the resulting bounds of a-cuts 0+ and 1. When possible, all fuzzy sets 

will be given in tabular form, and the values for the lower bound and upper bounds 

in the tables can be referenced to the fuzzy set shown in Fig. 3.5. 

3.3.3 Structural Mass and other Static Loading Conditions 

Uncertainty due to the uncertainty of design loads is estimated with the use of a 

trapezoidal fuzzy set using the recommc>nded factors of safety in the design codf' 

[lnt86J. Again, the membership (unction is obtained through the definition o( two 

o-cut intervals at membE'rship levels of 0+ and 1. Howevt>r, in this case, there is little 
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Modulus of Elasticity: lognormal 
Probability Density Function 
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Figure 3.5: Mapping pfoceduft' for the deve)op/llellt of t lit' membership fUlld ion which 
defines the modulus of ela.st.icity fuzzy St-t. 
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Table 3.3: Alpha-cut bounds for the elastic modulus fl' .i!y sets for structural steel. 

P(a :5 E:5 b) mean cov lower bound upper bound 

99% 
51% 

ksi ksi ksi 

29,000 0.06 24,847 33,843 
29,000 0.06 27,822 30,224 

information known about the probabilistic- behavior in structural loadings (loads due 

to concrete slabs, furniture, partition walls, etc.) The skeletal mass of the 5tructufc 

is assumed to remain constant due to the small variance in the density of steel; 

however, there are large amounts of unct'rtainty associated with the design loads. The 

unct"ftainty for these design loads is due to the variability in floor weight, partitions, 

scaffolding, sheet walls, furniture, etc. For example, the fuzzy set denoting structural 

mass is defined by calculating the loads for the building a.nd bounding them using a 

.-\'(0) factor of ± 10% for a = I and ± 20% for 0= 0+ (see Fig. 3.6). Therefore, the 

intervals for ea.ch of the two fuzzy sets are defined best by the analyst. The analyst 

first estimates the center of mass for the fuzzy set. This cent.er of mass represents the 

initial mass, Mo, t'stimatf'ci by the enginet>r to be considered in analysis. Additionally, 

a factor is used to map t:'e unccrtainl)' in tht> initial mdSS estimate to a fuzzy set 

for the milSs loading conditiL·ulS. The aIlaly,t gives a value for this factor based on 

knowledge of the architect's plans a.nd structural use. In this study, the fact.ors of 

saff'ty in the LRFD code are used as a guidt'. The resulting fuzzy set is obtained 

based on the following equation. 

M,., == {fa, blla = (1 - .l'(a))Mo; h = (1 + X(a))Mo} (3.1.3) 
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Figure 3.6: Fuzzy set denoting fuzzy ma.ss ('stimatf'. 

structural mass; 

{Mlp(M) ~ o}; 

mass vahlf' specified by t hf' analyst; 

value specified by the analy ... t for membership 0 

such that X(o = 1) $ X(o = 0+); 

the )owe~ bound for thf" alpha-cut set; and 

the upper bound for til(' alpha-cut :it-t. 

3.3.4 Joint and Stiffness Uncertainties 
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The uncertainty in natural frt'quency resulting frolll uncertainty in joint rigiditif's is 

also described in terms of a normal t rapezoiclal fuzzy st't whew fOllr separat(· ca.<;es 

defining joint rigidity are IIs('d to defillt' tt.t' two o-cut levels. It is a.<;slIllwd that 

welded ronnections art' pt'fft'ctly ri~id and t hat joints which art' bolted arf' semi-rigid. 

For a ml'mbt'rship value of 0+, the lower hound rt'prt'sents thf' most ftt'xibh' possible 

struct.ure obtained h.y mocldillg all semi-rigid joints a. ... perfectly hinged, whf're t ht' 
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Figure 3.7: Rotational deformation, e due to an external bending moment, M. 
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resulting fundamental frequency is the lower bound of the a-cut 0+ interval. The 

upper bound of the a-cut 0+ interval is determined through analysis of the least 

flexible structure obtained by modeling all semi-rigid joints as perfectly rigid (a spring 

with infinite stiffness). The interval at a-cut 1 is obtained by modeling the semi-rigid 

joints with springs having variable stiffnesses. 

Moment-curvature relations of semi-rigid joints have been studied [KC86j and 

can be used to determine appropriate bounds for specific connection types for a-cut 

1. A semi-rigid joint will typically experience a rotation between the column and 

connecting flange as shown in Fig. 3.7. The shape of a typical moment-curvature re­

lationship for a semi-rigid joint is shown in Fig. 3.S. Due to the nonlinear relationship 

between moment and curvature, the slope in the figure decreases as the applied bend­

ing moment increases. In other words, tht' rotational stiffnt'ss of the joint decreases 

permitting more joint deformat.ion as the bending moment increases. 

The uncertainty in the joint stiffness is based on the uncertain range of internal 
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Figure 3.8: Moment-curvature relationship for a semi-rigid c<mnection. 
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moments that joint must be able to resist. The rangE' in stiffness for the Q-cut bounds 

may be defined by evaluating the changing slope for typical semi-rigid connections. 

For example, the most possible range of internal moments will correlate to the most 

possible range of joint stiffness. Table 3.4 gives possible points for o-cuts 0+ and 1 

for two connection types: shear tabs and detailed joints. 

3.3.5 Uncertainty of the Floor Rigidity 

The rigidity of the floor system is an important consideration in thff'(' dimensional 

dynamic analysis. Floor system rigidity afft'cb tht' overa.1I stiffness of the structure 

and is an important consideration when d{'1 ermining the structural fn>quencies. A 

fully rigid floor system permits the transfer of all forces from one structural framp to 

another, as opposed to a flexiblt' diaphragm which inhibits the transferring of forces as 

illustrated by Figure 3.9. For tht' purposl's of this resparch, floor rigidity is quant.ifit'd 

through the a.nalysis of a composite beam section. The compositt' bea.m section 
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consists of steel decking and concrete used in the slab system. Variance of the width 

of the concrete slab in the composite section dire<:tly affe<:ts the analytical stiffness of 

the floor system. Figure 3.10 shows the composite sections used in this study. The 

width, W, of the concrete slab and the modulus of elasticity for the concrete are two 

uncertain variables used in the analysis. Additionally, since the concrete slab is an 

irregular shape, the slab thickness, t, may a.lso be used in approximating the bending 

stiffness of the slab. Since the values used to quantify the stiffness of the concrete 

slab vary significantly based on the slab type, floor plan, and bay width, fuzzy sets 

denoting their values will nol be given here. A case study is presented in Chapter 

5 which illustrates the uncertainty of the floor system rigidity and the fuzzy sets for 

the geometric parameters are given in the exa.mple. 

3.4 Generality of the Calibration Model 

The calibration model presented here is a. general methodology which can be applied 

to almost any analytical finite element model for a structural system provided tt:at the 

methodology is applied consistently. The error quantified in the calibration analysis 

is based on estimates of the fundamental contributing errors to the desired solution. 

With careful definition of the fundamental errors the re~ultjng err()r obtained from 

the calibration model will be a realistic representation of the potential va.lues for the 

parameter of interest. 

Table 3.4: a-cut bounds for the connection stiffness. 

a-cut lower bound I upper bound 

~ I ~ 
Shear Tab 

0.0+ 0.0 
I 

00 

1.0 0.0 101 

Detailed Joint (no welds) 
0.0+ 0.0 I 107 

1.0 107 
00 
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Figure 3.10: Typical cross section for composit.e eiem('nts. 
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In this thesis, the procedure for the develorment of fundamental errors pertaining 

to a civil structural system is established. Most certainly there are additional uncer­

tainties in the analytical structural model which are not considered here tha.t may 

relevant to the uncertainty in the structural dynamic properties. It is impossible to 

develop fuzzy sets for every type of fundamental error cuntributing to the dynamic 

properties of a strudural system. However, the purpose of this chapter has been to 

present methods that can be used to define the errors. In defining fuzzy sets for ad­

ditional errors the same logic used here must be maintained. Such that extreme yet 

realistically possible values must be used to define the bounds at o-cut 0+. The most 

possible values (whether that is definf'd by a. frequency of 51 %, occurring most of the 

time, or an expert's opinion) define the bounds at a-cut 1. Membership levels of 0+ 

and 1 are used here because it is more intuitive for qualitative data to be extracted at 

the corresponding levels of logic. If thf>re is enough information or experience about 

the uncertainty, the fundamental errors can be defined at additional levels of mem­

bership. Ultimately, this will increase the integrity and usefulness of the calibration 

model results. 

Application of the calibration model is not confined to civil structural systems. 

The methodology presented in this thesis ca.n be applied to any structural system 

which is modeled using the finite element method. The fundamental errors need 

to be consistently defined to represent the uncertainty specific to the application of 

interest. For example. in the case of an off-shore oil platform, the uncertainty in the 

structural mass is not based on scaffolding and dead load approximations, rather the 

uncertainty is due to the loading of machinery at the platform. Marine growth on 

the structural members may contribute to the uncertainty in the structura.l stiffness. 

Thus, it is critical to give careful consideration of the application in the use of the 

calibration model. 

Regardless of the application, repetitive solutions based on extreme bounds of the 

contributing fuzzy sets at various levels of membership are required to obtain the final 

solution. Consistent definitions of uncertainty will provide the analyst with results 

needed for his futUre decision making purposes. 



CHAPTER 4 

Quantification of Input Motion Uncertainty 

Uncertainty in the dynamic input motion felt by the structure is quantified for ust' 

in the adaptive dynamic analysis models through the development of fuzzy ({>sponse 

spectra. The fuzzy response spectra which are developed ill this thesis gi,,{' a fuzzy 

set for the maximum response of a single degree-oC-freedom (SDOF) systt'm. The 

maximum response fuzzy set is obtained by referencing the deterministic or uncertain 

frequency of the SDOF system to the spectrum. Additionally, it is possible to obtain 

a fuzzy set for the system's maximum response ba.'Ied on a fuzzy representation of the 

system's dynamic properties. 

This chapter presents the process t'stablished for the definition of the fuzzy V('­

locity responst' spt'ctra. Section 4.1 contains a detailed discussion pertaining to the 

objectives and motivation towards the dt'velopment of the fuzzy spectra. Definition 

of the response spectra as fuzzy sets requires the organization of selected data from 

individual deterministic spectra into groups classified by soil types and distanct>s to 

the rupture zone. Furthermore, fuzzy logic is then used to translate the data obtained 

from individual spectra into fuzzy response spectra. A detailed prt>sentation of this 

formulation is given in Section 4.2. St'ction 4.3 contains tht> resulting spectra which 

are used in the adaptive analysis models. Tilt' fuzzy spectra devt'lopt>d here are used 

to demonstrate the capability of the adaptive analysis model to consider input motion 

uncertaiuty. Section 4.4 addresses spt'cific issues which neecl to bt> considered in the 

future development of fuzzy spectra. 

58 
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4.1 Objectives of the Fuzzy Response Spectra 

Response spectra which were studied initially by researchers such as Housner (Hou47] 

enable engineers to better understand the effects an earthquake time history can have 

on a structure due to the local site conditions. A response spectrum gives the results 

of the equation of motion for a SDOF system excited by a time history as shown in 

Eqs. 4. 1.,4.2, 4.3, and 4.4. 

where, 

my + ciJ + ky :::: -mz(t) 

SJ(T,{):::: maxly(t)1 

Sv(T, {) :::: maxliJ( t)l 

S .. (T,t) ::: maxlii(t)1 

(4.1) 

(4.2) 

(4.3) 

( 4.4) 

y = the time dependent modal coordinate displacement response (where 

k,c,m 

T 

( 

i( t) 

S4,v.a 

= 

= 
= 

= 

= 

1st and 2nd derivatives with respect to time denote velocity and 

acceleration, respectively); 

the stiffness, damping, and mass, respectively for the SDOF system; 

system period where, T = ::" with w = If (for an SDOF system); 

fraction of critical damping where, c is the viscous damping 

coefficient and { :::: l:J;:;::; 
the time dependent earthquake acceleration input at the system 

support; and 

the maximum displacement, velocity or acceleration, respectively 

obtained from Eq. 4.1. 

In general, a ff'sponse spectrum is a graphical relationship of the maximum re­

sponse (displacement, velocity, or acceleration) of a SDOF elastic system versus natu­

ral frequency (or period) of the system for a particular input motion. Representation 

of the input motion as response spectra makes it possible to compare tht> consequences 
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of a system's response to various system dynamic properties such as damping and nat­

ural frequency. It is possible to use a response spectrum to hnd the maximum response 

for a multi degree-of-freedom (MDOF) system by first analyzing the m responses of 

the equivalent, uncoupled SDOF systems. Modal superposition, as dpscrib('c\ in Sec­

tion 3.1, superimposes the m responses of the uncoupled SDOF modal foordinatt's in 

the time domain to a MDOF response in space and time. Initially, t he fuzzy spedra 

are applied to the calibration model which predicts the responst' for an undamaged 

structure. Therefore, the spectra developed here, are elastic spectra which give the 

maximum response for an elastic system. 

Struct ural response is dependent on both the dynamic ciJaractprist ics illllt'fent to 

tht' building and the charactt'ristics of tilt' applit'd load. TIlt' dynamic c\J"factpristics 

(modal properties and damping capacity) of a huilding are c\elwllClellt OIJ tht' prop­

erties of its structural and non-structural f'1t'n1f'nt~ and, once determilwd (either by 

detailed dynamic analysis Of system identification), call be assumed to wmain UII­

changed through a short duration of the structure's lift·span. Tlw applied load to 

the structure is the time history created by t he earthquake and is impossihlt, to prp­

diet due to tilt' random nature of earthquakes. The lilt illla1 p error ill t hf' st ru("t IIral 

responst' is dut' to the approximat ions inht'H'nt in t he models lISPO to [m'o ict the st ru('­

ture's dyna.mic characteristics and the excit ation acting on t lit' st ruct IIfl'. Parameters 

which describe the earthquake's peak groulld 3(fderat ion (vt'locity or displart'ment). 

duration, frequl'ncy, and ent'rgy content are difficult to prf'dift. ('onst'(luently. it is 

difficult to select representative earthquake time hist ories for t IIf' purpose~ of st fllC­

tural design [AB86, Hou90J. 

The objt'ctivt' of this work is to formulate a lIlt't h()(lology which call IJP Ilst'd 10 

characterize the uncertainty ill tht' ground motion [pIt by a slrufture. Tllf' following 

is a motivation towards t1w liSt' of rt'spollse spectra in this llllcprtainty (Iuantifkatioll. 

The purpose of th(' fllzzy respons{' spt·ctra is to t'liahle tht' allalyst to bound tllf' 

potential maximum response a stfllct.lIfe lIlay expf'rit'IKe; thus, enahling him to make 

better informed decisions about structural integrity. 
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4.2 Formulation of Fuzzy Sets 

It ha.c; been well accepted that the excitation acting on a structure is dependent on the 

site's proximity to the fault rupture, earthquake magnitude, and local site conditions. 

Other factors which may also affect the characteristics of the excitation acting on the 

structure are damping characteristics of the soil and soil-structure interaction. 

Earthquake motions are characterized by random vibrations. Although considered 

random both in time and space earthquakes do have common characteristics. Use of 

response spectra make it possible to generalize some of the common cha.racteristics 

of earthquake motions. Spectra were studied by Housner lHou47J in an attempt to 

characterize strong motion earthquakes. Hausner continued to study response spec­

tra by introducing analytical methods which use the response spectrum to measure 

earthquake intensity [Hou59}. He recommends the use of such analytical measures 

in comparing the strength of earthquakes rather than the empirically based Modified 

Mercalli Intensity (MMI) scale. 

A number of researchers have realized the importance of local site conditions in 

characterizing ground motion parameters [BG76, Cam85, JB81, MJB83J. The ran­

dom vibration of the earthquake is filtered as it passes through a. soil profile before 

reaching the earth's surface. creating a smooth surface motion. Consequently, the 

frequency content of the motion at the earth's surface is similar to the natural fre­

quencies of the soil profile. This filtering process in some cases can add randomness of 

their own making the surface motion even more complex. Additionally, amplification 

is generally greater for soft soil as compared to rock sites. Darby et al. [DOU761 

compares closed-form solutions to approximate methods used to estimate the funda­

mental period of a soil profile. The shear wave velocities at va.rious depths are used 

to determine the natural frequency of the soil column. 

Atkinson and Boore [AB90! have noted that the difference in earthquake charac­

teristics between the eastern and western regions of North America is primarily due to 

the different properties in the earth's crust. Typically, earthquakes in the East have 

significantly lower attenua.tion rates than in the Western regions. Thus, response 

spectra represent characteristics which a.re specific to the local site conditions and 
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the more global chara.cteristics of t.he ea.rth's composition in a.ddition to that of the 

earthquake itself. Boore and Joyner have developed attenuation relationships bast'd 

on statistical regression analyses to empirically predict ground lIIotioll [BJ82, BJF93J. 

Based on values for magnitude and distance to the rupture zone, these attenuation 

relationships predict pea.k ground acceleration (velocity and displacelllPnt) as well i\.S 

formulate response spectra which further dCEcrihe the frequency citaraderisl irs of an 

earthquake. 

Currently in the design code, design spectra are seleded ac(Ording to I II(> local soil 

conditions. HOWeVE'T. after detNmining the loral site cOlldition~, the spectrum lIst'd 

ill the analysis is determinist ic. Alt hough t he spectra pw\'i(it·d ill tilt' ,ksign {'od" is 

developed from mallY earthquake tilllf' his!orit's. I he n'sult is a sing I,' rf'lat iOIl twc allse 

it would be difficult if not impossible to dt'sign for s«'wral sppctra. III d,'sigll. a sillglp 

spectra is used based on an t'x}wl'tt'd peak ground aCt'elerat iOIl for I Ill' n'p,ion and 

local soil conditions. This single relation dews not consider the U1H'l'rtainty inhert'lit 

in the soil and other potential grolJnd motion characteristics. Tlw design spf'ctra., 

in genf'ral, ddiup the critf'ria for which a structUrt' should be bllilt [~L9:l :\ppi'·I]. 

A design based on t.he response spec! ra approadJ does not collsidt>r t he dural ion 

of the earthquake [AppH]. Furthermore, ~inCf> tIl«' design spectrum i, normalized 

the spectrum's shape is an important charactt'risti, for design [Sl'i!lOJ. This shape 

highlights th" responst' specific to the structural syslt'III's Ilatural fn'qllt·llcit's. SinCt' 

the local soil conditions have Olle of the grt'atest illftu('n('('s ill 11\1' surfan- mutioll. 

further analysf's can benefit from the considf'ration of the lIncertaintit,~ inherent to 

the local site conditions. Furthermort'. ill tilt' case of a dt'tailerl forced-vibration 

dynamic analysis. there is difficulty ill st'lecting applicablt> time histories to rf'presf'nt 

accurately the next unknown eart.hquakf'. A rt'sponst' spf'd rlllll inlien'ntly n-pn'St'llt s 

the local site conditions becallse it is obtained IIsing frpf'-fit,lrI data. 

By developing a fllzzy response spf'ctrum which denolt's lInCl'rtainty ill fn'(I'lt'Il(,Y 

and amplitudf' it is po~si blf' to ant iripatt' charartprist ics of fut urI' !'arl hquakt>s at a 

particular site. Use of a fuzzy speclrulIl providps tilt' analyst with hounded rangt's 

of values for possible struet ural rpspollst'. The idea of bounding a r«'~ponst' spt'ct fUm 

is not new. Sf't'O (in a lIumber of papers [SW9. SllL7G. SMLl7Gj) has statistically 
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bounded response spectra grouped by soil types and distance categories with a mean 

response and an upper bound of one standard deviation. 

4.2.1 Theoretical Development of Fuzzy Response Spectra 

The theoretical development of the fuzzy response spectra is performed in four steps: 

(1) The shape is characterized for individual site-dependent spectfil; (2) Data is 

organized; (3) Data is mapped from the sit.e-dependent spectra to the fuzzy spectrum; 

and (4) Results from any of the above steps art' refined as needed. These stf'PS are 

described in greater detail in the remainder of this chapter. 

In this thesis, fuzzy velocity response spectra are developed considering uncertain­

ties in distance from the fault rupture, local soil conditions, and the random ground 

motion fplt by the structure. The velocity responsf' is selected for the fuzzy response 

spectra because it is, in general, the smoothest of the three response parameters. 

The uncertainty of the earthquakf' is df'termiat'd by the lo(-ation of the two corner 

points of a site-dependent velocity response spt'ctrum, "Cornt'f A" and "Corner B" 

(shown in Fig. 4.1). Identification of thf'sf' two points h(>lps to approximate the trape­

zoidal shape typical of the velocity spectrum INH82] and describe both the velocity 

amplification and frequency content specific to the site from which the spectrum is 

developed. Thp trapezoid outlines the shape of the site-dependent velocity response 

spectrum using COfllt'r points A and B and two additional points, C and 0 (also 

shown in the Figure). In this development, points C and D will always have the 

same location regardless of the shape of the site-dependent response spf'ctrum. The 

purpose of these deterministic points (C & D) is to fix the two sloped linf's of the 

trapezoidal shaped curV('. 

A response spectrum which is obtained from a real discretized earthquake record 

IS generally rough due to the randomness of the f'arthquakf'. Peaks which occur 

across the spectrum of frt'quencies represent the frequency content of the earthquake. 

Depending 011 the local site conditions, the range in frequency content in a spectrum 

may vary grt'atly in breadth. It is difficult to define the f'xact points for each of 

the corners A and B, because of the variable shape of typical site-dt'pt'ndent spectra. 

However, it is possible to locate points A and B such that the line connecting the two 
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Velocity Response Spectrum 

in/sec 

Point C Point D 
Period, seconds 

~----------------
Figurf' 4.1: Corner points A & B for site a df"pendent spectrum. 

points generally follows the spectrum. It is not important 1.0 capture every peak in 

the spectrum; however, it is import.ant to 10catl' the average amplitude height across 

the range of frequencies. The corners are locaten at frf"quenries where the amplitude 

has a distinctive and continuous drop-off. 

4.2.2 Organization of Data 

The data used to derive the represt'nt".tiw fuzzy response sppctrum are: (I) location 

of the two corner points from site specific velocity response spectra; (2) local site 

conditions (a soil typp); ann (3) the distance from the site to the fault rupture. Tlwse 

characteristics are selected based on the Lest information available to the analyst 

during the design stage. Additional {actors which affect the amplitude of illt' spf'ctra 

are the magnitude and rupture mechanism of thp evpnt. Magnitude is not consid­

ered in the initial establishment of the fuzzy spectra presented here. The example 

which is prellt'uted at the conclusion of this chapter USf'~ data from the Lorna Prieta 

earthquake only. Therefore, data orgauization with rf'spect to rnagnitudf' will not be 

considered in more detail. U nccrtainty in the response due to the magnit u<it' or rup­

ture mechanism can certainly be addt'd to this formulation, but it is imperativt' that 
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careful consideration be made (;.oj to the amouut of data available in each data group 

such that enough information is available to effectively repre\o;enl .. ach spectrum. 

During the design of a structUfe, the location and gelleraJ l>O;) couditions are 

typically known for the potf'ntial site. Data is, therefore. sevarated inte. two general 

soil type groups: fock and alluviUll1. By separating these two soil typt's, it is possible 

to characterize the fuzzy spectra based on th~ frequency content of the soil profilf-. 

The distance from the site to the next earthquakt- is generally unknown, although 

assumptions may be rnad~' by studying the proximity to fault zones and earthquake 

recurrent:e rdationships. In the t"xample whil~h follows, thrt>e response spectra are 

deveiqwd for each local site condition hased on distance (x) to the fault rupt un­

zOlle: :r < 30 km, 30 < :r < 60 kill, and x > ()O km. Application of the fuzzy 

responsl:' spf'ctra requires the analyst to lise the spf'dr,. hest 'f('presf'uting t hf' loral 

site conditions and denotill~ each of the thrl'e distancf' groups. 

4.2.3 Development of Fuzzy Sets for Earthquake Spectra 

Fuzzy set development for the period and maximum Vf·\ocity amplitude is performed 

separately based on the data obtained from thf> fOflIf'f point locations. Four fuzzy 

sets (one each for the period and amplitude at COrn('r8 A and B) art' d('velop€-d which 

provide the information Iwcessary to of'fine the "fuzzy location'" of t he two cornel 

points in the resulting fuzzy spf>ctrulIl. The o-cut 0+ is established such that all :1ata 

points wit hill a distancf' group art' houndt·tl, and O-fllt 1 i~; dt>finpti by crisp set bounds 

denotin~ th .. Illnst-possihle vahws of o('currf'Wf'. Regiolls representing the most­

pm.siLle values of occurrence art' generally WhN(' data is cl\lslc'Jt'\: anrl where more 

than half of the avaiiablt· data is rDlltailwd. F,)Ilr fuzzy sets (shown in Figure 4.2), 

two carh for period ami amplitude, are used to define a fuzzy ~p('('trum by sp<'cifying 

t!-a(· fuzzy loration for ('Qrnt'r~ A & B. 

Once period anti amplitude fuzzy set,f; !lilve het'n defint'd for each corner, set thPOry 

is used to define tht' resulting fuzzy velocity responsE' sp(>ct rum. Thf' union of tht' 

period fuzzy s(>ts for COl uerl' A and B ddilH' the membl'rship for period conte lit in 

the re!lulting fuzzy response tlpectrum. TIl(' resulr.ing fuzzy St t for period conter.t 

must L(, convex, and modifications may be Uf'cessary. At:,h;).-'ub taken at highf'r 
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levels of memberships for this resulting period content fuzzy set may produce two 

crisps sets. The a-cut hounds which produce two crisp sets are modified such that 

the new bounds consist of the minimum of the two original minimum bounds and 

the maximum of the two original maximum bounds. Repeating this procedure for 

all the affected a-cuts creates a convex fuzzy set. The intersection is then taken of 

the newly defined membership for period content and the amplification fuzzy sets for 

each corner point. This results in fuzzy locations for corners A and B. 

In addition to the two fuzzy corners A and B, two additional points are required to 

define the shape of the-esponsf' spectrum and are labelt>d "Point C" and "Point D" 

as shown in Fig. 4.1. Thesf' points are taken to be deterministic and, as stated earlier, 

are used as constraints to create the general trapezoidal shape typical of tht' velocity 

spectra. Point C is located at a period of 0.01 sec. and a velocity of 0.1 in/sec., and 

point D is located at a period of 60.0 sec. and a velocity of 0.1 in/sec The placement 

of the two fuzzy corners and t.he two deterministic points df'fine tht' fuzzy velocity 

response spedmm. The fuzzy velocity r('sponse spectrum now is defined fully by two 

crisp sets at o-cut 0'" 31,d o-cut 1 for th{' two fuzzy parameters (velOCIty amplitude 

and period), wherf' the bounds for each o-cut art' established by thf' placement of six 

points representing the vertices of the trapezoidal shaped velocity response spectrum. 

This procedure is illustrated in Figure 4.3 which shows the mapping from the fuzzy 

sets in Figure 4.2 to the fuzzy spt>ctrum. 

It may be necessary to refine the fuzzy sets at two stagt-s of their dt'velopmt>nt. 

First, the amount of data available for ;j particular earthqua.ke may suggest slight 

modifications to the distance (:ategories to make tht> best use of the data. Secondly, 

if the analyst wishes to enforce a particular shapf' to the fuzzy spectra (such as the 

trapezoidal shape llsed in this st.udy), thert' may be instanct's when o-cut 1 is not 

completely containf'd within a-cut 0+. which is contradictory to the requirf'ments 

of fuzzy logic. This problem occurs because the slopes of the lines representing the 

a-cuts forming the membership function act as a constraint on the development of 

the fuzzy spectra. To eliminate this problem the o-cut 0+ bounds can be altered to 

be the same as the a-cut 1 bounds. This modificat.ion does not corrupt the validity 

of the fuzzy spt>ctra because- it d<ws not affect the region of primary importance to 
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the analyst, i.e., the points defining o-cut 1 between corners A and B. However, the 

bounds for a-cut 0 are broadened by this modification. 

The flowchart in Fig. 4.4 is a schematic representation of the procedure used in the 

development of fuzzy res ponS€' spectra. The resulting s~Jectra are in three dimensions, 

with axes denoting period, velocity, and membership level. In the figure, the fuzzy 

spectrum is viewed in two dimensions with the membership, denoted by a-cuts 1 

and 0+, representing slices from the third dimensional view. The following is an 

example further describing the implementation of this method. 

4.3 Fuzzy Velocity Spectra for the Lorna Prieta Earthquake 

The methodology proposed here is applied to data from the Lorna Prieta earthquake 

of October 17, 1989. The thirty-nine records used in this development were obtained 

from the California Strong Motion Instrumenta.tion Program (CSMIP) [csm91J. Two 

orthogonal horizontal channels were used from each site and considered to be indepen­

dent thus doubling the data available. Fuzzy velocity response spectra are developed 

a.t the three distance categories for two soil types (alluvium and rock). Appendix A 

contains the soil type, distance to the rupture zone for each site, and the coordinates 

for the corners A and B for ea.ch horizontal channel at each site. The data is orga­

nized by separating the data into six groups for ana.lysis. Tables 4.1 and 4.2 give the 

tabular representation of the four two-dimensional fuzzy st"ts for the six groups used. 

Fuzzy response spectra are developed for each of the six groups of data through 

the processes of fuzzy set theory as described in thp previous section. Figure 4.3 

highlights the placement of the 6 points used to establish the a-cut 0+ bounds in 

the fuzzy spectrum. Thf' points in Fig. 4.5 represent the data for rock sites located 

less than 30 km from the fault rupture zone a.nd can be referenced to Table 4.l. 

Figures 4.6, 4.7, and 4.8 a.re spectra developed at the three distanct" categories for 

rock sites, and Figs. 4.9, 4.10, and 4.11 are spectra developed for alluvium sites at 

the three distance categories. 
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Earthquake Data 
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Figure 4.4: Schemat.ic representation of the fuzzy response spectra development. 
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Velocity Fuzzy Response Spectrum 
for Rock Sites Less Than 30 km 
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Figure 4.5: Fuzzy velocity response spectrum for rock sites less than 30 km from the 
rupture zone at a-cut 0+. 
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Table 4.1: Corner location fuzzy sets for rock sites. 

Corner A Bounds Corner B Bounds 
DIstance a-cut OT o-cut 1 a-cut 0+ a-cut 1 

km seconds seconds seconds seconds 

less than 30 0.24 - 1.02 0.38 - 0.8 1.0 - 4.13 1.5 - 3.25 
bet ween 30 & 60 0.16 - 1.02 0.32 - 0.62 0.88 - 7.13 2.63 - 5.25 
greater than 60 0.18 - 1.42 0.38 - 0.90 1.63 - 6.13 2.25 - 4.13 

km II m/sec m/sec 1/ m/sec Ill/ sec Jl 
less than 30 6.25 - 61.,3 18.75 - 32.5 6.5 - 39.5 10.0 22.0 

bet ween 30 & 60 2.5 - 1.1 7.4 - 12.5 :~.O - 17.0 4.0 - 13.0 
greater than 60 1.0 - 22.5 2.5 - 8.75 0.5 - 20.0 3.5 9.0 

Tablt' 4.2: Corner locatioll fuzzy sets for alluvium siks. 

Corner A Bounds Corner B Bounds 
Distance o-cut 0+ o-cut 1 o-cut 0+ o-cut 1 

km seconds seconds seconds seconds 

less than 30 0.2 - 0.61 0.35 - 0.48 0.4 - 6.3 1.5 - 2.75 
bet ween 30 & 60 0.2 - 1.2 J.44 - 0.67 1.5 - 5.3 2.4 - 3.8 
greater than 60 0.77 - 1.13 0.77 - 0.91 0.9 - 3.4 0.9 - 2.0 

km m/sec m/sec II In/sec Ill/sec tt 
less than 30 6.3 - 51.:J 13.3 - :13.3 G.3 - 59 14 - 32.5 

bet ween 30 & 60 5.0 - 62 7.5 - 21 4.3 - 3G.3 7.5 - 16 
greater than 60 11.0 - 32 17.,) - 27.5 7.3 - 31 17.5 - 27.5 
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It is difficult to make generalizations for the a-cut 0+ bounds since these bounds 

must contain extreme points to remain valid in fuzzy set theory. However, it is possible 

to ma.ke generalizations for a-cilt 1 bounds which represent the most possible values 

for the velocity response spectra. In general, the resulting period bounds for the rock 

sites are broader than the alluvium sites representing the wide range in shear wave 

velocity for rock in the San Fra.ncif,co Bay Area. The maximum velocity bounds are 

broad for both the rock and a.lluvium sItes because of the selection of the distance 

categories. These distance categories were broad due to the lack of data points in finer 

cat.egories. The bounds for a-cut I become tighter at farther distances, representing 

an overall attenuation of the maximum velocity. In Fig. 4.7 the bounds for C)-cut 0+ 

were modified, hecause the original bounds did not fully contain a-cut 1. 

Based on the results for the Loma. Prieta example, further developments of the 

fuzzy response spectra should consider soil types by shear wave velocities rather than 

the general classifications of rock and alluvium. Introducing more earthquakes to the 

data set will make it possible to further refine the distance categories. Thus, the 

bounds for both the maximum velocity and the period will be tighter. The spectra 

developed here give conservative, but high results for low and high periods (periods 

which do not fall between fuzzy corners A and B). Placement of two additional fuzzy 

corners between the deterministic points and the fuzzy corners will give the analyst 

more realistic results for low and high structural periods. 

4.4 Discussion 

In this study earthquake response spectra are formulated using fuzzy mathematics t'l 

represent uncertainties inherent in the local soil conditions, distance from the fault 

rupture, and the random nature of the earthquake. Fuzzy velocity response spectra 

were developed based on data from the Lorna Prieta earthquake for both alluvium 

ami rock sites. These fuzzy spectra can provide the analyst with more insight into 

the most likely response, quantified to consider tIlt' uncertainties associated with the 

site conditions and the earthquake parametprs. The fuzzy responSf' spectra developed 

here for velocity are valid for earthquakes dlle to a combined right lateral fault and 
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subduction mechanism of magnitudes similar to 7.1. Fuzzy sets are developed for 

two types of general soil conditions, rock and alluvium, at three distance categories. 

Use of the fuzzy response spectra helps the analyst to gain a better understanding 

of the potential maximum responses for the structure resulting in a fuzzy set for the 

maximum structural response. 

The spectra developed in this chapter motivate further work in this area. In an· 

ticipation of future building codes, prediction of ground motion parameters [BJF93, 

Bor94] is moving towards the classification of soils into gr'Jups by shear wave velocity. 

rather than "rock" or "soil". Due to the broad range in frequency content and the 

new grouping of soil types, future refinements for this methodology include dividing 

the soil types into four categories based 011 shear wave velocities. In addition, other 

earthquakes of a similar magnitude can be added to the database. Ultimatf'ly, fuzzy 

response spectra should be developed for categories of soil type, distance, and earth­

quake magnitude providing the analyst, with uncertainty information for different 

types of potential earthquakes. 



CHAPTER 5 

Illustrative Examples 

This chapter presents two examples which illustrate the implementation of the cal­

ibration model. The first example is a two-dimensional plane frame structure with 

uncertainties in mass, material stiffness, and input motion. The second example is 

a three-dimensional structural model of the Santa Clara County Office Building lo­

cated in San Jose, California, U.S.A. This structure has been instrumented sinc(' its 

construction in 1976, and information has been collected from several earthquakes 

since that time. In addition, system identification techniques have been used to 

evaluate structural parameters using the collected response data, and the results of 

these studies are available for comparison with the calibration model results. The 

fundamental uncertainties considered in this example are static loading conditions, 

material stiffness for steel, the stiffness contributions of the floor slab system, and 

input motion. 

5.1 Small Scale Building - Example 

The small scale example is a two-dimensional r('presenta.tion of a steel three story 

shear building with two wings on the first Hoor. This building is model('d based on 

uncertainties in the static loading conditions, material stiffness, and the input motion 

felt by the structure. 

The building, shown in Fig. 5.1, has story heights of 10 feet and bay widths of 

20 feet. The masses for the columns and beams are modeled as distributed loads 

of 4 slugs/ft and 8 slugs/ft, respectively. For the simplification of this example, the 

structure is assumf>d to have special moment resisting joints which are capable of fully 

transferring a moment; thus, the joints are assumed to bf> fully rigid with wmpJet.e 

81 
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Column Mass = 4 slugs/ft 
Beam Mass = 8 slugs/ft 

I I 
3 bays@ 20ft 

Figure 5.1: Three story shear building. 

82 

® -o 
;:::> 



Chapter 5: Illustrati ve Examples 83 

certa.inty. A finite element model is used to represent the structure using 13 Bernouli­

Euler beam elements. The finite element method is a well accep'ted approximation in 

structural a.nalysis; however, theoretically, a.n infinite number of elements is required 

for exact representation of structura.l members. In a.ddition, the elements which 

assume pure beam theory (i.e., typically Bernoulli-Euler) represent the true physical 

system. The errors associated with the loading conditions (static and dynamic) and 

the uncertainty with the structure's stiffness properties are far greater than those 

introduced by a lack of discretization in the finite element model. Furthermore, in 

the analysis of a full-scale building it is rarely feasible to model the structure with 

more than one finite element per structural member. Therefore, this example will not 

be discretized further. 

The fundamental fuzzy sets used for the imalysis are given in Figure 5.2. Column 

mass, denoted by the crisp set, considers the uncertainty in thf' weight of the fire 

proofing material and architectual components, for example. Dut' to the few con­

tributing uncertainties, the bounds ("Ceated by a-cut 0+ for this fuzzy set are tight; 

consequently, the same bounds are used to define a-cut l. There is mue-h more un­

certainty associated with the mass of the bea.m elements. Beam element mass, in 

addition to the uncertainty of the element mass itself, include the masses which each 

element must support. DetermlllatiOl! ,)f the beam mass requires an estimate of the 

mass over the floor area and a calculation of the tributary area supported by Tht> 

beam element. The trapezoidal fuzzy set quantifies the uncertainty associated with 

these mass estimates and bounds the initia.l mass estimate, Mo. The matprial stiff­

ness fuzzy set is a.lso given and has been established based on the methods presented 

in Chapter 3. The final uncertainty considered in this example is the input motion 

acting on the structure which is represented by the fuzzy velocity response spectra 

developed in Chapter 4. 

5.1.1 Free-Vibration Analysis 

The free-vibrational analysis is pf'rformed for this structure through repetitive solu­

tions of the eigenvalue problem using the input parameters given in Figurf' 5.2. As 

the vertex method specifies, a solution procedure is performed at f'ach a-cut level 
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Typicel Column ...... Type.! MM, on a.ITII 

,Q.0.8 r iO.6 ().S 

2°·4 0.4· 

0.2 02 

°3 3.5 4 4.5 5 0& 8 0 10 
SIugIift ~2 

UockIIu, of Elallic:lty 

r 0.6 
2°·4 

0.2 

g.4 2.5 2.6 2.7 2.8 2.1 3 3.1 3.2 3.3 3.4 
kII II 10· 

Figure 5.2: Fundamental uncertainty fuzzy sets for Example - I. Clockwi<Je from the 
top left corner: (1) column mass; (2) beam mass; (3) modulus of elasticity for steel. 
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ensuring that the extreme bounds have been obtained for the resulting parameter. 

Care must be taken when applying the vertex method to a finite element model to 

keep track of thl' rhanging parameters. For example, one possible case for the mass 

conditions in the structure may be a ma.ximum load at the top of the structure and 

minimum loads a.t the lower levels. Such a situation may cause the structure to be 

extremely flexible. This loading condition may occur during the construction of " 

facility when there is a considerable amount of wnstruction equipment on the roof, 

a.nd very little activity at the other levels. For the purposes of this thesis, it will be 

assumed that the extreme parameter conditions will occur together. In other words, 

all elements will have minimum or maximum mass simultaneously. This ensures that 

the eigenvalue problem will produce the extreme solutions of interest. It is impor­

tant to realize, however, that by approaching the solution in this way, the torsional 

modes (which are often excited by eccentricities in mass and geometry) may not be 

represented realistically. 

The four eigenvalue solutions (shown in Table 5.1) bound the potential values for 

the natural frequencies by strategically simulating values for the uncertain paramf>­

ters. If there are lumped masses in the finite element model, then the high and low 

masses will follow the procedure established in Table 5.1. 

The free-vibration solution is presented graphically in Figure 5.3. Tht" natural 

frequencies (given in the top graph) for the structure have been converted to structural 

periods in the second graph. In these graphs, the first and second mod(>s of vibration 

are denoted by solid lines. These resulting fuzzy sets give the potential range for 

unceltainty in the actual built structure by representing the the potential values 

Table 5.1: Extreme values for mass and stiffness to obtain the frequency fuzzy set. 

Solution column mass beam mass steel modulus frequency 
1 high a-cut 1 high a-cut 1 low o-cut 1 Iowa-cut 1 
2 Iowa-cut 1 low n-fut 1 high a-cut 1 high a-cut 1 
3 high a-cut 0+ I high o-cut 0+ low o-cut 0+ Iowa-cut 0+ 
4 low o-cut 0+ 1 low O-fut 0+ high a-cut 0+ high o-cut 0+ 
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Figure 5.3: Top: Fuzzy sets for the first two natural frequencies (the fundamenta.l 
fuzzy set is the lowest frequency corresponding to the first mode of vibration). Bot­
tom: Corresponding fuzzy sets for the associated periods T, where T = ~ (here, the 
highest mode corresponds to the first mode of vibration). The dashed line denotes 
the predominant period fuzzy set for the input motion. 
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that the natural frequencies can have given uncertain fundamental parameters. Since 

calculation of structural modal properties is the first step in dynamic analysis, the 

uncertainty obtained here is an essential piece of information in the quantification of 

the uncertainty in structural response. 

Two frequencies are given here, because the first two modes are superimposed to 

determine structural response. As the next step in analysis the frequency ratio is 

determined by comparing the ratio of the forcing frequency to the natural frequencies 

of the structure. Since each of these frequencies (in this case there are 3 frequencies; 

2 natural frequencies and I forcing frequency) is a fuzzy set, the vertex method is 

again used to develop the resulting ratios. 

5.1.2 Spectrum Analysis 

The first step in eva.luating the structural response due to an earthquake motion is to 

compare the dynamic characteristics of the structure to those of the site. This com­

parison can inform the analyst of the possibility of resonant conditions. A frequency 

ratio of 1.0 suggests severe response. If the dynamic characteristics (the dynamic 

frequencies) of the structure are similiar it is necessary to provide ample damping 

into the system to reduce the chances of extreme responses, as shown in Eq. 3.6. 

An excitation applied to the structure due to an earthquake is filtered by the soil 

column between the structure and bedrock. This filtering process is dependent on 

the dynamic propertit's of the soil. There are a number of analytical techniques used 

to quantify the dynamic properties of a soil column. Here, the fuzzy respollse spec­

tra (presented in Chapter 4) are used to characterize the dynamic properties of the 

soil. For this reason, the uncertainty in frequency content of the s\lrface motion is 

taken from the site dependent response spectrum for velocity. In tilis example, the 

fuzzy velocity response spectrum devel0pt'd (or soil sites between 30 and 60 km from 

the epicentral zone is used to develop the uncertainty in the frequency of the forcing 

function. 

The uncertainty III period content of the input motion obtained from a fuzzy 

spectrum (depicted Ly the dashed line) is given in the second graph in Fig. 5.3. In 

this case, the input motion period fuzzy Sl"t extends beyond the graph. HoweVf'r, 
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Figure 5.4: The frequency ratios, /3,,, for n = 1,2. 
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since this structure has relatively low periods, the higher periods are not relevant 

to this analysis. A fuzzy set is determined (shown in Fig. 5.4) for f31 and 1~2 where 

/3" = ¥- and T denotes the period of the input motion to the structure. The vertex 

method is used to find the uncertainty in the frequency ratio using the same iterative 

methods used to find the natural frequencies. Ratios for the first and second modes 

of vibration are depicted by the solid and dashed lines, respectively. The vertical 

line which crosses the horizontal axis a.t 1.0 highlights the region of frequency ratios 

which indicate the structure may bt' prone to resonant r{'sponse. Here, it is found 

that only the first mode may exhibit resonant response. However, this is unlikely 

because only a-cuts taken below 0.3 produce bounds which cross 1.0. The second 

mode of vibration is well out of the range of resonant response. These results suggf'St 
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that not only will the first mode of vibration contribute significantly to the overall 

structural response for the fuzzy spectrum considered, but that the participation of 

the first mode is dominant to that of the second modal participation. 

The possible maximum response for the structure is obtained by puforming repet­

itive modal analyses for each a-cut level. Four values for 51! are used In the analysis 

which are obtained from the curves defining a-cut 1 on the fuzzy response spectrum. 

The two bounding period values at a-cut 1 from the free-vibration solution are used 

to obtain the S" values. The vertex method requires that all possible iterations be 

performed for the analysis at each a-rut level. To accomplish this, every possible 

parametric combination is used at a particular a-cut level with the constraint that 

the earthquake pcuticipation factor and eigenvector must always be used with the 

same value for frequency. This is because the earthquake participation factor is de­

pendent on the normalization of the eigenvectors, and for each eigenvector there is a 

corresponding eigenvalue (the resulting frequency values). 

Modal superposition is performed four times using SRSS (Eq. 3.4), and the max­

imum and minimum values from these analyses bound the resulting fuzzy sets for 

maximum response. Repeating this procedure at a-cut 0+ givt's the bounds at tht' 

lowest level of membership. This procedure is explained in full detail in Appendix B. 

These fuzzy sets give both upper and lower bounds for the possible maximum fl'­

sponse. Theoretically, the actual maximum rpsponse for a structure should fall within 

the lower and upper bounds for the fuzzy set (lenoting a range in maximum structural 

response. Since" this proct'ss predicts the maximum rerponse it does not make sense 

to represent a lower hound estimate. Consequent Iy, the maximum rt>spons(' fuzzy set.s 

are defined by a single sloped line from It = 1 to " = 0 wb:-h bound the maximum 

response (or all It>vels of confidence. Furthermore, tb'se .esults are only valid for the 

Lorna Prieta earthquake from which the spectra were developed. 

The resulting possibll' maximum response fuzzy St'ts for the displacement and 

acceleration of the roof are given in Fig. 5.5. Displacement spectral rt'spons(' can be 

found from the velocity response spectrum using the following equation. 

S () 
S •. (n)T" 

d 71 = 
2'1r 

(5.1 ) 
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Figure 5.5: Maximum response fuzzy set.s for roof displaceml"nt and acceleration. 
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where, 

Stl = 
T = 
n = 

maximum displacement; 

dynamic period of vibration; and 

mode of vibration. 
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Since the displacement is proportional to the structural period and the periods are, 

in general, small « 1) the resulting displacements are small. Similarly, acceleration 

is inversely proportional to the velocity response spectrum as shown in Eq. 5.2. 

( 5.2) 

where, 

StJ, = maximum acceleration. 

Therefore, the accelerations are higher for low structural dynamic periods. Th{"s{" 

characteristics are reflected in Fig. 5.5. Th{" prt'dicted accelt'ration and displacf'mt'nts 

for the structure are conservatively high because tht' structural periods fall bt'tw(,(,lI 

deterministic point C and fuzzy corner A. As discussed in Chapter 4, the resulting 

spectral values in these regions are high oue to the pla<'ement of th{" two rorrwr points. 

5.2 Santa Clara County Office Building - Case Study 

The following is a numerical example to demonstrate the application of the calibration 

model to an actual building. The Santa Clara County Office Building, located in San 

Jose, has been instrumented since construction to record earthquakes and has bt't'll 

well studied through the processes of syst.em identification. This building, desigrwd 

in 1972 and constructed by 1976, is a nearly square thirteen story struct ure consist ing 

of a steel moment resisting frame with members encased in fire proofing and plaster. 

The building stands 188 fet't in height with sides each measuring 147.5 feet. Refer to 

the elevation and plan views in Figs. 5.6 and 5.7. 

The building was designed using the St'vt'nth edition of the Jlanual of Sfu'l Con­

struction (1970) by the American Institute of Stet'l Construction and comists of seven 
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1O@ 13 feet 

17.5 feet 

Figure 5.6: Elevation view of the Santa Cla.ra Co. office building. 
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Figure 5.7: Plan view of the Santa Clara Co. offict' building. 
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frames spaced 26 feet apart in both the East-West and North-South directions. The 

columns are spaced 26 (eet apart except on the perimeter where the spacing is only 

13 feet (see Figure 5.7). The steel moment resisting frames are designed to carry 

the la.teral loads of the structure and are located primarily on the perimeter of the 

structure. Vertically, the frames of the building are supported by box columns and 

wide fla.nge columns with attached steel plates. Steel girders and wide flange beams 

make up the floor plan of the building. 

On the south and west side of the central supporting structure are wings (17.5 

feet wide) used to house the elevators and stairwells. The frames that compose these 

external wa.lls are not moment resisting frames, but carry gravity loads only. These 

sides of the building have walls made of corrugated steel; whereas, the other two fa.ces 

of the building are comprised mostly of glass. This building has been studied by a 

number of researchers, and the results from some of this prior research are summarized 

in the following subsection. 

The objective of this case study is to demonstrate the use of the calibration model 

on a full scale realistic exa.mple. Blueprints for the structural design were obtained 

from the County of Santa Clara. In this ca.<;e study, the potentia.l values for the 

structural frequency are obtained through a. free-vibra.tion analysis. The maximum 

responses also are predicted using the fuzzy response spectra developed for the Lorna 

Prieta earthquake. Results obtained from the calibration model are compared to those 

obtained through system identification methods. For verification of the calibration 

model. the building's identified dynamic characteristics need to be within the fuzzy 

sets developed. 

5.2.1 Results Obtained from System Identification 

There a.re 22 instruments. distributed among four floors and the basement level, usffi 

to record accelera.tion. Through conventional system identification techniques the 

building's natural modes of vibration have been identified from its response to several 

earthquakes. The lowest two modes are predominantly translational with periods 

of 2.2 seconds (along the East-West axis) and 2.1 seconds (along the North-South 

axis) the corresponding frequencies are 0.45 Hz and 0.48 Hz, respectively. The third 
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mode, which is predominately torsional, with a period of 1. 72 seconds (a frequency 

of 0.58 Hertz). The fourth and fifth modes are again translational corresponding to 

the East-West a.nd North-South directions, respectively. The periods of both these 

modes are identified to be within the range of 0.60 and 0.70 seconds (1.43 and 1.67 

Hz.). These values were identified by Boroschek and Mahin [BM91J. The response of 

this structure was recorded during the Morgan Hill earthquake of 1984 (M = 6.2), the 

Mt. Lewis earthquake of 1986 (M = 5.8), and the Lorna Prieta earthquake of 1989 

(M = 7.1). During each of these earthquakes, the building response was classified 

as severe. The maximum displa.cement at the South West corner of the structure on 

the twelfth floor was 45 em and 39 cm for the North-South and East-West directions, 

respectively. The maximum acceleration at this corner was recorded as 0.34 g's in 

the North-South direction. 

5.2.2 Free-Vibration Results from the Calibration Model 

This subsection gives the results obtained from thf' calibration model for the Cree­

vibration analysis. An analytical finite element model is developed to study the modal 

properties of the structure. The calibration model is performed based on the finite 

element model coupled with estimates of the contributing fundamental uncertainties. 

The result inclu~les bounded ranges for the structural na.tural frequencies. 

Due to the large size of the full three dimensional model (N > 10,000 dt>grees-of­

freedom), preliminary tests were performed on two-dimensional frames rt'prt'sentative 

of the structure's predominant behavior. From these tests natural frequency fuzzy 

sets for the four lowest bending modes (1st, 2nd, 4th, and 5th modes) of vibration 

were obtained. The results highlighted the similarity between the frequencies in 

the North-South and East-West directions for the structure. However, the analytical 

model was stiffer than the actual structure due to its inability to capture the torsional 

response of the building. The results obtained from the two-dimensional modeling 

were encouraging enough to consider more detailed a.nalysis of the structure. Due 

to the significant response oC the torsional mode in the building's dynamic behavior, 

analysis of a three dimensional model is mandatory. The huilding was modeled in 

three dimensions using skeletal beam finite elements. The CRAY e90 located at the 
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San Diego Supercomputing Center was used to perform the free-vibrational analysis 

for the stracture. 

The calibration of the three dimensional model considered uncertainty in the mod­

ulus of elasticity for steel, the static loading conditions, a.nd the stiffness contributions 

from the floor system. Material property uncertainty is the same a8 described ill Sec­

tion 5.1. Uncertainty in the static loading conditions is estimated using Eq. 3.13 with 

initia.l mass estimates, Mo, X(a = 1) = .4, and X(a = 0+) = .6. The estimated mass, 

Mo, is 60 psf for the typical floors and 90 psl for the twelfth floor and roof (atypical 

floors) and is primarily due to mechanical equipment in the building. The stiffness 

of the floor system is the final fundamental uncertainty considered in this aualysis. 

These fundamental uncertainties are displayed gra.phically in Fig. 5.8. 

The gravity loads on the floor systems produce moments which cause the surface 

of the floor system to be in tension near the column supports. In this case study, it 

is assumed that the concrete is fully cracked in these regions. Consequently, these 

cracked regions will not be able to contrioute stiffness to the structural system. At 

a-cut 0+ the contributions of the floor system stiffness are taken to be extremes witll 

bounds ranging from zero stiffness contribution to full stiffness contribution. Tht' 

floor system is analyzed as a continuous beam over rollt'r supports. The gravity loads 

on the floor systems produce moments which cause the surface of the floor systt'm to 

be in tension near the column supports. In this ca..<;e study, it is assume-d that the 

concrete is fully cracked in these regions. Consequently, these cracked regions will 

not be capable of contributing stiffness to the structural system. The upper bound 

for a-cut 1 considers 100% of the floor length contributing to the floor stiffness (i.e., 

no concrete has cracked). The lower hound for o-cut I is calculated by determining 

the length of the floor system where the concrete is in compression (i.t'. not cracked). 

In this case study the rigidity of the floor system for this bound is tak.-n to be 66% 

of the full floor span. 

The first three modes are shown in th ... form of fuzz) sets for the structural natural 

f;equeucies and the corresponding pt'riods in Fig. 5.9. The fundamental frequency (a 

translation mode in the EW direction) is denotNi by the solid line, whilt> the se-cond 

(translational mode in the NS dire-ction) and third (predominantly a torsional mode) 
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Figure 5.8: Fundamental uncertainties used III the calibration of the Santa Clara 
County Office Building. 
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Figure 5.9: First three natural frequencies and the corresponding structural periods. 



Chapter 5: Illustrative Examples 99 

modes are depicted by the dashed and dash-dotted lines, respectively. The 'X' marks 

on the horizontal axis in the graphs denote the buildings first three modal frequencies 

which were obtained through system identification. Uncertainty in the structural 

periods is obtained through a conversion from the natural frequency. This structure 

is considered to be a dynamic building since its natural frequencies fall wen within 

the range of frequency content of most earthquakes. 

5.2.3 Structural Response Results Obtained from the Cal­

ibration Model 

This subsection presents the resulting upper bound for structural response obtained 

from the calibration model. Free-vibration results from the calibration model with 

the fuzzy spectra, developed in Chapter 4, are used to determine the potential max­

imum response for analytical degrees of freedom. The resulting maximum respon~e 

is presented for the displacement and acceleration of the South West corner 011 the 

twelfth floor. 

The site for the Santa Clara County Office Building is primarily stiff clay. The 

structure is located at a. distance of 35km from the Lorna Prieta earthquake rupture 

zone. Consequently, the fuzzy response spectrum (Fig. 4.10) developed for alluvium 

sites between 30 and 60 km of the rupturt' zone is used for this analysis. Estimatt>s 

for the maximum structural response are shown in Fig. 5.10. 

5.2.4 Discussion of the Case Study 

The Santa Clara County Off"t> Building has suffered severt> responses during each of 

the three earthquakes (Mt. Lewis, Morgan Hill, and Loma Prieta). This has bt'en 

primarily due to the similarity in natural frequency bt>tween the translational moMs 

in the North-South and East-West directions. Furthermore, the dynamic character­

istics of the local site conditions Me similar to that of the structure which promotes 

resonant response. Boroschek [BM91J determined from Fourier analysis that. the nat­

ural periods of the site are approximately 2 and 1 seconds for the first and second 

modes of vibration, rt"Spectively. Low damping within the structurt>, which is du(' to 
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Ta.ble 5.2: Na.tura.l periods and damping obtained from system identification. 

Predominant Direction Mode Period (!lec.) Da.mping (%) 
EW First 2.15 • 2.20 2-3 
NS Second 2.05 - 2.10 2-4 

Torsion Third 1.70 
EW Fourth 0.65-0.75 -
NS Fifth 0.60-0.70 -

the bare interior a.rchitectual characteristics, does not sufficiently suppress the large 

responses. Dynamic response of the structure has been as long as 80 seconds. In an 

effort to alleviate these problems, viscous dampers nave recently been addt'd to the 

structure since the Lorna Priet.a earthquake in 1989. System identification using the 

earthquake input motions ar.d the structure's dynamic characteristics haw given the 

results shown in Table 5.2 which is adapted from Boroschek [BM9I]. 

The calibration model is capable of predicting the dynamic characterist j(S for the 

Santa Clara County Offict' building. The frequency fuzzy sets, in general, contained 

the actual frequencies of the structure. Both the second and third natural frequency 

fuzzy sets contained the actual frequencies within the bounds given by a-cut 1. The 

fundamental frequency fuzzy set contained the actual fundamental frequency within 

the bounds given by a-cut 0.8. Due to large "overlap" in the membership functions 

representing frequency, this structure may experience significant modal beating. 

Conclusions made from results of this case study are itemized below: 

• The calibration model captured the frequencies for the actual structure, where. 

the lst frequency falls within a-cut 0.8 bounds and the 2nd & 3rd fall within 

a-cut 1 bounds. 

• The calibrated frequencies are well within the range of the nalural frequencies 

for the site suggesting the possibility of st'vere structural response. 

• The maximum response fuzzy sets, in general, captured the actual response. 

• Predicted displacement response is lower than the actual responst' because the 
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spectra were developed for 5% critical damping, which is high compared to the 

identified damping in the structure. 

• Ma.ximum acceleration also was captured in the fuzzy sets. 

• The actual displacement of 44 cm (relative from the 12th floor to the ground) 

fell within a-cut 0.1 bounds. Although this large displacement may appear to 

be discouraging, it can be explained. First, the structure is very lightly damped 

(only 1.2% critical damping per modp). The response spectrum used in this 

analysis was obtained based on 5% damping from the site dependent spectra. 

Therefore, it is not surprising that the response predicted with the calibration 

model is low compared to actua.l response. Second, the modal heating phenom­

ena has been used as an explanation to the structure's severe displacements. 

• The actual responses are higher than those predicted by full membership in the 

predicted fuzzy response. This is due to the modal beating of the structure. 

Spectral analyses only predict the maximum response not the act ual time his­

tory. Therefore, these methods cannot predict the modal beating phenomena 

or the duration of the structural response. The long response of the building 

can contribute to the higher accelerations and displacements. 

The comparison between the actual structural response and t.he results obtainecl 

from the calibration model validates the qua.lity of the proposed model. It is proposed 

that the calibration model can be used at the design stage to inform the ana.lyst 

of potential problems ~sociated with the structural dynamic response. Therefore, 

with proper applica.tion of the calibration model the analyst or designer can make 

modifications to the design based on the reslIlting fuzzy sets. Thus, reducing the 

possibility of inappropriate structural response. 

Given the overlap of the membership functions for the nat ural frequencies and the 

membership function for the frequency content of the potential earthquake motion an 

analyst will suspect the likelyhood of severe resona.nt response. As shown in Eq. 3.6 

the dynamic amplification factor (which represents the amplification of response for 

an SDOF syst.em) is maximum when the system natural frequency and the frequency 
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of the input motion are close. However, the amplification decreases as the damping 

in the system increases. The potential for severe response should alert the analYl't to 

investigate the structure's polential to dissipate energy through damping. Therefore, 

in the case of the Santa Clara County Office building where there is evid~nce of 

potential resonant response, a designer may choose to add more damping to the 

structural system. This can bf' done by adding floor to ceiling nonstructural partition 

wa.lls into the workspa.re of the building or cladding (which is capable of dissipa.ting 

energy) to the exterior of the structure. In this application of the calibration model, 

the low damping characteristics of the building were rIOt predicted. 

5.3 Assessment of Fuzzy Methodology to Probabilistic 

Implementation of the adaptive analysis mt>thodology requires an analyst to bound 

contributing errors at the design stage of a project in order to obtain a pet·diction of 

the potential range in the higher-ievel dynamic parameters. The ultimate uncertainty 

in the dynamic parameters is based on the initial uncertainty estimate for the funda­

mental parameters made by the analyst. Thus, the st'lt'dion of the initial unn'rtainty 

estimates must he made carefully. An aovantage to using fuzzy matht'maticll for un­

certainty analysis is that only a ft'w cal( ulations are needed to quantify a higher-level 

fuzzy set. 

Probabilistic techniques which already have i..een established are arguably more 

rigol'Ous. The purpOSf> of tht' following example is to compare the results obtained 

from the approa.ch proposed in this thesis and thost' obtained from Monte Carlo sim­

ulation. Unct>rta;nt.y in the stiffness and ma.o;s in tht' analytical model are wl1sidert'd 

in the analysis. 

Free-vibratiQu analyse~ a.re performt'd for the two·dimension frame IIsed in Sec­

tion 5.1 (shown in Fig. 5.1). The uncertainty in the fundamental parameters for the 

stiffness and mass properties of the structural system is represented in terms of both 

fuzzy sets and probability density functions. Ht>re fundamental fuzzy sets are giwn 

for beam and column masses as well as matt'rial stiffness. 

To com part' the two techniques it is necessary to product' probability density 
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functions which represent the uncertainty defined by the fuzzy sets. The following 

&~ct I,jQ describes the mapping procedure used to convert the fuzzy sets to proba.bility 

density functions. Immediately following is a description of the simulation technique 

used in the analysis. 

5.3.1 Monte Carlo Simulation 

Monte Carlo simulation is used in this example to represent a sa.mple of experimental 

observatiolls for the mass and stiffness properties of the structural system shown in 

Fig. 5.1. The simulation is performed by generating random values for the mass and 

stiffness properties of the structure based on parameters which describe the proba­

bility density fundion. The dynamic equa.tions of motion are solved using simulated 

random values to obtain a representative sample of the structure's dynamic proper­

ties. This rrocess is repeated to obta.in a smooth histogram which gives the number 

of occurrences for various values of a structure's natural frequency. 

The simulation Pl'Ocess is performed by first generating ra.ndom numbers in a 

uniform distribution between 0 and 1.0. These standard uniform variates are then 

transformed to random numbers representativt> of a specified probability distribu­

tion [AT75bJ. In the following example, random numbers art> generated for lognormal 

distributions. Equations 5.3 and 5.4 give a relationship between two independent 

standard uniform variates and two independent normal variates for the normal dis­

tribution, N(,."l1) [BM58). 

(5.3) 

(5.4 ) 

where, 

Ii = the mean of the normal distribution; 

(J ::: the standard deviation of the normal oistributiol'; 

U,,2 = two independent standard uniform variates; and 

X~,2 ::: two independent normal variates. 
A random number, x, from a lognormal distribution, N(A,(,), with paramf'tf'rs, 



Chapter 5: Illustrative Examples 105 

A = In Jl - ~(~ and (3 = In (1 + S) is related to the normal variate, x' where 

(5.5) 

In this example, three parameters are simulated to obtain an uncertainty pre­

diction for the structure's natural frequency. These parameters are: the mass dis­

tribution on the beams; the mass distribution on the columns; and the modulus of 

elasticity for the steel members_ Fuzzy sets are typically defined for parameters when 

there is not enough quantifiahle information available to adequately define a proba­

bilistic distribution. Therefore, it is difficult to develop a dear relationship between a 

fuzzy set and a probability density function. However, because this example compares 

the uncertainty obtained from the proposed fuzzy approach and that ohtained from 

tht' more traditionally used prohabilistic approach, fundamental uncertainties must 

be established such that tht' fuzzy sets and probability density functions are com­

parable. Lognormal probability density functions are used to model the uncerta.illty 

represented as fuzzy sets in Section ,'l.I. Lognormal functions are selected for use in 

this example to guarantee that all occurrf'nces of the random variables are grf'ater 

than zero. 

This example uses the probabilistic uncertainty for the modulus of elasticity for 

steel which is presented in Section 3.3.2. The modulus is a random variable repre­

sent ~d by a lognormal Jistributioll with mean and coefficient of variauf{" 29,000 ksi 

ane 0.06, respectively. To perform the simulation, lognormal distributions described 

by mean and coefficit'nt of varianfe parametf'rs are developed to quantify the unrer­

t;'t.inty described by the mass fuzzy sets. The mean and coefficient of variance are 

defined such that a-cut 1 bounds 51% of the area beneath the lognormal distribution 

and a-cut 0+ bounds 99% of the area, as explained in Section 3.3.2. Two a-cuts are 

used to define the two unknown lognormal distribution parameters, (..\ and (, which 

represent the probabilistic occurrence for the mass variaLleli; how{'ver, the curvature 

of the lognormal distribution makes it difficult t.o select a mf'an and coefficient of vari­

ance which correspond to the bounds establisht'd by the fuzzy Sf'ts. Consequently, the 
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Table 5.3: Alpha.-cut bounds, mean and coefficient of variance for the modulus a.nd 
mass fuzzy sets. 

[ a-cut I P(a < E < b) II mean I COy Ulower bound I upper bound I 
Modulus 0/ Elasticity 

ksi ksi ksi 
0.0+ 99% 29,000 0.06 24,841 33,843 
1.0 51% 29,000 0.06 27,822 30,224 

Distributed Beam Masses 
slugs/ft slugs/ft slugs/ft 

0.0+ 99% 8 0.112 6.4 9.6 
1.0 51% 8 0.112 7.2 8.8 

Distributed Column Masses 
slugs/ft slugs/ft slugs/ft 

0.0+ 99% 4 0.106 3.2 4.8 
1.0 51% 4 0.106 3.6 4.4 

final selection for the distribution parameters are made such tha.t the standard devi­

ations required for a-cut 1 and for a-cut 0+ are averaged. Table 5.3 gives the fuzzy 

sets used in this comparative example and the corresponding distribution parameters 

used in the simula.tion. 

The simulations are performed with three independent random variables. Three 

seeds a.re used to gent'rate three independent series of random numbers, one for each of 

the three random variables. Each structural member has the same stiffness properties, 

each column member has the same mass, and each beam member has the same mass 

(which mayor may not be the same as thf" columns). In reality, there will be some 

dependence between the properties in the structural members. However, it is unlikely 

that ea.ch of the member types will have the same ma.~s and stiffness as described hf>re. 

Implementation of the calibration model requires that each solution must be based 

on extreme values given by the fundamental fuzzy sets. This approach is conservative 

beca.use it assumes that aU masses wiJI be low, for examplf", rather than the mass 

in a particular area of the structure. From a probabilistic standpoint, a.nalyses can 

be pt'rformed such that each of the masses is independent of the others. For the 
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purposes of comparison, the probabilistic simulation is performed such that each 

beam or column has the same mass and stiffness properties as the other beams and 

columns. 

5.3.2 Discussion and Assessment of the Two Methods 

Figure 5.11 shows the resulting fuzzy sets and histograms for the two lowest natural 

frequencies. The vertical axis in the figure gives the number of occurrences for the 

resulting frequencies. Three thousa.nd simulations were performed to obtain relativply 

smooth histograms for the two frequencies. The trapezoidal fuzzy sets give bounds for 

the most possible range of frequencies (membership level of 1) and the most extrf'me 

range of frequencies (membership level of 0). Although not denoted on the axes, the 

highest level of confidence for these fuzzy sets is 1.0. It can be seen in the figure 

that a-cut 1 bounds most of the occurrences and a-cut 0 bounds essentially all of the 

occurrences. 

Four eigensolutions are performed to obtain the fuzzy sets shown in the tigurt'. The 

fuzzy sets obtained from the four solutions using the calibration model is compared 

to the histogram based on three thouscmd samples. Three thousand samples w('re 

useo to produce smooth histograms. Thprf' are proct'dures availabl .. sllch as Lat in 

Hypercube sampling which reduct' the number of simulations requirpd for a smooth 

result. If such a method is used, the number of samples typically nf'f'dert is greatly 

reduced, decreasing the computational intpIlsity of this prohabilistic approarh. 

This example has compared the computational intensity required for the calibra­

tion model and the more traditionally used probabilistic simulation. Probabilist ic 

simulations are based on fundamental uncertainties represented as probability dis­

tributions. A probability distribution is fully defined by selecting the type of distri­

bution (i.e. lognormal, beta, etc.) and its paramt'ters. The parameters. mean and 

sta.ndard deviation, need to be defined for the lognormal distributions used in this 

example. These parameters are based on measurablt' quantities for the uncertain 

parameter. The calibration model requires uncertain fUllda.mental pa.ra.meters reprt>­

sented as fuzzy sets. Fuzzy sets can be established for all uncertain paramet.er based 

on meaBured qUAntities or expert opinion. Thus, fuzzy sets can be obtained from 
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Figure 5.11: Fuzzy sets with levels of membership (rom 0+ to 1 are overlaid on 
histograms for the first and second natural frequencies. 
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probabilistic information; however, it is difficult to determine the value of probabilis­

tic parameters from fuzzy sets. 

This example was structured to demonstrate the solution process required for both 

the fuzzy and probabilistic approaches. Although the frequency of occurrence for 

parametric values can be inferred from both approaches, the probabilistic technique 

gives a more rigorous result. Results from the calibration model can increase the 

analyst's understanding about potential parametric behavior with a minimal amount 

of computations. Thus, when an analyst needs to understand the consequence in 

dynamic behavior due to a design change, the calibration model is a useful and 

appropriate tool. 



CHAPTER 6 

Formulation of the Degradation Model 

Prediction of the potential degradation of structural properties' makes it possible to 

design a structure considering the change in its fundamental characteristics. In the 

proposed adaptive analysis models, fuzzy mathematics is used to quantify the initial 

error in a structure's dynamic parameters and the error in the dynamic parameters 

as the structure ages. The purpose of this chapter is to formulate the framework for 

the degrada.tion model which gives a prediction of the error in dynamic properties 

as a function of time. As in the calibration model, the calculation of uncertainty in 

dynamic parameters is based on the solution of the equation of motion. Section 6.1, 

which follows, presents the fuzzy representation of the degradation errors which are 

considered in the solution of the dynamic equations of motion. The development of 

degradation errors for fundamental parameters is discussed in Sf'ction 6.2. Imple­

mentation of the degradation model is demonstrated in Section 6.3 through the use 

of a small example. Finally, Section 6.4 gives a short riiscussion pertaining to the 

application and limitations of the degradation model. 

6.1 Fuzzy Representation of the Degradation Model 

A degradation model is added to the calibration model to predict the gradual degrada­

tion of structural properties as the structure ages. This model is time dependent and 

can be used to estimate the structural characteristics a.t any point during the struc­

ture's lifespan. Fuzzy sets with time dependent membership functions are developed 

to represent the deterioration of structural integrity a.nd the cha.nges in the struc­

tural parameters. This time dependent function takes the following form for natura.l 
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frequency, assuming that frequency will decrease as the structural stiffness degrades: 

where, 
F,J.g 

I> 

bU,L 

= 
= 

uncertainty in degraded frequency at a membership level, a; 

slope for the upper and lower bounds, respectively of the 

degradation function; 

= time; and 

c, d = lower and upper bounds, respectively, for each a-cut. 

The estimation of the extent of structural degradation over time and the slope, b, 

of the degradation function is found from the properties of the construction materials, 

typical loading and unloading patterns on the structure, and structural maintenance 

needs. As with the calibration model, multiple analyses of the strudural model 

are performed to establish the membership function of the fuzzy set representing 

degradation. 

The degradation model ('onsists of a calibration fuzzy set superimposed with two 

additional fuzzy boundaries to represent the changing error bounds over time. The 

degradation fuzzy set supporting this model is developed from the calibration fuzzy 

set which is shown in Fig. 6.1. The increasing error bounds in time are modeled with 

the use of two additional fuzzy boundaries, represented by the shaded a.reas in the 

figure. These fuzzy sets vary over time to model the long term structural degradation. 

Equation 6.1 represents the change in frequency and the corresponding error in 

frequency prediction as a fundion of time. The dynamic properties of a structural 

system are dependent on the fundamental parameters as shown in Eqs. 3.9 and 3.10. 

The mass and stiffness properties of the structure are used in the solution of the 

eigenvalue problem (Eq. 3.2) to obta.in the structure's free-vibration characteristics. 

Therefore, to predict the degradation characteristics of the frequency for the structure, 

it is necessary to model the degradation characteristics of the funda.mental contribut­

ing parameters. The eigensolution is then solved discretely with bounding values for 

the fundamental parameters at different instances in time. 
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Since the natural frequency as a. function of time is .dependent on the degra­

dation properties of the fundamental parameters, Eq. 6.1 is rewritten in more spe­

cific terms as: 

(6.2) 

where, 

['leg = the upper bound which describes degradation error for a membership 

level equal to a which is determined from the initial fuzzy estimate, Fe, 

as a function of time, t; 

[ig = the lower bound which describes degradation error for a membership 

level equa.l to 0 which is determined from the initial fuzzy estimate, F<, 

as a function of time, t; and 

a, b = lower and upper bounds, respectively, for each a-cut. 

In this formulation, the degradation error, [deg, is quantified from the combined 

errors in the fundamental parameters. After the degradation model has been com­

pleted, it is possible to analytically detprmine the parameter b which describes thf' 
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overall degradation of the frequency parameter. The parameter b is dependent on the 

combined degrada.tion of the fundamental parameters. 

6.2 Fundamental Uncertainties in the Degradation Process 

By quantifying the potential degradation of the fundamental parameters it is possible 

to determine the change in the higher-level dynMllic parameters. Initial estimates 

of the error for the fundamental parameters, obtained from the calibra.tion modeJ, 

coupled with fuzzy estimates for the parameter's degradation as a function of time 

give the information required in the degradation model. 

The framework for the degra.dation model is shown schematically in Fig. 6.2. 

Implementation of the degradation model begins with the initial errors obtained from 

t.he calibration model. Then estimates for the degradation potential for fundamental 

parameters are used to predict errors a.s a function of time. The solver consists of 

repeated eigensolutions using extreme bounds at each a-cut level as specified by the 

vertex method. As in the calibration model, solutions (or each point in time require 

extreme values for the contributing funda.mental parameters. The degradation model 

can be applied at any time increment to obtain an estimate of the parametric behavior 

in the time domain. 

As shown in Fig. 6.2 the results of the degradation model ca.n be interpreted either 

as a function of time or at a particular point in time. The free-vibration results are 

then superimposed with the fuzzy representation of the input motion to obtain a 

prediction of the maximum structural response. 

The most important information needed for the implementa.tion of the degradation 

model is an understanding of funda.mental parameter degradation characteristics. 

Degradation can be due to a number of factors, thus a.dding to the complexity of the 

problem. Studies have been performed to determine the degrada.tion of the moda.l 

properties of a structural system. The dynamic properties of an existing structure 

a.re obtained by performing system ident.ification on data obtained from a.n excited 

structure. Typically, the data consists of acceleration recordings at discrete points 

in time at select degrees-of-freedom. By performing system identification with data 
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obtained over a period of time, it is possible to study the degradation of the structural 

freql.tencies. Such studies which have been perfornted in the- Las Vegas art>a with 

structures which were excited dynamically due to blasting in the region [Cza94J. 

System identification also can be performed in the time domain. Such identifica­

tion procedures identify the coefficients needed in the mass and stiffness matrices to 

obtain the recorded dynamic response. Constraints can be added to the process to 

ensure that the modal properties obtained from the newly identified mass and stiff­

ness matrices match those of the actual structural rt'sponse. Although the change in 

the coefficients of the mass and stiffness mat.rices rt'prt'sent cilangt's in fundamental 

parameters, it is extremely difficult jf not impossible to dete-rmirw which structural 

elements and which parameters are affected. It is impossible to use the data to locate 

the potential damage or degradation in the structure. Consequently, information ob­

ta.ined from these system identification methods is not useful in predicting a priori 

degra.dation of fundamental material properties. 
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Due to the lack of quantifiable knowledge &bout the degradation of the funda­

mental material properties, expert opinion is the best information available for use in 

the adaptive analysis models. The analyst develops fuzzy sets to represent his best 

knowledge of the potential degradation in time for fundamental parameters. Cur­

rently, there is an increasing amount of interest in obtaining the degradation prop­

erties of the fundamental parameters (Hop93, Ver93, Job93, Sch90]. As more data 

becomes available, these procedures and fuzzy sets can be updated to incorporate the 

new information. 

The analyst defines the fuzzy sets for degradation prediction for the fundamental 

parameters based on his knowledge of the structure's environment and future use. 

Corrosion, fatigue due to minor dynamic loadings, loosening of joints, and appropriate 

maintenance are all factors which can possibly contribute to damage that an analyst 

may wish to consider when applying the degradation model. Proper ma.intena.nce 

of structures on a regular basis can reduce the effects of structura.l aging. Although 

not considered here, maintenance procedures should be included as a fundamental 

uncertainty. Membership functions for degradation rate fuzzy sets can be assigned 

by the analyst based on his experience or expert knowledge about aged structures. If 

possible, the expert opinion should be supported by analytical calculations. 

For example, it is expected that. an exposed steel bridge spanning over water will 

experience corrosion, while a steel frame building with fire proofing will not. Based on 

his knowledge, the analyst may wish to define a fuzzy set for corrosion (such as the one 

shown in Fig. 6.3) which can be defined as either a fuzzy set with crisp boundaries 

or a trapezoidal fuzzy set. Corrosion is a complex process and is dependent on a 

number of variables [Sch88, Kno75J. In an application the fuzzy set for the rate of 

corrosion must be established such that the most inAuential factors are considered. 

In addition to the removal of structural material, corrosion also can promote crack 

growth in structural materials. 

The resultillg uncertainty for the degrading area of the steel member is based on 

the change in geometry as a function of time. Equat.ion 6.3 gives the relationship for 
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Figure 6.3: Fuzzy set for inches of steel corroded per year. 

the area of a rectangular member as a fundion of time. 

A(t) = (a - 2l.t)(b - 2vt) 

where, 

A = cross-sectional area: 

a, b = the length of the two sides for the red angle; 

v == the rate of corrosion per year for an f'xpost'd surface; and 

t = time in years. 
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(6.3) 

The potential degradation rate due to the corrosion of an exposed member is 

given here as an example. Degradation estimates can be made for a structural systf'ffi 

based on the analyst's best judgment. Another example of potential degradation is 

the loosening of bolted connections which can result in it. stiffness reduction. Gradual 

changes in mass, loosening of nonstructuraJ elements fwm the ma-in load-bearing 

structural system are other fundamental parameters which may be considered. Each 

of these cases is highly specific to the structural system and f'nvironment and must bt' 

carefully determined based on the individual application. However. there is very little 
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information available pertaining to the degradation of such fundamental parameters. 

Until such information is available, estimates for these degradation properties must 

be applied by the engineer on a case-specific basis. As more knowledge is obtained 

about the degradation behavior due to these fundamental contributions, the fuzzy 

estimates can be refined and updated; thus, the model is adaptive. 

6.3 Degradation Examples 

To illustrate the incorporation of the fundament.al degra.dation ra.te into the adaptive 

models the example presented in Section 3.2 is used. The fuzzy set for the fundamental 

natural frequellcy for the axial vibration of the cantilevered bar with a spring support 

at the right side is determined a.s a {unction in time. This system is shown in Fig. 3.4. 

Degradation for this system is due to the corrosion which is represented by the fuzzy 

set of Fig. 6.3. In this example, the fundamf"ntal errors are represented as triangular 

fuzzy sets given in Table 3.1. The cross-sectional area (considered deterministic in 

the previous example) will now degra.de due to corrosion. 

To determine the funda.mental frequency in the time domain, analyses are per­

formed at four 25-year increments. Table 6.1 gives the parametric values for the mass, 

stiffness factor (denoted by "I, a dimensionless parameter), and the cross-sectional 

area, A. The functional dependence for A is hased on Eq. 6.3 where the a and bare 

initially both equal to 1.0. In 100 yt"ars, based on t.he fuzzy set used here for ("orrosion, 

tht" art"a can decrease 4% to 36% from its original value. A 36% reduction in area 

may be considered unrt"asonably large; however. it is a result of the most extreme 

conditions corresponding to o-cut 0+. The resuiting frequencies as a function of time 

are presented in Fig. 6.4. 

A second example is presellted in this section to demonstrate use of the degra­

dat.ion model to determine the natural frequencies for the lateral vibrations of a 

fixed-fixed beam with semi-rigid joints near each of the ends. The system (shown in 

Fig. 6.5) is a beam with stiffness properties denoted as AE and EI equal to 1000 and 

a constant mass, m = 1.0 distributed uniformly along the length of the beam. 

The uncertainty considered in this example is the stiffness of thf" rota.tional springs 



Chapter 6: Formulation of the Degradation Model 118 

Table 6.1: Parametric va.lues used in the degradation modE'1. 

a-cut Mass Stiffness Area. Mass Stiffness Arf'a 
m, slugs/ft I A, in2 m, slugs/ft ..., A, in l 

T = 0 years T = 25 years 
0.0+ 8 0.6 1.0 8 0.6 0.99 
1.0 10 1.0 1.0 10 1.0 0.98 
1.0 10 1.0 1.0 10 1.0 0.93 
0.0+ 14 1.2 1.0 14 1.2 0.90 

T = 50 years T = 75 yea.rs 
0.0+ 8 0.6 0.98 8 0.6 0.97 
1.0 10 1.0 0.95 10 1.0 0.93 
1.0 10 1.0 0.93 10 1.0 079 
0.0+ 14 1.2 0.81 14 1 2 0.72 

T = 100 years 
0.0+ 8 0.6 0.96 
1.0 10 1.0 0.90 
1.0 10 1.0 0.72 
0.0+ 14 1.2 0.64 
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Figure 6.4: Fundamental frequf'lIcy as a function of time for the axial vibrations of a 
ba.r with a linear spring at one support. 
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Figure 6.5: Fixed - fixed bt"am with semi-rigid joints represented as rotational springs. 
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Table 6.2: Parametric values used in the degradation model. 
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lower bound upper bound 
"f, % rigidity 
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which a.re used in the ana.lytical model to represent the semi-rigid joints. Here, the 

stiffness of the springs is expressed as 

,. = "Y(stiffness of the beam) 

where, 
" = Stiffness of the rotational spring, moment/radian; and 

"Y "" factor representing % rigidity compared to the beam stiffnt's!-i. 

It is assumed that the springs degrade in stiffness such that 

where, 

"Yo = represents the initial % rigidity supported by the spring; and 

j3 = parameter representing degradation rate. 

(6.4) 

(6.5 ) 

Analyses are performed discretely in 10 year intervals. The uncertainty for t.he initial 

and degrading stiffness of the springs represented by "f and /1, respectively. is gi\'('n 

in Table 6.2. 

Figures 6.6 and 6.7 show the graphical results for the second natural frequen<"y 

of the beam and spring system at 100 years. The second lowest mode shape has all 

inflection point near the center of the bea.m. Due to this curvature this mode is more 

sensitive to the spring stiffness than the first mode (which does not have an inflection 

point). Thus, the frequency for the second mode is presented here. The rl'sults art' 

depicted as a three dimensional fuzzy set with uncerta.inty increasing as a function of 
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Figure 6.6: Degrading natural frf'quf'ncy for thf' 2nd mod .. of vibration as a function 
of time. 

time. In Fig. 6.6 a-cut 0+ bounds are denoted by the extreme bounds shaded grey 

and the a-cut 1 bounds denoted by the white region. Note that since this application 

is confined to the use of convex fuzzy sets, a-cut 1 is a subset of a-cut 0+. Figure 6.7 

shows the additional uncf'rtainty in the frequency due to the consideration of a 100 

year lifespan. The calibrated frequency is represented by the white fuzzy set, and the 

additional uncertainty due to degradation in toO years is represented by the fuzzy set 

shaded black. Here, the calibration error and the degradation error are superimposed 

such that the black region depicts the added uncertainty due to the degradation in 

100 years. 

6.4 Discussion 

The previous examples have demonstrated the use of fuzzy sets In predicting the 

potp.otial degradation in dynamic properties of structure. In the first example, imple­

mentation of the degradation model is demonstrated through the calculation of fuzzy 

sets at discrete instances in time. Degradation of member stiffness due to corrosion 

and the stiffness of semi-rigid joints is presented. The degra.dation relationships are 
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applied to initial representations of uncertainty in the calibration model. 
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Implementation of the degradation model combines the fuzzy sets representing the 

initial uncertainty in the fundamental parameter with a fuzzy set for the potential 

degradation of the parameter in time. By combining extreme bounds from each 

of these fuzzy sets, the upper bounds of a fundamental parameter's fuzzy set will 

degrade the least while the lower bounds will degrade the most over time. This 

statement assumes that the frequency will, in general, deteriorate in time. There may 

be instances when aging will cause the fundamental parameters to increase in value. 

The result obtained from th~ degradation model is a fuzzy set for the fundamental 

parameter which represents increasing uncertainty in time. 

The slope, b, given in Eq. 6.1 is a parameter which can be used to predict the 

cha.nge in frequency as a function of time due to potential degradation. This pa­

rameter is not a fundamental quantity and must be determined after implementing 

the degradation model. Once determined, however, b may be used to interpolate the 

bounding values for the frequency fuzzy sets as a function of time. The parameter b 

is useful, permitting an analyst to quickly assess the potential changes in frequency. 
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For example, an iteration applying the calibration and degradation models may sug­

gest the need for a design change. After the design change and reapplica.tion of the 

calibration model, the ana.lyst may wish to use the parameter b to assess the struc­

ture's degradation potential. Care must be taken that b is not used to extrapolate 

degradation information for points in time not initially considered in the degradation 

model. Since b is dependent on the fundamental degradation characteristics, b can­

not be used to predict degradation beyond the time period with which the model was 

applied initially. 

Implementation of the degradation model rt"quires communication between all the 

players a.ctive in the design phase. The analyst must fully understand the intendt'd 

use for the structure during the time period in which the degradation model is being 

applied. Additionally, the analyst must also consider the type of environment the 

structure is in. These considerations will help him answer questions such as: HoUl 

much exposure to mrrodillg effects will this structure have? Will there be a regular 

dY1lamic load fell by the structure? How often will the structure experience minor 

earthquake loadi1lg,~?, etc. 

This chapter has presented a framework for the application of the degradation 

modd to structural systems which are analytically modeled with a finite element 

model. Today, there are efforts to build structurE'S with design lives wen over two 

hundred years. Unfortunately, at this time there is little information available per­

taining to the degradation propertif:s of the fundamental parameters which contribute 

to the dynamic response of a structure. These designs must consider the uncertainty 

due to the deteriora.tion and degradation of material properties a.nd joint conditions. 

This degradation model which is based on uncertainties modeled as fuzzy sets using 

expert opinion provides a method of ass('ssing the dynamic characteristics of a struc­

ture over such a lifespan. As more knowledge is obtained about the degradation of 

ma.terial properties expert opinion will improve; thus, improving the qualitv of the 

results. 



CHAPTER 7 

Summary and Conclusions 

This dissertation presents a framework for modeling uncertainties in dyna.mic param­

eters using fuzzy set mathematics. By modeling uncertainties in the dynamic proper­

ties of a structure, an analyst can increase his intuition about the structurf"s potential 

behavior. Thus, the designer is provided with uncertainty information Ilf't'ded to im­

prove his design. These uncertainty analyses can also be expanded to provide the 

analyst with information about structural degradation. Following, in Section 7.1 the 

research developed in this dissertation is summarized. Recommendations for future 

research with respect to this work are presented in Section 7.2. Finally, this disserta­

tion concludes with Section 7.3 which contains a few dosing r('marks. 

7.1 Summary of Contributions 

After the introduction of Chapter 1, Chapter 2 presents uncertainty analysis meth­

ods. Every aspect of an engineering problem contains some element of uncertainty. 

Ultimately, uncertainty in the response of the structure is due to errors in the ana­

lytical model and the prediction of potential loads. Typically, probabilistic methods 

are applied rigorously to predict parametric uncertainty either by calculus or simula­

tion. These processes are, in general, computationally expensive; consequently, they 

are used only for the most critical structures. Fuzzy sets give bounds describing the 

uncertainty in a fuzzy parameter at various levels of confidellce. Use of fuzzy mathe 

matics allows the analyst to model fundamental uncertainties which contribute to the 

behavior of a structural system by establishing fuzzy bounds rather than assigning 

probability distributions. 

The calibrat.ion model, the first of the adaptive analysis models, is presented in 

124 
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Chapter 3. This model is capable of quantifying the ultimate uncertainty in the struc­

tural dynamic properties based on fundamental uncertainties. The first part of the 

chapter is devoted to the formulation of the dynamic equations used in the calibra­

tion model. Analysis is performed by solving the undamped free-vibration problem 

for the modal properties. Structural response is obtained from the response spectrum 

approach. The calibration model solves these dynamic equations with parameters de­

fined by membership functions. The vertex method is used to facilitate the solution 

process. 

Establishment of the fundamental errors are an important aspect in the develop­

ment of the higher level uncertainties. Section 3.3 is devoted to the development of 

various types of contributing errors. In this dissertation, procedures are suggested 

for the development of fuzzy sets for errors in the modulus of elasticity, static load­

ings, joint stiffness, and floor rigidity. The calibration model is easily applicable to 

additional uncertainties provided that the logic used in the fuzzy set development is 

consistent. 

Chapter 4 presents a model which can be used to quantify the uncertainty in the 

input motion felt by the structure. This model considers uncertainty in the frequency 

content and amplit ude of the earthquake motion felt by the structure through the 

development of a fuzzy response spectra. In this dissertation, fuzzy velocity response 

spectra are developed for the Lorna Prieta earthquake only. However, the procedure 

has been established to develop spectra for records from multiple earthquakes. Su­

perposition of the uncertainties for the structure's natural frequencies and the input 

motion allows the analyst to quantify levels of maximum response as fuzzy sets. 

The fuzzy response spectra developed in Chapter 4 demonstrate characteristics 

typical of sites in the San Francisco Bay area. Rock sites, in general, have a larger 

frequency content than the alluvium sites. This is due to the wide variation in age 

for the rock in thf' bay area; thus, the range in shear wave velocity for the rock 

sites is broad. Additionally, the spectra demonstrate attenuation in amplitUde as 

the distance from the site to the rupturf' zone increases. These spectra show the 

possible and most likely levels of amplitude of the ground motion due to different site 

conditions and distance from the rupture zone. Since, only records from the Lorna 
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Prieta earthquake were used, the results are valid for a single magnitude and rupture 

mechanism. This information can be used to assess the potential maximum response 

for a structure at a particula.r site. 

Through the use of examples, Chapter 5 contains a detailed description of the 

implementation of the calibration model. The ca.libration model can produce the 

maximum response for a degree-of-freedom in the a.nalytical finite element model. 

This information can be further investigated with respect to inter-story drift which 

is important in assessing the possibilities of nonstructura.l damage. The first example 

in this chapter illustrates the calibration model for a small scale two-dimensional 

example. Natural frequencies and the roof's maximum response is determined for the 

structure based on uncertainties in the modulus of elasticity, structural mass, and 

input motion. 

A case study also is presented in Chapter 5 which further illustrates the use of 

the calibration and ground motion models. In the case study, results from the cal­

ibration model are compared to the actual dynamic properties of the Santa Clara 

County Office Building. By considering uncertainty in both mass and stiffness, the 

reSUlting frequency fuzzy sets bound the a.ctual frequencies of the structure. Funda­

menta.l uncertainties are considered in the finite element model of the st.ructure by 

implementing repeated solutions. These unc('rtain frequencif's are superimposed with 

uncertainty in the input motion to obtain an UPP('f bound for the potential maxi­

mum response of the degrees-of-freedom in the structura.l model. The r('sults from 

the case study are fuzzy sets for the potential maximum response. These fuzzy sets 

were successful in bounding the actual response of the structure. The actual response 

is bounded at levels Qf confidf'nce less than one. This is due to the modal beating 

which is impossible to predict analytically using thf' responsl' spectrum method. 

The final example in Chapter 5 gives a compa.rison between the calibration model 

proposed here and the more traditionally used probabilistic approach. Montt' Carlo 

simulation is used to simulate experimental sampling of three random variablt'S. The 

results from the simulation technique and the calibration model are shown a..<; a fuzzy 

set overlaid on a histogram. Four solutions are performed to obtain fuzzy sets for the 
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structure's natural frequency, while the histogram is the result of 3,000 computer gen­

erated samples. The resulting fuzzy sets give conserva.tive bounds for the moat likely 

occurrences. Consequently, when probabilities are needed at high levels of accuracy, 

the probabilistic methods are recommended. However, to obtain an understanding of 

the potential values for a parameter, use of the calibration model provides an efficient 

and accurate result. 

Chaptn 6 presents the framework used to quantify the potential change in due to 

the gradual degradation of a structural system. The degradation model is based on 

the fuzzy estimates for the degradation charACteristics of the fundamental p&rameters. 

Examples are presented which demonstrate the degradation of frequency for the 

structure due to corrosion and the loosening of bolted connections. Fuzzy sets are 

used to model the degradation potential in the time domain based on initial fuzzy 

sets which describe the uncertainty in time, t = O. 

In this dissertation a framework is developed which can be used by an ana.lyst to 

better understand the uncertainties in dynamic parameters for an analytical structural 

model. This model which is a finite element representation of the structura.l system 

is solved with methods typica.lIy used in dynamic analysis. A basis is established for 

the development of the fundamental uncertainties which affect the dynamic response. 

However, due to the generality of the process it is impossible to address every issue 

which adds uncertainty to the problem. The following section gives recommendations 

for future research in this field. 

7.2 Recommendations for Future Research 

This research has provided a foundation for the development of ada.ptive analysis 

models which consider the uncertainty in dynamic parameters over a structure's lifes­

pan. The purpose of this section is to provide a discussion suggesting additional 

research which is needed in this field. The following subsections present p08sible 

alternate modeling techniques for use the adaptive uncertainty models. 
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7.2.1 Nonstructural Components 

It has been widely accepted that the nonstructural components contribute not only 

to the masses but also to the stiffness of the structural system. Often, the mass of the 

nonstructural components is considered in dynamic analysis as dead loads; however, 

the contributing stiffness from these components to the structural system are rarely 

considered. These components, such as partition walls and cladding atta.chf'd to the 

exterior of the building, ca.n stiffen the structural system which increases the natural 

frequencies of the building. 

Analytical modeling of the added stiffness due to nonstructural components is 

extremely difficult. The stiffness contribution from partition walls to the structural 

system depends on the type of partit'lon wall and t.he interior and exterior connections 

to the wall. The quality of the connections affects the ability for the wall to transfer 

loads (not explicitly considered in thf' design) to and from the structural system. 

Construction practice also has an impact on the quality of the connertions. Additional 

research is necessary to assess the stiffness contributions of these components due to a 

number of uncertain factors. Fuzzy sets can be used to quantify the uncertainty in the 

stiffness contributions of the nonstructural components by considering issues such as 

construction practice and joint stiffness which can be difficult to model analytically. 

1.2.2 Uncertainty in the Structural Damping 

Damping is by far considered to be the most uncertain aspect in the modeling of struc­

tural dynamic behavior. There is an extremely large amount of uncf'rtainty related 

to the amount of damping inherent ill thE" structural and nonstructural systems. This 

is due to the complexity involved with analytically modeling the damping parameters 

for the structural elements, in addition to the- contribution from nonstructural compo­

nents. Nonstructural components, such as partition wa)Js and cladding, may increase 

the damping during the structural response. Damping is typically ass\lrnt'd to be 

proportional to the mass and stiff,lf'sS propertit's of tht> structural denlt'llt. An ad­

vantage to assuming that the damping is proportional to mass and stiffness is that 

when the mass and stiffness propt"rties are uncoupled the damping charactt'ristirs 
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also are uncoupled. Thus, it is possible to perform dynamic analyses on each mode 

sep&rately before superimposing the effects of all modes acting together. 

The development of a procedure which quantifies the uncertainty in the propor­

tional damping of a structure, both from the analytically modeled structural system 

and the nonstructural components (which may not be modeled ana.lytically) is needed. 

Results from the calibra.tion model will benefit from the consideration of uncertainty 

in a structure's damping characteristics. 

7.2.3 Input Motion Uncertainties 

Chapter 4 presented a methodology to define fuzzy sets which consider the uncertainty 

in the input motion felt by a structure at a. site. The fuzzy response spectra quantify 

the uncertainty in the frequency content and the amplitude of the ground motion. 

In this chapter. each of the spectra developed for velocity responSf> are confined to 

a trapezoidal shape with three linear sides (the fourth side is the horizontal axis). 

This shape gives the best estimates for amplitUde for mid-range structural periods. 

Further refinement of this shape to five linear sides will provide more realistic response 

estimates at low and high periods. 

Consideration of additional earthquakes In the development of fuzzy response 

spectra will help refine the resulting fuzzy spectra. Soil categories can be refined by 

grouping da.ta based on shear wave velocities rather than the crude division by soil 

type. Distance groups also will be refined with the additional data. These refinements 

will give the analyst spectral values for the ground motion with narrower uncerta.inty 

bounds. This is not to say that the uncertainty is reduced; however, the ground 

motion prediction based on an earthquake magnitude, distance to the rupture wne, 

and soil type, will be less uncertain with the consideration of additional records. 

This dissertation developed fuzzy spectra to illustrate the consideration of in­

put motion uncertainties in the calibration model. The results from the calibration 

model are validated by comparing the fuzzy sets for maximum response to the actual 

maximum response of the case study structure during the Lorna Prieta earthquake. 
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7.2.4 Aging Properties of Structural Parameters 

The degrada.tion model is dependent on information about the aging characteristics 

of structural para.meters over an extended period of time (Le. at least 100 years). 

Unfortunately, at the time of this work there has been very little research performt'd in 

determining such information. This work assumes that by understanding the potential 

degradation properties for fundamental parameters it is then possible to t'xtrapolate 

the uncertainty in the higher level parameters as a function of time. Specifically, as 

more knowledge is obtained about the degradation of fundamental paramett>fs, t.he 

degradation model presented lwre can adapt to this updated information. 

At this point in time very little is known about a parameter's aging characteristics. 

Prediction of these future characteristics (which are difficult if not impossible to 

measure) for these parameters can be facilitated using fuzzy logic. As we obtain 

more data about material aging, it may be more applicable to predict the uncertainties 

based on statistical methods rather than using fuzzy sets. 

7.2.5 Uncertainty Due to Damage 

The adaptive analysis models have been developed to quantify errors at three stages 

of a structure's life: calibration, degradation, and damage. Bot.h the calibration and 

degradation models have been described ht're in this dissertation. Devdopment of 

the damage model is left to future research. The damagt' model predicts a drastic 

change in the dynamic characteristics of a structure due to a dt'sign level event, such 

as a strong earthquake. This drastic shift is illustrated for frequency in Figure 7.1. 

The fuzzy set for natural frequency before damage is shaded black in Fig. i.I rep· 

resent.s uncertainty for this parameter at a particular point in time. The unshaded 

fuzzy set in t.he figure depicts the possible uncertainty in frequency due to damage, 

edam. This fuzzy set is determined from the calibration and degradation models. 

Uncertainty in the natural frequency after a damaging event is ba.sed on the initial 

uncertainty for the parameter and the type of event. Furthermore, there is uncer­

tainty associated with the time and location the event occurs. For example, in the 

San Francisco area three major faults known to actively cause earthquakes are: San 
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Figurf' :.1: Shift in uncertainty for natural frequency due to a dama.ging event. 

Andreas, Hayward, and Calaveras. Additionally, there a.re numerous smaller faults 

also capable of initiating earthquakes. Development ot" the damage model should 

include tl··, uncertainty involved with which fault ruptures, the location along the 

fault, and the time of the events in addition to an evaluation of the structure's non­

linear response. Not only will the damage fuzzy sets denote a shift in uncertainty due 

to the occurrence of the event, the fuzzy sets will represent the uncertainty shift in 

the time domain. Thus, the damage model must include recurrence rela.tionships for 

earthquakes at various magnitudt"s occurring at various faults. 

7.2.6 Interpretation of Results 

Implementation of the a.daptive analysis mm\f'ls is performed iteratively, where a 

structural design is evaluated based on the results of the calibration modE-I. Upon 

obtaining acceptable results, the design is evaluated based on the degradation model. 

Finally, as a final check the structural design is evaluated with respe'Ct to the damage 

model. The framework for these adaptive models has bet>n established such that this 

method can model uncertainties in various types of structural systems, provided the 

system is modeled using finite demf'nts. Furthermorf', the generality of the framework 

also permits the consideration of additional uncertainties. 
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Specific guidelines need to be developed to ensure that the user is interpreting 

the results correctly. These guidelines can steer the analyst through the process of 

prescribing the fundament iLl uncertainties as fuzzy sets such that the logic is applied 

consistently, helping the analyst determine which uncertainties are most important 

for his purposes. A decision ana.lysis model is needed to help the analyst interpret 

the results to ensure consistent use in design. 

7.3 The Adaptive Analysis Models 

This study categorizes structural modeling ullcertainties into three main sources of er­

ror: calibration, degradat ion, and damage error, whir h represent the potential sources 

of discrepancy between the original structural design model and the constructed sys­

tem. Previous work focused on quantifying structural modeling error has used sys­

tem identification techniques or probabilistic techniques to predict the modeling error 

based on measured response data. However, the need to understand modeling error 

is greatest prior to construction, during the design of the structure, when response 

data is not available and the cOllventional system identification tt'chniques are not 

applicable. 

An adaptivt' design procedure is presented here which allows the analyst to quan­

tify the uncertainties between the structural finite element model and the as-built 

structure during the design phase. Fuzzy st'ts are used to represent the level of 

confidence associated with various uncertain structural parameters sHch as natural 

frequency, frequency ratio, and maximum response. Using the vertex mt'thod, the 

analyses associated with these parametric uncertainties establish the bounns for the 

fuzzy set and define the membership function for structural response. Membership 

functions and confidence intervals for the parameters are determined by pt'rforming 

multiple dynamic analyses involving extreme cases of the modt'l assumptions. 

The adaptive design methodology is capablt' of simulating and predicting the 

various forms of modeling error prior to building construction. This iterative design 

procedure allows the design engineer to account mOTt' effectively for modeling discrep­

ancies and degradation effects. If at any point in the adaptivt' analysis the potential 
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exists for unacceptable system response, the designn ttOJesigos the structure and re­

formulates the associated calibration, degrada.tion, and damage models. When the 

range in response represented by the fuzzy sets is acceptable for the given design 

specifications, the iterative procedure converges to an accepta.ble design. 

A possible application for the use of these models based on fuzzy mathematics 

pertains to the design of a control system. The resulting fuzzy set which represents 

the uncertainty in the dynamic propertiell of a structure provides bounds which the 

analyst can use as a basis to design an active or passive control system. These 

control systems typically a.re "tuned" based on the structure's natura) frequencies. 

By quantifying the uncertainty in the potentia.l free-vibration properties and response 

for the structure it is possible to design a control system which is more robust. 

This disserta.tion has focused on the developmf'nt of a methodology for the use 

of fuzzy set mathematics in thf' quantification of potentia) errors in structural dy­

namic properties. Fuzzy set logic is beneficial in this application due to the limited 

knowledge available a.bout the stiffness and mass contributions from various types 

of elements which comprisf' the structural system. Furthermore, the use of fuzzy 

st't mathematics allows the analyst to bound his perceptions of the uncertainties, 

IIltimat.f'ly bounding the resulting dynamic parametf'rs. 
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ApPENDIX A 

Data Used in Fuzzy Spectra for Lorna Prieta 

In this appendix the procedure is outlined for the development of the fuzzy velocity 

response spectrum for alluvium sites less than 30 km (rom the rupture zone. Data 

denoting distance to the rupture zone, soil type, and the location of thl"' two corner 

points A and B, are collected for each site. The steps used in the development of 

the fuzzy velocity response spectra are itemized below. A few of the figures given 

in the text of Chapter 4 are duplicated here to clarify the explanations given in this 

appendix. 

• Identification of "Corner Point A" and "Corner Point B" helps to approximate 

the trapezoidal shape typical of the velocity spectrum (see Fig A.I). Velorit) 

amplification and period are the coordinates used to specify tht" location of these 

points . 

• Fuzzy sets are defined based on the uncertain location for corner point~ A and 

B. This is done by creating plots for amplitude versus distance and the period 

versus distance for each of the two corner points (four plots in total). Figure A.2 

gives a typical plot for period versus dista.nce. This plot is generated by plotting 

the period values for Corner B fa" alluvium sites. 

The horizontal lines in the figure at distances of 30 km and 60 krn divide the 

data into the three distance categories. Placement of these divisions have bt't'n 

based on the amount of data. a.vailable for each group. Effort was made to 

maximize the amount of data in each distance category, while not creating a 

category which is unreasonably large. 
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Velocity Response Spectrum 
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Figure A.I: Corner points A & B for site a dependent spectrum. 
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Figure A.2: Period versus distance for alluvium sites (Corner B). 
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Also, in the figure, there are four vertical lines for each distance category. The 

solid lines denote the a-cut 0+ boundaries for period in each distance cate­

gory. Alpha-cut 1 boundaries are denoted by the dashed lines. This process is 

repeated to define fuzzy sets for amplitude at each of the three distance cat­

egories. Finally, period and amplitude fuzzy sets are generated for Corner A. 

The result consists of four fuzzy sets which are then used to defined the fuzzy 

velocity response spectra (shown in Fig. A.3). 

• The four fuzzy sets which are used to define the spectrum are two frequency 

fuzzy sets, one each for Corners A and B, and two velocity amplification fuzzy 

sets, one each for Corners A and 8. These fuzzy sets are shown in Fig. A.3 for 

alluvium sites less than 30 km from the rupture zone. 

The vertices in Fig. A.3 are mapped to the resulting fuzzy spectrum using 

fuzzy set theory. Uncertainty in the frequency content for the fuzzy spectrum is 

obtained by taking the union of the two frequency content fuzzy sets for Corners 

A and B. The uncertainty in thf' amplitude of the resulting spectrum at a corner 

is obtained by taking the in~ersection of the amplitude fuzzy set for a corner 

with the frequency fuzzy set for the same corner. The resulting spectrum is a 

three dimensional fuzzy set as shown in Fig. A.4 (reproduced from Chapter 4). 

In the figure, the third axis r .. presents membership and is orthogonal to the 

plane of the page. The two shaded areas are slices taken at membership lew-Is 

of 0 and L 

• The final fuzzy set for alluvium sites located less than 30 km from the rupture 

zone is shown in Fig. A.S. In this figure, two a-cut levels are given. 

The following tables give the distance from the rupture zone and the coordinatt's 

for the location of corners A and B for ea.ch channel at each site. Rock sites art' 

given in Table A.I, and alluvium sites in Table A.2. 
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AppencJjx A: Data Used in Fuzzy Spectra for Lorna Prieta 

PSV, In/sec Fuzzy Velocity Response Spectrum 
fOi AlluvIum Sites Less Thai1 30 km 

1NWL---------r-~~~--~--~--~~--------~ 

1~----------~~~ 
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0.1 K-____ ..... ____ -4-_____ ..... __ --::~~ .. 

0.01 0.1 10 100 
Period, seconds 

Figure A.5: Fuzzy velocity response spectrum for alluvium sites less than 30 km from 
the rupture zone at a-cut 0+. 
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ApPENDIX B 

Use of the Vertex Method in Modal Analysis 

Typically, the response spectrum method is performed deterministically. Values for 

moda.l periods for each mode are referenced on the response spectrum to obtain a 

single value for the maximum response. Then a superposition method, such as SRSS 

or CQC, is used to obtained an estimate for the potential maximum response for 

the structural system. The purpose of this appendix is to describe the use of the 

respor.se spectrum method when uncertain parameters are used rather than deter­

ministic va.lues. Here, the uncertain parameters are represented as fuzzy sets defined 

by membership functions. 

The equations used in this thesis to calculat~ maximum structural response are 

given below: 

In = l/>nM{l} 

where, 
In = the earthquake participa.tion factor (or mode n; 

tPn = 

M = 

where, 

the eigenvector for mode n; and 

the assembled mass matrix. 

m 

IVrnaxl = E ln~nS,,(n) 
n==1 

(B.l ) 

(B.2) 

SI/(n) = the maximum velocity obtained from a velccity response spectrum; 

m = the number of modes superimposed; and 

V max = the maximum velocity for the strudure. 
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Appendix B: Use of tbe Vertex Method in Modal Analysis 153 

Calculation of the earthquake participation factor for each mode is performed at 

the same time as the free-vibration analysis. For each vertex defining the frequency 

trapezoidal fuzzy set, there is a earthquake pa.rticipation factor and mode shape. 

Thus, the extreme conditions used to calculate an extreme bound for frequency are 

also used to calculate the participation factor a.nd the eigenvector for that vertex. 

If a deterministic value is used to reference responses from the fuzzy response 

spectrum, then the maximum response is a fuzzy set. A period of 2 seconds referenced 

on the fuzzy velocity response spectrum for rock sit.es within 30 km of the rupture 

zone gives the fuzzy set for the maximum velocity shown in Table B.3. 

Table B.3: Maximum response fuzzy set at rock sites (X < 30 km) for a period of 2 
seconds. 

a-cut lower bOllnd upper bound 
in/sec in/<;ec 

1.0 11 23 
0.0+ 6.1 46 

When the period fuzzy set is used to reference responses on the fuzzy spectrum. 

each vertex of the period fuzzy set refers to a maximum response fuzzy set. Table B.4 

gives the response fuzzy sets for a period fuzzy set equal to • about' 2 seconds. The 

column of values in the table is the fuzzy set for period. The vertices for the triangular 

fuzzy set are labeled as A,B, & C as shown in the second column of the table. Fuzzy 

sets for velocity response for each vertex are given in tht' last four columns. 

Modal superposition using SRSS is performed repetitively using the fuzzy sets for 

period (with participation factors and eigenvectors) and the fuzzy sets for maximum 

response. Calculations are performed at each a-cut level a.<; specified by the vertex 

method. At each a-cut level four solutions are performed to exhaust all possible 

combinations of vertices. The highest value calculated at ea.ch a-rut is selected as 

the bound for the resulting maximum response fuzzy set. 

Equations B.3, 8.4, B.5, and B.6 give the parametric combinations for each of the 
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four solutions at a-cut O. 

IVrnaxl'l = .cf·o=o~f·o=os!,·Q=o(Tf·Q=O) + C~·o=o~~.",=o~.a=O(Tf·a=o) (BA) 

IVrnaxb = .cf·Q=O~f·a=ost,Q=o(TIU,a=o) + C~· .. =o~~,a=ost·a=o(T:""=o) (B.5) 

IV maxL. = .; .cf'0=o~~.a=o s!',Q=O(T~,a=o) + .c~.o=o~~,a=o s!'.a=o(Tf'o=O) (B.6) 

where, 
U = superscript denoting upper bound for an a-cut; and 

T = structural period. 

The resulting bound for a-cut 0+ for the maximum response IV maxIQ:o+ = max IV max I .. 
for n = 1,4. This procedure is repeated a.t each a-cut level to fully define the upper 

bound for the maximum response a.t all levels of confidence. 

Table B.4: Maximum response fuzzy set at rock sits (X < 30 km) for a period of 2 
seconds. 

Bounds Period Label A B C D 
(sec) (in/sec) (in/sec) (in/sec) (in/sec) 

a-cut 0+ (low) 1 A 6.0 6.1 6.1 5.5 
a-cut 1 2 B 13 II 11 5.5 
a-cut 1 2 C 28 23 23 11 

a-cut 0+ (high) 4.5 D 50 46 46 30 
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