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Abstract

In this research a new analysis procedure is proposed which integrates syvstem iden-
tification objectives and fuzzy set mathematics to formulate an adaptive analysis
mode] capable of considering the changes a structure experiences during its lifespan.
The adaptive models quantify the uncertaintics associated with dynamic parameters
at three stages during the structure’s lifespan; calibration, degradation, and dam-
age. The adaptive model proposed here, unlike conventional system identificatior
techniques, does not require experimental response data from the as-built structure.
Instead, fuzzy set mathematics is used to represent the level of confidence of vari-
ous design assumptions, and the vertex method is used to develop a fuzzy set which
bounds the structure’s dynamic parameters.

The calibration model, the first of the three categories considered in the adap-
tive model, quantifies the error between the dynamic parameters predicted by the
analytical structural model and those of the actual structure. The error in the Jdy-
namic paraineters is based on the modeling uncertainties for the structural masses
and the structural stiffness. Quantification of the fundamental uncertainties and the
use of the calibration model makes it possible to predict the potential values of the
higher-level dynamic parameters. The degradation mode! uses the results from the
calibration model and uncertainty in the rate of degradation of fundamental param-
eters to predict the uncertainty in the dynamic parameters during the structure’s
lifespan.

It has been well accepted that the excitation acting on a structure (duc to an
earthquizke) is dependent on the site’s proximity to the fault rupture, earthquake
magnitude, and local site conditions. In this study the uncertainty in the excitation is
modeled through the development of the fuzzy response spectra. The fuzzy spectrum
used in the dynamic analysis is selected based on the local soil conditions and the site’s

proximity to the potential earthquake. Each spectrum provides the analyst with a

ii



range of frequency content and maximum responses for the possible earthquake. The
forced vibration analysis is performed by superimposing the fuzzy spectrum with the
adaptive models (which quantify the potential sources of error in structure’s dynamic
properties) to quantify the uncertainty in the response for the structure.

A case study of the Santa Clara County Office Building, located is San Jose,
California, is presented. This structure’s dynamic behavior has been studied exten-
sively since its instrumentation with the California Strong Motion Instrumentation
Program. The dynamic parameters obtained from the calibration model and the
ground motion models are compared to the actual parameters of the structure. It
is found that the calibration model is capable of bounding the dynamic properties
(natural frequencies and maximum building response) of the structure at high levels

of confidence.

"
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thresholds used to define fuzzy sets;

cross-sectional area;

slopes describing parametric degradation;

viscous damping coeflicient;

assemnbled system damping matrix;

dynamic amplification factor;

material modulus of elasticity;

calibration errar at membership a, denoted as F 5 in the figures;
degradation error at membership a, denoted as Ey, in the figures;
damage error at membership a;

time dependent forcing {unction acting on structure;

fuzzy set for structural natural frequency, denoted as F in the figures;
moment of inertia about the x, y, and z axes, respectively;
stiffness;

assembled system stiffness matrix;

length of a finite element;

dead loads considered in analysis;

live loads considered in analysis;

distributed mass of a structural element, and the number of modes
superimposed in dynamic analysis;

assembled system mass matrix;

external bending moment applied to a structural joint:

ratio of two natural frequencies (used in CQC);

psuedo displacement, velocity, and acceleration, respectively;
structural period;

standard uniform variates;

xii



A\ vector containing time dependent structural response for each dof
where the first and second derivatives in time denote velocity and

acceleration, respectively;

Vmax maximum velocity ;
z distance from site to the rupture zone and a lognormal variate;
x' a normal variate;
X,(T) characteristic function for crisp set analysis;
X{a) parameter used to define the mass fuzzy sets, varies with a,

denoted as X in figures;
y modal coordinate (or time dependent response);

alpha-cut descriptor;

B, ratio of input frequency to the system'’s ith natural frequency;
“ dimensionless parameter, used to scale spring stiffness;
¢ standard deviation of a lognormal distribution;
0, rotational joint deformation;
‘ ; wi o Ib-ft,
K spring stiffness with units Tl

mean of a lognormal distribution;

I mean of a normal distribution;
palz) membership funciion for parameter, x which defines the fuzzy set A;
v Poisson’s ratio;
£ modal critical damping factor;
Pij term which represents the coupling between modes ¢ and j

(used for CQC);
standard deviation for a normal distribution;
rate of corrosion;

eigenvector denoting mode +hape (orthonormal);

£ o ¢ 9o

circular natural frequency;
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CHAPTER 1

Introduction

Engineers spend considerable amounts of time in the design and analysis of structures
to withstand dynamic loads. The structural design process ensures that the structural
members will be able to resist the required loads, and that the structure's dynamic
behavior will be appropriate. Engineering codes have been developed to help struc-
tural engineers and designers make decisions pertaining to the selection of structural
members. In addition to being able to withstand their own Joads, these structures also
must be able to resist loads due to external factors such as winds and earthquakes.
Very often, the engineer will calculate deterministic values for design parameters and
compare them to what the codes present as acceptable. These codes are develaped
solely for the maintenance of human life and do not consider additional factors such
as nonstructural damage and occupant comfort. Ignoring these additional factors in
the dynamic analyses increases the uncertainty inherent in the analytical model.

By studying the dynamic behavior of a structure, the analyst assesses the accept-
ability of accelerations and drifts at various story heights. Stiffening the structure,
which will reduce the story drifts, also will increase the accelerations and attract
higher levels of dynamic forces to the -tructure. Consequently, the selected structural
members must be able to resist these new forces. In the case of structural dynamics,
very often decisions can be made which can reduce the damage to a structure, al-
though the codes rarely address such issues. In order to improve the decision making
capabilities of the structural engineer, a method is needed which quantifies the error
associated with the parameters used in design. The designer needs a method which
can be applied easily and intuitively to aid in his decision makiig process,

System identification techniques have been used to determine the dynamic be-

havior of a constructed facility. These techniques have helped researchers not « nly
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determine the true dynamic characteristics of the building, but to evaluate the poten-
tial changes of the structure’s dynamic characteristics. There are numerous structures
which have been instrumented for use in this type of research. Through the identifica-
tion of the dynamic characteristics of these structures, it is possible to study the possi-
ble degradation and damage characteristics of a particular structure due to dynamic
loadings such as earthquakes. Implementation of system identification procedures
require an instrumented building and a dynamic excitation, with the “identified” re-
sults typically including the natural frequencies, mode shapes, and modal damping
characteristics.

Much work in the past has focused on understanding and quantifying the various
sources of modeling error using system identification and probabilistic techniques.
However, more important than understanding the errors themselves, is an accurate
understanding of the implications of the errors and their effects on structural response.
Errors in the analytical model can cause the response predicted by the ariginal model
to differ significantly from the response of the prototype structure.

In structural engineering and design, there are two major sources of uncertainty in
analysis: uncertainties associated with the representation of the structural model and
uncertainties associated with the representation of the excitation acting on the struc-
ture. Previous research has focused on quantifying uncertainties in excitation models
including development of stochastic techniques for estimating dynamic loading time
histories. Since most of the uncertainty in the dynamic response of a structure is due
to the uncertainty in the dynamic loading (such as earthquakes and extreme winds),
relatively little work has been done to quantify the approximations associated with
structural models. Since the characterization for the input motion is extremely com-
plex, a significant part of the design codes is devoted to the adequate representation
of the earthquake load. Consequently, the designer performs the dynamic analyses
(in the case of noncritical structures) assuming that the finite element representa-
tion of the structure accurately predicts the structural dynamic properties. However,
the assumptions made by the engineer and those inherent in the analysis procedures
can cause the predicted response to deviate significantly from the actual structural

behavior.
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Dynamic analysis of a structural design typically only considers the dynamic prop-
erties of the “as-designed” structure while ignoring the dynamic characteristics that
may occur during the structure’s lifespan. Dynamic structures are typically designed
and constructed with a design life of 50 to 60 years. However, many of these structures
have already been standing much longer than their design life. Many engineering of-
fices in Japan [Hay95] are designing buildings which will stand for several hundred
years. Consequently, an understanding of the degradation and damage potential for
the structural members will help the analyst make decisions pertaining to the struc-
tural design which consider the structure’s lifespan. Additionally, an understanding
of the long-term degradation properties for the fundamental parameters will enable
the designer to predict the structure’s dynamic properties as a function of time. This
will enable the structure to be designed with its entire lifespan in consideration, hence
an adaptive design of the structure.

This thesis addresses the issues related to the quantification of uncertainty in
dynamic parameters through the development of a methodology based on fuzzy logic
which is capable of managing uncertainties. Section 1.1 defines the problem to be
addressed in this work. The scope for this research is addressed in Section 1.2. Finally,

the organization for the remainder of this thesis is presented in Section 1.3.

1.1 Statement of the Problem

The objective of this thesis, is to develop an analysis methodology capable of quan-
tifying dynamic uncertainties throughout the structure’s lifespan. This method: logy
is applied to three stages of the structure’s life: calibration, degradation, and dam-
age. These three types of error [SW92] represent the potential sources of discrepancy
between the initial (finite element) design model for a structure and its as-built char-
acteristics. Calibration error is the discrepancy between the design model and the
as-built system in its pristine condition. Degradation error occurs due to the grad-
ual degradation of structural characteristics as the building ages, and represents the
uncertainty between the aged structure and the calibrated as-built structure. Dam-

age error represents the difference hetween the degraded calibrated structure and the
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structure after a damaging event,

By dividing the lifespan of a structure into these three categories, it is then possi-
ble to quantify the uncertainty of the dynamic parameters as errors in the analytical
model. Calibration error, occurs due to simplifications and assumptions made in
formulating the design finite element model. Sources of calibration error are approx-
imations in discretizing the structure in the finite element representation, failure to
represent accurately the connections between structural members, and inability to
represent effectively various characteristics such as structural damping and founda-
tion conditions. Often, for example, there are inconsistencies on the construction
site which affect the stiffness of various structural joints (such as tightening joints to
proper specifications) which contribute to the cal‘bration error.

Degradation error occurs due to the gradual degradation of structural character-
istics as the building ages. During the lifespan of a structure, fatigue and the aging of
the building materials causes a gradual decrease in structural stiffness and an increase
in structural damping [Tar88, Cif84]. Thus, in addition to the calibration error be-
tween the design model and the as-built structure, there is an increasing discrepancy
between the characteristics of an aged structure and the pristine, as-built structure,

The final form of discrepancy between the initial design model and the real-life
structure is damage error which occurs when a building undergoes a major excitation
such as an earthquake, hurricane, or other design-level event. Though the structure's
original design specifications allow certain levels of these events to occur without
causing significant structural damage, the accumulation of damage and the occasional
event which exceeds design specifications can inflict drastic changes in a structure and
alter its serviceability and structural integrity.

Calibration errors are denoted by an initial misrepresentation of the actual dy-
namic characteristics of the structure by the structural model. The additional errors
due to degradation and damage to the structure increase the uncertainty in the ana-
lytical model’s prediction of the dynamic parameters. These three errors are depicted
in Figure 1.1 which denotes the possible change in natural frequency over a structure’s
lifespan. The calibration error is represented by the initial pre-calibrated frequency,

W,, and the possible calibration error, £.,. The long-term aging characteristics of the
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Calibrated Frequency, (oc

Degradation Model
(prior to event)

Degradation Model
(after event)

-
o D Structural Lifespan time

Figure 1.1: Illustration of uncertainty in frequency over structural lifespan.

structure are represented by the gradual decrease in the frequency and is governed
by the slope b shown in the figure. Degradation error (which is a function of time)
prior to a damaging event is denoted as €4.,. The possible damage to the structure
is represented by Awy which is the drastic change in frequency and occurs due to a
damaging event such as an earthquake at time t = t.. Finally, the degradation process
will continue after the structure has been damaged. This degradation is represented
in the figure by the error, £, and slope, ¥'.

By providing the engineer with a mathematical representation of the modeling
errors, this procednre helps eliminate the uncertainties that typically are considered
using engineering judgement alone. The proposed analysis methodology must have

the following characteristics:

1. Have the potential to be standardized for use on many structures.



Chapter 1: Introduction 6

2. Be intuitive and straight-forward such that the method can be implemented by

a practicing engineer.

3. Contain the information and avcuracy required for the designer’s decision mak-

ing purposes.
4. Minimize the computations necessary in its implementation.
5. Consider the uncertainty in the input motion to the structure.

6. Facilitate the incorporation of additional uncertainties into the models as the

practitioner sees fit.

The iterative design process and the sources of uncertainty to this process must
be considered in the development of the adaptive design models. The shaded regions
in Fig. 1.2 denote the stages in the iterative design process which are considered
in the adaptive analysic models. There are a number of uncertainties contributing
to structural analysis which must be considered in the development of the modeling
procedures. For the purpose of illustration, these uncertainties have been divided into
those contributing to calibration error and degradation/damage error and are shown
in Figs. 1.3 and 1.4, respectively. Finally, the uncertainty associated with the input
motion to the structure is shown in Fig. 1.5. Due to the large number of contributing
uncertainties information (shown in these figures), the following section presents a

refined scope for this thesis.

1.2 Scope of the Project

The parameters considered in this project are the modal parameters of a structure
characteristic of its dynamic behavior and the response of the structure. The param-
eters include the natural frequencies of the structure, w,, where n denotes the mode
of vibration, the frequency ratios (the ratio of the input frequency to w, ) which are
denoted by f3,, and the structural response of the degrees of freedom, z,, 7,, and 7,

where ¢ denotes the degree-of-freedom.
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Figure 1.5: Sources of uncertainty associated with seismic input motion.

These three parameters (frequency, frequency ratio, and response) are dependent
on fundamental errors, associated with building mass, stiffuess properties, damping,
etc; therefore, these errors must also be quantified. The three error models are devel-
oped in a conceptual framework. In this thesis, the errors for the three parameters
presented are quantified at the calibratios and degradation stages: thus. giving the
engi.aeer the tools necessary to make decisions required of them in practice.

To predict the uncertainty in the structural response, it 1s necessary to quantify
the uncertainty associated with the input to the structure. The dynamic input motion
in this scope is an earthquake time history. Uncertainty is quantified for the possible
earthquake ground motion through the development of fuzzy spectra. These fuzzy
spectra, which quantify the uncertainty associated with the input motion, are then
used in the analysis models to predict the uncertainty in the structural response.

The adaptive analysis processes described in this thesis are broad and can consider
a large number and different types of uncertainties. For the purposes of research and

development, the scope of the project must be “narrow”™ enough to consider and
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develop a thorough and concise process. Figure 1.6 shows the sources of uncertainty
considered for this thesis.

Prediction of earthquake inter-arrival time and magnitude is necessary in the re-
duction of earthquake hazard mitigation and the prediction of damage as a function
of a structure’s lifespan. However, such predictions are very complicated and are
not fully understood. For these reasons, the damage model will be conceptually
formulated but not completely developed. This model is discussed briefly in Sec-
tion 7.2 which is devoted to the presentation of future research areas. Additionally,
the calibration and degradation models are developed without considering the inter-
arrival time of earthquakes and their potential magnitudes. The fundamental errors
considered in the calibration model are: the modulus of elasticity, joint rigidities,
static loading conditions, stiffness of the floor system, and input motion based on the
method developed in this thesis. These fundamental errors are modified to include a

dependency in time and are used in the development of the degradation model.

1.3 Thesis Organization

An overview of uncertainty methods in structural engineering is presented in Chap-
ter 2. Uncertainty and information processing methods are reviewed. A motivation
for the use of fuzzy mathematics in the development of the adaptive analysis models
is provided, and the fundamentals of fuzzy mathematics is presented.

Chapter 3 presents the theoretical development of the calibration model, Solution
methods based on the uncertainty analysis for both free-vibration and forced-vibration
analysis are presented. The development of the fundamental errors contributing to
the dynamic uncertainty of the structural model also is presented.

In addition to the uncertainty in the model and its fundamental uncertainties, the
structural response is dependent also on the input motion to the structural system.
Development of the input motion uncertainties as fuzzy response spectra is presented
in Chapter 4. Included in this chapter is a complete explanation pertaining to the
development of fuzzy spectra for the Loma Prieta earthquake and a discussion of the

results.
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The proposed methodology is implemented in Chapter 5 in two illustrative ex-
amples. The first example is a two dimensional plane frame. A case study is used
to validate the calibration model on the Santa Clara County Office Building which
is located in San Jose, California. Quantification of the uncertainties based on fuzzy
mathematics is compared to a probabilistic method demonstrating the efliciency of
the proposed methodology. Monte Carlo simulation is used to simulate the dynamic
response based on a probabilistic representation of the fundamental uncertainties.
The probabilistic and fuzzy methods produce histograms and fuzzy sets, respectively,
to represent the resulting uncertainty. The chapter concludes with a discussion com-
paring the two methods.

Chapter 6 presents the theoretical development of the degradation model. This
chapter discusses both the solution of the dynamic equations of motion and the quan-
tification of the fundamental errors as a function of time. Examples are presented
with demonstrate the implementation of the degradation model based on initial (pre-
calibrated) uncertainties and uncertainty in the rate of degradation for the structure’s
fundamental properties.

This work is concluded with recommendations for future work in Chapter 7.



CHAPTER 2

Uncertainty Analysis Methods

The purpose of this chapter is to present an overview of the uncertainties typically
inherent in structural engineering applications. Section 2.1 contains a discussion
molivating the study of uncertainty analysis techniques. Methods typically used to
model uncertainties are presented in Section 2.2. Arguments towards the use of fuzzy
mathematics for the approach presented in this thesis are presented in Section 2.3.
The fundamentals of fuzzy mathematics are reviewed in Section 2.4, the conclusion

of this chapter.

2.1 Uncertainty in Structural Engineering

Uncertainty exists in every aspect of structural engineering problems. The uncertainty
inherent in such a problem can be evaluated with respect to the following aspects: (1)
the analytical model, {2) the loads applied to the system (both static and dynamic),
(3) the ability for the structure to restst the loads, and (4) the response of the structure
due to the combination of the first three aspects.

In general, models used to analyze processes in structural engineering can be
analytical, empirical, or a combination of the two. Analytical models are derived from
first principles and are assumed to be deterministic. For example, the stresses within
a beamn can be solved relatively accurately if the analyticai model truly represents
the real system. However, in most cases, assumptions must Le made to facilitate
the solution process. These assumptions, such as the modeling of end conditions,
contribute to the inexactness of the problem solution. Many analytical modeling
tools, such as the finite element method, are derived based on apj roximations.

Empirical models are developed from historical data. Since these models are based

13
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almost completely on past behavior, appropriate use of these models must be con-
strained to the same systems used in its development. However, use of other models
can provide an independent assessment of the empirical model’s validity. Often in
engineering applications, empirical and analytical models are combined. For example,
the structural response can be determined analytically, however, the representation
of the dynamic input motion may be obtained from an empirical model.

Loads applied to a structural system can be divided into three general categories:
dead, live, and dynamic. Representation of each of these three types of loads in-
volve approximations where the dynamic loads are the most uncertain. Typically, (in
LRFD) for the purposes of structural design, the uncertainty in the loads has been
considered in terms of load factors. Thus, the loads are increased by a factor permit-
ting the problem to be solved conservatively. Although conservative for the purposes
of design, the use of such factors contribute greatly to the misrepresentation of the
structural system’s dynamic response.

The ability for the structural system to resist loads is based on knowledge about
the material and connection properties of the structure. Information about these
properties is typically determined through repeated experimentation. To compensate
for the uncertainty in the resistance capability of the structure, resistance factors
are used to reduce the structure’s strength capacity. Although these factors are
appropriate for the purposes of design, they can provide misleading values for the
response of the system.

It is well acknowledged that the uncertainty which exists in each of the three
aspects mentioned above contributes greatly to the inaccuracy inherent in the strue-
tural response. Therefore, models capable of handling uncertainties are needed ta
quantify the uncertainty in the response. In the uncertainty analysis, it is important
to understand the sources of uncertainty for each of the contributing factors.

Boissonnade [Boi85] and Chiang (Chi88] have considered the uncertainty in the
engineering problem to consist of the stimulus, physical entity, and response. The
loads which act as a stimulus onto the structure, or physical entity, create a struc-
tural response. Figure 2.1, adapted from Boissonnade's and Chiang’s works, depicts

how uncertain information frequently available in the framework of an engineering
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Figure 2.1: Representation of uncertainty in an engineering system (adapted from
Boissonnade and Chiang).

problem can influence the resulting uncertainty. The stimulus, physical entity. and
response are represented by either deterministic, probabilistic, or fuzzy models. If
all of the information in the problem is deterministic, the resulting response will be
deterministic. However, if the problem contains uncertain information, then appro-
priate models must be used to describe the uncertainty. The uncertain information
can be represented by fuzzy sets, probabilities, or by ignoring them all together (a
deterministic representation). For example, if the problem is dependent on parame-
ters which can be best modeled as both deterministic and probabilistic, the response
will be uncertain and, in general, best modeled probabilistically. Furthermore, if the

problem is based on which are described best by both probabilistic and fuzzy models,
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in addition to the deterministic values, the uncertainty in the result will be represen-
tative of fuzzy information. This presentation considers equally contributing factors
of uncertainty. However, in most cases, there will be many varying contributions to
the uncertainty of the stimulus. In such a case, tracking the various types of un-
certainty through the problem is more difficult. Additionally, it is also important to

understand the sensitivity of the result to the individual contributing uncertainties.

2.2 Methods Used to Model Uncertainties

The primary focus of this thesis pertains to the quantification of uncertainties in the
application of structural dynamic problems. Therefore, deterministic systems will not
be discussed further. The following is a discussion about methods used to model both
probabilistic and fuzzy uncertainties. Traditionally, uncertainties in structural model
parameters have been studied probabilistically using stochastic processes. Proba-
bilistic methods will be presented first, where a tremendous amount of research has
been done in this field. Only relevant information is presented to demonstrate typical

probability based techniques.

2.2.1 Probabilistic Techniques

Aside from the fact that information must often be inferred from similar (or even dif-
ferent) circumstances or derived through modeling, and thus may be in various degrees
of imperfection, many problems tn engineering involve natural processes and phenom-
ena that are inherently random; the state of such phenomena are naturally indeter-
minate and thus cannot be described with definiteness. - Ang & Tang (pg. 1) [AT75a)

Probabilistic methods have been widely used in engineering fields. More specifi-
cally, in the field of structural engineering, probability has been used to better under-
stand loading conditions and to establish the reliability of structures against failure.
Reliability methods have been used to develop factors of safety currently used in
the engineering codes. Additionally, probability has been used to better understand
and design a structure for unknown loads such as earthquakes, winds, live loads,

snow loads, etc. There have been a large number of probabilistic methods applied
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to structural engineering applications which consider the statistical properties of the
structural system and the randomness of the loads (static and dynamic) applied to the
system. Research in this area is overwhelming; consequently, the work presented here
represents relevant research pertaining directly to the objectives of this thesis. The
two types of methods presented, moment and simulation techniques, were originally
considered as optional solution techniques for the adaptive analysis models developed
through this research.

The use of first and second order moment techniques give estimations for the mean
and variance of the resulting distributions for the parameter in question. The first
order approximations based on a Taylor series expansion [AT75a] are shown for a

function of a single random variable in Eqs. 2.1 and 2.2.

E(Y) ~ g(px) (2.1)
dg :
VAR(YY)~VAR(X - px) | — (2.2)
dX
where,
Y = o(X)
E(Y) = first-order approximate mean of Y;
X = dependent variable;
#4 = mean;and

VAR = \variance.

Estimates for the variance of a general function requires solution of the function's
derivatives with respect to each random variable. This quickly becomes computa-
tionally intensive in the case of nonlinear and matrix equations.

Liu et al. [LBM86] recognized the complexity involved with solving the most sim-
ple (a single degree-of-freedom) dynamics problem probabilistically. Their work has
focused on the development of a probabilistic finite element method which considers
uncertainty in the material properties only, while the mass of the system is assumed
to be constant. The proposed solution is performed in the time domain and is based

on implicit time integrations for unconditional stability. This success of the solution
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method is demonstrated with two examples. The authors have provided a compu-
tationally efficient solution technique for the dynamic equations of motion based on
uncertain parameters; however, it does not incorporate the uncertainty in the dynamic
input motion and has difficulty when the method considers structural damping.

Pai and Chamis have studied the probabilistic approach to structural dynam-
ics [Pai90, PCI1] in their work at NASA Lewis. Their probabilistic models include
uncertainties in primitive variables such as nodal coordinates, material stiffness, and
external loads. Definition of these primitive variables requires knowledge about their
distributions including type, mean, and variance. Results consist of cumulative den-
sity functions for nodal displacement, member forces, and structural frequency. Ad-
ditionally, a solution is formulated to determine the ultimate load for a structural
truss based on probabilistic analysis and repeated member failures.

In the 1950’s and 1960’s quite a bit of work was devoted to the solution of the
probabilistic free vibration problem. A few examples of this work are given as refer-
ence here [CT69, HH72, HS71]. In each of the papers, the authors address different
issues associated with the probabilistic solution. However, to solve for the variance
of the eigenvalue problem’s free vibration properties, it is necessary to solve for the
derivative of the eigenvalues with respect to the random variants. Thus, for larger
structural systems the solution process can become intense.

Monte Carlo simulation techniques have been a popular solution to the statistical
finite element problem. These techniques require the simulation of the dependent
random variables based on their individual statistical properties. The solution pro-
cess is then performed deterministically based on the simulated variables. Ultimately,
a distribution is obtained {from the results of repeated solutions each with simulated
variables. Tens of thousands (or more) solutions may be required to obtain an ac-
ceptable distribution for the resulting parameter. The numbey of solutions required
increases based on the number random variables in the problem. Techniques have
been employed (such as Latin Hypercube [AL89]) to reduce the required number
of solutions. Regardless, there remains a high amount of computational intensity
required for a typical multi degree-of-freedom structural dynamics problem.

Udwadia [Udw86, Udw87a, Udw87b)] investigated the dynamic response of lincar
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systems with uncertain parameters using probability theory. Closed form expressions
for the probability density functions were developed for natural frequency, percent-
age of critical damping, and damped natural frequency under the assumptions that
only the upper and lower bounds of mass, stiffiness, and damping values are avail-
able. It was shown in these studies that the stochastically modeled mean response of
the system with uncertain parameters differs from the response of the system with
stochastically modeled mean parameters. Furthermore, these studies were performed
for single degree-of-freedom systems with deterministic dynamic loads.

Determination of structural reliability is one of the most popular applications
of these probabilistic techniques. These techniques are typically computationally
expensive and are used in the most critical circumstances such as the design of a
nuclear power plant or aeronautical structures. Reliability of a structure against
failure is determined either through the solution of the first and second order methods
or simulations, both of which are computationally expensive.

Dong et al. [DCW8T] investigated the propagation of uncertainties through a
deterministic system using three different methodologies: interval, fuzzy, and random.
The authors conclude that the selection of an uncertainty method is dependent upon
the type of information available (i.e., is it random or does it contain ignorance?).

Selection of an uncertainty method must be based on the intended use of the results.

2.2.2 Fuzzy Uncertainty Analysis

As the complezity of a system increases, our ability to make precise and yet significant
statements about its behaviour diminishes until a threshold is reached beyond which
precision and significance (or relevance) become almost mutually erclusive character-
istics. — Zadeh, 1973 [Zad 73]

The literature summarized above presents methods applicable for quantitatively
well understood uncertainties. However, uncertainties may not always be easily mea-
sured or quantified and may be better described through the use of an expert. The
expert can establish bounds on the uncertainty at various levels of confidence based on
his experience. Fuzzy mathematics is capable of handling such uncertainties. In fact,

fuzzy mathematics can support uncertain variables which are linguistic or numeric.
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Section 2.4 presents a more detailed description of fuzzy mathematics.

A considerable amount of work has been done by Dong et al. [DW86a, DW86b,
DW86c], Wong et al. [DR85], and Chiang et al. [CDW87, CDSW88] pertaining to
the use of fuzzy set mathematics to model structural uncertainties. In these papers,
the authors have motivated the need and application of fuzzy mathematics in the
area of structural engineering. They have demonstrated the complexity of simple
structural dynamic problems when solved prababilistically. Additionally, they have
shown that the probabilistic solution is too descriptive of the structural response,
allowing information to be inferred that may not be completely accurate.

Lamarre and Dong [LD86] used a fuzzy algorithm in the evaluation of seismic
hazard. They developed a methodology for seismic hazard evaluation based on expert
knowledge. Approximate reasoning is used to interpret the expert’s opinion about
ground shaking, soil conditions, and ground rupture for various sites. This study
(although highly confined) proved to be applicable to the evaluation of seismic risk.

Fuzzy sets have been used in a number of applications in civil engineering to
approximate the vagueness in linguistic terms. Shibata [Shi85] used fuzzy sets as
linguistic variables to model possible human design errors. Souflis and Grivas [SG8G)
used fuzzy sets to establish a relationship between damage states and earthquake
load. Hinkle [Hin85] used fuzzy logic to assess the damage to butt welds due to the
complex and uncertain fatigue phenomena.

Shiraishi and Furuta [SF85] used fuzzy set theory to evaluate structural damage
and to predict structural deterioration. Damage was evaluated using a fuzzy based
multi-criteria analysis and deterioration is predicted using fuzzy logic within an ex-
pert system. In a comprehensive evaluation of structural damage, Furuta [Fur93)
demonstrates his proposed method by ordering a set of bridges based on the sever-
ity of earthquake damage. Due to the high ambiguity in such a process, ordering
is suggested to provide the information required in the scheduling of repair. Furuta
et al. [FSFY85] use fuzzy reasoning to evaluate the potential annoyance to hnmans
due to vibrations. The authors define fuzzy sets for linguistic variables describing
levels of disturbance because of the high variability in human perception of vibra-

tions. Fuzzy reasoning is used to interpret the level of annoyance for vibration due
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to the orientation of the person and the free-vibration characteristics of the dynamic
motion.

In 1985 the National Science Foundation and the School of Engineering at Purdue
University sponsored a workshop pertaining to the use of fuzzy logic in civil engineer-
ing applications. This workshop [BCPY85] addressed, in part, future applications
and needed work in the application of fuzzy sets to civil engineering problems. Fuzzy
set theory often is the appropriate tool to use in many civil engineering problems with
vague information. Additionally, there may be applications when fuzzy set theory is

a valid alternate to the more rigorous and commonly used probabilistic methods.

2.3 Use of Fuzzy Mathematics for the Adaptive Analysis
Models

All uncertainties, whether they are associated with inherent variability or with predic-
tion error, may be assessed in statistical terms, and the evaluation of their significance
on engineering design accomplished using concepts and methods that are embodied in
the theory of probability. - Ang & Tang (pg. 11) [AT75a]

It is true that all uncertainties can be modeled with the use of probabilistic meth-
ods. In the initial development of the adaptive analysis models both probabilistic and
fuzzy approaches were considerea for the complete model development. The decision
to use fuzzy mathematics was made based on the criteria established in Section 1.1.
The purpose of this section is to provide the reader with arguments towards the elec-
tion to use fuzzy mathematics. Since these arguments are made before presenting
fuzzy mathematics and the adaptive models in more detail, the points illustrated
here will become more evident later in this thesis.

It is possible to implement statistical methods to the adaptive analysis models by
using statistical calculus (more specifically first or second order reliability methods) or
by simulation methods. Each statistical method requires distributions to be defined
for the fundamental uncertain variables {in statistics random variables), Application

of statistical calculus becomes cumbersome when solving complex relations such as
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the eigenvalue problem which must be solved numerically. Furthermore, the reliabil-
ity methods produce a probability that a desired value for a higher-level parameter
will be exceeded. The process must be repeated a number of times to establish a
complete evaluation of the potential values the higher-level parameter may take. For
the minimum amount of accuracy, simulation methods require thousands of computer
runs to quantify the uncertainty for the desired higher-level parameters.

Fuzzy mathematics does not provide the rigor that comes with statistical methods.
However, one of the objectives of this thesis is that the results “contain the accuracy
required for the designer’s decision making purposes” which, with the exception of
hazard analysis, does not require the rigor provided by statistical methods. Addition-
ally, use of fuzzy mathematics lends itself to the other objectives: (1) Both methods
can be standardized for use on many structures by applying uncertainty models to
the finite element representation of the structural system; (2) Fuzzy mathematics is
by far a more intuitive method for the practicing engineer. Quantification of uncer-
tainty using fuzzy mathematics requires the establishinent of bounds at various levels
of confidence. The practicing engineer already thinks in terms of bounding extreme
responses; (3) Since the designer selects the fundamental fuzzy sets, then he is in con-
trol of the accuracy in his results. Use of probabilistic methods adds an additional
level of complexity to the solution, and the practitioner may not have a complete un-
derstanding of the resulting accuracy. Furthermore, there are so many uncertainties
involved in the design processes that the application of the fuzzy methods may give
the practitioner a more intuitive understanding of the potential dynamic character-
istics of the structure; (4) Use of fuzzy mathematics, by far, reduces the number of
computations necessary. The problem is solved repetitively with different parameters,
but there is no need for linear or nonlinear convolutions. Section 2.4 and Chapter 3.
which follow, present a detailed explanation of the solution processes required for
the dynamic equations of motion; (5) Use of the fuzzy response spectra developed in
this thesis incorporates the uncertainty of the input motion to the structure into the
dynamic analyses; (6) Use of the fuzzy methods also permits additional uncertainties

to be considered in the analysis with minimal effort on the part of the analyst. The
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Figure 2.2: Visual comparisons of crisp and fuzzy sets.

only modifications necessary are additional solutions which consider the new uncer-
tain parameters.

A statistician will argue the simplicity of the use of probability in such a problem,
and their arguments may be valid; however, use of probability no longer makes the
method straight-forward and easily applied in practice. Additionally, if the uncertain-
ties do not warrant a higher-level of accuracy, a method which requires fewer compu-
tations is more preferable. Use of fuzzy mathematics gives us a different approach to

the types of problems which have been traditionally solved probabilistically.

2.4 Review of Fuzzy Mathematics

This section provides the reader with the theoretical knowledge of fuzzy mathe-
matics used in the development of this thesis. Much of the information presented
here is fundamental knowledge within the field of fuzzy mathematics. Several refer-
ences [TAS92, DP88, KF8&8, Sch84, Zim91, Don86] were used in the preparation of
this section.

Parameter uncertainty in traditional interval analysis requires the expert {engi-
neer) to provide absolute parammetric bounds. The characteristic function, X4(w).
depicted in Figure 2.2, describes the interval size. In traditional interval analysis the

characteristic function defines a crisp set, meaning the interval bounds are sharp, not
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incorporating any additional parametric information. In the following calculations
all parametric values, regardless of where they lie in the crisp interval, are treated
the same. Solutions may result in a larger interval, containing very little relevant
information. In many engineering applications, although the engineer may not have
enough parametric information to produce a probability density function for use in
probabilistic methods, the engineer may be able to provide information about the
likelihood of the parameter falling within particular bounds. Fuzzy mathematical
modeling is designed to consider such additional information.

In fuzzy mathematics, the parameter (frequency, w, in this example) is represented
as a fuzzy set with the use of a membership function, pr(w). The membership
function describes the shape of the fuzzy set, shown in Figure 2.2, and represents the
likelihood of the parameter falling within specific intervals. The membership function

of Equation 2.3,

ur(w) €10,1) (2.3)
where,
g = the membership function;
F = the frequency fuzzy set; and
w = natural circular frequency (uncertain parameter).

was first proposed by Zadeh [Zad65] and must be within the bounds 0 and 1. The
alpha-cut, denoted by F,, is an interval at a level of confidence a which must be
between 0 and 1.

In comparing the crisp and fuzzy sets in Figure 2.2 note that the crisp set has
abrupt boundaries while the fuzzy set has smoother boundaries representing the vari-
able interval bounds. When a parameter is described as being “about” or “around”
a specific value it is useful to describe its behavior with a fuzzy set utilizing variable
interval bounds.

As an example, the first fundamental frequency of a structure may be described

as a trapezoidal fuzzy set with the membership function in Equation 2.4.
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Figure 2.3: Trapezoidal fuzzy set and alpha-cuts.
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The graphical representation of the membership function is shown in Figure 2.3. An
alternative for mathematically representing the fuzzy set for the fundamental natural

frequency is shown in Eq 2.5.

" ur(w) 01 05 10 10 05 0.1
F = =" =—t—t — 4 — 4+ — + — .9
L= Thitistsoteotes e (2.5)
where,
F = the fuzzy set representing fundamental frequency:
pr = level of membership; and
w; = value for the natural frequency.

Although the membership function shown here is symmetric, unsymmetric functions
are also possible.

The a-cut represents parametric confidence levels. An a-cut defines a crisp set of
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elements which belong to the fuzzy set for the fundamental natural frequency, F, at

a membership level o as depicted in Eq. 2.6.
Fo = {w e Qur(w) 2 a} (2.6)

where,

F. = the crisp set of values, w, from the fuzzy set F at membership level a.

An o-cut level of 1 denotes a high level of confidence on the part of the expert
where, in the case of Fig. 2.3, the parameter will most likely fall within the interval
w € [5,6]. An a-cut level of 0.5 represents the interval w € [4.5,6.5] as possible
frequency values for a proportionally lower level of confidence. The lowest possible
level of membership corresponds to an a-cut level of 0. Based on Eq. 2.6 the resulting
crisp set contains three intervals of values for the parameter, w. The first intervals
are all values for a > 0, corresponding to w € (4, 7]. Since the a-cut includes values
for w with a level of membership equal to and greater than a, the set contains two
additional intervals, (—00,4] and [7,+00). The support (shown in Eq. 2.7) of Fis a

crisp set, F,—o+, which contains all values of w in the fuzzy set, F.
Fo+r = (u € Q|y;(w) > 0} (2.7)

where,

Fo+ = a crisp set denoting all values of w, with membership greater than 0.

Fuzzy sets do not need to be trapezoidal shapes as denoted in Fig. 2.3. In fact, a
crisp set is a specialized fuzzy set where the bounds defined at a-cut 1 and o-cut 0*
are the same. The shape of a fuzzy set denotes the relationship of the confidence
bounds at the different levels of membership. For example, in the case of a triangular
or rectangular fuzzy set the rate at which the bounds increase with respect to mem-
bership is constant. In other words, the slope of the line connecting the lower bound
of a-cut 1 and the lower bound of a-cut 0% is constant. Similarly, the slope of the line

connecting the upper bounds is constant also, although the slopes of the upper and



Chapter 2: Uncertainty Analysis Methods 27

membership membership

Convex Fuzzy Set Non-convex Fuzzy Set

Figure 2.4: Normal convex and nonconvex fuzzy sets.

lower bounds need not be the saine. It is important to consider that the lowest level
of membership in fuzzy logic represents the most extreme (but realistically) possible
values for the fuzzy parameter. Therefore, it is feasible that a fuzzy set represents
much higher uncertainty for the lowest levels of membership. This is especially the
case when there are a number of factors contributing to the parameter’s uncertainty.
Figure 2.4 gives examples of two different types of fuzzy sets.

A fuzzy set is normal only if the highest level of membership in the set is one.
The fuzzy set on the left in Fig. 2.4 is a normal convex fuzzy set, while the set on the
right is a normal nonconvex fuzzy set. A fuzzy set is conver if the bounds provided
by an a-cut at membership level » are contained completely within the bounds given
by the a-cut at membership level y where # > y. In other words, there must he a
single crisp set defined by each a-cut. This states that the crisp set defined by an
a-cut will always be a subset of the crisp set defined by an a-cut at a lower level
of membership. For example, the extreme bounds (bounds at a membership level
slightly greater than 0, a = 0%) for the fundamental frequency of a structure must
fully contain the bounds established by the most possible occurrence, This thesis will
be confined to the use of convex fuzzy sets, unless otherwise specified.

Typical set opera‘ions such as intersection, union, and complement can be per-
formed on the membership functions which define fuzzy sets. Figure 2.5 depicts the

resulting fuzzy sets from the intersection, union, and complement of two fuzzy sets.
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membership membership membership
A V' N
intersection Union Complement

Figure 2.5: Intersection, Union, and Complement of two fuzzy sets, A & B.

The intersection (the logical “and”) of two fuzzy sets A and B is a fuzzy set C of
values which are in both fuzzy sets A and B. Comparatively, the union (the logical
“or”) of two fuzzy sets A and B is a fuzzy set D which contains all the values in each
of the two fuzzy sets. The complement of two fuzzy sets A and B is a fuzzy set E
which contains all values not contained in fuzzy set 4. This is analogous to ordinary
set theory. However, in addition to the values within the fuzzy sets, it is also impor-
tant to consider the level of membership for the intersection, union and complement
operations. Equations. 2.8, 2.9, and 2.10 define the resulting membership functions

for the operations described in Fig. 2.5.

Intersection:

ko(3) = pans(z) = min {ka(z), ua(2)} .2 € X (2.8)
Union:
ko) = Havs(x) = maz {pa(z), ua(2)} 2 € X (2.9)
Complement:
pe(z) = 1 — maz {pualz), up(z)} ,z € X (2.10)
where,
#a = the membership function describing fuzzy set A; and

r = the values contained by the fuzzy set.
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membership membership

Figure 2.6: Illustration of the Resolution Principle.

Membership functions can be developed based on expert opinion or quantitative
data. Whether a fuzzy set is developed based on qualitative or quantitative data,
it is necessary to enforce the assignment of membership levels consistently. This is
of utmost importance when many fuzzy sets are being used in the same application.
The crisp set defined by o-cut 1 bounds the most possible occurrences for the fuzzy
set. The crisp set defined at level of membership slightly greater than 0 corresponds
to & = 0% and bounds all possible values (which are realistic) for the fuzzy set. In a
similar manner, the crisp set defined by a-cut 0.5 bounds values which are possible
proportionately to membership levels 0* and 1. This logic must be implemented
when using either qualitative or quantitative data in the definition of a fuzzy set.

The resolution principle uses a-cuts to define a membership function. Complete
definition of the membership function using the resolution principle requires an infinite
number of a-cuts. However, the membership of a fuzzy set can be defined with a finite
number of a-cuts. Use of the resolution principle is illustrated in Figure 2.6 in two
examples. In the first case, the membership function is defined at two membership
levels between 0 and 1. The second case is a less ambiguous result because the two
levels of membership used to define the fuzzy set are 0* and 1. If more than two levels
of membership are used then it is possible to define the curvature of the membership

function in more detail.
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2.4.1 The Vertex Method

Traditional mathematical operations can be performed on membership functions
through function mapping. There are several techniques used for fuzzy and inter-
val mathematics, the vertex method, developed by Dong et al. [DS87, DW87], is
used in the adaptive analysis models and is the only method discussed in detail in
this thesis. Typical mapping procedures will involve a function of several uncertain
parameters which may or may not be assoctated with membership functions. The ob-
jective of function mapping is to produce a fuzzy set or membership function for the
resulting parameter. Zadeh [Zad65] first introduced the Extension Principle, which is
used for mapping functions and can be equivalent to a nonlinear programming prob-
lem [BK77]. The vertex method applies traditional function mapping to uncertain
fuzzy parameters while allowing the analysis to be performed deterministically. The
mapping procedure is iterative and is repeated at different a-cut values. The resulting
membership function resolution is related directly to the number of o-cuts used in
the mapping. Typically, mapping is performed at a-cut values of 1.0, 0.5, and 0.0%.
If higher resolution is decired and the integrity of the membership function exists,
additional a-cuts may be used.

The number of iterations necessary for each a-cut is 2", where n is the number of
fuzzy parameters use in the mapping. The function is solved 2" times representing
all possible parametric combinations based on the intervals bounds at an a-cut level.
The best way to explain the vertex method is by a numerical example. The following
example demonstrates the use of the vertex method to obtain the fuzzy set for 4
where:

Y= — (2.11)

The fundamental fuzzy sets for { and 7 are defined at two a-cut levels and are
presented in Table 2.1. Fuzzy sets throughout this thesis will be defined in the same
manner in tables. The values used for ( and 5 and the resulting v values are provided

in Table 2.2. The last column in Table 2.2 distinguishes whether or not the resulting
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Table 2.1: Fuzzy parameters ¢ and 7.

a-cut
0.0t
1.0

lower Bound (

upper Bound ¢

lower Bound 7

upper Bound 5

2.0
3.0

6.0
5.0

12.0
18.0

20.0
18.0

Table 2.2: Values for { and 5 used in the vertex method.

Resultirg Bound

a-cut ¢ 7 5

0.0* JlL?.O 120 |[ 3.5
0.0* 2.0120.0 |f 5.5
0.0* 6.0 120 1.5
0.0* 6.0 | 20.0 || 2.2
0.5 2.5 |15.0{ 3.5
0.5 2.5 (19.0 [ 4.3
0.5 9.5 1150 {19
0.5 551190 | 2.2
1.0 3.0]18.0 ) 3.5
1.0 50118.0( 2.3

Not a Bound
Upper
Lower

Not a Bound

Not a Bound
Upper
Lower

Not a Bound
Upper
Lower
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v values is a bound in the fuzzy set defining 5. The resulting fuzzy set for ¥ is given
in Table 2.3. Using the vertex method at three a-cut levels {a = 0.0*,0.5, and1.0),

the function which defines v is performed 10 times. Since 5 is a function of two

parameters, a-cuts 0.0% and 0.5 each require the function to be solved 4 times. The

function v only needs to be solved twice at a-cut 1 because # is a triangular fuzzy

set.

Table 2.3: Resulting fuzzy number 4.

a-cut

lower Bound 4

upper Bound v

0.0*
0.5
1.0

1.5

1.9
2.3

5.5
4.3
3.5
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Figure 2.7: Schematic Representation of the Vertex Method.
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The results from the 10 solutions are then compared to produce the resulting
interval for each a-cut level. The minimum and maximum soluiions will be the
resulting limits for the interval at the corresponding a-cut. In the case of a nonlinear
mapping function, an additional iteration is calculated at the point of extremity.
Use of the vertex method is confined to convex fuzzy sets. The vertex method is
then repeated at the remaining a-cuts. Realizing that the vertex method is iterative,
almost to the point of redundancy, this method is much more efficient than using
the alternative method of nonlinear programming. Further explanation of the vertex
method can be found in the reference [DS87]. An exhaustive solution using the vertex
method, such as the one shown here, may not always be necessary. However, omitting
solutions from the application of the method must be done very carefully and requires

a thorough understanding of the behavior of the mapping function.



CHAPTER 3

Formulation of the Calibration Model

This chapter contains a detailed presentation of the calibration model which is the
first of the three models considering dynamic behavior during the lifespan of a struc-
ture. Development of the calibration model requires thorough consideration of the
dynamic analysis techniques as well as the sources of uncertainty contributing to the
modeling errors. Section 3.1, which follows, presents the formulation of the dynamic
equations used in the modeling of calibration errors. The fuzzy representation of the
calibration model is presented in Section 3.2. Careful consideration must be made
in the establishment of the fundamental errors contributing to the modeling error.
Section 3.3 gives a presentation of the development of fundamental uncertainties. Fi-
nally, an advantage of the calibration model is its generality and its ability to be
applied to almost any structural system, where these aspects are discussed in detail

in Section 3.4.

3.1 Dynamic Formulation for the Calibration Model

The calibration model est inates the modeling error that occurs due to the approxima-
tions and assumptions inherent in a dynamic finite element model. The parameters
considered for calibration are the structural modal properties (natural frequencies,
dynamic frequency ratios, and maximum structural response) which are used to cal-
ibrate the structural response using modal superposition analysis. The analysis used
to establish the calibration model is based on the multi degree-of-freedom (MDOF)
equation of motion. The equation of motion governing a linear N degree-of-freedom
system takes the form:

MV + Cv + Kv = F(t) (3.1)

34
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where,
system (Nx/V) mass matrix;

system (Nx/V) damping matrix;
system (NxN) stiffness matrix;

<« RO
|

= (Nx1) vector containing system displacement
(the 1st and 2nd time derivatives denote system velocity
and acceleration, respectively); and

F(t) = (Nx1) vector containing the time dependent forcing

function acting on the structure.

The natural frequencies and mode shapes are found by solving the undamped free

vibration problem corresponding to the eigenproblem:

Mg, = Ké, (3.2)
where,
¢n = is the nth eigenvector corresponding to the nth system mode shape; and
wn = 1s the ith natural frequency.

Taking advantage of the eigenvectors’ orthogonality and assuming proportional damp-
ing, Eq. 3.1 can be uncoupled using the eigenvectors found in Eq. 3.2 into a set of N
single degree-of-freedom (SDOF) equations. The resulting SDOF equations of motion

take the form:

Un + 26nwaln + Wiyn = ;’; (3.3)
where,
y = the modal coordinate (or time dependent response});
£ = the modal critical damping factor,
M* = the modal mass term, (8" M®), where ® is the (Nxm) modal matrix
containing m mode shape vectors, ¢;
F* = the modal forcing function, ®7 F(t); and

n = the subscript indicating modal response of the nth mode.
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In the calibration model, the solution for the modal coordinate, y,, in Eq. 3.3 is
obtained using fuzzy site-dependent response spectra which are developed in this the-
sis. Given the frequency and damping properties for an SDOF system, the response
spectrum gives the maximurm values for the system response. Further explanation of
the fuzzy spectra is given in Chapter 4. The results are applicable for the excitation
conditions for which the spectrum was developed. The modes are then superimposed
to obtain an estimate for the maximum structural response. Use of a response spec-
trum in modal analysis gives the maximum response for each mode. Therefore, a
superposition method which simply sums the maximuin modal participation to ob-
tain the maximum response for the structural system is highly conservative because
it assumes that the maximum response for each mode will occur at precisely the
same time. In reality, the maximum response of one mode will not coincide with the
maximum response of the other excited modes. The method of superposition selected
for use in this application is SRSS (Square Root of the Sum of Squares) as shown in
Eq. 3.4.

{Vmax| = JZ (Cn¢nsv(n))2 (3.4)
n=]
where,
L, = the earthquake participation factor for mode n where £, = ¢yM{1};
S.(n) = the maximum velocity obtained from a velocity response spectrum;
i = the number of modes superimposed; and
Vmax = the maximum velocity for the structure.

Although SRSS is used here, thete are ather technigques which can be used in
the response spectrum method. These techniques also can be used in the calibration
model. For example, in the case of closely spaced modes a solution using CQC
(Complete Quadratic Combination) [DK79, WDKB81] may Le more appropriate. A
solution using CQC is similar to SRSS except two modes are considered in each term

of the summation as shown in Eqn. 3.5.
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[ m m
{Vmax| = \J): 3 L£.C;6:4;5.(1)S.(3)pi, (3.5)
=) j=1
where,
p; = factor representing the coupling between two modes t and 3. For modes
. . 2(1 4yt S -
with equal damping p;; = 1:—-5‘?(1_::‘)7(?:5’ where, r = =

for w; > w;.

Implementation of CQC with the vertex method is possible; however, it is more com-
plicated due to the combination of the additional variables used ir the formulation.
Therefore, for this application SRSS is used to illustrate the procedure for the super-
position of modal respanses.

The frequency ratio is defined by the ratio of the forcing frequencies to the natural
frequency for each mode n and is denoted by 3,. A 3, value equal to 1.0 indicates
the possibility of a resonance condition for a mode and is to be avoided. When the
. is close to or equal to 1.0, it is necessary to verify that there is enough damping by
examining the dynamic amplification factor for 8,. This is illustrated in Figure 3.1
which shows the graphical relationship of the dynamic amplification factor with re-
spect to frequency ratio, 3, and modal damping, £. Each line in the figure represents
a different amount of damping in the system. There are 11 values of damping where
the line with the lowest values for D is obtained from § = 1.0. The highest values of
D occur when there is no damping (£ = 0.0) in the system. The intermediate lines

represent values of £ incremented by 0.1.

D, = [(1 -8) + (mzn)’]‘* (3.6)

where,
D, = the dynamic amplification factor for mode n; and

£, = the model damping factor for mode n.
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Figure 3.1: Dynamic amplification factor as a function of £ and 3.
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The equations presented here give deterministic predictions for the dynamic re-
sponse of the structure. Calibration error, the difference between the analytical pre-
diction found using the structural model and the experimental measurement taken
from the as-built structure, typically has been addressed using system identification
techniques. However, these system identification techniques have relied on the use
of measured response values to quantify deficiencies in the analytical model. The
majority of system identification procedures can be computationally intensive and
can suffer from significant drawbacks such as dependence on a good iitial analyti-
cal model and failure to achieve a unique solution. It has been proven through the
use of system identification techniques that dynamic parameters (modal frequencies
and shapes) of the as-built structure can differ by 50% from the finite element rep-
resentation of the structure [TA88]. In addition, because experimental data from the
constructed system is required for the analysis, identification techniques cannot be
used at the time that they are most needed, i. e., during the design of the system.

The equations presented in this chapter govern the dynamic analysis in the calibration
model. Since the uncertainties in the structural model are represented as fuzzy sets,
these dynamic equations are solved using the fuzzy (rather than deterministic) param-
eters. The vertex method allows the dynamic equations to be solved deterministically
a number of times based on the fuzzy parameters. Section 3.2 contains the complete

development of the calibration model based on fuzzy mathematics.

3.2 Fuzzy Representation of the Calibration Model

Through the use of fuzzy mathematics, bounds are established on the structural pa-
rameters found from the original model. Information concerning the a priori knowl-
edge of site conditions, structural design, etc. are used to develop a quantitative basis
for determining the potential inaccuracies in the initial pre-calibrated model and to
develop the fuzzy set for the structural parameters. A membership function is found
for each structural parameter. For the sake of illustration, structural natural fre-

quency is the parameter used for the development of the following adaptive equations.
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For natural frequency, the equation governing parametric uncertainty takes the form:

Fi = {la,bla = wo — E54(a); b= w, + E5(a)} (3.7)
where,

FS = uncertainty in calibrated frequency at a membership level, a;

w, = original uncalibrated natural frequency based on a deterministic
calculation, which is, therefore, constant for all a-cuts;

€YV, = calibration error for a membership level equal to @ which increases the
initial estimate, w,;

EL, = calibration error for a membership level equal to a which decreases the
initial estimate, w,; and

a,b = lower and upper bounds, respectively, for eacha-cut.

Equation 3.7 translates the deterministic value, w,, to a-cuts, FS, which represent
the calibrated natural frequency. The fuzzyness in the calibrated natural frequency
represents the range of possible values for the natural frequency. After the structure
has been constructed and a sv<*n identification performed, it is possible to reduce
the initial uncertainty to include only the uncertainty inherent in the system iden-
tification procedure. However, since this calibration procedure is performed before
construction, the uncertainty in the actual value for the natural frequency also must
include the unkuowns in the analytical model for the structural system.

Figure 3.2 shows a possible fuzzy set representing natural frequency for the cali-
bration model. The uncertainty in the initial estimate w, is represented with upper
and lower bounds for the error, &.,;. In theory, an infinite number of estimates for
the calibration error, £, defines a smooth membership function for the fuzzy set.
Since it is virtually impossible to obtain an infinite number of estimates, the fuzzy
set will be defined using the resolution principle with errors at membership levels
0% and 1. Implementing the vertex method with membership functions defining the
parametric uncertainties, it is possible to obtain values for the calibration error at

the membership levels of interest.
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Figure 3.2: Fuzzy set for frequency used in calibration model.

The amount of uncertainty in the result is based directly on the amount of un-
certainty in the contributing factors. As shown in Figure 3.3, uncertain fundamental
parameters are combined using an eigensolution coupled with the vertex method to
solve for fuzzy sets for the natural frequency of the analytical structural model. There-
fore, it is of vital importance to develop membership functions for the fundamental
parameters based on the best information available to the analyst. This is addressed
in more detail in Section 3.3.

Structural response is dependent on both the dynamic characteristics inherent to
the building and the characteristics of the applied load. The dynamic characteristics
(modal properties and damping capacity) of a building are dependent on the prop-
erties of its structural and non-structural elements and, once determined (either by
detailed dynamic analysis or system identification), can be assumed to remain un-
changed through a short duration of the structure’s lifespan. The applied load to the
structure is the time history created by the earthquake and is impossible to predict due
to the random nature of earthquakes. The ultimate error in the structural response
is due to the approximations inherent in the models used to predict the structure’s

dynamic characteristics and to represent the excitation acting on the structure. The
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Fundamental Errors
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Figure 3.3: Fundamental parametric uncertainty in the calibration model.

error associated with the prediction of the excitation forces is quantified through the
formulation of the fuzzy response spectra is given in Chapter 4.

To illustrate the solution of the dynamic equations with fuzzy parameters the nat-
ural frequency is obtained for the axial vibrations of the cantilevered beam shown in
Figure 3.4. The distributed mass, m, and the stiffness for the spring, «, at support B
for the beamn are fuzzy quantities while the other properties for the beam are assumed
to be deterministic. Values for the beam’s deterministic properties are given in the
figure. Table 3.1 gives the values for the fuzzy parameters. These fuzzy parameters
may be interpreted as a distributed mass close to 10 and a spring stiffness about equal
to the axial stiffness of this continuous system is solved in closed-form (Hum90] based

on elementary beam theory assumptions and is given in Eq. 3.8.

203x [EFA
=\ (3.8)

where,
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Figure 3.4; Cantilevered beam with a linear spring at support B.

= fundamental natural circular frequency (fuzzy);
modulus of elasticity for the beam (deterministic);
beam’s cross-sectional area (deterministic);

= distributed mass (fuzzy);

2 3 » €

linear spring stiffness, where « = 7% and L is the beam length; and

2
|

dimensionless parameter (fuzzy) used to scale the spring stiffness.

In this example, the vertex method is applied to levels of membership at 0* and
1. Since the fundamental fuzzy sets in this example are triangular, one solution is
required for membership level 1. An exhaustive implementation of the vertex method
requires 4 solutions at membership level 0*. The natural frequency 1s highest when
the mass is low and the stiffness multiplier is high. Similarly, the natural frequency is
lowest when the mass is high and the stiffness multiplier is low. Therefore, the solution
at membership level 0% can be obtained by performing 2 solutions. Table 3.2 gives the
values for the two fuzzy parameters and the frequency obtained from each solution.
The extreme valves for the fundamental frequency at each level of membership are

used to define the fundamental frequency fuzzy set.
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Table 3.1: Alpha-cut bounds for the mass and spring stiffiness triangular fuzzy sets.

a-cut [ lower bound | upper bound || lower bound | upper bound
m, shugs/ft ¥

1.0 10 10 1.0 1.0

0.0 8 14 0.6 1.2

Table 3.2: Parametric values for each solution and the corresponding fundamental
frequency.

[acut] m 5 ]| Fundamental Frequency |
slugs/ft Hz Bound
1.0 10 1.0 | 0.64 | upper & lower
0.0t 8 0.6 [f 0.43 none
0.0* 8 1.2 || 0.86 upper
0.0* 14 0.6 || 0.65 none
0.0* 14 1.2  0.32 lower
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3.3 Quantification of Fundamental Uncertainties for the
Free-Vibration Problem

In the calibration model, fundamental fuzzy sets representing uncertainty in structural
stiffness and mass values are used in conjunction with the eigenvalue problem of
Eq. 3.2 to develop a membership function representing w. Using the fuzzy set for w
and an additional fuzzy set representing uncertainty in forcing frequency (2) defined
in Chapter 4, a membership function is developed for 3. The vertex method is used
in conjunction with solving Eq. 3.3 to determine a membership function for y,,. These
modal responses ate superimposed using the SRSS in Eq. 3.4 to obtain the higher level
fuzzy set for the total maximum building response, Vmax. This section discusses the
procedure used to determine the membership functions for the modal properties and
the structural response.

There are two types of fundamental fuzzy sets used in the calibration model:
normal crisp and normal trapezoidal. The crisp sets are developed when there is
a significant lack of knowledge about the parameter’s behavior at various levels of
confidence where the same extreme parametric values establish the same interval at
a-cuts 0% and 1. To develop the normal trapezoidal fuzzy set, it is necessary to
define two intervals of confidence. This study defines intervals at a-cut 0% and a-cut
1, where the interval at a-cut 0% defines the most possible values of the parameter
and the interval at a-cut 1 defines extreme (but realistically possible) values of the

parameter.

3.3.1 Natural Frequency

The natural frequencies of a structural system are found through the solution of the
undamped, free vibration eigenvalue problem given in Eq. 3.2. It is assumed that
uncertainties inherent in the natural frequencies are due to uncertainties associated
with modeling the system stiffness and inaccurate representation of design loads. Un-
certainty in the stiffness matrix is a function of uncertainty in the material properties
(flexural and axial rigidity) and inaccurate representation of joint rigidities (fixed vs.

pinned connections). The skeletal mass of the structure is assumed to be constant for
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the purposes of this analysis; however, the uncertainty in design loads (weight of floor,
partitions, scaffolding, etc.) is considered. An additional type of uncertainty associ-
ated with the finite element model is due to discretization error where exact natural
modes and frequencies are obtained only as the number of elements representing the
structural system approaches infinity.

As discussed earlier, fundamental membership functions are developed to represent
the uncertainty in stiffness, mass, and finite element modeling and the vertex method
is used to combine these membership functions into a higher level fuzzy set for the
natural frequencies. The result is a membership function which describes the complete
behavior of the fundamental frequency due to the contributing errors.

The quantified errors for the free-vibration analysis combined with the quantified
error associated with the input motion to the structure are used to determine the
resulting error in structural response. This section presents the development of the
potential fundamental errors inherent in vibration analysis of steel frame type systems.

Fundamental membership functions. denoting fundamental errors, are developed
to represent the uncertainty in stiffness and mass. These uncertainties are funda-
mental sources to the ultimate errors in the analytical building behavior. The vertex
method is used to combine these membership functions into higher level fuzzy sets
for the natural frequencies. The result is a membership function for each of the
desired natural frequencies which describes the complete behavior of the structure's
frequencies due to the contributing errors.

Although these four sources of error are modeled as uncoupled in their effects on
natural frequency, the vertex method in conjunction with re-analyses of the eigenvalue
problem is used to develop a single fuzzy set which combines the effects of all the
uncertainties. The resulting fuzzy set is used by the analyst to determine whether
or not the resulting range in natural frequency is acceptab':. A discussion devoted
to the application and use of the results from the calibration model is presented in
Chapter 7.

The natural frequencies of a structure are obtained through the eigensolution
of the undamped free-vibration problem originally given in Eq. 3.2. Fundamental

uncertainties presented in this section are confined to the structural stiffness and
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mass properties, denoted by K and M respectively. The stiffness matrix, K, for the
multi degree-of-freedom problem is the assembledge of contributing stiffness elements

which have a functional dependence on the individual element properties represented

as
K=f(E, vl Al (3.9)

where,

E = modulus of elasticity for the structural material;

v = Poisson’s ratio for the structural material;

I = moment of inertia about the strong and weak neutral axes;

A cross-sectional area; and

! = element length.

The uncertainty in the mass matrix, M, is also a result of the uncertainty at the

element level. The dependencies for the mass of an element are represented as

M = f(m,Lq, L1,1) (3.10)
where,
m = distributed mass of a structural element;
Lq = dead loads considered in the structural analysis; and
Ly = live loads considered in the structural analysis.

The fundmental uncertainties (errors contributing to analysis uncertainty at the ele-
ment level) considered in the calibration of the natural frequencies which are quanti-

fied in this study are:
o material modulus of elasticity,

e cross-sectional moment of inertia for the consideration of stiffness due to con-
crete slabs,

dead loads,

live loads, and

joint stiffness (not explicitly addressed above).
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The remaining contributions to stifiness and mass (Poisson’s ratio, cross-sectional
area, length, and distributed mass) are considered to be constant for the purposes
of this study. However, the consideration of any uncertainty related to these factors
can be implemented in a similar manner to the one presented here. The following

subsections present the methodologies used to develop the fundamental fuzzy sets.

3.3.2 Modulus of Elasticity

Uncertainty associated with material properties has been widely published for use in
probabilistic analysis. Consequently, the best information available for use in the de-
velopment of a fuzzy set denoting uncertainty in modulus of elasticity is probabilistic.
In this thesis, a mapping function is used to translate a probability density function
to a normal trapezoidal fuzzy set, thus quantifying nncertainty in material properties.
The modulus of elasticity is the only material property which is considered to vary:
Poisson’s ratio for the structural members is assumed to remain constant.

The mapping to the normal trapezoidal fuzzy set is performed by defining a-cuts
at membership values of 0% and 1. The resolution principle is then used to define the
fuzzy set’s membership function. Since the a-cuts are defined at membership levels
of 0* and 1, the shape of the resulting membership function will be a trapezoid.

Extensive research has been performed to establish an acceptable mean value and
coeflicient of variance for the modulus of elasticity for steel [GR78]. For the purposes
of the mapping procedure, the distribution is assumed to be lognormal (a reasonable
assumption since it is impossible for the modulus of elasticity to have a negative
value). The bounds which contain 99% of the area underneath the probability density
function translate to the bounds at a-cut 0%. Although it is assumed that the tail
of the probability density function is infinite, it is reasonable to assume that the
corresponding a-cut 0% will bound all physically and realistically possible values of
the modulus of elasticity. Thus, the resulting interval at a-cut 0%, Eg+, is defined by
Eq. 3.11.

Eo+ = {E|P(a < E < b) = 99%} (3.11)

where,
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E = modulus of elasticity;
Eov = {Elu(E) >0}
a = the threshold such that P(E > a) = 99.5%; and

= the threshold such that P(F > b) = 0.5%.

Alpha-cut 1 corresponds to the set containing the most likely values for E£. Therefore,
this a-cut should contain more than half of the possible values for the modulus. A
similar procedure defines the interval of confidence for a-cut 1, Ey, by calculating the
bounds which contain 51% percent of the area underneath the probability density

function. Thus,

Ey = {E|P(c < E < d) = 51%)} (3.12)

where,

Ey, - ({E|s(E) 21}
the threshold such that P(E > a) = 75.5%; and
the threshold such that P(F > b) = 24.5%.

[of

d

For steel, the recommended values for mean and coefficient of variance are 29, 000
kips per square inch and 0.06, respectively, resulting in a very narrow distribution.
Given these statistical properties, Figure 3.5 is a schematic of the mapping procedure
and the resulting normal trapezoidal fuzzy set describing the uncertainty inherent
in the modulus of elasticity for structural steel. Table 3.3 gives the probability of
occurrence for the resulting bounds of a-cuts 0* and 1. When possible, all fuzzy sets
will be given in tabular form, and the values for the lower bound and upper bounds

in the tables can be referenced to the fuzzy set shown in Fig. 3.5.

3.3.3 Structural Mass and other Static Loading Conditions

Uncertainty due to the uncertainty of design loads is estimated with the use of a
trapezoidal fuzzy set using the recommended factors of safety in the design code
[Int86]. Again, the membership function is obtained through the definition of two

a-cut intervals at membership levels of 0% and 1. However, in this case, there is little
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Modulus of Elasticity: Lognormal
Probability Density Function

Mapping to Area = 0.51
a-cut 1
27,822 30,224 E, ksi
Pg (E) A
Mapping to
o-cut0+

Figure 3.5: Mapping procedure for the development of the membership function which
defines the modulus of elasticity fuzzy set.
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Table 3.3: Alpha-cut bounds for the elastic modulus fi ..y sets for structural steel.

a-cut | P(a <E <b) || mean | cov || lower bound | upper bound
ksi ksi ksi

0.0* 99% 29,000 | 0.06 24,847 33,843

1.0 51% 29,000 | 0.06 27,822 30,224

information known about the probabilistic behavior in structural loadings (loads due
to concrete slabs, furniture, partition walls, etc.) The skeletal mass of the structure
is assumed to remain constant due to the small variance in the density of steel;
however, there are large amounts of uncertainty associated with the design loads. The
uncertainty for these design loads is due to the variability in floor weight, partitions,
scaffolding, sheet walls, furniture, etc. For example, the fuzzy set denoting structural
mass is defined by calculating the loads for the building and bounding them using a
X(a) factor of + 10% for @ = 1 and + 20% for a = 0* (see Fig. 3.6). Therefore, the
intervals for each of the two fuzzy sets are defined best by the analyst. The analyst
first estimates the center of mass for the fuzzy set. This center of mass represents the
initial mass, M,, estimated by the engineer to be considered in analysis. Additionally,
a factor is used to map the uncertainiy in the initial mass estimate to a fuzzy set
for the mass loading conditicus. The analyst gives a value for this factor based on
knowledge of the architect’s plans and structural use. In this study, the factors of
safety in the LRFD code are used as a guide. The resulting fuzzy set is obtained

based on the following equation.

M. = {{a,bjla = (1 ~ X(a))Ma; b = (1 + X(a))M,} (3.13)
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Figure 3.6: Fuzzy set denoting fuzzy mass estimate.
where,
M = structural mass;
M, = {(M|u(M)>al;
M, = mass value specified by the analyst;
AX(a) = value specified by the analyst for membership a
such that A'(a =1) < X(a = 0*);
a = the lower bound for the alpha-cut set; and
b = the upper bound for the alpha-cut set.

3.3.4 Joint and Stiffness Uncertainties

The uncertainty in natural frequency resulting from uncertainty in joint rigidities is
also described in terms of a normal trapezoidal fuzzy set where four separate cases
defining joint rigidity are used to define the two a-cut levels. It is assumed that
welded connections are perfectly rigid and that joints which are bolted are semi-rigid.
For a membership value of 0%, the lower hound represents the most flexible possible

structure obtained by modeling all semi-rigid joints as perfectly hinged, where the
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Figure 3.7: Rotational deformation, O due to an external bending moment, M.

resulting fundamental frequency is the lower bound of the a-cut 0* interval. The
upper bound of the a-cut 0* interval is determined through analysis of the least
flexible structure obtained by modeling all semi-rigid joints as perfectly rigid (a spring
with infinite stiffness). The interval at a-cut 1 is obtained by modeling the semi-rigid
joints with springs having variable stiffnesses.

Moment-curvature relations of semi-rigid joints have been studied [KC86] and
can be used to determine appropriate bounds for specific connection types for a-cut
1. A semi-rigid joint will typically experience a rotation between the column and
connecting flange as shown in Fig. 3.7. The shape of a typical moment-curvature re-
lationship for a semi-rigid joint is shown in Fig. 3.8. Due to the nonlinear relationship
between moment and curvature, the slope in the figure decreases as the applied bend-
ing moment increases. In other words, the rotational stiffness of the joint decreases
permitting more joint deformation as the bending moment increases.

The uncertainty in the joint stiffness is based on the uncertain range of internal
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Figure 3.8: Moment-curvature relationship for a semi-rigid connection.

moments that joint must be able to resist. The range in stiffness for the a-cut bounds
may be defined by evaluating the changing slope for typical semi-rigid connections.
For example, the most possible range of internal moments will correlate to the most
possible range of joint stiffness. Table 3.4 gives possible points for a-cuts 0* and 1

for two connection types: shear tabs and detailed joints.

3.3.5 Uncertainty of the Floor Rigidity

The rigidity of the floor system is an important consideration in three dimensional
dynamic analysis. Floor system rigidity affects the overall stiffness of the structure
and is an important consideration when determining the structural frequencies. A
fully rigid floor system permits the transfer of all forces from one structural frame to
another, as opposed to a flexible diaphragm which inhibits the transferring of forces as
illustrated by Figure 3.9. For the purposes of this research, floor rigidity is quantified

through the analysis of a composite beam section. The composite beam section
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consists of steel decking and concrete used in the slab system. Variance of the width
of the concrete slab in the composite section directly affects the analytical stiffness of
the floor system. Figure 3.10 shows the composite sections used in this study. The
width, w, of the concrete slab and the modulus of elasticity for the concrete are two
uncertain variables used in the analysis. Additionally, since the concrete slab is an
irregular shape, the slab thickness, t, may also be used in approximating the bending
stiffness of the slab. Since the values used to quantify the stiffness of the concrete
slab vary significantly based on the slab type, floor plan, and bay width, fuzzy sets
denoting their values will not be given here. A case study is presented in Chapter
5 which illustrates the uncertainty of the floor system rigidity and the fuzzy sets for

the geometric parameters are given in the example.

3.4 Generality of the Calibration Maodel

The calibration model presented here is a general methodology which can be applied
to almost any analytical finite element model for a structural system provided ti:at the
methodology is applied consistently. The error quantified in the calibration analysis
is based on estimates of the fundamental contributing errors to the desired solution.
With careful definition of the fundamental errors the resulting error obtained from
the calibration model will be a realistic representation of the potential values for the

parameter of interest.

Table 3.4: a-cut bounds for the connection stiffness.

a-cut || lower bound | upper bound
BT T
Rad _Had
Shear Tab
0.0% 0.0 o0
1.0 0.0 107
Detailed Joint (no welds)
0.0* 0.0 107
1.0 107 00
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Figure 3.9: Rigid and flexible floor systems.

Uncracked Width

el

steel deck

Figure 3.10: Typical cross section for composite elements.
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In this thesis, the procedure for the develorment of fundamental errors pertaining
to a civil structural system is established. Most certainly there are additional uncer-
tainties in the analytical structural model which are not considered here that may
relevant to the uncertainty in the structural dynamic properties. It is impossible to
develop fuzzy sets for every type of fundamental error contributing to the dynamic
properties of a structural system. However, the purpose of this chapter has been to
present methods that can be used to define the errors. In defining fuzzy sets for ad-
ditional errors the same logic used here must be maintained. Such that extreme yet
realistically possible values must be used to define the bounds at a-cut 0*. The most
possible values (whether that is defined by a frequency of 531%, occurring most of the
time, or an expert’s opinion) define the bounds at a-cut 1. Membership levels of 0*
and 1 are used here because it is more intuitive for qualitative data to be extracted at
the corresponding levels of logic. If there is enough information or experience about
the uncertainty, the fundamental errors can be defined at additional levels of mem-
bership. Ultimately, this will increase the integrity and usefulness of the calibration
model results.

Application of the calibration model is not confined to civil structural systems.
The methodology presented in this thesis can be applied to any structural system
which is modeled using the finite element method. The fundamental errors need
to be consistently defined to represent the uncertainty specific to the application of
interest. For example, in the case of an off-shore oil platform, the uncertainty in the
structural mass is not based on scaffolding and dead load approximations, rather the
uncertainty is due to the loading of machinery at the platform. Marine growth on
the structural smembers may contribute to the uncertainty in the structural stiffness.
Thus, 1t is critical to give careful consideration of the application in the use of the
calibration model.

Regardless of the application, repetitive solutions based on extreme bounds of the
contributing fuzzy sets at various levels of membership are required to obtain the final
solution. Consistent definitions of uncertainty will provide the analyst with results

needed for his future decision making purposes.



CHAPTER 4

Quantification of Input Motion Uncertainty

Uncertainty in the dynamic input motion felt by the structure is quantified for use
in the adaptive dynamic analysis models through the development of fuzzy response
spectra. The fuzzy response spectra which are developed in this thesis give a fuzzy
set for the maximum response of a single degree-of-freedom (SDOF) system. The
maximurn response fuzzy set is obtained by referencing the deterministic or uncertain
frequency of the SDOF system to the spectrum. Additionally, it is possible to obtain
a fuzzy set for the system’s maximum response based on a fuzzy representation of the
system’s dynamic properties.

This chapter presents the process established for the definition of the fuzzy ve-
locity response spectra. Section 4.1 contains a detailed discussion pertaining to the
objectives and motivation towards the development of the fuzzy spectra. Definition
of the response spectra as fuzzy sets requires the organization of selected data from
individual deterministic spectra into groups classified by soil types and distances to
the rupture zone. Furthermore, fuzzy logic is then used to translate the data cbtained
from individual spectra into fuzzy response spectra. A detailed presentation of this
forinulation is given in Section 4.2. Section 4.3 contains the resulting spectra which
are used in the adaptive analysis models. The fuzzy spectra developed here are used
to demonstrate the capability of the adaptive analysis model to consider input motion
uncertainty. Section 4.4 addresses specific issues which need to be considered in the

future development of fuzzy spectra.

58
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4.1 Objectives of the Fuzzy Response Spectra

Response spectra which were studied initially by researchers such as Housner [Hou47)
enable engineers to better understand the effects an earthquake time history can have
on a structure due to the local site conditions. A response spectrum gives the results
of the equation of motion for a SDOF system excited by a time history as shown in
Eqs. 4.1, 4.2, 4.3, and 4 4.

my + cy + ky = —mZ(t) (4.1)
Sa(T, &) = mazly(1)| (4.2)
Su(T,€) = maz|y(t)| (4.3)
Sn(T\f) = marlj(t” (4'4)
where,

y = the time dependent modal coordinate displacement response (where
1st and 2nd derivatives with respect to time denote velocity and
acceleration, respectively);

k,c,m = the stiffness, damping, and mass, respectively for the SDOF system ;

T = system period where, T = 22 withw = \/E (for an SDOF system);

¢ = fraction of critical damping where, ¢ is the viscous damping
coefficient and ¢ = w‘z;;

#(t) = the time dependent earthquake acceleration input at the system
support; and
S4ve = the maximum displacement, velocity or acceleration, respectively

obtained from Eq. 4.1.

In general, a response spectrum is a graphical relationship of the maximum re-
sponse (displacement, velocity, or acceleration) of a SDOF elastic system versus natu-
ral frequency (or period) of the system for a particular input motion. Representation

of the input motion as response spectra makes it possible to compare the consequences
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of a system’s response to various system dynamic properties such as damping and nat-
ura) frequency. It is possible to use a response spectrum to find the maximum response
for a multi degree-of-freedom (MDOF) system by first analyzing the m responses of
the equivalent, uncoupled SDOF systems. Modal superposition, as described in Sec-
tion 3.1, superimposes the m responses of the uncoupled SDOF modal coordinates in
the time domain to a MDOF response in space and time. Initially, the fuzzy spectra
are applied to the calibration model which predicts the response for an undamaged
structure. Therefore, the spectra developed here, are elastic spectra which give the
maximum response for an elastic system.

Structural response is dependent on both the dynamic characteristics inherent to
the building and the characteristics of the applied load. The dynamic characteristics
(modal properties and damping capacity) of a building are dependent on the prop-
erties of its structural and non-structural elements and, once determined (either hy
detailed dynamic analysis or system identification), can be assumed to remain un-
changed through a short duration of the structure’s lifespan. The applied load to
the structure is the time history created by the earthquake and is impossible to pre-
dict due to the random nature of earthquakes. The ultimate error in the structural
response is due to the approximations inherent in the models used to predict the struc-
ture's dynamic characteristics and the excitation acting on the structure. Parameters
which describe the earthquake’s peak ground acceleration (velocity or displacement),
duration, frequency, and energy content are difficult to predict. Consequently, it is
difficult to select representative earthquake time histories for the purposes of struc-
tural design [AB86, Hou90].

The objective of this work is to formulate a methodology which can be used to
characterize the uncertainty in the ground motion felt by a structure. The following
1s a motivation towards the use of response spectra in this uncertainty quantification.
The purpose of the fuzzy response spectra is to epnable the analyst to bound the
potential maximum response a structure may experience; thus, enabling him to make

better informed decisions about structural integrity.
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4.2 Formulation of Fuzzy Sets

It has been well accepted that the excitation acting on a structure is dependent on the
site’s proximity to the fault rupture, earthquake magnitude, and local site conditions.
Other factors which may also affect the characteristics of the excitation acting on the
structure are damping characteristics of the soil and soil-structure interaction.

Earthquake motions are characterized by random vibrations. Although considered
random both in time and space earthquakes do have common characteristics. Use of
response spectra make it possible to generalize some of the common characteristics
of earthquake motions. Spectra were studied by Housner [Hou47| in an attempt to
characterize strong motion earthquakes. Housner continued to study response spec-
tra by introducing analytical methods which use the response spectrum to measure
earthquake intensity [Hou59]. He recommends the use of such analytical measures
in comparing the strength of earthquakes rather than the empirically based Modified
Mercalli Intensity (MMI) scale.

A number of researchers have realized the importance of local site conditions in
characterizing ground motion parameters [BG76, Cam85, JB81, MJB83]. The ran-
dom vibration of the earthquake is filtered as it passes through a soil profile before
reaching the earth’s surface, creating a smooth surface motion. Consequently, the
frequency content of the motion at the earth’s surface is similar to the natural fre-
quencies of the soil profile. This filtering process in some cases can add randomness of
their own making the surface motion even more complex. Additionally, amplification
is generally greater for soft soil as compared to rock sites. Dorby et al. [DOU76)
compares closed-form solutions to approximate methods used to estimate the funda-
mental period of a soil profile. The shear wave velocities at various depths are used
to determine the natural frequency of the soil column.

Atkinson and Boore [AB90] have noted that the difference in earthquake charac-
teristics between the eastern and western regions of North America is primarily due to
the different properties in the earth’s crust. Typically, earthquakes in the East have
significantly lower attenuation rates than in the Western regions. Thus, response

spectra represent characteristics which are specific to the local site conditions and
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the more global characteristics of the earth's composition in addition to that of the
earthquake itself. Boore and Joyner have developed attenuation relationships based
on statistical regression analyses to empirically predict ground motion [BJ82, BJF93).
Based on values for magnitude and distance to the rupture zone, these attenuation
relationships predict peak ground acceleration {velocity and displacement) as well as
formulate response spectra which further deccribe the frequency characteristics of an
earthquake.

Currently in the design code, design spectra are selected according to the local soil
conditions. However, after determining the local site conditions, the spectrum used
in the analysis is deterministic. Although the spectra provided in the design code is
developed from many earthquake time histories. the result is a single relation because
it would be difficult if not impossible to design for several spectra. In design, a single
spectra is used based on an expected peak ground acceleration for the region and
local soil conditions. This single relation does not consider the uncertainty inherent
in the soil and other potential ground motion characteristics. The design spectra,
in general, define the criteria for which a structure should be built [NL93, App7i).
A design based on the response spectra approach does not consider the duration
of the earthquake [AppT74]. Furthermore, since the design spectrum is normalized
the spectrum’s shape is an important characteristic for design [Sei90]. This shape
highlights the response specific to the structural system’s natural frequencies. Since
the local soil conditions have one of the greatest influences in the surface motion,
further analyses can benefit from the consideration of the uncertainties inherent to
the local site conditions. Furthermore, in the case of a detailed forced-vibration
dynamic analysis, there is difficulty in selecting applicable time histories to represent
accurately the next unknown earthquake. A response spectrum inherently represents
the local site conditions because it is obtained using free-field data.

By developing a fuzzy response spectrum which denotes uncertainty in frequency
and amplitude it is possible to anticipate characteristics of future earthquakes at a
particular site. Use of a fuzzy spectrumm provides the analyst with bounded ranges
of values for possible structural response. The idea of bounding a response spectrum

is not new. Seed (in a number of papers [SIG9, SUL76, SMLI76]) has statistically
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bounded response spectra grouped by soil types and distance categories with a mean

response and an upper bound of one standard deviation.

4.2.1 Theoretical Development of Fuzzy Response Spectra

The theoretical development of the fuzzy response spectra is performed in four steps:
(1) The shape is characterized for individual site-dependent spectra; (2) Data is
organized; (3) Data is mapped from the site-dependent spectra to the fuzzy spectrum;
and (4) Results from any of the above steps are refined as needed. These steps are
described in greater detail in the remainder of this chapter.

In this thesis, fuzzy velocity response spectra are developed considering uncertain-
ties in distance from the fault rupture, local soil conditions, and the random ground
motion felt by the structure. The velocity response is selected for the fuzzy response
spectra because it is, in general, the smoothest of the three response parameters.
The uncertainty of the earthquake is determiiied by the location of the two corner
points of a site-dependent velocity response spectrum, “Corner A” and “Corner B”
(shown in Fig. 4.1). Identification of these two points helps to approximate the trape-
zoidal shape typical of the velocity spectrum [NH82] and describe both the velocity
amplification and frequency content specific to the site from which the spectrum is
developed. The trapezoid outlines the shape of the site-dependent velocity response
spectrum using corner points A and B and two additional points, ¢ and D (also
shown in the Figure). In this development, points C and D will always have the
same location regardless of the shape of the site-dependent response spectrum. The
purpose of these deterministic points (C & D) is to fix the two sloped lines of the
trapezoidal shaped curve.

A response spectrum which is obtained from a real discretized earthquake record
is generally rough due to the randomness of the earthquake. Peaks which occur
across the spectrum of frequencies represent the frequency content of the earthquake.
Depending on the local site conditions, the range in frequency content in a spectrum
may vary greatly in breadth. It is difficult to define the exact points for each of
the corners A and B, because of the variable shape of typical site-dependent spectra.

However, it is possible to locate points A and B such that the line connecting the two
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Figure 4.1: Corner points A & B for site a dependent spectrum.

points generally follows the spectrum. It is not important to capture every peak in
the spectrum; however, it is important to locate the average amplitude height across
the range of frequencies. The corners are located at frequencies where the amplitude

has a distinctive and continuous drop-off.

4.2.2 Organization of Data

The data used to derive the representative fuzzy response spectrum are: (1) location
of the two corner points from site specific velocity response spectra; (2) local site
conditions (a soil type); and (3) the distance from the site to the fault rupture. These
characteristics are selected based on the best information available to the analyst
during the design stage. Additional factors which affect the amplitude of ihe spectra
are the magnitude and rupture mechanism of the event. Magnitude is not consid-
ered in the initial establishment of the fuzzy spectra presented here. The example
which is presented at the conclusion of this chapter uses data from the Loma Prieta
earthquake only. Therefore, data organization with respect to magnitude will not be
considered in more detail. Uncertainty in the respouse due to the magnitude or rup-

ture mechanism can certainly be added to this formulation, but it is imperative that
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careful consideration be made as to the amount of data available in each data group
such that enough information is available to effectively represent each spectrum.
During the design of a structure, the location and general soil conditions are
typically known for the potential site. Data is, therefore, separated into two general
soil type groups: rock and alluvimia. By separating these two soil types, it 1s possible
to characterize the fuzzy spectra based on the frequency content of the soil profile.
The distance from the site to the next earthquake is generally unknown, although
assumptions may be made by studying the proximity to fault zones and earthquake
recurrence relationships. In the example which follows, three response spectra are
develcped for each local site condition based on distance (z) to the fault rupture
zone: r < 30 km, 30 < r < 60 km, and £ > 60 km. Application of the fuzzy
response spectra requires the analyst 10 use the spectra best-representing the local

site conditions and denoting each of the three distance groups.

4.2.3 Development of Fuzzy Sets for Earthquake Spectra

Fuzzy set development for the period and maximum velocity amplitude is performed
separately based on the data obtained from the corner point locations. Four fuzzy
sets (one each for the period and amplitude at corners A and B) are developed which
provide the information necessary to define the “fuzzy location™ of the two corner
points in the resulting fuzzy spectrum. The a-cut 0% is established such that all data
points within a distance group are bounded, and a-cut 1 is defined by crisp set bounds
denoting the most-possible values of occurrence. Regions representing the most-
possible values of occurrence are generally where data is clustere and where more
than half of the available data is contained. Four fuzzy sets (shown in Figure 4.2).
two each for period and amplitude, are used to define a fuzzy spectrum by specifying
the fuzzy location for corners A & B.

Once period and amplitude fuzzy sets have been defined for each corner, set theory
is used to define the resulting fuzzy velocity response specttum. The union of the
period fuzzy sets for coimers A and B define the membership for period content in
the resulting fuzzy response speccrum. The resulting fuzzy sct for period content

must be convex, and modifications may be necessary. Alvha--uts taken at higher
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levels of memberships for this resulting period content fuzzy set may produce two
crisps sets. The a-cut bounds which produce two crisp sets are modified such that
the new bounds consist of the minimum of the two original minimum bounds and
the maximum of the two original maximum bounds. Repeating this procedure for
all the affected a-cuts creates a convex fuzzy set. The intersection is then taken of
the newly defined membership for period content and the amplification fuzzy sets for
each corner point. This results in fuzzy locations for corners A and B.

In addition to the two fuzzy corners A and B, two additional points are required to
define the shape of the -esponse spectrum and are labeled “Point C” and “Point D”
as shown in Fig. 4.1. These points are taken to be deterministic and, as stated earlier,
are used as constraints to create the general trapezoidal shape typical of the velocity
spectra. Point C is located at a period of 0.01 sec. and a velocity of 0.1 in/sec., and
point D is located at a period of 60.0 sec. and a velacity of 0.1 in/sec. The placement
of the two fuzzy corners and the two deterministic points define the fuzzy velocity
response spectrum. The fuzzy velocity response spectrum now is defined fully by two
crisp sets at a-cut 0% aud a-cut ! for the two fuzzy parameters (velocity amplitude
and period), where the bounds for each a-cut are established by the placement of six
points representing the vertices of the trapezoidal shaped velocity response spectrum.
This procedure is illustrated in Figure 4.3 which shows the mapping from the fuzzy
sets in Figure 4.2 to the fuzzy spectrum.

It may be necessary to refine the fuzzy sets at two stages of their development.
First, the amount of data available for a particular earthquake may suggest slight
modifications to the distance categories to make the best use of the data. Secondly,
if the analyst wishes to enforce a particular shape to the fuzzy spectra (such as the
trapezoidal shape used in this study), there may be instances when a-cut 1 is not
completely contained within a-cut 0%, which is contradictory to the requirements
of fuzzy logic. This problem occurs because the slopes of the lines representing the
a-cuts forming the membership function act as a constraint on the development of
the fuzzy spectra. To eliminate this problem the a-cut 0% bounds can be altered to
be the same as the a-cut 1 bounds. This modification does not corrupt the validity

of the fuzzy spectra because it does not affect the region of primary importance to
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the analyst, i.e., the points defining a-cut 1 between corners A and B. However, the
bounds for a-cut 0 are broadened by this modification.

The flowchart in Fig. 4.4 is a schematic representation of the procedure used in the
development of fuzzy response spectra. The resulting snectra are in three dimensions,
with axes denoting period, velocity, and membership level. In the figure, the fuzzy
spectrum is viewed in two dimensions with the membership, denoted by a-cuts 1
and 0%, representing slices from the third dimensional view. The following is an

example further describing the implementation of this method.

4.3 Fuzzy Velocity Spectra for the Loma Prieta Earthquake

The methodology proposed here is applied to data from the Loma Prieta earthquake
of October 17, 1989. The thirty-nine records used in this development were obtained
from the California Strong Motion Instrumentation Program (CSMIP) [csm91]. Two
orthogonal horizontal channels were used from each site and considered to be indepen-
dent thus doubling the data available. Fuzzy velocity response spectra are developed
at the three distance categories for two soil types (alluvium and rock). Appendix A
contains the soil type, distance to the rupture zone for each site, and the coordinates
for the corners A and B for each horizontal channel at each site. The data is orga-
nized by separating the data into six groups for analysis. Tables 4.1 and 4.2 give the
tabular representation of the four two-dimensional fuzzy sets for the six groups used.

Fuzzy response spectra are developed for each of the six groups of data through
the processes of fuzzy set theory as described in the previous section. Figure 4.3
highlights the placement of the 6 points used to establish the a-cut 0% bounds in
the fuzzy spectrum. The points in Fig. 4.5 represent the data for rock sites located
less than 30 km from the fault rupture zone and can be referenced to Table 4.1.
Figures 4.6, 4.7, and 4.8 are spectra developed at the three distance categories for
rock sites, and Figs. 4.9, 4.10, and 4.11 are spectra developed for alluvium sites at

the three distance categories.
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Figure 4.4: Schematic representation of the fuzzy response spectra development.
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Figure 4.5: Fuzzy velocity response spectrum for rock sites less than 30 km from the
rupture zone at a-cut 0*.
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Table 4.1: Corner location fuzzy sets for rock sites.
Corner A Bounds Corner B Bounds
Distance a-cut 0% a-cut 1 a-cut 0% a-cut 1
km seconds seconds seconds seconds
less than 30 0.24 1.02] 038 - 08 | 1.0 413 1.5 3.25
between 30 & 60 || 0.16 - 1.02 | 0.32 0.62 || 0.88 7.1312.63 5.25
greater than 60 || 018 - 142 0.38 0.99 I 1.63 6.13 1225 - 4.13
km in/sec in/sec infsec | infsec ]
less than 30 6.25 - 61.3118.75 3254 6.5 3951100 - 220
between 30 & 60 || 2.5 15 74 1254 30 - 1701 4.0 13.0
greater than 60 || 1.0 2251 2.5 8.75 (| 0.5 200 | 3.5 9.0
Table 4.2: Corner location fuzzy sets for alluvium sites.
Corner A Bounds Corner B Bounds
Distance a-cut 0 a-cut 1 a-cut 0% a-cut |
km seconds seconds seconds seconds
less than 30 0.2 0.61 1 0.35 0.48 J) 0.4 63| 1.5 2.75
between 30 & 60 || 0.2 - 1.2 |0.44 067115 - 53| 24 3.8
greater than 60 || 0.77 - 1.130.77 091 1 0.9 34 1 09 2.0
km in/sec in/sec infsec [ in/sec
less than 30 6.3 51.3 1 13.3 33.3 11 6.3 59 14 32.5
between 30 & 60 || 5.0 - 62 7.5 21 43 - 363 75 - 16
greater than 60 | 11.0 - 32 | 175 - 27.5[J73 - 31 |17.5 27.5
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It is difficult to make generalizations for the a-cut 0% bounds since these bounds
must contain extreme points to remain valid in fuzzy set theory. However, it is possible
to make generalizations for a-cut 1 bounds which represent the most possible values
for the velocity response spectra. In general, the resulting period bounds for the rock
sites are broader than the alluvium sites representing the wide range in shear wave
velocity for rock in the San Francisco Bay Area. The maximum velocity bounds are
broad for both the rock and alluvium sites because of the selection of the distance
categories. These distance categories were broad due to the lack of data points in finer
categories. The bounds for a-cut 1 become tighter at farther distances, representing
an overall attenuation of the maximum velocity. In Fig. 4.7 the bounds for a-cut 0*
were modified, hecause the original bounds did not fully contain a-cut 1.

Based on the results for the Loma Prieta example, further developments of the
fuzzy response spectra should consider soil types by shear wave velorities rather than
the general classifications of rock and alluvium. Introducing more earthquakes to the
data set will make it possible to further refine the distance categories. Thus, the
bounds for both the maximum velocity and the period will be tighter. The spectra
developed here give conservative, but high results for low and high periods (periods
which do not fall between fuzzy corners A and B). Placement of two additional fuzzy
corners between the deterministic points and the fuzzy corners will give the analyst

more realistic results for low and high structural periods.

4.4 Discussion

In this study earthquake response spectra are formulated using fuzzy mathematics tn
represent uncertainties inherent in the local soil conditions, distance from the fault
rupture, and the random nature of the earthquake. Fuzzy velocity response spectra
were developed based on data from the Loma Prieta earthquake for both alluvium
and rock sites. These fuzzy spectra can provide the analyst with more insight into
the most likely response, quantified to consider the uncertainties associated with the
site conditions and the earthquake parameters. The fuzzy response spectra developed

here for velocity are valid for earthquakes due to a combined right lateral fault and
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subduction mechanism of magnitudes similar to 7.1. Fuzzy sets are developed for
two types of general soil conditions, rock and alluvium, at three distance categories.
Use of the fuzzy response spectra helps the analyst to gain a better understanding
of the potential maximum responses for the structure resulting in a fuzzy set for the
maximum structural response.

The spectra developed in this chapter motivate further work in this area. In an-
ticipation of future building codes, prediction of ground motion parameters [BJF93,
Bor94] is moving towards the classification of soils into groups by shear wave velocity.
rather than “rock” or “soil”. Due to the broad range in frequency content and the
new grouping of soil types, future refinements for this methodology include dividing
the sail types into four categories based on shear wave velocities. In addition, other
earthquakes of a similar magnitude can be added to the database. Ultimately, fuzzy
response spectra should be developed for categories of soil type, distance, and earth-
quake magnitude providing the analyst with uncertainty information for different

types of potential earthquakes.



CHAPTER 5

Illustrative Examples

This chapter presents two examples which illustrate the implementation of the cal-
ibration model. The first example is a two-dimensional plane frame structure with
uncertainties in mass, material stiffness, and input motion. The second example is
a three-dimensional structural model of the Santa Clara County Office Building lo-
cated in San Jose, California, U.S.A. This structure has been instrumented since its
construction in 1976, and information has been collected from several earthquakes
since that time. In addition, system identification techniques have been used to
evaluate structural parameters using the collected response data, and the results of
these studies are available for comparison with the calibration model results. The
fundamental uncertainties considered in this example are static loading conditions,
material stiffness for steel, the stiffness contributions of the floor slab system, and

input motion.

5.1 Small Scale Building — Example

The small scale example is a two-dimensional representation of a steel three story
shear building with two wings on the first floor. This building is modeled based on
uncertainties in the static loading conditions, material stiffness, and the input motion
felt by the structure.

The building, shown in Fig. 5.1, has story heights of 10 feet and bay widths of
20 feet. The masses for the columns and beams are modeled as distributed loads
of 4 slugs/ft and 8 slugs/ft, respectively. For the simplification of this example, the
structure is assumed to have special moment resisting joints which are capable of fully

transferring a moment; thus, the joints are assumed to be fully rigid with complete
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Figure 5.1: Three story shear building.
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certainty. A finite element model is used to represent the structure using 13 Bernouli-
Euler beam elements. The finite element method is a well accepted approximation in
structural analysis; however, theoretically, an infinite number of elements is required
for exact representation of structural members. In addition, the elements which
assume pure beam theory (i.e., typically Bernoulli-Euler) represent the true physical
system. The errors associated with the loading conditions (static and dynamic) and
the uncertainty with the structure’s stiffness properties are far greater than those
introduced by a lack of discretization in the finite element model. Furthermore, in
the analysis of a full-scale building it is rarely feasible to model the structure with
more than one finite eleinent per structural member. Therefore, this example will not
be discretized further.

The fundamental fuzzy sets used for the analysis are given in Figure 5.2, Coluinn
mass, denoted by the crisp set, considers the uncertainty in the weight of the fire
proofing material and architectual components, for example. Due to the few con-
tributing uncertainties, the bounds created by a-cut 0% for this fuzzy set are tight;
consequently, the same bounds are used to define a-cut 1. There is much more un-
certainty associated with the mass of the beam elements. Beam element mass, in
addition to the uncertainty of the element mass itself, include the masses which each
element must support. Determuation of the beam mass requires an estimate of the
mass over the floor area and a calculation of the tributary area supported by the
beam element. The trapezoidal fuzzy set quantifies the uncertainty associated with
these mass estimates and bounds the initial mass estimate, M,. The material stiff-
ness fuzzy set is also given and has been established based on the methods presented
in Chapter 3. The final uncertainty considered in this example is the input motjon
acting on the structure which is represented by the fuzzy velocity response spectra

developed in Chapter 4.

5.1.1 Free-Vibration Analysis

The free-vibrational analysis is performed for this structure through repetitive solu-
tions of the eigenvalue problem using the input parameters given in Figure 5.2. As

the vertex method specifies, a solution procedure is performed at each a-cut level
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2,4 25 26 27 28 29 3 34 32 33 34

Figure 5.2: Fundamental uncertainty fuzzy sets for Example - 1. Clockwise from the
top left corner: (1) column mass; (2) beam mass; (3) modulus of elasticity for steel.
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ensuring that the extreme bounds have been obtained for the resulting parameter.
Care must be taken when applying the vertex method to a finite element model to
keep track of the changing parameters. For example, one possible case for the mass
conditions in the structure may be a maximum load at the top of the structure and
minimum loads at the lower levels. Such a situation may cause the structure to be
extremely flexible. This loading condition may occur during the construction of a
facility when there is a considerable amount of construction equipment on the roof,
and very little activity at the other levels. For the purposes of this thesis, it will be
assumed that the extreme parameter conditions will occur together. In other words,
all elements will have minimum or maximum mass simultaneously. This ensures that
the eigenvalue problem will produce the extreme solutions of interest. It is impor-
tant to realize, however, that by approaching the solution in this way, the torsional
modes (which are often excited by eccentricities in mass and geometry) may not be
represented realistically.

The four eigenvalue solutions (shown in Table 5.1) bound the potential values for
the natural frequencies by strategically simulating values for the uncertain parame-
ters. If there are lumped masses in the finite element model, then the high and low
masses will follow the procedure established in Table 5.1.

The free-vibration solution is presented graphically in Figure 5.3. The natural
frequencies (given in the top graph) for the structure have been converted to structural
periods in the second graph. In these graphs, the first and second modes of vibration
are denoted by solid lines. These resulting fuzzy sets give the potential range for

uncertainty in the actual built structure by representing the the potential values

Table 5.1: Extreme values for mass and stiffness to obtain the frequency fuzzy set.

Solution || column mass | beam mass steel modulus | frequency
1 high a-cut 1 | high a-cut 1 | low a-cut 1 low a-cut 1
2 low a-cut 1 low a-cut 1 high a-cut 1 | high a-cut 1
3 high a-cut 0* ! high a-cut 0% | low a-cut 0* | low a-cut 0*
4 low a-cut 0* | low a-cut 0% | high a-cut 0* | high a-cut 0+
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Figure 5.3: Top: Fuzzy sets for the first two natural frequencies (the fundamental
fuzzy set is the lowest frequency corresponding to the first mode of vibration). Bot-
tom: Corresponding fuzzy sets for the associated periods T, where T = -’Ul (here, the
highest mode corresponds to the first mode of vibration). The dashed line denotes
the predominant period fuzzy set for the input motion.
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that the natural frequencies can have given uncertain fundamental parameters. Since
calculation of structural modal properties is the first step in dynamic analysis, the
uncertainty obtained here is an essential piece of information in the quantification of
the uncertainty in structural response.

Two frequencies are given here, because the first two modes are superimposed to
determine structural response. As the next step in analysis the frequency ratio is
determined by comparing the ratio of the forcing frequency to the natural frequencies
of the structure. Since each of these frequencies (in this case there are 3 frequencies;
2 natural frequencies and 1 forcing frequency) is a fuzzy set, the vertex method is

again used to develop the resulting ratios.

5.1.2 Spectrum Analysis

The first step in evaluating the structural response due to an earthquake motion is to
compare the dynamic characteristics of the structure to those of the site. This com-
parison can inform the analyst of the possibility of resonant conditions. A frequency
ratio of 1.0 suggests severe response. If the dynamic characteristics (the dynamic
frequencies) of the structure are similiar it is necessary to provide ample damping
into the system to reduce the chances of extreme responses, as shown in Eq. 3.6.
An excitation applied to the structure due to an earthquake is filtered by the soil
column between the structure and bedrock. This filtering process is dependent on
the dynamic properties of the soil. There are a number of analytical techniques used
to quantify the dynamic properties of a soil column. Here, the fuzzy response spec-
tra (presented in Chapter 4) are used to characterize the dynamic properties of the
soil. For this reason, the uncertainty in frequency content of the surface motion is
taken from the site dependent response spectrum for velocity. In tnis example, the
fuzzy velocity response spectrum developed for soil sites between 30 and 60 km from
the epicentral zone is used to develop the uncertainty in the frequency of the forcing
function.

The uncertainty in period content of the input motion obtained from a fuzzy
spectrum (depicted by the dashed line) is given in the second graph in Fig. 5.3. In

this case, the input motion period fuzzy set extends beyond the graph. However,
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Figure 5.4: The frequency ratios, g,, forn = 1,2.

since this structure has relatively low periods, the higher periods are not relevant
to this analysis. A fuzzy set is determined (shown in Fig. 5.4) for 8, and 3, where
B, = 11‘.1 and T denotes the period of the input motion to the structure. The vertex
method is used to find the uncertainty in the frequency ratio using the same iterative
methods used to find the natural frequencies. Ratios for the first and second modes
of vibration are depicted by the solid and dashed lines, respectively. The vertical
line which crosses the horizontal axis at 1.0 highlights the region of frequency ratios
which indicate the structure may be prone to resonant response. Here, it is found
that only the first mode may exhibit resonant response. However, this is unlikely
because only a-cuts taken below 0.3 produce bounds which cross 1.0. The second

mode of vibration is well out of the range of resonant response. These results suggest
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that not only will the first mode of vibration contribute significantly to the overall
structural response for the fuzzy spectrum considered, but that the participation of
the first mode is dominant to that of the second modal participation.

The possible maximum response for the structure is obtained by performing repet-
itive modal analyses for each a-cut level. Four values for S, are used in the analysis
which are obtained from the curves defining a-cut 1 on the fuzzy response spectrum.
The two bounding period values at a-cut 1 from the free-vibration solution are used
to obtain the S, values. The vertex method requires that all possible iterations be
performed for the analysis at each a-cut level. To accomplish this, every possible
parametric combination is used at a particular a-cut level with the constraint that
the earthquake participation factor and eigenvector must always be used with the
same value for frequency. This is becanse the earthquake participation factor is de-
pendent on the normalization of the eigenvectors, and for each eigenvector there is a
corresponding eigenvalue (the resulting frequency values).

Modal superposition is performed four times using SRSS (Eq. 3.4), and the max-
imum and minimum values from these analyses bound the resulting fuzzy sets for
maximum response. Repeating this procedure at a-cut 0% gives the bounds at the
lowest level of membership. This procedure is explained in full detail in Appendix B.
These fuzzy sets give both upper and lower bounds for the possible maximum re-
sponse. Theoretically, the actual maximum response for a structure should fall within
the lower and upper bounds for the fuzzy set denoting a range in maximuin structural
response. Since this process predicts the maximum response it does not make sense
to represent a lower hound estimate. Consequently, the maximum response fuzzy sets
are defined by a single sloped line from ;2 = 1 to 3 = 0 which bound the maximum
response for all levels of confidence. Furthermore, th=se ;esults are only valid for the
Loma Prieta earthquake from which the spectra were developed.

The resulting possible maximum response fuzzy sets for the displacement and
acceleration of the roof are given in Fig. 5.5. Displacement spectral response can be
found from the velocity response spectrum using the following equation.

S.(nm)T,

Sd(n) = —2—”'— (51)
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Figure 5.5: Maximum response fuzzy sets for roof displacement and acceleration.
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where,
Ss+ = maximum displacement;
T = dynamic period of vibration; and
n = mode of vibration.

Since the displacement is proportional to the structural period and the periods are,
in general, small (< 1) the resulting displacements are small. Similarly, acceleration

is inversely proportional to the velocity response spectrum as shown in Eq. 5.2.

_ Su(n)2r

Su(n) T

where,

S, = maximum acceleration.

Therefore, the accelerations are higher for low structural dynamic periods. These
characteristics are reflected in Fig. 5.5. The predicted acceleration and displacements
for the structure are conservatively high because the structural periods fall between
deterministic point C and fuzzy corner A. As discussed in Chapter 4, the resulting

spectral values in these regions are high due to the placement of the two corner points,

5.2 Santa Clara County Office Building — Case Study

The following is a numerical example to demonstrate the application of the calibration
model to an actual building. The Santa Clara County Office Building, located in San
Jose, has been instrumented since construction to record earthquakes and has been
well studied through the processes of system identification. This building, designed
in 1972 and constructed by 1976, is a nearly square thirteen story structure consisting
of a steel moment resisting frame with members encased in fire proofing and plaster.
The building stands 188 feet in height with sides each measuring 147.5 feet. Refer to
the elevation and plan views in Figs. 5.6 and 5.7.

The building was designed using the seventh edition of the Manual of Steel Con-

struction (1970) by the American Institute of Steel Construction and consists of seven
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Figure 5.6: Elevation view of the Santa Clara Co. office building.
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Figure 5.7: Plan view of the Santa Clara Co. office building,.
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frames spaced 26 feet apart in both the East-West and North-South directions. The
columns are spaced 26 feet apart except on the perimeter where the spacing is only
13 feet (see Figure 5.7). The steel moment resisting frames are designed to carry
the lateral loads of the structure and are located primarily on the perimeter of the
structure. Vertically, the frames of the building are supported by box columns and
wide flange columns with attached steel plates. Steel girders and wide flange beams
make up the floor plan of the building.

On the south and west side of the central supporting structure are wings (17.5
feet wide) used to house the elevators and stairwells. The frames that compose these
external walls are not moment resisting frames, but carry gravity loads only. These
sides of the building have walls made of corrugated steel; whereas, the other two faces
of the building are comprised mostly of glass. This building has been studied by a
number of researchers, and the results from some of this prior research are summarized
in the following subsection.

The objective of this case study is to demonstrate the use of the calibration model
on a full scale realistic example. Blueprints for the structural design were obtained
from the County of Santa Clara. In this case study, the potential values for the
structural frequency are obtained through a free-vibration analysis. The maximum
responses also are predicted using the fuzzy response spectra developed for the Loma
Prieta earthquake. Results obtained from the calibration model are compared to those
obtained through systemn identification methods. For verification of the calibration
model, the building’s identified dynamic characteristics need to be within the fuzzy

sets developed.

5.2.1 Results Obtained from System Identification

There are 22 instruments, distributed among four floors and the basement level, used
to record acceleration. Through conventional system identification techniques the
building’s natural modes of vibration have been identified from its response to several
earthquakes. The lowest two modes are predominantly translational with periods
of 2.2 seconds (along the East-West axis) and 2.1 seconds (along the North-South
axis) the corresponding frequencies are 0.45 Hz and 0.48 Hz, respectively. The third
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mode, which is predominately torsional, with a period of 1.72 seconds (a frequency
of 0.58 Hertz). The fourth and fifth modes are again translational corresponding to
the East-West and North-South directions, respectively. The periods of both these
modes are identified to be within the range of 0.60 and 0.70 seconds (1.43 and 1.67
Hz.). These values were identified by Boroschek and Mahin [BM91]. The response of
this structure was recorded during the Morgan Hill earthquake of 1984 {M = 6.2), the
Mt. Lewis earthquake of 1986 (M = 5.8), and the Loma Prieta earthquake of 1989
(M = 7.1). During each of these earthquakes, the huilding response was classified
as severe. The maximum displacement at the South West corner of the structure on
the twelfth floor was 45 cm and 39 cm for the North-South and East-West directions,
respectively. The maximum acceleration at this corner was recorded as (.34 g's in
the North-South direction.

5.2.2 Free-Vibration Results from the Calibration Model

This subsection gives the results obtained from the calibration model for the free-
vibration analysis. An analytical finite element model is developed to study the medal
properties of the structure. The calibration model is performed based on the finite
element model coupled with estimates of the contributing fundamental uncertainties.
The result includes bounded ranges for the structural natural frequencies.

Due to the large size of the full three dimensional model (N > 10,000 degrees-of-
freedom), preliminary tests were performed on two-dimensional frames representative
of the structure’s predominant behavior. From these tests natural frequency fuzzy
sets for the four lowest bending modes (1st, 2nd, 4th, and 5th modes) of vibration
were obtained. The results highlighted the similarity between the frequencies in
the North-South and East-West directions for the structure. However, the analytical
model was stiffer than the actual structure due to its inability to capture the torsional
response of the building. The results obtained from the two-dimensional modeling
were encouraging enough to consider more detailed analysis of the structure. Due
to the significant response of the torsional mode in the building’s dynamic behavior,
analysis of a three dimensional model is mandatory. The building was modeled in
three dimensions using skeletal beam finite elements. The CRAY C90 located at the
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San Diego Supercomputing Center was used to perform the free-vibrational analysis
for the structure.

The calibration of the three dimensional model considered uncertainty in the mod-
ulus of elasticity for steel, the static loading conditions, and the stiffness contributions
from the floor system. Material property uncertainty is the same as described in Sec-
tion 5.1. Uncertainty in the static loading conditions is estimated using Eq. 3.13 with
initial mass estimates, M,, X'(a = 1) = 4, and X'(a = 0*) = .6. The estimated mass,
M,, is 60 psf for the typical floors and 90 psf for the twelfth floor and roof (atypical
floors) and is primarily due to mechanical equipment in the building. The stiffness
of the floor system is the final fundamental uncertainty considered in this analysis.
These fundamental uncertainties are displayed graphically in Fig. 5.8.

The gravity loads on the floor systems produce moments which cause the surface
of the floor system to be in tension near the column supports. In this case study, it
is assurned that the concrete is fully cracked in these regions. Consequently, these
cracked regions will not be able to contribute stiffness to the structural system. At
a-cut 0% the contributions of the floor system stiffness are taken to be extremes with
hounds ranging from zero stiffness contribution to full stiffuess contribution. The
floor system is analyzed as a continuous beam over roller supports. The gravity loads
on the floor systems produce moments which cause the surface of the floor system to
be in tension near the column supports. In this case study, it is assumed that the
concrete is fully cracked in these regions. Consequently, these cracked regions will
not be capable of contributing stiffness to the structural system. The upper bound
for a-cut 1 considers 100% of the floor length contributing to the floor stiffness (i.e.,
no concrete has cracked). The lower bound for a-cut 1 is calculated by determining
the length of the floor system where the concrete is in compression (i.e. not cracked).
In this case study the rigidity of the floor system for this bound is taken to be 66%
of the full floor span.

The first three modes are shown in the form of fuzzy sets for the structural natural
frequencies and the corresponding periods in Fig. 5.9. The fundamental frequency (a
translation mode in the EW direction) is denoted by the solid line, while the second

(translational mode in the NS direction) and third (predominantly a torsional mode)
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Figure 5.8: Fundamental uncertainties used in the calibration of the Santa Clara

County Office Building.
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modes are depicted by the dashed and dash-dotted lines, respectively. The ‘X' marks
on the horizontal axis in the graphs denote the buildings first three modal frequencies
which were obtained through system identification. Uncertainty in the structural
periods is obtained through a conversion from the natural frequency. This structure
is considered to be a dynamic building since its natural frequencies fall well within

the range of frequency content of most earthquakes.

5.2.3 Structural Response Results Obtained from the Cal-
ibration Model

This subsection presents the resulting upper bound for structural response obtained
from the calibration model. Free-vibration results from the calibration model with
the fuzzy spectra, developed in Chapter 4, are used to determine the potential max-
imum response for analytical degrees of freedom. The resulting maximum response
is presented for the displacement and acceleration of the South West corner on the
twelfth floor.

The site for the Santa Clara County Office Building is primarily stiff clay. The
structure is located at a distance of 35km from the Lorma Prieta earthquake rupture
zone. Consequently, the fuzzy response spectrum (Fig. 4.10) developed for alluvium
sites between 30 and 60 km of the rupture zone is used for this analysis. Estimates

for the maximum structural response are shown in Fig. 5.10.

5.2.4 Discussion of the Case Study

The Santa Clara County Office Building has suffered severe responses during each of
the three earthquakes (Mt. Lewis, Morgan Hill, and Loma Prieta). This has been
primarily due to the similarity in natural frequency between the translational modes
in the North-South and East-West directions. Furthermore, the dynamic character-
istics of the local site conditions are similar to that of the structure which promotes
resonant response. Boroschek [BM91] determined from Fourier analysis that the nat-
ural periods of the site are approximately 2 and 1 seconds for the first and second

modes of vibration, respectively. Low damping within the structure, which is due to
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Figure 5.10: Potential maximum response for the North-South and East-West direc-
tions at the twelfth floor.




Chapter 5: Illustrative Examples 101

Table 5.2: Natural periods and damping obtained from system identification.

Predominant Direction | Mode | Period (sec.) | Damping (%)
EW First 2.15 - 2.20 2-3
NS Second | 2.05 - 2.10 2-4
Torsion Third 1.70 -
EW Fourth | 0.65-0.75 -
NS Fifth 0.60-0.70 -

the bare interior architectual characteristics, does not sufficiently suppress the large
responses. Dynamic response of the structure has been as long as 80 seconds. In an
effort to alleviate these problems, viscous dampers have recently been added to the
structure since the Loma Prieta earthquake in 1989. System identification using the
earthquake input motions arnd the structure's dynamic characteristics have given the
results shown in Table 5.2 which is adapted from Boroschek [BM91].

The calibration model is capable of predicting the dynamic characteristics for the
Santa Clara County Office building. The frequency fuzzy sets, in general, contained
the actual frequencies of the structure. Both the second and third natural frequency
fuzzy sets contained the actual frequencies within the bounds given by a-cut 1. The
fundamental frequency fuzzy set contained the actual fundamental frequency within
the bounds given by a-cut 0.8. Due to large “overlap” in the membership functions
representing frequency, this structure may experience significant modal beating.

Conclusions made from results of this case study are itemized below:

¢ The calibration model captured the frequencies for the actual structure, where,
the 1lst frequency falls within a-cut 0.8 bounds and the 2nd & 3rd fall within

a-cut 1 bounds.

o The calibrated frequencies are well within the range of the natural {requencies

for the site suggesting the possibility of severe structural response.
o The maximum response fuzzy sets, in general, captured the actual response.

e Predicted displacement response is lower than the actual response because the
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spectra were developed for 5% critical damping, which is high compared to the
identified damping in the structure.

e Maximum acceleration also was captured in the fuzzy sets.

o The actual displacement of 44 cm (relative from the 12th floor to the ground)
fell within a-cut 0.1 bounds. Although this large displacement may appear to
be discouraging, it can be explained. First, the structure is very lightly damped
{only 1-2% critical damping per mode). The response spectrum used in this
analysis was obtained based on 5% damping from the site dependent spectra.
Therefore, it is not surprising that the response predicted with the calibration
model is low compared to actual response. Second, the modal beating phenom-

ena has been used as an explanation to the structure’s severe displacements.

o The actual responses are higher than those predicted by full membership in the
predicted fuzzy response. This is due to the modal beating of the structure.
Spectral analyses only predict the maximum response not the actual time his-
rory. Therefore, these methods cannot predict the modal beating phenomena
or the duration of the structural response. The long response of the building

can contribute to the higher accelerations and displacements.

The comparison between the actual structural response and the results obtained
from the calibration model validates the quality of the proposed model. It is proposed
that the calibration model can be used at the design stage to inform the analyst
of potential problems associated with the structural dynamic response. Therefore,
with proper application of the calibration model the analyst or designer can make
modifications to the design based on the resulting fuzzy sets. Thus, reducing the
possibility of inappropriate structural response.

Given the overlap of the membership functions for the natural frequencies and the
membership function for the frequency content of the potential earthquake motion an
analyst will suspect the likelyhood of severe resonant response. As shown in Eq. 3.6
the dynamic amplification factor (which represents the amplification of response for

an SDOF system) is maximum when the system natural frequency and the frequency
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of the input motion are close. However, the amplification decreases as the damping
in the system increases. The potential for severe response should alert the analys! to
investigate the structure’s potential to dissipate energy through damping. Therefore,
in the case of the Santa Clara County Office building where there is evidence of
potential resonant response, a designer may choose to add more damping to the
structural system. This can be done by adding floor to ceiling nonstructural partition
walls into the workspace of the building or cladding (which is capable of dissipating
energy) to the exterior of the structure. In this application of the calibration model,

the low damping characteristics of the building were not predicted.

5.3 Assessment of Fuzzy Methodology to Probabilistic

Implemnentation of the adaptive analysis methodology requires an analyst to bound
contributing errors at the design stage of a project in order to obtain a prediction of
the potential range in the higher-level dynamic parameters. The ultimate uncertainty
in the dynamic parameters is based on the initial uncertainty estimate for the funda-
mental parameters made by the analyst. Thus, the selection of the initial uncertainty
estimates must he made carefully. An advantage to using fuzzy mathematics for un-
certainty analysis is that only a few calculations are needed to quantify a higher-level
fuzzy set.

Probabilistic techniques which already have veen established are arguably more
rigorous. The purpose of the following example is to compare the results obtained
from the approach proposed in this thesis and those obtained from Monte Carlo sim-
ulation. Uncertainty in the stiffness and mass in the analytical model are considered
in the analysis.

Free-vibration analyses are performed for the two-dimension frame used in Sec-
tion 5.1 (shown in Fig. 5.1). The uncertainty in the fundamental parameters for the
stiffiness and mass properties of the structural system is represented in terms of both
fuzzy sets and probability density functions. Here fundamental fuzzy sets are given
for beam and column masses as well as material stiffness.

To compare the two techniques it is necessary to produce probability density
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functions which represent the uncertainty defined by the fuzzy sets. The following
sectiun describes the mapping procedure used to convert the fuzzy sets to probability
density functions. Immediately following is a description of the simulation technique

used in the analysis.

5.3.1 Monte Carlo Simulation

Monte Carlo simulation is used in this example to represent a sample of experimental
observatious for the mass and stiffness properties of the structural system shown in
Fig. 5.1. The simulation is performed by generating random values for the mass and
stiffness properties of the structure based on parameters which describe the proba-
bility density function. The dynamic equations of motion are solved using simulated
random values to obtain a representative sample of the structure’s dynamic proper-
ties. This process is repeated to obtain a smooth histogram which gives the number
of occurrences for various values of a structure’s natural frequency.

The simulation process is performed by first generating random numbers in a
uniform distribution between 0 and 1.0. These standard uniform variates are then
transformed to random numnbers representative of a specified probability distribu-
tion [AT75b). In the following example, random numbers are generated for lognormal
distributions. Equations 5.3 and 5.4 give a relationship between two independent
standard uniform variates and two independent normal variates for the normal dis-

tribution, N(u,o) [BM58].

ry = p+ o/ =2In U cos(2xU;) (5.3)
Ty = p+ o\ —2InUysin(2r ;) (5.4)

where,
# = the mean of the normal distribution;
o = the standard deviation of the normal aistribution;
[/12 = two independent standard uniform variates; and
3, = two independent normal variates.

A random number, z, from a lognormal distribution, N(A,{,), with parameters,
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A=lnpg~3*and (*=1In (1 + ”;;) is related to the normal variate, 2’ where
r=¢€" (5.5)

In this example, three parameters are simulated to obtain an uncertainty pre-
diction for the structure's natural frequency. These parameters are: the mass dis-
tribution on the beams; the mass distribution on the columns; and the modulus of
elasticity for the steel members. Fuzzy sets are typically defined for parameters when
there is not enough quantifiable information available to adequately define a proba-
bilistic distribution. Therefore, it is difficult to develop a clear relationship between a
fuzzy set and a probability density function. However, because this example compares
the uncertainty obtained from the proposed fuzzy approach and that obtained from
the more traditionally used probabilistic approach, fundamental uncertainties must
be established such that the fuzzy sets and probability density functions are com-
parable. Lognormal probability density functions are used to model the uncertainty
represented as fuzzy sets in Section 5.1. Lognormal functions are selccted for use in
this example to guarantee that all occurrences of the random variables are greater
than zero.

This example uses the probabilistic uncertainty for the modulus of elasticity for
steel which is presented in Section 3.3.2. The modulus is a random: variable repre-
sent>d by a lognormal distribution with mean and coefficient of variance, 29,000 ksi
and 0.06, respectively. To perform the simulation, lognormal distributions described
by mean and coeflicient of variance parameters are developed to quantify the uncer-
tainty described by the mass fuzzy sets. The mean and coeflicient of variance are
defined such that a-cut 1 bounds 51% of the area beneath the lognormal distribution
and a-cut 0% bounds 99% of the area, as explained in Section 3.3.2. Two a-cuts are
used to define the two unknown lognormal distribution parameters, (A and ¢, which
represent the probabilistic occurrence for the mass variables; however, the curvature
of the lognormal distribution makes it difficult to select a mean and coefficient of vari-

ance which correspond to the bounds established by the fuzzy sets. Consequently, the
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Table 5.3: Alpha-cut bounds, mean and coeflicient of variance for the modulus and
mass fuzzy sets.

[a-cut [P(a < E <b) || mean | cov [ lower bound | upper bound |
[ Modulus of Elasticity
ksi ks ksi
0.0* 9% 29,000 | 0.06 24,847 33,843
1.0 51% 29,000 0'0~6:LL 27,822 30,224 |
Distributed Beam Masses
slugs/ft slugs/ft slugs/ft
0.0* 99% 8 0.112 6.4 9.6
1.0 51% 8 0.112 7.2 8.8
Distributed Column Masses
slugs/ft slugs/ft slugs/ft
0.0* 99% 4 0.106 32 4.8
1.0 51% 4 0.106 3.6 44

final selection for the distribution parameters are made such that the standard devi-
ations required for a-cut | and for a-cut 0% are averaged. Table 5.3 gives the fuzzy
sets used in this comparative example and the corresponding distribution parameters
used in the simulation.

The simulations are performed with three independent random variables. Three
seeds are used to generate three independent series of random numbers, one for each of
the three random variables. Each structural member has the same stiffness properties,
each column member has the same mass, and each beam member has the same mass
(which may or may not be the same as the columns). In reality, there will be some
dependence between the properties in the structural members. However, it is unlikely
that each of the member types will have the same mass and stiffness as described here.
Implementation of the calibration model requires that each solution must be based
on extreme values given by the fundamental fuzzy sets. This approach is conservative
because it assumes that all masses will be low, for example, rather than the mass
in a particular area of the structure. From a probabilistic standpoint, analyses can

be performed such that each of the masses is independent of the others. For the
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purposes of comparison, the probabilistic simulation is performed such that each
beam or column has the same mass and stiffness properties as the other beams and

columns.

5.3.2 Discussion and Assessment of the Two Methods

Figure 5.11 shows the resulting fuzzy sets and histograms f{or the two lowest natural
frequencies. The vertical axis in the figure gives the number of occurrences for the
resulting frequencies. Three thousand simulations were performed to obtain relatively
smooth histograms for the two frequencies. The trapezoidal fuzzy sets give bounds for
the most possible range of frequencies (membership level of 1) and the most extreme
range of frequencies (membership level of 0). Although not denoted on the axes, the
highest level of confidence for these {uzzy sets is 1.0. It can be seen in the figure
that a-cut 1 bounds most of the occurrences and a-cut 0 bounds essentially all of the
occurrences.

Four eigensolutions are performed to obtain the fuzzy sets shown in the figure. The
fuzzy sets obtained from the four solutions using the calibration mode! is compared
to the histogram based on three thousand samples. Three thousand samples were
used to produce smooth histograms. There are procedures available such as Latin
Hypercube sampling which reduce the number of simulations required for a smooth
result. If such a method is used, the number of samples typically needed is greatly
reduced, decreasing the computational intensity of this probabilistic approach.

This example has compared the computational intensity required for the calibra-
tion model and the more traditionally used probabilistic simulation. Probabilistic
simulations are based on fundamental uncertainties represented as probability dis-
tributions. A probability distribution is fully defined by selecting the type of distri-
bution (i.e. lognormal, beta, etc.} and its parameters. The parameters, mean and
standard deviation, need to be defined for the lognormal distributions used in this
example. These parameters are based on measurable quantities for the uncertain
parameter. The calibration model requires uncertain fundamental parameters repre-
sented as fuzzy sets. Fuzzy sets can be established for an uncertain parameter based

on measured quantities or expert opinion. Thus, fuzzy sets can be obtained from
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Figure 5.11: Fuzzy sets with levels of membership from 0% to 1 are overlaid on
histograms for the first and second natural frequencies.
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probabilistic information; however, it is difficult to determine the value of probabilis-
tic parameters from fuzzy sets.

This example was structured to demonstrate the solution process required for both
the fuzzy and probabilistic approaches. Although the frequency of occurrence for
parametric values can be inferred from both approaches, the probabilistic technique
gives a more rigorous result. Results from the calibration model can increase the
analyst’s understanding about potential parametric behavior with a minimal amount
of computations. Thus, when an analyst needs to understand the consequence in
dynamic behavior due to a design change, the calibration model is a useful and

appropriate tool.



CHAPTER 6

Formulation of the Degradation Model

Prediction of the potential degradation of structural properties’ makes it possible to
design a structure considering the change in its fundamental characteristics. In the
proposed adaptive analysis models, fuzzy mathematics is used to quantify the initial
error in a structure’s dynamic parameters and the error in the dynamic parameters
as the structure ages. The purpose of this chapter is to formulate the framework for
the degradation model which gives a prediction of the error in dynamic properties
as a function of time. As in the calibration model, the calculation of uncertainty in
dynamic parameters is based on the solution of the equation of motion. Section 6.1,
which follows, presents the fuzzy representation of the degradation errors which are
considered in the solution of the dynamic equations of motion. The development of
degradation errors for fundamental parameters is discussed in Section 6.2. Imple-
mentation of the degradation model is demonstrated in Section 6.3 through the use
of a small example. Finally, Section 6.4 gives a short discussion pertaining to the

application and limitations of the degradation model.

6.1 Fuzzy Representation of the Degradation Model

A degradation model is added to the calibration model to predict the gradual degrada-
tion of structural properties as the structure ages. This model is time dependent and
can be used to estimate the structural characteristics at any point during the struc-
ture's lifespan. Fuzzy sets with time dependent membership functions are developed
to represent the deterioration of structural integrity and the changes in the struc-

tural parameters. This time dependent function takes the following form for natural

110
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frequency, assuming that frequency will decrease as the structural stiffness degrades:

F3 = {lesdlle= w, - [ELfo) + H(a)]id = wo + [El4fe) + ()]} (61

where,
F3 = uncertainty in degraded frequency at a membership level, a;
bVl = slope for the upper and lower bounds, respectively of the
degradation function;
t = time;and
¢,d = lower and upper bounds, respectively, for each a-cut.

The estimation of the extent of structural degradation over time and the slope, b,
of the degradation function is found from the properties of the construction materials,
typical loading and unloading patterns on the structure, and structural maintenance
needs. As with the calibration model, multiple analyses of the structural model
are performed to establish the membership function of the fuzzy set representing
degradation.

The degradation model consists of a calibration fuzzy set superimposed with two
additional fuzzy boundaries to represent the changing error bounds over time. The
degradation fuzzy set supporting this model is developed from the calibration fuzzy
set which is shown in Fig. 6.1. The increasing error bounds in time are modeled with
the use of two additional fuzzy boundaries, represented by the shaded areas in the
figure. These fuzzy sets vary over time to model the long term structural degradation.

Equation 6.1 represents the change in frequency and the corresponding error in
frequency prediction as a function of time. The dynamic properties of a structural
system are dependent on the fundamental parameters as shown in Eqs. 3.9 and 3.10.
The mass and stiffness properties of the structure are used in the solution of the
eigenvalue problem (Eq. 3.2) to obtain the structure’s free-vibration characteristics.
Therefore, to predict the degradation characteristics of the frequency for the structure,
it is necessary to mode] the degradation characteristics of the fundamental contribut-
ing parameters. The eigensolution is then solved discretely with bounding values for

the fundamental parameters at different instances in time.
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Figure 6.1: Fuzzy set representation of frequency degradation.

Since the natural frequency as a function of time is dependent on the degra-

dation properties of the fundamental parameters, Eq. 6.1 is rewritten in more spe-

cific terms as:

where,

U
gdeg

L
gde )

a,b

Fio = {la,blla = w, - ELy(0,1);b = w, + £ (o, 1)} (6.2)

as a function of time, ;

as a function of time, t; and

the upper bound which describes degradation error for a membership

level equal to a which is determined from the initial fuzzy estimate, F°,

the lower bound which describes degradation error for a membership

level equal to a which is determined from the initial fuzzy estimate, F°,

lower and upper bounds, respectively, for each a-cut,

In this formulation, the degradation error, &4, is quantified from the combined

errors in the fundamental parameters. After the degradation model has been com-

pleted, it is possible to analytically determine the parameter & which describes the
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overall degradation of the frequency parameter. The parameter b is dependent on the

combined degradation of the fundamental parameters.

6.2 Fundamental Uncertainties in the Degradation Process

By quantifying the potential degradation of the fundamental parameters it is possible
to determine the change in the higher-level dynamic parameters. Initial estimates
of the error for the fundamental parameters, obtained from the calibration model,
coupled with fuzzy estimates for the parameter’s degradation as a function of time
give the information required in the degradation model.

The framework for the degradation model is shown schematically in Fig. 6.2.
Implementation of the degradation model begins with the initial errors obtained from
the calibration model. Then estimates for the degradation potential for fundamental
parameters are used to predict errors as a function of time. The solver consists of
repeated eigensolutions using extreme bounds at each a-cut level as specified by the
vertex method. As in the calibration model, solutions for each point in time require
extreme values for the contributing fundamental parameters. The degradation model
can be applied at any time increment to obtain an estimate of the parametric behavior
n the time domain.

As shown in Fig. 6.2 the results of the degradation model can be interpreted either
as a function of time or at a particular point in time. The free-vibration results are
then superimposed with the fuzzy representation of the input motion to obtain a
prediction of the maximum structural response.

The most important information needed for the implementation of the degradation
mode] is an understanding of fundamental parameter degradation characteristics.
Degradation can be due to a number of factors, thus adding to the complexity of the
problem. Studies have been performed to determine the degradation of the modal
properties of a structural system. The dynamic properties of an existing structure
are obtained by performing system identification on data obtained from an excited
structure, Typically, the data consists of acceleration recordings at discrete points

in time at select degrees-of-freedom. By performing system identification with data
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Figure 6.2: Schematic of the degradation model.

obtained over a period of time, it is possible to study the degradation of the structural
frequencies. Such studies which have been performed in the Las Vegas area with
structures which were excited dynamically due to blasting in the region [Cza94].
Systemn identification also can be performed in the time domain. Such identifica-
tion procedures identify the coefficients needed in the mass and stiffness matrices to
obtain the recorded dynamic response. Constraints can be added to the process to
ensure that the modal properties obtained from the newly identified mass and stiff-
ness matrices match those of the actual structural response. Although the change in
the coefficients of the mass and stiffness matrices represent changes in fundamental
parameters, it is extremely difficult if not impessible to determine which structural
elements and which parameters are affected. It is impossible to use the data to locate
the potential damage or degradation in the structure. Consequently, inforination ob-
tained from these system identification methods is not useful in predicting a priori

degradation of fundamental material properties.
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Due to the lack of quantifiable knowledge about the degradation of the funda-
mental material properties, expert opinion is the best information available for use in
the adaptive analysis models. The analyst develops fuzzy sets to represent his best
knowledge of the potential degradation in time for fundamental parameters. Cur-
rently, there is an increasing amount of interest in obtaining the degradation prop-
erties of the fundamental parameters [Hop93, Ver93, Joh93, Sch90]. As more data
becomes available, these procedures and fuzzy sets can be updated to incorporate the
new information.

The analyst defines the fuzzy sets for degradation prediction for the fundamental
parameters based on his knowledge of the structure’s environment and future use.
Corrosion, fatigue due to minor dynamic loadings, loosening of joints, and appropriate
maintenance are all factors which can possibly contribute to damage that an analyst
may wish to consider when applying the degradation mode]. Proper maintenance
of structures on a regular basis can reduce the effects of structural aging. Although
not considered here, maintenance procedures should be included as a fundamental
uncertainty. Membership functions for degradation rate fuzzy sets can be assigned
by the analyst based on his experience or expert knowledge about aged structures. If
possible, the expert opinion should be supported by analytical calculations.

For example, it is expected that an exposed steel bridge spanning over water will
experience corrosion, while a steel frame building with fire proofing will not. Based on
his knowledge, the analyst may wish to define a fuzzy set for corrosion (such as the one
shown in Fig. 6.3) which can be defined as either a fuzzy set with crisp boundaries
or a trapezoidal fuzzy set. Corrosion is a complex process and is dependent on a
number of variables {Sch88, Kno75). In an application the fuzzy set for the rate of
corrosion must be established such that the most influential factors are considered.
In addition to the removal of structural material, corrosion also can promote crack
growth in structural materials.

The resulting uncertainty for the degrading area of the steel member is based on

the change in geometry as a function of time. Equation 6.3 gives the relationship for
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Figure 6.3: Fuzzy set for inches of steel corroded per year.
the area of a rectangular member as a function of time.
A(t) = (a = 2vt)(b — 2vt) (6.3)

where,

a,b

cross-sectional area;
the length of the two sides for the rectangle;
the rate of corrasion per year for an exposed surface; and

time in years.

The potential degradation rate due to the corrosion of an exposed member is

given here as an example. Degradation estimates can be made for a structural system

based on the analyst’s best judgment. Another example of potential degradation is

the loosening of bolted connections which can result in a stiffness reduction. Gradual

changes in mass, loosening of nonstructural elements from the main load-bearing

structural system are other fundamental parameters which may be considered. Each

of these cases is highly specific to the structural system and environment and must be

carefully determined based on the individual application. However, there is very little
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information available pertaining to the degradation of such fundamental parameters.
Until such information is available, estimates for these degradation properties must
be applied by the engineer on a case-specific basis. As more knowledge is obtained
about the degradation behavior due to these fundamental contributions, the fuzzy

estimates can be refined and updated; thus, the model is adaptive.

6.3 Degradation Examples

To illustrate the incorporation of the fundamental degradation rate into the adaptive
models the example presented in Section 3.2 is used. The fuzzy set for the fundamental
natural frequency for the axial vibration of the cantilevered bar with a spring support
at the right side is determined as a function in time. This system is shown in Fig. 3.4.
Degradation for this system is due to the corrosion which is represented by the fuzzy
set of Fig. 6.3. In this example, the fundamental errors are represented as triangular
fuzzy sets given in Table 3.1. The cross-sectional area (considered deterministic in
the previous example) will now degrade due to corrosion.

To determine the fundamental frequency in the time domain, analyses are per-
formed at four 25-year increments. Table 6.1 gives the parametric values for the mass,
stiffness factor (denoted by 7, a dimensionless parameter), and the cross-sectional
area, A. The functional dependence for A is based on Eq. 6.3 where the a and b are
initially both equal to 1.0. In 100 years, based on the fuzzy set used here for corrosion,
the area can decrease 4% to 36% from its original value. A 36% reduction in area
may be considered unreasonably large; however, it is a result of the most extreme
conditions corresponding to a-cut 0*. The resulting frequencies as a function of time
are presented in Fig. 6.4.

A second example is presented in this section to demonstrate use of the degra-
dation model to determine the natural frequencies for the lateral vibrations of a
fixed-fixed beam with semi-rigid joints near each of the ends. The system (shown in
Fig. 6.5) is a beam with stifiness properties denoted as AE and E[ equal to 1000 and
a constant mass, m = 1.0 distributed uniformly along the length of the beam.

The uncertainty considered in this example is the stiffness of the rotational springs
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Table 6.1: Parametric values used in the degradation model.

a-cut Mass Stiffness | Area Mass Stiffness | Area
m, slugs/ft v A, in? [ m, slugs/ft 5 A, in?
T = 0 years T = 25 years
0.0* 8 0.6 1.0 8 0.6 0.99
1.0 10 1.0 1.0 10 1.0 0.9%
1.0 10 1.0 1.0 10 1.0 0.93
0.0 14 1.2 1.0 14 1.2 0.90
T = 50 years T = 75 years
0.0* 8 0.6 0.98 8 0.6 0.97
1.0 10 1.0 0.95 10 1.0 0.93
1.0 10 1.0 0.93 10 1.0 0.79
0.0* 14 1.2 0.81 14 12 0.72
T = 100 years
0.0% 8 06 0.96
1.0 10 1.0 0.90
1.0 10 1.0 0.72
0.0t 14 1.2 0.64
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Figure 6.4: Fundamental frequency as a function of time for the axial vibrations of a
bar with a linear spring at one support.

L, =2L, =10
AE = EI = 1000
M=1

Figure 6.5: Fixed - fixed beam with semi-rigid joints represented as rotational springs.
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Table 6.2: Parametric values used in the degradation model.

a-cut [ lower bound | upper bound || lower bound | upper bound
o v, % ngidity i}
1 ) 15 0.0001 0.005
2 25 0.0001 0.005

which are used in the analytical model to represent the semi-rigid joints. Here, the

stiffness of the springs is expressed as

k = 4(stiffness of the beam) (6.4)
where,
x = Stiffness of the rotational spring, moment /radian; and
v = factor representing % rigidity compared to the beam stiffness.

It is assumed that the springs degrade in stiffness such that

Y(t) = v (6.5)
where,
Yo = represents the initial % rigidity supported by the spring; and
B = parameter representing degradation rate.

Analyses are performed discretely in 10 year intervals. The uncertainty for the initial
and degrading stiffness of the springs represented by v and 3, respectively, is given
in Table 6.2.

Figures 6.6 and 6.7 show the graphical results for the second natural frequency
of the beam and spring system at 100 years. The second lowest mode shape has an
inflection point near the center of the beam. Due to this curvature this mode is more
sensitive to the spring stiffness than the first inode (which does not have an inflection
point). Thus, the frequency for the second mode is presented here. The results are

depicted as a three dimensional fuzzy set with uncertainty increasing as a function of
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Degraded Second Natural Frequency
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Figure 6.6: Degrading natural frequency for the 2nd mode of vibration as a function
of time.

time. In Fig. 6.6 a-cut 0* bounds are denoted by the extreme bounds shaded grey
and the a-cut 1 bounds denoted by the white region. Note that since this application
is confined to the use of convex fuzzy sets, a-cut 1 is a subset of a-cut 0%. Figure 6.7
shows the additional uncertainty in the frequency due to the consideration of a 100
year lifespan. The calibrated frequency is represented by the white fuzzy set, and the
additional uncertainty due to degradation in 100 years is represented by the fuzzy set
shaded black. Here, the calibration error and the degradation error are superimposed
such that the black region depicts the added uncertainty due to the degradation in
100 years.

6.4 Discussion

The previous examples have demonstrated the use of fuzzy sets in predicting the
potential degradation in dynamic properties of structure. In the first example, imple-
mentation of the degradation model is demonstrated through the calculation of fuzzy
sets at discrete instances in time. Degradation of member stiffness due to corrosion

and the stiffness of semi-rigid joints is presented. The degradation relationships are
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Natural Frequency for the Second Mode

[ calibration
sy degradation

Figure 6.7: Degraded natural frequency versus calibrated natural frequency.

applied to initial representations of uncertainty in the calibration model.

Implementation of the degradation model combines the fuzzy sets representing the
initial uncertainty in the fundamental parameter with a fuzzy set for the potential
degradation of the parameter in time. By combining extreme bounds from each
of these fuzzy sets, the upper bounds of a fundamental parameter’s fuzzy set will
degrade the least while the lower bounds will degrade the most over time. This
statement assumes that the frequency will, in general, deteriorate in time. There may
be instances when aging will cause the fundamental parameters to increase in value.
The result obtained from the degradation model is a fuzzy set for the fundamental
parameter which represents increasing uncertainty in time.

The slope, b, given in Eq. 6.1 is a parameter which can be used to predict the
change in frequency as a function of time due to potential degradation. This pa-
rameter is not a fundamental quantity and must be determined after implementing
the degradation model. Once determined, however, b may be used to interpolate the
bounding values for the frequency fuzzy sets as a function of time. The parameter b

is useful, permitting an analyst to quickly assess the potential changes in frequency.
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For example, an iteration applying the calibration and degradation models may sug-
gest the need for a design change. After the design change and reapplication of the
calibration model, the analyst may wish to use the parameter b to assess the struc-
ture's degradation potential. Care must be taken that b is not used to extrapolate
degradation information for points in time not initially considered in the degradation
model. Since b is dependent on the fundamental degradation characteristics, b can-
not be used to predict degradation beyond the time period with which the model was
applied initially.

Implementation of the degradation model requires communication between all the
players active in the design phase. The analyst must fully understand the intended
use for the structure during the time period in which the degradation model is being
applied. Additionally, the analyst must also consider the type of environment the
structure is in. These considerations will help him answer questions such as: How
much erposure to corroding effects will this structure have? Will there be a reqular
dynamic load felt by the structure? How often will the structure experience minor
earthquake loadings?, etc.

This chapter has presented a framework for the application of the degradation
model to structural systems which are analytically modeled with a finite element
model. Today, there are efforts to build structures with design lives well over two
hundred years. Unfortunately, at this time there is little information available per-
taining to the degradation properties of the fundamental parameters which contribute
to the dynamic response of a structure. These designs must consider the uncertainty
due to the deterioration and degradation of material properties and joint conditions.
This degradation model which is based on uncertainties modeled as fuzzy sets using
expert opinion provides a method of assessing the dynamic characteristics of a struc-
ture over such a lifespan. As more knowledge is obtained about the degradation of
material properties expert opinion will improve; thus, improving the qualitv of the

results.



CHAPTER 7

Summary and Conclusions

This dissertation presents a framework for modeling uncertainties in dynamic param-
eters using fuzzy set mathematics. By modeling uncertainties in the dynamic proper-
ties of a structure, an analyst can increase his intuition about the structure’s potential
behavior. Thus, the designer is provided with uncertainty information needed to im-
prove his design. These uncertainty analyses can also be expanded to provide the
analyst with information about structural degradation. Following, in Section 7.1 the
research developed in this dissertation is summarized. Recommendations for future
research with respect to this work are presented in Section 7.2. Finally, this disserta-

tion concludes with Section 7.3 which contains a few closing remarks.

7.1 Summary of Contributions

After the introduction of Chapter 1, Chapter 2 presents uncertainty analysis meth-
ods. Every aspect of an engineering problem contains some element of uncertainty.
Ultimately, uncertainty in the response of the structure is due to errors in the ana-
lytical model and the prediction of potential loads. Typically, probabilistic methods
are applied rigorously to predict parametric uncertainty either by calculus or simula-
tion. These processes are, in general, computationally expensive; consequently, they
are used only for the most critical structures. Fuzzy sets give bounds describing the
uncertainty in a fuzzy parameter at various levels of confidence. Use of fuzzy mathe
matics allows the analyst to model fundamental uncertainties which contribute to the
behavior of a structural system by establishing fuzzy bounds rather than assigning
probability distributions.

The calibration model, the first of the adaptive analysis models, is presented in

124
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Chapter 3. This model is capable of quantifying the ultimate uncertainty in the struc-
tural dynamic properties based on fundamental uncertainties. The first part of the
chapter is devoted to the formulation of the dynamic equations used in the calibra-
tion model. Analysis is performed by solving the undamped free-vibration problem
for the modal properties. Structural response is obtained from the response spectrum
approach. The calibration model solves these dynamic equations with parameters de-
fined by membership functions. The vertex method is used to facilitate the solution
process.

Establishment of the fundamental errors are an important aspect in the develop-
ment of the higher level uncertainties. Section 3.3 is devoted to the development of
various types of contributing errors. In this dissertation, procedures are suggested
for the development of fuzzy sets for errors in the modulus of elasticity, static load-
ings, joint stiffness, and floor rigidity. The calibration model is easily applicable to
additional uncertainties provided that the logic used in the fuzzy set development is
consistent.

Chapter 4 presents a model which can be used to quantify the uncertainty in the
input motion felt by the structure. This model considers uncertainty in the frequency
content and amplitude of the earthquake motion felt by the structure through the
development of a fuzzy response spectra. In this dissertation, fuzzy velocity response
spectra are developed for the Loma Prieta earthquake only. However, the procedure
has been established to develop spectra for records from multiple earthquakes. Su-
perposition of the uncertainties for the structure’s natural frequencies and the input
motion allows the analyst to quantify levels of maximum response as fuzzy sets.

The fuzzy response spectra developed in Chapter 4 demonstrate characteristics
typical of sites in the San Francisco Bay area. Rock sites, in general, have a larger
frequency content than the alluvium sites. This is due to the wide variation in age
for the rock in the bay area; thus, the range in shear wave velocity for the rock
sites is broad. Additionally, the spectra demonstrate attenuation in amplitude as
the distance from the site to the rupture zone increases. These spectra show the
possible and most likely levels of amplitude of the ground motion due to different site

conditions and distance from the rupture zone. Since, only records from the Loma
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Prieta earthquake were used, the results are valid for a single magnitude and rupture
mechanism. This information can be used to assess the potential maximum response
for a structure at a particular site.

Through the use of examples, Chapter 5 contains a detailed description of the
implementation of the calibration model. The calibration model can produce the
maximum response for a degree-of-freedom in the analytical finite element model.
This information can be further investigated with respect to inter-story drift which
is important in assessing the possibilities of nonstructural damage. The first example
in this chapter illustrates the calibration model for a small scale two-dimensional
example. Natural frequencies and the roof’s maximum response is determined for the
structure based on uncertainties in the modulus of elasticity, structural mass, and
input motion.

A case study also is presented in Chapter 5 which further illustrates the use of
the calibration and ground motion models. In the case study, results from the cal-
ibration model are compared to the actual dynamic properties of the Santa Clara
County Office Building. By considering uncertainty in both mass and stiffness, the
resulting frequency fuzzy sets bound the actual frequencies of the structure. Funda-
mental uncertainties are considered in the finite element model of the structure by
implementing repeated solutions. These uncertain frequencies are superimposed with
uncertainty in the input motion to obtain an upper bound for the potential maxi-
mum response of the degrees-of-freedom in the structural model. The results from
the case study are fuzzy sets for the potential maximum response. These fuzzy sets
were successful in bounding the actual response of the structure. The actual response
is bounded at levels of confidence less than one. This is due to the modal beating
which is impossible to predict analytically using the response spectrum method.

The final example in Chapter 5 gives a comparison between the calibration model
proposed here and the more traditionally used probabilistic approach. Monte Carlo
simulation is used to simulate experimental sampling of three random variables. The
results from the simulation technique and the calibration model are shown as a fuzzy

set overlaid on a histogram. Four solutions are performed to obtain fuzzy sets for the
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structure’s natural frequency, while the histogram is the result of 3,000 computer gen-
erated samples. The resulting fuzzy sets give conservative bounds for the most likely
occurrences. Consequently, when probabilities are needed at high levels of accuracy,
the probabilistic methods are recommended. However, to obtain an understanding of
the potential values for a parameter, use of the calibration mode! provides an efficient
and accurate result.

Chapter 6 presents the framework used to quantify the potential change in due to
the gradual degradation of a structural system. The degradation model is based on
the fuzzy estimates for the degradation characteristics of the fundamental parameters.
Examples are presented which demonstrate the degradation of frequency for the
structure due to corrosion and the loosening of bolted connections. Fuzzy sets are
used to model the degradation potential in the time domain based on initial fuzzy
sets which describe the uncertainty in time, t = 0.

In this dissertation a framework is developed which can be used by an analyst to
better understand the uncertainties in dyhamic parameters for an analytical structural
model. This model which is a finite element representation of the structural system
is solved with methods typically used in dynamic analysis. A basis is established for
the development of the fundamental uncertainties which affect the dynamic response.
However, due to the generality of the process it is impossible to address every issue
which adds uncertainty to the problem. The following section gives recommendations

for future research in this field.

7.2 Recommendations for Future Research

This research has provided a foundation for the development of adaptive analysis
models which consider the uncertainty in dynamic parameters over a structure’s lifes-
pan. The purpose of this section is to provide a discussion suggesting additional
research which is needed in this field. The following subsections present possible

alternate modeling techniques for use the adaptive uncertainty models.
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7.2.1 Nonstructural Components

It has been widely accepted that the nonstructural components contribute not only
to the masses but also to the stiffness of the structural system. Often, the mass of the
nonstructural components is considered in dynamic analysis as dead loads; however,
the contributing stiffness from these components to the structural system are rarely
considered. These components, such as partition walls and cladding attached to the
exterior of the building, can stiffen the structural system which increases the natural
frequencies of the building.

Analytical modeling of the added stiffness due to nonstructural components is
extremely difficult. The stiffness contribution from partition walls to the structural
system depends on the type of partition wall and the interior and exterior connections
to the wall. The quality of the connections affects the ability for the wall to transfer
loads (not explicitly considered in the design) to and from the structural system.
Construction practice also has an impact on the quality of the connections. Additional
research is necessary to assess the stiffiness contributions of these components due to a
number of uncertain factors. Fuzzy sets can be used to quantify the uncertainty in the
stiffness contributions of the nonstructural components by considering issues such as

construction practice and joint stiffness which can be difficult to model analytically.

7.2.2 Uncertainty in the Structural Damping

Damping is by far considered to be the mnost uncertain aspect in the modeling of struc-
tural dynamic behavior. There is an extremely large amount of uncertainty related
to the amount of damping inherent in the structural and nonstructural systems. This
is due to the complexity involved with analytically modeling the damping parameters
for the structural elements, in addition to the contribution from nonstructural compo-
nents. Nonstructural components, such as partition walls and cladding, may increase
the damping during the structural response. Damping is typically assumed to be
proportional to the mass and stiffness properties of the structural element. An ad-
vantage to assuming that the damping is proportional to mass and stiffness is that

when the mass and stiffness properties are uncoupled the damping characteristics
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also are uncoupled. Thus, it is possible to perform dynamic analyses on each mode
separately before superimposing the effects of all modes acting together.

The development of a procedure which quantifies the uncertainty in the propor-
tional damping of a structure, both from the analytically modeled structural system
and the nonstructural components (which may not be modeled analytically) is needed.
Results from the calibration model will benefit {rom the consideration of uncertainty

in a structure’s damping characteristics.

7.2.3 Input Motion Uncertainties

Chapter 4 presented a methodology to define fuzzy sets which consider the uncertainty
in the input mation felt by a structure at a site. The fuzzy response spectra quantify
the uncertainty in the frequency content and the amplitude of the ground motion.
In this chapter, each of the spectra developed for velocity response are confined to
a trapezoidal shape with three linear sides (the fourth side is the horizontal axis).
This shape gives the best estimates for amplitude for mid-range structural periods.
Further refinement of this shape to five linear sides will provide more realistic response
estimates at low and high periods.

Consideration of additional earthquakes in the development of fuzzy response
spectra will help refine the resulting fuzzy spectra. Soil categories can be refined by
grouping data based on shear wave velocities rather than the crude division by soil
type. Distance groups also will be refined with the additional data. These refinements
will give the analyst spectral values for the ground motion with narrower uncertainty
bounds. This is not to say that the uncertainty is reduced; however, the ground
motion prediction based on an earthquake magnitude, distance to the rupture zone,
and soil type, will be less uncertain with the consideration of additional records.

This dissertation developed fuzzy spectra to illustrate the consideration of in-
put motion uncertainties in the calibration model. The results from the calibration
mode] are validated by comparing the fuzzy sets for maximum response to the actual

maximum response of the case study structure during the Loma Prieta earthquake.
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7.2.4 Aging Properties of Structural Parameters

The degradation model is dependent on information about the aging characteristics
of structural parameters over an extended period of time (i.e. at least 100 years).
Unfortunately, at the time of this work there has been very little research performed in
determining such information. This work assumes that by understanding the potential
degradation properties for fundamental parameters it is then possible to extrapolate
the uncertainty in the higher level parameters as a function of time. Specifically, as
more knowledge is obtained about the degradation of fundamental parameters, the
degradation model presented here can adapt to this updated information.

At this point in time very little is known about a parameter’s aging characteristics.
Prediction of these future characteristics (which are difficult if not impossible to
measure) for these parameters can be facilitated using fuzzy logic. As we obtain
more data about material aging, it may be more applicable to predict the uncertainties

based on statistical methods rather than using fuzzy sets.

7.2.5 Uncertainty Due to Damage

The adaptive analysis models have been developed to quantify errors at three stages
of a structure’s life: calibration, degradation, and damage. Both the calibration and
degradation models have been described here in this dissertation. Development of
the damage mode} is left to future research. The damage model predicts a drastic
change in the dynamic characteristics of a structure due to a design level event, such
as a strong earthquake. This drastic shift is illustrated for frequency in Figure 7.1.
The fuzzy set for natural frequency before damage is shaded black in Fig. 7.1 rep-
resents uncertainty for this parameter at a particular point in time. The unshaded
fuzzy set in the figure depicts the possible uncertainty in frequency due to damage,
Edam. This fuzzy set is determined from the calibration and degradation models.
Uncertainty in the natural frequency after a damaging event is based on the initial
uncertainiy for the parameter and the type of event. Furthermore, there is uncer-
tainty associated with the time and location the event occurs. For example, in the

San Francisco area three major faults known to actively cause earthquakes are: San
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Figure 7.1: Shift in uncertainty for natural frequency due to a damaging event.

Andreas, Hayward, and Calaveras. Additionally, there are numerous smaller faults
also capable of initiating earthquakes. Development of the damage model should
include tk~ uncertainty involved with which fault ruptures, the location along the
fault, and the time of the events in addition to an evaluation of the structure’s non-
linear response. Not only will the damage fuzzy sets denote a shift in uncertainty due
to the occurrence of the event, the fuzzy sets will represent the uncertainty shift in
the time domain. Thus, the damage model must include recurrence relationships for

earthquakes at various magnitudes occurring at various faults.

7.2.6 Interpretation of Results

[mmplementation of the adaptive analysis models is performed iteratively, where a
structural design is evaluated based on the results of the calibration model. Upon
obtaining acceptable results, the design is evaluated based on the degradation model.
Finally, as a final check the structural design is evaluated with respect to the damage
model. The framework for these adaptive models has been established such that this
method can model uncertainties in various types of structural systems, provided the
system is modeled using finite elements. Furthermore, the generality of the framework

also permits the consideration of additional uncertainties.
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Specific guidelines need to be developed to ensure that the user is interpreting
the results correctly. These guidelines can steer the analyst through the process of
prescribing the fundamental uncertainties as fuzzy sets such that the logic is applied
consistently, helping the analyst determine which uncertainties are most important
for his purposes. A decision analysis model is needed to help the analyst interpret

the results to ensure consistent use in design.

7.3 The Adaptive Analysis Models

This study categarizes structural modeling uncertainties into three main sources of er-
ror: calibration, degradation, and damage error, which represent the potential sources
of discrepancy between the original structural design model and the constructed sys-
tem. Previous work focused on quantifying structural modeling error has used sys-
tem identification techniques or probabilistic techniques to predict the modeling error
based on measured response data. However, the need to understand modeling error
is greatest prior to construction, during the design of the structure, when response
data is not available and the conventional system identification techniques are not
applicable.

An adaptive design procedure is presented here which allows the analyst to quan-
tify the uncertainties between the structural finite element model and the as-built
structure during the design phase. Fuzzy sets are used to represent the level of
confidence associated with various uncertain structural parameters such as natural
frequency, frequency ratio, and maximum response. Using the vertex method, the
analyses associated with these parametric uncertainties establish the bounds for the
fuzzy set and define the membership function for structural response. Membership
functions and confidence intervals for the parameters are determined by performing
multiple dynamic analyses involving extreme cases of the model assumptions.

The adaptive design methodology is capable of simulating and predicting the
various forms of modeling error prior to building construction. This iterative design
procedure allows the design engineer to account more effectively for modeling discrep-

ancies and degradation effects. If at any point in the adaptive analysis the potential
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exists for unacceptable system response, the designer redesigns the structure and re-
formulates the associated calibration, degradation, and damage models. When the
range in response represented by the fuzzy sets is acceptable for the given design
specifications, the iterative procedure converges to an acceptable design.

A possible application for the use of these models based on fuzzy mathematics
pertains to the design of a control system. The resuiting fuzzy set which represents
the uncertainty in the dynamic properties of a structure provides bounds which the
analyst can use as a basis to design an active or passive control system. These
control systems typically are “tuned” based on the structure’s natural frequencies.
By quantifying the uncertainty in the potential free-vibration properties and response
for the structure it is possible to design a control system which is more robust.

This dissertation has focused on the development of a methodology for the use
of fuzzy set mathematics in the quantification of potential errors in structural dy-
namic properties. Fuzzy set logic is beneficial in this application due to the limited
knowledge available about the stiffness and mass contributions from various types
of elements which comprise the structural system. Furthermore, the use of fuzzy
set mathematics allows the analyst to bound his perceptions of the uncertainties,

ultimately bounding the resulting dynamic parameters.
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APPENDIX A

Data Used in Fuzzy Spectra for Loma Prieta

In this appendix the procedure is outlined for the development of the fuzzy velocity
response spectrum for alluvium sites less than 30 km from the rupture zone. Data
denoting distance to the rupture zone, soil type, and the location of the two corner
points A and B, are collected for each site. The steps used in the development of
the fuzzy velocity response spectra are itemized below. A few of the figures given
in the text of Chapter 4 are duplicated here to clarify the explanations given in this

appendix.

¢ Identification of “Corner Point A” and “Corner Point B” helps to approximate
the trapezoidal shape typical of the velocity spectrum (see Fig A.1). Velocity
amplification and period are the coordinates used to specify the location of these

points.

o Fuzzy sets are defined based on the uncertain location for corner points A and
B. This is done by creating plots for amplitude versus distance and the period
versus distance for each of the two corner points (four plots in total). Figure A.2
gives a typical plot for period versus distance. This plot is generated by plotting

the period values for Corner B for alluvium sites.

The horizontal lines in the figure at distances of 30 km and 60 km divide the
data into the three distance categories. Placement of these divisions have been
based on the amount of data available for each group. Effort was made to
maximize the amount of data in each distance category, while not creating a

category which is unreasonably large.
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Velocity Response Spectrum

A
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Figure A.1: Corner points A & B for site a dependent spectrum.
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Figure A.2: Period versus distance for alluvium sites (Corner B).
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Also, in the figure, there are four vertical lines for each distance category. The
solid lines denote the a-cut 0* boundaries for period in each distance cate-
gory. Alpha-cut 1 boundaries are denoted by the dashed lines. This process is
repeated to define fuzzy sets for amplitude at each of the three distance cat-
egories. Finally, period and amplitude fuzzy sets are generated for Corner A.
The result consists of four fuzzy sets which are then used to defined the fuzzy

velocity response spectra (shown in Fig. A.3).

o The four fuzzy sets which are used to define the spectrum are two frequency
fuzzy sets, one each for Corners A and B, and two velocity amplification fuzzy
sets, one each for Corners A and B. These fuzzy sets are shown in Fig. A.3 for

alluvium sites less than 30 km from the rupture zone.

The vertices in Fig. A.3 are mapped to the resulting fuzzy spectrum using
fuzzy set theory. Uncertainty in the frequency content for the fuzzy spectrum is
obtained by taking the union of the two frequency content fuzzy sets for Corners
A and B. The uncertainty in the amplitude of the resulting spectrum at a corner
is obtained by taking the intersection of the amplitude fuzzy set for a corner
with the frequency fuzzy set for the same corner. The resulting spectrum is a
three dimensional fuzzy set as shown in Fig. A.4 (reproduced from Chapter 4).
In the figure, the third axis represents membership and is orthogonal to the
plane of the page. The two shaded areas are slices taken at membership levels
of 0 and 1.

e The final fuzzy set for alluvium sites located less than 30 km from the rupture

zone is shown in Fig. A.5. In this figure, two a-cut levels are given.

The following tables give the distance from the rupture zone and the coordinates
for the location of corners A and B for each channel at each site. Rock sites are

given in Table A.1, and alluvium sites in Table A.2.
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PSV, infsec Fuzzy Velocity Response Spectrum
for Alluvium Sites Less Than 30 ki
1 N 1
Fuzzy
x - % 1 corner B
1 - \x -
e
1 Fuzzy
- corner A
0.1 -~
0.01 0.1 1 10 100
Period, seconds

Figure A.5: Fuzzy velocity response spectrum for alluvium sites less than 30 km from
the rupture zone at a-cut 0%.
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APPENDIX B

Use of the Vertex Method in Modal Analysis

Typically, the response spectrum method is performed deterministically. Values for
modal periods for each mode are referenced on the response spectrum to obtain a
single value for the maximum response. Then a superposition method, such as SRSS
or CQC, is used to obtained an estimate for the potential maximum response for
the structural system. The purpose of this appendix is to describe the use of the
resporise spectrum method when uncertain parameters are used rather than deter-
ministic values. Here, the uncertain parameters are represented as fuzzy sets defined
by membership functions.

The equations used in this thesis to calculate maximum structural response are

given below:

L, =nM{1} (B.1)
where,
L, = the earthquake participation factor for mode n;
¢, = the eigenvector for mode n; and
M = the assembled mass matrix.
m
IvaXI = Z LYI¢7|SI’(n) (B?)
n=1
where,
Su(n) = the maximum velocity obtained from a velccity response spectrum;
m = the number of modes superimposed; and
Vmax = the maximum velocity for the structure.
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Calculation of the earthquake participation factor for each mode is performed at
the same time as the free-vibration analysis. For each vertex defining the frequency
trapezoidal fuzzy set, there is a earthquake participation factor and mode shape.
Thus, the extreme conditions used to calculate an extreme bound for frequency are
also used to calculate the participation factor and the eigenvector for that vertex.

If a deterministic value is used to reference responses from the fuzzy response
spectrum, then the maximum response is a fuzzy set. A period of 2 seconds referenced
on the fuzzy velocity response spectrum for rock sites within 30 km of the rupture

zone gives the fuzzy set for the maximum velocity shown in Table B.3.

Table B.3: Maximum response fuzzy set at rock sites (X < 30 km) for a period of 2
seconds.

a-cut || lower bound | upper bound
in/sec in/sec
1.0 11 23
0.0t 6.1 46

When the period fuzzy set is used to reference responses on the fuzzy spectrum,
each vertex of the period fuzzy set refers to a maximum response fuzzy set. Table B.4
gives the response fuzzy sets for a period fuzzy set equal to ‘about’ 2 seconds. The
column of values in the table is the fuzzy set for period. The vertices for the triangular
fuzzy set are labeled as A,B, & C as shown in the second column of the table. Fuzzy
sets for velocity response for each vertex are given in the last four columns.

Modal superposition using SRSS is performed repetitively using the fuzzy sets for
period (with participation factors and eigenvectors) and the fuzzy sets for maximum
response. Calculations are performed at each a-cut level as specified by the vertex
method. At each a-cut level four solutions are performed to exhaust all possible
combinations of vertices. The highest value calculated at each a-cut is selected as
the bound for the resulting maximum response fuzzy set.

Equations B.3, B.4, B.5, and B.6 give the parametric combinations for each of the
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four solutions at a-cut 0.

lvmaxll = /Cf.a=0¢{,.a=05‘l;,a=0(TlL,a=0) + £§p=0¢%.a=ﬂsll’.,a=0(TZL.a=O) (B3)

|Vmax|g = JL{..a=0¢£4.a=os‘l;l,a=0(TlL,a=0) + £§«.a=0¢g.a=05‘l,l,a=0(7~21.,a=0) (84)

'vm&Xla = ch,nﬂ¢¥,a=o 'f,.a=0(TlU.a=0) + ‘Cgl.a=0¢;}.a=05‘l;,a=0(T2U,0=0) (Bs)

|vmax|4 _ JﬁllJ.asoqsll],a:OS‘l;',o:O(Tiu,a:O) + cg},a=0¢g,a=osg.a=n(T;J,a=0) (BG)

where,
U = superscript denoting upper bound for an a-cut; and
T = structural period.

The resulting bound for a-cut 0* for the maximum response {Viax|,.o+ = max |Vmax|,
for n = 1,4. This procedure is repeated at each a-cut level to fully define the upper

bound for the maximum response at all levels of confidence.

Table B.4: Maximum response fuzzy set at rock sits (X < 30 km) for a period of 2
seconds.

Bounds Period | Label A B C D
(sec) (in/sec) | (in/sec) | (in/sec) | (in/sec)

a-cut 0% (low) 1 A 6.0 6.1 6.1 5.5

a-cut 1 2 B 13 11 11 5.5

a-cut 1 2 C 28 23 23 11

a-cut 0% (high) | 45 | D 50 46 16 30
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