
RIEPORT ~O. 
IUlCIB/IEIEIRC-92107 
~IUlGIUlST 1992 

~- ._- .'-- .... . .... -'--_.. -_.-
, PB95192126 

1111111111111111111111111111111 

EARTHQUAKE ENGINEERING RESEARCH CENTER 
,'- _~~~"~c=.'"'.~~~_.~~ .. 1 

I: 
)! 

~ ~~ffi\~ ~~~~(E~1 [F(Q)[pd. 
~~~~~~(C [Q)~~t%(GJ~ ~[N]~~ ,,~~~ 

by 

ENRICO SPACONE 
ViNCENZO CIAMPi 
FiliP C. FIUPPOU 

COLLEGE OF ENGINEERING 

UNIVERSITY OF CALIFORNIA AT BERKELEY 

U.S. D~~~~~~~tCo~~~~:merce~ 
National Technical Information Service 

Springfield, Virginia 22161 



for sale by the National Technical Information 

Service, U.S. Department of Commerce, Spring

field, Virginia 22161 

See back of repart for up to date listing of EERC 

reparts. 

DISCLAIMER 

Any opinions, findings, and conclusions or 
recommendations eJtpressed in this publication 

are those of the authors and do not necessarily 

reflect the views of the National Science 

foundation or the Earthquake Engineering 

Research Center, University of California at 

Berkeley. 



A BEAM ELEMENT FOR SEISMIC DAMAGE ANALYSIS 

by 

Enrico Spacone 
Doctoral Student, University of California, Berkeley 

Vincenzo Ciampi 
Professor, Universita di Roma "La Sapienza" 

and 

Filip C. Filippou 
Associate Professor, University of California, Berkeley 

A Report on Research Conducted 
under Grant ECE-8657525 

from the National Science Foundation 

Report No. UCBIEERC-92/07 
Earthquake Engineering Research Center 

College of Engineering 
University of California, Berkeley 

August 1992 





ABSTRACT 

This study proposes a beam finite element model with distributed inelasticity and. two 

nonlinear end rotational springs for the nonlinear dynamic analysis of frame structures under 

earthquake excitations. The beam element is based on the assumption that deformations are 

small and shear deformations are neglected. The axial behavior is assumed linear elastic and 

is uncoupled from the flexural behavior. The element is derived with the mixed method of 

finite element theory. The force distribution within the element is based on interpolation 

functions that satisfy equilibrium. The relation between element forces and corresponding 

deformations is derived from the weighted integral of the constitutive force-deformation 

relation. While the element can also be derived with the virtual force principle, the mixed 

method approach has the advantage of pointing the way to the consistent numerical 

implementation of the element state determination. 

The constitutive force-deformation relation of the control sections of the beam and of 

the end rotational springs has the form of a differential relation that is derived by extending 

the simple standard solid model according to the endochronic theory. This constitutive model 

can describe a wide range of hysteretic behaviors, such as strain hardening, "pinching" and 

degradation of mechanical properties due to cycles of deformation reversals. The 

deterioration of the mechanical properties of structural elements due to incurred damage is an 

evolutionary process that can be readily accounted for in the proposed incremental force

deformation relation. Damage is defined as the weighted sum of the dissipated plastic work 

and the maximum previous deformation excursions. Several examples highlight the effect of 

the various parameters of the proposed constitutive law. 

A special nonlinear algorithm for the state determination is proposed that yields the 

stiffness matrix and the resisting forces of the flexibility based beam element. The proposed 

algorithm is general and can be used with any nonlinear section force-deformation relation. 

The procedure involves an element iteration scheme that converges to a state that satisfies the 

constitutive relations within the specified tolerance. During the element iterations element 

equilibrium and compatibility are always satisfied in a strict sense. The proposed method is 

computationally stable and robust and can trace the complex hysteretic behavior of structural 



members, such as strain hardening, "pinching" and softening under cyclic nodal and element 

loads. 

The study concludes with a demonstration of the ability of the proposed model to trace 

the softening response of a cantilever beam without numerical difficulties and with 

correlation studies of the response of the model with the experimental behavior of two 

reinforced concrete cantilever beams that highlight the flexibility of the constitutive law in 

the description of the hysteretic behavior of structural members. 
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1.1 General 

CHAPTER 1 

INTRODUCTION 

The simulation of the hysteretic behavior of structures under severe seIsmIC 

excitations is a very challenging problem. In addition to the problem of modeling the 

structural system and the interaction between its different components, there is the difficulty 

of representing the hysteretic behavior of the critical regions in the structure that undergo 

several cycles of inelastic deformation. Most experimental work in the last years is devoted to 

the understanding of the hysteretic behavior of critical regions in the structure, such as the 

ends of girders and columns under the combination of bending moment, shear and axial 

force, but very few experiments have addressed the study of entire lateral force resisting 

systems, because of the prohibitive cost of such studies. It is, therefore, implicit in this 

approach to improving the understanding of the seismic behavior of structural systems, that 

analytical models for the hysteretic behavior of critical regions will be derived from the 

experimental results, which will then be used in the simulation of the seismic behavior of 

entire structures. Unfortunately,. the capabilities of computer hardware have limited such 

attempts to the simplest possible member models, which assume that all inelastic behavior is 

concentrated in a hinge of zero length. In conjunction with this approach, models of different 

degree of complexity were proposed for the description of the hysteretic moment-rotation 

relation of the hinge. 

Models proposed to date suffer from several shortcomings that tend to undermine the 

credibility of analytical results: (a) the neglect of the spread of inelastic deformations as a 

function of loading history; (b) the neglect of the presence of distributed gravity loads on the 

inelastic behavior of the member; (c) the inability to account for the interaction between 

bending moment, shear and axial force in a rational manner; (d) the inability to account for 

strength loss and softening, because of numerical difficulties; and, (e) the inability of 

proposed hysteretic laws to simulate the evolution of damage and its effect on the subsequent 

hysteretic behavior of the inelastic region. 
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The continuous and precipitous Increase In the computing power of engineering 

workstations calls for a match in the software capabilities of simulating the seismic behavior 

of structures. Since computing power is less of an issue nowadays, it is important to develop 

rational models of the hysteretic behavior of structural members, which are fonnulated in a 

clear, efficient and consistent manner, so as to ensure their robust numerical behavior in the 

nonlinear static and dynamic analysis of structures with many degrees of freedom. 

1.2 Review of Previous Studies 

The Finite· Element Method of analysis is now the most widespread and general 

numerical method of structural analysis. Several models have been proposed to date for the 

simulation of the seismic behavior of steel and concrete structures. These range from simple 

nonlinear springs which lump the behavior of an entire story in a single degree of freedom to 

complex· three dimensional finite elements that attempt to describe the behavior of a 

structural member by integrating the stress-strain relation of the constituent materials. An 

intermediate class of elements, often referred to as discrete finite elements, constitutes a 

compromise- between these two families of models, by providing often sufficient detail of 

member behavior without the undue computational cost and the heavy demand on data 

storage and processing of three dimensional' finite elements. Discrete finite elements 

represent a class of member models that use a priori assumptions about the force and/or 

displacement field of the member which result in considerable simplification of the element 

fonnulation. An extensive review of the discrete finite elements proposed to date is presented 

in the introduction of the companion study by Taucer et al. (1991) arid is not repeated here._ 

The classical displacement method of analysis is most commonly used in the 

formulation of discrete finite elements. For frame elements the assumed displacement field 

consists of Hermitian polynomials that represent the exact solution for a prismatic member 

with uniform-linear ela-stic material properties. Hennitian polynomials correspond to a linear 

curvature distribution in the member.·· Under nonlinear behavior this assumption ·deviates 

significantly from the actual curvature distribution giving rise to serious numerical problems. 

For members under cyclic deformation reversals and members that exhibit softening at the 

critical sections, displacement-based models are known to suffer from the existence of 

spurious solutions and from numerical instability and convergence problems. These problems 

persist even in the case that the finite element mesh is refined in the inelastic region of the 

member in an attempt to approximate better the actual curvature distribution. 
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In recent years growing interest has been directed at the force (flexibility) method of 

analysis for the formulation of beam finite elements. Beams are well suited for the 

application of the force method because the force distribution in the member is known 

exactly from the satisfaction of the equilibrium conditions. For end forces acting on an 

element without rigid body modes the axial force is constant and the bending moment 

distribution is linear. The internal force distribution is exactly known even in the presence of 

distributed element loads, whose treatment in nonlinear displacement-based models creates 

many challenges. Early proposals (Mahasuverachai and Powell 1982, Kaba and Mahin 1984, 

Zeris 1986, Zeris and Mahin 1988 and 1991) suggest different formulations and identify the 

advantages of the force method in the· formulation of nonlinear frame elements. These 

studies, however, fail to give a clear and theoretically consistent formulation· for the 

implementation of a flexibility based element in a general purpose finite element analysis 

program that is based on the direct stiffness method of analysis. The lack of a clear 

formulation plagues these models with numerical instability problems. 

This study presents a new approach to the formulation of nonlinear flexibility-based 

frame elements. At present the nonlinear nature of the element derives from the material 

beh.avior of contr~l sections that constitute the integration points of the element. Extensions 

of the method to geometrically nonlinear problems .are possible, but are beyond the scope of 

this study. A general differential constitutive relation that derives from the endochronic 

theory describes the hysteretic behavior of control sections. The approach is, however, 

general and can be applied to any nonlinear section constitutive law. In fact, a companion 

study by Taucer et al. (1991) addresses the implementation of .this method in the context of a 

fiber beam-column element for reinforced concrete members under cyclic deformation 

reversals. 

The theoretical work in this report derive·s to a great extent from the original 

framework established by Professor Vincenzo Ciampi and his collaborators at the University 

:'La Sapienza" of Rome, Italy. The original work is reordered, refined and extended in this 

study to produce a unified theory. An important extension of the model is its derivation from 

the formal framework of mixed finite element methods that clarifies the strong connection 

between formulation and numerical implementation and also opens the door to future 

extensions of the model. The extension of this formulation to a fiber beam-column element 

for reinforced concrete members is presented in the companion report by Taucer et al. (1991). 
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A significant advantage of the new formulation is its .ability to accommodate a section 

constitutive relation of any level of complexity. In fact, the method is not limited to explicit 

constitutive relatiQns and is amenable to incremental and differential relations. This offers the 

opportunity of exploring the potential of differential (evolutionary) constitutive relations in 

the damage analysis of structures under seismic excitations. 

The differential model in this study was first presented as a section constitutive model 

by Brancaleoni et a1 (1983). Carlesiino (1983) formulated a linear beam element with 

nonlinear rotational springs at the ends and used the model to describe the hysteretic behavior 

of the end springs. The first beam element with distributed plasticity that was based on this 

model was proposed by Ciampi and Carlesimo (1986) and was refined in its implementation 

details by Paronesso (1986), who also extensively tested the model. 

An interesting aspect of the proposed differential model is its ability to trace the 

evolution of damage using the concept of intrinsic time from the endochronic theory of 

Valanis (1971). The accumulated damage continuously alters the strength and stiffness 

parameters of the hysteretic section relation in evolutionary fashion, thus, mimicking the 

actual behavior of the material. The damage index is defined as the weighted sum of the 

normalized energy dissipation and the normalized cyclic deformation ductility of the section. 

In this context, parameter identification 'methods are very useful in the selection of the 

monotonic and, particularly, the hysteretic parameters of the modeL Such a method for the 

proposed endochronic model with strength and stiffness deterioration was proposed by 

Ciampi and Nicoletti (1986). Damage analysis is a major research area nowadays and several 

models have been proposed for the definition of the degree of damage at either the member or 

the structure level under seismic loading conditions. While the present study does not deal in 

depth with the subject, but intends, instead, to demonstrate the potential of the proposed 

model in seismic dam.age analysis, a short review of proposed damage models is presented 

below for the sake of completeness. 

Damage is usually measured by means of a damage function (or damage index) D 

which varies from 0 to 1, where 0 indicates no damage and 1 indicates failure. Following a 

broad classification it is possible to order the proposed damage models in three classes: (a) 

one-parameter models, in ~hich damage is a function of ductility or inelastic' energy 

dissipation; (b) two-parameter models, in which damage is a function of, both, cyclic 

deformation ductility and inelastic energy dissipation; and, (c) low cycle fatigue models. 
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Models belonging to class (a) are based-on cyclic deformation ductility or inelastic 

energy dissipation. Cyclic ductility is defined in Mahin and Bertero (1981) as 

Ilc = xmax .c 

Xy 

where Xmax,c is the maximum plastic excursion and Xy is the yield displacement. The damage 
function Di-! associated with cyclic ductility is 

D = Il.c 
i-! 1 ~[jlm()n -

where Ilu.mon is the ultimate ductility in a monotonic test. Mahin and Bertero (1981) sirriilarly 

define hysteretic ductility as 

E 11 =_h_+1 
e F,,, Xy 

where F" is the yield strength of the structural model and Eh is the total inelastic energy 

dissipation. The corresponding damage function De is 

D = lle- 1 

e Il e•u,mon -1 

where Ile,u,mon is the attainable hysteretic ductility in a monotonic test. . 

A well known damage model in 'class (b) was proposed by Park and Ang (1985) who 

introduced a damage function that is the linear combination of the maximum displacement 

(deformation) ductility and the inelastic energy dissipation 

~ is a parameter that depends on the level of shear and axial force in the member and on the 

amollnt of longitudinal and transverse reinforcement. Another interesting set of damage 

functions in class (b) were proposed by Banon and Veneziano (1982). 

Damage models in class (c) consider, in a simplif~ed way, the distribution of inelastic 

cycles in the assessment of damage. Krawinkler and Zohrei (1987) and Krawinkler (1987) 

propose the following function as a measure of cumulative damage 

DK = Ai(lli- l/ 
i=l 
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where A = (Ilu,mon -lfb, b is a structural coefficient, n is the total number of inelastic cycles 

and Il i is the cyclic ductility corresponding to the i-th inelastic cycle. 

The above damage indices represent an overall measure of the level of damage that a 

member or the entire structure have sustained during a seismic excitation. These indices are, 

therefore, used in the estimation of the impact of 'ground motions ,on a given structure oeon a 

class of structures with similar material properties and structural configuration. 

In the technical literature the term damage model is also used to denote hysteretic 

rules which account for the gradual strength and stiffness deterioration in the material or 

section behavior as a result of inelastic deformation reversals. Such hysteretic rules for 

material models which are expressed in terms of a stress-strain or section moment curvature 

relation are based on expressions that resemble the damage indices discussed above. 

A number of degrading constitutive laws have been proposed to date. These are either 

based on continuum mechanics principles or on more phenomenological rules. The work of 

Lemaitre and Mazars in damage mechanics (Mazars 1989, Lemaitre 1992) is characteristic of 

extensive recent work in the first category. Representative ofmodels in the second category is 

the work of Roufaiel and Meyer (1987), who modify a Takeda-type hysteretic moment

curvature relation to account for the strength deterioration during cYGlic loading. In the 

modified model the target point of the reloading branch includes a strength reduction relative 

to the last point on the moment-curvature envelope with the same inelastic deformation. 

1.3 Objectives and Scope 

The present study proposes a beam element with distributed nonlinearity and two 

rotational springs at the ends of the member for the analysis of structural members under 

cyclic deformation reversals in flexure in combination with low values of axial load. In this 

case it is possible to approximate the actual behavior by uncoupling the effect of axial force 

from the flexural behavioL While the axial behavior is approximated as linear elastic: the 

flexural behavior of the element is represented at several control sections in the member and 

at the two end rotational springs by a differential moment curvature law that is based on the 

evolutionary concept of intrinsic time of the endochronic theory. The proposed beam~element 

is implemented in nonlinear analysis program with a consistent nonlinear solution algorithm 

for the element state determination. While the model is suitable for structural members of any 
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material, the emphasis in this study is on reinforced concrete structures, which might exhibit 

pronounced strength and stiffness deterioration under cyclic deformation reversals. 

The main objectives of this study are: 

• to derive a flexibility-based beam element from the formal framework of mixed finite 

element methods based on force interpolation functions that strictly satisfy the 

equilibrium of the member; 

• to develop a robust nonlinear solution algorithm for the state determination of 

flexibility-based elements; 

• to develop a differential moment-curvature relation for the hysteretic behavior of the 

control sections of the element that is evolutionary in nature and, thus, includes the 

progression of damage and its effect on the hysteretic behavior; 

• to develop a nonlinear algorithm for the numerical implementation of the differential 

moment-curvature relation within the context of the proposed element state 

determination; 

• to develop appropriate parameters for representing the "pinching" and strength 

deterioration of the hysteretic section relation; 

• to illustrate the capabilities of the proposed hysteretic model to describe the behavior 

of reinforced concrete members under inelastic deformation reversals 

• to illustrate the capabilities of the proposed beam element to describe the softening 

behavior of reinforced concrete members without numerical problems. 

Following the introduction,. Chapter 2 presents the flexibility formulation of the beam 

element and illustrates the proposed nonlinear solution algorithm for the element state 

determination. The mixed formulation of the beam element completes Chapter 2. Chapter 3 

introduces a differential moment-curvature relation based on the endochronic theory. The 

differential constitutive relation is then numerically solved and a nonlinear algorithm is 

proposed for the correction of the local error. The beam formulation and the incremental 

constitutive relation of the section are combined in Chapter 4 in the derivation of a beam 

element with spread inelasticity and two nonlinear rotational springs at the ends of the 

member. Chapter 5 describes the parameters of the nonlinear constitutive law and introduces 

a method for accounting for the "pinching" and degradation of the hysteretic moment

curvature relation. Chapter 6 discusses three applications of the proposed element: the first 
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concerns. a cantilever beam with softening to illustrate the capabilities of the proposed 

algorithm; the other two applications deal with the correlation of analytical with experimental 

results on reinforced concrete cantilever beams in order to illustrate the capabilities of the 

proposed damage model. The conclusions of the study and suggestions for future research are 

presented in Chapter 7.·· 



. CHAPTER 2 

BEAM ELEMENT FORMULATION 

2.1 General 

This chapter discusses three different methods for the formulation of beam finite 

elements. All formulations assume that deformations are small and that plane sections remain 

plane and normal to the longitudinal axis during the loading history. The classical stiffness 

and flexibility methods are compared first, followed by the presentation of a two-field mixed 

method. Most finite elements proposed to date are based on the stiffness method, because of 

the relative ease of implementation in finite element programs that are typically based on the 

direct stiffness method of structural analysis. 

Stiffness-based elements have, however, shortcomings that are associated with the 

displacement field approximation in the finite element. These shortcomings become 

particularly serious in the nonlinear range, especially for cyclic load histories. Fine mesh 

subdivisions must be selected and convergence problems are not uncommon. 

Recent studies on frame analysis have shown that flexibility-based elements may help 

overcome these problems, because the assumed beam force distributions are exact in the 

absence of element loads, irrespective of the linear or nonlinear behavior of the element. The 

implementation of flexibility-based elements in a finite element program is, however, not 

easy. The state determination for a flexibility-based element typically involves the 

determination of the element flexibility matrix and the deformation vector that corresponds to 

the applied forces. For an element that is implemented in a finite element program, this 

means the determination of the element stiffness matrix and force vector that correspond to 

given deformations at the element ends. The models proposed to date basically differ in the 

state determination procedure, but lack a clear and theoretically sound formulation. 

This chapter presents the general flexibility-based formulation of a beam finite 

element. The formulation is initially derived from the classical flexibility method of structural 

analysis and leads to a new state determination procedure. It is later recast in the more general 

9 
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form of a mixed method which illustrates better the state-determination process for the 

nonlinear analysis algorithm and opens the way to future generalizations and possible 

improvements. The main advantage of. the. proposed element over previous models is a 

theoretically founded formulation and the consequent computational stability that permits the 

numerical solution of highly nonlinear problems, such as the softening flexural response of 

poorly reinforced RC members under high axial forces. 

2.2 Element Forces and Deformations 

The element formulations in this chapter refer to the general 3D beam element shown 

in Figure 2.1 through Figure 2.3. The global reference frame for the element is the coordinate 

system X, Y, Z, while x, y, Z denotes the local reference system. The element is straight and 

the longitudinal axis x is the union of geometric centroids of the cross sections. The 

following notation is adopted for forces, displacements and deformations: forces are 

represented by uppercase letters and corresponding deformations or displacements in the 

work sense are denoted by the same letter in lowercase. Normal face letters denote scalar 

quantities, while boldface letters denote vectors and matrices. The element in Figure 2.1 

includes rigid body modes. The nodal forces and displacements refer to the global system and 

are grouped in the following vectors 

p = {~ P2 

P = {PI P2 

~I ~2r 

PII P12r 

(2.1 ) 

(2.2) 

In Figure 2.2 the nodal forces and displacements of the element with rigid body modes ref~r 

to the local coordinate system and are grouped in the following vectors 

Q = {Q] Qi Q11 Q12} T 

qll q]2r 

(2.3) 

(2.4) 

Finally, Figure 2.3 shows the forces and displacements of the element without rigid 

body modes in the local reference system: Throughout this discussion the torsional response 

is assumed as linear elastic and uncoupled from the other degrees of freedom. It is, thus, 

omitted in the remainder of this discussion for the sake of brevity. Without torsion the 

element has five degrees of freedom: one axial extension, qs' and two rQtations relative to the 

chord at each end node, (q],q3) at one and (q2' q4) at the other. For simplicity's sakethe 

displacements in Figure 2.3 are called element generalized deformations or simply element 
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deformations. Q\ through Qs represent the corresponding generalized forces: one axial force, 

Qs' and two bending moments at each end node, (Q" Q3) at one, and (Q2' Q4) at the other. 

The element generalized forces and deformations are grouped in the following vectors: 

l' 

x 

x 
~----------~--~--~~--~--~----~ 

FIGURE 2.1 FORCES AND DISPLACEMENTS OFTHE ELEMENT WITH 

RIGID BODY MODES IN THE GLOBAL REFERENCE SYSTEM 

Q Q Q QS}
T 

2 3 4 (2.5) 

(2.6) 

Figure 2.3 also shows the generalized forces and deformations at a section of the element. 

Since shear deformations are neglected, the deformation is represented by three strain 

resultants: the axial strain E(X) along the longitudinal axis and two curvatures Xz(x) and 

x.Jx) about two orthogonal axes z andy, respectively. The corresponding force resultants are 

the axial force N(x) and two bending moments Mz(x) andM/x). The section generalized 

forces and deformations are grouped in the following vectors: 

D(x) = {MJx) M/x) N(x)r 

d(x) = {Xz(x) X/x) E(X)r 

(2.7) 

(2.8) 

The equations that relate the element forces with the corresponding deformations are 

essential for the implementation of the beam element in a finite element program. The 
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element deformation vector q can be derived from the element displacement vector p with 

two transformations. 

y 

*""~ _______ -'-_______ --'--'''X 

FIGURE 2.2 FORCES AND DISPLACEMENTS OF THE ELEMENT WITH 

RIGID BODY MODES IN THE LOCAL REFERENCE SYSTEM 

y 

x 
~------------------

FIGURE 2.3 ELEMENT AND SECTION FORCES AND DEFORMATIONS IN THE 

LOCAL REFERENCE SYSTEM WITHOUT RIGID BODY MODES 

(a) Transformation from p to if 
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if = LR P 

where LR is a rotation matrix that is defined by 

R 0 0 0 

0 R 0 0 
4= 

0 0 R 0 

0 0 0 R 

Submatrix R has the form 

C( Cy Cz 

R= 
Cx Cy cosa + Cz sina 

Cxz cosu 
-Cy Cz c?sa + Cx sina 

Cxz Cxz 
Cx Cy sina - Cz cosa 

-Cxz sina 
Cy Cz sinu + Cx cosa 

Cx: Cxz 

'r 
ROTATION ABOUT x AXIS., 

ROTATION OF AXES 
XYZ-""xyz 

Zr 

y 

z 

FIGURE 2.4 ROTATION OF AXES FOR A BEAM ELEMENT IN THREE DIMENSIONAL SPACE 

\ ~ 
\.\.. 

13 

(2.9) 

Cx ' Cy and Cz are the direction cosines of the axis of the member, Cxz = ~ ( Cx )2 + ( Cz )2 , and 

a is the angle that defines the rotation about the element axis x. The rotation matrix LR 
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describes three successive rotations 0:, ~, y, as illustrated in Figure 2.4. The first two rotations 
through angles ~ and 'Y (about the Y and z~ axes, respectively) .are the same as those used for 

a space truss element. The third transformation consists of a rotation through the angle 0: 

about the beam axis x, causing the y and z axes to coincide with the principal axes of the 

cross section. This last rotation is illustrated at the top of Figure 2.4, which shows a cross 

section view of an I-beam pointing in the negative x direction. In the special case of a vertical 

member, ex = 0, ez = 0 and exz = 0, and R becomes indeterminate. The following alternative 

expression should be used in this case: 

[ 

0 e), 
R = -ey ~osa 0 

eysmo: 0 

si~a] 
coso: 

(b) Transformation from if to q 

q = LRBM if (2.10) 

LRBM is the transformation matrix for the inclusion of rigid body modes. Accounting for the 

torsional degrees of freedom and omitting second order effects, LRBM becomes 

0 l/L 0 0 0 1 0 -l/L 
0 IlL 0 0 0 0 0 -l/L 
0 0 -IjL 0 1 0 0 0 

LRBM = 
0 0 -l/L 0 0 0 0 0 

-1 0 0 0 0 0 1 0 

0 0 0 -1 0 0 0 0 

The following global relations hold 

q = LRB~ LR P = Lele P 

p = ~ ~BM Q = i!.le Q 

where 

Lele = LRBM LR 

0 0 

0 0 

l/L 0 

l/L 0 

0 0 

0 1 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

With the transformation matrix Lele , the local stiffness matrix K for the element without rigid 

body modes can be transformed to the global stiffness matrix K of the element with rigid 

body modes: 

(2.15) 
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The element stiffness matrix in Eq. (2.15) can now be assembled into the structure stiffness 

matrix. 

,2.3 Beam Element Formulation 

This section presents the formulation of a beam element based on three different 

methods. Because the problems of interest in this study are nonlinear, the formulations are 

presented in incremental form. Even though tangent stiffness matrices appear in the nonlinear 

incremental solutions, the extension to other types of linearization is rather straightforward. It 

is also important to point out that the nonlinear response in this chapter arises only from the 

nonlinear material behavior. The formulation is first derived with the classical stiffness and 

flexibility methods. A mixed method is, then, presented which illustrates better the consistent 

implementation of the state determination procedure for flexibility-based elements. 

The implementation of the beam element in a standard finite element program 

requires different state determination procedures for the stiffness and flexibility method. 

Since standard finite element programs are commonly based on the direct stiffness method of 

analysis, the solution of the global equilibrium equations yields the displacements of the 

structural degrees of freedom. These, subsequently, yield the end deformations of each 

element. The process of finding. the stiffness matrix and the resisting forces of each element 

for given deformations is known as element state determination and is typically performed on 

the element without rigid body modes. 

2.3.1 Stiffness Method 

The beam formulation according to the stiffness method involves three major steps in 

the following order: 

a) Compatibility. The beam deformation field IS expressed as a function of nodal 

deformations 

d(x) = a{x)q (2.16) 

Typically, in the formulation of a Bernoulli beam, the transverse displacements are 

described by cubic polynomials and the axial displacements by linear polynomials. 

Consequently, a(x) contains linear functions of the end rotations and a: constant 

function of the axial extension. 



16 CHAPTER 2 

b) Section Constitutive Law. The incremental section constitutive law is written as 

Lill(x) = k(x) M(x) (2.17) 

c) Equilibrium. Starting from a force distribution in equilibrium, the relation between 

element force and. deformation increments is obtained with the principle of virtual 

displacements 

L 

&/ !J.Q= f&lT(X) Lill(x)dx (2.18) 
o 

The substitution of Eqs. (2.16) and (2.17) in Eq. (2.18) and the fact that the latter must hold 

for arbitrary &j lead to 

!J.Q = K !J.q (2.19) 

where K is the element stiffness matrix 

L 

K = faT(x)k(x)a(x)dx (2.20) 
o 

The state determination procedure is straightforward· for a stiffness-based element. 

The - section deformations d(x) are determined from the element deformations q with 

Eq. (2.16). The corresponding section stiffness k(x) and section resisting forces DR(X) are 

determined from the section constitutive law, which is assumed explicitly known in this 

chapter without loss of generality. The element stiffness matrix K is obtained by application 

of Eq. (2.20), while the element resisting forces QR are determined with the principle of 

virtual displacements that·leads to 

L 

QR ::;: faT(x)D~(x)dx (2.21) 
o 

It is important to note that, in the nonlinear case, this method leads to an erroneous 

element response. This problem is illustrated in Figure 2.5 which shows the evolution of the 

structure, element and section states during one load increment !J.P; that requires several 

iterations i. Throughout this study the Newton-Raphson iteration method is used at the global 

degrees of freedom. At each Newton-Raphson iteration structural displacement increments 

are determined and the element deformations are extracted for each element. 
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The state determination process is made up of two nested phases: a) the element state 

determination, when the stiffness matrix and resisting forces of the element are determined 
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for given end defonnations, and b) the structure state determination, when the stiffness 

matrix and resisting forces of the element are assembled to fonn the stiffness matrix and 

resisting force vector of the structure. Once the,structure state detennination is complete, the 

resisting forces are compared with the total applied loads and the difference, if any, yields the 

unbalanced forces which are then applied to the structure in an iterative solution process, 

until external loads and internal resisting forces agree within a specified tolerance. 

At the i-th Newton-Raphson iteration, the global system of equations K i
-

I ~pi = p~-I 

is solved, where Pu is the vector of unbalanced forces and K i
-

I is the tangent stiffness matrix 

of the structure. From the total displacements at the structure degrees of freedom pi the 

defonnation vector qi is detennined for each element. Using Eq. (2.16) for each beam 

element the deformation field d i (x) is computed. This is the first approximation of the 

element state determination, since a(x) is exact only in the linear elastic case of a prismatic 

member .. 

Assuming that the section constitutive law is explicitly known, the section stiffness 
ki(X) and resisting forces D~(x) are readily computed from di(x). Using Eqs. (2.20) and 

(2.21) the element stiffness matrix K' and resisting forces Q~ are determined. Since a(x) is 

approximate, the two integrals yield approximate results. The approximation of the 

deformation field leads to a stiffer solution, which is reflected in the behavior of Figure 2.5. 

Note that the curve labeled "correct" is only exact within the assumptions of the section 

constitutive law and the kinematic approximations of the problem, such as small kinematics, 

plane section deforI11ations, etc .. 

To overcome the numerical errors that arise from the approximation of the 

defonnation field, analysts resort to fine mesh discretization of the structure, especially, in 

frame regions that undergo highly nonlinear behaviors, such as the ends of members. Even 

so, numerical convergence problems persist. 

2.3.2. Flexibility Method 

The beain formulation according to the flexibility method involves three major steps 

in the following order: 

a) Equilibrium. The beam force field is expressed as a function of the nodal forces 

D(x) = b(x)Q (2.22) 
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In the absence of element .loads b(x) contains force interpolation functions that 

enforce a linear bending moment and a constant axial force distribution. 

b) Section Constitutive Law. The linearized section constitutive law is written as 

M(x) = f(x) W(x} (2.23) 

c) Compatibility. Starting from a compatible state of deformation, the element relation 

between force and corresponding deformation increments is obtained by application 

of the principle of virtual forces 

L 

OQT I!.q = fODT(x) M(x)dx (2.24) 
o 

The substitution of Eqs. (2.22) and (2.23) in Eq. (2.18) and the fact that the latter must 

hold for arbitrary oQ lead to 

!!.q = F !!.Q (2.25) 

where F is the element stiffness matrix defined by 

L 

F = fbT(x}f(x}b(x)lb: (2.26) 
o 

It is important to point out that the equilibrium equation (2.22) is exact in a strict 

sense when no element loads are present. This is a major advantage of the flexibility method 

over the stiffness method. The force interpolation matrix b(x) is exact irrespective of the 

element material behavior, while the deformation interpolation matrix a(x) is only exact in 

the linear elastic case of a prismatic member. Another advantage of the flexibility method is 

the ease of including element loads by enhancing b(x) with additional force interpolation 

functions that can be readily derived from equilibrium considerations. The major obstacle of 

the flexibility formulation is its numerical implementation in a standard finite element 

analysis program that imposes kinematic, rather than static, boundary conditions at the 

element ends. For its complexity and importance this aspect is treated in a separate section. 

2.3.3 State Determination for Flexibility-Based Elements 

Most studies to date concerned with the analysis of frame structures are based on 

finite element models that are derived with the stiffness method. Recent studies on the 

analysis of reinforced concrete frames have focused on the advantages of flexibility-based 
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models (Zeris and Mahin 1988), but have failed to give a clear and consistent method of 

determining the resisting forces from given element deformations. This problem arises when 

the formulation of a finite element is based on the application of the principle of virtual 

forces. While the element is flexibility-dependent, the computer program into which it is 

inserted is based on the direct stiffness method of analysis. In this case the element is 

subjected to kinematic, rather than, static boundary conditions, and the implementation of the 

flexibility method, which is straightforward in the latter case, becomes challenging. 

The determination of the stiffness matrix does not present p~oblems, at least from a 

theoretical standpoint, since it is accomplished by inversion of the element flexibility matrix, 

K=F-1 (2.27) 

During the state determination the resisting forces of all elements in the structure need to be 

determined. Since in a flexibility-based element there are no deformation interpolation 

functions to relate the deformations along the element to the end displacements, the state 

determination is not straightforward and. is not well developed in flexibility-based models 

proposed to date. This fact has led to some confusion in th~ numerical implementation of 

previous models. 

In the present study the nonlinear algorithm consists of three distinct nested processes, 

which are illustrated in Figure 2.6. The two outermost processes denoted by indices k and i 

involve structural degrees of freedom and correspond to classical nonlinear analysis 

procedures. The innermost process denoted by index j is applied within each element and 

corresponds to the element state determination. Similarly to Figure 2.5, Figure 2.6 shows the 

evolution of the structure, element and section states during one load increment ~; that 

requires several Newton-Raphson iterations i. 

In summary, the superscripts of the nested iterations are defined as follows: 

k denotes the applied load step. The external load is imposed in' a sequence of load 

increments ~;. At load step k the total external load is equal to P; = p;-l + .1P; with 

k=1, ... ,nstep and P~ =0; 

denotes the Newton-Raphson iteration scheme at the structure level, i.e. the structure 

state determination process. This iteration loop yields the structural displacements pk 

that correspond to applied loads P;; 
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] denotes the iteration scheme at the element level, i.e. the element state determination 

process. This iteration loop is necessary for the determination of the element resisting 

forces that correspond to. element deformations qi during the i-th Newton-Raphson 

iteration. 

The processes denoted by indices k and i are common in nonlinear analysis programs 

and will not be discussed further. The iteration process denoted by the index j, on the other 

hand, is special to the beam element formulation developed in this study and will be 

described in detail. It should be pointed out that any suitable nonlinear solution algorithm can 

be used for the iteration process denoted by index i. In this study the Newton~Raphson 

method is < used. The selection of this method for iteration loop i does not affect the strategy 

for iteration loop j, which has as its goal the determination of the element resisting forces for 

the given element deformations. 

In a flexibility-based finite element the first step is the determination of the element 

forces from the current element deformations using the stiffness inatrix at the end of the last 

iteration. The force interpolation functions yield the forces along the element. The first 

problem is, then, the determination of the section deforinations from the given section forces, 

since the nonlinear section force-deformation relation is commonly expressed as an explicit 

function of section deformations. The second problem arises from the fact that changes in the 

section stiffness produce a new element stiffness matrix which, in tum, changes the element 

forces for the given deformations. 

These problems are solved In the present study by a special nonlinear solution 

method. In this method residual element deformations are determined at each iteration. Nodal 

compatibility requires. that these residual deformations be corrected. This is accomplished at 

the element level by applying corrective element forces based on the current stiffness matrix. 

The corresponding section forces are determined from the force interpolation functions so 

that equilibrium is always satisfied in a strict sense along the element. These section forces 

cannot change during the section state determination so as not to violate equilibrium along 

the elem~nt. Consequently, the linear approximation of the section force-deformation relation 

about the present state results in residual section deformations.These are then integrated 

along the element to obtain new residual element deformations and the whole process is 

repeated until convergence occurs. It is important to stress that equilibrium along the element 

is always satisfied· in a strict sense in this process. The nonlinear solution procedure for the 

element state determination is schematically shown in Figure 2.7 for one Newton-Raphson 
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iteration i. In Figure 2.7 convergence in loop j is reached in three iterations. The consistent 

notation between Figure 2.6 and Figure 2.7 highlights .the relation between the corresponding 

states of the structure, element and section, which are denoted by uppercase Roman letters. 

. FJGURE 2.6 
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At the i-th Newton-Raphson iteration it is necessary to determine the element 

resisting forces for the current element deformations 
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(2.28) 

To this end an iterative process denoted by index j is introduced inside the i-th Newton

Raphson iteration. The first iteration corresponds to j= 1. The initial state of the element, 

represented by point A and j=O in Figure 2.7, corresponds to the state at the end of the last 

iteration of loop j for the (i-I) Newton-Raphson iteration. With the initial element tangent 

stiffness matrix 

and the given element deformation increments 

the corresponding element force increments are: 

flQi=1 = [F J=or &jJ=1 

The section force increments can now be determined from the force interpolation functions: 

MJi=I(X) = b(x) flQi=1 

With the section flexibility matrix at the end of the previous Newton-Raphson iteration 

the linearization of the section force-deformation relation yields the section deformation 

increments MJ=I(X): 

Mi=I(X) = f j=o(x) MJJ=I(X) 

The section deformations are updated to the state that corresponds to point B in Figure 2.7: 

d J=I(X) = d j=o(x) + M J=I(X) 

According to the section force-deformation relation, which is here assumed to be 

explicitly known, section deformations dJ=I(X) correspond to resisting forces Drl(x) and a 

new tangent flexibility matrix f J=I(X) (Figure 2.7). In a finite element based on the stiffness 

method the section resisting forces Dr1(x) would be directly transformed to element 

resisting forces Qj=l, thus, strictly violating the equilibrium along" the element. Since this is 

undesirable, a new nonlinear solution method is proposed in this" study. In this approach the 

section unbalanced forces are first determined 

D{I(X) = Dj=l(x) - Dfl(x) 

and are then transformed to residual section deformationsrJ=I(x) 
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(2.29) 

The residual section deformations are thus the linear approximation to the deformation error 

introduced by the linearization of the section force-deformation relation (Figure 2.7). While 

any ~uitable flexibility matrix can be used in the calculation of the residual deformations, the 

tangent flexibility matrix used in this study offers the fastest convergence rate. 

The residual section deformations are integrated along the element according to the 

virtual force principle to obtain the residual element deformations:. 

L 

Si=l = J bT (x) ri=l(x) dx . (2.30) 
o 

At this point the first iteration j= 1 of the corresponding iteration loop is complete. The final 

element and section states for j= 1 correspond to point B in Figure 2.7. The residual section. 

deformations ri=l(x) and the residual element deformations Si=l are determined in the first 

iteration, but the corresponding deformation vectors are not updated. Instead, they are the 

starting point of the subsequent steps within iteration loop j. The presence of residual element 

deformations s i=l violates compatibility. In order to restore compatibility corrective forces 

equal to [F i=l f (-s i=l) must be applied at the ends of the element, where F i=1 is the updated 

element tangent flexibility matrix determined by integration of the section flexibility matrices 

according to Eq. (2.26). A corresponding force increment b(x) [Fi=lf (_si=l) is applied at 

all control sections inducing a deformation increment /i=l(X) b(x) [Fi=lr (_si=l). Thus, in 

the second iteration j=2 the state of the element and the control sections change as follows: 

the element forces are updated to the value 

Q'=2 = Qi=1 + i1Qi=2 

where 

and the section forces and deformations are updated to the values 

D i=2(X) = D i=I(X) + ,illi=2(X) 

and 

where 



26 CHAPTER 2 

MJj=2(X) = b(x) [Fj=lr' (-sj-I) 

M i=2(X) = ri=l(x) + j j=I(X) b(x) [F i=1 r' (-Sj=l) 

The state of the element and the control sections at the end of the second iteration j=2 

corresponds to point C in Figure 2.7. The new tangent flexibility matrices jJ=2(X) and the 

new residual section deformations 

r j=2(x) = jj=2(X) Dt=2(X) 

are computed for all sections. The residual section deformations are then integrated to obtain 

the residual element deformations s J=2 and the new element tangent flexibility matrix F j=2 is 

determined by integration of the section flexibility matrices jj=2(X) according to Eq. (2.26). 

This completes the second iteration within loop j. 

The third and subsequent iterations follow exactly the same scheme. Convergence is 

achieved when the specified convergence criterion is satisfied. With the. conclusion of 

iteration loop j the element resisting forces for the given deformations q' are established, as 

represented by point D in Figure 2.6 and Figure 2.7. The Newton-Raphson iteration process 

can now proceed with step i+ 1. 

It is important to point out that during iteration loop j the element deformations qi do 

not challge except in the first iteration j= I, when increments tlqj=1 = tlqi are added to the 

element deformations qi-I at the end of the previous Newton-Raphson iteration. These 

deformation increments result from the application of corrective loads dP~ at the structural 

degrees of freedom during the Newton-Raphson iteration process. For j> 1 only the element 

forces change until the nonlinear solution procedure converges to the element resisting forces 

Qi which correspond to element deformations qi. This is illustrated at the top of Figure 2.7 

where points B, C and D, which represent the state of the element at the end of subsequent 

iterations in loop j, lie on the same vertical line~ while the corresponding points at the control 

sections of the element do not, as shown in the bottom of Figure 2.7. This feature of the 

proposed nonlinear solution procedure ensures compatibility. 

The proposed nonlinear analysis method offers several advantages. Equilibrium along 

the element is always satisfied in a strict sense, since section forces are derived from element 

forces by the force interpolation functions according to Eq. (2.21). Compatibility is also 

satisfied in its integral form according to the virtual force principle 
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L 

tlq = f bT(x) M(x) dx (2.31) 
o 

It is straightforward to show that in the first step, j=1, the integral of the section deformation 
increments M j=i (x) is equal to tlq j=i, while for j> 1, the section deformation increments are 

determined from 

(2.32) 

Upon substitution of Eq. (2.32) in Eq. (2.31) it is easy to verify that tlqj = 0 for j> 1, thus 

satisfying nodal compatibility~ In other words, the element iterations adjust the element force 

and deformation distributions while maintaining the imposed nodal deformation increments 
tlqj=1 = tlqi. 

At this point it is important to point out that the element state determination algorithm 

can be regarded as an iterative Newton-Raphson process inside the element. A comparison of 

the iteration schemes at the structure and at the element level in Figure 2.6 reveals that, while 

the global iterative scheme is based on force corrections, the element scheme is based on 

deformation corrections. While the applied forces are kept fixed at the global level, it is the 

end deformations that are kept fixed at the element level. 

A complete step-by-step summary of the element state determination is presented in 

Appendix A with the help of flow charts which illustrate the complete solution method for a 

nonlinear structural analysis problem that uses Newton-Raphson iterations. at the structural 

degrees of freedom. 

2.3.4 Mixed Method 

This section presents a more general element formulation based on a two-field mixed 

method which uses the integral forms of the equilibrium and force-deformation relations to 

derive the matrix relation between element generalized forces and corresponding 

deformations. This approach provides a more direct and elegant way of relating the element 

formulation with the element state determination and opens the way to future extensions of 

the method. 

One important difference between stiffness and flexibility method on one hand, and 

the mixed approach on the other, is the way the section constitutive law is treated. The 

stiffness and flexibility methods satisfy the section constitutive law exactly. In the flexibility 
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method the section constitutive relation is used to obtain the section deformations from the 

corresponding forces. Since it is not clear how to relate these deformations to the resisting 

forces of the element, inconsistencies appear in the numerical implementation of the method. 

To avoid these inconsistencies it is expedient to accept a deformation residual as the 

linearization error in the nonlinear section force-deformation relation. The analytical 

treatment of this error is well established within the framework of two-field mixed methods, 

as will be discussed in the following. Even though this approach was already introduced in ad 

hoc fashion for the state determination of the flexibility method in the previous section, it is 

conceptually more appropriate to associate it with the mixed method. It will be shown in the 

following that the formulation of the element within the framework of the mixed method 

leads directly to the consistent implementation of the state determination algorithm . 

. In the two-field mixed method independent interpolation functions are used in the 

approximation of the deformation and force fields within the element (Zienkiewicz and 

Taylor 1989). Denoting with ~ increments of the corresponding quantities, the two 

incremental fields are written 

&lex) = a(x) ~q 

MJ(x) = hex) ~Q 

(2.33) 

(2.34) 

where matrices a(x) and hex) denote the deformation and force interpolation functions, 

respectively. In the mixed method formulation the integral forms of the equilibrium and 

section force-deformation relations are expressed first. These are then combined to obtain the 

matrix relation between element force and deformation increments. If the incremental section 

constitutive relation is written as 

Mi(x) = fi-'(x) MJJ(x) + rJ-l(x) 

its weighted integral form becomes 

L 

fODT(x) [Mi(x) - fi-'(x)MJi(x) - ri-I(x)] dx = 0 
o 

(2.35) 

(2.36) 

The section force-deformation relation appears in the flexibility form &lex) = f(x) MJ(x) 

in order to ensure symmetry, as discussed in Zienkiewicz and Taylor (1989). First, Eqs. 

(2.33) and (2.34) are substituted in Eq. (2.35) and, after observing that Eq. (2.35) must hold 

for arbitrary oQ, the integral is equivalent to 

T ~J - FJ-' ~QJ - SJ-I = 0 (2.37) 
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where F is the element flexibility matrix in Eq. (2.26), S is the element residual deformation 

vector in Eq. (2.30) and T is a matrix that depends only on the interpolation functions 

L 

T = fbT(x)a(x) dx (2.38) 
o 

Eq. (2.37) is the matrix equivalent of the integral form of the linearized section force

deformation relation. The next involves the satisfaction of equilibrium of the beam element. 

In the classical two-field mixed method the integral form of the equilibrium equation is 

derived from the virtual displacement principle 

L 

f&iT(x) [Di-1(x) + M)i(x)] dx = &/ Qi (2.39) 
o 

where Qi is the vector of nodal forces in equilibrium with the new internal force distribution 

Di-l(X)+M)i(x). Eqs. (2.33) and (2.34) are substituted in Eq. (2.39) and, after observing 

that Eq. (2.39) must hold for arbitrary Bq, the integral is equivalentto the following matrix 

expreSSiOn 

(2.40) 

This is the matrix equivalent of the integral form of the element equilibrium equations. 

Rearrangement and combination of Eqs. (2.37) and (2.40) result in 

[-F i-I T] {8Qi } { Si-
1 

} 
TT 0 tlqi - Qi _ TT Q,-I 

(2.41) 

If the first equation in (2.41) is solved for 8Q i and the result is substituted in the second 

equation, the following expression results 

TT [Fi-If (T tlqi -Sf-I) = Qf _ TT Qi-I (2.42) 

So far, the selection of interpolation functions b(x) and a(x) has not been addressed.· It is 

straightforward to conclude that a linear bending moment and a constant axial. force 

distribution satisfy the element equilibrium in the absence of element loads. Thus, with the 

definition of the generalized forces Q and D(x} for the element and section; respectively, the 

interpolation function b(x) is equal to 
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(~ -1) (~) O' 0 0 

b(x) = 0 0 (~ ~l) (~) 0 (2.43) 

0 0 0 0 1 

The selection of a(x) does not affect the present element formulation for a Bernoulli beam, 

because of the choice of force and deformation resultants Q and q, respectively. These are 

conjugat~ variables from a virtual work standpoint, which means that the product qT Q 

represents the external work of the beam. The application of the virtual work principle to the 

bc;:am, thus, yields 

, (2.44) 

This implies that any choice of a(x) yields T = 1, where I is the 3x3 identity matrix. It is 

important to note that the above result is specific to the proposed Bernoulli beam element in 

which force and deformation resultants are conjugate measures. Using the notation of Pian 

(1964) and Spilker and Pian (1979), two-field mixed methods typically assume nodal 

displacements qas deformation resultants and some internal stresses ~ as force or stress 

resultants. In general, q and ~ are not conjugate generalized measures and, consequently, 

matrix T is non square and full. 

With the simplification T=l, Eq: (2.42) becomes' 

[Fi-T
I 
(iliJi _si-l ) = !:lQi (2.45) 

The final matrix equation (2.45) expresses the linearized matrix relation between the 

element force increments !:lQi and the corresponding deformation increments !:lqi - si-I. The 

element stiffness. matrix is written in the fonn [F r to stress the fact that it is obtained by 

inverting the flexibility matrix. Eq. (2.45) clearly relates the proposed element formulation 

with the element state determination algorithm, since it contains, both, the imposed element 

deformation increments !:lqi and the residual deformati~~s S~-l that arise during the nonlinear 

state determination algorithm. 

According to Eq. (2.45) when !:lql '* 0 and SO = 0, as is the case in the first iteration 

(;=1), the force increments are equal to !:lQI =[FOr !:lql. In subsequent iterations (j>1), 

!:lqi = 0 and si '* 0, and the force increments are equal to !:lQi = [F i-I r (_Si-1
). These 
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expressions correspond exactly to the element state determination scheme that was presented 

earlier. It is now clear how the consistent element state detennination process can be directly 

derived from the element formulation, if residual section defonnations are included as the 

linearization error of the incremental section constitutive relation in Eq. (2.35). 

It is interesting to note that, with the notation of Tabarrok and Assamoi (1987), the 

deformation distribution along the element is the sum of two terms: a homogeneous 
component M h (x) and a particular component M p (x). Wherever kinematic boundary 

conditions are imposed M h (x) vanishes, while M p (x) takes the value of the imposed non 

zero deformations. In the present state determination algorithm the particular solution arises 

from the imposed node displacements at the structural degrees of freedom and is added to the 

deformation field during the first element iteration j= 1. The homogeneous component is 

given by the sum of the contributions of all subsequent iterations j> 1 that adjust the element 

force and defonnation fields while maintaining the imposed nodal deformations. These 

conclusions can be analytically expressed as follows 

M(x) = Mp(x) + Mh(X) 

Mp(x) = Mi=I(X) = to(x) MJ'(x) 

convergence convergence 

Mh(X)= LMi(x)= L [ti-l(x)MJJ(x) + ri-I(x)] 
i=2 i=2 

(2.46) 

The validity of these relations can be confinned by determining the node defonnation 
L 

increments tlq corresponding toM(x), that is J bT(x) M(x) dx. It is easy to verify that 

° 
L J bT(x) Mi=I(X) dx &ji=1 

° 
and 

In conclusion, the incremental field of the element corresponds to non zero end deformations 

in the first iteration only, when the internal deformations correspond to the imposed node 

deformation increments tlq . 
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A DIFFERENTIAL SECTION CONSTITUTIVE LAW 

3.1 General 

This chapter presents a differential constitutive relation based on a standard solid 

model. The relation is general and can be applied to any stress-strain or force-displacement 

law but is presented here as a moment-curvature relation in view of its application in the 

formulation of the beam element in Chapter 2. The actual implementation of the section 

constitutive relation in the element is postponed t6 Chapter 4. 

The constitutive relation is derived from the standard solid model and is, then, 

modified by introducing the concept of intrinsic time according to the endochronic theory. 

The monotonic relation is subsequently extended to cyclic loading. Finally, the differential 

constitutive relation is numeriCally integrated to obtain an incremental moment-curvature 

relation. 

It is implicitly assumed in this study that the axial and bending behavior of the beam 

element are completely uncoupled. This may not be a good approximation for reinforced 

concrete columns with high levels of axial load. In the latter case more elaborate constitutive 

relations that introduce coupling between axial force and bending moment should be sought. 

The axial behavior is assumed linear elastic and no further discussion is needed. The flexural 

behavior is based on a moment-curvature relation expressed in the differential form 

dM . . 
dX = g(M, X) (3.1) 

This form of constitutive law does not provide an explicit expression of the moment

curvature relation, but only its derivative. Clearly, this is a disadvantage from the 

computational standpoint, since an integration of Eq. (3.1) is required before the section 

moment can be related to the corresponding curvature. On the other hand, the differential 

form of Eq. (3.1) is ideally suited for the representation of evolutionary behavior and 

progressive damage. In the latter context a wide range of characteristic hysteretic behaviors of 

33 
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structural members can be represented by appropriate selection of model parameters, as will 

be discussed in Chapters 5 and 6. 

Following the characteristics of models that are based·on the endochronic theory, the 

proposed law does not have an explicit yield function, but presents a smooth transition from 

the elastic to the plastic regime and uses a single relation for both loading and unloading 

conditions. The last fact makes the numerical implementation of such models relatively 

straightforward, since the different branches of the hysteretic response (transitions, loading, 

unloading, yielding surface intersection) do not need to be monitored. 

FIGURE 3.1 MOMENT-CURVATURE RELATION BASED ON THE 

STANDARD SOUD MODEL: e = ELASTIC P = PLASTIC 

The original form of the proposed model is presented in Brancaleoni et al. (1983) 

where the model is developed from the simple Maxwell model that is subsequently refined by 

the addition of a linear spring in parallel. The theory is based on a formulation that is 

formally identical to viscoelasticity, in which time is replaced by a deformation measure 

called "intrinsic time" leading to a differential constitutive equation. While the original 

presentation of the model gives a general overview of endochronic theory and outlines the 

formulation of the constitutive law, this chapter presents a step-by-step evolution of the 

formulation from the simple viscoelastic model to the final form .of the governing differential 

equation. 
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3.2 A Differential Constitutive Law 

The proposed constitutive relation is derived from the simple standard solid model 

shown in Figure 3.l. The model consists of two elements acting in parallel. Following the 

notation of Figure 3.1, element 2 is linear elastic, while element 1 is formed by a linear 

elastic and a viscous element connected in series. 

The behavior of the viscous element is defined by the differential equation 

dxf =(~)n 
dt Mo k 

(3.2) 

where superscript p stands for plastic, M1 is the force in the dashpot, Mo is the yield moment 

and k is defined by 

k = __ E ....... /I_ 
Ell +E12 

From the model characteristics and Eq. (3.2) the following relation is derived 

dX = dX~ + dxf = _1_ dMI +(~)n 
dt dt dt Ell dt Mo k 

(3.3) 

(3.4) 

where superscript e stands for elastic. Since M]= M - (E1)2 X, Eq. (3.4) can be written as 

dX = _l_(dM -EI dX ) + (M-EI2 x)n 
dt EI] dt 2 dt Mo k 

(3.5) 

Eq. (3.5) is solved with respect to dMfdt to obtain 

dM = (EI + EI ) dX _ EI (M - EI2 X)n 
dt I 2 dt I M k o 

(3.6) 

The differential equation of the solid model in Eq. (3.6) can be interpreted with the aid of 

Figures 3.2 and 3.3, where a is the strain hardening ratio defined by 

a = __ EI-=2_ 
Ell + EI2 

= 1-k (3.7) 

The product M = Mo k represents the intersection point of the moment M axis with the 

straight line asymptote to the hardening branch. The effect of a on the shape of the curve is 

illustrated in Figure 3.3. The exponent n governs the sharpness of the transition between two 

essentially linear branches (elastic and elasto-plastic) and may take any positive value. As n 
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increases, the curve tends to a perfectly bilinear behavior. 

M = (Ell + E12) Xo - EI2 Xo 

- M - El2 M 
- 0 0 

Ell + EI2 

=(1-0:) Mo 

= k Mo 

x 

FIGURE 3.2 MOMENT-CURVATURE RELATION BASED ON EQ. (3.6) 

M 

a 

increasing n 

x 

FIGURE 3.3 INFLUENCE OF nAND 0: ON THE MOMENT-CURVATURE RELATION 
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Eq. (3.6) is the basic expression of the monotonic constitutive relation and its 

derivation is general. The same steps are now retraced in an alternative procedure for the 

purpose of eliminating the time dependence from Eq. (3.6), and deriving the cyclic behavior 

of the model with the introduction of loading and unloading paths. 

First, the concept of intrinsic time z=t is introduced. According to the endochronic 

theory formulated in Valanis (1971) and later extended in Valanis and Lee (1984), the time is 

replaced by a monotonically increasing function of time. Typically, in a three dimensional 

stress-strain constitutive relation the time is replaced by the arc length of the path that 

describes the material loading history in strain space. In the one dimensional force

deformation relation the section curvature is the only deformation parameter, so that it 

naturally follows to select dz = dt = Idxl. After making this substitution and introducing a 

new parameter w which accounts for loading and unloading paths Eq. (3.2) can be written as 

(3.8) 

where the absolute value of the normalized moment is used and parameter w is equal to 

(3.9) 

~ and 'Yare two constants that according to the original work by Brancaleoni et al. (1983) 

must satisfy the constraint 

~ +'Y = 1 

The effect of w on the loading and unloading paths is discussed later in the chapter. 

With Eqs. (3.8) and (3.9), Eq. (3.4) becomes . 

(3.10) 

Recalling that M, = M - (EI)2 X Eq. (3.10) is written as 

or, 

(3.11) 
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Finally, Eq. (3.11) is solved for dM/dX to yield 

or, 

With the notation introduced in Eqs. (3.3) and (3.7) and with the following definitions 

Elo = Ell + El2 

sgn(x) = ~ 
x 

the following equality holds true by noting that the product Mo k is always positive 

sgn(M - El2 X) = sgn 2 (
M-EI XJ 

Mok 

Eq. (3.12) is written in the more compact form 

At this point a further simplification is obtained by introducing a convenient coordinate 

transformation 

M-EI2 X 
X = = 

M xa 
Mok Mo(1-a) Xo(1-a) 

which upon substitution in Eq. (3.13) yields 

dM = Mo {1-(I-a)[sgn(dX)sgn(x)P+y]lxn = 
dX Xo 

where 

" f(x) = 1- (1-a) [sgn(dx) sgn(x) P +y] Ixln 

Mo f(x) 
xo 

(3.14) 

(3.15) 

(3.16) 

The coordinate transformation in Eq. (3.14) helps to illustrate the model behavior. 

First, it is observed that the condition x=const represents a straight line in the M - X plane 

(see Figure 3.4) that is defined by the following equation 
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M=(~:aJx + M,(l-a)x (3.17) 

As the value orx changes, Eq. (3.17) describes a family of parallel lines with inclination 

a MoIXo. The axis X - x or x' -M can be selected as the new reference system. It is further 

observed that, since ft x) is constant for given x, the M - X curve crosses the line x=O with the 

same initial tangent 3 = Mo/Xo (Figure 3.4). 

Two limit cases can be identified for functionf(x) when x = ± 1. In the loading phase 

f{l) = a, therefore 

dM Mo -=-a for x = 1 
dX Xo 

FIGURE 3.4 LOADING AND UNLOADING BRANCHES IN THE 

CONSTITUTIVE RELATION AND DEFINITION OF NEW AXIS x 

(3.18) 

Eqs. (3.17) and (3.18) imply that, in the loading phase, the M-X curve tends asymptotically to 

the straight line x= 1. Similar considerations can be repeated for the u~loading phase, where 

the constitutive relation asymptotica]ly tends to the straight 'line x=-I. 

Figure 3.4 shows a possible moment-curvature diagram: other branches are described 

by Eq. (3.15) outside the Ixl < 1 range, but they are of no physical interest. In Figure 3.4 the 
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ascending line marked a refers to a loading phase with x>O and the descending line marked c 

refers to an unloading phase with x<O. In both cases 

sgn(dx) sgn(x) ~ +'Y = 1 

and ~, 'Y . have no influence on the shape of the curve. On the contrary, the descending branch 

marked b describes an unloading path with x>O and is influenced by ~,'Y since 

sgn(dx) sgn(x) ~ +'Y = -~ +'Y 

To avoid the possibility that f(x) becomes negative; the condition 

-~+'Y<O 

is imposed. Since ~ + 'Y = 1, it follows that 'Y :::; 1/2 . 

It is important .to note that the proposed nonlinear model does not have an explicit 

yield surface. No distinction is necessary between loading and unloading branches and the 

same differential equation governs the behavior of the entire constitutive relation. The model 

derives from the original endochronic theory of Valanis (1971) and uses a simple definition 

of intrinsic time, since the strain (or deformation) space is onedimensional. In his 1980 work 

Valanis suggests a few improvements to the original formulation. First, he showed that the 

introduction of a Dirac delta function into the theory leads to the definition of a yield 

function. He also showed that classical plasticity models of isotropic and kinematic hardening 

could be derived as a special case of the endochronic theory. Finally, he corrected the original 

theory that violated Drucker's stability postulate. Because the model in this study is based on 

the endochronic theory in its original form, it suffers from these initial limitations. This 

aspect is discussed in more detail in Appendix B, but it should be noted that such errant 

behavior is not encountered in practical cases. 

It is finally important to point out that the model can represent any force-deformation 

or stress-strain relation. It is used in the description of the moment-curvature relation because 

this study focuses on the formulation of a beam element whose cross section behavior is 

based on Eq. (3.15). In this context it is clear that the constitutive relation cannot be readily 

used in the beam element in the differential form of Eq. (3.15), because finite rather than 

infinitesimal moment and curvature increments are imposed. This problem is solved by 

integration of Eq. (3.15) as discussed in the next section. The resulting form of the section 

constitutive relation is very similar to the incremental constitutive law in Eq. (2.35) that 

forms the basis of the beam element formulation in Chapter 2. 
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3.3 Numerical Integration 

The constitutive differential equation in Eq. (3.15) cannot be solved in closed form. 

Thus, numerical integration is used with a single step integration scheme. After expressing 

the constitutive law in the form of Eq. (3.1) 

dM 
dX =g(M,X) 

and introducing subscripts i and i-I to indicate different solution steps, Eq. (3.1) is 

approximated by the expression 

or, 

where 

X~ = (1-8) Xi-I +8Xi 

M~ = (1-8) Mi-I +8 Mi 

o ~ 8 ~ 1 

(3.19) 

(3.20) 

(3.21) 

The integration scheme of Eq. (3.20) corresponds to the classical Euler forward method for 

8 = 0, while 8 = 0.5 gives the central method and 8 = 1 an implicit backward difference 

method which is unconditionally stable (Dahlquist and Bjorck 1974). Even though the 

implicit backward difference with 8 = 1 is selected in this study, the dependence of Eq. (3.20) 

on 8 is maintained in the following derivation in the interest of generality. 

The error resulting from the change from an infinitesimal (dX, dM) to a finite (~X ' 

~) step size can be expressed in terms of an error function \jI that is defined by 

(3.22) 

Starting from a point (Mi-I, X i-1) of the constitutive relation, the values .Mi and X i need to be 

adjusted so as to minimize the error function to practically zero. To do so, a local iteration 

scheme is used within the global discretization scheme. Thus, two separate schemes are 

introduced: the global scheme, denoted by subscript i, provides the numerical solution of the 

moment-curvature differential relation in Eq. (3.19); the local scheme, denoted by subscriptj, 

corrects the local error introduced by the numerical solution of Eq. (3.19). Intermediate 
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solutions of the local scheme are denoted by (x T, (MT. The error function at local 

iteration j is defined by 

where 

(tJ.Xi)' = (t)' - Xi
-

I 

(tJ.Miy = (Miy _ Mi-I 

(X~y = (1- 8) t- I + 8 (X'Y 

(M~y =(1-8)Mi-1 +8(Miy 

(3.23) 

(3.24) 

Regarding the implementation of the constitutive relation in the beam element it is 

important to point out that the superscript notation is consistent with Chapter 2. Superscript i 

refers to the nonlinear solution algorithm at the structure degrees of freedom. Superscript j 

refers to the nonlinear state determination within the element. Since the section constitutive 

law is incorporated in the beam element formulation in the following chapter, the notation in 

the following description of the section constitutive law is simplified by omitting superscript 

i when it is not necessary. Thus, Eq. (3.23) is written as 

'V) = M) - Mi-I 
- (x)- Xi-I) g(x~,Mt) = tJ.Mi - tJ.X) g(X~,Mn 

The local iteration scheme is' derived by Taylor series expansion of 'V) about the 

initial point (X )-1, M )-1) and truncation after the linear terms. Setting the resulting expression 

equal to zero results in 

(3.25) 

The superscripts in (~; r' and (~ t' indicate that the partial derivatives of the error 

function", with respect to X and M are determined at iteration j-l. Eq. (3.25) is rearranged 

and written in the more compact form 

(3.26) 

where 
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(
a", ))-1 

f
)-I __ aM -(~r J-I 

r)-I - - 'II . -(~r 
43 

(3.27) 

Following the terminology of Chapter 2 the expressions in Eq. (3.27) can be regarded as the 

flexibility f)-I and the residual deformation r)-I at iteration j-l. 

The two partial derivatives in Eqs. (3.25) and (3.27) can be expressed in explicit form 

using Eq. (3.23) for the error function",. The two derivatives become 

(~~ }-I = 1-(;! }-I ~X)-I (3.28) 

( 
J

i-I (Ji-
I 

a", _ . ag A i-I)-I - - - - oX -g 
ax ax (3.29) 

where ~X i-I = X i-I - X i-I. The two partial derivatives of g can be written as 

(:!f = (::,f (~~r (3.30) 

( 
ag J

i
-
I 

= (kJi-' (axe J
i
-

1 

ax· aXe aX 
(3.31) 

Recalling from Eq. (3.15) the expression for g = Mo/Xo f(x), it can be written as 

g(Ma,Xe) = Mo -:-(I-a) Mo [sgn(~x) sgn(xa) ~ +y Jlxl (3.~2) 
Xo Xo 

Thus, the derivative of~g with respect to xa becomes 

(a
agJ

i
-

1 

= -(I-a) Mo n sgn(xtl)[sgn(~xi-I)sgn(xrl)~+y] Ixt11(n-l) (3.33) 
~ Xo 

From Eqs. (3.14) and (3.24) the derivatives of xe with respect to M and X are 

(~~J-l S 
(3.34) = 

Mo (I-a) 

(~r as 
(3.35) = 

Xo(1-a) 

Therefore, 
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( 
ag )j-l 1 
aM = -x:- ne sgn( X~-I) [sgn( ~X j-I) sgn( xt) ~ + 'Y] Ixt11(n-l) (3.36) 

ag Mo ( J
j-l 

ax = (Xo)2 a 
n e (3.37) 

Finally, the two partial derivatives of the error function", in Eqs.(3.28) and (3.29) are 

written as 

and 

- Mo {1- (I-a) [sgn(~xj-l) sgn(xt) ~ +'Y ]} I xtln 
-

Xo 

~X j-I (Mo 2 an e sgn( xtl) [sgn( ~X j-l) sgn( xtl) ~ + 'Y ] Ixt11(n-l) 
Xo) 

(3.38) 

(3.39) 

The incremental constitutive law in Eq. (3.26) is used in the following chapter to 

describe the moment-curvature relation of a beam element with distributed plasticity based 

on the flexibility method presented in Chapter 2. Eq. (3.26) can describe a variety of 

moriotonic and hysteretic behaviors by proper selection of parameters, as discussed in 

Chapter 5. 

The differential constitutive law presented in this chapter is compared in Appendix B 

with the well-known Bouc-Wen model. The similarities in the formulation of the two models 

are discussed first, followed by the presentation of common features and limitations in the 

hysteretic behavior. 
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FORMULATION OF A BEAM ELEMENT WITH 

A DIFFERENTIAL MOMENT-CURVATURE RELATION 

4.1 General 

This chapter presents a beam element with distributed plasticity and two end 

rotational springs. The element is derived by incorporating the incremental moment-curvature 

relation of Chapter 3 in the beam finite element fonnulation of Chapter 2. The same 

incremental constitutive law is used to repre~ent the moment-rotation relation of the end 

rotational springs. The nonlinear state detenninationof the entire element is also presented 

with particular emphasis on the detennination of the stiffness matrix and the resisting forces 

for given element defonnations. 

The element is fonnulated under the assumption of small strains and displacements. 

The shear defonnations are neglected. The axial force and bending moment are assumed 

completely uncoupled with linear elastic axial behavior and nonlinear bending behavior. The 

uniaxial bending case is presented, with its extension to the biaxial case being straightforward 

under the assumption that the two responses are uncoupled. Two nonlinear rotational springs 

are added at the element ends to represent the local nonlinear behavior at the interface 

between beam and. column, as might arise from pull-out of reinforcing bars in. concrete 

members and semi-rigid connections in steel construction. The moment-curvature behavior 

of the beam cross section and the moment-rotation relation of the end rotational springs 

follow the incremental relation of Chapter 3, but different material parameters can be 

specified for each, as necessary. 

The independence between axial and flexural behavior and the assumption of linear 

elastic axial behavior imply that the axial behavior follows that of a simple truss element with 

constant axial defonnation and without second order effects. Any further description of the 

axial behavior is, therefore, omitted in the following and only the flexural behavior is 

discussed. A detailed description of axial behavior .and the truss element with. constant axial 

deformation are found, among others, in Mondkar and Powell (1975a and 1975b). 
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4.2 Beam Element Formulation 

The beam element is shown in Figs. 4.1 and 4.2 where the reference axis X and Y 

represent the global reference system, while x and y denote the local reference system. The 

formulation refers to the local reference system and no rigid body modes are considered. The 

rotation into the global reference system and the inclusion of rigid body modes are 

accomplished with standard geometric transformations, as described in Taucer et al. (1991). 

x 

FIGURE 4.1 FORCES IN BEAM ELEMENT WITH DISTRIBUTED PLASTICITY 

(e = ELEMENT, S = END SPRINGS, b = BEAM) 

x 

FIGURE 4.2 DEFORMATIONS IN BEAM ELEMENT WITH DISTRIBUTED PLASTICITY 
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The element, indicated by subscript e, consists of one beam (b) and two end rotational 

springs (s). The element has 2 degrees of freedom, the two end rotations 8 el and 8.1, For 

clarity's sake, these are called element generalized deformations or simply element 

deformations in the following discussion. The corresponding forces are the end momentsMeJ 

and M e2 • The forces and deformations of the beam and the rotational springs are defined in 

similar fashion. The element, spring, beam and section forces and deformations are grouped 

in the following vectors: 

Forces 

Deformations 

Element force vector 

Spring force vector 

Beam force vector 

Section force 

Q = {Mel MeJ
T 

Qs = {MI'i M"2Y 

Qb = {Mbl M b2Y 
M(x) 

Element deformation vector 

Spring deformation vector 

Beam deformation vector 

Section deformation 

q = {qel qe2Y 

q" == {qsl Q'2}T 

qb = {qbl q~2r 
x(x) 

The following compatibility and equilibrium conditions hold for these vectors: 

q = qb + q" 

Q = Qb = Q.\. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

These relations represent a model in series and are fundamental for the derivation of the 

matrix relation between element force increments ~Q and corresponding deformations·~. 

The beam element is formulated according to the mixed method discussed in 

Section 2.4: The procedure in repeated here only to the extent neces~ary for the incorPoration 

of the incremental constitutive relations of the beam cross section and the rotational springs. 

Following Eq. (3.1) the incremental constitutive relations of the beam cross section and the 

rotational springs are written in the form 

dM - = g[X(x), M(x)] 
dX 

(beam) (4.5) 
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(springs) (4.6) 

For the beam cross section the constitutive law describes a differential moment

curvature relation, while for the end rotational springs it represents a differential moment

rotation relation. According to the numerical integration procedure in Chapter 3, Eqs. (4.5) 

and (4.6) become 

~ei = ji-I tJ.Mi + r i - I 
sl sl sl sl 1=1,2 

(beam) 

(springs) 

(4.7) 

(4.8) 

where/is the section or spring flexibility and r denotes the residual curvature or rotation. The 

latter arises from the consistent linearization of the nonlinear constitutive laws in Eqs. (4.5) 

and (4.6), as discussed in detail in Chapter 3. Even though the formal representation of the 

force-deformation behavior of the beam cross section and the end rotational springs is the 

same, different material parameters can be used in each case, as necessary. The material 

parameters of the incremental constitutive relations were introduced in Chapter 3 and will be 

. discussed in more detail in Chapter 5. 

The matrix relation between forces and corresponding deformations of the end 

rotational springs can be readily obtained from the constitutive relation of each spring and the 

fact that the response of each spring is independent from the other. Consequently, 

Ani = F i-I ~Qi + si-I 
L..»fJ J .II .Ii 

(4.9) 

where 

(4.10) 

The spring flexibility and.the residual deformations are determined according to Eq. (3.29). 

The matrix relation between end forces and corresponding deformations of the beam 

is derived in accordance with tI:te mixed formulation of Chapter 2. The combination of the 

incremental constitutive law for the beam cross section in Eq. (4.7) with the mixed method of 

Section 2A results in the following matrix relation 

b.tJt = Fbi- I t!Qf + sri (4.11) 

where Fb is the flexibility matrix of the beam and is obtained according to 
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L 

Fb = J bT(x) f(x) b(x) dx (4.12) 
o 

while Sb are the residual deformations at the ends of the beam and are obtained according to 

L 

Sb= JbT(x)r(x)dx (4.13) 
o 

At this point the matrix relation between end force increments and corresponding 

deformations for the entire beam element can be established from the compatibility .and 

equilibrium conditions in Eqs. (4.3) and (4.4), which are now written in incremental form 

~QJ = ~Qi = ~Q; 
The combination of Eqs. (4.9), (4.11) and (4.14) yields the following relation 

. An j .= F j-I ~Qj + sj-I + F j-I ~Qj + sj-I 
UAJ. b b b " ,I· ,I' 

or, 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

where F is the flexibility matrix of the entire beam element, as the sum of the flexibilities of 

the beam and the end springs 

(4.18) 

and S are, the residual deformations of the entire beam element, as the sum of the 

corresponding residual deformations of the beam and the end springs 

(4.19) 

Eq. (4.17) is the matrix relation between end force increments and corresponding 

deformations for the entire beam element. The corresponding element state determination is 

very similar to the procedure discussed in Chapter 2. At this point it is important to note that 

the end deformation increments are such that ~j"l * 0 and ~j>1 = 0, as was discussed in 

Chapter 2. In the first element iteration the end deformation increments are obtained from the 

nodal displacement increments at the structural degrees of freedom. In the subsequent 

iterations the nodal displacements and corresponding deformations cannot change, so as not 
to violate compatibility. Since ~Qj = Kj-I . (-sj-I) for j> 1 according to the state 

determination procedure in Chapter 2, it is easy to conclude from Eq. (4.17) that ~j>1 = 0 . 

The element formulation in this study is almost identical to the procedure used in the 
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parallel study for a beam-column element by Taucer et al. (1991). The latter involves an 

explicit section constitutive law that is derived from the nonlinear material behavior of the 

fibers into which the section is .divided and the hypothesis that plane sections remain plane. 

The stiffness matrix. and resisting forces of the section are derived by integration of the 

stiffness and resisting stress of the fibers. The difference between applied and resisting forces 

at the section results in a force unbalance that yields a residual deformation when multiplied 

by the new section stiffness. By contrast, in the present study the section "constitutive relation 

is only known in the incremental form of Eq. (4.7). While the overall element state 

determination procedure remains the same, the sec'tion state determination is clearly affected 

by the different section behavior. 

4.3 Numerical Integration 

All integrals in the element formulation are evaluated . numerically with the Gauss

Lobatto integration scheme that is based on the expression 

I m~ 

1= f g(~). d~ = WI· g( -1) + L wh . g(~h) + wm · g(1) (4.20) 
_I h=2 

where h denotes the monitored section and wh is the corresponding weight factor (Stroud <l:nd 

Secrest 1966). The Gauss-Lobatto scheme with m integration points permits the exact 

integration of polynomials of degree up to (2m-3). This procedure is superior to the classical 

Gauss integration method, when it is important to include in the integration the end points of 

the element. Since inelastic behavior in beam-column elements often concentrates at the ends 

of the member, the monitoring of the end sections of the element offers advant~ges from the 

standpoint of accuracy and numerical stability. 

4.4 Element State Determination 

The state determination for the entire beam element follows the procedure described 

in Chapter 2. During this phase of the algorithm the task at hand is the determination of "the 

elerrient stiffness matrix and resisting forces for given end displacements. The numerical 

implementation of the dement state determination is summarized in the following step-by

step description. It is important to recall that the nonlinear solution algorithm for the entire 

structure is subdivided into three nested loops: 



CHAPTER 4 51 

Loop k denotes the sequence of load increments ~p; for the application of external loads 

on the structure. At load step k the total applied load is P~. 

Loop i denotes the iteration scheme at the structural degrees of freedom, i.e. the structure 

state determination. for the determination of the structural displacements pk that 

correspond to the applied loads P;. In the present study the Newton-Raphson 

algorithm is used for the purpose. 

Loop j denotes the iteration scheme at the element level, i.e. the element state 

determination process. These iterations are necessary for the determination of the 

element resisting forces· that correspond to deformations q' at the i-th Newton-

Raphson iteration. 

The relation and interaction among these three iteration processes is explained in more detail 

in Taucer et al. (1991) with a few illustrative diagrams. The following discussion is limited to 

one Newton-Raphson step i and concentrates on the steps of iteration loop j. - . 

In Newton-Raphson step i the displacement increments ~pi at the structural degrees 

of freedom are established first from the solution of the global equilibrium equations. The 

next task involves the determination of the stiffness matrix and resisting forces of the 

structure that correspond to the new structural displacements pi. This entails the following 

operations of state determination for each beam finite element: 

(1) Determine the element deformation increments for Newton-Raphson step i. 

Using the compatibility matrix Lele the element deformation increments &Ji are 

determined from the nodal displacement increments ~pi at Newton-Raphson step i 

The compatibility matrix L ele performs, both, the elimination of rigid body modes and 

the rotation to the local reference system. 

(2) Update the element deformations. 

(3) Start the element state determination. 

Set the index of the first iteration: j= 1. 

(4) Determine the element force increments. 
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The element force increments'!:lQj are determined with the element stiffness matrix 

K j-I at the end of the previous iteration in loop j. There are two cases: 

a) for j=l 

'!:lQ j=l= K j=O !1qi 

b) for»1 

where Si-:I are the residual element deformations at the end of the previous iteration, 

as determined in step (13) below. 

(5) Update the element forces. 

Qi = QJ-I + '!:lQj 

When j= 1, QO = Qi-I where i-I indicates the previous Newton-Raphson ite'ration. 

From equilibrium the forces in the beam an,d end springs are equal to the element 

forces, so that: 

'!:lQ/ = '!:lQj = '!:lQ' 

(6) Determine the force increments at the control sections of the beam. 

The section force increments LiM) (xh ) are determined from the force interpolation 

functions b(~) and the element force increments ~Q'. The section force M) (xh ) is 

then updated. These operations are repeated for aU control sections or integration 

points m in the beam. 

h=l,m 

h= I,m 

(7) Determine the deformation increments at beam control sections and end springs, 

The deformation increments ~XJ(Xh) and '!:lq~ are determined by adding the residual 

deformations from the previous iteration, rJ-
1(xh ) and S;-l, to the _ deformation 

increments due to force increments LiM) (xh) and '!:lQ,:, respectively. 

h= I,m 
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Ani - F i-I AQi' i-l 
'-"1" - .\' Ll,. + S" 

The corresponding vectors are then updated 

h=1,m 

(8) Determine the error function and its derivatives. 

Compute the error function and its derivatives at the beam control sections, 'V) (Xh)' 
a\jl ) (X ) a'V ) (X ) , a\jl i a'V i a hand a h for h= 1 .. m and at the end' springs, 'V;" -a- and -a - for 

X M Hs[ M.,[ 

l=1..2. 

(9) Determine the flexibility at the beam control sections and the end springs. 

Determine the section flexibility 

a'V i(Xh) 
fi(x ) = _ aM 

h a'V J(Xh) 
h=1,m 

ax 
and the diagonal spring flexibility matrix F/ with the following terms 

l = 1,2 

(10) Determine the residual defonnations at the beam control sections and end springs. 

Determine the residual section deformations 

h=1,m 

and the residual spring deformation vector s; with the following' terms 
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ri =_ \jI ;1 
.II d\jl i 

dS sl 

CHAPTER 4 

1=1,2 

(11) Determine the flexibility matrix of the beam and the entire element. 

The flexibility matrix of the beam is obtained by numerical integration of section 

flexibilities 

m 

Ft = I[wh bT(Xh) P(xh) b(xh)] 
h=! 

The flexibility matrix of the entire element is then established as the sum of the beam 

and end spring flexibility matrices 

F~ = 1::') +F) 
£b .\" 

(12) Determine the element stiffness matrix. 

Invert the element flexibility to obtain the element stiffness matrix 

(13) Checkfor element convergence. 

a) If the error function is sufficiently small at all control sections of the beam and at 

the end springs, the element state determination process has converged. 

b) If the error function exceeds the specified tolerance at one or more control 
sections, the residual deformations of the beam and the entire element, s£ and si, 

respectively are determined. 

m 

s; = I[wh bT(Xh ) r)(xh )] 

h=1 

Steps (4) through (13) are repeated until the error function is sufficiently small at all 

control sections of the beam and at the end springs. 
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Mh 

A1!r-~----------r--~------~~~~ 
M; 

curve 'l' =0 

X.h 

FIGURE 4.3 STATE DETERMINATION AT MONITORED SECTION h 

Q 
J 

Ql~. ~.-~ ____ ~~ __ ~~~ __ ~~~~---

Q2 

q 

FIGURE 4.4 STATE DETERMINATION OF BEAM ELEMENT 

ss 

The first two iterations of the .element state detennination are schematically shown in 

Figs. 4.3 and 4.4. Fig. 4.3 refers to monitored section h and Fig. 4.4 to the beam element. In 

both figures 0 denotes the initial point of the element state detennination. For the first 

element iteration j= 1, the section force increment L1M~ = bh ~Ql is determined from the 
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element force increment ~QI = KO ~i and the force field is updated to M~ = ~ + ~~. The 

initial flexibility [,,0 yields the corresponding curvature increment ~Xh =.t: ~~ according 

to the consistent linearization of the constitutive relation. Given the initial point (X ~, ~) and 

the two increments ~X~ and ~~ the error function \jI ~ and its partial derivatives a", ~/aMI 
and a", ~/ax I can be established yielding the section flexibility hi and residual curvature rhl. 

In order to maintain compatibility at the element nodes the correction of the residual section 

curvatures is deferred to the next iteration in loop j. The section flexibility and the residual 

curvatures are integrated to obtain the beam flexibility Fbi and the residual deformations s!. 
The same procedure is followed for the end springs yielding the spring flexibility F} and the 

residual deformations s.:. In the next step the element flexibility F I and the residual 

deformations Sl are determined, thus completing the first iteration}=1. Point 1 corresponds to 

the final point of the first iteration in Figs. 4.3 and 4.4. The residual element deformations at 

the end of the previous iteration yield the element force increment for the iteration }=2 
according to ~Q2 = KI (-sl The corresponding section force increment ~; = bh ~Q2 is 

determined and the entire force field is updated to M,; = M! +~;. The section curvature 

increment is then determined with ~X ~ = fill ~; + r~ and the corresponding vector is 

updated. The new error function 'II ~ and its partial derivatives a", UaM 2 and a", ~/ax 2 are 

established yielding the new section flexibility fh2 and residual curvature rh2. The section 

flexibility and the residual curvatures are integrated to obtain the beam flexibility Fb2 and the 

residual deformations s;. The spring flexibility and residual deformations are also computed. 

Finally, the element flexibility F 2 and the residual deformations s 2 are established, thus 

completing the second iteration }=2. Point 2 corresponds to the final point of the second 

iteration in Figs. 4.3 and 4.4. The iterations continue until the error function becomes 

sufficiently small at all control sections of the beam and at the end springs. 

It is important to point out that the deformations q of the entire element do not 

change during the iterations of the element state determination process. By contrast, the 

deformations of the beam and springs, qb and q", respectively, change during these iterations. 

For the new element deformations qi = qi-I + ~i the deformations of the beam and springs 

are adjusted until the corresponding constitutive relations are satisfied within the specified 

tolerance. During the iteration process compatibility is always maintained, since the sum of 

q" and qb is equal to qi, even though the individual contributions vary. This is an important 

characteristic of the model showing the application of the flexibility-based method and the 

proposed state determination process to a finite element that is formed by a beam and two 
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end springs connected in series. Given the imposed nodal deformations q', the forces and 

deformations of the beam and end springs are adjusted until the element forces Q and the 

component deformations qh and qs satisfy the corresponding constitutive relations while 

maintaInIng compatibility between the components, as expressed by q = qb + q", and 

equilibrium, as expressed by Q = Qh = Q" and M( x) = b(x) Q. In this particular model 

implementation, the compatibility between the components need only be maintained at the 

end nodes,' while the equilibrium is satisfied in a strict sense along the beam, as ensured by 

the internal force distribution M( x) = b(x) Q. 
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MODEL PARAMETERS AND DEGRADATION SCHEME-

5.1 General 

This chapter discusses the selection of parameters for the incremental constitutive 

relation of Chapter 3. This constitutive relation was used in Chapter 4to describe the 

moment-curvature relation of the beam control sections and the moment-rotation relation of 

the end springs. Since both constitutive relations are not necessarily symmetric, two sets of 

parameters are needed: one controls the behavior of the model in the positive load

deformation regime and the other in the negative. With the change in value of the control 

parameters during the loading history, the model can trace hysteretic loops of various shapes 

with different initial, unloading and post-yield stiffness. 

The first part of the chapter discusses the basic constitutive law developed in Chapter 

3. In the second part the basic model is extended to include the effect of "pinching". This 

effect of the hysteretic behavior is characteristic of materials that exhibit soft response under,. 

reloading for deformations that do not exceed the maximum previously imposed. Because of 

shear cracking and bond slip during cyclic loading, reinforced concrete is a material that 

exhibits such behavior. In the proposed model pinching is included by defining a lower 

intermediate level of yielding and a corresponding post-yield (pinching) stiffness. The last 

part of the chapter introduces the scheme of degradation of model parameters. As loading 

progresses, steel and concrete structural members -often exhibit gradual degradation of 

strength and stiffness' and a consequent loss of dissipative capacity. Damage is an 

evolutionary process that can be naturally included in an incremental constitutive relation. A 

damage coefficient is defined for each model parameter as the weighted sum of total plastic 

work and maximum deformation-. Damage is assumed to be symmetric, so that the same 

damage coefficients affect the model parameters in the. positive and negative load

deformation regime. The chapter concludes with a summary of the model and degradation 

parameters. 

59 
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5.2 Parameters for Incremental Constitutive Law 

Chapter 3 presented the development of an incremental constitutive law from a simple 

standard soljd model. This constitutive relation was used in Chapter 4 to describe the 

moment-curvature relation of the beam control sections and the moment-rotation relation of 

the end springs. The parameters defining the incremental law are described in this section, 

limiting attention to the moment-curvature relation and keeping in mind that the moment

rotation relation of the end rotational springs has exactly the same form. 

The moment~curvature relation in Eq. (3.17) can be written as follows after recalling 

that Mo = EIo' Xo 

~~ = EID {1-(I-a) [sgn(dx) sgn(x) ~ + Y] Ixn (5.1) 

where 

(5.2) 

(5.3) 

M 
x=----

Mo (I-a) 
xa 

(5.4) 
Xo (I-a) 

For the moment-rotation relation that characterizes the behavior of the end rotational 

springs, Eq. (5.1) can be written in the same way, by replacing EIo with ko' X with e and 

using the definition of a in Eq. (5.3). In order to allow for non-symmetric load-deformation 

behavior two sets of parameters are needed for Eq. (5.1): one controls the behavior of the 

model in the positive load-defonnation regime and the other in the negative. Only the 

unloading parameters y and ~ have a single value. In the following description only the 

behavior of the model in the positive load-deformation regime will be discussed, the 

extension to the. negative regime being straightforward. At the end of the chapter Table 1 

summarizes the parameters that control the constitutive .law of the beam cross sections and 

the end rotational springs. 

The parameters in Eq. (5.1) are illustrated in Fig. 5.1. E is the initial elastic modulus 

of the material and I the moment of inertia of the cross section. EIo is the initial tangent 

stiffness of the moment-curvature relation and El2 is the post-yield stiffness. M 0 is the yield 

moment which for the model represents the bending moment at the intersection of the initial 



CHAPTER 5 61 

tangent stiffness and the linear asymptote of the moment-curvature relation for very large 

curvature values. Parameter ex represents the strain hardening ratio between the post-yield 

stiffness and the initial elastic stiffness of the model. 

M 

o+-----~-------------+------------~----~ 

-1.2 +------,.....,.....------r----------............j 
.,6 o 6 

FIGURE 5.1 PARAMETERS DEFINING THE BEHAVIOR OF THE BASIC CONSTITUTIVE LAW 

o 

FIGURE 5.2 INFLUENCE OF n ON TRANSITION FROM ELASTIC TO PLASTIC BRANCH 
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Exponent n in Eq. (5.1) governs the transition from the elastic to the elasto-plastic 

branch. Its influence on the moment-curvature response is depicted in Fig. 5.2: small values 

of n lead to a smooth transition, but as n increases the transition becomes sharper tending to a 

perfectly bilinear behavior in the limit. 

In Eq. (5.1) 'Y and ~ are two parameters that govern the initial phase of the unloading 

paths. Since their sumequals 1 according to the discussion in Section 3.2, only one parameter 

can be selected independently. In the following discussion 'Y in the variable parameter. The 

value 'Y = 0.5 is the default selection that gives rise to linear elastic unloading with the same 

slope E10 as .the initial loading. If 'Y is assigned a value smaller than 0.5, the slope becomes 

steeper. It is important to recall that 'Y may take any positive or negative value smaller or 

equal to 0.5 according to Section 3.2. Fig. 5.3 shows three hysteretic loops corresponding to 

'Y = 0.5, 'Y = -3 and 'Y = -200. The effect of 'Y on the hysteretic behavior may be rather 

sensitive to the size of unloading deformation increments. With larger increments the 

unloading path tends to perfectly elastic behavior, thus diminishing the effect of 'Y . 

FIGURE 5.3 INFLUENCE OF UNLOADING PARAMETER Y ON M - X CURVE 

5.3 Pinching 

The hysteretic behavior of some materials is characterized by soft response under 

,reloading for deformations that do not exceed the maximum previously imposed: Because of 
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shear cracking and bond slip during cyclic loading, reinforced concrete is a material that 

exhibits such "pinching" behavior. The model of Chapter 3 can be modified to include the 

effect of "pinching" by introducing a new set of parameters. The idea is to define an 

intermediate fictitious yield level at the moment value that corresponds to the onset of 

"pinching" and an intermediate set of parameters similar to those described in Section 5.2. 

These intermediate values control the hysteretic behavior of the model until a specified 

deformation value is reached. 

where 

Formally, this is accomplishedby rewriting Eq. (5.1) in the more general form 

M 
x =--::;:;----

Mo (I-a) 

- Mo 
Xo = EI 

o 

xa. 

- P ( P) n =n + n-n c 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

Superscript P stands for "pinching". Fig. 5.4 illustrates these new parameters. Mt is the 

moment value at the intersection of the "pinching" branch with the bending moment axis, and 

EI; is the stiffness of the "pinching" branch. Similar to n in Eq. (5.1), n P is the exponent 

governing the transition from the elastic reloading branch to the "pinching" branch. Elo' E12 , 

Mo' nand 'Yare the same parameters defined in Section 5.2. Eqs. (5.9)-(5.11) depend on a 

parameter c, that relates the basic model parameters with the parameters for the "pinching" 

branch and defines the curvature value at the onset of "pinching". It is defined by the 

following expression: 
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FIGURE 5.4 PINCHING PARAMETERS AND THEIR EFFECT ON CONSTITUTIVE LAW 

FIGURE 5.5 

for X < C2 X max 

for X > C2 Xma.r 

INFLUENCE OF PARAMETER CION TRANSITION FROM 

PINCHING BRANCH TO PREVIOUS RELOADING BRANCH 

(5.12) 
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where c1 is an arbitrary coefficient whose effect on the shape of the "pinching" branch and 

the transition to the original reloading branch is shown is Fig. 5.5. C2 X max is a limit 

defonnation value that is specified below, and Xnor is a nonnalized defonnation given by the 

expression 

. x·sgn(dx)-c2 ·Xmux 

X"or = (5.13) 
Xo 

In Eqs. (5.12) and (5.13), c2 is a positive coefficient and Xmax is the maximum defonnation 

value in all previous loading cycles. Under negative deformation increments Xmax 

corresponds to the maximum negative deformation value in all previous loading cycles X ~ax' 

and under positive defonnation increments it corresponds to the maximum positive 

defonnation value' X:ax. The effect of different values of c2 on the transition from the 

"pinching" branch to the original reloading branch is shown in Fig. 5.6. If c2 = 0, the 

transition from the "pinching" branch to the original reloading branch initiates at zero 

curvature. At the other extreme, if c2 = 1 the transition from the "pinching" branch to the 

original reloading branch is delayed until the maximum defonnation value experienced in 
previous cycles. Even though it seems reasonable to assume that c2 E [0,1], the model can also 

be assigned values of c2 larger than 1, as shown in an application of the model in Chapter 6. 

FIGURE 5.6 INFLUENCE OF PARAMETER C2 ON TRANSITION FROM PINCHING BRANCH 
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FIGURE 5.7 INFLUENCE OF CION C AS THE NORMALIZED 

CURVATURE X nor INCREASES 

The behavior of parameter C = eel Xnor is analyzed in Fig. (5.7). For a small value of 

curvature X, X nor assumes a very small negative value and C tends to zero, so that the 

parameters for the "pinching" branch dominate the response in Eq. (5.5). As the curvature X 

increases and approaches the value c2 X max' X nor tends to zero and c tends to 1, so that the 

parameters of the initial reloading branch dominate the response in Eq. (5.5). The rate at 

which c increases form 0 to 1 depends on c,. At the limit, as c, --7 00, c becomes a delta 

function c = 8 (X - C2 X maJ, where 8 (x) is the Dirac delta function, equal to i for x=O and 

otherwise equal to zero. 

5.4 Degradation Scheme 

Experimental results of the hysteretic behavior of steel and reinforced concrete 

members show that repeated deformation cycles· can cause deterioration of strength and 

stiffness of the member. Damage is an evolutionary process that can be naturally included in 

an incremental constitutive relation. A damage coefficient is defined for each model 

parameter as the weighted' sum of total plastic work and maximum deformation. Damage is 

assumed to be symmetric, so that the same damage coefficients affect the model parameters 

in the positive and negative load-deformation regime. Typically, damage indices assume 
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values in the interval between 0 and 1 and decrease monotonically with increasing damage 

from the value of 1, which characterizes no damage, to the value of 0, which represents 

complete damage. 

It it rather straightforward to introduce progressive damage in the constitutive relation 

that is defined by Eqs. (S.l) and (S.S). If .0 stands for the generic model parameter, .on and 

.on+1 denote the parameter values at the end of the global load steps nand n+ 1, respectively, 

according to the notation of Chapter 3. The degradation scheme follows the equation 

.on+1 = .on (1 - ~Wn+1 din dz) (S.14) 

where din and d2 are two parameters that will be defined subsequently, and ~ Wn+1 is the 

plastic work during the global step n+ 1. ~ Wn+1 is determined from the expression 

(Mn+1 + Mn) ~X~+I = I~~~~~~~I 
2 

(S.lS) 

where 6X~+1 is the plastic deformation increment, which according to Eq. (3.9) is 

(S.16) 

The degradation scheme defined by Eq. (S.14) is applied to the following model 

parameters: £10 , £12 , Mo, Mg, ex, n, nP , C" c2 . Note that Eq. (S.14) is not dimensionally 

correct, because every term is dimensionless except for the plastic work increment ~Wn+l. 

This increment could be normalized by dividing the right hand side of Eq. (S.lS) by a 

measure of the work stored at yielding of the material, as defined by the product Mo Xo. 

Since this correction is not necessary for low-cycle fatigue, which is' the .main focus of this 

study, it is not included in the present implementation of the element whose degradation 

scheme follows Eqs. (S.14) and (S.1S) and should be used with care in cases of high-cycle 

fatigue. 

The two coefficients din and d2 in Eq. (S.14) control the weighting between plastic 

work and maximum deformation amplitude in the definition of damage. The first coefficient 

din varies in the range of [0,1]: if din = 0, damage is only a function of maximum 

deformation amplitude and does not depend on plastic work; if dIn = ], the reverse is true. 

Superscript .0 stands for the generic model parameter to indicate that one damage coefficient 

is defined for each model parameter, without distinction between the parameters that control 

the behavior of the model in the positive and in the negative load-deformation regime. For 

example, dlE!o governs the degradation of, both, positive and negative initial stiffness, EI; 
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and EI~ i respectively. All damage coefficients dIn that need to be specified for the definition 

of the hysteretic behavior of the constitutive relation are summarized in Table 1 at the end of 

this chapter. 

The second coefficient d2 is unique for all model parameters and is defined by 

1 
d =--""""---7"" 2 ",,(I_X;:) 

1+ e . 

(5.17) 

Xamp is a deformation amplitude that controlls the degradation process and is, in tum, defined 

by 

(5.18) 

FIGURE 5.8 INFLUENCE OF PARAMETER b2 ON d2 FOR DiFFERENT VALUES OF bl 

b3 is a coefficient that controlls the relative influence of the maximum and minimum 

deformation amplitudes on the degradation. Its value ranges from 0 to 1: the value of 0 

ensures that degradation only depends on the maximum (positive) deformation amplitude, 

while the value of 1 limits the effect only to the minimum (negative) deformation amplitude. 

The value of 0.5 assigns equal weight to the extreme deformation values X:ax and X ~ax. 

Fig. 5.8 shows the effect. of parameters bl and b2 0n the degradation parameter d2 . If bl is 

small, the degradation effect increases smoothly as the curvature amplitude increases. As bl 

becomes larger, d2 tends to a unit step function equal to 0 for Xamp < b2 and equal to 1 for 
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FIGURE 5.9 EFFECT OF DEGRADATION OF YIELD MOMENT M 0 

ON YIELD AND POST-YIELD BEHAVIOR 
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The following figures illustrate the effect' of the degradation degree of key model 

parameters on the hysteretic behavior of the model. Fig. 5.9 shows the monotonic behavior of 

the model for increasing values of d l
Mo and, thus, for increasing degradation of the yield 

moment Mo. As the imposed deformation increases, the yielding level decreases and the 

model exhibits a gradual loss of strength. This simulates well the characteristic strain 

softening behavior of certain materials, such as plain or reinforced concrete. 

Fig. 5.10 shows the effect of degradation of yield moment and initial stiffness on the 

hysteretic behavior of the model under fixed deformation cycles of equal positive and 

negative amplitude. Fig. 5. lOa isolates the effect of degradation of the yield moment only, 

Fig. 5.lOb isolates the effect of degradation of the elastic stiffness, and Fig. 5.lOc shows the 

combined effect of degradation of both parameters. The hysteretic behavior in Fig. 5.10 is 

obtained with a very low value for parameters dl
Mo and dl

Elo
, since, otherwise, the large value 

of plastic work during cyclic loading can quickly reduce the yield moment and the initial 

stiffness to zero and, thus, yield unrealistic results. For the cases of Fig. 5.10 which involve 

the degradation of yield moment, not only is the "pinching" level M Jl equal to the yield 

moment Mo, but the same degradation function is used for both, i.e. d
J

Mo = d
J

MP 
• If this is not 

the case, the hysteretic behavior changes to that in Fig. 5.11. 
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FIGURE 5.10 EFFECT OF DEGRADATION OF YIELD MOMENT Mo AND ELASTIC STIFFNESS E10 
FOR FIXED AND SYMMETRIC DEFORMATION CYCLES 

FIGURE.S.ll CYCLE WITH DEGRADATION OF YIELD MOMENT MOl 
BUT NOT OF PINCHING LEVEL M P 

Fig. 5.12 shows the strain softening example of Fig. 5.9 with dto = 0.4 and three 

unloading-reloading cycles. In this case the post-yield stiffness is assigned a negative value. 

This becomes necessary for higher values of dl
Mo to facilitate convergence of the constitutive 
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model. Degradation of the elastic stiffness is also specified (dI
E/0 = 0.2). Three unloading 

cycles to zero moment with reloading back to the envelope curve are specified. It is 

interesting to observe that the model shows a physical inconsistency in the failure of the 

unloading-reloading cycles t6 close. A detailed discussion of this phenomenon is presented in 

Appendix B in connection with the comparison of the proposed model with the Bouc-Wen 

model. It is possible to avoid this inconsistency by specifying a high initial value (see 

Fig. 5.2) and disallowing any degradation of exponent n, which controls the sharpness of the 

transition from the linear elastic to the post-yield range of response. 

FIGURE 5.12 POST-YIELD CYCLES WITH AND WITHOUT DEGRADATION OF n: 

DEGRADATION IS ALSO SPECIFIED FOR MOl E10I AND EI2 

Finally, Fig. 5.13 shows that appropriate parameter selection enables the model to 

approximate the characteristic monotonic post-yield axial behavior of a steel coupon that 

exhibits a higher and lower yield stress and a plastic plateau followed by strain hardening. 
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FIGURE 5.13 SIMULATION OF POST-YIELD BEHAVIOR OF 

A STEEL COUPON UNDER MONOTONIC AXIAL LOADING 

The few examples in this chapter demonstrate the inherent flexibility of the proposed 

constitutive model and the wide range of monotonic and hysteretic behaviors that it can 

simulate. Some correlation studies with experimental results are presented in the following 

chapter. 

The demonstrated flexibility of the proposed model and the interaction between 

several parameters make the parameter selection by trial and error a difficult and lengthy 

process. It is possible to find several parameter combinations that match reasonably well the 

observed hysteretic behavior of a specimen. It is also possible to arrive at parameter 

combinations that lead to hysteretic behavior that is physically meaningless or even 

inconsistent with the basic rheological model that forms the foundation of the proposed 

constitutive relation. The latter problem arises, because of the purely empirical way of 

introducing the "pinching" effect in the basic model. So, while the introduction of the 

"pinching" effect in this chapter widens the range of hysteretic behaviors that the model can 

simulate, it also gives rise occasionally to physically inconsistent response. For these reasons 

objective and systematic methods of parameter selection are superior to the trial and error 

approach. Such an objective method is based on system-identification: given an initial set of 

parameters and a target moment-curvature relation, some user prescribed parameters are 

successively updated until the error between the target curve and the model response is 
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reduced to a prescribed minimum value. More details are provided in the work of Ciampi and 

Nicoletti (1986). 

, 
.. . DAMAGE 

PARAMETER· SYMBOL COEFFICIENT 

cross section area A 

integration scheme e 
beam unloading scheme 'Yb 

spring unloading scheme 'Y.,. 

tangent modulus E+ E- dEJo 
I 

moment of inertia r r 

yield moment M; M; d M , 
I 

pinching moment ir M- d M 
I 

post-yield stiffness Er 2 EI; d El2 
I 

post-pinching stiffness EIP+ EIP- d EJP 
I 

transition at yielding n+ - d n 
n I 

transition at pinching nP+ nP -
d

nP 

I 

transition at unloading + cl c1 d CI 

I 

parameter extension of pinching + c2 c2 d C2 

I 

general degradation parameter 1 bl 

general degradation parameter 2 b2 

general degradation parameter 3 b) 

TABLE 5.1 SUMMARY OF PARAMETERS FOR INCREMENTAL CONSTITUTIVE 

RELATION AND OF CORRESPONDING DAMAGE INDICES 





6.1 General 

CHAPTER 6 

APPLICATIONS 

This chapter presents a few examples of the use of the proposed beam element in the 

simulation of the hysteretic behavior of structural members. The beam element is presently 

implemented in the general purpose finite element program ANSR. Details on the program 

can be found in Mondkar and Powell (1975a) and (1975b). 

The example of a softening cantilever beam monotonically displaced beyond its point 

of maximum resistance is presented first. This is a test case for beam elements, because it is 

well known that stiffness based elements, which start from the compatibility rather than the 

equilibrium conditions along the element; encounter serious numerical difficulties in tracing 

the load-displacement behavior of softening members. The proposed beam element shows 

excellent agreement with. the experimental results and convergence is attained in few 

iterations in every load step. Two more applications of the model are presented that compare 

the analytical results with experimental evidence from two reinforced concrete cantilever 

beams with non-symmetric longitudinal reinforcement. The first beam was cycled between 

fixed displacement values: in the experiment the beam failed in the second cycle when the 

bottom steel fractured. The second beam was cycled between symmetric displacements of 

increasing amplitude until failure took place. The finite element analysis of the two beams 

shows good agreement with the experimental results. The chapter concludes with a 

discussion about the selection of model parameters and damage coefficients and how these 

relate to the physical behavior of a reinforced concrete member. 

6.2 A Softening Cantilever Beam 

Several recent studies have dealt with the simulation of the softening behavior of 

reinforced concrete frame elements. Zeris and Mahin (1988) present a comprehensive review 

of these studies. The problem can be summed up as follows: when a cantilever element is 

subjected to an increasing displacement at the free end, the curvatures and bending moments 

75 
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increase along the beam until the maximum resistance is reached at the built-in end. For the 

subsequent increase of tip displacement, the' curvature amplitude increases in the 

neighborhood of the built-in end and decreases elsewhere in the beam, while the bending 

moment decreases along the beam, but remains linear in order to satisfy equilibrium. Thus, 

while the beam section at the built-in end softens, the remainder of the beam unloads, as the 

sections follow the decrease of bending moment in accordance with the reduction of the 

moment at the built-in end. The classical displacement method has difficulty t~acing this 

behavior. In fact, following the common assumption of cubic displacement interpolation 

functions, that result in a linear .curvature distribution, the element attempts to unload after 

the maximum resistance is reached at the built-in end. This unloading occurs in agreement 

with the imposed element compatibility condition and the resulting linear curvature 

distribution, whereas, in reality, it is the linear bending moment diagram that needs lo be 

respected. 

The response of. a cantilever beam with the proposed finite element is shown in 

Fig. 6.1. The free end is supported on a very stiff spring to simulate an analysis under 

displacement control. The simple structure was studied with different mesh discretizations, 

but the response is mesh independent, as long as one rotational spring or one very short beam 

element is inserted at the built-in end to ensure that the length of the inelastic region (plastic 

hinge) remains constant. All beam sections have the same properties: the softening behavior 

is simulated by the degradation of the yield moment and by a negative post-yield stiffness. 

These two parameters need to be adjusted to obtain the desired degree of softening. 

Fig. 6.1a shows the force-tip displacement relation. The softening behavior is 

governed by the moment-curvature history at the built-in section in Fig. 6.1 b. After the 

maximum resisting moment is reached, the curvature at the built-in section continues 

increasing, whereas the. resisting moment decreases. Accordingly, the tip displacement 

increases, while the' shear force decreases. The behavior of a typical intermediate section is 

different in Fig. 6.1c. Since all sections respect the same constitutive relation and the bending 

moment diagram is linear, the sections along the beam are subjected to moment values less 

than the yield moment, when the built-in end reaches its maximum resistance. Once the 

bending moment decreases at the built-in section, all intermediate sections unload elastically 

to respect the imposed linear bending moment diagram. Fig. 6.1 shows that the proposed 

beam element can easily represent this physical behavior. Furthermore, convergence is very 

rapid, independent of mesh refinement and load step size. In fact, the load step size in the 

example of Fig. 6.1 was conditioned by the desire to obtain a smooth diagram. 



CHAPTER 6 

······:·:··j'·0~~~~~~~~~:·: 

'¢)'S"~;QR¢E~URVA~~E .. . ' .. \!.!,~!>n:'" .. 
', .. : ,',,'-:':' 

::.-,::..:.::.::.; 

FIGURE 6.1 MONOTONIC LOADING OF A SOFTENING CANTILEVER BEAM: 

BEHAVIOR AT THE BUILT-IN END AND AT AN INTERMEDIATE SECTION 
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This example makes clear why an approach based on force rather then displacement 

interpolation functions is better suited to describe softening. This derives from the fact that 

the bending moment diagram is always linear in a beam without element loads, independently 

of its material behavior. On the other hand the curvature diagram is linear for a prismatic 
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beam with uniform linear elastic material, but becomes highly nonlinear in the inelastic 

region of the section constitutive relation. In the classical displacement formulation of a two 

node beam finite elerpent, the curvature diagram is assumed linear and the bending moment 

diagram, though initially linear, becomes nonlinear as the section constitutive enters the 

inelastic regime. This is in violation of the physical behavior. Even the proposed special 

methods, such as mesh refinement of the inelastic region of the member, do not free this type 

of elements from serious numerical problems. 

6.3 Correlation Study with Two Cantilever Specimens 

In this section the experimental responses of two cantilever beams under cyclic 

loading are compared with the results obtained from the finite element analysis of the same 

beams. The material properties, the geometry of the specimen and a discussion of the 

experimental results are availaple in the study by Ma et al. (1976). Both beams are half-scale 

models of a typical beam in the critical region of a 20 story ductile moment-resisting concrete 

frame. The beams have a rectangular cross section with non- symmetric longitudinal 

reinforcement: the top reinforcement consists of 4 #6 reinforcing bars and the bottom 

reinforcement consists of 3 #5 bars. Following the notation in Ma's work, the beams are 

referred to as specimens R-3 and R-4. Details on specimen geometry and reinforcement 

layout are given in Figs. 2.4 and 2.7 of Ma's work. The selection of these two spec;imens was 
- . 

FIGURE 6.2 FINITE ELEMENT MESH FOR CANTILEVER SPECIMENS R-3 AND R-4 
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conditioned by the fact that their behavior was dominated by flexure and the effect of shear 

was rather small, because of the span to depth ratio. The finite element model for both beams 

is shown in Fig. 6.2. The· cantilever beam is divided into 4 elements. The selection was 

conditioned by the fact that curvature measurements were undertaken in the tests over two 

segments of 7 in. length each, starting at a distance of 1 in. from the built-in end (Fig. 6.2). In 

addition, the first short element of 1 in. length permits a better monitoring of the hysteretic 

behavior near the built-in end. The numerical simulations were performed under 

displacement control by adding a very stiff spring at the free end of the cantilever and 

imposing forces of such magnitude as to induce the desired displacement value in the spring. 

6.3.1 Specimen R-4 

Beam R-4 was cycled between fixed symmetric tip displacement amplitudes, as 

shown in Fig. 6.3. In Fig 6.4 the experimental response of the beam is illustrated. Fig. 6.4a 

shows the measured load-tip displacement relation and Fig. 6.4b shows the measured bending 

moment-average curvature relation over the 7- in. segment nearest to the built-in end of the 

beam (element 2 in the finite element model of Fig. 6.2). These diagrams clearly reflect the 

presence of non-symmetric longitudinal reinforcement in the unequal moment strengths 

under positive and negative moments and the characteristic "pinching" of the hysteretic 

relation. Under the large end displacement, failure was reached after only one and a half 

cycles, and was initiated by inelastic buckling of the bottom reinforcing bars. 

~ 
i 
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FIGURE 6.3 LOADING AND TIP DISPLACEMENT HISTORY 

FOR SPECIMEN R-4 (FROM MA ET AL. 1976). 

Because of the greater moment carrying capacity in the downward direction, the 
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concrete and reinforcing bars -in the bottom of the beam were subjected to larger compressive 

forces than those at the top of the section. This resulted in the buckling of the bottom steel as 

evidenced by the difference in resisting force between points 13 and 16 in Fig. 6.4. 

P (KIPS) 
SO 

-20 

A) APPLIED LOAD-TIP DISPLACEMENT DIAGRAM 

B) APPLIED LOAD-AVERAGE CURVATURE DIAGRAM IN ELEMENT 2 

FIGURE 6.4 EXPERIMENTAL RESPONSE OF SPECIMEN R-4 (FROM MA ET At. 1976): 

A) MEASURED LOAD-TIP DISPLACEMENT RELATION 

B) MEASURED LOAD- AVERAGE CURVATURE OVER 7 IN SEGMENT 

"Pinching'" was also observed during the downward reloading phase (from point 15 to 

16), whereas little or no pinching was observed in the upward loading phase (point 13 to 14), 

In the upward loading phase cracks in the top part of the section do not close because the top 

steel can carry all the compressive force necessary to equilibrate the tensile force in the 

bottom reinforcement of the beam. In the following downward loading phase, the situation is 
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reversed, with the exception that the bottom steel in compression cannot equilibrate alone the 

tension in the top reinforcing steel. Consequently, the bottom reinforcement slips, until the 

crack closes and concrete starts contributing in compression. The response curve of Fig. 6.4 

also indicates a clear loss of stiffness between the first and second loading cycle. 
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FIGURE 6.5 ANALYTICAL RESPONSE OF SPECIMEN R-4: 
A) APPLIED LOAD-TIP DISPLACEMENT RELATION 

B) APPLIED LOAD- AVERAGE CURVATURE IN ELEMENT 2 

The selection of parameters of the proposed hysteretic section model was guided by 

these observations. The analytical results are shown in Fig. 6.5. As in Fig. 6.4, the plots 

represent the analytical load-tip displacement relation in Fig. 6.5a and the load-average 

curvature relation for element 2 in Fig. 6.5b. The analysis was performed with a degradation 
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parameter for the initial stiffness only (dI
E10 = 0.08 with bl = 0, b2 == 0 and b) = 1). The 

numerical results agree closely with the experimental data. To simulate the· "pinching" effect 

in the downward (positive) direction a pinching strength equal to about two thirds of the yield 

moment was specified in the model. 

The buckling of the bottom reinforcing bars and the corresponding loss of moment 

strength between the first and second load cycle is simulated in the model by a very late 

return from pinching (e2 = 1.5), which is a purely numerical solution. A more rational way of 

simulating this effect is the specification of a degradation parameter for yield strength. Since 

the model is presently limited to a single degradation parameter for, both, positive and 

negative yield strength, such a solution does not yield accurate results with the present model 

for cases involving a much higher degradation of yield strength in one loading direction, as 

happens for specimen R-4, which shows much higher degradation of yield strength in the 

positive than in the negative loading direction. The experimental results in Fig. 6.4 also show 

that a loss of moment strength takes place in the last unloading cycle from point 16 to point 

17. This strength loss is not represented in the analytical results in Fig. 6.5a, because of the 

absence of a degradation parameter for yield strength in the constitutive relation of the beam 

section. The agreement between the experimental and the analytical moment-average 

curvature relation is very good in Figs. 6.4b and 6.5b.N6 experimental measurements are 

available for the moment-average curvature relation after the end of the first cycle when 

unloading starts at point 16 in Fig. 6.4b. 

6.3.2 Specimen R-3 

Specimen R-3 has the same geometry and reinforcement layout as specimen R-4, but 

was subjected to a different load history, as shown in Fig. 6.6. After a few cycles at very low 

deformation levels, the beam was subjected to cycles of gradually increasing tip displacement 

reversals that correspond to nearly equal forces in the positive and negative loading direction. 

The experimental response of the beam is shown in Fig. 6.7, which depicts the 

measured load-tip displacement relation. The first few low deformation cycles did not affect 

the subsequent behavior of the specimen and are not included in the figure for the sake of 

clarity. Repeated load cycles under increasing tip displacement induced early spalling of 

concrete on the bottom side of the beam. Spalling of concrete and the kinking of the bottom 

bars by dowel action led to the final failure of the specimen by inelastic buckling of the 

bottom reinforcing bars. The buckling of the bottom bars was predpitated by the progressive 



CHAPTER 6 83 

damage of the concrete cover under the large inelastic deformation reversals. A comparison 

of the experimeiltal results for specimens R-3 and R-4 reveals that the specimen with several 

load cycles of increasing amplitude attained lower displacement ductility at failure. 

r 
; 

~ 
CI 
W 

( 

! 
~ 
C ... 
oJ ... 
I!! 
l 

2~ 

I 
f 

~-h7\ 
__ D,V 

-z~ 

N 

~ ~ " 

~ 
..I 

... 3, 
NUM." 
01' ~LD 

a, 

~ 

FIGURE 6.6 LOADING AND TIP DISPLACEMENT HISTORY 

FOR SPECIMEN R-3 (FROM MA ET AL. 1976) 

After the yield strength of the specimen was reached, gradual stiffness degradation 

and "pinching" of the hysteretic behavior are evident in the positive loading direction in 

Fig. 6.7. Similar to the behavior of specimen R-4, under imposed tip displacement in the 

downward direction, the previously opened bottom cracks need to close for the development 

of a compressive force sufficient to balance the tensile force developed by the top reinforcing 

bars. The cracks do not close in me negative (upward) loading direction, because the 

compression force in thy top, bars suffices to balance the tensile force in the bottom 

reinforcing steel. During this loading stage the moment resistance of the beam is provided by 

a pair of equal and opposite forces in the reinforcing steel with no participation of concrete. 

No notable degradation of yield strength takes place until the very last cycle, when the bottom 
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reinforcing bars buckled. 

50 .2 

FIGURE 6.7 EXPERIMENTAL RESPONSE OF SPECIMEN R-3 (FROM MA ET AL. 1976): 

MEASURED LOAD-TIP DISPLACEMENT RELATION 
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FIGURE 6.S ANAL ¥TICAL RESPONSE OF SPECIMEN R:·3: 

LOAD-TIP DISPLACEMENT RELATION 



CHAPTER 6 85 

The analytical results of the finite element model in Fig. 6.2 are shown in.Fig. 6.8. 

The agreement with the experimental results is good, especially, if the energy dissipation per 

cycle is compared. The first cycle shows some discrepancies between analysis and 

experiment, because the effect of the first few cycles was not included in the analysis and the 

difficulty of establishing the right initi~l conditions for the model. All subsequent analytical 

cycles show good agreement with the experimental results. The analysis was performed with 

a degradation para.meter for the initial stiffness only (dI
E10 = 0.005, with general parameters 

hi = 1, h2 = 0.001 and h3 = 0.5). A "pinching" strength under positive loading equal to 

approximately half the yield strength of the section was specified in the model accompanied 

by a late return to the plastic plateau (ez = 1). A "pinching" strength was also specified in the 

negative loading direction. However, the agreement is not as good in this case and numerical 

convergence problems arose when attempting to smooth out the transition to the "pinching" 

range. 

The stiffness reduction of the model during unloading is not as pronounced as in the 

experimental results. While the model exhibits a practically straight unloading branch, the 

specimen displays a gradual loss of stiffness during unloading. This can be attributed to the 

following factors: (a) even though the model accounts for stiffness loss between cycles, it 

cannot accommodate graduate stiffness reduction during the unloading phase; thus, the 

unloading branch of the model is straight until reaching the "pinching" or yield strength; (b) 

the use of the same degradation parameter under, both, positive and negative loading fails to 

account for the different behavior of a reinforced concrete beam with unequal amounts of top 

and bottom reinforcement. Future improvements of the model need to address the effect of 

non-symmetric damage of parameters, or, else, a more refined section representation should 

be sought. For instance, the subdivision of the cross section into fibers with different material 

characteristics, constitutes a more suitable model for this case. 

The failure of the specimen took place, when the bottom reinforcing bars buckled in 

compression at load point 66 in Fig. 6.7. While this phenomenon was captured in the analysis 
, . 

of specimen R-4 with the numerical device of a late return from pinching, such a solution is 

not possible in the analysis of specimen R-3, because of the large number of load reversals 

that will be impacted by this selection. This shows that alternative means for simulating 

failure in the model need to be sought in the future. 
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6.4 Remarks on Model Performance 

The applications of the model and the comparisons of analytical with experimental 

results demonstrate the ability of the proposed beam element to describe several complexities 

of the hysteretic behavior of structural members, such as softening, "pinching", and stiffness 

degradation. While the simulation of the softening behavior of structural members is a direct 

result of the adopted constitutive law and the ability of the flexibility-based model to trace 

this behavior, the effect of "pinching" of the hysteretic behavior and of the damage 

degradation of key parameters is a feature of the proposed incremental constitutive relation. 

The main difficulty in the use of the model consists in the selection of parameters. As 

Table 1 at the end of chapter 5 shows, the proposed constitutive relation depends on many 

parameters. Since some of these do not bear a direct relation to physical properties of the 

structural member, it is possible to arrive at physically unreasonable hysteretic behavior by 

injudicious selection. In addition, the proposed model is presently limited to the same 

degradation variable for a material parameter under positive and negative loading. This 

limitation is evident in the hysteretic behavior of non-symmetric sections, as is the case for 

specimens R-3 and R-4 in the correlation studies of this chapter. While the introduction of an 

additional degradation variable for each material parameter appears as the logical solution, it 

results in considerable increase of the number of model parameters. 

The parameter selection not only affects the accuracy of the hysteretic constitutive 

relation of the section, but has an impact on the numerical convergence characteristics of the 

proposed element, as well. In the three examples of this chapter, convergence was always 

achieved very rapidly at each load step never requiring more than three iterations. The 

selection of the load step size was, therefore, governed by the desire to obtain a smooth load

displacement relation for the presentation of the results. Experience with the hysteretic model 

shows that failure to converge within a load step is almost always the result of aberrant 

behavior of the incremental constitutive law due to poor choice of degradation parameters: a 

high degradation value of one or more of the material parameters can result in a hysteretic 

behavior that is very difficult to trace numerically. The likelihood of this aberrant behavior 

increases with the number of load cycles, because of the monotonically increasing value of 

energy dissipation, which affects the degradation parameter. It is, thus, imperative that the 

degradation parameters be selected very carefully by calibration against a large set of 

experimental results from similar specimens, so as to ensure that numerical failure of the 

model corresponds to actual failure of the specimen. Since actual failure of the specimen 
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often depends on several factors, the calibration process is arduous and riddled with 

difficulties due to some fundamental limitations of the model. An extensive parameter study 

is, therefore, necessary, before the proposed hysteretic model can be used in large scale 

simulations of the seismic response of structures. 

The difficulty in the selection of model parameters is alleviated by formal system 

identification methods, such as that proposed by Ciampi and Carlesimo (1986). 

Unfortunately, formal identification methods do not preclude the occurrence of physically 

unreasonable hysteretic behavior, so that the user needs to monitor the performance of the 

element during the analysis. At this stage of model complexity it appears reasonable to seek 

alternative descriptions of the hysteretic behavior of the section, such as the fiber section 

model proposed by Taucer et al. (1991). 
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CONCLUSIONS 

The objective of this study is to develop a reliable and computationally efficient beam 

finite element for the analysis of structural members under cyclic loading conditions that 

induce inelastic behavior in flexure. The nonlinear behavior of the element derives entirely 

form the uniaxial constitutive relation that governs the behavior of sections at integration 

points and of end rotational springs. The axial response of the element is assumed to remain 

linear elastic and completely independent of the response in flexure. Coupling between 

bending in two orthogonal directions and shear effects is also neglected. The nonlinear 

constitutive relation is incremental in nature and includes the effect of progressive damage on 

the hysteretic behavior. It is derived from a differential constitutive equation that arises from 

a simple unidimensional mechanical model formulated according to the endochronic theory. 

The numerical solution of the differential equation yields an incremental relation that can be 

readily accounted for with the proposed element state determination algorithm. 

The element formulation is flexibility-based and, thus, relies on the assumption of force 

interpolation functions along the element. While the final element equations can be arrived at 

with either the force method or the two-field mixed method, the mixed method is more 

general and points the way to the consistent numerical implementation of the element state 

determination. 

The element state determination for the determination of the element resisting forces 

and stiffness matrix that correspond to given nodal displacements consists of an iterative 

algorithm based on residual deformations. The proposed nonlinear algorithm for the element 

state determination is general and can be used with any nonlinear constitutive relation. The 

procedure involves an element iteration scheme that converges to a state that satisf~es the 

material constitutive relations within the specified tolerance. During the iterations the 

equilibrium of the element is always satisfied in a: strict sense. The proposed method proved 

computationally stable and robust, and able to. describe the complex hysteretic behavior of 

structural members accounting for effects such as strain hardening, "pinching" and softening. 
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In comparison with other beam elements proposed to date, this flexibility-based model 

offers some major advantages: 

• with the use of the exact force interpolation function along the element, fewer elements 

are needed in the discretization of the structure; 

• the effect of distributed loads on the hysteretic behavior of the element can be 

accounted for in a rational way by appropriate modification of the force interpolation 

functions; 

• the model can trace softening material response, strength loss and local failure without 

numerical difficulties; 

• the proposed incremental constitutive relation is very flexible and can be calibrated to 

represent a very broad range of hysteretic behavior by appropriate modification of 

parameters and corresponding damage indices; 

• the element formulation is general and can be applied to any nonlinear constitutive 

relation, both, purely nonlinear or piecewise linear. It is independent of the global 

iteration strategy used for the solution of the equilibrium equations of the entire 

structure. 

The element belongs to the family of flexibility based elements, but distinguishes itself 

by the general and clearly formulated state determination process that does not resort to ad 

hoc approximations and special solution strategies to avoid numerical difficulties. The 

generality of the model is already validated in the formulation of a beam-column element 

with fiber discretization of the cross sections by Taucer et al. (1991), who also demonstrate 

the implementation of distributed element loads. 

Comparisons between the results of the proposed model and experimental data show 

good correlation. Since the shear deformations are not included in the proposed beam 

element, the selection of specimens for testing the validity of the model is limited to cases 

with negligible contribution of shear deformations to the overall response. The correlation 

studies are also limited to specimens with low axial force, because the model presently 

assumes that the axial and flexural behavior are uncoupled and that the response to axial 

forces is linear elastic. The proposed element is, therefore, suitable for the representation of 

the nonlinear hysteretic behavior of girders and columns under low axial loads. The 

degradation of the mechanical properties of the constitutive relation is a significant feature of 

the model. The degradation of the material parameters is based on a damage function that 
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depends on the weighted sum of normalized plastic energy dissipation and deformation 

ductility. 

The model offers several opportunities for future studies: 

• The constitutive law could be extended to include coupling between bending in two 

orthogonal directions, axial behavior and, eventually, torsion. Similar constitutive laws 

are available in the literature, but have not been irriplemented in the formulation of a 

nonlinear beam element with distributed nonlinearity. 

• The constitutive law should be refined to eliminate the physical inconsistencies in 

Appendix B, namely the violation of Ilyushin's and Drucker's. postulates. Similar 

improvements of the original endochronic theory in the literature show that it is 

possible to, at least partially, overcome these inconsistencies. It is, however, important 

to point out that these violations of theory of plasticity postulates do not affect the 

numerical stability of the constitutive law, or of the beam element state determination. 

• It is imperative to carefully select the parameters and damage indices of the proposed 

endochronic law. In this respect, a formal parameter identification method is an ideal 

tool. The model can describe a wide range of hysteretic behaviors, but some parameters 

do not bear a direct relation to physical properties of the structural member. Injudicious 

choice of parameters can, thus, result in physically unreasonable hysteretic behavior. 

• It is important that the degradation parameters of the model be selected by calibration 

against a large set of experimental results from similar specimens, so as to ensure that 

numerical failure of the model corresponds to -physical failure of the specimen. An 

extensive parameter study is necessary before the proposed hysteretic model can used in 

large scale simulation of the seismic response of structures. 

• The proposed nonlinear solution algorithm has a wide range of application. Its 

implementation in elements with different nonlinear constitutive relations should be 

explored. Similarly, the extension of the algorithm to complex mechanical systems 

formed by several elements connected in series and/or in parallel should be studied. 

• Second order effects should be included in the element. 

• The proposed degradation scheme in the nonlinear constitutive relation should be 

studied in more detail. The damage function should be extended to depend on the 

plastic energy dissipation of some region of the element, rather than a single section. 
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The section response of distributed nonlinearity models is known to be sensitive to the 

number of monitored sections, and localization problems arise under strength softening 

of a section. This nonlocal extension of the proposed damage model would ensure the 

independence of the results from the discretization of the member (objectivity). 

• The characteristics of the proposed model make it particularly attractive for the 

probabilistic seismic damage analysis of structures. The proposed endochronic 

consiitutive relation bears great similarities with the Bouc-Wen model, which is 

extensively used in the random vibration analysis of nonlinear structures. Since the 

Bouc~Wen model is only used at the global level as a force-displacement relation, while 

the proposed model addresses the hysteretic response of invididual sections, the latter 

can be of great use in the identification of damage concentration and the more rational 

definition of damage indices for members and structures~ 
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APPENDIX A 

STATE DETERMINATION SUMMARY 

A.l . Element State Determination. 

A step-by-step summary of the state determination algorithm in Chapter 2 is presented 

below. The summary focuses on a single Newton-Raphson iteration i at the structural degrees 

of freedom, because the innovative. aspect of the present study is the process of element state 

determination. The remainder of the nonlinear solution algorithm follows well established 

methods, such as the Newton-Raphson method selected in this study. Alternative solution 

strategies can be implemented without additional effort, since these are independent of the 

element state determination. The relation of the Newton-Raphson iteration to the nonlinear 

solution of the entire structure is illustrated at the top of Figure 2.5, which also shows the 

relation between the overall solution strategy and the element state deter~ination process 

with corresponding states denoted by uppercase Roman letters. Figure 2.6 shows in detail the 

evolution of the state determination process for an element and corresponds to steps (2) 

through (13) in the following summary. The flow chart of computations for the entire 

solution algorithm is shown in Figure A.I, while the flow chart of computations for the 

element state determination is shown in Figure A.2. 

The i-th Newton-Raphson iteration is organized as follows: 

(1) Solve the global system of equations and update the structural displacements. 

At the i-th Newton-Raphson iteration the structure stiffness matrix K:,-I at the end of 
.C) 

the previous iteration i-I is used to compute the displacement increments .1.pi for the 

given load increments .1.P~ which represent the unbalanced forces from the previous 

iteration .. 

K H .1.pi = .1.Pi 
• E 
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(2) Calculate the element deformation increments and update the element deformations. 

The element defonnation increments Ilqi are detennined using matrix L ele , which 

relates element displacements in· the global reference system to element defonnations 

in the local reference system and is defined in Eq. (2.13). 

fuJi = L
ele 

Llpi 

qi = qi-I + fuJi 

As discussed in Chapter 2, the new element defonnations qi do not change until the 

following i+ 1 Newton-Raphson iteration. The remaining operations of the nonlinear 

solution algorithm make ilp the element state determination process which establishes 

the element stiffness and resisting forces for the given element deformations qi . 

(3) Start the element state determination. Loop over all elements in the structure: 

The state detenninatiori of each element is perfonned in loop j. The index of the first 

iteration· is j = 1. 

(4) Determine the elementforce increments. 

The element force increments LlQJ are detennined with the element stiffness matrix 

K i-I at the end of the previous iteration in loop j 

6.Qi = K i-I fuJi 

When j= 1, KO = K i
-
I and fuJI = fuJi where i-I corresponds to the state of the element 

at the end of the last Newton-Raphson iteration. When j> 1 Ilqi is equal to the 

residual element deformations of the previous iteration, as determined in Step (12). 

(5) Update the element forces. 

Whenj= 1, QO = Qi-I. 

. . . 

(6) Determine the section force increments. Steps (6) ·through (10) are performed for all 

control sections (integration points) of the element. 

The section force increments fll)i (x) are detennined from the force interpolation 

functions b(x). Subsequently, the section forces D(x) are updated. 

fll)i(x) = b(x) LlQi 

Di(x) = D}-I(x) + fll)i(x) 
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(7) Determine the section deformation increments. 

The section deformation increments !lit (x) are determined by adding the residual 

section deformations from the previous iteration r i -
l (x) to the deformation 

increments caused by the section force increments Wi (x). The latter are determined 

with the section flexibility matrix p-I(X) at the end of the previous iteration in loop). 

When)=1, rO(x)=O. 

Ml(X) = ri-l(x) + fi-l(x)Wi(x) 

di(x) = di-l(x) + Mi(x) 

(8) Section state determination. 

This step may differ depending on the form of the section constitutive law. Assuming 

for simplicity that this law is explicitly known, from the section force-deformation 

relation the tangent stiffness matrix k i (x) and the section resisting forces D~(x) are 

updated for the new section deformationsd1 (x). This stiffness matrix k i (x) is then 

inverted to obtain the new tangent flexibility matrix / i (x) of the section. 

Two section force-deformation relations and the relevant section state determination 

procedures are given in Sections A.2.1 and A.2.2 for the beam elements presented in 

Chapters 3 and 4, respectively. 

(9) Determine the unbalanced forces at the section. 

The section unbalanced forces D&(x) are the difference between the applied forces 

Di (x) and the resisting forces D~(x). 

(10) Determine the residual section deformations. 

The section unbalanced forces and the new section flexibility yield -the residual 

section deformations ri (x) 

(11) Determine the elementflexibility and stiffness matrices. 

The element flexibility matrix Fl is formed by integration of the section flexibility 

matrices / i (x). This matrix is then inverted to obtain the element tangent stiffness 
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matrix Ki. 

L 

pi = fbT(x)fj(x)b(x)dx 
o 

(12) Checkfor element convergence. 

(a) If the convergence criterion IS satisfied, the element is considered to have 

converged. After setting Qj = Q' and K j = Ki the process continues with step (13). 

(b) If the convergence criterion is not satisfied, the residual element deformations sj 

are determined by integration of the residual section deformations r j (x) . 

L 

sj = fbT(x)rJ(x)dx 
o 

At this point j is incremented to j+ 1 and a new iteration begins in loop j. In this 

case &jJ at step (4) is replaced with !1qi+1 which is set equal to -sJ 

!1qJ+1 = -sJ 

and steps (4) through (12) are repeated until convergence is achieved. 

(13) Add rigid body modes to element stiffness and resisting forces. 

Using matrix Lele the element stiffness matrix K~le and resisting force vector Q:le in 

the global reference system with rigid body modes are computed from K j and Qj. 

j T j 

Qele = Lele Q 

(14) Determine the resisting forces and the new stiffness matrix of the entire structure. 

When all elements have converged, the i-th step of the Newton-Raphson iteration is 

complete. The element force vectors are assembled to form the updated structure 

resisting forces 

n 

p~ = LQ~le 
ele=1 

where n is the total number of beam elements in the structure and the subscript ele is 

added as a summation index. The new structure stiffness matrix is formed by 

assembling the current element stiffness matrices 
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assemble initial structure 
Ks 

tangent stiffness matrix 

for ele = 1, number of elements 

state determination 
of element ele 

assemble new structure 
tangent stiffness matrix K\ 

~p == next load increment ~pk 

next ele 

next i nextk 

assemble structure resisting force vector P R 

compute unbalanced force vector 

no 

FIGURE A.I FLOW CHART OF STRUCTURE STATE DETERMINATION 
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section force increment vector m(x) = b(x) LIQ 
section deformation increment vector M(x) = r(x) + f(x) m(x) 
update section force vector D(x) = D(x) + W('t) 
update section deformation vector d(x)=d(x) + M(x) 

section constitutive law 

new section tangent stiffness matrix k{x) 
new section tangent flexibility matrix f(x) (8) 

section resisting force vector DAx) 

section unbalanced force vector Du(x)=D{x)+DAx) (!J) 

section residual deformation vector r{x) = f(x) ~(x) (11) 

element tangent flexibility matrix F 
element tangent stiffness matrix K 

(11) 
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nextele 
next sec 

next j 

element residual deformation vector s 
element deformation increment vector DJj = -s (12b) 

FIGUREA.2 

add rigid body modes to element K", 
stiffness matrix and force vector P,k (12a) 

FLOW CHART OF ELEMENT STATE DETERMINATION: THE SECTION 

CONSTITUTIVE RELATION IS ASSUMED TO BE EXPLICITLY KNOWN 
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/I 

K; = IK: re 
de=1 

The summation symbol in the two previous equations clearly indicate assembly of the 

element vectors and matrices in the corresponding vector and matrix of the entire 

structure. At this point the structure resisting forces p~ are compared with the total 

applied loads P~. If the difference ~P~, which is the structure unbalanced force 

vector; is not within the specified tolerance, i is incremented to i+ I and the next 

Newton-Raphson iteration begins. Steps (1) through (14) are repeated after replacing 
L\P~ with L\p~+1 = L\P~ until convergence takes place at the structure degrees of 

freedom. 

A graphical overview of the entire nonlinear analysis procedure is presented in Figure 

Al and Figure A2. Figure Al provides an overview of the entire process with the nesting of 

the individual iteration loops and does not differ from conventional nonlinear analysis 

schemes. The new features of the algorithm are introduced in the element state determination 

phase, which is singled out for presentation in Figure A.2. Since" all integrations along the 

element are performed numerically, an additional iteration loop over all control sections of 

the element is introduced in this diagram. 

In the interest of clarity the above presentation of the nonlinear analysis procedure 

refers to an explicit section deformation relation. The following paragraphs describe the 

section state determination for the section force-deformation relations presented in Chapters 

3 and 4. 

A.2 State Determination for Section with Differential Constitutive Law 

The section state determination of the beam in Chapter 4 mainly involves the 

determination of the section flexibility and residual deformations. The differential form of the 

constitutive law does not allow the direct computation of the section resisting forces. 

Consequently, the numerical integration of the differential equation results in an iterative 

algorithm for the determination of the flexibility and residual deformations Of the section at 

each element iteration j. In this case the following steps replace steps (8) through (10) of the 

general element state determination algorithm in the previous section 

(8a) Compute the error function and its derivatives. 
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From the new section defonnations d j (x) and the defonnations d i-I (x) at the 

beginning of the element iterations the new error function 'V j and its derivatives 

(a'll /aM)j, (a'll /axy are computed. 

(8b) Compute the section flexibility and residual defonnations. 

From the error function and its derivatives, the new section flexibility matrix and 

residual defonnation vector are computed 

Proceed with step (11) 
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COMPARISON OF DIFFERENTIAL CONSTITUTIVE LAW 

WITH BOUC-WEN MODEL 

B.l General 

The incremental constitutive relation described in Chapter 4 can represent a range of 

hysteretic behaviors, very similar to the range of the well known Bouc-Wen model (BW 

model). The BW model is a hysteretic constitutive law that also belongs to the family of 

endochronic models and has been widely used in the field of nonlinear random vibrations of 

structures. This model has been thoroughly studied and a large bibliography is available. A 

detailed description of the model and its applications is presented by Wen (1980 and 1986). 

A comparison between the two models is presented in this appendix. The comparison 

serves several purposes: 

• even though the BW model has a wide range of application, it has not been used for 

the section constitutive relation of a beam element with distributed nonlinearity; 

• the proposed beam element could be of significant use in the stochastic analysis of 

multiple-degree-of-freedom (MDOF) structural systems, much like the BW model has 

been used in the random vibration analysis of single-degree-of-freedom (SDOF) 

systems; 

• recent studies have extended the original BW model to the biaxial bending case with 

coupling of the response in the two normal directions (Park et al.· 1986, Kunnath and 

Reinhom 1990). Similar extensions of the proposed model are also possible. In 

similar fashion, the model presented in Chapter 4 could be extended to include the 

coupling of flexural with axial response; 

• both models suffer from the same limitations, stemming from the violation of theory 

of plasticity postulates. The widespread use of BW model and its numerical 

robustness testify that the numerical implementation of the models and the accuracy 

103 



104 APPENDIX B 

of the results are not affected by this violation. 

B.2 Comparison with Bouc-Wen Model 

A brief review of the Bouc-Wen model is given based on the schematic illustration of 

Figure B.l. The model can be considered as the coupling of a linear and a nonlinear element 

in paralJel. Using the notation commonly used in the literature about the BW model, F.. = aku 

is the force resisted by the linear element and F2 = (1- a )kz is the force resisted by the 

nonlinear element. Thus, the total restoring force F is given by 

F = a k u + (1- a}k z (B.l) 

where z is a displacement parameter that controls the response of the nonlinear element of 

Figure B.1 and is governed by the differential equation 

(B.2) 

FIGURE B.1 Boue-WEN MODEL 

where A, .~;y and n are a set of parameters that control the hysteretic response of the 

nonlinear element. If Eq. (B.2) is divided by it, it becomes 
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dz _ A A lull I.n-l I In -- -tJ---:-Z z-yz 
du . u . 

(B.3) 

The initial stiffness ko and the post-yield stiffness k
f 

are given by the following expressions 

ko = ak+(I-a)kA 

k f = ak 

(B.4) 

(B.5) 

For A=l the initial stiffness ko is equal to k. This is the assumption that is adopted in the 

following in order to facilitate the comparison between the two models; The sharpness of the 

transition from the linear to the nonlinear range is governed by parameter n. y and ~ give 

different loading-unloading paths and no limits are imposed on the values that these two 

parameters can assume. To find the differential equation relating F with u, the total restoring 

force F in Eq. (B.l), is differentiated with respect to u 

dF dz 
- = ak + (l-a)k
du du 

(B.6) 

Using Eq. (B.l) and recalling that, for A=l, k = ko' the rearrangement of terms results in the 

following expression for the derivative of the force in Eq. (B.6) 

: = ko{l-(l-a)[sgn(du) sgn(z)~ + yJlzln} (B.7) 

Eq. (B.7) is the force-deformation differential equation that governs the BW model. It 

looks very similar to Eq. (4.15) that defines the model discussed in Chapter 4. To compare 

the two models the notation of Figure 4.1 is changed according to that of Figure B .1. The new 

notation is shown in Figure B.2. Recall that this change in notation is consistent with the 

observation that the proposed constitutive law of Figure 4.1 can be used for any force

deformation relation. Using Figure B.2, Eq. (4.15) can be written 

(B.8) 

where 

F ua 
(B.9) x = 

Fo (I-a) Uo (I-a) 

k - Fo 
0- (B.I0) 

Uo 

Fo and Uo are defined exactly as Mo and Xo are defined in Figure 4.2. The derivative of x 

with respect to u is 
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dx __ 1_, [_1 dF _!!:.-] 
du 1- ex. Fa du Ua, 

(B.11) 

Eqs. (B.7) and (B.8) are substituted into Eq. (B.11) which after rearrangement of terms 

becomes 

dx =~, [1 ~ ~ I~I Ixr-
I 

x _ y Ixln] 
du Uri u 

(B.12) 

Finally, Eq. (B.12). is multiplied by u to yield 

. 1[. AI'llln-r '1 In']' x=-u-I-'ux x-yux 
Ua ' 

(B.13) 

The similarities between Eqs. (B.8), (B.12), and (B.13), on the one hand, and 

Eqs. (B.7), (B.3) and (B.2), on the other, are clearly evident with the following definitions 

Z = Uax 

- y 
y =-n 

ua 

- ~ 
~ =-

u" a 

FIGURE B.2 CHANGE IN NOTATION OF MODEL IN FIGURE 4.1 

FOR COMPARISON WITH BOUC-WEN MODEL 

(B.14) 
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Then, Eqs. (B.8), (B.12) and (B.l3) become 

dF = ko{I-(I-a)[sgn(du) sgn(z) i3 + y]lzln
} du (B.15) 

dZ _ I A lul_I_ln-1 _I_I" -- -fJ-Z Z -y Z du u (B.16) 

z·· = u - i3 lui Izl!1-1 
Z - Y ulzln 

. (B. 17) 

• BOUC-WEN MODEL MOOEL9F CHAPTER 4 
;.' .. 

dF = ko{A-(1-a)[sgn(du)sgn(z)~+y Jlzl"} 
du . 

dF = ko {I- (I-a )[sgn(du) sgn(z) ~ +'7 Jlzl"} 
du 

dz _ A ~ lull 1"-1 I In -- - -z z-yz 
du u 

dZ _ I i3 lul-I-I"-I -I-I" - - - -z Z -y z du . u 

z = Au - ~ lullzl"-' z - Y ulzln z = u - i3 lui Izln-I z - Y ulzln 

TABLE B.t COMPARISON BETWEEN BOVC-WEN MODEL AND MODEL OF CHAPTER 4 

Table B.I offers a direct comparison of the governing differential equations for the two 

models. It can be concluded that the BW model with the definition of Z, Y and ~ according 

to Eq. (B.I4) is identical with the proposed model, as long as the conditionA=1 is imposed. 

The BW model is widely used in nonlinear random vibration analysis of structures. 

Some studies have shown, however, that this model results in physically unreasonable 

hysteretic behavior when cycled between' fixed load or displacement values of unequal 

magnitude. The proposed model suffers from the same problem. Thus the following 

discussion of this limitation makes only reference to the proposed model of Chapter 4. 

Figure B.3 shows that, when the solid model is cycled between two fixed 

displacement values, it exhibits force relaxation. Twdaspects of the hysteretic behavior of the 

model disagree with the observed physical behavior of specimens. First, the hysteretic loop of 

the model does not close, second, hysteretic cycles settle to a zero mean force. Furthermore, 

the model violates a fundamental plasticity postulate. After recalling that the energy 

dissipation during displacement reversal is equal to ~ F du, it is concluded that the model 

dissipates negative energy during the first displacement cycle in Figure B.3. This energy 
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corresponds to the area of the cross hatched region in Figure B.3. This behavior violates 

Ilyushin's postulate, which states, that the energy dissipation has to be positive in any 

displacement cycle. This phenomenon disappears after a certain number of cycles, when the 

model stabilizes to a zero mean force and the hysteretic loops close in Figure B.3. 

Figure B.4 illustrates a second important shortcoming of these models. The model 

does not exhibit stable (closed) hysteretic loops when cycled between two fixed load values 

of unequal magnitude. For n= I, the value of drift d in a load cycle F; ~ F2 ~ F; (with 

'F; > F2 ) is 

d = _1_" IOg(I-(~"-Y)IF2IJ + _" 1_ 10g(_1 +---,:-,(~-+_Y-,--,;-)IF~2IJ 
~ -Y" I-(~ -y)IF;1 " ~ -y 1+(~ +y)IF;1 

FIGURE B.3 HYSTERETIC BEHAVIOR OF THE MODEL UNDER CYCLING 

BETWEEN FIXED, ASYMMETRIC DISPLACEMENT VALUES 

(B.18) 

From Eq. (B.18) it can be concluded that symmetric load cycles do not exhibit drift, 

but that asymmetric load cycles always exhibit drift. This phenomenon arises for the 

following two main reasons: first, the model does not distinguish between first loading and 

reloading. Second, the unloading stiffness is always greater than the loading stiffness. This is 

evident from Eq. (B.8), which results in the following expressions for the loading stiffness k[ 

and the unloading stiffness ku' for x> 0: 



APPENDIX B 

1$00 ~"--'----'-----'';;;'"''''-------'';'''---'----~----''''' 

FIGURE B.4 HYSTERETIC BEHAVIOR OF THE MODEL UNDER CYCLING 

BETWEEN FIXED, ASYMMETRIC FORCE VALUES 

FIGURE B.5 HYSTERETIC BEHAVIOR OF THE MODEL FOR A SINGLE 

LOAD CYCLE BETWEEN ASYMMETRIC FORCE VALUES 
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k{= kO {1-(I-a) Ixln} 
ku = kO {1-(I-a) (-p +y )Ixn 

Since y $ 0.5 and p +y = 1, the unloading stiffness ku is always greater than the 

loading stiffness k[ for the same x. This"is the result of the derivation of the dash pot equation 

Eq. (4.8) to include loading and unloading paths. This phenomenon also leads to violation of 

Ilyushin's postulate. This can be clearly seen in the hysteretic loop of Figure B.S. When the 

model describes path ABC, it undergoes a full displacement cycle and dissipates energy equal 

to -~, which is again negative. 

Drucker's postulate is also violated. It states that for any load cycle with initial and 

final force level F; the following inequality must be satisfied 

~(F - F;)du ~ 0 (B.19) 

Since this integral is equal to -( ~ + A4) in Figure B.S, the model violates Eq. (B.19). 

A partial correction of the BW model was proposed by Casciyati (1987), which results in a 

reduction, but, no elimination of the observed drift, and, thus, again violates Ilyushin's and 

Drucker's postulates. 

The same deficiencies plague the original endochronic theory of Valanis (1971), who 

found that the problem was caused by the fact that the unloading stiffness at a point of stress 

reversal is larger than the initial stiffness, while experimental results show that the two values 

should be approximately equal. In a later work, Valanis (1980) demonstrated that defining the 

intrinsic time in the plastic-strain space, and not, as in the original formulation, in the total 

strain space, results in an endochronic formulation that exhibits the correct hysteretic 

behavior, in satisfaction of Ilyushin's and Drucker's plasticity postulates. More recently, 

Valanis (1981) argues that the violation of the above. plasticity postulates does not diminish 

the validity of the theory and, goes on to demonstrate that linear viscoelastic materials, as 

weir as frictional materials, violate the same stability postulates. 

From these observations it is concluded that: 

• both, the Bouc-Wen model and the model proposed in Chapter 4 violate Drucker's 

and Ilyushin's plasticity postulates when cycled between fixed, but unequal, load or 

displacement values. This aberrant behavior can be, however, corrected by defining 

intrinsic time in the plastic strain space, and not in the total strain space; 
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• the two postulates do not represent strict physical or thermodynamical requirements, 

and other widely used mechanical models exhibit the same behavior; 

• the refinement of the model in Chapter 4 to satisfy the two postulates in accordance 

with Valanis' recent proposals is beyond the scope of this study. Moreover, extensive 

numerical simulations with the model have shown that its numerical stability and 

accuracy is not affected by the violation of Ilyushin's and Drucker's postulates. 
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