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ABSTRACT

This study is devoted to the development of improved models and methods for

predicting the nonlinear static and dynamic response of reinforced concrete frames. In· this

respect it is a continuation of the work presented in an earlier study (Filippou and Issa, 1988).

To achie·ve the general objective new models for reinforced concrete girders were

proposed in the earlier study (Filippou and Issa, 1988). Each girder was decomposed into a

number of subelements which were connected in series. Each subelement describes a

different source of inelastic deformation and energy dissipation in reinforced concrete

members. Three subelements were developed in the earlier study: (a) an elastic subelement

which models the flexural behavior of the frame member before yielding of the

reinforcement; (b) a spread plastic subelement which describes the inelastic flexural behavior

of the reinforced concrete member and accounts for the. gradual spread of inelastic

deformation at the member ends; and (c) a joint subelement modeling the fixed-end rotation

that arises at the beam-column interface due to bond deterioration and slippage of reinforcing

bars along the anchorage in the joint.

The present study introduces several new subelements. The first is a shear subelement

which describes the deformation due to shear and, in particular, due to the shear sliding in the

inelastic regions of reinforced concrete members, and complements the list of girder

subelements of the earlier study. The other subelements refer to the hysteretic behavior of RC

columns and are extensions of the corresponding girder subelements to account for the effect

of axial load on the flexural and shear behavior of the member.

The proposed reinforced concrete frame models are implemented in a special purpose

computer program for the nonlinear static and dynamic analysis of reinforced concrete

frames. A nonlinear solution method which accounts for the possible unbalance of internal

forces between the different subelements during the load step and an algorithm for the

efficient numerical implementation of this solution strategy was already proposed in the

earlier study. This procedure is now extended to include the additional subelements, but,

more importantly, to address time varying loads due to ground acceleration. Implementation

issues under static and dynamic loading conditions are also addressed in the present study.

The analytical results are compared with experimental information from beam-column

subassemblages under cyclic deformation reversals. Only studies related to the effects of
. .



shear and axial load are discussed. These correlation studies complement those presented

earlier by Filippou and Issa (1988).

The ability of the proposed models to describe the dynamic response of frame

structures that are excited by ground accelerations is evaluated by comparing the analytical

results with experimeAtal evidence from a two story one bay reinforced concrete frame that

was tested on the shaking table. The effect of bond slip on the local and global dynamic

response of the structure is evaluated. The results of the proposed model are compared with

those of the widely used one component model in order to assess the ability of the latter to

detelTIline. the local ,and global response of reinforced concrete frames.
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CHAPTER 1

INTRODUCTION

1.1 General

In reinforced concrete (RC) frame structures, designed according to current

specifications of earthquake resistant design, forces and displacements are expected to g-reatly

exceed those induced by the equivalent static lateral loads stipulated in codes. When these

structures are subjected to severe earthquake excitations they are expected to deform well

into the inelastic range and dissipate the large seismic energy input into the structure through

large but controllable inelastic deformations at critical regions. In order to predict the

distribution of forces and deformations in these structures under the maximum credible

earthquake that can occur at the site, accurate models of the hysteretic behavior of the

different critical regions of the structure are necessary.

Many analytical models have been proposed to date for the nonlinear analysis of

reinforced concrete frame structures. These range from very refined and complex local

models to simplified global models. Refined analytical models are typically used in

predicting the response of small structures or structural subassemblies. On the other hand

simplified global models have been typically used in the dynamic response analysis of large

structures. While simple component models are unreliable and incapable of simulating the

local behavior of critical inelastic regions in the structure and cannot yield accurate estimates

of strain or ~urvature ductilities, the computational cost associated with the use of refined

finite element models in nonlinear dynamic response studies of high-rise concrete frames is

very high.

In fact, the refined and detailed analysis of critical regions in the structure is

impossible without the use of global models which predict the loading history of the

particular region. Similarly, the global analysis of structures is impossible without the use of

more refined local models which allow the estimation of parameters of the simple component

models. The exchange of results between refined local models suitable for detailed analysis

of small regions and more simplified component models suitable for global response analysis

of multistory structures provides a powerful tool in the study of the seismic response of

reinforced concrete structures. It is, therefore, important to bridge the gap between these two
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alternatives by providing a platform for the exchange of results between local and global

models of RC frame structures. While this is the overall framework of this study, it is not

addressed further in this report, but will be the subject of forthcoming studies.

The major sources of deformation in reinforced concrete frame structures are flexural

rotation, shear deformation, including shear sliding, and bond slip. The hysteretic load-'

deformation behavior of frame members arises from a combination of these deformation

mechanisms. A rational analysis of the hysteretic behavior of reinforced concrete members

needs to be based on the description of all deformation sources and of the' interactions

between the different mechanisms. This approach permits the determination of the relative

contribution of each source of inelastic behavior to the local and global response of

reinforced concrete frames .. In order to achieve this goal new frame member models are

developed in this study. Each member model is made up of different subelements. Each.

subelement represents a different source of inelastic behavior. The parameters of the

subelements are established from first principles, or, otherwise from refined loc.al models or

experimental information. The exchange of results between refined local models and simpler

global models is accomplished in a crude, manual manner in the present study. More

sophisticated ways of exchanging data are left for future studies.

1.2 Review of previous studies

Much effort has been devoted in the last twenty five years to the development' of

models of inelastic response of reinforced concrete elements subjected to large cyclic

deformation reversals. Numerous models incorporating information' from' experimental

investigations and on-field observations of the hysteretic behavior of RC structural elements

have been proposed. These range from the simple two-component model with bilinear

hysteretic' law to refined fiber or layer models based on sophisticated descriptions of the

cyclic stress-strain behavior of concrete and reinforcing steel. Since this study focuses on

relatively simple models which can be economically used in studying the seismic response of

multistory frame structures, only the developments leading to a macroscopic model of

inelastic response of RC elements will be briefly reviewed in the following.

The very first inelastic girder model was proposed by Clough et al. (1965). In this

model, known as the two-component model, a bilinear elastic-strain hardening moment­

curvature relationship is assumed along the girder. The beam model consists of two

components acting in parallel: one which is linear elastic and one which is elastic-perfectly

plastic with the plastic deformations concentrated in plastic hinges at the ends of the element.

The elastic modulus of the first component is equal to the strain hardening modulus p' EI of
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the moment-curvature relation, where EI is the pre-yield section stiffness. The elastic

modulus of the elasto-plastic component is equal to q. EI where q = 1- P" One of the

shortcomings of this model is the difficulty of accounting for the stiffness deterioration of RC

elements during cyclic load reversals.

To overcome the problem of stiffness deterioration Giberson proposed another model

in 1969 (Giberson 1969). This model is known as the one-component model. It consists of

two nonlinear rotational springs which are attached at the ends of a perfectly elastic element

representing the girder. All nonlinear deformations of the girder element are lumped in the

two rotational springs. This is a simplification of experimental evidence which shows that

inelastic deformations spread over a finite region at the ends of the girder. Giberson's model

has the advantage that any kind .of hysteretic law can be assigned to the nonlinear springs.

This fact along with the simplicity of the model accounts for its widespread use in analytical

studies to date.

To describe the hysteretic behavior of the nonlinear springs at the ends of the one­

component model a hysteretic law is needed. The first such law was proposed by Clough

(1965). A more refined hysteresis model was proposed by Takeda et al. (1972). In this model

the monotonic behavior is described by a trilinear skeleton curve which accounts for cracking

of concrete and yielding of reinforcing steel. The hysteretic behavior is described through a

number of rules for unloading and reloading and is based on data obtained from specimens

tested in an earthquake simulator. Even though Takeda's hysteretic model was originally

proposed for simulating the load-displacement relation of RC subassemblies, it has been

widely used since in the description of the hysteretic moment-curvature or moment-rotation

relation of RC members.

. A different approach to the problem of modeling the seismic behavior of RC girders

was ·proposed by Otani (1974). In this case each beam or column member is divided into two

linear elements, one linearly elastic and one inelastic, which act in parallel. One inelastic

rotational spring is attached at each end of the member. This spring represents the fixed-end

rotation at the beam-column interface due to slip of the reinforcement in the joint. In Otani's

model~the linear elastic element describes the entire elastic stiffness of the girder; the

flexibility matrix of the inelastic element is derived as a function of the location of the point

of contraflexure. This approach results in a non-symmetric flexibility matrix, unless one of

the following assumptions is made: (a) the inelastic deformations are concentrated at the

girder ends, or (b) the contraflexure point is assumed fixed at the midspan of the member.

Otani's study recognizes for the first time the importance of fixed-end rotations in predicting

the seismic response of RC frame structures.
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Mahin and Bertero(1976) reviewed the various definitions of ductility factors in

earthquake resistant design: .One of the· most important questions in this context is the

accurate prediction of the rotational ductility demand in structural elements. The study points

out how ductility factors for a beam represented by a two-component model must be

modified to match those for a beam in which inelastic deformations spread into the member.

Since the two-component model substantially underestimates the post-yielding stiffness of a

member, the seismic response of the structure will not be predicted accurately. This is

particularly true in the case of local response quantities such as inelastic rotations of girders

and joints. It does not, therefore, appear reasonable to estimate ductility requirements of RC

frame elements on the basis ·of the results of the two-component model.

Anderson and Townsend (1977) investigated the effect of different hysteretic models

on the dynamic response of RC frames. Four different models were used to describe the

hysteretic behavior of critical regions of RC members: (a) a bilinear elastic-strain hardening

model, (b) a bilinear degrading model with equal unloading and reloading stiffness, (c) a

trilinear degrading model with different stiffness for unloading and reloading and (d) a

trilinear degrading model for beam-column connections. They studied the effect of

reinforcing bar slippage in the joint by inserting a small hinge element of predefined length

between the rigid joint element and the flexible girder element. The study shows that the

reduction in stiffness of reinforced concrete elements due to inelastic deformations can have a

significant effect on the dynamic response of frame structures. Among the different hysteretic

models used in the study the trilinear degrading connection model appears to be the most

accurate. The study also shows that the use of a degrading stiffness model results in an

increase in interstory displacements. This can have a significant effect on the load carrying

capacity of the structure due to the P-~ effect arising from high axial forces.

The first model which accounts for the spread of inelastic deformations into the

member was introduced by Soleimani et al. .(1979a). In this model a zone of inelastic

deformations gradually spreads from the beam-column interface into the member. as a

function of loading history. The rest of the beam remains elastic. The fixed-end rotations at

the beam-column interface are modeled through point hinges which are inserted at the ends

of the member. These are related to· the curvature at the corresponding end section through an

"effective length" factor which remains constant during the entire response history.

The effect of axial load on the yield moment of RC columns has long been recognized

by researchers (Kanaan and Powell 1973); however, the effect of axial force on the flexural

stiffness of a member was first accounted for in the model proposed by Takayanagi and

Schnobrich (1979) in their study of the seismic response of coupled wall systems. The walls

and coupling beams are represented by one-dimensional beam elements. The interaction of
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bending moment, shear and axial· forces is taken into account in the wall elements, while the

axial. stiffness of the coupling beams is assumed to be infinite, since the horizontal

displacements of both walls are approximately equal. Otani's model is selected for modeling

the coupling beams with the inflection point assumed fixed at midspan. The beams are

connected to the wall elements through a rigid link which accounts for the finite dimensions

of the wall. A spring is. inserted between the beam element and the rigid link to model the

fixed-end rotations due to slip of the reinforcing bars anchored in the wall. The effect of shear

in the coupling beams is also taken into account. A modified Takeda model is adopted for the

hysteretic behavior of the beam elements. The model accounts for the "pinching" effect

during reloading and the strength decay due to loss of shear resistance after crack formation.

and yielding of the reinforcement in the coupling beams.

The seismic response of a plane frame coupled with a shear wall was studied by

Emori and Schnobrich (1981). They conducted nonlinear static analyses under cyclic load

reversals and compared the results obtained using different beam models, namely, a

concentrated spring model, a multiple spring model and a layer model. The first model is

identical to Otani's model. The second is an element composed of several springs acting in

series and interconnected by rigid links. This model is thus capable of accounting for the shift

of the contraflexure point during the response history. In the third model, which. is a
modification of the concentrated spring model, a layered element of length L" is inserted at

the ends of the beam. L" is selected equal to the length of the region where major inelastic

action is expected. The layer model can account for the interaction of bending moments and

axial forces. It can not account, however, for the effects of shear and slip of reinforcement,

unless a spring is inserted at the ends of the beam. Takeda's hysteresis rule has been adopted

in all models. The study concludes that the concentrated spring model predicts satisfactorily

the inelastic response of RC girders, while a multiple spring model is needed to accurately

describe the inelastic behavior of shear walls. If a detailed study of the inelastic response of

plastic zones in columns is desired, the authors recommend the use of a layer model.

The applicability of point hinge models in studying the seismic response of structures

was investigated in great detail by Anagnostopoulos (1981). His study is limited to flexural

members subjected to end moments and uniformly distributed gravity loads. The moment­

curvature. relation is assumed to be bilinear elastic-strain hardening. The study points out that

a point hinge model is incapable of reproducing the gradual change of stiffness of a member

in the post-yielding range. The study then. focuses attention on the problem-of defining the

strain· hardening ratio of the moment-rotation relation. of point hinge models.

Anagnostopoulos shows that it is incorrect to set this ratio equal to the strain hardening ratio

of the moment-curvature relation, since this considerably underestimates the post-yield
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stiffness of flexural members. The study proposes an iterative solution for determining the

strain-hardening ratio of the moment-rotation relation of point hinge models.

Several attempts to develop a model of the hysteretic behavior in shear have been

made to date. A qualitative model of the hysteretic shear force-deformation relation has been

proposed by Celebi and Penzien (1973). The most recent such model has been introduced by

Ozcebe and Saatcioglu (1989). This model describes the experimentally observed stiffness

degradation and the associated "pinching" of hysteretic loops. Empirically derived

expressions are proposed which account for the effect of axial load on the hysteretic

behavior.

A complete model for the analysis of seismic response of RC structures was proposed

by Banon et al. (1981). The one-component model in its original form describes the nonlinear

behavior of the girder. The hysteretic moment-rotation relation is based on a modified Takeda

model. In order to reproduce the "pinching" effect due to shear and bond deterioration a

nonlinear rotational spring is inserted at each member end. The hysteretic model of the

nonlinear springs is based on a bilinear skeleton curve with strength decay under large

deformations and includes the effect of "pinching" during reloading. The authors also

proposed a set of damage indicators in an effort to quantify the performance of a structure

during an earthquake. These indicators describe the state of damage of each element due to

large deformation reversals and low-cycle fatigue. The damage indicators are used in the

development of a probabilistic model of member resistance. The study concludes that the

one-component model is sufficiently accurate in modeling the inelastic response of RC

members subjected to severe deformation reversals. It also shows that it is possible to

accurately predict the state of damage of RC members using parameters based on

deformation ductility and cumulative energy dissipation due to low-cycle fatigue.

The effect of different hysteresis models on the nonlinear dynamic response of a

simple concrete specimen was studied by Saiidi (1982). He analyzed four models: elastic­

perfectly plastic, elasto-plastic with strain hardening, Clough's model and a new Q-hysteresis

model. The first two are very simple, but quite unrealistic for reinforced concrete; the other

two are more accurate and differ mainly in the representation of stiffness degradation during

unloading and reloading. The performance of the different hysteretic models was evaluated

by comparing the results with those obtained using Takeda's model, since its agreement with

a large number of experimental data is excellent. Poor agreement with Takeda's model is

exhibited by both elasto-plastic models; Clough's model shows relatively good agreement

while the Q-hysteresis model shows excellent agreement. The study concludes that stiffness

degradation effects during unloading and reloading are very important in determining the
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overall response of RC structures, because they affect the amount of energy dissipated by the

structure.

In 1983 Meyer et al. (1983) developed another spread plasticity model. The flexibility

coefficients of the new model are identical to those of Soleimani's model. The authors

proposed a slightly different way of calculating the stiffness of the plastic zone during

reloading and used Takeda's model to describe the hysteretic moment-curvature relation. The

same model was used in describing the inelastic behavior of beams and columns; with no

account of the effect of axial forces on flexural rigidity. Fixed-end rotations are not taken into

account in the study. The analytical results are compared with a series of experimental data

and show excellent agreement.

An integrated experimental and analytical study on the effect of bond deterioration on

the seismic response of RC structures was published by Otani et al. (1985). The model

adopted for beams and columns is the one-component model. Takeda's model is used to·

describe the hysteretic behavior of the elements. A rotational spring is inserted at each

member end to model the slip of reinforcement due to bond deterioration; the hysteretic'

behavior of the spring is described by Takeda's model modified so as to account for the .

"pinching" effect during reloading. No strength decay is introduced in the monotonic skeleton

curve, since experimental data did not provide such evidence.

. A model for assessing structural damage in RC structural elements was proposed in a

study by Park and Ang (1985). Damage is expressed as a linear function of the maximum
. . "

deformation and the hysteretic energy absorbed during cyclic load reversals.

In their study of the nonlinear response of plane rectangular frames and coupled shear·

walls Keshavarzian and Schnobrich (1985) extended the spread plasticity model proposed by

Soleimani to column elements. The model accounts for the interaction between bending

moment and axial forc~ in determining the strength and stiffness of column elements. The

study compares the predictions of different models: in addition to the spread plasticity model,

these include the one-component, two-component and multiple spring model. In performing

the nonlinear static and dynamic analysis of the structure the element stiffness is linearized at

the beginning of each load step. Any nonlinearity which takes place during the load

increment is not accounted for and the resulting unbalance forces are neglected. The study

concludes that the one-component model is well suited for describing the inelastic behavior

of RC girders. It is also noted that the two-component model has the same versatility as the

one-component model and yields similar results. The multi-layer model is found very

expensive for nonlinear dynamic analysis of multistory structures.
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Finally, the study points out that the fluctuation of axial forces in coupled shear walls

and in exterior columns of frame structures affects the forces and deformations in individual

walls and columns.

In a recent study Roufaiel and Meyer (1987) proposed an extension of the spread

plasticity model developed earlier by Meyer et al. (1983). The new model includes the effect

of shear and axial forces on the flexural hysteretic behavior based on a set of empirical rules.

The hysteretic moment-curvature relation is described by Takeda's model. The variation of .

axial loads due to overturning moments is not accounted for. The analytical results are

compared with available experimental data and show very good agreement. A set of new

damage parameters is proposed which correlate well with the residual strength and stiffness

ofspecimens tested in the laboratory.

1.3 Objectives and scope

The general objective of this study is to develop improved models and methods for

simulating the nonlinear static and dynamic response of reinforced concrete frames. In this'

respect this study is a continuation of the work presented in an earlier study (Filippou and

Issa, 1988).

To achieve the general objective new reinforced concrete models for reinforced

concrete girders were proposed in the earlier study. Each girder was decomposed into a.

number of subelements which were connected in series. Each subelement describes a

different mechanism of hysteretic behavior of reinforced concrete members. Three

subelements were developed in the earlier study (Filippou and Issa 1988): (a) an elastic

subelement which models the flexural behavior of the frame member before yielding of the

reinforcement; (b) a spread plastic subelement which describes the inelastic flexural behavior

of the reinforced concrete member and accounts for the gradual spread of inelastic

deformations at the member ends; and (c) ajoint subelement modeling the fixed-end rotation

that arises at the beam-column interface due to bond deterioration and slippage of reinforcing

bars along the joint anchorage.

The present study introduces several new subelements in Chapter 2. The first is a

shear subelement which describes the deformation due to shear distortion and, in particular,

due to shear sliding in the inelastic regions of reinforced concrete members and, so,

complements the list of girder subelements of the earlier study (Filippou and Issa 1988). The

other subelements refer to the hysteretic behavior of RC columns and are extensions of the

corresponding girder subelements to account for the effect of axial load on the flexural and

shear behavior of the member.
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The proposed reinforced concrete frame models are implemented in a special purpose

computer program for the nonlinear static and dynamic analysis of reinforced concrete

frames. A nonlinear solution method which accounts for the possible unbalance of internal

forces between the different subelements during a load step and an algorithm for the efficient

numerical implementation of this solution strategy was already proposed in the earlier study.

This procedure is now extended to encompass the additional subelements, but, more

importantly, to address time varying loads due to ground acceleration. Implementation issues

under static loading conditions are discussed in Chapter 3. Special implementation issues that

arise in the context of the numerical time integration strategy are discussed in Chapter 4

where the mass, damping and stiffness representation of the structure is also briefly

discussed.

The. analytical results are compared with experimental information from· beam­

column subassemblies under cyclic deformation reversals. Only studies related to the effects

of shear and axial load are discussed in Chapter 5. These correlation studies complement

those presented earlier by Filippou and Issa (1988).

The ability of the proposed frame model to simulate the dynamic response of frame

structures that are excited by ground accelerations is evaluated in Chapter 6 by comparing the

analytical results with experimental evidence from a two story one bay reinforced concrete

frame tested on the shaking table of the Earthquake Engineering Research Center by Clough

and Gidwani (1976). The effect of bond slip on the 10c;;!1 and global dynamic response of the

structure is evaluated. The results of the proposed model are compared with those of the

widely used one component model in order to assess the ability of the latter to establish the

local and global response of reinforced concrete frames .

. The results of the study are summarized in Chapter 7 which offers general

conclusions and recommendations for further research.





CHAPTER 2

MODELS OF REINFORCED CONCRETE FRAME ELEMENTS

2.1 Introduction

In structures designed according to the present state of earthquake resistant design the

forces induced in the structure during a major earthquake will exceed the yield capacity of

some members and cause large inelastic deformations. These deformations resulting from the

combined effect of gravity and lateral loads are concentrated in areas of maximum internal

forces which are called critical regions. The different types of critical regions in reinforced

concrete frames are shown in Fig. 2.1. In a typical lower story the combined action of high

lateral and relatively small gravity loads gives rise to the moment distribution shown in

Fig. 2.1 such that critical regions are usually located at the ends of girders and columns and at

beam-column joints. In upper stories, on the other hand, inelastic deformations can also occur

near the girder midspan.

Critical regions can be classified into different types depending on the internal forces

which. are induced in them and control their hysteretic behavior (Celebi and Penzien 1973).

These types are: regions subjected to flexure, regions subjected to flexure combined with

high shear forces and, finally, regions subjected to flexure combined with high shear and

axial forces. Beam-column joints are critical regions which are subjected to large shear and

axial forces. The forces induced in the different critical regions depend on the structural

system, the type of excitation of the structure, the location of the critical region, and the span

to depth ratio of the given member.

Since the seismic response of the entire structure depends on the hysteretic behavior

of these regions, accurate models of such behavior need to be developed. Ideally these

models should be based on the fundamental principles of mechanics using the material

properties of concrete and reinforcing steel with due account for crushing and spalling of

concrete, bond slip of reinforcement and shear sliding. The discrete nature of flexural and

shear cracks should also be taken into consideration. Not only is such a degree of refinement

difficult to achieve, but the detailed information obtained from such refined nonlinear

analysis is unnecessary in the response description of entire structures (Umemura and

II
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Takizawa 1982). Moreover, the implementation of such models in dynamic response analysis

of large structural systems is prohibitively expensive.

;. ~
~ '.
~ f.. i,:'

~

(a) (b) (e)

FIGURE 2.1' BENDING MOMENTS IN MOMENT RESISTING FRAMES UNDER

COMBINATION OF GRAVITY AND EARTHQUAKE LOADS

A different solution approach consists of developing macroscopic member models of

reinforced concrete elements. These are based on approximations of the physical behavior of

RC members and vary in their complexity from simple point hinge to more sophisticated

layer and fiber models (CEB 1983, Zeris and Mahin 1988, Taucer et al. 1991).

In determining the seismic response of multistory buildings point hinge models have

been used extensively because of their simplicity (Umemura and Takizawa 1982). In these

models the inelastic behavior of reinforced concrete elements is represented by concentrated

springs at the ends of the member. Since it is computationally convenient to use a single

spring to describe the inelastic behavior of any type of critical region, several parameters

need to be defined for describing the behavior of the springs. These parameters depend on the

actions that control the inelastic behavior of the member and are established empirically.

In modeling the hysteretic behavior of RC members under cyclic load reversals

phenomenological models of hysteretic behavior are typically used. While only a few

parameters are needed to describe the hysteretic behavior when flexure governs the response,

many more parameters become necessary in members with complex interactions between

bending moment,shear and axial force. These parameters are typically established from a

limited set of experimental data. Moreover, the actions arising in a particular critical region
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vary depending on the structural system; the strength of the section, the span to depth ratio of

the member,. and the type of excitation of the structure. Thus the derivation of empirical

hysteretic rules, however complex, does not guarantee the- general applicability of these rules.

It, therefore, appears doubtful that a single hysteretic model can approximate the actual

behavior of RC regions over the wide range of possible interactions of bending moment,

shear and axial force in structures subjected to earthquake excitations.

Another way of describing the inelastic behavior of RC members is proposed in the

present study. This approach consists of identifying the basic mechanisms which control the

hysteretic behavior of each type of critical region and, if possible, isolating these in individual

subelements. Each ~irder and column element is then made up of a number of such elements.

This approach is, in many respects, similar to the model proposed by Otani (1974) and will

be presented in greater detail in the following.

FIGURE 2.2 PROPOSED MODELING OF PLANAR MOMENT RESISTING RC FRAMES

Since the present study is limited to the analysis of planar moment resisting frames

. (Fig. 2.2), the following basic elements are needed for predicting the nonlinear response of

such structures to cyclic excitations: a girder element, a column element, a beam-column

joint element and a foundation element. The girder element should also include the effect of
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the slab. Shear wall or infill panel elements are not dealt with in this study, since attention is

focused on the behavior of bare frames. It is assumed that floor diaphragms are infinitely

rigid so that a single degree of freedom represents the lateral displacements of an entire floor

in a two-dimensional frame (Fig. 2.2).

The inelastic hysteretic behavior of reinforced concrete members under various

loading conditions has been the subject of many experimental investigations in the U.S. and

abroad in the last twenty five years. Among the different studies reference will be made in the

following to a few conducted at the University of California, Berkeley. These studies have

investigated the hysteretic behavior of critical regions under combined bending moment with

low shear (Viwathanatepa et al. 1979), under combined bending m?ment with high shear

(Celebi and Penzien 1973), and under the combined action of bending moment, shear. and

axial force (Atalay and Penzien 1975). The infonnation presented in these investigations

along with experimental evidence from other tests (Gill et al. 1979, Otani et aI. 1985, Low

and Moehle 1987) will be used in developing the proposed analytical model.

Experimental studies of reinforced concrete frame structures conducted to date

conclude that defonnations of reinforced concrete girders mainly arise from the effects of

flexure, shear, and bond slip of reinforcement. The relative contribution of these sources of

defonnation to the deflection of reinforced concrete girders depends on the section strength,

the geometry of the cross section, the span to depth ratio of the member, and the type of

excitation. To account for this fact the girder element is decomposed into individual

subelements in the present study. Each subelement represents one of these sources of

defonnation.. -

The same sources of defonnation control the hysteretic behavior of RC columns. In

this case, however, the presence of axial forces becomes a major factor in the description of

the hysteretic behavior. Thus, the effect of axial force on the defonnations due to flexure,

shear, and bond slip needs to be explicitly taken into account in the development of the

different column subelemerits.

Experimental evidence from the hysteretic behavior of beam-column joints

(Viwathanatepa et al. 1979, Beckingsale 1980, Otani et al. 1985) shows' that joint

defonnations arise as a result of the shear transfer in the joint and from bond slip 'of the

reinforcing bars anchored in the joint. While beam column joints can be designed and

detailed such that joint shear distortions remain small, it is not possible to eliminate fixed end

rotations due to bond slip, unless the girder or column reinforcement is detailed so that

yielding will occur a certain distance away from the beam-column interface (AI Haddad and

Wight 1986). The joint element in this study only accounts for the defonnations that arise at

the beam-column or column-footing interface due to reinforcement pull-out. Deformations
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due to shear are presently neglected, but could be readily incorporated in future studies with a

special joint element. Two joint subelements are introduced in this study: (a) the girder joint

element models the fixed end rotation at the girder ends due to pull-out of the girder

reinforcing bars, and is combined with elements which account for other types of deformation

at the interface and along the girder span to form the girder superelement, (b) the column

joint element describes the fixed end rotation at the column ends due to pull out of the

column reinforcing bars. Since columns are not expected to deform much into the post yield

range, except at the base of the building, little slip of column reinforcement is expected at the

beam-column joints, except at the column-foundation interface, where significant pull~out of

reinforcing bars can take place. The column joint element is combined with elements which

account for other types of deformation at the interface and along the column height to form

the column superelement.

Thus, within the scope of this study the moment resisting frame consists of only three

types of superelements:

• a girder superelement,

• a column superelement, and

• a foundation superelement.

This subdivision implies that beam-column joint panel zones remain rigid. If it is

desired to explicitly include the deformations due to shear cracking in beam-column joints, a

panel zone element needs to be added for the purpose.

In reinforced concrete structures subjected to large cyclic deformation reversals, bond

deterioration and shear effects give rise to slippage of reinforcing bars anchored in beam­

column joints. This leads to an interaction between forces and moments acting at the ends of

. ~beams _and columns framing into a particular joint (Filippou et al. 1983). If it is desired to

explicitly account for the interaction between girder and column moments at beam-column

joints, a special joint element needs to be developed. Such interaction is not explicitly

accounted for in the present study. A way of implicitly accounting for this effect is presented

in Section 2.2.3.

Information about the different elements used in the present study is given in the

. following sections. First, the girder superelement is described in detail. A more detailed

description of the spread plasticity and the joint element is contained in the earlier study by

Filippou and Issa (1988). The shear subelement is new and is presented in detail as are the

column and foundation superelements. The chapter concludes with the derivation of the

stiffness matrix of the entire frame structure.
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2.2 Reinforced concrete girder element

In moment resisting frames designed according to current building codes to resist

severe earthquake excitations, inelastic deformations are expected to take place at the ends or

at midspan of girders and at beam-column joints.

The behavior of critical regions in girders is governed by flexure, shear and the

transfer of stresses between reinforcing steel and concrete. When these regions are subjected

to cyclic deformation reversals, considerable stiffness deterioration is observed. This can be

attributed to several factors the most important of which are:

• the concrete cracking and splitting along reinforcing bars,

• the cyclic deterioration of bond between reinforcing steel and surrounding concrete,

• the. shear sliding in regions with cracks running through the depth of the member,

. • .the crushing and spalling of concrete, and

• the Bauschinger effect of reinforcing steel.

These factors are also responsible for the stiffness deterioration in interior and

exterior beam-column joints. In this case, however, the hysteretic behavior of the joints is

governed by the large change in bending moments from one face of the joint to the other that

causes a combination of high shear and bond stresses. Large bending moments at the girder

ends induce yielding of the reinforcement, which, combined with the diagonal cracks induced

by shear, leads to slippage of reinforcing bars in the joint. This manifests itself as bar pull-out

at the. beam-column interface and results in concentrated rotations known as fixed-end

rotations at the girder ends. Experimental studies show that fixed-end rotations due to bond

deterioration in the joint can contribute up to 50% of the overall deflection of beam-column

subassemblages after yielding of the reinforcement (Soleimani 1979).

In addition to fixed-end rotations, the shear stress transfer in the joint leads to

diagonal cracks which give rise to panel zone deformations. In general,. the mechanism of

joint shear resistance is.coupled with the problem of stress transfer between reinforcing steel

and concrete (Park and Paulay 1984). It is possible, however, to design and detail joints so

that the nominal concrete shear stress in the joint remains smaller than a specified limit. This

is the approach followed by current design recommendations (AeI 1985). In this case

diagonal cracking is kept to a minimum and the shear deformation of the panel zone remains

small and can be neglected. By contrast, it is not possible to eliminate fixed-end rotations due

to slippage of reinforcing bars in the joint, except by moving the plastic hinge a certain

distance away from the beam-column interface through special detailing of the reinforcement

(Bertero and Popov 1975, Al Haddad and Wight 1986).
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There IS now considerable experimental evidence showing that the post elastic

response of cyclically loaded ductile beams with conventional detailing of reinforcement can

. be significantly affected by shear deformations in the plastic hinge zones (Celebi and Penzien

1973). This is especially the case in members with low shear span to depth ratio ald. To

account for this effect a relatively simple shear model is developed in this study.

The basic mechanisms of shear transfer are

• direct shear stress transfer in the compression zone of the member,

• shear transfer at the crack due to aggregate interlock,

• shear transfer through dowel action of reinforcement, and

• transfer through shear reinforcement.

cOlu~n <i.
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FIGURE 2.3 DECOMPOSITION OF RC MEMBER INTO DIFFERENT SUBELEMENTS

The shear deformations of plastic hinge regions under cyclic loading are largely due
; i'

to sliding along wide, full depth cracks opened up by large plastic tensile strains in the

longitudinal reinforcement. Shear sliding can be significant even when the maximum

nominal shear stress is quite moderate (Spurr 1984). Inclined shear cracks combine with

flexural cracks and lead to a reduction in the effective shear rigidity of the plastic hinge zone

of the member. The overall shear displacement is the result of the combined effect of the

rotational and sliding displacements of the loosened pieces of concrete. Both, aggregate
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interlock, which is, a function of the crack width, and the dowel action of the longitudinal and

transverse reinforcement contribute to the sliding resistance of the section.

In order to model as accurately as possible the different mechanisms which contribute

to the hysteretic behavior of critical regions in RCgirders, the girder element is decomposed

into several subelementsas shown in Fig. 2.3:

(1) an elastic beam subelement which represents the linear elastic behavior of the girder

before yielding of the reinforcement. The girder is assumed cracked and the pre­

cracking behavior is neglected in this study,

(2) a plastic beam subelement with plastic hinges at the ends; the length of the plastic

hinges is a function of the loading history; this element represents the behavior of the

girder in the post-yielding range,

(3) a joint subelement which accounts for the fixed-end rotations at the beam-column

interface due to bond deterioration and slip of the reinforcement in the joint, and .

(4) a shear subelement which accounts for the shear distortion in the critical regions of

the girder and the shear sliding at the beam-column interface.

Fig. 2.3 shows that the beam-column joint panel zone is considered infinitely rigid. If

. desired, panel zone deformations can be included in the analysis by adding a flexible panel

zone element. Such an element has been developed by Kanaan and Powell (1973) for the

nonlinear analysis of steel structures.

2.2.1 Linear elastic beam subelement

The linear elastic beam subelement represents the flexural behavior of the girder

before yielding of the.reinforcement. Its length is equal to the clear span L of the girder and it

is .assumed to have a constant section stiffness EI along the span. The assumption of a

constant section stiffness along the entire span of the girder is clearly an approximation.

Reinforcement layout typically varies along the girder with different amounts of

reinforcement at the top and.bottom of the cross section. When the bending moments act such

that the top of the section is subjected to tension, the compression zone is rectangular in

shape having a width equal to the width of the web. Part of the slab reinforcement contributes

to the tensile force thus significantly increasing the yield strength of the section, but not

affecting much the stiffness before yielding. When the bending moments act such that the

bottom of the section is subjected to tension, the compression zone is either rectangular or

often T-shaped. It is clear from the above that the effective slab width in tension and

compression needs to be determined, if the strength and stiffness of the girder element is to

be estimated accurately.
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In this study the elastic section stiffness EI is ~et equal to the average of the positive

(tension at the bottom) and negative (tension at the top) section stiffness at the two girder

ends. The elastic section stiffness is determined as the secant stiffness of the moment­

curvature relation at yielding of the tension reinforcement. Only the effect of slab in

compression has been included in determining the strength and stiffness of the girder based

on the effective width specified in ACI 318-83 (ACI 1983). A better model of the effect of

slab in tension and compression has been developed by Pantazopoulou (1987). It should be

noted that girders spanning between interior columns typically have a symmetric arrangement

of reinforcement with respect to the girder midspan. By contrast, exterior girders are likely to

have different amounts of reinforcement at each end. In the latter case the average stiffness is

determined from the positive and negative section stiffness at each end. The approximation of

a constant average section stiffness is certainly unsatisfactory, if it is desired to study the

response of the structure under service loads. In the present study attention is focused on

predicting the response of the structure under large deformation reversals. Such response is

not significantly affected by the stiffness of the structure before yielding. With the

assumption of a constant average section stiffness along the span of the elastic beam

subelement the flexibility matrix with respect to the member chord is given by the well

known expression

(2.1)

2.2.2 Rigid-plastic beam subelement

The rigid plastic beam sUbelement accounts for the inelastic flexural deformation of

the girder after yielding of the reinforcement. Two different plastic subelements are included

in the study:

(a) The first model assumes that all inelastic flexural deformations are concentrated in a

hinge of zero length at each end of the girder. The two hinges are connected by an

infinitely rigid bar to form the concentrated plastic beam subelement. The

combination of the flexibility matrix of this element with that of the elastic

subelement results in the one-component model originally proposed by Giberson

(1974).

(b) The second model accounts for the gradual spread of inelastic flexural deformations

into the girder as a function of loading history. In this an inelastic zone of gradually

increasing length is located at each end of the girder. The two inelastic zones are

connected by an infinitely rigid bar to form the spread plastic beam subelement. The
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combination of the flexib!Iity matrix of this· element with that of the elastic

subelement results in a model similar to that originally proposed by Soleimani (1979).

The effect of shear and bond on the inclination of cracks and on the curvature

distribution in the inelastic zone at the girder ends is approximately taken into account in the

spread plasticity model. Such effects cannot be included in the concentrated plastic hinge

model in a rational way.

a) Concentrated rigid-plastic beam subelement

In the concentrated plastic subelement, the inelastic flexural deformations which take

place at the girder ends after yielding of the reinforcement are represented by a rigid plastic

hinge of zero length. The hinge, which is depicted as a nonlinear spring in Fig. 2.4(a), is

activated when. the moments at the girder ends first exceed yielding. Since all inelastic

flexural deformations are lumped at the plastic hinges at the two ends of the girder and the

elastic flexural deformations are accounted for in the linear elastic beam subelement, the part

of the concentrated plastic subelement which connects the two hinges is infinitely rigid.

a. concentrated plasticity element

e

p+4EIILM

p·4EIIL

b. moment-rotation hysteretic law

plastic

spring \

M.
I

L

rigid bar

plastic
spring

/ M j

FIGURE 2.4 CONCENTRATED PLASTICITY BEAM SUBELEMENT

., .

It can be easily shown that the off-diagonal elements of the flexibility matrix are zero

in this case. The matrix thus reduces to the simple form

[f]PI = [foi 0]
~

(2.2)
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where J; and ~ are the flexibility coefficients of the rotational springs at ends i and j,

respectively. The problem of determining the flexibility of the rotational springs has occupied

many researchers to date. Otani presented a detailed discussion of the problem (Otani 1974).

In order to avoid load path dependency of the flexibility coefficients it is usually assumed that

the bending moments are distributed such that the point of inflection remains fixed during the

entire load history. In most studies to date the point of inflection is assumed to remain fixed

at girder midspan. In this case each half of the member can be viewed as a cantilever beam

(Fig. 2.5). If the effect of gravity loads is neglected, the moment distribution is linear

(Fig. 2.5b). This corresponds to the cantilever beam being loaded with a concentrated load P

. at the tip (Fig. 2.5c).
To determine the flexibility coefficients J; and I j of the concentrated plasticity model

the plastic rotation at the root of the cantilever due to the actual curvature distribution is first

established for different values of the load P. This is rather straightforward, if the moment­

curvature relation (M- q» is known for all sections along the cantilever span. To simplify the

ca.lculation the (M-q» relation is assumed to be bilinear with a single post-yield stiffness

(Figs. 2.5d and 2.5e). In spite of the approximations made in Fig. 2.5 the procedure results in

a nonlinear flexibility coefficient of the equivalent concentrated spring, because of the

gradual spread of inelastic deformations into the cantilever beam. To simplify the moment­

rotation relation of the equivalent end spring the actual behavior is replaced by a bilinear

moment-rotation relation with constant post-yield stiffness as shown in Fig. 2.4(b). The post­

yield stiffness is calculated by equating the plastic rotations for the case that the section at the

root of the cantilever reaches the ultimate moment capacity (Fig. 2.5d). In this case the post­
yield stiffness k,P of the equivalent rotational spring is

Mu-M,.
kl'P = . (2.3)

Spi

where. Mu is the ultimate and My the yield moment of the cantilever beam, respectively. Spi

is the plastic rotation of the equivalent concentrated spring. This is equal to the plastic

rotation at the root of the cantilever beam which can be readily determined from the curvature

distribution in Fig. 2.5(e).
Eq. (2.3) results in an infinite spring stiffness k,p for the case that the end moment

does not exceed the yield moment. This is in agreement with the definition of a concentrated

rigid-plastic spring subelement which only accounts for the inelastic girder deformations after

yielding of the reinforcement.
It is customary to express the rotational spring stiffness kl'p in relation to the stiffness

term k l ) of the elastic stiffness matrix of a prismatic beam element. Thus
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(2.4)

The flexibility matrix of the concentrated plastic beam subelement can now be written

by considering Eq. (2.5) at ends i and} of the element.

(2.5)

L [1.5.Y;
[f]I" =6. EI . 0 (2.6)

The coefficients Yi and Yj vary as a function of the,moment-rotation history of the

rotational springs. The moment-rotation relation of the springs is completely defined by two

envelope curves which represent the behavior of the springs under positive and negative

monotonic loading and a hysteretic model which describes the behavior of the springs under

cyclic load reversals (Fig. 2.4b).

The monotonic envelope curves are represented by a bilinear relation which has

infinite stiffness for moments not exceeding the yield moment of the end section and a single

a.girder
loading

b. moment
distribution

c.cantilever
idealization

d. moment
distribution

e. curvature
distribution

FIGURE 2.5 DERIVATION OF PARAMETERS OF CONCENTRATED

PLASTICITY SUBELEMENT
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post-yield stiffness for moments larger than the yield moment. The yield moment M; when

the bottom reinforcement is subjected to tension is different from the yield moment M; when

the top reinforcement is subjected to tension. The post-yield stiffness p+ . 4E/1L for positive

bending moments is also assumed to be different from the post-yield stiffness p- .4EI/L for

negative bending moments.

The hysteretic behavior of the rotational springs under cyclic moment reversals is

described by Clough's hysteretic model shown in Fig. 2.4(b) (Clough et al. 1965). This model

is characterized by the following hysteretic rules:

(a) The unloading stiffness is equal to the initial stiffness before yielding. Since the

behavior of the spring is rigid-plastic, this means that the unloading stiffness is

infinite and the spring is deactivated during unloading.

(b) Reloading takes place along a line which connects the point at which unloading was

completed with the point on the envelope curve in the opposite direction of loading

with the maximum previous excursion into the inelastic range.

q>,e

current model

Clough's model

FIGURE 2.6 HYSTERETIC BEHAVIOR OF CURRENT MODEL VS. CLOUGH'S MODEL

The advantage of this model lies in its computational simplicity combined with

reasonable accuracy in representing the hysteretic response of RC critical regions whose

behavior is controlled by bending. One of the limitations of this model arises from the very

steep unloading slope, as was already pointed out by Saiidi (1982).

It should be mentioned here that in the original model reloading after partial

unloading takes place along the line which connects the point at which unloading stopped
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. with the point on the envelope curve in the same direction of loading with the largest

previous inelastic deformation (line a-c in Fig. 2.6). Since this behavior is not realistic, the

hysteretic model', has been modified so that reloading after partial unloading follows an

M.
I

C
rigid bar

z.
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L

a. spread plasticity element

M.
J

)

M
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b. hysteretic moment-curvature relation

FIGURE 2.7 SPREAD RIGID PLASTIC BEAM SUBELEMENT

infinite slope until reaching the reloading curve which connects the last point of complete

unloading with the point on the envelope curve with maximum previous inelastic

deformation (line a-b in Fig. 2.6). Upon reaching point .bthe moment-rotation relation

follows the last reloading curve (line b-c in Fig. 2.6).
Based on the hysteretic model of Fig. 2.4(b) the coefficients Yi and Yj assume the

following values:

• Y= 0 during initial loading and unloading.

• Y= p during strain hardening, where p' 4EI/L is the post-yield stiffness of the

moment-rotation relation of the concentrated rotational springs.

• Y= 1/s during reloading where s· 4EI/L is the reloading stiffness of the moment­

rotation relation of the concentrated rotational springs.

Since the linear elastic and concentrated plastic beam subelements are connected in

series, the flexibility matrix of the combined element is obtained by simply adding the

flexibility matrices of the two subelements (Eqs. 2.1 and 2.6). Inverting the flexibility matrix

of the combined element results in the stiffness matrix of the one-component model, as

originally proposed by Giberson (1974).

The main advantage of the concentrated plasticity model is its simplicity and

computational efficiency. It has, however, some serious limitations: most importantly it does
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not account for the gradual spread of inelastic deformations into the girder. This results in an

underestimation of stiffness in the early stages of inelastic deformation. Another limitation of

the model lies in the assumption that the point of inflection is fixed at midspan during the

entire response history. This is not realistic, particularly, if one considers that the yield

moments at the ends of a girder bent in double curvature are not equal, because of unequal

amounts of top and bottom reinforcement.

b) Spread rigid-plastic beam subelement

A more refined model of the nonlinear behavior of RC girders was first proposed by

Soleimani (1979). A slightly different formulation of the original model was first presented

by Filippou and Issa (1988) and is summarized here for the sake of completeness.

Since the deformations of the girder before yielding of the reinforcement are

accounted for in the elastic beam subelement, the spread rigid-plastic subelement only

accounts for the inelastic girder deformations which take place when the end moments

exceed the yield moment.

The spread rigid-plastic beam subelement consists of two regions of finite length

where the plastic deformations of the girder take place. These regions are connected by an

infinitely rigid bar (Fig. 2.7a). The length of each plastic zone varies during the response

history as a function of the moment distribution in the girder. The model thus .accounts for

the gradual spread of inelastic deformations into the girder and the shift of the inflection

point during the response time history.

In the following only the salient features of the spread plasticity girder subelement are

presented. More details can be found in Filippou and Issa (.1988).

In presenting the features of the spread plastic subelement and the approximations

involved in its development it is instructive to look at the case of a cantilever beam loaded by

a concentrated .load at its tip (Fig. 2.8a). The moment distribution in the cantilever beam

(Fig. 2.8b) is identical to the moment distribution caused by lateral loads in the girders of a

moment resisting frame between the point of inflection and the beam-column interface, if the

I ~ffect of gravity loads is neglected (Fig. 2.1).
.. .' \.

We are interested in calculating the load-displacement relation at the tip of the

cantilever beam after yielding of the reinforcement at the end section. The moment

distribution in this case is shown in Fig. 2.8(b). This gives rise to the curvature distribution in

Fig. 2.8(c). Curvatures are rather irregular, because of the effects of cracking and tension

stiffening between cracks. The strains in the top and bottom reinforcing steel are also affected

by the presence of shear stresses in the beam. It is difficult to account for all these effects
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when developing simple models of the inelastic behavior of RC members. Several solutions

have been proposed in the past. Some researchers have proposed beam shape functions with

special weighting schemes which account for the concentration of inelastic deformations at

the ends of the girder. Since the shape functions do not change with the response time

history, these proposals represent generalizations of the point hinge models and share many

of their limitations. Other researchers have subdivided the beam into a number of slices along

the span. This approach requires tracing the behavior of each slice during the response time

history and is rather costly for nonlinear dynamic analyses of multistory structures. Even so,

many of the aforementioned effects of bond deterioration and shear are not taken into

account.
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FIGURE 2.8 DEVELOPMENT OF SPREAD PLASTICITY MODEL IN THE CASE OF A

CANTILEVER BEAM LOADED BY A CONCENTRATED LOAD AT THE TIP
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A possible approximation, which lies between the extremes of point hinge models, on

the one hand, and multi-slice or fiber models, on the other, consists of idealizing the

curvature distribution as shown in Fig. 2.8(d). This approximation is based on the assumption

of an average section stiffness c· EI along the plastic zone of the cantilever beam, where EI

is the secant stiffness of the end section at yielding of the reinforcement. Subtracting the

elastic curvatures which are already accounted for in the elastic subelement (Fig. 2.8e) results

in the curvature distribution in Fig. 2.8(f). This curvature distribution lies at the heart of the

spread plastic subelement. The assumption of an average effective stiffness of the plastic

zone is of considerable importance for the computational efficiency of the model, because it

leads to a symmetric stiffnes,s matrix (Filippou and Issa 1988).
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FIGURE,2.9 AN UNUSUALLY LARGE SHIFT IN THE POINT OF INFLECTION

DURING A GIVEN LOAD STEP CAUSES UNLOADING

ALONG SOME PORTION OF THE PLASTIC ZONE LENGTH
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The quality of the approximation of an average section stiffness c· EI along the

plastic zone of the subelement depends on the value of c. The determination of the value of c

is relatively simple in the case of a cantilever beam under monotonically increasing load. By

neglecting the effect of tension stiffening and assuming that all plastic zone sections exhibit

the same bilinear moment-curvature relation we can readily derive c (Fig. 2.8t). Under a

monotonic load P which gives rise to the moment distribution in Fig. 2.8b all plastic zone

sections are in the strain-hardening range and have the same stiffness. In this case c· EI is

simply equal to the post-yield stiffness of the bilinear moment-curvature relation. It is

important to note that the reinforcement layout will. not typically vary along the plastic zone

length, as long as the zone does not extend beyond the quarter span point. Thus the

assumption that all sections in the beam plastic zone possess the same moment-curvature

relation is quite accurate.

The determination of the value of c becomes more involved, if not impossible, if we

consider the effect of load reversals. A number of complications arise in this case:

(a:) The point of inflection shifts from one load step to the next. In this case part of the

plastic zone is in the loading stage, while another part is unloading (Fig. 2.9).

(b) Different sections in the plastic zone exhibit a different amount of stiffness

degradation during reloading. This case is shown in Fig. 2.10 in its simplest form. The

cantilever beam in Fig. 2.8 is first loaded in one direction so that part of the beam

enters into the strain hardening range. The load at the tip is then reversed. Upon

loading in the opposite direction sections along the inelastic zone exhibit different

amounts of stiffness deterioration. While it is possible to derive a closed form

expression for the curvature distribution in the simple case of Fig. 2.10 (dashed line),

such an endeavor is fruitless after the second reloading cycle, even for a bilinear

moment-curvature relation.

To accurately represent the hysteretic behavior of the plastic zone during a complex

load history requires tracing the response of each section during the entire response time

history. Since this is undesirable from the standpoint of computational efficiency, the

following key assumptions are made in the spread rigid-plastic zone subelement:

(1) The state of the entire plastic zone is controlled by the state of the section at the beam-

column interface. In Fig. 2.9 this means that the entire plastic zone is in the loading

stage. This· assumption gives rise to a discrepancy between actual and assumed

. curvature distribution, as shown in Fig. 2.9. This error can be minimized by reducing

the size of the load increment and thus avoiding drastic shifts in the point of inflection

during a given load step.
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(2) The stiffness of the plastic zone is represented by an average effective stiffness c· EI

which depends on the stiffness of the section at the beam-column interface.

These two key assumptions associate the behavior of the entire plastic zone with that

of the section at the beam-column interface. This reduces substantially the computational

effort required for describing the hysteretic behavior of the spread plastic subelement. Instead

of a number of sections along the plastic zone, the load history needs to be traced at the two

end sections of the element only. In addition, the model has to keep track of the length of the

plastic zone at the two ends of the element. The second assumption has the added advantage

that it results in a symmetric stiffness matrix.

Since the effective s~iffness c· EI of the plastic zone depends on the behavior of the

section at the beam-column interface, a hysteretic moment-curvature relation of the end

section is needed. This relation is based on two bilinear envelope curves (Fig. 2.7b). Under

positive bending moments (tension at the bottom) the section yields at a moment equal to
M:, while under negative moments (tension at the top) the yield moment is M;. The post-

yield stiffness p+ . EI for positive bending moments is also assumed to be different from the

post-yield stiffness p-' EI under negative bending moments, as shown in Fig. 2.7b. To

describe the behavior of the section under cyclic moment reversals the model originally

proposed by Clough et at. (1965) is adopted in this study. The original model has been

modified in the same way as described for the moment-rotation relation of the concentrated

rigid'-plastic subelement (Fig. 2.6b).

Using this model to describe the hysteretic moment-curvature relation of the section

at the beam-column interface the value of c is determined as follows:

(1) During strain-hardening of the end section we can assume according to (1) that the

entire plastic zone is in the strain-hardening range. Thus c =p where p' EI is the

post-yield stiffness of the moment-curvature relation. c thus assumes two different

values p+ or p- depending on the sign of the end moment.

(2) During unloading of the. end section it is assumed that the entire plastic zone is

unloading. Since elastic unloading is accounted for by the elastic subelement, this

implies that the plastic zone is infinitely rigid and c =00.

(3)' The complications which arise during reloading have already been described. Fig.

2.10 shows that each section has a different reloading stiffness, which is a function of

the section's previous response history. In order to limit the number of sections at

which the response history needs to be traced the second key assumption of the spread

plastic subelement is introduced: it is assumed that the effective stiffness of the plastic

zone c· EI is equal to the average of the section stiffness at the two ends of the plastic
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zone. Since one end is elastic, this implies that only the response time history of the

section at the beam-column interface needs to be traced. In this case c is equal to
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FIGURE 2.10 VARIATION OF STIFFNESS DETERIORATION ALONG THE PLASTIC ZONE

LENGTH DURING FIRST UNLOADING AND RELOADING

where So . EI is the reloading stiffness of the section at the beam-column interrace (Fig. 2.10).

The effect of gravity loads has so far not been accounted for. This effect is considered

in the present study in an approximate manner. The girder end moments and shear forces due

to incremental lateral load analysis are added to the end moments and corresponding shear

forces resulting from a static analysis of the structure under gravity loads. The plastic zone
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length at each load step is detennined from these end moments and shear forces under the

assumption that the shear force remains constant along the entire plastic zone. This implies

that the actual gravity load pattern is approximated by the third point loading shown in Fig.

2.11.

This approximation has the computational advantage that the calculation of the
current length of the plastic zone Zc can be based on the bending moment and shear force at

the girder end, which are readily available. The plastic zone length Zc is then calculated

according to (Fig. 2.11 b)

(2.7)

a.

b. zc=
M. My

V

My
yielding zone

v:
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M -------
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FIGURE 2.11 CALCULATION OF PLASTIC ZONE LENGTH IN TYPICAL CASES

where M and V are the current values of bending moment and shear force, respectively, at the

end of the girder. Eq. (2.7) results in very large values of the plastic zone length if the value

of the end shear force is very small. This can happen in the upper stories of high-rise frames

where the end shear forces due to lateral loads are small and sometimes act opposite to the

shear forces due to gravity loads. In such cases yielding of the girders is, however, limited so

that this does not seem to be a real problem in practical cases. Similarly, Eq. (2.7) does not

make sense, if the value of the shear force becomes negative (Fig. 2.11c). To prevent
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unrealistically large values of the plastic zone length in these cases an upper limit zmax IS

placed on the extent of the plastic zone (Fig. 2.11c):

Zmax =0.25 . L (2.8)

where L is the clear span of the girder. The limit on the extent of the plastic zone IS

particularly important on account of the likely change in the reinforcement layout that takes

place at the quarter span point.

Since the calculation of the plastic zone length depends on the bending moments and

shear forces at the girder ends, the spread plastic subelement is unable to recognize yielding

that might take place along the girder span (Fig. 2.11d). Plastic zones can, therefore, only

form at the girder ends. If hinges are expected to form along the span, then the girder has to

be subdivided into several such elements along its length.

It should be noted here that no increase of the current plastic zone length will occur in

the extreme case depicted in Fig. 2.12. Consistent with the first key assumption of the model

that the behavior of the plastic zone is controlled by the behavior of the corresponding end

section, spreading of the plastic zone can only take place while the end section is in the

strain-hardening range. Since the end section is unloading in the case of Fig. 2: 12, the further

extension of the plastic zone length due to considerable decrease in the magnitude of the

shear force from one step to the next will not be detected by the model. It should be

mentioned, however, that the case. depicted in Fig. 2.12 is highly unlikely, when using a

reasonably small load step size.

M
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FIGURE 2.12 SPREAD OF THE PLASTIC ZONE WHILE END SECTION IS

UNLOADING (NOT ACCOUNTED FOR IN THE MODEL)
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The flexibility matrix of the spread plastic subelement as derived in Filippou and Issa

(1988) takes the general form

(2.9)

where

and

with k =EI and

~I = 6~ .{2"(; '[I-(1-~i)3)+2"(j .~~}

/22 = ~ .{2"(1 .[1-(1-~jf]+2"(i .~;}

~2 = ~ .[-Yi .(3~; -2~n-"(j '(3~~ -2~~)]

~=~
L

1
-=y
c

(2.10)

(2.11 )

(2.12)

It is interesting to note here that the off-diagonal terms ~2 and /21 of the flexibility

matrix of the spread plastic subelement are not zero, as is the case in the concentrated

plasticity element. This results in coupling between the moments which act at the ends of the

element.

2.2.3 Joint subelement

The jointsubelement accounts for the fixed-end rotations which arise at the beam­

column interface of RC members due to bond deterioration and slippage of reinforcement in

the joint and in the girder region adjacent to the joint. Detailed models of this phenomenon

have been proposed (Filippou et al. 1983, Filippou 1985). The model used in this study is a

simple yet sufficiently accurate phenomenological description of the behavior of beam­

column joints observed in previous experimental and analytical studies. The proposed model

consists of a concentrated rotational spring located at each girder end. The two springs are

connected by an infinitely rigid bar to form the joint subelement (Figs. 2.3 and 2.13a). The

moment-rotation relation of the rotational springs is derived using the detailed model by
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Filippou et al. (1983) which accounts for the geometry, material properties and reinforcement

layout of the connection. A different moment-rotation relation can be prescribed at each

connection.

a. beam-column joint element

rotational
spring

/ Mi
rigid bar

L

rotational

sp:~ \

S,Ft--_-

I,P

e

b. hysteretic moment-rotation relation

FIGURE 2.13 BEAM-COLUMN JOINT SUBELEMENT

The moment-rotation relation of the rotational springs of the joint subelement is based

on a bilinear elastic-strain hardening envelope curve (Fig; 2.13b). FoJlowing common design

practice the area of the bottom reinforcing bars is typicaJly less than the area of the top

reinforcing bars; therefore two envelope curves need to be specified: one pertaining to the

"strong side" of the end section, when the top reinforcing bars are subjected to tension, and

one pertaining to the "weak side", when the bottom bars are subjected to tension. These

envelope curves exhibit different pre-and post':yield stiffness under positive and negative
bending moments. NaturaJly, the yield moment M; under positive bending moments is

different from the yield moment M; under negative bending moments (Fig. 2.13b).

The envelope curves are established with the aid of the joint model in Filippou et al.

(1983) once the dimensions of a particular joint and the arrangement of the reinforcement are

known. This process takes place as foJlows: the beam-column joint model which represents a

particular connection of the frame under investigation is subjected to monotonically

increasing girder end moments. These give rise to concentrated rotations due to reinforcing

bar pull-out at the beam-column interface. In the case of interior joints a single loading cycle

permits the determination of envelope curves under both positive and negative end moments.

This happens, because bending moments caused by lateral loads act at the girder ends of an

interior joint so that the bottom bars are pulled at one beam-column interface and pushed at

the other. In the case of exterior joints two different load cases of monotonically increasing
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girder end moments are required to establish the envelope curves under positive and negative

end moments: in one case the bottom bars of the end section are subjected to tension, while

in the other the top bars are subjected to tension.

The study by Filippou et al. (1983) concluded that no unique envelope curve exists in

the case of interior and exterior joints. Instead, the envelope curve depends on the load

history. Since the elastic stiffness and yield moment do not depend on the load history, this

essentially implies that the strain hardening or possibly strain softening slope of the bilinear

envelope curve of the rotational springs has to be established as a function of load history.

Thus, in order to establish the envelope curve for a particular joint, the load history of this

joint must be known in advance. This effect is, however, negligible in properly designed

joints and is not taken into account in the present study. If considerable bond deterioration

and slippage of reinforcement is expected in the joints of the structure, the effect of load

history on the envelope curve of the joint subelement should be taken into account.

The flexibility matrix of the joint subelement takes the simple form

[
f 0]

[ftnt =.~ ~ (2.13)

where .f and ~ are the flexibility coefficients of the concentrated rotational springs at ends i

andj, respectively. These coefficients depend on the monotonic envelope curves of each joint

and the model used to represent the hysteretic behavior.

The hysteretic behavior of the rotational springs is described by a special hysteretic

model proposed by Filippou (1983). It is derived by modifying Clough's model to account for

observations of beam-column joint behavior made during experimental and analytical studies.

The rules of this hysteretic model can be summarized as follows (Fig. 2.13b):

(1) unloading takes place along a line parallel to the initial elastic stiffness under

moments acting in the same direction (line B-C parallel to O-A, line K-L, in tum,

parallel to O-E)

(2) reloading on the "weak side" of the joint (G-H) occurs along the line which connects

... the most recent point of zero moment (G) to the load reversal point. on the envelope

curve which has the largest previously imposed fixed-end rotation (H),

(3) reloading on the "strong side" of the joint (Q-R-S) follows initially a line Q-R which

connects the most recent point of zero moment (point Q) to a point on the unloading

curve which initiates at the load reversal point with largest previous fixed-end rotation

(point R). This point has a moment equal to the yield moment of the "weak side" of
the joint (M; in Fig. 2. 13b). After reaching this point reloading proceeds along the

unloading curve (R-S),
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FIGURE 2.14 MOMENT-ROTATION RELATION AT BEAM-COLUMN JOINT

INTERFACE (FILIPPOU ET At. 1983)

(4) incomplete reloading followed by unloading and reloading in the opposite direction

takes place along the path J-K-L-M,

(5) incomplete reloading followed by incompiete unloading and reloading in the same

direction takes place along the path L-M-N-O-P.

"These hysteretic rules are derived from observations of the behavior of joints under

cyclic load reversals made during experimental and analytical studies (Filippou ef al.

1983) (Fig. 2.14):

(a) no pinching is observed in the hysteretic moment-rotation relation when the bottom

reinforcing layer is subjected to tension ("weak side"). In this case the beam-column

interface crack remains open through the depth of the end section during the entire

moment reversal process. The girder end moment is thus resisted by a force couple in

the top and bottom reinforcing steel. This observation is reflected in ilie second

hysteretic rule,

(b) when the "top reinforcing layer is subjected to tension ("strong side"), the moment

resisted bY' the section at the beam-column interface cannot exceed the moment

carried by the reinforcement with the bottom reinforcing bars yielding in

compression, as long as the crack remains open. This moment is approximately equal

to the yield moment in the opposite direction of bending ("weak side") .. Since the

crack closes when the previously imposed pull-out of the bottom reinforcing bars is
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overcome, crack closure takes place approximately when the maximum previously

imposed fixed-end rotation is exceeded. Once the crack closes, the resisting moment

quickly reaches the envelope curve, since the concrete in contact now contributes a

significant portion of the compressive force at the section. This observation is

reflected in the third hysteretic rule,

(c) it is apparent from the results by Filippou et al. (1983) that the unloading stiffness of

the joint moment~rotation relation decreases with increasing deformation. Since,

however, no general expression describing the observed decrease in unloading

stiffness could be deduced, the simple hysteretic rule that the unloading stiffness

remains equal to the initial elastic stiffness is postulated in the present model.

The proposed rules describe well the observed hysteretic behavior of beam-column

joints while retaining simplicity and computational efficiency. More refined models of the

hysteretic behavior of beam-column joints could be readily incorporated into the girder

superelement by simply replacing the hysteretic law of the joint subelement.

It should be noted here that the proposed joint subelement does not explicitly account

for the interaction between the moments and forces acting at the girder ends of interior beam­

column joints. This interaction is small as long as bond along the reinforcing bars anchored in

the joint is not completely destroyed (Filippou et al. 1983). It only becomes pronounced after

.many severe deformation reversals which are unlikely to occur in well proportioned frames.

This interaction is, however, implicitly accounted for in the present model, since the

parameters of the envelope curves and the derivation of the hysteretic rules are based on the

refined model by Filippou et al. (1983), which explicitly accounts for this interaction. At the

same time the present model retains great simplicity in that the flexibility coefficients of each

rotational spring in the frame can be derived independently.

2.2.4 Girder shear subeJement

The girder shear subelement accounts for the shear distortion of the inelastic zone of

the girder as well as the shear sliding at the beam column interface. Different models of shear

beh~vior have been proposed in the literature (Celebi and Penzien 1973, Spurr 1984, Ozcebe

. arid Saatcioglu 1989, Soroushian and Sim 1989). It is not economical to model shear

behavior in its full complexity in a frame model developed for the dynamic response analysis

of multistory frame structures. Practical limitations are imposed by the scope of the frame

element idealization used in the present study and by the lack of quantitative information

about the response of severely cracked concrete under post-yield load reversals. Moreover,

the shear response is generally secondary to the flexural response in typical building frame



38 CHAPTER 2

members and, consequently, the same degree of accuracy as for the flexural contribution is

not justified for shear.

shear spring

Rigid bar

L

shear spring

~

~I

FIGURE 2.15 GIRDER SHEAR SUBELEMENT

The model used in this study is a simple phenomenological description of the shear

distortion behavior of reinforced concrete girders subjected to severe cyclic loading. The

proposed model consists of a concentrated translational spring of zero dimension located at

each girder end. The two springs are connected by an infinitely rigid bar to form the girder

shear subelement (Fig. 2.15). It is computationally convenient to express the shear distortion

as a function of the end moment

H'hr = [fl.hr . M

where the flexibility matrix of the girder shear subelement [flhr takes the simple form

(2.14)

where f and ~ are the flexibility ·coefficients of the equivalent concentrated rotational

springs at ends i and j, respectively. These coefficients depend on the monotonic envelope

curve and the model used to describe the hysteretic behavior.

The derivation of the monotonic envelope curve is explained with the aid of

Figs. 2.16-2.19.. The moment distribution in the lower story of a typical moment resisting

frame subjected to large lateral loads is shown in Fig. 2.1. If the inflection point is assumed at

girder midspan and the effect of gravity loads is neglected, as is the case in most studies to

date (Banon et al. 1981), the girder moment and shear diagrams are as shown in Figs. 2.16(a)

and (b), respectively. The shear force V which will give rise to end moment M is given by the

expression V = MjO.5L where L is the clear span of the girder. Clearly, the shear force is
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directly related to the end moment in this case. Assuming that the point of inflection remains

fixed at the girder midspan and neglecting the effect of gravity loads leads to a constant ratio

between end moment and shear force. Therefore, the shear deformation can be expressed as a

function of the end moment. Since the point of inflection is located at the girder midspan,

each half of the member can be viewed as a cantilever beam (Figs. 2.16c and 2.16d).

Subjecting the cantilever beam to a concentrated load at the tip in Fig. 2.17(a) results in the

shear force diagram in Fig. 2.17(b). The -shear deformations are distributed according to

Figs. 2.17(c) and (d).

M

a. moment diagram

b. shear diagram

c. moment along
(equivalent cantilever)

d. shear
(equivalent cantilever)

M

l'j%i~(JC(!0',,¥.r:1~tirjl_

,
V=M/O.5l

FIGURE 2.16 MOMENT AND SHEAR DIAGRAM OF SHEAR SUBELEMENT

The total shear distortion is found by integration of the shearing strains along the

cantilever span

o =J V dx
.\hr G(x). A*

where G is the shear modulus of concrete and A * is the effective shear area of the girder.
Since M = (0. 5L)· V

° =~J M(x) dx
.\hr L G(x)· A*

The relation between the lumped values of O'\'hr and S,"hr is schematically shown in Fig. 2.18:
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Thus

e ·L(5 = shr
shr 2

e =~f M(x) dx
shr L2 G(x) . A'

e =4Mf 1 dx
shr L2 G(x).A"
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FIGURE 2.17 SHEAR DISTORTION DISTRIBUTION
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Before the fonnation of flexural or diagonal cracks, the behavior of the member can be

described with sufficient accuracy on the basis of the theory of elasticity. The shear modulus

of concrete can be derived from the well known relationship

G= E
2(1 + v)

where E is Young's modulus of concrete and V is Poisson's ratio.

After diagonal cracking the shear force-shear distortion relation under monotonic

loading can be derived either with the method proposed by Kiistti (1973) or on the basis of

the compression field theory deveioped by Collins and Mitchell (1980). The latter method is

used in this study.

In describing the shear behavior under cyclic load reversals a hysteretic model is

needed. The shear hysteretic model for general inelastic section analysis in this study is

primarily directed at representing the aggregate interlock and the interaction of shear forces

with the opening and closing of the cracks.

The stiffness degradation model proposed by Clough et al. (1965) cannot be used for

the description of the hysteretic shear behavior. In general, the stiffness reduction depends

primarily on the magnitude of inelastic load reversals and the number of post-yield load

cycles. It is reported by Celebi and Penzien (1973) that the area enclosed by the hysteresis

loops of a beam which is cycled a few times at the same displacement ductility is

successively decreased.

1-----,:1:5I shear
8shear
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FIGURE 2.18 SCHEMATIC DIAGRAM OF SHEAR SUBELEMENT DEFORMATION
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Typical shear force-defonnation response curves for a reinforced concrete beam with

a small shear span to depth ratio are shown in Fig. 2.19 (Celebi and Penzien 1973). It is seen

that the pinched shape of the hysteresis loops develops only after the first post-yield load

cycle.

The proposed hysteretic model of shear force-shear defonnation relation is derived

from experimental results of beams subjected to flexure and shear. This model is based on a

set of rules which are shown in Fig. 2.20.

(l) A bilinear monotonic envelope curve (curve ABC in Fig. 2.20) is used in this study.

A trilinear envelope curve which includes the shear behavior before cracking is not

deemed important, since emphasis is placed on the post-yield behavior of RC frames

in this study.
(2) The model exhibits a constant initial stiffness until reaching the yield moment My of

the end section.

(3) Yielding of the shear spring is assumed to take place at the same time as flexural

yielding. The. assumption of simultaneous shear and flexural yielding is supported by

experimental evidence (Ozcebe and Saatcioglu 1989).

(4) Unloading takes place along a line FG parallel to the initial stiffness.
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FIGURE 2.19 SHEAR FORCE-SHEAR DISTORTION RELATION

(FROM CELEBI AND PENZIEN 1973)

(5) After unloading is completed and upon reloading in the opposite direction, there is a

significant reduction in stiffness until the crack closes. In this study the point at which
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the crack closes (point 0) is determined according to suggestions of Ozcebe and

Saatcioglu (1989):

(a) If the member has not been loaded beyond the cracking load Mer in the direction

of reloading, the initial reloading path aims at the cracking load Mer on the

primary curve (Point H) and then follows the primary curve. Mer is the bending

moment at which the principal tensile stress is equal to 2..[l.
(b) If Mer has been exceeded in the direction of reloading during previous cycles,

reloading up to a moment equal to Mer (point 0) follows a straight line passing

through a point defined by (8 inax , At) where 8max is the maximum previous

equivalent shear rotation and

-C"all!ru

M • M 9,= max' e

8 y is the rotation at yield, and Mmax is the maximum previous moment in the

direction of reloading, respectively. Parameter c1 varies over the small range

from 0.20 to 0.35.

M
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FIGURE 2.20 HYSTERETIC BEHAVIOR OF SHEAR SUBELEMENT

(c) Reloading beyond Mer follows a straight line towards point S on the primary

envelope curve. Point S is determined by multiplying the maximum previous

rotation 8max in the same direction of loading by a factor c. Thus a new point of
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maximum rotation towards which reloading occurs is defined on the envelope

curve as follows:

e:ax=c·Hrrnu

While Banon et al. (1981) have proposed a value of c = 1.25 the correlations of

the present study suggest a value of c =1.0.

No strength degradation occurs in the case of cycles that do not cross the zero

rotation axis (U-V-W-X).

(6) In case a change in load direction occurs during unloading, reloading takes place with

a slope equal to the elastic stiffness until the point at which unloading initiated is

reached (C-D-E), (L-M-N), (P-Q-R).

The branches of hysteretic behavior between points K and 0 and between points G

and H are soft central regions where shear sliding occurs under a small shear force along

open full depth cracks. After the cracks close, there is a sharp increase in the shear stiffness

(O-S, H-I). This is followed by a region of small shear stiffness under large rotation values

(8-T, I-J in Fig. 2.20). This stiffness reduction arises from the opening of major inclined

flexural-shear cracks caused by increasing plastic tensile strains in the longitudinal

reinforcement.

2.2.5 Girder superelement stiffness matrix

The elastic, rigid plastic, joint, and shear subelements are connected in series to form

the girder superelement (Fig. 2.3). If needed, additional sources of inelastic behavior can be

added in separate subelements in the same manner. Since the constituent subelements are
connected in series, the flexibility matrix of the girder 'superelement [F] can be obtained by. g

simply adding the flexibility matrices of the constituent subelements. Using the convention

that upper case letters denote quantities associated with the girder superelement while lower

case letters denote quantities associated with the individual subelements we obtain

(2.15)

[fL denotes the flexibility matrix of the elastic subelement given by Eq. 2.1. [f]I" denotes the

flexibility matrix of either the concentrated rigid plastic (Eq. 2.6) or the spread rigid-plastic
subelement (Eqs. 2.9-2. I2). [f]jnl denotes the flexibility matrix of the joint subelement given

by Eq. 2.13. Finally, [fLr denotes the fleXibility matrix of the girder shear subelement given

by Eq. 2.14.
It is important to note that the flexibility coefficients in [f]I'/' [ft., and [fl.hr change,

because of nonlinearities associated with the moment-curvatJ.lre or moment-rotation relation
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and the change of the plastic zone length. Thus [f]p/' [ftnr and [fL, in Eq. 2.15 represent the

current tangent flexibility matrices of the rigid plastic, joint and shear subelement,

respectively.
The flexibility matrix of the girder superelement [F]K is inverted to obtain the current

stiffness matrix [K]K in local coordinates. This is then transformed to global coordinates

using the transformation matrix [a]h

(2.16)

(2.17a)

where [K]h is the tangent stiffness matrix in global coordinates and [a]h expresses the

transformation of superelement local moments and rotations to nodal forces and

displacements in the global coordinate system (Fig. 2.21)

8 j

{8 1}=[a] . 8 j

8
2

h v
j

where

Mj

~j =[a]; .{::}

~

(2.17b)

[

1+ ej

[a]h = e.
I

b.
e-....!...
j- L

lJL -1/L].
1/L -l/L

(2.18)

(2.19a)

(2.19b)
b

e. =....l..
J L

bi and bj is equal to half the width of the left and right end beam-column joint, respectively.
, "

L is the clear span of the member (Fig. 2.21).
By inverting the sum of the flexibility matrices of the elastic [fL and the concentrated

plastic subelement [f]p/ given by Eqs. 2.1 and 2.6, respectively, the stiffness matrix of the

one-component model as originally proposed by Giberson (1974) results. The addition of the
flexibility matrices of the elastic [fL and the spread plastic. subelement [f]p/ given by Eqs.
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2.1 and 2.10, respectively, yields the flexibility matrix of the spread plasticity model

proposed by Soleimani (1979).
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FIGURE 2.21 TRANSFORMATION OF FORCES AND MOMENTS BETWEEN

LOCAL AND GLOBAL COORDINATE SYSTEM

2.3 Reinforced concrete column element

In designing reinforced concrete columns to resist severe earthquake excitations,

designers favor the strong column-weak girder design concept which aims at dissipating

energy in a flexural mode in a large number of hinges in the girders of the structure. Modern

design codes attempt to ensure such behavior by requiring that the sum of the moment

strengths of columns framing into a beam-column connection exceed the sum of the moment

strengths of the girders framing into the same connection along each principal plane of the

frame. This may not be sufficient to prevent the formation of plastic hinges in the columns,

because of the following factors:

(1) The actual moment strength of the girders will be higher than the nominal strength,

because the nominal yield strength of reinforcing steel underestimates the actual

strength. Strain hardening under large curvatures will further increase the actual girder

strength.
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(2) The moment distribution in the columns of moment resisting frames under dynamic

loading can be very different from that assumed in design. Points of contraflexure

may move away from the column mid-height during the earthquake response time

history. This causes moments at the end of particular columns to be higher than those

under static loading conditions. Bending moment distributions in columns similar to

those shown in Fig. 2.22 are possible (Kelley 1974). In the extreme case that the point

of inflection lies outside the column the strength of one column section has to exceed

the sum of the moment strengths of the girders framing into the connection.

(3) . In the design of structures seismic loading is assumed to act in the direction of one

principal axis of the structure at a time. However, the structure is subjected to

multiaxial ground accelerations, which give rise to biaxial effects. These can cause

yielding of the beams in both directions simultaneously. Since the flexural strength of

a square column bent about the diagonal could be 15% less than the flexural strength

under uniaxial bending (Gill et al. 1979), multidirectional earthquake loading may

result in the columns yielding before the beams.

(4) A complete static collapse mechanism in moment resisting frames requires the

fomlation of plastic hinges in the columns at the base of the building.
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FIGURE 2.22 BENDING MOMENTS IN COLUMNS OF A 12-STORY FRAME RESPONDING

NONLINEARLY TO 1940 EL CENTRO EARTHQUAKE (FROM KELLEY 1974)

Since preventing plastic hinge formation in columns under severe seismic excitations

is very difficult, a nonlinear column superelement is developed in this study. Unlike beam
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elements, the post yield behavior of columns is influenced by axial load. Thus the proposed

element must account for the axial force effects on the hysteretic behavior of reinforced

concrete members. This effect has been studied over a wide range of axial load levels (Gill et

al. 1979, Low and Moehle 1987). These studies have demonstrated that current seismic

design provisions for reinforced concrete columns in ductile moment resisting frames

guarantee excellent hysteretic behavior up to a displacement ductility of six, even under high

axial loads. Excellent hysteretic behavior of reinforced concrete columns under axial load
levels up to 0.6Ie:'· Ag has been observed (Gill et al. 1979).

The axial load level in mid-rise buildings of typical proportions is, usually, a fraction

of the balanced load, since the axial load does not control the size of the column cross

section. This is rather controlled by the joint size and drift considerations. Therefore, columns

considered in this study are assumed to be subjected to axial loads below the balanced load.

The variation of axial forces in the interior columns of a moment resisting frame is,

usually, small, since the axial force caused by the shear in the right hand side beam cancels

that caused by the shear of the left hand side beam. This is, especially, true if the frame has

bays of approximately equal length. Exterior columns exhibit much larger variation of axial

forces than interior columns. Kaba and Mahin (1984) conclude that the assumption of

constant axial load will not significantly affect the global response. However, the column

shear history under constant axial load might be different from that due to variable load, if

axial loads fluctuate greatly in exterior columns. Although the axial load variation in slender

moment resisting frames could be important,· these effects are not very significant in well

designed frame structures of typical dimensions, because columns of typical mid-rise frame

buildings are oversized to control drift. The axial load level will, therefore, be a small

fraction of the column capacity and the fluctuation of this already small axial load level will

not be very significant. Since accounting for axial load variation leads to considerable

increase in computational effort, the variation of column axial forces due to lateral load

reversals is neglected in this study.

The hysteretic behavior oJ critical regions in reinforced concrete columns is very

sensitive to the presence of shear. If shear stresses are high, consideration should be given to

the interaction of shear forces with axial load and bending moment.

Earthquake resistant design philosophy tries to ensure that reinforced concrete

columns fail in a ductile flexural mode and that brittle shear failure is prevented. This

requires that the shear strength exceed the flexural capacity of the frame members. Therefore,

in moderately tall buildings designed according to current seismic design provisions the

lateral deformations of columns result· primarily from the effects of flexure and slip of

reinforcement (Low and Moehle 1987).
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An axial load acting on a reinforced concrete section affects the section stiffness and

strength characteristics, as shown in Fig. 2.23. Under compressive axial loads lower than the

balanced point, an increase in the level of axial load results in an increase of the flexural

strength and stiffness of the column section. If the section is subjected to cyclic curvature

reversals, the existence of a high compressive axial load results in pinching of the hysteresis

loop due to bond slip and crack opening and closing (Fig. 2.24). If shear effects are small, the

higher the axial load the more pronounced is the pinching effect (Kaba and Mahin 1984).
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FIGURE 2.23 INFLUENCE OF AXIAL LOAD ON SECTION STRENGTH AND

STIFFNESS (FROM KABA AND MAHIN 1984)

Although short columns should be avoided in earthquake resistant design, this does

not mean that they do not exist. Short columns are often encountered in the strength

evaluation of existing buildings; architectural constraints might also force the structural

engineer to accept short columns. Since short columns will attract high shear forces, the shear

effect on the hysteretic behavior of axially loaded members is considered in this study.

The hysteretic behavior of critical regions in reinforced concrete columns is

significantly affected by the presence of high shear stresses. The. hysteretic behavior of

reinforced concrete columns subjected to high axial and shear stresses has been investigated

experimentally (Ktistti 1973, Zagajeski et al. 1978). These studies show that a high axial

force can improve the cyclic shear resistance of reinforced concrete columns, since it tends to

restrain shear crack widening and thus limits the deterioration of the concrete shear
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resistance. The beneficial effect cifaxialload is limited to cases where the axial load does not

exceed the balance point load and a sufficient amount of properly detailed transverse

reinforcement is provided~
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FIGURE 2.24 PINCHING DUE TO BOND-SUP IN SYMMETRICALLY REINFORCED

CONCRETE COLUMN (FROM PARK ET At. 1972)

Although the concrete contribution to shear resistance increases with axial load, it

should be stressed that the shorter the column and the higher the axial load, the larger the

possibility of shear failure (Atalay and Penzien 1975, Zagajeski et al. ]978). In general,.

longer shear spans,. smaller axial loads, and larger amounts of properly detailed transverse

reinforcement improve the hysteretic behavior of reinforced concrete columns.

In this study the column element is decomposed into different subelements. Each

subelement describes a different deformation mechanism affecting the hysteretic behavior of

critical regions in columns. This modeling approach permits the prediction of the behavior of

columns subjected to, both, low and high shear stresses. The interaction of axial load,

bending moment and shear force with the opening and closing of the cracks is taken into

account in the development of the different column subelements. The following subelements

are proposed in this study:

(1) An elastic column subelement which represents the linear elastic flexural behavior of

the column before yielding of the reinforcement. .
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(2) A plastic column subelement which describes the flexural behavior of the column in

the post-yield range. The element accounts for the spread of plastic defonnations into

the column as a function of loading history.

(3) A column joint subelement which represents the fixed end rotation due to bond slip at

the column ends and accounts for the interaction of bending moment and axial load

with the opening and closing of the cracks. This interaction is reflected in the

pinching of the hysteretic behavior of the column which increases with increasing

axial load, as shown by Kaba and Mahin (1984) for columns subjected to flexure and

axial load with low shear stress.

(4) A shear subelement which describes the shear distortion and shear sliding at the

column ends. The interaction of shear and axial force with the opening and closing of

the cracks is taken into account in this subelement. This is reflected in the pinching of

the hysteretic behavior of the subelement which decreases with increasing axial load,

as shown in experiments on columns subjected to axial load, shear and bending

moment (Atalay and Penzien 1975).

Since the presence of axial load affects the hysteretic behavior of columns with high

shear stress differently than that of columns with low shear stress, the introduction of two

separate subelements to account for the effect of shear and bond slip, respectively, facilitates

the accurate and rational description of the hysteretic behavior of reinforced concrete

columns.

The effect of axial load is further accounted for in the derivation of the primary curves

for the load-defonnation relation of the column subelements. The monotonic envelope curves

are derived under constant axial load equal to that caused by gravity loads. This results in an

envelope curve which falls in between the stiffer curve resulting from an increase in axial

load and the softer curve resulting from a reduction in axial load due to lateral loading

reversals (Emori and Schnobrich 1981). As discussed already, the time variation of axial load

does not have a significant effect on the seismic response of midrise frames so as to justify

the high computational effort needed for its inclusion in the model.

In addition to the effects of shear, flexure, slip of reinforcement and opening and

closing of the cracks, the column element includes axial defonnations and geometric p-~

effects as discussed in the following sections.

2.3.1 Linear elastic column subelement

The elastic column subelement describes the linear elastic flexural behavior of the

columns before yielding of the reinforcement. The linear elastic flexural stiffness of columns
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is significantly influenced by the axial load acting on the section. In this model the effect of

axial load on the elastic flexural stiffness is taken into account in deriving the primary curve

of the moment curvature relation of the column section. Assuming a linear strain variation

through the depth of the section the primary moment-curvature relation for a member

subjected to constant axial force and gradually increasing bending moment can be derived.

The moment-curvature relation is then approximated by a bilinear elastic strain-hardening

curve.

The stiffness of the elastic subelement is based on the secant stiffness of the column
section at yielding of the reinforcement, which is equal to £1 =My/Cf'y. To account for the

unlikely case that a non-symmetric arrangement of column reinforcement is used the section

stiffness is taken as the average between the stiffness under positive and that under negative

bending moment. It is assumed that the column element is prismatic and-that the longitudinal

reinforcement does not change along the height. Splicing of column bars might cause a

slightly higher stiffness in a small part of the column; but this effect is not significant.

The elastic flexural stiffness matrix is given by

h [2 -1]
[fL = 6El' -1 2 (2.20)

where E is the concrete modulus of elasticity of the concrete and h is the clear height of the

column.

2.3.2 Rigid-plastic column subelement

The inelastic flexural deformation of the column is modeled in a rigid-plastic

subelement. The monotonic envelope curve of the model is based on a bilinear

approximation of the moment-curvature relation of the column section under the constant

axial load caused by gravity loads. Fig. 2.25 is a typical axial force-moment interaction

diagram. Points on the interaction diagram below the bahinced point indicate failure by

yielding of the reinforcement, while points above correspond to failure by crushing of the

concrete. During the response of typical frame structures to earthquake excitations, column

axial forces usually remain below the balanced point and vary in the range shown in Fig.

2.25. In this case the relation between axial force and bending moment can be approximated

by the dashed line in Fig. 2.25. The dotted line depicts an interaction relation used in several

other investigations. Since, within the expected range of axial load variation, the error

associated with either interaction relationship is comparable, the simpler interaction relation

is used in this study. _
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The plastic column subelement is basically the same as the corresponding beam

subelement except that the primary. curve of the column element is derived. with due

consideration of the effect of axial load on the yield moment and strain hardening ratio.

Pinching of the hysteretic moment rotation relation is attributed to the opening and

closing of the cracks, slip of reinforcement and shear sliding. Since these effects are taken

into account in subelements specifically developed for the purpose, the rigid plastic column

subelement only describes the inelastic flexural deformations and, consequently, does not

exhibit any pinching of hysteretic behavior.

Two different plastic subelement have been developed in this study, one with

concentrated plastic .deformations and another which allows for the gradual spread of

inelastic deformations along the member. These are presented in detail in the following.

a) .Concentrated rigid-plastic column subelement

The concentrated rigid plastic column subelement describes the inelastic flexural

deformations which take place at the column ends after yielding of the reinforcement. These

deformations are modeled by a rigid plastic hinge of zero length similar to the concentrated

rigid-plastic springs in the plastic beam subelement. The hinge, which is depicted as a

nonlinear spring in Fig. 2.4(a), is activated when the moment at the corresponding column

end first exceeds yielding. Since all inelastic deformations are lumped at the plastic hinges at

the two ends of the column and the elastic deformations along the member are accounted for

in the linear elastic column subelement, the part of the concentrated plastic subelement which

connects the two hinges is infinitely rigid.

The flexibility matrix of the subelement takes the simple form

[f) _[f 0]
. Pl.- 0 ~

(2.21)

where f and I j are the flexibility coefficients of the rotational springs at ends i and j,

respectively. The general method of determining the flexibility of the rotational springs is

described in detail in Section 2.2.2.1. The derivation of the flexibility of the plastic rotational

springs is similar to the derivation of the beam rotational springs except that the effect of

axial load on the yield moment and the strain hardening stiffness is taken into account.

The main advantage of the concentrated piasticity model is its simplicity and

computational efficiency. It has, however, some serious limitations: most importantly it does

not account for the gradual spread of inelastic deformations into the column. This results in

an underestimation of stiffness in the early stages of inelastic deformation. Another limitation
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of the model lies in the assumption that the point of inflection is fixed at column mid-height

during the entire response history. This is not realistic, particularly, in the dynamic analysis of

frames, where columns can be in single curvature at certain stages of the response history

depending on the dynamic excitation and the column location in the structure (Fig. 2.22).

b) Spread rigid-plastic column subelement

Since the flexural deformations of the column before yielding of th~ reinforcement are

accounted for in the elastic subelement, the spread rigid-plastic subelement only accounts for

the column inelastic flexural deformations which arise when the end moments exceed the

yield moment.

The spread rigid-plastic column subelement consists of two regions of finite length

where the plastic column deformations take place. These regions are connected by an

infinitely rigid bar, as shown in Fig. 2.7(a). The length of each plastic zone varies during the

.response history as a function of the moment distribution in the column. The model thus

accounts for the gradual spread of inelastic deformations into the column and the shift of the

inflection point during the response time history.
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The features of the spread rigid-plastic subelement arid the coefficients of the

flexibility matrix are presented in Section 2.2.2.2. The main difference between the column

spread plastic subelement and the corresponding beam subelement is the axial load effect on

the yield strength and the strain hardening stiffness of the moment curvature of the column

section.

The plastic zone length at each load step is determined from the corresponding end

. moments and shear forces using the assumption that the shear force is constant in the· plastic

zone.

The general form of the flexibility matrix of the spread plastic column subelement is:

(2.22)

. The coefficients of this flexibility matrix have been derived in Section 2.2.2.2 for the

general case and expressions for ~I' in and ~2 are given in Eqs.2.10,2.11; and 2.12,

respectively.

2.3.3 Column joint subelement

The column joint subelement models the fixed-end rotation due to bond slip of

column reinforcement and the effect of opening and closing of flexural cracks on the

moment-rotation relation.

The pinching of the hysteretic moment-rotation relation of RC columns under bending

moment and axial load is often quite pronounced. This phenomenon can be illustrated with a

study of the interaction of the opening and closing of flexural cracks with the applied bending

moment and axial load.

Over a large portion of the cyclic load history of reinforced concrete members, the

applied moment is resisted by a steel couple alone (Park and Paulay 1975). This results from

large plastic tensile strains in the longitudinal reinforcing steel which cause cracks in the

tension zone to remain open while the bending moment is reversed. These cracks will remain

open until the steel in the compression zone yields and forces the crack to partially close. At

this stage the concrete starts to contribute a large part of the compressive force and the

section stiffness increases considerably (Fig. 2.24). The presence of axial compression in

columns means that even for sections with symmetric reinforcement (equal tension and

compression steel), the steel in compression yields under a small bending moment and closes

the crack. It is clear that the flexural rigidity of the section is reduced when the moment is

resisted by a steel couple alone, and that the stiffness increases when the concrete starts to

carry part of the compression resultant. The reduction in flexural rigidity of the column
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section followed by a marked increase in the section stiffness is the cause of pinching of the

hysteretic behavior of column sections (Park and Paulay 1975). For columns with small shear

stresses, the pinching of the hysteretic loops of the moment rotation relation increases with

increasing axial compression (Kaba and Mahin 1984).

The column joint subelement is represented by two rotational springs connected by a

rigid bar as is the case for the girder joint subelement. The mechanical characteristics of the

column joint springs are, however, different from those of the girder joint subelement

because of the effect of axial load. The general form of the flexibility matrix of the column

joint subelement is:

[] ,[I
f jnr = 0 ~] (2.23)

The coefficients I, and .£ ofthis flexibility matrix, depend on the hysteretic behavior of the

springs at column ends i and}, respectively.
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FIGURE 2.26 HYSTERETIC BEHAVIOR OF COLUMN JOINT SUBELEMENT
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In modeling the hysteretic behavior of the joint subelement, the primary curve is

derived with the joint finite element model by Filippou et al. (1983). The joint is subjected to

a constant axial load to simulate conditions at the column ends.

The confining effect of other connecting members is included in the derivation of the

envelope curve of the column joint subelement. This effect is accounted for in the finite

element model by increasing the bond strength as a function of the axial load in· the

connecting members. Since the axial load of beams connected to the column is negligible in

the case of typical frame buildings, the confining effect on the beam-column joint "is not very

significant, if the effect of girders framing perpendicular to the plane of moment-resisting

frame is neglected.

The hysteretic behavior of the column joint springs is shown in Fig: 2.26. It is

determined by the following rules (Fig. 2.26):

(I) A bilinear elastic-strain hardening envelope curve (ABC) describes the monotonic

behavior.
(2) A constant stiffness is assumed until the end section reaches the yield moment My.

(3) Unloading takes place along a line FG parallel to the initial stiffness.

(4) Once unloading is completed, there is a significant reduction in stiffness caused by

crack opening. This stiffness remains in effect until the crack closes (point 0). The

point at which the crack closes, is determined by parameters c1 and c 2 in Fig. 2.26.

. These parameters control the amount of pinching of the hysteretic moment-rotation

. relation of the column joint subelement and depend on the level of axial load. The

amount of pinching increases with increasing axial load. Values for these factors are

derived from analyses with the joint model by Filippou et al. (1983), as will be

discussed in the correlation studies of Chapter 5.

(5) Once the crack closes at point 0 reloading follows a straight line connecting point 0

with the point of maximum previous rotation on the envelope curve (point S in

Fig. 2.26).

(6) In the case of partial unloading followed by reloading, the loading stiffness is parallel

to the elastic stiffness until the point at which unloading started is reached (C-D-E),

(L-M-N), (P-Q-R).

2.3.4 Column shear subelernent

The column shear subelement accounts for shear deformations in the columns and the

interaction of the opening and closing of the cracks with the 'shear and axial force. This

element describes the effect of shear sliding on the hysteretic load-displacement relation of
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reinforced concrete columns, which is especially pronounced in short columns. The column

shear subelement consists of two concentrated springs connected by a rigid bar.

The flexibility matrix of the column shear subelement takes the simple fonn of the

girder shear subelement

[f] _[f 0]
.Ihr - 0 ~

(2.24)

where f, and f j are the flexibility coefficients of the shear springs at column ends i and j,

respectively.

The derivation of the properties of the column shear springs is similar to the

derivation of the properties of the beam shear springs in Section 2.2.4. In this case, however,

the axial load has a strong effect on shear behavior (Atalay and Penzien 1975). Columns with

a shear span to depth ratio less than 2 exhibit large shear deformations (Zagajeski et al.

1978).

In members subjected to cyclic shear under constant axial load cyclic stiffness

deterioration and pinching of the shear force- displacement relation near zero load is

observed (Atalay and Penzien 1975). The stiffness deterioration and pinching effect are less

pronounced in columns under high axial loads. The hysteretic rules of the column shear

subelement are the same as those used for the beam shear subelement in Fig. 2.21, except that

pinching is now dependent on the level of axial load. The value of AI in Fig. 2.21 depends

on the axial load such that lower pinching of the hysteresis loops results under higher axial

compression. The following empirical fonnula for AI which reflects the effect of axial load

on the pinching of the hysteretic shear force-defonnation relation is proposed by Ozcebe and

Saatcioglu (1989):

a =0.82 .!.... - 0.18 < 0
Po

P is the axial compressive force, Po is the nominal axial load strength of the column, Mmax is

the maximum previous end moment, 8max is the maximum previous shear distortion and 8y is

the shear distortion at yield. The correlations with experimental results in Chapter 5 yield

better agreement with a parameter value of 0.18 in the second equation above instead of the

value of 0.14 proposed by Ozcebe and Saatcioglu (1989).

The study of two rough, interlocking surfaces which move along the plane of the

shear crack indicates that shear displacements need to be much larger than those along the

initially uncracked interfaces in order to effectively engage the aggregate particles that
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protrude from the two faces of the crack. The larger the crack width the larger the shear

displacement needed to engage the ,aggregate particles. The increase in crack width IS

restrained by the clamping effect of the axial load.

The effect of axial load on the shear behavior of the element is included as follows:

• The axial load increases the yield moment capacity of the column section and, thus,

delays the opening of flexural cracks due to yielding of flexural reinforcement. This,

in turn, delays the propagation of flexural-shear cracks and results in a reduction of
. . .' ,.'

shear sliding. This effect is taken into account in the derivation of the primary curve

of the shear subelement.

• The axial load reduces the pinching effect due to sliding. The pinching parameters of

the column shear subelement result in a larger amount of pinching with decreasing

axial compression.

Although the concrete contribution to shear resistance increases with axial load, a

higher compression leads to higher shear forces for axial loads below the balanced point. The

axial force-bending moment interaction diagram shows that the yield moment increases from

Mo to Mh as the axial load increases from zero to the balanced point value Ph' Consequently,

. in a column subjected to an axial load near Ph the shear force at flexural. yielding will be

larger than the shear force in the same column under a smaller axial load. Increasing the shear

force magnitude increases the possibility of brittle shear failure.

2.3.5 Column axial stiffness

The axial stiffness of the column is assumed constant and uncoupled from the

bending behavior in this study. Since the dimensions of column cross sections in typical

moment frames are controlled by drift considerations, columns are very unlikely to

experience yielding under pure compression.

The column axial stiffness matrix with respect to local coordinates is given by

(2.25)

where VI and v2 are the axial displacements at the ends of the column, EA is the gross axial

stiffness of the cross section and h is the column clear height. From consideration of

equilibrium and the assumption of rigid joint panel zones it is clear that axial loads and

displacements with respect to the girder centerline are the same as those with respect to the

column clear height.
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2.3.6 Column geometric stiffness

The interaction of large axial forces in the lower story columns of multistory frames

with large interstory drifts due to severe lateral loads may result in considerable second-order

effects, especially in high rise buildings. For simplicity the local geometric stiffness with

respect to the column chord end rotations is neglected. Consideration is given, however, to

the global geometric stiffness related to the column end lateral displacements. Assuming a

linear displacement function between the column ends in Fig. 2.27 results in the following

column centerline geometric stiffness matrix with respect to global coordinates

{F;} =!.- .[~ -1] .{U1}
F; H I I Uz

(2.26)

F; and F; are the lateral forces and u1 and u2 are the lateral displacements at the lower and

'upper column end, respectively, while P is the axial compressive force acting on the column.

P accounts for the effect of gravity loads and overturning moments due to lateral loads. The

axial load P is assumed to remain constant within a load step.

With the assumption that the floor diaphragm is infinitely rigid in its plane all lateral

displacements can be condensed into a single lateral degree of freedom at each story. In this

case the geometric stiffness of the individual columns may be combined into the geometric

stiffness of the entire story (Fig. 2.27).This is given by

{F;}= LP .[~ -1].{U1
}

F; H 1 1 u2

(2.27)

U1 and U2 are the lateral displacements of the floor below and above the particular story,

respectively, and L P is the sum of all axial forces in the columns of a particular story.

2.3.7 Column superelement stiffness matrix

The elastic, rigid plastic, joint, and shear subelements of the column are connected in

series to form the column superelement (Fig. 2.3). If needed, additional sources of inelastic

behavior of the column can be added in separate subelements in the same manner. Since the

constituent subelements are connected in series, the flexibility matrix of the column

superelement [FLd can be obtained by simply adding the flexibility. matrices of the

constituent subelements. Using the convention that upper case letters denote' quantities

associated with the column superelement while lower case letters denote quantities associated

with the individual subelements we obtain

[F] =[f] + [f] + [f]. + [f] .ad eI pi jnl .l"hr
(2.28)
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[fll denotes the flexibility matrix of the elastic subelement given by Eq. 2.20, [f]pl denotes.

the flexibility matrix of either the concentrated rigid plastic (Eq. 2.21.) or the spread rigid
plastic subelement (Eqs. 2.10-2.12 and 2.22), [f]jnt denotes the flexibility matrix of the joint

subelement given by Eq. 2.23, and, finally, [fl.hr denotes the flexibility matrix of the shear

subelement given by Eq. 2.24.

:EP

P, P ~
:EP

2

u U 11 F F
1.- - 1

I
I

H h
1\
=

1

FIGURE 2.27 LINEAR GEOMETRIC STIFFNESS MATRIX OF COLUMN SUBELEMENT

It is important to note that the flexibility coefficients in [f]PI' [f]jnt' and [fthr may

change within a load step, because ofnonlinearities associated with the moment-curvature or
moment-rotation relation and a change in the plastic zone length. Thus [f]PI' [f]jnl' and [flhr

in Eq. 2.28 represent the current tangent flexibility matrices of the rigid plastic, joint, and

shear subelement, respectively.

The flexibility matrix of the column superelement with respect to the chord [FLd is

inverted to obtain the current stiffness matrix [KLd in local coordinates. The column axial

stiffness matrix [KL with respect to local coordinates is given by Eq. 2.25.

[KLd can be readily transformed to global coordinates by applying a transfonnation

matrix [aLrd similar to [a]h in Eq. 2.18. Matrix [aLd can be derived from [a]h by replacing L

by H and considering bi and bj as half the depth of the beam-column joint at the lower and

upper end of the column, respectively.

The transformation of [Kl, in Eq. 2.25 to global coordinates is much more direct,

because the rigid offset zones have no effect on axial forces and displacements. Thus, the
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local axial forces are equal one to one to the corresponding global forces, and the local axial

displacements v are equal one to one to the corresponding global vertical frame

displacements.
Knowing the chord stiffness transformation matrix [atd and the axial stiffness

transformation matrix [at, the stiffness matrix of the column in global coordinates [Kl. can

be obtained with the following operation

[K] - [a]T .[K] .[a] + [a]T .[K] .[a]
c - crd crd crd iJ iJ iJ

2.4 Foundation element

(2.29)

Most structures are built on flexible foundations. The flexibility of the foundation

influences the response of buildings under static loads and dynamic ground excitations. The

effect of the undedying soil not only influences the characteristics of the free field earthquake

motion recorded at the surface, but can also interact with the building founded on it to alter

the structural response. In this study the structure is subjected to the free field motion, which

is applied at the structural supports, and the dynamic response is obtained directly. The effect
I

of the structure on the soil surface acceleration is not accounted for, since this effect is not

important in typical building structures.

The foundation element, which is modeled as a spring element, represents vertical,

rotational, and lateral displacements of the base of the building associated with settlement,

rocking and sliding of the foundation (Fig. 2.2). The stiffness matrix of the foundation

element at the base of each first story column is simply given by

[

k"V 0

[K]f = 0 k"h
. 0 0

(2.30)

where k.,v' ksh ' k" is the vertical, horizontal and rotational stiffness of the spring at the base of

the column, respectively. The foundation stiffness coefficients remain constant during the

entire response time history.

2.5 Structural stiffness matrix

The first step in the analysis of a moment resisting reinforced concrete frame is the

development of a model of the actual structure. This process is schematically illustrated in

Fig. 2.28 which shows how the girders and columns of the actual structure are represented by

the frame elements in this study. After determining the stiffness matrix of all elements with
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respect to global coordinates, the stiffness matrix of the entire structural model can be formed

using the direct stiffness method. This process can be formally written as

[K] = I,[K]b +[KL +[K]G +[K]f
all
etem

(2.31)

where [K] is the stiffness matrix of the entire structure, [K]b is the stiffness matrix of the

girder superelement, [Kl is the stiffness matrix of the column superelement and [K]f is the

stiffness matrix of the foundation element with respect to global coordinates. [K]o represents

the story geometric stiffness matrix defined in Eq. 2.27. The summation in Eq. 2.31 extends

- !n 1 I 1 1 1 1 lJ!! 1 1 1 1 0 111 !'

Q girder/column critical regions

D beam-column Joint

FIGURE 2.28 MODELING OF ONE STORY, Two BAY FRAME
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over all elements in the structure.

Since the different frame elements exhibit nonlinear behavior either through

nonlinearities in. material response· or through changes in the inelastic zone length, the

different stiffness matrices in Eg. 2.31 really represent the tangent stiffness matrices of the

various elements. The nonlinear response of the structure to cyclic load or deformation

reversals can only be determined through an incremental step-by-step analysis. This process

can be expressed by

[Kl~r=~R (2.32)

where LU{ is the vector of load increments which are successively imposed on the structure

and ~r is the vector of corresponding displacement increments. [K] is the current stiffness

matrix of the structure.

After solving Eg. 2.32 for the unknown displacement increments ~r the response of

the structure to the applied loads is obtained from

(2.33)

where rn is the vector of structural displacements at the beginning ~f the current load step and

rn+1 the displacement vector at the end. The process is applied step-by-step by starting from a

state of no loading and thus no corresponding displacements of the structure.

Depending on the magnitude of load increments it is rnore or less likely that the

stiffness matrix [K] in Eg. 2.32 will change during the given load step. Thus, Eg. 2.32 has to

be solved iteratively. The numerical and computational aspects associated with the solution

of Eg. 2.32 will be presented in the next chapter.
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NONLINEAR ANALYSIS OF STATIC RESPONSE

3.1 Introduction

This chapter discusses the numerical implementation of the proposed frame elements

within the framework of a special purpose program for the nonlinear static and dynamic

analysis of planar RC moment-resisting frames. The proposed method of nonlinear analysis is

generally applicable. Its implementation is, however, discussed in the context. of the static

and dynamic response of RC moment-resisting frames. In this chapter the nonlinear analysis

algorithm and, in particular, the state determination phase of the solution procedure .are

discussed in detail. Details of the method specific to the dynamic response analysis are

presented in Chapter 4.

The determination of the nonlinear static or dynamic response of the structure evolves

around the solution of Eq. (2.32) which yields the displacement increments ~r corresponding

to load increments ~R. In the static response analysis load increments ~R are directly

applied on the structure in a step-by-step manner starting from the unloaded state. In the

dynamic response analysis load increments ~R include the effect of inertia and ~amping

forces that are caused by the motion of the structure. In either static or dynamic load case the

displacement increments ~r from the solution of Eq. (2.32) are added to the corresponding

values at the end of the previous step and the process is repeated until the end of the imposed

load or acceleration history. Since the stiffness matrix of the structure is likely to change

within a given load step, Eq. (2.32) needs to be solved iteratively.

In order to find out whether the displacement increments ~r cause changes in the

stiffness. matrix of the structure during a particular load step the corresponding rotation

increments ~8 at the ends of each element need to be determined. This is done by applying

Eq. (2.17a) which transforms the global structural degrees of freedom to the local element

displacements. The usual procedure at this stage of the nonlinear analysis is the state

determination of each element of the structure: the internal moments corresponding to the

local rotation increments ~8 are determined and the stiffness matrix of the element is

updated, if necessary. If several elements are connected in series, as is.the case in the present

study, the state determination process is not straightforward. The basic problem lies in

65
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determining the rotation increments -~E> that result at the ends of each element in series by

only knowing that the sum of all subelement rotations ~e is equal to the superelement

rotation ~E>. As long as no change in stiffness in anyone of the elements in series occurs

within the load step, the local rotations of each element can be determined from the stiffness

of the particular element by making use of the fact that the end moments of all subelements

are equal to the end moments of the superelement. If a change of stiffness in any of the

elements in series occurs within the load step. then the determination of local subelement

rotations requires the development of a new nonlinear analysis procedure. Such a procedure

was proposed by Filippou and Issa (1988) and is extended in the present study to encompass

the additional girder and column subelements. This procedure is presented in the following in

the context of an initial stress formulation of the well-known Newton-Raphson method of

nonlinear analysis.

3.2 Brief review of nonlinear solution methods

Several solution schemes have been proposed for solving the nonlinear problem in

Eq. (2.32). Some of these methods will be briefly mentioned here as they relate closely with

the nonlinear analysis procedure that is proposed. An extensive review and evaluation of

solution strategies for statically loaded nonlinear structures is presented in Bergan and

Soreide (1973), Haisler and Stricklin (1974) and Simons and Powell (1982).

The basic solution procedure of Eq. (2.32) is the well known Newton-Raphson method.

In the Newton-Raphson method, depicted in Fig. 3.1, Eq. (2.32) is solved by a recurrence

relation

(3.1)

and

(3.2)

until a suitable norm of the vector on the right hand side ofEq. (3.1) becomes smaller than

the specified tolerance. Subscript index n refers to the load step, while superscript index k
refers to the iteration within a particular load step. ~R~-I is the difference between (~E)n'

the externally applied load increments at step n, and (~I t- I
, the internal resisting load

increments.

The basic Newton-Raphson method is not necessarily the most economical solution

scheme and does not always provide rapid or reliable convergence. To improve upon some of
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the limitations of the basic Newton-Raphson method several modifications have been

proposed over the years. Some of these methods involve modifications of the stiffness matrix

in Eq. (3.1) and are then classified as Modified Newton or Quasi-Newton methods.
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FIGURE 3.1 NEWTON-RAPHSON METHOD OF NONLINEAR ANALYSIS

If large unbalances between external applied loads and internal resisting forces develop,

the iteration process might fail to converge. Among the solution schemes that have been

proposed to deal with these cases is the event-to-event method (Simons and Powell 1982). In

this method the solution advances from one stiffness change or event to the next. The purpose

of this strategy is to follow the equilibrium path as closely as possible by updating' the

stiffness matrix and the state of each element each time a change of stiffness in one of the

elements of the structure takes place. This is achieved by predicting the occurrence of the

next change of stiffness (event) within a load step and then scaling the load increments by a

factor such that the solution just reaches the predicted event.

In the present study the basic Newton-Raphson method is used in solving the nonlinear

problem in Eq. (2.32). The method is recast in a different form which is more suitable for the

solution of nonlinear structures made up of several elements that are connected in series.

Concepts from the event-to-event method are used in addressing the problem of state

determination in the case of the gradual spread of the plastic zone that takes place in the
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spread plasticity subelement. The proposed algorithm has proved to be efficient and reliable

in solving the nonlinear statk and dynamic response analysis problems in this study.

3.3 Proposed nonlinear analysis algorithm

Once the stiffness matrix of the entire structure is fonned, the problem of detennining

the response to static or dynamic load increments 6R takes the fOI111 of Eg. (2.32)

[K]-6r=6R

where [K] is the stiffness matrix. For dynamic loading [K] is the effective stiffness matrix

and 6R is the effective load vector which are defined in Section 4.3 of the following chapter.

The solution of Eg. (2.32) using the basic Newton-Raphson method takes the fonn of

Egs. (3.1) and (3.2).

It is possible to rewrite the basic Newton-Raphson solution scheme such that the

displacement increments are always measured from the converged solution in the previous

load step n. This results in an initial stress version of the Newton-Raphson method, which is

better suitable to illustrate the proposed nonlinear state detennination process for several

elements that are connected in series. To perform the transfonnation we start from Eg. (3.2).

Expressing 6rn
k in tenns of the solution estimates at iteration k and k;1 we get

(3.3)

(3.4)

(3.5)

Substituting Eg. (3.3) into Eg. (3.1) and solving for r:+1 we obtain

[K Tr.(rn\1 - rnk+~I) = (6R£)n -(6R t t- I

[KTt ·rn
k+1 =(6R E t _[(6Rt)k-'-[KTf .rn:~l]

By subtracting the tenn [K TY.rn from both sides of Eg. (3.4) we can solve for the

displacement increments relative to the converged solution of the previous load step n.

[K T Y·(r:+ J - rn)= (6R£t - [(6R t t-I - [K Tr·(rn:~1 - rn)]

[KTy ·6fn
k=(L\R£)n -[(L\Rt)k-l-[KTY .L\fn

k-l
]

= (L\R E t - (L\RoY-1

(6R
O

)k-1 is the initial load vector used in iteration k and L\fn is the increment of the

displacement vector with respect to the displacements rn at the end of the previous load step.

The graphical representation of the initial stress fonnulation of the Newton-Raphson method

is shown in Fig~ 3.2.
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At the beginning of a new load step (~RO)k-l. is equal to zero and the current

displacement vector r n and the current tangent stiffness matrix of the structure [K r ] are

known. Given an external load increment (~R E)n the solution process starts by solving

Eq. (3.5) for the first iteration estimate of the displacement increments ~rn'

From ~rn the global displacement increments ~rm at the ends of each element of the

structure can be extracted. The transformation of the global deformation increments L\rm

according to Eq. (2. 17a), which is rewritten below for the general case in incremental form,

yields the local rotation increments ~E> at the ends of the girder and column superelement

~E>,
L\E>.

J

L\u;

~ui

(3.6)

where [a] =[a1 for girders and [a] =[aLJ for columns.

The corresponding moment increments at the end of the superelement are

~ME =[Kl~E> (3.7)

where [K] = [K]~ for girders and [K] = [KLJ for columns. [KL and [KLJ are the stiffness

matrices of the girder and column superelement, respectively. These are defined with respect

to local degrees of freedom by inverting the flexibility matrices in Eqs. (2.15) and (2.28) for

the girder and column superelement, respectively.

The moment increments at the end of the superelement ~ME lead directly to the

moment increments L\m E at the ends of each subelement Since all subelements are in series

(3.8)

From the moment increments ~m E and the current flexibility matrix of each subelement the

rotation increments at the ends of each subelement can be determined

L\8 el =[fL .(~E)./

L\8 pl =[f]p/.(~mE)1'1

L\8, = [r] .(~m )
Jnt int E inl

~8 = [r] . .(~m )
Jhr Jhr E shr

(3.9a)

(3.9b)

(3.9c)

(3.9d)

For the joint, shear and concentrated plasticity subelements the process of state determination
is rather straightforward: the local rotation increments' at ends i and j, ~8 pi' L\8 im and L\S"hr'



are added to the rotations at the end of the previous load st~p n, (8n) pi' (8n) inl and (8J.\hr'

respectively, to obtain the current total rotations.
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n
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(3.10a)

(3. lOb)

(3.lOc)
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FIGURE 3.2 INITIAL STRESS FORMULATION OF BASIC NEWTON-RAPHSON METHOD

Since the flexibility and stiffness matrices of these subelements are diagonal, the rotational

degrees of freedom at the ends of the subelement are uncoupled. Thus, the internal resisting

moments

which correspond to total rotations



CHAPTER 3

(8.) ={8 n+I,;}
n+\ pI 8n+I,j pI

(8 ). ={8 n+I';} .n+1 jnr 8 .
. _n+I.J jnl

{s I-}S - n+ ,I

( n+J,.hr - S _
n+l.J ,Ihr
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can be independently determined from the corresponding hysteretic moment-rotation relation

and the load history at each end of the joint, shear or concentrated plasticity subelement. The
incremental vector of internal resisting moments (&D R) can then be detennined by

subtracting from the current resisting moments those at the end of the previous load step

(~mR)PI =[(mRt+l-(mR)J
p

/

(~mR)jnr =[(mR)n+I-(mRLL,

(~mRtr =[(mR)n+1 -(mR)J.,hr

If the difference between the increments of externally applied moments (&De) and

internal resisting moments (~mR) is larger than a specified tolerance at one or both ends,

then the flexibility matrix of the corresponding subelement needs to be updated. Because of

the change in stiffness, Eqs. (3.9) are no longer valid. Instead these relations have to be

modified with the introduction of an initial moment vector (~mo) as follows

~s pi =[fu]PI ·(L\mR - &DO)PI

~SJ·nl = [fu ] , ·(L\mR - ~mo).
Jnr In'

~S.'hr =[fulhr ·(~mR - &DO}'hr
where [fuJ is the updated flexibility matrix of the corresponding subelement.

(3.lla)

(3.llb)

(3.lIc)

Since the flexibility matrices of the joint, shear and concentrated plasticity subelements are

diagonal, the whole process of state detennination, which consists of Eqs. (3.9)-(3.11) can be

represented graphically for one end of the particular subelement, as shown in Fig. 3.3 for end

l.

The solution of Eqs. (3.11) forthe initial moment vectors (L\mo) yields

(3. 12a)
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(.1m) =(.1m) - [k] ..18o jnl R jnt U jnr }nt

(am) =(am) - [k] ..18o .rhr R shr U shr shl

CHAPTER 3

(3.l2b)

(3.l2c)

For the spread plasticity subelement a change of stiffness during a particular load step

can be caused by either a change of stiffness in one or- both plastic zones or a change in

M.
1

step n

~ME-,I

-'-->---F-------------+----I.

1
8j

14----- .18,-----.. 1

I

FIGURE 3.3 STATE DETERMINATION AND INITIAL MOMENT CALCULATION

FOR]OINT, SHEAR AND CONCENTRATED PLASTICITY SUBELEMENTS

plastic zone length at one or both ends. It is important to note that the flexibility matrix of the

spread plasticity subelement is not diagonal and that the rotational degrees of freedom are

coupled in this case.
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FIGURE 3.4 STATE DETERMINATION AND INITIAL MOMENT CALCULATION

FOR SPREAD PLASTICITY SUBELEMENT (STIFFNESS CHANGE)

If only the effective section stiffness changes, the determination of initial moments

remains practically the same as presented in Eqs. (3.11) and (3.12). The only difference is

that the determination of internal resisting moments now depends on the curvatures at the end

sections of the beam subelement instead of the end rotations. Using the concept of average

plastic zone stiffness introduced in Chapter 2, the process of state determination is

considerably simplified, since the curvature increment ~q> at each end can be determined

from the external moment increment ~E at the same end and does not depend on the.

curvature increment at the opposite end of the element. Thus

(3.13a)
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(3.13b)

continuous extension

discretized plastic
zone extension

where the indices refer to ends i and} of the spread plastic subelement.

The curvature increments from Eqs. (3.13) are added to the curvatures at the end of the

previous load step to obtain the current curvatures. These are then used to calculate the
internal moments (mR )n+1 of the spread plastic subelement from the moment-curvature

relation at each corresponding end (Fig. 3.4). The incremental vector of internal resisting

moments (&n R) can now be determined by" subtracting from the current resisting moments

those at the end of the previous load step

(~m) =[(m) :.... (m ) ]
R pI R n+1 R n 1'1

exactly as was done in the case of the concentrated plasticity subelement.

By comparing the internal moment increments at the two ends of the element (&nR) 1'1

to the external moment increments (~mE) 1'1' it is determined whether a change of stiffness

took place during the load step. If such a change is detected, the flexibility matrix of the

...............................
.-.­...............

..."'....
.........

/'/
FIGURE 3.SMOMENT-ROTATION RELATION AT ONE END OF THE

SPREAD PLASTIC SUBELEMENT

spread plastic subelerrient is updated. Since Eq. (3.9b) no longer holds true, initial moments
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at the ends of the element have to be introduced yielding a relation identical to Eq. (3.lla),

which is then solved for the initial moments resulting in Eq. (3.12a).

If the external moment increments in Eqs. (3.7) and (3.8) result in a change in the

plastic zone length at one or both ends of the beam subelement, then the process of

determining the initial moments becomes considerably more involved.

o
N

- - - - proposed model

--- ideal

actual plastic zone length Z a

FIGURE 3.6 DISCRETIZATION OF PLASTIC ZONE EXTENSION

To illustrate the complexity of the problem the moment-rotation relation at one end of

the spread plastic beam subelement is shown in Fig. 3.5. Since the plastic zone length is a

continuous variable the moment-rotation relation is nonlinear, as shown by the broken line in

Fig. 3.5. It should also be kept in mind that the moment-rotation relation at one end of the

element also depends on the moment acting at the other end, because of the non-zero

coupling terms in the element flexibility matrix. This leads to a moment-rotation relation

which is not unique, requiring that both end moments be considered simultaneously. In order

to reduce the computational effort the process of plastic zone extension is simplified by

assuming that the change in length takes place in discrete increments Zd' The actual plastic

zone length za thus follows the step function shown dashed in Fig. 3.6. This results in the
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moment-rotation relatiori being multi-linear instead of continuous as shown by the solid line

in Fig. 3.5. The discrepancy between the actual'and the idealized moment-rotation relation in

Fig. 3.5 can be reduced by decreasing the size of Zd'

The basic problem in the state determination of the spread plastic subelement now lies'

in the fact that it is not possible to directly relate rotations with curvatures and, consequently,

moments at each end of the element, as is the case in the joint and concentrated plasticity
elements. This is illustrated in Fig. 3.7, where (~8i)pi denotes the increment of end rotation at

end i of the element caused by external moment increments (&n£).

The internal resisting moment which corresponds to rotation increment (~8i)pi and is

represented by a question mark in Fig. 3.7 cannot be determined for the simple reason that the

exact moment-rotation relation (solid line in Fig. 3.7) is not known. This relation depends on

the changes in the plastic zone length which cannot be determined without due account of the

coupling that exists between the end moments of the element. Another way of looking at the

problem is to recall that the resisting momen-ts of the spread plastic subelement are related to

the curvatures at the end sections. Since there is no closed form relation between the

curvatures at the end sections and the end rotations, the direct determination of the internal
resisting moments from the rotation increments (&8)p, is not possible. To solve this problem

concepts first introduced in the event-to-event method by Simons and Powell (1982) are

used. At the beginning of the load step the plastic zone length Zu at ends i andj is known

Given the external moment increments (&mE)PI the resulting shear increment ~V can be

determined

(b.mE . + b.mE .)
~V =--'-'--_')....:p_1

L

Thus the new theoretical plastic zone lengths Zc can be determined from

(m . + t!JnE .) - M .
n,1 .1 pi y,~

Z ------'-------:....
c,i - V +~V

n

(mn )' + b.mE ).) - M \' )'
-
-'-__'---,-p_1__. '_Z .=

C,) V +~V
n

(3.14)

(3.1Sa)

(3.1Sb)
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FIGURE 3.7 DETERMINATION OF INITIAL MOMENTS AT END I OF THE SPREAD

PLASTICITY ELEMENT FOR CHANGE IN PLASTIC ZONE LENGTH

where My is the yield moment (positive or negative) of the end section, m n is the vector of

end moments of the spread plastic subelement at the end of the previous load step and Vn is

given by
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(3.16)
(m . +m -)n,l n,] pI

V =-------'~
n L

The theoretical plastic zone lengths Zc are compared against those at the end of the

previous step z", If both plastic zone lengths in vector Zc are smaller than those in vector z" '
then no change in plastic zone length has taken place, If an increase in plastic zone length at

one or both ends of the beam subelement is detected during the comparison of Zc with Z",

then the corresponding plastic zone length is updated to a new value z: by adding a finite

length incrementZd to the plastic zone value z" at the end of the previous load step (Figs. 3.6

and 3.8)

if

if

(3. 17a)

(3.17b)

If the plastic zones at both ends of the spread plasticity subelement extend during a load

step, we need to establish which is going to do so first. This is the concept behind the event­

to-event method. To do so we make use of the fact that the stiffness of the spread plastic

subelement does not change until one of the plastic zones extends. Thus the point of

inflection of the moment diagram does not change between the beginning of the load step and

the instant when one of the plastic zones first extends. Using this fact we can establish which

zone is going to spread first by calculating the moment distribution at the stage when this

event takes place (Fig. 3.8). If we assume that the plastic zone length at end i will spread first,

then the shear force corresponding to a discrete increment of the plastic zone by Zd is

V.• = My,;
, L N

i -z",i
(3.18a)

(3.18b)

where Lj is the distance of the point of inflection from end i (Fig. 3.8). This is calculated

using the current end moment values (Fig. 3.8)

m . +&11£.- L = n,' ,I .L
, m -+&11£-+m -+&11£n,' ,1 n,] ,]

If, on the other hand, the plastic zone length at end} spreads out first by the discrete

increment Zd' then the corresponding shear force is

V. = My,j
] L N

j - Z",j

where Lj is the distance of the point of inflection from end} given by

(3.18c)
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(3.18d)

If the plastic zones at both ends of the spread plasticity subelement extend during a load step,

then a comparison of the shear force values from Eqs. (3.18a) and (3.18c) establishes which

event will take place first. The event to take place first is obviously associated with the

smaller shear force value from Eqs. (3.18a) and (3.18c). This value is denoted by Vz •

- moment distribution at step n

final moment distribution at slep n+1

moment distribution wlo change in plastic zone length

moment distribution at first event (change of plastic zone at i)

FIGURE 3.8 MOMENT DISTRIBUTION IN SPREAD PLASTICITY

ELEMENT DURING A GIVEN LOAD STEP

....

Making use of the fact that the inflection point does not change until the first event

takes place, also permits the determination of the moment and corresponding rotation

increments at the ends of the element when the event occurs (Figs. 3.7 and 3.8)

(3.19)

(3.20)

At this point the flexibility matrix of the spread plastic subelement is updated to account for

the new plastic zone length. Since the flexibility matrix changes, Eq. (3.20) no longer holds
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true. Instead, it has to be modified by introducing initial moments (~mo)1'1 at the ends of the

spread plasticity subelement as follows (Fig. 3.7)

((3.21a)

Eq. (3.21a) can be solved for the initial moments resulting in

(3.21b)

The outlined event-to-event procedure culminating in Eq. (3.21b) thus allows the

determination of the initial moments at the ends of the spread plastic subelement, if a change

in the length of plastic zone takes place at one or both ends of the beam subelement during

the load step. The process was presented for one event only. Since the change of the plastic

zone length at one end results in a change in the element flexibility matrix and an unbalance

between external and internal end moments, a new iteration needs to be performed until no

events are detected during an iteration. This entire process is presented in a summary form at

the end of this chapter.

It is important to stress the difference between Eqs. (3.12a) and (3.21b). In the first case

no change in plastic zone·length takes place. Only the average section' stiffness at one or both
plastic zones of the element changes. In this case the internal resisting moments (~mR) 1'1

arising from rotation increments ~e I are determined by Eq. (3.9b) and are then used in
p !

calculating the initial moments. In the second case the internal resisting moments (LimJ at

the instant that the plastic zone at one end of the element extends are determined. These

along with the corresponding end rotations are then used to determine the initial moments at

the ends of the spread plasticity subelement.

Once the initial moments at the ends of all subelements in series are determined the

initial moments at the ends of the girder or column superelement are established from the

following relation

liMo = [K]- {[fuJl'l .(~mo) 1'1 +[fuL, .(Limo)jnt +[fulhr .(LimO).\'hr} (3.22)

where [K] = [KL for girders and [K] = [KLd for columns. [KL and [KLd are the stiffness

matrices of the girder and column superelement, respectively. Eq. (3.22) is derived in

Appendix A of the report by Filippou and Issa (1988).

The initial moments at the ends of the superelement are finally transformed to the

global coordinate system using transformation matrix [a].

(3.23)
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where [a] =[a]b in the case of girders and [a1=[aLd in the case of columns.

81

Eq. (3.23) gives the vector of initial load increments at the end of the first iteration
(Fig. 3.2). These are then subtracted from the vector of external load increments (ARE t
according to Eq. (3.5) and the process is restarted by applying anew Eqs. (3.6)-(3.23) until the

difference between internal resisting and external applied moments at the ends of all

subelements is smaller than a specified tolerance. It should be noted that Eqs. (3.9) and (3.13)

have to be modified in the second iteration to include the· initial end moments from the

previous iteration (Fig. 3.7).

A complete description of the iterative process during a particular load step is given in

the following algorithm summary where indices are used to denote the iteration process.

3.4 Summary of nonlinear analysis algorithm

Step (1)

Step (2)

Step (3)

Step (4)

For each load step

Form the tangent flexibility matrix of all subelements which make up the girder
superelement [f]eI' [f]p/' [fLnI' [fL,·

Form the tangent flexibility matrix of all subelements which make up the
column superelement [fL, [f]p/' [fLt' [rlhr'

Form the axial stiffness of the column [Kt

Form the stiffness of the foundation elements [K]f

For all girder and column superelements in the structure add the flexibility

matrices of the subelements to obtain the flexibility matrix of the superelement

in local coordinates:

[Ft = [flt + [f]/I{ + [fLnI + [fLr

[F]crd ={(flt +[f]p/ +[fLr +[fLr Lrd

Invert the tangent flexibility matrix of each superelement to obtain the tangent

stiffness matrix:

[K]g =[F]:I

[K] - [F]-'
ad - ad

Transform the .stiffness matrix of all structural elements to global coordinates:
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Step (5)

Step (6)

Step (7)

Step (8)

Step (9)

CHAPTER 3

for girder superelements: [K]h = [a]~ .[Kt .[a1
for column superelements: [Kt = [arrd .[KLd ·[aLd +[aI .[KL .[aL

Assemble the stiffness matrix of all elements into the tangent stiffness matrix of

the whole structure (direct stiffness method) including the linear geometric

matrix of column elements:

elem

Given the vector of applied load increments (dR E)n solve for the displacement

increments .1fn relative to the converged solution at the previous load step n:

[K ]k ..1-k - (dR ) _(.1R )k-I
T rn - E n 0

where k is the iteration index, .1fn
k =rn~1 - rnand (.1R 0t- l =0 when k= 1(first

iteration).

For each girder and column superelement perform steps (7) through (16)

From the global deformation increments .1r; of each element calculate the local

rotation increments .18:

.18k = [a] . .1r;

where [a] = [a]h for girders and [a] = [a lad for columns.

Calculate the moment·increments at the ends of each superelement:

Mf~ = [Ky ·.18 k + .1M~-1

where [K] =[K]g for girders and [K] =[KLd .for columns and .1M~-l =0 for

k= 1 (first iteration).

Since aJl.subelements are in series

Step (10) Calculate the rotation increments at the ends of each subelement:

.18:, =[f]:/"(L\mE)el

.18k = [f]k .(L\m _L\mk-l)
1'1 1'1 E 0 pi
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~ak)'nl = [f]k .(~m E - ~~-I) .
lnl )nt

In the case of the spread plastic subelement calculate the curvature increments at

the end sections:

(fun _~-I)
~{/lk E_,i-,--__"_.--,p,-I

"t'j - ck . £1
I

(fun _ A ....k-I)
k _ E,j ~"o,j pi

~({J - .'
) ck

• £1
)

where ~m~-I = 0 for k = 1 (first iteration).

Step (11) Update the current end rotations/end curvatures and determine the internal

resisting moments from the hysteretic moment-rotation!, moment-curvature

relations:

(at ') = (a k )" + ~ak
n+1 pi n 1'1 pi

~ (m~tr

~ (m~)PI

The first relation applies to the concentrated plastic and the last to the spread

plastic subelement. The calculation of internal resisting moments takes place at

each end of the subelement independently.

Step (12) Calculate the increment of internal resisting moments and the moment

unbalance between internal and external moment increments,. if any

(~m~)1'1 =[(m~)-(mR)nt

(~mk) = [(mk )-(m ) ]
R jnl R R n jnl

(~m~tr =[(m~)-(mR)nLr

~ (~~) =[(~~)-(~~)].
pi pi

~ (~m~) =[(~m~ )- (~m~ )] .
)nt )nl

~ (~mbtr=[(~m~)-(~~)lhr

If the Euclidean norm of ~mu exceeds a pre specified tolerance then the

flexibility matrix of the corresponding subelement is updated.
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(m ·+6mE

k
.) -M .

k n,} ,} pi y,}

Z. . = -
C,} V + .1V k

n

and

Step (13) For the spread plastic subelement calculate the new theoretical

plastic zones

(m .+6m~) - M .k n,1 ,1 pi )',1

Z ------!.....---
c,; - V +~Vk

. n

where

length of the

(m . +m .)
n./ n,] pi

V =----~
n L and

Compare the theoretical plastic zone lengths against the previous values and

update these by a finite increment Zd' if necessary

if

if

where Zd = 0.025, L.

If a change in plastic zone length takes place at one or both ends of the spread

plastic subelement. determine the end moment and the corresponding end

rotation increments when the first event of a change in the plastic zone length is

about to take place

where

and ~8 = [elk .illn
Z pi Z

k_ . [( .)k ( .)k] _ . [- My,; . M)',j .]
Vz - mm V; 'Vj - mm k _ N • k _ N .

C, Zu,j Lj Zu,j

L m·+6m
E

k
.-1: = ' n.. ,1 , • L

I A_k km ,+UfftE · +m .+6mE ·n.r ,I n.] .]

Update the flexibility' matrix of the spread plastic subelement to account for the

extension of the plastic zone that takes place first.

Step (14) Invert the updated subelement flexibility matrices to obtain the corresponding

stiffness matrices. Calculate the initial moments at the ends of each subelement

(~mo ):1 =(L\m R );,1 - [k u ]:;1 .~8~1
(L\m)k ,; (L\m )k _ [k]k+l .~8k

o jrl/ R jrl/ U jnr ]M
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(dm)* - (dm )* - [k ]k+l. de k
o shr - R .,hr U .\'hr jnt

(dm )* = dm* - [k ]k+I. de*o pi Z U pi Z

The last equation only applies to the spread plastic subelement.

85

Step (15) Calculate the initial moments at the ends of all superelements

dM* =[K]*+1 .{[r ]*+1 .(l\m )* +[r ]k+l .(l\m)* +[r ]*+1 .(Lim )* }o U pi 0 pi U ]n/ O]n/ U sh, 0 "h,

where [K] =[Kt for girders and [K] = [Kl,J for columns. [Kt and [Kl,J are

the stiffness matrices of the girder and column superelement, respectively.

Step (16) Calculate the initial load vector

dRo =[aY 'dM~

where [a] =[a]b for girders and [a] = [aLJ for columns. Go back to Step 4, set k

=k+ 1 and k-l = k and continue until no unbalanced moments occur in Step 12.
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NONLINEAR DYNAMIC ANALYSIS

4.1 Introduction

This chapter is devoted to aspects related to the nonlinear dynamic analysis method

used in the present study. The computational details of the dynamic analysis and the mass and

damping idealization of the structure are discussed.

The proposed nonlinear analysis method is applicable to, both, the static and dynamic

nonlinear analysis of structures. In this study only the implementation of the method in the

context of the nonlinear analysis of moment resisting frames is presented. Since the nonlinear

static analysis of frames is just a special case of the dynamic analysis with no damping or

inertia forces and with lateral forces applied as concentrated static forces at each floor, details

related to the calculation of unbalanced forces and to the process of state determination of

individual frame elements were presented in the previous chapter.

The numerical integration strategy for nonlinear dynamic analysis is discussed in this

chapter. Questions of accuracy and stability of the numerical integration scheme are only

touched upon. Reference is made to more detailed discussions of related integration schemes

in the literature (Golafshani 1982, Allahabadi 1987).

In the following discussion special consideration is given to the nonlinearities that can

take place within a time step. This is especially important when the deformation contribution

of the different subelements to the local and global response of the structure is to be

determined. In this study frame members are decomposed into different subelements, which

act in series. Each subelement represents a different source of inelastic deformation of frame

members. Since each subelement has a unique hysteretic behavior, changes of stiffness in the

different subelements do not take place at the same instant. If the sudden change in stiffness

of a subelement within the time step is not taken into account, gross inaccuracies in the

relative contribution of the different subelements to the local and global response of the

structure will result. Moreover, the relative distribution of forces and deformations among the

girders and columns of the frame cannot be determined with confidence, if a constant

stiffness is assumed within the time step. In addition, unrecoverable numerical instability

problems might appear in later time steps. To address this problem a special procedure was

proposed in Chapter 3 which accounts for stiffness changes within a time step. This

87
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algorithm is now applied to the dynamic analysis of frame structures. Special problems which

arise during this implementation will be discussed in this chapter.

An important aspect of nonlinear dynamic analysis is the selection of time step size.

The size of the time step has great effect on the accuracy, stability, and rate of convergence of

the solution algorithm. The criteria for selecting the time step size for the proposed solution

algorithm will be discussed in this chapter.

For the accurate description of the nonlinear dynamic response of RC frame structures

three dimensional models are the best solution. At present the refined three dimensional

dynamic analysis of RC buildings is computationally very intensive. This study is Iir:nited to

two dimenSional models of symmetric buildings along one principal axis and determines the

response of these models to a ground motion whose direction coincides with this axis.

The features of the two dimensional model are summarized below: (Fig. 2.2.):

• One vertical degree of freedom and one rotational degree of freedom per node as well

as one horizontal degree of freedom per floor is assumed.

• The building mass is assumed to be lumped at the floors.

• Mass is, assigned to the lateral translational degrees of freedom only, and the

rotational inertia is not accounted for.

• Only horizontal ground accelerations are considered.

• Gravity loads are included in the analysis as fixed end moments and shear forces at

the girder ends. Joint loads are directly applied as concentrated moments and forces at

the nodes. A static analysis is performed before the beginning of the dynamic

response analysis.

• The model includes inelastic deformations in girders and columns with due account of

the effect of axial load on stiffness and strength.

• Shear effects in girders and columns; the axial deformations of columns and second­

order deformations due to p-~ effects are included in the analysis.

• Finite joint dimensions are used in determining the clear span of members. Fixed end

rotations at the beam-column and column-foundation interface due to bond

deterioration in the anchorage zone are taken into account.

• The addition of rotational springs at the base of the columns can simulate the

condition of hi"nged, partially fixed or completely fixed supports. Translational

springs at the base of the building can simulate sliding, rocking, and settlement of the

foundation.

• The frame members are assumed to have infinite ductility, so that failure by

attainment of the actual ultimate strength or deformation capacity of the member is

not considered.
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4.2 Dynamic equilibrium

The equations of motion for multi-degree of freedom systems are given by

[M] .f +[c] .t +[K] .r =P

89

(4.1)

f is the relative acceleration, t is the relative velocity, r is the relative displacement, and the
external load vector is P = -[M] .r~ = -[M]·1 a

R
in the case of earthquake loading, where a

R

is the ground acceler~tion and 1 is a vector of ones. [M], [C], [K] is the mass, damping, and

stiffness matrix, respectively. These matrices are described in detail in the following.

4.2.1 Mass matrix

The mass of a structure can be modeled in an equivalent lumped or a consistently

distributed matrix (Clough and Penzien 1975). In frame analyses the'--;se of distributed mass

is not worth the effort, since the dynamic response is not much affected by the type of

idealization (Selna 1977).

In the proposed analytical model only horizontal ground accelerations are considered.

Since lateral inertia forces and displacements constitute the dominant effect, mass is assigned

to translational horizontal degrees of freedom only and no rotational or vertical translational

inertia is included in the model. All permanent weight that moves with the structure is

lumped at the appropriate nodes. This includes the dead load and that part of the live load

which is expected to be presenf in the structure during the ground shaking. In regular

.buildings it is common practice to include 20% of the design live load in the calculation of

the mass of the structure, whereas the entire live load is typically included in the mass of

warehouse buildings.

Vertical accelerations are ignored, since axial deformations in the columns are rather

small. If vertical displacements or accelerations are important, the mass associated with the

vertical degrees of freedom has a signifiCant effect on the response, even if vertical ground

accelerations are not applied to .the frame. This sterns from vertical accelerations in flexible

frames caused by axial deformations· in the columns due to lateral response. In typical

building structures the cross-sectional dimensions of columns are determined from drift

considerations and anchorage requirements in beam-column joints. This results in columns

having so large axial stiffness that vertical inertia can be neglected in typical cases. If the

frame is very flexible or all members connected to a particular joint are very slender, then

rotational lumped masses at the joints should also be considered.
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Since the mass is lumped at the floor level, [M] is a sparse diagonal matrix with

nonzero terms associated only with the horizontal degrees of freedom. The coefficient values

of the mass matrix are assumed to remain constant during the dynamic response of the frame.

4.2.2 Damping matrix

Energy dissipation in the form of damping is commonly id,ealized in linear elastic

dynamic analysis as viscous or velocity proportional for convenience of solution. In reality,

damping forces may be proportional to the velocity or to some power of velocity.

Alternatively these forces may be of fridional nature, and in some cases they may even be

proportional to displacements or relati ve displacements (Newmark 1959). Once significant

yielding takes place, hysteretic damping becomes the major source of energy dissipation.

Hysteretic damping is best accounted for directly by the hysteretic load-deformation relation.

The most effective means of deriving a suitable damping matrix is to assume

appropriate values of modal damping ratios for all significant modes of vibration of the

structure and then compute a damping matrix based on these damping ratios (Clough and

Penzien 1975). In this study a Raleigh type mass and stiffness proportional damping of the

following form is used

[C] = Ct . [M] + ~ .[K] (4.2)

in which Ct and ~ are constants derived by assuming suitable damping ratios for two modes of

vibration.

Using a normal coordinate transformation of the equations of motion the n-th mode

damping ratio is

'I _ Ct A (0./\, ---+ ... -
• 2(0. 2

where 0). is the circular frequency of the n-th mode. For mass dependent damping A. IS

inversely proportional to the frequency such that higher modes have little damping.

Conversely, stiffness proportional damping is proportional to the frequency of the structure

and results in higher damping for higher modes thus decreasing the contribution of higher

modes to the response of the structure (Fig. 4.1-.).

In nonlinear dynamic analysis the damping matrix cail be expressed in proportion to

the initial or current tangent stiffness of the structure according to

[c] = Ct· [M] + ~. [K o]

or,
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where [K o] is the initial stiffness matrix and [K r ] is the tangent stiffness matrix.

In this study the first option is used, since the second option can lead to numerical

problems and has no advantage over the first option. Moreover, the effect of viscous damping

is very small compared to hysteretic damping in the nonlinear dynamic analysis of structures

that are subjected to large post-yield deformations.

After selecting the damping ratios for two modes of vibration, the constants ex. and ~

can be obtained as follows (Clough and Penzien 1975):

(4.3)

frequency OJ

FIGURE 4.1 MASS AND STIFFNESS PROPORTIONAL DAMPING

4.2.3 Stiffness matrix

Complete details of the derivation of the stiffness matrix of the frame model are

presented in Chapter 2. The basic idea behind the proposed frame stiffness idealization is to

provide a model which is complex enough to approximate the real structure behavior, yet

simple enough to be practical in the nonlinear dynamic analysis of large structures. The frame

model is a two dimensional idealization of the structural system which consists of column

and girder superelements. These are, in turn, decomposed into different subelements with
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and girder superelements. These are, in turn, decomposed into different subelements with

each subelement ~epresenting a particular source of inelastic defonnation in the structure.

A complete three-dimensional analysis of RC buildings is a fonnidable task. Most

:existing computer programs for nonlinear three-dimensional dynamic analysis do not include

a sufficient number of elements to be of use in the simulation of the dynamic response of

buildings (Newmark and Hall 1981).

Usually, separate planar models In two orthogonal directions are analyzed for the

corresponding component of the ground motion. Care is, however, warranted in planar frame

analysis, if strong coupling exists between the lateral motion in two orthogonal directions.

Care is also warranted, if significant torsional response is expected as is the case when the

mass and stiffness centers of the structure do not coincide or asymmetric inelastic effects take

place. In buildings defonning into the inelastic range the stiffness in one direction is affected

by the load and defonnation history in the other direction. The sequence of application of the

two orthogonal components of ground acceleration has, therefore, a large effect on the

nonlinear response of the frame.

The proposed frame model aims at predicting the nonlinear hysteretic behavior of

plane frames under unidirectional motion and can only provide some insight toward the

understanding of the three-dimensional behavior of RC moment resisting frames.

4.3 Numerical integration method

The incremental equations of motion represent the equilibrium of force increments

during a time step

[M]· M +[C]·dt+[KT ]· Llr =LiP

After detennining the increments of displacement, velocity and acceleration, the

solution advances by adding these increments to the corresponding values at the beginning of

the time step and by treating the latter as initial conditions for the next step.

In the case of nonlinear systems the equations of motion are solved using a step by

step integration method. In the frame model of this study some degrees of freedom with no

associated mass can develop velocity dependent damping leading to modes with zero period.

An integration method which is unconditionally stable with respect to the integration step

size is indispensable in this case. The constant average acceleration method satisfies this

requirement and is adopted in this study. The method assumes that within each time step the

accelerations associated with all degrees of freedom are the average of the values at the

beginning and end of the time step.
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• It is unconditionally stable with respect to time step size.

• It does not introduce spurious damping into the system.

• It is sufficiently accurate for time steps of practical size.

By substituting the mass and stiffness dependent damping matrix into the incremental

equilibrium equations we obtain

[M]· ~f+ {a ·[M] + P.[Ko]} .~r+[KT]' ~[= ~p

Assuming constant acceleration within the time step results in

r = .!- (ro + i\ )
Z

~r =rl - ro =2f - Zro

t =to +Jr·dt

r1 =to +r·M
~t = rl - to = f .~t

r = ro+Jr·dt

. f o ' ~t2
[I = [0 + [0 . ~t+ --"'---

Z
" A 2

. [0 . ut
~[ = [I - [0 = [0 . ~t +--"---

Z

Rearranging in terms of ~[ we obtain

~r =2-~[ - Zro
M

A" 4 A 4. Z..
u[ = - u[ - - r - r

~t2 ~t 0 0

(4.4)

(4.5)

(4.6)

where ~[, ~r and ~f are the increments of displacement, velocity, and acceleration vectors

during the time step ~t, respectively. The subscript 0 indicates quantities at the beginning of

the time step.

By combining Eqs. (4.4)-(4.6) and rearranging the results we obtain:

{(~+ za)[M]+zP .[Ko]+[KT]}. ~[= ~P+[M] .(Zfo+~ro)+{a .[M]+p.[Ko]}· Zro
~t ~t ~t· ~t·

Defining
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4 2a
c=-+-

I t1t 2 t1t

B = 2to

and

results in the finalform of the dynamic equilibrium equations

[KO]. L\r = L\P + [M]- (2ro + :/0 + a· B) + {~. [Ko]}' B

CHAPTER 4

(4.7)

The damping matrix is assumed to be proportional to the initial stiffness [K o] and mass

matrix [M] i.e. [C] = a· [M] + ~. [K o]

Since [K o] and [M] and do not change during a time step, [C] also remains constant

The disadvantage of the damping matrix being proportional to the initial stiffness matrix

[K o] is the additional storage requirement, since both stiffness matrices, [Ko] and [K T ],

need to be stored in this case.

4.4 Numerical implementation

Buildings subjected to earthquake ground shaking are usually occupied and thus

members of the structure are stressed by the combination of the effects of gravity and

earthquake ground motion. In this study the building frame model is first subjected to gravity

loads, followed by the dynamic analysis for ground accelerations. The building frame model

does not have to remain elastic during the static analysis phase, so that initial damage due to

other effects prior to the earthquake excitation can be simulated.

The proposed method of nonlinear dynamic analysis is outlined below by referring to

the nonlinear algorithm of Chapter 3. The algorithm is subdivided into the following steps:

(1) At the beginning of the time step to' fa, a and ~ are known, where to and fo are the

velocity and acceleration vectors at the beginning of the time step, respectively, and a
and ~ are the dampi ng parameters.

(2) Assemble mass matrix [M], which does not change during the analysis.

(3) Assemble the initial stiffness matrix [K o].

(a) This step involves Steps 1-5 of the nonlinear analysis algorithm in Chapter 3.

The initial stiffness matrix [K o] is only formed once. Since the initial stiffness

matrix is used in the evaluation of the damping forces, it needs to remain in

storage during the entire dynamic analysis.
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(b) If a change of stiffness occurs during the time step a new tangent stiffness

matrix [K T ] is assembled.

(4) Determine c, and B from

4 2ex
c=-+-

I I1t 2 I1t

B =2to

(5) Evaluate the effective stiffness matrix [K *J

(6) Evaluate the effective dynamic load vector from

I1P* = I1P +[M] ·(2fo+ .i- to + ex· B)+ {~.[Ko]}·B
. I1t

(7) Solve for the incremental displacement vector I1r from

[K *]. I1r = I1P*

This step corresponds to Step 6 of the general nonlinear algorithm in Chapter 3.

(8) Perform Steps 7 through 16 (state determination) of the general nonlinear algorithm

of Chapter 3.

(9) In case of force unbalance go to Step 3b.

In case of convergence

(a) Determine the resulting incremental velocity and acceleration vectors from

I1t = ~l1r - 2to
M

A" 4 A 4. 2"ur=-ur--r - r
I1t 2 I1t ° °

(b) Update the initial velocity and acceleration vectors to' ro' respectively, from

(c) Go to Step 3b.
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4.4.1 Force unbalance in load deformation relation

If the stiffness is assumed to remain constant during the time step, a force unbalance

in the equilibrium equations will arise in cases where the stiffness of some elements changes

during the step. A force unbalance resulting from yielding of an element is called overshoot,

a force unbalance arising from unloading of an element is called undershoot or backtrack and,

finally, a force unbalance due to reloading after unloading is called cross-over. These cases

are shown in Fig. 4.2. The problem of force unbalance due to the assumption of constant

stiffness during the time step has been discussed by several researchers (Aziz and Roesset

1976). In the case of static analysis the effect of overshooting, backtracking and cross-over

can be readily established: the load defonnation diagram is elongated in the load direction,

but shortened in the deformation direction as shown in Fig. 4.2. The accumulation of this

effect overestimates the strength and underestimates the defonnation of the structure. In the

case of dynamic analysis, on the other hand, the effect of overshooting, backtracking and

cross-over, cannot be readily established.

---- ",

M j
overshoot T

M~

undershoot

~---,---,

--- actual model

- - - - - - approximation

FIGURE 4.2 CASES OF OVERSHOOT, UNDERSHOOT AND

CROSSOVER IN HYSTERETIC LOOPS

The~e effects change the stiffness characteristics of the model. Since the dynamic

forces depend on the stiffness, a different dynamic response may result. Thus, by not
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accounting for the stiffness change during the time step the maximum response of the

structure will increase or decrease depending on the frequency content of the ground motion.

Different approaches of addressing the problem of unbalanced forces have been

proposed to date. A summary of the most commonly used methods follows.

(1) The first method essentially ignores unbalanced forces. This method can be further

subdivided into three different approaches:

(a) In the first approach the unbalance between applied moments at the ends of

the element and resisting moments that correspond to the current deformation

based on the load-deformation relation .is transformed to global forces which

are then applied as corrective loads during the next time step (Kanaan and

Powell 1973). It is noted in (Robinson 1989) that the solutions obtained with

the corrective force method are unbounded in some cases and can lead to very

large errors. Errors of up to 18220% in the maximum response values of a

structure with 20 degrees of freedom and a fundamental frequency of 5 Hz

have resulted when using a time step size of 0.02, even though the constant

acceleration method was used (Robinson 1989).

(b) In the second approach the moments at the ends of the element are set equal to

those corresponding to the current deformation based on the load-deformation

relation without carrying out the relaxation of the frame, which is physically

equivalent to the application of corrective forces (Sharpe 1974).

(c) In the third approach the moments at the end of the time step are used as initial

conditions in the following time step, even though they do not satisfy the load­

deformation relation of the element. This method completely ignores the

unbalance load. Researchers who used this method (Aziz and Roesset 1976)

reported errors in the column and girder forces, the ductility demand, the story

shear forces and the interstory drift. The largest discrepancy occurs in the

calculation of story shear forces. Using different time steps in the nonlinear

dynamic analysis of the same frame, no upper bound of member forces was

obtained because of backtracking and overshooting (Aziz and Roesset 1976).

With any of these three methods it is questionable whether the selected time step size

is small enough to allow for accurate tracking of the load-deformation relation of the

member.

(2) Iteration method. In this approach an iteration is performed within the time step, if

the moment unbalance exceeds a specified tolerance. Among the many iteration

schemes proposed in previous studies the most common are:

(a) the Newton Raphson method,
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(b) Modified Newton Methods, and

(c) Quasi-Newton methods.

A full description of these methods is given in Simons and Powell (1982).

(3) Event-to-event method. The third solution scheme is the event-to-event method.

This strategy is suitable for problems that are linear or nearly linear between well

defined events. A full discussion of the event-to-event method is given in Simons and

Powell (1982). The idea behind the event-to-event method is to closely follow the

equilibrium path at all times by updating the stiffness and the state of each element

each time. a change of stiffness in one of the elements of the structure takes place.

This is achieved by predicting the occurrence of the next change of stiffness (event)

within a load step and then scaling the load increment by a factor such that the

solution just reaches the predicted event. A shortcoming of this method is the increase

in the computational cost of each time step, as the number of elements and possible

events increases. Its use in the nonlinear dynamic analysis of large structures is, thus,

seriously compromised.

The Modified Newton-Method of Chapter 3 proved extremely robust and reliable.

Any force unbalance between the different subelements was always resolved within the time

step, and equilibrium was thus maintained at all times.

4.4.2 Time step size

In the step by step integration procedure the response of the structure is evaluated in

discrete time increments !:it. The following factors must be considered in the seleCtion of the

time increment:

• It should be small enough to accurately represent the ground motion. The higher the

rate of variation of the applied load the smaller the required time step.

• The accuracy of the numerical integration scheme depends on the size of the time

step. If a large time step is selected, some response characteristics that are influenced

by higher modes may not be well represented in the analytical results.

• The time step should be small enough to ensure numerical stability. Even though the

constant acceleration method is unconditionally stable for linear analysis, there is no

proof of unconditional stability in the case of nonlinear analysis.

• The convergence of iterative nonlinear analysis algorithms depends on the time step

size. In the algorithm of this study the change of stiffness within the time step is taken

into account. If convergence problems arise in certain cases, it is possible to remedy

the situation by subdividing the step size, as discussed in Section 4.3.4. In nonlinear
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methods which ignore the change of stiffness within the time step a ~ery small step

size is required and very often more than one analysis with different time step sizes

needs to be performed in order to ensure convergence to the correct solution. The

dynamic simulations in this study lead to the conclusion that the total number of time

steps required to ensure accuracy of the results is much smaller in the proposed

method than in algorithms which do not account for the change of stiffness within the

time step. This fact compensates for the added cost associated with the iterative nature

of the proposed algorithm.

4.4.3 Numerical problems

When a change of stiffness occurs within a time step, iterations are performed to

ensure that equilibrium between applied and resisting forces is satisfied at the end of every

time step. Numerical problems which might arise in connection with the proposed algorithm

and remedial measures are discussed in the following.

The first problem occurs in the case of Fig. 4.3 which is characterized by a very small

stiffness of the load-deformation relation followed by a large stiffness, which, in turn, is

followed by a small stiffness. The convergence problems that might arise in this case are

illustrated in Fig. 4.3.

(a) Execute Steps 1-9 of the nonlinear algorithm as usual.

(b) At Step 10 of the algorithm, the applied load 8rn~ results in a very large element

deformation increment 8S k due to the small stiffness of the element.

M

.---- 6 9 ----~

FIGURE 4.3 CASE FOR TIME STEP SUBDIVISION·
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(c) Steps 11 and 12 are executed to determine the internal resisting moment increment

~m~ corresponding to ~ek. In this case the resulting unbalance moment ~m~ is

determined from the equations of Step 12 in Chapter 3.

(d) Execute Steps 13-16. In this special case the initial moment ~m~ determined from the

equations of Step 14 in Chapter 3 will be higher than ~m~ (Fig. 4.3).

(e) Set k =k+l at the end of Step 16 and perform a second iteration starting from Step 4

in order to satisfy equilibrium between applied and resisting forces.

(0 Execute Steps 4-9.

(g) Execute Step 10 to determine the value of ~ek . In this case ~ek will correspond to

~m~ - ~m~-I which is of opposite sign to ~m~. This will reverse the loading

direction and can lead to numerical problems.

In order to solve this problem a restepping capability is introduced in the nonlinear

solution method of Chapter 3. Thus, if no convergence is achieved at the end of the

correcting phase,· the step size is halved and the iteration process is restarted from the

previous converged state. This process is illustrated in Fig. 4.4 for the case of Fig. 4.3.

M

FIGURE 4.4 TIME STEP SUBDIVISION TO ACHIEVE CONVERGENCE

The most dramatic example of the numerical problems that occur in connection with a

sudden increase in stiffness is the case of unloading after strain hardening or stiffness

degradation. Two methods can be used to solve this problem:

First method. In this case the step is repeated using a very small step size. The step

size should be sufficiently small to detect the abrupt change of stiffness. After the unloading

stiffness is detected the step is repeated with the original load increment.



CHAPTER 4 101

Second method. In this case the step is repeated using the unloading stiffness. The

first method is necessary, if the unloading stiffness is not known in advance and state

determination is required for determining the stiffness. In this case a small load increment

suffices for determining the unloading stiffness.

The second method is more economical, if the unloading stiffness is known in

advance, which is the case in the present study.

Another numerical problem is associated with "flip flop" of the solution. "Flip flop"

is a problem that might appear in nonlinear dynamic analysis. It is characterized by

oscillation of the solution between loading and unloading while iterating for convergence

within a given time step. "Flip flop" usually occurs when the element tries to unload after

strain hardening. In the nonlinear algorithm of this study this problem arises as follows:

The load step starts with the strain hardening stiffness. In the state determination

phase of the solution (Step 10 of the nonlinear algorithm in Chapter 3) the subelement

deformation is evaluated. If the resulting deformation increment of the subelement is of

opposite sign to the previous deformation increment then the step is repeated using the

unloading stiffness. In some cases repeating the step with the unloading stiffness reverses

again the sign of the deformation increment, such that the original strain hardening stiffness

has to be used again in the next step. Repeating the step with the original strain hardening

stiffness leads once again to unloading and the process of oscillation between the states of

strain hardening and unloading goes on indefinitely during subsequent iterations. The

problem of oscillations of the solution between loading and unloading has been encountered

in different numerical algorithms (Spurr 1984). To remedy this problem the loading

increment needs to be subdivided. In this study the step size is automatically halved until

convergence is reached. Once convergence is reached, the remainder of the original time step

is applied in the same manner as described for the regular time step. Upon completion of the

time step the solution algorithm reverts to the original time step size.
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ANALYSIS OF NONLINEAR RESPONSE TO STATIC CYCLIC LOADS

5.1 Introduction

The reinforced concrete girder and column elements and the analytical methods that

were presented in the previous chapters are implemented in a special purpose computer

program for the nonlinear static and dynamic analysis of reinforced concrete frames. This

chapter focuses on analytical correlation studies of the nonlinear static response of frame

subassemblages to cyclic alternating lateral loads. The dynamic response of frame

subassemblages to earthquake excitations is discussed in the following chapter.

To establish the validity of the proposed girder and column models and the accuracy

of the analytical solution methods for determining the nonlinear response of frame structures

to cyclic static loads, the program is used in the simulation of the hysteretic behavior of

beam-column subassemblages. Four particular specimens were selected. Two specimens have

been used in the correlation studies presented by Filippou and Issa (1988). The other two

specimens have a small span to depth ratio. so that the effect of high shear plays an important

role in the response.

The first such specimen was designed and tested by Celebi and Penzien (1973) to

simulate reinforced concrete beams under the combined action of bending moment and shear.

This specimen is selected to test the adequacy of the shear subelement and its interaction with

the other girder subelements. The specimen had a span to depth ratio of 2.3 and was

subjected to a large number of cyclic deformation reversals.

The second specimen was designed by Atalay and Penzien (1975) to simulate

reinforced concrete columns under the combined action of bending moment, shear, and axial

load. The specimen was designed according to state of the art concepts of earthquake

resistant design and was subjected to a large number of inelastic cyclic deformation reversals.

This specimen was selected for verification of the ability of the column superelement to

predict the hysteretic behavior of reinforced concrete columns under the combined action of

axial force, shear and bending moment.

103
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S.2 Correlation with Experimental Studies

5.2.1 Celebi and Penzien (1973) Girder Specimen

In order to test the ability of the proposed models to predict the response of reinforced

concrete girders under high shear the results of the model are compared with experimental

data from one of the specimens tested by Celebi and Penzien (1973). In the original report the

specimen is designated as specimen #12. The design of specimen #12 satisfied the general

requirements of Appendix A of the 1971 ACI Code, Special Provisions for Seismic Design.

The specimen was tested to study the effect of shear on the behavior of girders. The span to

. depth ratio of this specimen is 2.31 which means that shear deformations significantly affect

the hysteretic behavior.

The specimen was simply supported at both ends and subjected to concentrated lateral

loads. The load history is shown in Fig. 5.1, while a simple sketch of the loading setup is

shown in Fig. 5.2.

Additional: reinforcement was placed in the column stub to increase the effectiveness

of bond so that the influence of one side of the joint on the other is minimized. The specimen

can, thus, be idealized as two identical cantilevers with half of the load applied at the free end

of each (Fig. 5.2). Bond slip of reinforcing steel gives rise to fixed-end rotations at the girder­

stub interface due to flexural cracking in the girder end region.

The analytical model used to simulate the behavior of the specimen consists of a

girder superelement made up of an elastic subelement, a spread plastic subelement, a joint

subelement, and. a shear

subelement. The properties of the

constituent subelements are

-1.0 '------------------------'

FIGURE 5.1 LOAD HISTORY OF SPECIMEN

BY CELEBI AND PENZIEN (1973)

........................2~L

1\

\
Load Point

derived from the material and

geometric properties of the

specimen reported in Celebi and

Penzien (1973). With the

measured stress strain relations

of concrete and reinforcing steel,

the section geometry, and the

reinforcement layout of the

girder the monotonic moment­

curvature relation of a typical

girder section can be established
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with well known principles of reinforced concrete analysis. The parameters for the elastic and

spread plastic subelement are determined from the moment-curvature envelope of the girder

end section. The parameters of the joint subelement are determined from the monotonic

moment-fixed end rotation envelope. This can be established either with the finite element

model by Filippou et al. (1983) or from a simplified analysis of pull-out deformations. The

shear subelement describes the shear distortion in the end region of the member and the

sliding at the beam-stub interface. The parameters of the shear subelement are also

determined from the data in Celebi and Penzien (1973). The parameters of the spread

plasticity, the joint and shear subelement are summarized in Table 5.1. Furthermore, a step­

by-step derivation of these values is provided in Appendix A.

Fig. 5.3 shows the experimental and analytical lateral load-displacement relation of

the specimen. A careful study of the results in Fig. 5.3 leads to the following observations:

• Excellent agreement between analytical predictions and experimental results is

generally observed.

• The shear subelement can accurately model the shear effects in the post yield range of

response of reinforced concrete girders.

• The pinching of the hysteretic behavior of the girder caused by the interaction of shear

forces with the opening and closing of the cracks is predicted well by the analytical

model. This effect is very important in short span members and must be taken into

account in order to accurately predict the energy dissipation of the member.

r

t 6' t 6' tI

!H/2

FIGURE 5.2 CANTILEVER EQUIVALENT TO SPECIMEN OF CELEBI AND PENZIEN (1973)



106 CHAPTER 5

30 r---------------r----------------,

1.00.8.0.6-0.4 -0.2 0.0 0.2 0.4

LATERAL DISPLACEMENT (in)
-0.6-0.8

20

-20

-30 l-.-_.......J..__--'-__.L...-_--..L__...;..L__...l.-_----l__---!-__--'---_--'

-1.0

i 10
:S'-

FIGURE S.3A EXPERIMENTAL RESULTS OF LATERAL LOAD- DISPLACEMENT
RELATION OF SPECIMEN #12 (CELEBI AND PENZIEN 1973)
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RELATION OF SPECIMEN #12 (CELEBI AND PENZIEN 1973)
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• The strength degradation is not very significant; nonetheless, it IS evident in the

experimental results.

• The pre-yield stiffness of the specimen is underestimated in the early stages of

loading, because the model does not take into account the stiffness change between

the uncracked and cracked state. The model uses instead a secant pre-yield stiffness,

since emphasis is placed on predicting the response of RC members under large cyclic

deformation reversals. A change to an appropriately defined trilinear envelope curve

can be readily accommodated in the model.

CELEBI AND PENZIEN (1973) SPECIMEN

GIRDER MOMENT- JOINT MOMENT·ROTATION MOMENT-SHEAR
MOMENTS [ k-in I

CURVATURE RELATION ROTATION

Mer' 200
INITIAL STRAIN INITIAL STRAIN INITIAL STRAIN

STIFFNESS HARDENING STIFFNESS HARDENING STIFFNESS HARDENING

[103 k-in2/radl RATIO [ 103 k·inlrad I RATIO [ 103 k-inlrad 1 RATIO

M+ 780 2700 0.017 500 0.04 180 0.035

M- 750 2700 0.017 500 0.04 180 0.035

TABLE 5.1 MODEL PARAMETERS FOR CELEBI AND PENZIEN (1973) SPECIMEN #12

5.2.2 Atalay and Penzien (1975) Column Specimen

To study the adequacy of the proposed model in predicting the hysteretic behavior of

reinforced concrete frame elements subjected to the combined action of bending moment,

shear, and axial load the behavior of a column specimen tested by Atalay and Penzien (1975)

is studied. In the original report (Atalay and Penzien 1975) the specimen is designated as

specimen #3. The design of the specimen satisfied the requirements of Appendix A of the

1971 ACI Code, Special Provisions for Seismic Design. The specimen was simply supported

at both ends and was subjected to an axial load of 60 kips in addition to cyclic concentrated

lateral loads. The load history is shown in Fig. 5.4 and the load setup resembles that in Fig.

5.2 with the addition of an axial load.
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The reinforcing bars

were welded to rigid steel

plates at the midspan of the

specimen to prevent slip of

reinforcement and minimize

the interaction between the

two joint faces. The specimen

can, thus, be idealized as two

identical cantilevers with half

of the load applied at the free

end of each (Fig. 5.2).

The analytical model

used in the prediction of the

behavior .of the specimen

consists of a column

superelement made up of an

elastic subelement, a spread plastic subelement, a joint subelement, and a shear subelernent.

The derivation of the properties of the different constituent subelements is based on the

material properties reported in Atalay and Penzien (1975). With the measured stress strain

. relations of concrete and reinforcing steel, the section geometry, and the reinforcement layout

of the column the monotonic moment-curvature relation of a typical section can be

established with well known principles of reinforced concrete analysis. The parameters for

the elastic and spread plastic subelement are derived by fitting a bilinear envelope curve to

the actual monotonic moment-curvature relation of the column end section.

Since the reinforcing bars are welded to the rigid steel plate at midspan, little slip

occurs in the joint region. However, a pronounced flexural crack at the column-stub interface

was still evident during the test. Therefore, the joint subelement represents the opening and

closing of the crack at the column-stub interface and its interaction with the bending moment

and axial load. The parameters of the joint subelement are determined from the moriotonic

moment-fixed end rotation envelope. This can be established either with the finite element

model by Filippou et al. (1983) or from a simplified analysis of pull-out deformations.

The shear subelement describes the shear distortion in the end region and the sliding

at the column-stub interface. The parameters of the column shear subelement are determined

from data reported in Atalay and Penzien (1975).
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The parameters of the spread plasticity, the joint and shear subelement are

summarized in Table 5.2. Furthermore, a step-by-step derivation of these values is provided

in Appendix A.

ATALAY AND PENZIEN (1975) SPECIMEN

GIRDER MOMENT· JOINT MOMENT-ROTATION MOMENT-SHEAR
MOMENTS [ k-in ]

CURVATURE RELATION ROTATION

Mer 300
INITIAL STRAIN INITIAL STRAIN INITIAL STRAIN

STIFFNESS HARDENING STIFFNESS HARDENING STIFFNESS HARDENING

[103 k-in2/radl RATIO I 103 k-inlrad J RATIO [ 103 k-inlrad J RATIO

M+ 916 3960 0.02 300 0.04 1500 0.025

M- 896 3960 0.02 400 0.04 1500 0.025

TABLE 5.2 MODEL PARAMETERS FOR ATALAY AND PENZIEN (1975) SPECIMEN #3

Due to the p-~ effect, the strength of the specimen is expressed by the equivalent

lateral load

p.~

Heq =H+-
h
-

where H is the applied lateral load, P is the axial load, h is the column height and ~ is the

lateral displacement. Fig. 5.5 shows the experimental and analytical equivalent lateral load­

displacement relation of the specimen.

A careful study of the results of Fig. 5.5 leads to the following conclusions:

• The agreement between analytical model and experimental data is very good, except

at the initial stages of the response. The pre-yield stiffness of the specimen is

underestimated in the early stages of loading, because the model does not take into

account the stiffness change between the uncracked and cracked state. The model uses

instead a secant pre-yield stiffness, since emphasis is placed on predicting the

response under large cyclic deformation reversals.

• The pinching effect due to the interaction of flexural cracks with bending moment and

axial load and the interaction of diagonal cracks with shear and axial load is predicted

satisfactorily. This effect is very important in the accurate prediction of the energy

dissipation of column members..
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CORRELATION STUDIES OF NONLINEAR DYNAMIC RESPONSE

OF SHAKING TABLE TEST FRAME

6.1 Introduction

The main purpose of the reinforced concrete frame model and the nonlinear analysis

algorithm developed in this study is to allow an accurate prediction of the nonlinear dynamic

behavior of reinforced concrete frame structures. To test the adequacy of the proposed frame

model and the proposed analytical procedure in predicting the nonlinear dynamic response of

frame structures, a complete study of a RC frame which was previously tested on the shaking

table is ·conducted.

This chapter describes the correlation studies of the dynamic response of a one bay

two story reinforced concrete frame structure subjected to a simulated strong seismic base

motion. The test specimen referred to as RCF2 in Clough and Gidwani (1976) is a 0.7 scale

model of a two story office building representative of common design and construction

practice. The frame was designed, constructed, and tested by Clough and Gidwani (1976). It

was designed according to the 1970 UBC (UBC, 1970) and the 1971 ACI (ACI, 1971) Codes

of practice and the design was later verified with reference to the 1979 UBC Code in Blondet

et al. (1980). The studies by Clough and Gidwani (1976) describe the philosophy and the

. procedures involved in the design of the frame structure. Information about material

properties of concrete and reinforcing steel as well as other information regarding the test are

given in Clough and Gidwani (1976) and will also be referred to in Appendix B, which

discusses the derivation of the pertinent model parameters for the test frame.

The test structure was subjected to three consecutive ground acceleration histories on

the shaking table at the University of California Berkeley. Each of these motions corresponds

to the N69W Taft accelerogram record during the Arvin-Tahachapi earthquake of July 21,

1952, scaled to different peak accelerations, namely 0.095g, 0.57g, 0.65g (Fig. 6.1). These

three tests were referred to as WI, W2, W3, respectively. In this study only the second test

(W2) is considered, because it demonstrates the performance of a building in good condition

when subjected to a ground motion severe enough to cause significant concrete damage and

yielding of the reinforcing steel. At the start of the test the structure was slightly cracked from

the first test (W 1), as might represent the condition of actual structures in service.

III
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FIGURE 6.1 N69W TAFT ACCELEROGRAM RECORD, JULY 21, 1952, SCALED TO 0.57g

The seIsmIc behavior of the structure is dominated by flexure accompanied by

reinforcement slippage and is not much affected by shear and axial loads. This type of

behavior is desirable in frame structures that will be subjected to seismic excitations. To

represent this, behavior, the elastic and spread plastic subelements are used to model flexure,

while the joi,nt subelement is used to model the pull-out of reinforcing steel from the base of

the test specimen. The shear subelement is not activated in this study, since shear effects are

negligible. Bond slippage of reinforcement in RC frames has been the focus of several

research studies in the last years. The analytical studies in this chapter address the importance

of this effect on the dynamic response of the test frame and methods of including this effect

in a nonlinear frame model are discussed. In order to highlight the significance of the pull-out

of reinforcing steel in the dynamic response of test frame RCF2, its response is first

determined without the pull-out element and the results are subsequently compared with

those of the complete model.

The one component model is in extensive use in the nonlinear dynamic analysis of

RC frame structures. The analytical studies in this chapter investigate the accuracy of this

model in connection with the local and global dynamic response of frame structures.
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6.2 Derivation of Member Properties of RCF2 Test Frame Model

115

The test structure and test arrangement on the shaking table as well as the reinforcing

details of the test structure are shown in Figs. 6.2 and 6.3., A very difficult task in a

correlation study between experimental and analytical results is the selection of model

parameters that represent the physical state of the test specimen at the beginning of the test

and can be derived in a rational manner from first principles of reinforced concrete design.

Moreover, from a practical point of view the results of a correlation study are only

meaningful, if the model parameters can be derived from jnformation that is readily available

during the design phase of a reinforced concrete structure without ad-hoc assumptions. This

information pertains to the geometry of the structure and the physical and mechanical

characteristics of the building materials.

The difficulty' and importance of the task of parameter selection necessitate a more

thorough discussion of this subject that is typically the case in similar correlation studies.

This is the intent of the subsequent discussion in this chapter and the detailed calculations in

Appendix B. Because of the inherent uncertainty about the physical state of the test specimen

and the actual physical and mechanical characteristics of the materials in the built specimen,

the attempt was made first to establish a reasonable range. for each parameter value. This was

accomplished with the information about the geometry of the test specimen and the actual

material characteristics given by Clough and Gidwani (1976) using first principles of

reinforced concrete design. Within this range a trial and error process led to the set of

parameter values for each subelement that was used throughout the correlation studies of this

chapter.

At the start of the second shaking table test W2 the test frame RCF2 was reportedly

undamaged although slightly cracked. Thus, the selection of the initial stiffness of the

members in the frame model depends on the state of cracking of the corresponding members

in the test frame. While under uncracked conditions a RC member exhibits a stiffness equal

to the gross or even transformed section value, this value drops to about one third and starts

approaching the fully cracked stiffness value under widespread cracking in the member. The

initial stiffness of the frame model establishes its fundamental period of vibration at the start

of the test. In the case of test frame RCF2 the fundamental period at the start of the test is

close to the range of period values with significant energy input of the base motion (Fig. 6.4).

This "tuning" between test structure and base excitation makes the initial stiffness selection

of the members in the model a determining factor of the quality of the nonlinear response

correlation.
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The selection was immensely aided by the thorough measurements of the overall

stiffness of the test frame prior to the start of run W2 that were undertaken by Clough and

Gidwani (1976). These tests consisted of the measurement of individual flexibility

coefficients of the 2 by 2 condensed stiffness matrix of the two story test frame and of snap
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FIGURE 6.4 ACCELERAnON RESPONSE SPECTRUM FOR SHAKING TABLE TEST W2

tests. The measured flexibility coefficients yield values of J" =1.92 Hz and 12 =6.06 Hz for

the first and second mode of vibration of the test frame, respectively. These values are lower

than the corresponding values derived from the snap test which were J" =2.03 Hz and

fz =6.70 Hz for the first and second mode of vibration, respectively. The discrepancy

between these two sets of values averages about 6%, but no explanation for this deviation is

offered by Clough and Gidwani (1976). At the end of test run W2 the corresponding

frequency values from the snap test. were J" =1.88 Hz and 12 =6.14 Hz for the first and

second mode of vibration, respectively, reflecting the occurrence of damage. This damage

was mostly concentrated at the ends of the first story columns.

A study of the experimental results suggests that the snap tests values might be more

reliable, and, so; it was decided to adopt the frequency values of 1; =2.03 Hz and

h =6.70 Hz for the first and second mode of vibration, respectively, as the reference values

to match. The initial stiffness of the girders and columns of the test frame was calculated with

fully cracked moment of inertia and concrete modulus Ec equal to the mean value of those
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measured in cylinder tests by Clough and Gidwani (1976). Calculation details are provided in

Appendix B. With an initial stiffness equivalent to fully cracked conditions in all frame

members the resulting frequency values were 1; =2.19 Hz and h =5.73 Hz for the first and

second mode of vibration, respectively. The good agreement of these values with those

measured in the snap tests before the start of shaking table test W2 gives confidence of the

good representation of the actual state of the structure before test initiation.

RCF2 FRAME· BOTTOM STORY GIRDERS

SPREAD PLASTICITY CONCENTRATED JOINT
MODEL PLASTICITY MODEL

YIELD MOMENTS GIRDER MOMENT· GIRDER MOMENT· MOMENT·ROTATION
CURVATURE RELATION ROTATION RELATION RELATION

[k-in I INITIAL STRAIN INITIAL STRAIN INITIAL STRAIN
STIFFNESS HARDENING STIFFNESS HARDENING STIFFNESS HARDENING

[ 10" k.in1lradl RATIO [ 10' k· in/rad 1 RATIO [10" k· in/rad 1 , RATIO

M+ 232 1531 0.012 1531 0.025 200 0.04

M- 720 1531 0.020 1531 0.038 200 0.04

TABLE 6.1 PARAMETER VALUES FOR BOTTOM STORY GIRDERS IN ANALYTICAL MODEL

RCF2 FRAME - TOP STORY GIRDERS

SPREAD PLASTICITY CONCENTRATED JOINT
MODEL PLASTICITY MODEL

YIELD MOMENTS GIRDER MOMENT· GIRDER MOMENT· MOMENT-ROTATION
CURVATURE RELATION ROTATION RELATION RELATION

[k-in I INITIAL STRAIN INITIAL STRAIN INITIAL STRAIN
STIFFNESS HARDENING STIFFNESS HARDENING STIFFNESS HARDENING

[ 10' k-in2;rad] RATIO [ 10' k-.n/rad 1 RATIO [10' k-in/rad ] RATIO

-
M+ 205 1188 0.012 1188 0.025 200 0.04

M- 640 1188 0.020 1188 0.038 200 0.04

TABLE 6.2 PARAMETER VALUES FOR Top STORY GIRDERS IN ANALYTICAL MODEL

The damping ratios that were measured in the snap tests before the start of shaking

table test W2 were ~1 = 5.77% and ~2 = 2.99% for the first and second mode of vibration,

respectively. At the completion of the shaking table ~est W2 these values had changed to
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~l =6.56% and ~2 =3.46%. According to Clough and Gidwani (1976) the greater increase in

the damping ratio of the first mode of vibration indicates that the damage during the test was

primarily concentrated in a deformation pattern that agrees with the first mode of vibration.

In the analytical studies of this chapter a damping ratio of 5% of critical was assumed for the

first two vibration modes.

The girder yield moments were determined by Clough and Gidwani (1976) and

include the effective width of the floor slab and the effect of compression reinforcement. The

values for the analytical studies in this chapter ~re identical to those reported by Clough. and

Gidwani (1976) and are summarized in Tables 6.1 and 6.2 for the bottom and top story

girders, respectively.

RCF2 FRAME ~ BOTTOM STORY COLUMNS

SPREAD PLASTICITY CONCENTRATED PLASTICITY JOINT

~
MODEL MODEL

YIELD MOMENTS. GIRDER MOMENT- GIRDER MOMENT-ROTATION MOMENT-ROTATION
CURVATURE RELATION RELATION RELATION

[k-in] INITIAL STRAIN INITIAL STRAIN INITIAL STRAIN
STIFFNESS HARDENING STIFFNESS HARDENING STIFFNESS HARDENING

[ 10) k-in2jrad] RATIO [ 10) k-inirad ] RATIO (10) k-inirad ) RATIO

M+ 208 390 0.03 390 0.05 50 0.04

M- 208 390 0.03 390 0.05 50 0.04

TABLE 6.3 PARAMETER VALUES FOR BOTTOM STORY COLUMNS IN ANALYTICAL MODEL

RCF2 FRAME· TOP STORY COLUMNS

SPREAD PLASTICITY CONCENTRATED PLASTICITY JOINT
MODEL MODEL

YIELD MOMENTS GIRDER MOMENT- GIRDER MOMENT-ROTATION MOMENT-ROTATION
CURVATURE RELATION RELATION RELATION

[k-in] INITIAL STRAIN INITIAL STRAIN INITIAL STRAIN
STIFFNESS HARDEN[NG STIFFNESS HARDEN[NG STIFFNESS HARDENING

[ 10) k-in2jrad) RATIO [ [0' k·in/radl RATIO (10) k-irurad J RATIO

M+ 194 500 0.03 500 0.05 60 0.04

M- 194 500 0.03 500 0.05 60 0.04

TABLE 6.4 PARAMETER VALUES FOR TOp STORY COLUMNS IN ANALYTICAL MODEL
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For the yield strength of the columns one axial force-bending moment interaction

diagram was presented by Clough and Gidwani (1976) and another, significantly different,

diagram was presented in a later study by Blondet et al. (1980). Some of these differences are

discussed in Appendix B. In the analytical studies of this chapter the latter interaction

diagram by Blondet et al. (1980) was adopted, since it is more consistent with the

experimental evidence and the actual behavior of the frame during the test.

Blondet et al. (1980) used two different sets of assumptions to arrive at an upper and

lower bound of the column strength. The lower bound (denoted as case I in that study) was
obtained with the nominal material properties of t: =4 ksi for the concrete and ~. =40 ksi

for the reinforcing steel and with the introduction of a capacity reduction factor of cp =0.70.

The upper bound (case ll) was obtained with an increase by 25% of the yield strength of the
reinforcing steel (thus, ~. = 50 ksi) and by eliminating the capacity reduction factor.

The lower bound values of column section strengths (case I) are highly unrealistic,

since the calculated ultimate column strength results in about 50% lower shear value than the

maximum base shear measured during the shaking table tests. The upper bound values of

column section strengths (case ll) result in a base shear that is about 18% lower than the

corresponding experimental value; the analytical studies of this chapter are, therefore, based

on the assumptions on material properties of case II.

The determination of the column strength values is based on the commonly accepted

assumptions about reinforced concrete behavior, as also recommended by current codes of

practice, such as ACI and VBC: (a) plane sections remaining plane after deformation and

thus resulting in linear strain distribution over the cross section; (b) the last assumption also

implies perfect bond between reinforcing steel and surrounding concrete; (c) the ultimate

strength is attained when the extreme concrete fiber in compression reaches a strain of 0.003;

(d) the concrete stress distribution is replaced by a rectangular compressive block as

recommended by ACI; and, (e) the stress-strain behavior of reinforcing steel is elasto-plastic.

The column flexural strength values used in the analytical studies of this chapter are

derived for an axial force equal to the value that results from the action of gravity loads in the

test frame. These values are assumed to be constant over the corresponding column height,

since the reinforcement does not vary. These values are also assumed constant during the

response time history, which is a reasonable approximation on account of the rather small

overturning effect in the two story test frame with a small height to base width ratio. The

strength values for the bottom and top story columns are listed in Table 6.3 and 6.4,

respectively.

The parameters of the girder and column joint subelements are derived with a simple

model that assumes an average effective bond stress along the bar anchorage, as
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recommended on pg. 404 of the book by Park and Paulay (1975. The calculation details are

presented in appendix B and the resulting stiffness values are summarized in Tables 6.1-6.4.

The values of the monotonic moment-curvature and moment-rotation relations in

Tables 6.1-6.4 were derived by first principles and careful study of the experimental results .

. The strain hardening values of the moment-curvature relation for girders and columns are

straightforward to calculate with the' basic assumptions used in the determination of the

ultimate strength of reinforced concrete sections. The strain hardening values of the joint

moment-rotation relation can be obtained with the simple anchorage model by Filippou

(1986). Further details of these calculations are provided in Appendix B, while the pertinent

values used in the analyses of this chapter are listed in Tables 6.1-6.4. It is characteristic that

the strain hardening values of all· relations in Tables 6.1-6.4 vary over the small range from

0.0 12 to 0.05 in good agreement with the values used in previous related studies by Clough

and Gidwani (1976) and Filippou and Issa (1988). These values are most profoundly affected

by the strain hardening properties of the reinforcing steel, with bond representing the second

most important effect.

6.3 Correlation with Experimental Results

In this section the c.orrelations of the analytical results of the proposed model with

experimental data of the two story one bay RCF2 test frame are presented. During the

shaking table testW2 the specimen was subjected to simulated gravity loading, as shown in

Fig. 6.5, and a shaking table signal that corresponded to the N69.W Taft accelerogram record

during the Arvin-Tahachapi earthquake of July 21, 1952 (Figs. 6.1 and 6.4). The Taft signal

was amplified to yield a table motion with a peak acceleration of 0.57g which is strong

enough to produce significant damage to the specimen. Moreover, the fundamental period of

the test frame at the beginning of the test was approximately equal to 0.5 sec and, thus, was

close to the period range of significant energy input of the ground motion, as can be

concluded from the acceleration response spectrum in Fig. 6.2 ..

The small size of the test frame prevented the development of any significant table­

test structure interaction, so that this effect is not included in the following analytical results.

The experimental data recorded during the test include the time history of the top and

bottom story displacement, top and bottom story shear, and top story drift. In this section a

comparison between these experimental data and the analytical results of the proposed model

is presented.

The frame model used in the analytical studies consists of two girder and four column

superelements. Each superelement, in general, consists of an elastic subelement, spread
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plastic subelement, joint subelement, and shear subelement. Since, however, the response of

this particular structure is dominated by flexure and pull-out from the base, while shear

effects are negligible, the shear subelement is not activated in the following analytical

studies.

The following response histories are compared with experimental data:

I. The top floor displacement response history (Fig. 6.6a)

2. The bottom floor displacement response history (Fig. 6.6b)

3. The top interstory drift response history (Fig. 6.6c)

4. The top story shear response history (Fig. 6.6d)

5. The bottom story shear response history (Fig. 6.6e)

A careful study of the results in Fig. 6.6 leads to the following observations:

(1) In general, very satisfactory agreement between experimental and analytical results is

observed. The period and general wave form of the response is predicted well with the

proposed model. This is an indication that the model represents well the actual

strength and stiffness of the structure. In particular, the following model features are

instrumental for the good agreement between analytical and experimental results:

(a) the strain hardening stiffness of the members is not constant but decreases as the

loading increases;

(b) because of the coupling effect between the two ends of each member, the

hysteretic moment-rotation relation at each member end changes with the

loading history of the structure. The moment-rotation relation at one end of the

member depends on section stiffness and plastic zone length at the other end;

(c) the post yield stiffness of the model is not based on the assumption that the

point of inflection is fixed at the midspan of the member as the one component

model requires. The post yield stiffness of each member varies with the actual

moment distribution during the response time history;

(d) the bond deterioration and slippage of reinforcing steel is taken into account as a

major source of energy dissipation;

(e) the hysteretic behavior of the members accounts for the stiffness degradation

due to the opening and closing of the cracks and the slip ofreinforcing steel.

(2) The analytical model is capable of predicting very well the displacement response of

the structure (Figs. 6.6a-6.6c). The results correlate better for the top and bottom

displacement time history than for the top story drift response history, since interstory

drift is the differential of two displacement values.
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(3) Although the analytical prediction of the forces that arise In the structure agrees
•

satisfactorily with experimental data (Figs. 6.5d and 6.5e), this agreement is not as

good as that observed in the displacement response time history. This might be due to

the questionable reliability of the experimental values of the shear response time

history, as noted by Clough and Gidwani (1976).

(4) The higher mode effects are much more prominent in the top story shear than in the

bottom story shear response history (Figs. 6.5d and 6.5e).

(5) The maximum response of the structure correlates very well in the top and bottom

story displacement, drift, and story shear response.

(6) Although the model performed very satisfactorily in predicting the dynamic response

of the frame structure, a slight phase shift at some' stage of the response, and a

discrepancy in the response at the last few cycles of the time history are observed

(Fig. 6.6). This discrepancy can be attributed to the following facts:

(a) The limitations of the model that arise from inadventent simplification of the

actual behavior.

(b) The complexity of the behavior of the reinforced concrete structure and the

uncertainty in the measurement of material properties and in the data acquisition

during the test.



CHAPTER 6 125

30 ~--------------------------...,

EXPERIMENTAL

ANALYTICAL
20

I
I
I
I ,

10 - I' •i • ., I',: ;
Ui'

I I ,
I,

:' ra. ' .
~ .#1u.~.IA.A~

:.
"-- ,

a: 0 V.;V:'(OI U'V :r .« :,1
W ' .'
X .~:
II) . .~

"I I: I
·10 '- I • I'·I

• • I·• I
I I

·20~BV

20

-30 L...- --II....- I....-' J...-I --I

o 5 10 15
TIME (sec)

FIGURE 6.60 COMPARISON BETWEEN EXPERIMENTAL AND ANALYTICAL

RESPONSE HISTORY OF Top STORY SHEAR

201510
TIME (sec)

5

-- EXPERIMENTAL

------ ANALYTICAL

I .· , , .· , ,
\ ' " :

,
,- , , ,, I" , ,

J
, ;I I' , ,, •, , ': ", .', . ,I

,
"I,

, , I

I

, , ,,,
~

,
, I "

D.~ fA,i
:

,
'I "

' , A I ",
; '~ \

,
I '

, , ,
" ~ "

"

I, , , , , , '
r~

' , , , ,
.'t:. :. '. , : '

, , ,, I, , '

·~;Wl~
V~~

~ ' , I
, , ," , ,,. I ' . I ,

~'I: ' , ,

:~i
' , :,.,

I " ,, , .'.. , , , " ' . v· :
" , I : "

' , " ~ i: ,
I, , '. "

,
~

" . " I
" I .
" I . I
I,

I I .,
I .

\ \
,

• I "
i , \,

I

I I

30

20

-30
o

·20

10

ena.
;&
a: 0«w
X
II)

-10

FIGURE 6.6E COMPARISON BETWEEN EXPERIMENTAL AND ANALYTICAL

RESPONSE HISTORY OF BOTTOM STORY SHEAR



126 .CHAPTER 6

6.4 Analytical Parametric Studies

After establishing the ability of the proposed model to accurately describe the global

and local dynamic response of reinforced concrete frame structures, further analytical studies

are conducted in the following. First, the sensitivity of the dynamic response of the test

structure RCF2 to the effects of bond slip of reinforcing bars is studied. To accomplish this

the dynamic response of the reinforced concrete frame without including the effects of bond

slip is compared with the results obtained when bond slip effects are taken "into account.

Secondly, the ability of the one component model to predict the global and local dynamic

response of the test structure RCF2 is investigated by comparing the results for the

concentrated plasticity model with those of the spread plasticity model. This comparison is

particularly important in view of the wide-spread use of the concentrated plasticity model in

"the nonlinear dynamic analysis of reinforced concrete frames in practice.

6.4.1 Effect of Reinforcing Bar Pull-Out on the Dynamic Response of Test Frame

This section is devoted to the study of the effects of reinforcement pull-out on the

nonlinear dynamic response of test frame RCF2. The most important contribution of this

. effect arises at the base of the first story columns where the reinforcing bars pull-out from the

base that was used to secure the test frame to the shaking table. In order to study the

contribution of this effect on the local and global nonlinear dynamic response of the test

frame two analyses were conducted: in the first analysis the effect of reinforcement pull-out

was included with the aid of the joint subelement in column and girder members. Global

response time histories were already compared to the experimental results in the previous

section showing excellent agreement. In the second analysis the effect of reinforcement pull­

out was excluded from the analysis by deactivating the joint subelement in all frame

members. The comparison of the two sets of results is shown in Figs. 6.7-6.10.

Fig. 6.7 shows the dynamic response of the structure to the N69W Taft accelerogram

record during the Arvin-Tahachapi earthquake of July 21, 1952, scaled to a peak acceleration

of 0.57g. This corresponds to the shaking table test W2 of the two story one bay test frame

RCF2. Fig. 6.7 contains the following plots

I. the top floor displacement history (Fig. 6.7a),

2. the bottom floor displacement history (Fig. 6.7b),

4. the top story shear history (Fig. 6.7c),

5. the bottom story shear history (Fig. 6.7d).

Fig, 6.7a shows that maximum top story displacement is about 50% larger when the

effect of pull-out from the base is included. The response of the model without the joint
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subelement clearly shows the higher stiffness of the system, as reflected by the increase of the

fundamental period of the model that includes the joint subelement.

The difference in the displacement time history is equally pronounced for the bottom

story displacement in Fig. 6.7b. In fact, a comparison of Fig. 6.7a with Fig. 6.7b reveals that

the absolute difference of the maximum displacement between the case which includes the

pull-out effect and the case which does not is approximately the same for the top and bottom

story displacement. This proves that most of the inelastic deformation of the two story test

frame arises in the bottom story and that the effect of joint rotations is almost exclusively

concentrated at the base of the frame in the fonn of pull-out deformations from the footing.

The displacement time histories in Figs. 6.7a and b reveal that the response of the

model which does not include the joint rotations dies out in the last five seconds of the test.

By contrast, the model that includes the effect of joint rotations continues to respond strongly

to the base signal, in good agreement with experimental evidence, where this effect is, in fact,

even more pronounced in Figs. 6.6a and b. It is of interest to note that previous studies that

have dealt with the dynamic response of test frame RCF2 have failed to capture this effect,

because of their inability to correctly represent the different mechanisms of energy

dissipation, damage and stiffness deterioration of the frame members.

Figs. 6.7c and d show that the top and bottom story shear is not much affected by the

effect of pull-out. Only a slight increase in story shear results when the effect of pull-out is

included in the analysis. This is not surprising when the story shear force is regarded as the

product of stiffness and interstory displacement. The inclusion of joint rotations increases the

fundamental period of the frame and results in larger story displacements, while, at the same

time, it decreases the lateral story stiffness. These two effects appear to cancel out in the case

of test frame RCF2, so that the inclusion of joint rotations does not affect much the

maximum story shear, as is evident in Figs. 6.7c and d.

Figs. 6.8-6.10 provide further details on the response of test frame RCF2. Fig. 6.8

shows the hysteretic relation between top story displacement and bottom story shear. The out­

of-phase character of these two variables results in a very irregular relation, which

nonetheless shows clearly the difference in energy dissipation between the model that

includes the effect of joint rotations and the model that does not. Fig. 6.9 shows the hysteretic

relation between bottom story displacement and bottom story shear and is a direct reflection

of the hysteretic behavior of the bottom story where most damage takes place in test frame

RCF2, as is further corroborated by Fig. 6.10, which depicts the hysteretic behavior of the top

story that sustained very little damage. The characteristic "pinching" effect of the hysteretic

relation by the inclusion of the pull-out from the ,base of test frame RCF2 is evident in

Fig.6.9a.



128 CHAPTER 6

201510

TIME (sec)
5

-- WITH BOND SLIP

--. --- NO BOND SLIPe-

'-- : ..
n:

OJ
II It
,I II

" lin, , ., ',1 " ; , ;. iA!~!~:
, : ,

: :',::: I
. , ..

,'I I , , , , . I'.A,l\IIA~ I i\, t . , , I: ": 'J\!': , , I", H' I "
,

,¥ 'V', ~'-{; ~W:
, , , • I ,I,

'T'"
,

iMVi' "( :.' ,
,

: I,. ,II' '., I ,,1 ,, . I 1'111' : ": ,
I : : ,: : ~ , : ""

, , ".
"

I,,, ,II I : ~ 't . ' ,I' .,' • \' I ';U" " '
1 1 • 1 ': ~'. " " " ,

\ " " "
I Ill,

"
, . "II "

"
.

~ " ...
f- " " .

" "
" \

I)
,.

B ",
I

I I I-3
o

-2

3

~1

~
W

~ 0

~
..Ja.
tn
i5 -1

2

FIGURE 6.7A EFFECT OF BONO SUP ON FRAME RESPONSE

HISTORY OF Top STORY DISPLACEMENT

201510
TIME (sec)

5

-- WITH BOND SLIP

_. - - -- NO BOND SLIP
t-

1-

if !' ~ ~, .'
A

fl

i~!t
... ' " l I II I,

:: I: " I , I "': ' "'I _. :1. ' , :
, ,

" " .::A· : .. : '" " ,:~:I:\A ,-.: , .. :1\: ' . , , , ' " '1' I.
'V'. ,'V' YW~~\n i ~ I '. r' ,: I I, '/.:\\. " , ' ,

W!,V: ' if" "," , ,', I I • 1'1 ,J, , • I ,III . , , ..
" r I" : ,'" '\j' ,, I '" III .

, ,
. ~~

, '." , , ~
',' I :' 'I :: :~

\ II •
. ~.

t- :

B
I I ,

·3
o

·2

2

3

;[1
I­
Z
W

~ 0
(,,)

:3
a.
In
i5 -1

FIGURE 6.7B EFFECT OF BOND SUP ON FRAME RESPONSE

HISTORY OF BOITOM STORY DISPLACEMENT



CHAPTER 6 129

15

10

WITH BOND SLIP

NO BOND SLIP

5

'iii
Q.
~.....
a: 0 :'0(
w
:I: ,
l/)

"I

-5 ~

I

·10 B'
·15

0 5 10 15 20
TIME (sec)

FIGURE 6.7C EFFECT OF BOND SUP ON FRAME RESPONSE

HISTORY OF Top STORY SHEAR

15

5 e-

WITH BOND SLIP

NO BOND SLIP

I"'W~'"". 0,
f I' I J ~',. " ,
" I " 'I,. '.
II I I,

,'. I "
'I I 'I
1'1 I,
., I ...

',II t
I II ~

• I.

.,
.." ," ," ,

I II ~
(, II ~
I" II I

..!l~ \.~ ·IN' :nl~l :
"" .
" .
~II I

:1 ~ I" .
" .I: ~
, I

"

II'
~ ~ :
" 0
" .,

", "
o "

I
I
I, "."."" ,

.:..) . :Hi i;! ~

.. 'r.l;'IPil" n:~:' ,o

10 r-

·15
o

I

5

I

10
. TIME (sec)

I

20

FIGURE 6.7D EFFECT OF BOND SUP ON FRAME RESPONSE

HISTORY OF BOTTOM STORY SHEAR



130 CHAPTER 6

15 ~---...,....-----,------r------.-----....----...,

5 ------------~-.---------- ------------

. ·10

,
,

,. ---- -.- ----- - -. -- _.
,

,,

,,

, ,
~~"""I. -. - - - - - -- - - -:- --- - - - - -.- -- -;. - - - - -- - - - --., ,, ,, ,, ,, ,, ,, ,

, .
------------~-------------~_._---------. ,

, .

B '---- ---------- ------"-- --
V V ',,

o 1-----+----4--:;

-5

10 --

--UI
C.

~
a:
15
:t:
(/l

32~ 0 1
DISPLACEMENT (in)

-2

-15 L.- -'- --'- --.l. '-- ........ ..J

-3

FIGURE 6.8A EFFECT OF PULL-OUT ON BOTTOM STORY SHEAR-TOP STORY

DISPLACEMENT HYSTERETIC RELATION - WITH PULL-OUT

,
,,,,

-- -------.- -- -- - ----- . -
,,
,
,,,

,.
"

,

,,,
,,,, ,

.--------_.~-------------~._--------.-, ,, ,, ,, ,, ,, ,, ,, ,
_._-------~-~-.--------_._~--_.------_., ,

-5 ------------}----------,
,,
,,

-10 ------------}---­
,,

15 ~---...,....-----,------r----.-----...,......---...,

.,.,
,

10 - - - - -- - -~- - - - ~ -. -- .-. - - - - -: - -. - - - - - - -- - . - - - - - - -
, ,, ,, ,, ,, ,,

5 ------------~-----------·i-------·----, ,. ,,
,,,

a:: 0 I-----!-----+,--,rf.

i5
:t:
(/l ,

32-1 0 '.
DISPLACEMENT (in)

-2

-15 L..- -'- .......... ---J. .o..- -'- ..J

-3

FIGURE 6.8B' EFFECT OF PULL-OUT ON BOTIOM STORY SHEAR-TOP STORY

DISPLACEMENT HYSTERETIC RELATION - NO PULL-OUT



CHAPTER 6 131

15 r-----...,......---....,....-----,.----,.......---...,......----,

5 ------------1------------ ------------

'0 - B--
en
Q.

~
a: 0 ...----+-----+--~

:3
::t
en

-5 ------------

·10

,
--------1-------------

,
,,,,

------------~----------.-

-. -_.---------~--------.----:---_.--------, ,, ,
,,,, ,, ,

._---_.------:-----------_.~--_._--_.---, ,, ,, ,, ,, ,, ., ,, ,

32·1 0
. DISPLACEMENT (in)

-2

-15 '-- ........ ....... ......l. ""'- ........ -'

·3

FIGURE 6.9A EFFECT OF PULL-OUT ON BOTIOM STORY SHEAR-BOTIOM STORY

DISPLACEMENT HYSTERETIC RELAnON -WITH PULL-OUT

15 r-----...,......---....,....,...-----,.----,..-----.,.....----,

, ,
.~-----_._-----~-_ .. _--_._--, .,,,

,,,,·----1------·_--_·- ------------, .

,,
,
,
,

-------------:-------------1-------------, ,, ,, ,, ,, ,, ,, ,, ,
---- ------------~-._---------.~--_._-------, ,, ,, ,, ., .

,,

-10 ------------!-----------.,

,,

-CII
Q.

~

10 -·---------·t-----·------~---·----·--- ._--.
,

5 ----.-----.-~-------.-.-- -------_.--.
,,

a: 0 ...-----+:----~'--_h

:3 :
::t '
en .

-5 ------------!------------!--
,
,,

32-1 0
DISPLACEMENT (in)

-2

-15 '-- ........ ........ -.J. ~_ _'__...J

-3

FIGURE 6.9B EFFECT OF BOND SLIP ON BOTIOM STORY SHEAR-BOTIOM STORY

DISPLACEMENT HYSTERETIC RELAnON - NO PULL-OUT



132 CHAPTER 6

15 .......---........-----,.-----r----.....,...----..-----....,

10 ---- .. ------ --------.--- ------------

, ,
------------~-------------:-------------, ,, ,,,,,,· ,
-------_._--~-------------:-------------, ,

,
,,

o 1------+-------1----

·5 ------------ ------------ ---

5 ------------ --------.--- ----- ... ---- -----

-10 -.---------- ------------ -.-----~----

32-1 0 1
TOP STORY DRIFT (in)

-2

.15 L.....- ........ __' ....L- ........ "__ ...J

-3

FIGURE 6.10A EFFECT OF PULL-OUT ON TOP STORY SHEAR-TOP STORY

DRIFT HYSTERETIC RELATION - WITH PULL-OUT

15 .......---........-----,.-----r----.....,...----..-----....,
,,
,,, ,

---_._--._._~--_.----_.---~-------_._--· ,· ,, ,, ,, ,, ,, ,,, .------------.-------------
,

. -._---._---~------------ .~---_._---.,

,,,
,

._._-.------~-----------,,
,
,

,,
,,,,

10 ---.--------~.-----------~_.-----.---­
,
,

- ----._----._~----_ .. _-----:----._-------, ,, ,, ,, ,, ,
, ,, ,· ,

-10 ------------t---------·--~--------·--- ------------~------.-----.:-----.-------, ,,

5

'iii
c.
~--a: 0

U5
x:en

-5

32·1 0
DISPLACEMENT (in)

-2

.15 ~ ........ __' ........ ........ "__ ...J

-3

FIGURE 6.108 EFFECT OF PULL-OUT ON TOP STORY SHEAR-TOP STORY

DRIFT HYSTERETIC RELATION - NO PULL-OUT



CHAPTER 6

6.4.2 Comparison of Concentrated Plasticity with Spread Plasticity Model

133

The one component model is in widespread use in the nonlinear dynamic analysis of

reinforced concrete frame structures in practice. This section is devoted to studying the ability

of the one component model to predict the nonlinear dynamic response of the frame structure

RCF2. The dynamic response of frame RCF2 to the 1952 N69W Taft ground motion with a

peak acceleration of O.57g is evaluated using the one component model and the results are

compared with those of the spread plasticity model, since these were shown to correlate well

with experimental evidence. The accuracy of the concentrated plasticity model in predicting

the nonlinear dynamic response of the frame structure can be studied by replacing the spread

plasticity subelement with the concentrated plasticity subelement.

The first question to be considered in connection with the concentrated plasticity

model is the selection of appropriate values for describing the. monotonic moment-rotation

relation. The most sensitive and difficult task is the selection of the post yield stiffness of the

model. This procedure has been described in detail in Section 2.2.2.1. The strain hardening

ratio of the different frame members is determined with this procedure and the values are

listed in Tables 6.1 and 6.4. It is important to note that the quality of the analytical results of

the model with the concentrated plasticity model depends on the rational determination of its

stiffness parameters. The study by Filippou and Issa (1988) presents a parametric study of the

effect of these parameters on the global and local response of RC frame subassemblages.

In comparing the ability of the concentrated and spread plasticity model to predict the

inelastic flexural response of frame structures, the bond slippage of reinforcement is

accounted for by the joint subelement, while the elastic subelement describes the linear

elastic flexural behavior along the member. The parameters of the joint and the elastic

subelement used in conjunction with the concentrated plasticity model are the same as those

used with the spread plasticity model in the studies described in the previous section.

Figs. 6.11-6.14 present the analytical results of test frame RCF2 under the Taft ground

acceleration record for the model with the one component model alongside those of the

model with the proposed spread plasticity model. The figures show the time history and the

global and local hysteretic behavior of the structure.

The following time histories are presented in Fig. 6.11:

1. top floor displacement (Fig. 6.11 a),

2. bottom floor displacement (Fig. 6.11 b),

3. interstory drift of top story (Fig. 6.11c),

4. top story shear time history (Fig. 6.11 d), and

5. bottom story shear (Fig. 6.1Ie).
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In examining Figs. 6.11-6.14 one should keep in mind that both the spread plasticity

and the concentrated plasticity model are used in conjunction with the joint subelement

which accounts for the effect of reinforcement slip in the joints and the pull-out from the base

of the structure. The following conclusions can be drawn from Fig. 6.11 :

(l) Both, the maximum story displacements as well as the maximum story shear values

are nearly the same in the two models. Clearly, the careful selection of parameters for

the moment-rotation relation of the one component model leads to very satisfactory

results under dynamic response conditions.

(2) There is only a notable deviation in the post-peak response of the two models. In fact,

the severity of the inelastic excursions in more pronounced for the model with the

spread plasticity element, as can be noted in the last ten seconds of the dynamic

response in Figs. 6.11 a and b. This is also true for the bottom story shear history in

Fig.6.11e.

(3) There is good agreement in the hysteretic behavior of the two models, even though

Fig. 6.13 shows a more pronounced "pinching" of the bottom story shear~

displacement response for the model with the spread plasticity model. This is due to
differences in the reloading stiffness of the two models and the lack of any coupling

between the two in~lastic end zones of the member in the concentrated plasticity

model.
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6.5 General Remarks and Discussion

The correlation studies of the proposed model with experimental data from the RCF2

frame proves that the model is able to predict the response of reinforced concrete frame

structures subjected to severe dynamic ground shaking while retaining computational

efficiency. The analytical predictions of the proposed model correlate well with the

experimental data. The displacement response of the structure shows much better agreement

with experimental data than the story shear, since the story shear data cannot be considered

very reliable (Clough and Gidwani 1976).

The analytical studies presented in this chapter demonstrate that accounting for the

fixed-end rotations at the beam-column interface as well as the pull-out from the column base

is essential in the dynamic response analysis of RC frame structures during the final design

phase, since the bond slip effects alter the global and local response of the structure. The

energy dissipation at the beam-column joints constitutes a large portion of the total energy

dissipated in the structure. Thus beam-column joints should be designed to have large energy

dissipation capacity so as to satisfy the imposed rotation ductility demand.

The study of the local response of the first story column of the structure, in which

most of the inelastic deformations are concentrated, shows that neglecting the bond slip

effects will considerably overestimate the flexural deformation of the columns. Thus, in order

to accurately predict the hysteretic behavior of structural members, the contribution of the

joint fixed end rotations to the overall member deformation must be accounted for.

These analytical studies clearly show that the effect of bond slip of reinforcement on

the dynamic response of the structure is more complex than its effect on the response to static

cyclic load reversals. In the case of dynamic analysis neglecting the effect of bond slip will

not necessarily lead to smaller global deformations, as is the case in the static analysis.

Rather, the increase in the flexibility of the structure and the energy dissipation due to

reinforcement pull-out alters the dynamic response of the structure. However, the increase in .

the flexibility of the structure due to the bond slip effects does not necessarily result in an

increase in the global dynamic response of the structure. This depends on the effect the

change in period will have on the spectral acceleration of the ground motion. Therefore, the

.effect of bond slip on the global response of the structure depends on the dynamic

characteristics of the structure and the frequency content of the ground motion.

There is no significant difference in the dynamic response between the model with the

concentrated plasticity element and that with the spread plasticity element. This can be

certain ly attributed to the careful selection of stiffness parameters of the concentrated

plasticity element. It is, however, premature at this stage to conclude that the increase in
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computational cost of the spread plasticity model over the concentrated plasticity model is

not justified. Further comparative studies of the two models, particularly, under conditions of

severe strength and stiffness deterioration are required before arriving at a definitive result.





CHAPTER 7

CONCLUSIONS

7.1 Summary

The development of improved analytical methods for predicting the nonlinear static

and dynamic response of multistory reinforced concrete frames has been the main objective

of this study. A new approach in describing the nonlinear hysteretic behavior of reinforced

concrete frame elements has been proposed. This approach consists of isolating the basic

mechanisms controlling the hysteretic behavior of girders and columns into individual

subelements which are connected in series to form the girder or column superelement. Four

particular subelement models were proposed in this study:

(1) a spread plastic subelement which describes the inelastic behavior along the

reinforced concrete member accounting for the gradual spread of inelastic

deformations at the member ends,

(2) a joint subelement which accounts for the fixed-end rotations that arise at the beam­

column interface due to bond deterioration and slippage of reinforcing bars in the

beam-column joint region. In case that a substantial axial force is present the joint

subelement is capable of describing the interaction of moment and axial force with

the opening and closing of flexural cracks,

(3) a shear subelement which describes the sliding in the critical regions and the shear

distortion along the member. In case that a substantial axial force is present the shear

subelement is capable of describing the interaction of shear and axial forces with the

opening and closing of shear cracks,

(4) a flexural subelement which accounts for the linear elastic flexural behavior of the

member.

The properties of these elements can be derived from basic principles or re,fined finite

element models.

The monotonic envelope of the spread plastic subelement. is derived from the

moment-curvature relation of a section in the inelastic region of the frame member. It

depends on three values, namely, initial section stiffness, flexural strength and strain

hardening ratio and can thus be readily established from first principles. The law governing
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the hysteretic behavior of the spread plastic subelement is very simple with no additional

parameters introduced. It is based on Clough's hysteretic model.

The properties of the girder and column joint subelements are established using a

previously developed refined model of the hysteretic behavior of beam-column joints. The

monotonic envelope of the moment-rotation relation depends on three parameters in each

direction of bending: the initial stiffness, the yield strength and the strain hardening ratio. The

girder joint subelement models the bond deterioration and slip of reinforcement in the beam­

column joint. The.law governing the hysteretic behavior of this subelement is simple with no

additional parameters introduced. It is based on a modification of Clough's hysteretic model

so as to account for the characteristic "pinching" effect observed in one direction of bending.

The column joint subelement describes the bond deterioration and slip of column

reinforcement in the beam-column joint. The law governing the hysteretic behavior of this

subelement is based on a modification of Clough's hysteretic model so as to account for the

characteristic "pinching" effect observed in columns due to the interaction of axial forces and

bending moments with the opening and closing of the beam-column interface crack. The

pinching in the column joint subelement depends on the magnitude"of the axial force in the

member. Higher pinching is introduced as the axial load increases.

The properties of the beam and column shear subelements are established using the

compression fiel&theory. The monotonic envelope depends on three parameters: the initial

stiffness, the yield strength and the strain hardening ratio. The law governing the hysteretic

behavior of the beam shear subelement reflects the pinching effect due to the interaction of

shear with the opening and closing of the shear cracks. In the case of the column shear

subelement, the higher the magnitude of the axial load the lower the amount of pinching,

since the axial load helps in closing the shear cracks.

Since several subelements are connected in series and each of these follows a

different hysteretic rule, internal unbalanced moments might arise between these elements at

any given load step. The implementation of the proposed girder and column superelement

models thus requires the development of a numerical scheme which accounts for these

unbalanced moments between subelements. Such a scheme was developed in this study

within the framework of a special purpose analysis program for the nonlinear static and

dynamic analysis of reinforced concrete moment-resisting frames.

To establish the validity of the proposed models, correlation studies of analytical

predictions with experimental evidence were conducted. The experimental evidence included

the response of beam-column subassemblages tested under static load reversals as well as the

response of a two story one bay frame subjected to strong base excitations on the shaking

table.
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A careful analysis of the results of this study leads to the following conclusions:

(1) The proposed modeling approach of decomposing a structural element into

subelements connected in series represents a flexible platform for the development of

analytical models of any desired level of complexity.. Such complexity can be

achieved in two ways: first by adding any number of subelements into an existing

structural element or, secondly, by refining the hysteretic law of a single subelement.

Clearly, a combination of these two schemes is also possible. Studies to date have

focused on the second approach adopting a single element and refining the hysteretic

law to account for various effects. This study points to the advantages of the first

modeling scheme. This approach yields accurate results with relatively simple

hysteretic laws which are deri ved from physical considerations rather than curve

fitting.

(2) By isolating mechanisms of hysteretic behavior in separate subelements it is possible

to establish improved analytical models of such behavior.

(3) The exchange of results between refined local models suitable for a detailed analysis

of small regions and more simplified component models which are suitable for global

analysis of multistory structures provides a powerful tool for the study of the seismic

response of reinforced concrete structures.

(4) The proposed girder superelement correlates very well with available experimental

evidence of the response of beam-column subassemblages to cyclic load reversals.

Good agreement with. experimental results was observed, both, at the local as well as

the global level, in the earlier study of :-ilippou and Issa (198~).

(5) The proposed column superelement correlates well with available data from

experiments on simple specimens subjected to cyclic lateral load reversals and

constant axial load. The column element is able to describe the effect of axial load on

the strength, stiffness, and the stiffness degradation mechanism of the column.

(6) The proposed girder and column superelements correlate well with available

experimental evidence from the dynamic response of a two story one bay frame

structure subjected to base excitations corresponding the 1952 N69W Taft record

scaled to a peak ground acceleratiOll of O.57g. Both, story displacement and story

shear time history correlate well with experimental results. The good agreement with

experimental results indicates that the proposed column and girder superelements are

capable of accurately describing the actual strength, stiffness and energy dissipation of

RC frame structures. One of the key ingredients of the proposed column and girder
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superelements is the stiffness degradation mechanism which proved capable of

predicting the actual behavior satisfactorily.

(7) The introduction of two different subelements to account for the effects of shear and

bond slip facilitates the accurate and rational consideration of the stiffness

degradation mechanism in columns. An increasing axial load reduces the stiffness

degradation in members whose behavior is mainly controlled by shear, while it

increases the stiffness degradation in members whose hysteretic behavior is controlled

by flexure.

(8) In spite of the simplicity of the hysteretic model used in the different subelements,

good agreement of the predicted local behavior of beam-column subassemblages with

experimental evidence is found. A limitation of the hysteretic models appears to be

the value of the unloading stiffness which is consistently higher than observed in

experiments.

(9) Neglecting the effects of bond slip of reinforcement can significantly alter the global

response of reinforced concrete frame structures subjected to severe base excitations.

This, naturally, depends on the frequency content of the base excitations and the

dynamic properties of the structure. Neglecting the effect of bond slip underestimates

the flexibility of reinforced concrete frames, and thus underestimates the fundamental

period of the structure.

(10) The effect of bond slip of reinforcement on the local response of RC frames subjected

to severe base excitations is very significant. Neglecting the effect of bond slip in the

nonlinear dynamic analysis of reinforced concrete frames leads to an overestimation

of the flexural rotation of the frame members.

(11) The reinforcing bar slip at the beam-column joints and the bar pull-out at the base of

the first story columns can be a major source of energy dissipation in the structure. It

amounts to 20% of the total energy dissipated in the two story one bay structure tested

on the shaking table.

(12) The spread plasticity model only approximately accounts for the effect of gravity

loads. The effect of gravity loads on the location of plastic hinges is not accounted

for. Since inelastic zones are assumed to form at the ends of the member, the girder

needs to be subdivided into several elements, if plastic zones can form along the span.

(13) The widely used one-component model shows limitations with respect to the spread

plasticity model. These limitations appear in spite of the fact that the fixed-end

rotations are modeled in a separate element in the present study. The limitations are:

.(a)' There is no single rational method for deriving the post-yield stiffness of the

moment-rotation relation of the model. In the most commonly used approach the
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derivation of the post-yield stiffness is based on the assumption that the point of

inflection is located at the member midspan. The stiffness value depends on the

magnitude of the bending moment acting at the member end.

(b) The post-yield stiffness depends on the loading history and the structural

system.

(c). The earlier study by Filippou and Issa (1988) showed significant differences in

the static response of models with the concentrated and spread plasticity element

under force control conditions. These differences do not, however, seem to be

that significant under displacement control· conditions, as might occur under

dynamic excitations. The use of either element in the model of a two story

subassemblage that was tested on the shaking table resulted in good agreement

of the results. Discrepancies between the two models were only observed in the

post-peak response of the test frame. Further studies are, however, needed

before it can be concluded whether the spread plasticity model offers accuracy

advantages that justify its increased computational cost.

(14) It is important to account for the gradual stiffness change in the post yield response of

reinforced concrete frame members, the bond slip of reinforcing bars in beam-column

joints and the bar pull-out at the base of the frames, especially, in the final design

stages. The accurate prediction of the deformation distribution between reinforced

concrete members and joints provides valuable information for the detailing of these

members.

(15) It is possible to use the one component model for the nonlinear dynamic analysis of

RC frame structures in the preliminary design stage. The limitations of the model

should, however, be kept in mind in the interpretation of the results of these analyses.

(16) The good agreement of the proposed models with experimental results is achieved

with limited computational effort. This is accomplished in three ways:

(a) Each inelastic region possesses a single average effective section stiffness. This

concept, originally proposed by Soleimani et. al. (1979) results in a symmetric

element stiffness matrix. .
(b) The continuous process of plastic zone extension is discretized, as described in

Chapter 3.

(c) An efficient nonlinear analysis algorithm is developed which accounts for the

nonlinearities due to the gradual spread of the plastic zone length and the

coupling between the end moments of the girder.

(17) A new algorithm of nonlinear analysis is proposed. This algorithm is based on the

initial stress modification of the Newton-Raphson method. It solves satisfactorily the
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problem of possible internal unbalanced moments between the various subelements.

These arise, because the subelements are connected in series, while each follows an

independent hysteretic rule. Since this situation is encountered in many studies, the

algorithm is generally applicable.

(I 8) The proposed algorithm guarantees within a specified tolerance exact equilibrium

between internal resisting moments and external loads at each load step.

7.3 Recommendations for Further Research

(I) The proposed model provides a platform for the addition of new subelements which

account for mechanisms of hysteretic behavior that have not been considered in this

study.

(2) It is important to extend the proposed hysteretic models to the case of severe damage

that can lead to strength dissipation and local failure of individual members in the

structure.. The proposed analytical method is capable of dealing with the force

redistribution in the structure in the presence of strength softening.

(3) The proposed model provides a valuable tool for further studies of the effect of shear

and bond in multistory reinforced concrete frames. These studies should also attempt

to address the effect of strength softening due to shear and pull-out on the global and

local dyna:mic response.

(4) The effect of various deformation mechanisms on the local and global response of

reinforced concrete frame structures under earthquake excitations should be studied in

detail. These parametric studies should include structures of different layout and

height and several ground motions.

(5) The modeling approach of decomposing a structural element into subelements which

represent the basic deformation mechanisms can be extended to shear walls and dual

frame-wall systems.
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APPENDIX A

DERIVATION OF MODEL PARAMETERS

FOR SPECIMENS OF CHAPTER 5

This appendix presents a step-by-step derivation of pertinent model parameters for the

correlation studies of Chapter 5.

A .1 Specimen #12 by Celebi and Penzien (1973)

A .1 .1 Introduction

The model parameters for the correlation studies of specimen #12 by Celebi and Penzien

(1973) are determined from the material properties, the section geometry and the

reinforcement layout. This information was extracted from the EERC report by Celebi and

Penzien (1973).

A .1 .2 Material Properties

Young's modulus for steel Es and the initial modulus of concrete Ec are reported in Tables 3

and 4 on pg. 57-58 of the report. The values are:

Ec =3600 ksi

The modular ratio thus is: n = 8

A .1 .3 Section properties

Moment of Inertia

Es = 28700 ksi

The gross section moment of inertia I is determined from the geometry of the section:

/=1110 in4
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A .1 .4 Parameters of Girder Moment-Curvature Relation

Initial Stiffness

APPENDIX A

The upper bound of the initial stiffness value is the product of the gross section moment of

inertia with the initial concrete modulus Ec The resulting value is:

E/ =3600 ·1110 =3996 ·10' k-in 2/rad

Experimental evidence in Fig. 72 of the EERC report by Celebi and Penzien (1973) suggests

a lower bound value of approximately

E/= M = 700 = 1900.10' k-in 2/rad
q> 0.00037

A value equal to the average between the upper and the lower bound is assumed for the pre­

yield stiffness value of the spread plasticity model in the correlation study, since it gave the

best agreement with experimental results

E/ =2700·10) k-in 2/rad

Yield Moment

Fig. 43 on pg. 102 of the EERC report by Celebi and Penzien (1973) supplies the following

yield moment values

M.: = 780 kip-in

Strain Hardening Ratio

M.; = 750 kip-in

Experimental evidence in Fig. 72 of the EERC report by Celebi and Penzien (1973) yields the
following values for the strain hardening stiffness E+\, under a positive bending moment and

P.

the strain hardening stiffness Ef~\ under a negative bending moment

E;,r = 100/0.0020 =50000

E;,r =150/0.0028 =53571

With these post-yield stiffness values and the assumed initial stiffness the following values

result for the strain hardening stiffness ratio IIp under a positive bending moment and the

strain hardening stiffness ratio llN under a negative bending moment

IIp=0.018 llN =0.019
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The values that give the best agreement with experimental results in the correlation study are

slightly smaller, namely

II p =0.017

A .1 .5 Parameters of Joint Moment-Rotation Relation

ll N =0.017

The parameters of the moment-rotation relation of the joint subelement are determined with

the following simple procedure of Park and Paulay (1975, pg. 404).

s

T
h=d-d'

1

FIGURE A.l DETERMINATION OF PULL-OUT

The pull-out force F in Fig. A.l is related to the pull-out value s by the linear relation

F= k·s

where k is the linear bond stiffness of the reinforcing bar, which can, in turn, be determined

with the following relation for a single reinforcing bar

E .41t· 1I • d
k = s t"'"

2/r

E = steel elastic modulus, J.l = average bond stress in anchorage zone, d" = bar diameter and

I y =yield stress of reinforcing steel.

At yielding of the reinforcing steel the following relations hold (Fig. A.l):

F
s=-

k



158

s
8 ==-

h

M == F·h

APPENDIX A

where: As = total steel area of one layer, h is the distance between top and bottom reinforcing

layer in Fig. A.l and M is the bending moment. The joint pre-yield stiffness then becomes:

M
KjOin! =8

Initial Stiffness

For specimen #12 of Celebi and Penzien (1973) the pre-yield stiffness of the joint subelement

is detennined with the following values:

#7 h

E,. = 28700· ksi

~ =720 psi

dh = 0.875 in

f.. = 49000 psi

A =2·0.61 in 2 =1.22 in 2
.\

h = ]0.125 in

b= 9 in

+ b +

k =28.7.10
6

. 41t ·0.875·720 =23] 9 k!
2.49000 lin

F =A, . J;. =0.61 ·49000 =29.9 kips

s = F = 29.9 = 0.0127 in
k 2319

8 =~ = 0.0127 = 12.5 ·10-4 rad
h 10.125

K M, 750 --4 = 600 .101 k-in Irad
joint =e = 12.5.10

The following stiffness value for the joint subelement gave the best agreement In the

correlation study:

KJOint =500 ·10' k-in/rad,
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Strain Hardening Ratio
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The following values for the strain hardening stiffness ratio under positive and negative

bending moment give the best agreement with experimental results:

IIp =0.04

A .1.6 Parameters of Moment-Shear Rotation Relation

llN = 0.04

The experimental data in Fig.· 102 on pg. 161 of the EERC report by Celebi and Penzien

(1973) yield the following values:

Cracking Moment

With a tensile strength value of J; =6.8.[[ the value of the cracking moment is:

Mer = 190 kip-in

Initial Stiffness

K = M = F·L/4 = 486 =173571 k-in/rad:::174'103 k-in/rad
.r/l e e 0.0028

Rounding off the following value is used in the correlation study:

Ksh = 180.103 k-in/rad

Strain Hardening Ratio

=54/0.0150 = 0.021
IIp 174.103

. =54/0.028 =0.011
llN 174.103

The following values for the strain hardening stiffness ratio of the shear subelement gave the

best agreement with experimental results:

Tl p = 0.035 llN = 0.035



160 APPENDIX A

A.2 Specimen #3 by Atalay and Penzien (1975)

A .2 .1 Introduction

The model parameters for the correlation studies of specimen #3 by Atalay and Penzien

(1975) are determined from the material properties, the section geometry and the

reinforcement layout. This information was extracted from the EERC report by Atalay and

Penzien (1975).

A .2 .2 Material Properties

Young's modulus for steel Es and the initial modulus of concrete Ec are reported in Tables

2.1 and 2.3 on pg. 72 and 74 of the report. The values are:

Ec = 3190 ksi

The modular ratio thus is: n =7.6

A .2 .3 Section properties

Moment of Inertia

Es = 27350 ksi

The gross section moment of inertia 1 is determined from the geometry of the section:

1=1152 in 4

A .2 .4 Parameters of Girder Moment-Curvature Relation

Initial Stiffness

The product of the gross section moment of inertia with the initial concrete modulus Ec

yields the following initial stiffness value:

EI=3190·1152=3675·1O~ k-in 2/rad

The initial stiffness value that gives the best agreement with experimental results is slightly

higher than the gross moment of inertia, because of the presence of the axial compression

load of 60 kips
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Yield Moment

16!

The following values for the yield moment are extracted from Table 4.1 on pg. 78 of the

EERC report by Atalay and Penzien (1975):

M~=916 kip-in

Strain Hardening Ratio

M ~= 896 kip-in

It is extremely difficult to obtain a strain hardening stiffness ratio from Fig. 4.4 on pg. 127 of

the EERC report by Atalay and Penzien (1975):

The following values for the strain hardening stiffness ratio under positive and negative

bending moment give the best agreement with experimental results:

IIp = 0.02

A .2 .5 Parameters of Joint Moment-Rotation Relation

Initial Stiffness

llN = 0.02

Using the same procedure as described earlier for the specimen of Celebi and .Penzien the

following initial stiffness value results:

h

Es = 27350 ksi

1.1 = 626 psi

db =0.875 in

1;. = 53300 psi

A =2·0.61 in 2 =1.22 in 2
.,

h = 6.925 in

b =12 in

+ b +

k =27350 ·lOJ . 47t· 0.875·626 = 1766 k/ .
2.53300 lin

F =A, .1;. = 0.61 ·53300 = 31.98 kips

s= F = 31.98 =0.0181 in
k 1766
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e=.:. = 0.0181 =0.0026 rad
h 6.925

M v 900 ~.
K. = -" = = 350·10- k-m Irad

JOIOI e 0.0026

APPENDIX A

The following stiffness values give the best agreement with the experimental results:

Strain Hardening Ratio

The following values for the strain hardening stiffness ratio under positive and negative

bending moment give the best agreement with experimental results:

IIp =0.04

A .2.6 Parameters of Moment-Shear Rotation Relation

ll N = 0.04

From the experimental data reported in Fig. A.4.c on pg. 210 of the EERC report by Atalay

and Penzien (1975) the following values for the parameters of the model result:

Cracking Moment

With a tensile strength value of 1, =6.8ft: and the applied axial compressIOn load of

60 kips the value of the cracking moment is:

Mer = 290 kip-in

Initial Stiffness

M F·LI4
K"h =e-= e _3_24_:::: 1300 .1OJ k-in/rad

0.00025

The value that gives the best correlation with the experimental data is:

K'h =1500·lOJ k-in/rad

Strain Hardening Ratio.

The following values for the strain hardening stiffness ratio under positive and negative

bending moment give the best agreement with experimental results:

II p=0.025 ll N =0.025
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Axial Load Ratio

The axial load ratio is equal to:

where P =compressive axial force and Po =nominal axial strength

For specimen #3 by Atalay and Penzien (1975) the corresponding values are:

P= 60 kips

Po = fc .Ac = 4235 ·144 = 610 kips

163

so that the following ratio results and is used in the determination of the "pinching" stiffness

of the shear subelement in the model

!- = 60 =0.098
Po 610





APPENDIXB

DERIVATION OF MODEL PARAMETERS FOR SHAKING TABLE

SPECIMEN RCF2 OF CHAPTER 6

This appendix presents a step-by-step derivation of pertinent model parameters for the

correlation studies of Chapter 6.

B .1 Introduction

The model parameters for the correlation studies of the shaking table specimen RCF2 by

Clough and Gidwani (1976) are determined from the material properties. the section

geometry and the reinforcement layout. This information was extracted from the EERC

report by Clough and Gidwani (1976) and the EERC report by Blondet et al. (1980).

B .2 Material Properties

Young's modulus for steel Es and the initial modulus of concrete Ee are reponed in

Table 2.1 on pg. 12 of the report by Clough and Gidwani (1976). The values are:

E, =2640ksi

The modular ratio thus is: n =10.98

B .3 Parameters of Girder Model

Bottom Story Girders

Moment of Inertia

E, =29000 ksi

The value used in the correlation studies is the average cracked moment of inertia. This is

determined with the aid of the following information from the EERC Report by Clough and

Gidwani (1976). The supplied values of yield moment and curvature in Table 2.3 in

Appendix A result in the cracked moment of inertia

165
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A single value can then be determined as the average of the cracked moment of inertia under

positive and negative bending moments

With the information supplied in Table 2.3 the following values result

1-; = 670 in4

and the average is

The following round-off value is used in the correlation studies of Chapter 6

1=580 in 4

Parameters of Moment-Curvature Relation of Spread Plasticity Model

Initial stiffness

With the values of Young's modulus Ec and moment of inertia I the initial stiffness

becomes:

EI =2640·580 =1531200 k-inz/rad

The round-off value used in the correlation study is the same, i.e.

EI = 1531.103 k-in 2/rad

Yield Moment

The positive yield moment of the girders is based on the assumption of an effective slab

width according to ACI guidelines. The yield moment also accounts for the effect of the

compression reinforcement. The participation of the reinforcement within the effective width

of the slab is included in the calculation of the negative yield moment. These values are

reported in Table 2.3 of the EERC Report by Clough and Gidwani (1976).

M: = 232 kip-in
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Strain Hardening Ratio
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The available experimental data in Clough and Gidwani (1976) are not sufficient to evaluate

the strain hardening stiffness ratio IIp under positive bending moment. On the other hand the

values in the table on pg. 151 between points 3, 4 and 5 permit the determination of the strain

hardening stiffness ratio llN under negative bending moment. That value is:

llN = 0.0195

The values for the strain hardening stiffness ratios used in the correlation studies of Chapter 6

are:

IIp=0.012 llN = 0.020

Parameters of Moment-Rotation Relation of Concentrated Plasticity Model

Initial Stiffness

The value is the same as for the spread plasticity model, i.e.

EI =1531.103 k-in 2/rad

Yield Moment

The values are the same as for spread plasticity model, i.e.

M,; = 232 kip-in

Strain Hardening Ratio

M,: = 720 kip-in

Filippou and Issa (1988) conclude in their parametric studies that, in the absence of a better

estimate, the strai~ hardening stiffness ratio for the concentrated plasticity model is

approximately equal to twice the strain hardening stiffness ratio of the spread plasticity model

(pg. 77-86 and, in particular, pg. 84 in the report). The following values are assumed in the

correlation studies of Chapter 6: '

IIp = 0.025 llN = 0.038

For their analytical model Clough and Gidwani (1976) assumed a~ingle strain hardening

stiffness ratio of 0.05 on pg. 24 of their report.
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Parameters of Joint Moment-Rotation Relation

Initial Stiffness

The following value results with the simple procedure in Appendix A.l.5:

APPENDIX B

+ b +

E =29800 ksi

Il = 690 psi

d =0.625 in

1;, = 41500 psi

A.,. =2·0.31 in 2 =0.62 in 2

h = 8.55 in

b=5.75 in

h"lab =2.875 in

k = 29.8.10
3

• 41t ·0.625·690 = 1946 k/
2.41500 lin

F =A" .1;. =0.31 ·41500 =12.865 kips

s = F =12.865 =0.0066 in
k 1946

8 =!..- =0.0066 =7.73·10-4 rad
h 8.55

K 232 = 300.103 k-in /rad
. Joint =7.73.10-4

The following stiffness value for the joint subelement gave the best' agreement In the

correlation studies:

Kjoint =200.103 k-in/rad

Strain Hardening Ratio

The following ~tiffness value for the joint subelement gave the best agreement In the

correlation studies:

II p =0.04 llN =0.04
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Top Story Girders

Moment of Inertia
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The value used in the correlation studies is the average cracked moment of inertia. This is

determined with the aid of the following information from the EERC Report by Clough and

Gidwani (1976). The supplied values of yield moment and curvature in Table 2.3 in

Appendix A result in the cracked moment of inertia

My
I cr =-----'--­

Ec '<p y

A single value can then be determined as the average of the cracked moment of inertia under

positive and negative bending moments

With the information supplied in Table 2.3 the following values result

r=575in 4
cr

and the average is

(r,uv~ = 446 in 4

The following round-off value is used in the correlation studies of Chapter 6

1=450 in 4

Parameters of Moment-Curvature Relation of Spread Plasticity Model

Initial stiffness

With the values of Young's modulus Ec and moment of inertia I the initial stiffness

becomes:

EI = 2640·450 = 1188.103 k-in 2/rad

The round-off value used in the correlation study is the same, i.e.

EI = 1188.103 k-in 2/rad
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Yield. Moment

APPENDIXB

The positive yield moment of the girders is based on the assumption of an effective slab

width according to ACI guidelines. The yield moment also accounts for the effect of the

compression reinforcement. The participation of the reinforcement within the effective width

of the slab is included in the calculation of the negative yield moment. These values. are

reported in Table 2.3 of the EERC Report by Clough and Gidwani (1976).

M; = 205 kip-in

Strain Hardening Ratio

The available experimental data in Clough and Gidwani (1976) are not sufficient to evaluate

the strain hardening stiffness ratio l1p under positive bending moment. On the other hand the

average of the values in the table on pg. 152 between points 3. 4 and 5 permit the

determination of the strain hardening stiffness ratio llN under negative bending moment. That

value is:

l1N = 0.022

The values for the strain hardening stiffness ratios used in the correlation studies of Chapter 6

are:

l1 p =0.012 l1N = 0.020

Parameters of Mome~t-Rotation Relation of Concentrated Plasticity Model

Initial Stiffness

The value is the same as for the spread plasticity model, i.e.

Yield Moment

The values are the same as for spread plasticity model. i.e.

M; =205 kip-in

Strain Hardening Ratio .

M.~ = 640 kip-in

Filippou and Issa (1988) conclude in their parametric studies that, in the absence of a better

estimate, the strain hardening stiffness ratio for the concentrated plasticity model IS
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approximately equal to twice the strain hardening stiffness ratio of the spread plasticity model

(pg. 77-86 and, in particular, pg. 84 in the report). The following values are assumed in the

correlation studies of Chapter 6:

IIp =0.025 llN = 0.038

For their analytical model Clough and Gidwani (1976) assumed a single strain hardening

stiffness ratio of 0.05 on pg. 24 of their report.

Parameters of Joint Moment-Rotation Relation

Initial Stiffness

The following value results with the simple procedure in Appendix A. 1.5:

+ b +

E =28000 ksi

).l =775 psi

d = 0.50 in

~. = 56100 psi

A. = 2·0.20 in2 = 0.40 in 2
.\

h = 8.55 in

b = 5.75 in

h,lab = 2.875 in

k= 28·10
3

·41t·0.5·775 =1215 k/
2.56100 . 7in

F = AI' .II = 0.20 .56100 = 10.22 kips

_ F _ 10.22 -00092's- - .. -. In
k' 1215

e= ~ = 0.0092 = 0.0011 rad
h 8.55

205 3.
Kja;n! = =186 ·10- k-m Irad

0.0011

The following stiffness value for the joint subelement gave the best agreement In the

correlation studies:
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Strain Hardening Ratio

Kjo1nl =200 .103 k-in/rad

APPENDIX B

The following stiffness value for the joint subelement gave the best agreement In the

correlation studies:

Tlp = 0.04

B .4 Parameters of Column Model

Bottom Story Columns

Moment of Inertia

TlN = 0.04

During test run WI the first story columns experienced significant cracking. On the contrary,

cracking was rather limited for the second story columns (see pg. 113 in Blondet et a1. 1980).

To represent the extent of cracking in the first columns at the beginning of test run W2 the

effective moment of inertia is assumed equal to half the value of the gross moment of inertia

I = Iii
e 2

where Iii =294.3 in 4 is the gross moment of inertia according to Table 2.2 on page 13 of

Clough and Gidwani (1976). Thus,

Ie =294.3 =147.15 in 4

2

and after rounding-off the following value is used in the correlation studies:

1=148 in 4

Parameters of Moment-Curvature Relation of Spread Plasticity Model

Initial stiffness

With the values of Young's modulus Ec and moment of inertia I the initial stiffness

becomes:

EI =2640 ·148 =390720 k-in 2/rad

The round-off value used in the correlation study is the same, i.e.
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Yield Moment

EI = 390 ·10' k-in 2/rad
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The studies on the shaking table specimen RCF2 by Clough and Gidwani (1976) and by

Blondet et al. (1980) supply two different axial force-bending moment interaction diagrams

for the columns of the specimen. The characteristic values of the interaction diagram in
Clough and Gidwani (1976) are: pure bending moment strength Mo = 148.8 k - in, bending

moment at balance point Mo =352 k - in, axial force at balance point Po =98.4 kips, and

axial compression strength Po =261 kips. The corresponding characteristic values for the

interaction diagram for case II in Blondet et al. (1980) are: Mo = 180 k - in, MB = 320 k - in,

PB = 70 kips, and Po = 220 kips. The latter interaction diagram appears to be more consistent

with the observed experimental behavior of the test frame and is, thus, used as the reference

diagram in the following calculations.

Thus, under the assumption of a uniform strength over the column height equal to the

ultimate moment capacity that corresponds to a constant axial load under the action of gravity

loads, the following yield moment values result for case II (see Table 2.4 on pg. 23 of

Blondet et al. 1980):

M.: =208 kip-in

Strain Hardening Ratio

M: = 208 kip-in

The values for the strain hardening stiffness ratios that yield the best agreement with

experimental results are:

IIp =0.03 llN =0.03

Parameters of Moment-Rotation Relation of Concentrated Plasticity Model

Initial Stiffness

The value is the same as for the spread plasticity model, i.e.

EI = 390 ·10' k-in 2/rad

Yield Moment

The values are the same as for spread plasticitymodel, i.e.

M: = 208 kip-in M.: = 208 kip-in
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Strain Hardening Ratio
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As before, the strain hardening stiffness ratios for the concentrated plasticity model are

approximately twice as high as the strain hardening stiffness ratios of the spread plasticity

model. The following values are assumed in the correlation studies of Chapter 6:

IIp = 0.05

Parameters of Joint Moment-Rotation Relation

Initial Stiffness

llN = 0.05

The following value results with the simple procedure in Appendix A.l.5:

E =29000 ksi

11=616 psi

d = 0.625 in

h' = 41500 psi

A; = 2·0.31 in 2 = 0.62 in 2

h =5 in

b = 5.75 in

+ b +

k =29 .1O~ .41t· 0.625·616 = 1690 k/
2.41500 lin

F = A", .~, =0.31 .41500 =12.87 kips

s = F = 12.87 = 0.0076 in
k 1690

e=~ = 0.0076 =0.00152 rad
h 5

208. 3.
K. = = 137 .10 k-In I rad

JOInt 0.00152 .

The following stiffness value for the joint subelement gave the best agreement in the

correlation studies:

Kjoin, = 50 .103 k-in/rad
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Strain Hardening Ratio
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The following stiffness value for the joint subelement gave the best agreement in the

correlation studies:

Top Story Columns

Moment of Inertia

IIp = 0.04 llN = 0.04

Since the extent of cracking was limited in the second story columns after the completion of

shaking table run W I the following effective moment of inertia value is assumed:

I ='l:I
e 3 ~

where Iii = 294.3 in 4 is the gross moment of inertia according to Table 2.2 on page 13 of

Clough and Gidwani (1976). Thus,

Ie = 'l: 294.3 = 196.2 in 4

3

and after rounding-off the following value is used in the correlation studies:

1= 190 in4

Parameters of Moment-Curvature Relation of Spread Plasticity Model

Initial stiffness

With the values of Young's modulus Ee and moment of inertia I the initial stiffness

becomes:

EI =2640 ·190 =501600 k-in 2/rad

The round-off value used in the correlation study is the same, i.e.

EI = 500.103 k-in 2/rad

Yield Moment

The cross section dimensions for the top story column and the reinforcement layout are the

same as for the bottom story columns. The slightly smaller axial load due to gravity loads

results in a slightly smaller yield moment according to case II in Table 2.4 on pg. -23 of

Blondet et al. (1980):
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M; = 194 kip-in

Strain Hardening Ratio

. M}~ =194 kip-in

APPENDIX B

The values for the strain hardening stiffness ratios that yield the best agreement with

experimental results are:

TIp = 0.03 TIN =0.03

Parameters of Moment-Rotation Relation of Concentrated Plasticity Model

Initial Stiffness

The value is the same as for the spread plasticity model, i.e.

Yield Moment

The values are the same as for spread plasticity model, i.e.

M: = 194 kip-in

Strain Hardening Ratio

M; = 194 kip-in

As before, the strain hardening stiffness ratios for the concentrated plasticity model are

approximately twice as high as the strain hardening stiffness ratios of the spread plasticity

model. The following values are assumed in the correlation studies of Chapter 6:

TJp =0.05

Parameters of Joint Moment-Rotation Relation

Initial Stiffness

Since the cross section and reinforcement layout are identical the following value results:

194 1.
K = = 128·10- k-m Irad

JOlnr 0.00152

The following stiffness value for the joint subelement gave the best agreement In the

correlation studies:

Kjoin, = 60 _101 k-in/rad
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Strain Hardening Ratio
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The following stiffness value for the joint subelement gave the best agreement in the

correlation studies:

1lp =0.04 1lN =0.04
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elastlc subelement WhICh models the fLxural behaVIor of the frame member before yIeldmg of the
reinforcement; (b) a spread plastic subdement which describes the inelastic flex.ural behavior of the reinforced
concrete member and accounts for the gradual spread of inelastic deformation at the member ends; and (c) a
joint subelement modeling the fixed-end rotation that arises at the beam-column interface due to bond
deterioration and slippage of reinforcing bars along the anchorage in the joint. The present study introduces
several new subelements. The first is a shear subelement which describes the deformation due to shear. The I

other subelements refer to hysteretic behavior of reinforced concrete columns and .are extensions of the
corresponding girder subelements to account for the effect of axial load on the flexural and shear behavior of
the member. The proposed reinforced concrete frame models are implemented in a special purpose computer
program for the nonlinear static and dynamic analysis of reinforced concrete frames. ci[his procedure is extended
to address time varying loads due to ground acceleration. Implementation issues uq.der static and dynamic
loading conditions are also addressed in the present study. Analytical results are comifar~ with experimental
information from beam-column subassemblages under cyclic deformation reversals. ~
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