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ABSTRACT

This study presents a finite element model for reinforcing bars anchored in concrete

and subjected to severe cyclic excitations. The solution to the problem of stress transfer

between reinforcing steel and concrete is based on the flexibility method. In this case the

governing differential equations are solved by force interpolation functions that strictly

satisfy equilibrium along the anchored reinforcing bar. This solution method results in a very

robust and stable nonlinear algorithm, particularly, for systems that exhibit severe stiffness

and strength deterioration, as is the case for anchored reinforcing bars.

In the systematic derivation of the proposed solution method the model is viewed as a

simple mechanical system that is made up of two components in parallel. The first

component is the reinforcing bar and the second is the interface between reinforcing steel and

surrounding concrete. The nonlinear hysteretic behavior of the model derives entirely from

the nonlinear constitutive behavior of these two components. The hysteretic behavior of the

reinforcing bar is described by a cyclic steel stress-strain relation, while the hysteretic

behavior of the interface derives from a cyclic bond stress-slip relation that includes a

damage parameter for representing the progressive deterioration of bond.

In formulating the finite element solution of the governing differential equations of

the stress transfer problem, two different methods are discussed and compared. In the first

method the governing differential equations are solved by approximating the displacement

field with interpolation functions. The selection of appropriate displacement shape functions

that are compatible with the node displacements is straightforward. In the second method the

governing differential equations are solved by approximating the stress field with

interpolation functions. In this case the selection of appropriate interpolation functions is not

straightforward. In a parallel system the total stress field results from the superposition of the

component stress fields. In this case the force interpolation functions in the components of

the proposed model must satisfy the requirement that the steel force distribution be in strict

equilibrium with the bond force distribution along the element. The proposed model is based

on the second method, since this offers significant numerical advantages over the first.

The integration of the flexibility based finite element model in a conventional

stiffness based finite element program faces several challenges that are addressed in this

study with a new iterative algorithm. This algorithm is characterized by robust and stable



numerical behavior even under conditions of significant strength and stiffness loss of the

anchored reinforcing bar.

The study concludes with correlation studies between analytical and experimental

results and several parametric studies. The former are intended to establish the validity of the

proposed model, while the latter serve the purpose of identifying the significance of key

parameters on the local and global response of anchored reinforcing bars and for providing

some guidance for their design in regions of high seismic risk.
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CHAPTER 1

INTRODUCTION

1.1 General

The hysteretic behavior of reinforced concrete (RC) structures under severe seismic

excitations depends on the hysteretic behavior of the constituent materials and on several

factors related to the interaction between reinforcing steel and concrete under cyclic load

reversals. A manifestation of this interaction is the relative slip between steel and concrete in

the form of pull-out of reinforcement from footings and exterior beam-column joints. It also

manifests itself in the form of large cracks at the interface between beam and column in

interior beam-column joints.

A number of experimental studies on reinforced concrete frame subassemblages in the

last twenty years (e.g. Bertero and Popov 1977) have shown that the deformations due to

relative slip of reinforcement account for a significant portion of the global displacement of

the subassemblage. Most importantly, this contribution increases with the number of load

reversals, as bond between reinforcing steel and concrete deteriorates. In spite of the

importance of the subject, very little analytical work has been conducted to date and efforts to

account for the effect of pull-out on the seismic response of entire structures are very few.

In the last years the Finite Element Method (FEM) has gained acceptance in practice,

as a powerful and reliable tool for the evaluation of existing structures and the design of

complex new structures. This interest has led to increased attention to the modeling of bond

on the part of researchers. Even though accurate constitutive relations for bond have been

established experimentally under general cyclic excitations (Eligehausen et al. 1983), no

analytical model has yet been proposed that can be used in conjunction with a general

purpose finite element program and is, at the same time, capable of describing the complex

hysteretic behavior of anchored reinforcing bars under cyclic excitations. An anchored

reinforcing bar that is subjected to a tensile force at one end, transfers this force to the

surrounding concrete by the interaction of two mechanisms acting in parallel: the uniaxial

stress and associated strain in the reinforcing bar and the slip of the bar relative to the
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surrounding concrete, which produces a bond-stress field over the bar surface. A brief

summary of past analytical efforts is presented in the next section.

1.2 Review of Previous Studies

The first model for bond-slip of reinforcing bars was proposed by Ngo and Scordelis

(1967) who developed a linear elastic FE model of a simply supported beam that consisted of

constant strain triangular elements for concrete and steel. In the study concentrated (lumped)

bond link. elements were introduced at the nodes where concrete and steel elements were

connected. The linkage element had no physical dimensions and could be visualized as two

orthogo_nal springs. The same approach was followed by Nilson (1972) who introduced

nonlinear constitutive relations for steel and concrete and a nonlinear bond-slip relation. A

bond-zone element of finite thickness with distributed bond action was developed by deGroot

et al. (1981) and by Keuser and Mehlhorn (1987) who showed that concentrated bond link

elements are capable of representing correctly only uniform slip distributions and who,

therefore, introduced a contact element which provides a continuous interaction between steel

and concrete. In the latter studies the behavior of concrete was modified in the vicinity of the

contact surface between reinforcing steel and concrete to account for the properties of the

bond zone. None of these studies, however, addressed directly the numerical solution of an

anchored reinforcing bar under cyclic excitations.

A more rational approach was followed by Filippou et al. (1983). In this study the

weighted residual method is used to solve the differential equations of equilibrium and

compatibility of an anchored reinforcing bar. This approach gave rise to a mixed finite

element with independent approximations of the displacement and stress field in the bar.

Unfortunately, the formulation was not carried through to permit implementation in a general

purpose finite element program.

Yankelevsky (1985) proposed a finite element with displacement interpolation

functions. The study is,. however, limited to linear elastic reinforcing bars under mono.tonic

pull-out conditions with rather. small maximum pull-out values of 0.3 mm. This does not

permit an assessment of the performance of this type of element in the presence of bond

softening under cyclic excitations.

The reinforcing bar elements are typically arranged along the sides of concrete finite

elements and this feature leads to the double node concept that results in an appreciable
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increase of the total number of nodes in the finite element representation of the structure.

Implementations of these elements under cyclic load conditions are very rare. To alleviate the

double node problem Kwak and Filippou (1990) proposed an' embedded reinforcing bar

element for finite element analysis that still interacts with concrete elements via concentrated

bond links at the two end nodes. Their studies encompass reinforcing bar anchorages under

monotonic and cyclic load conditions, as well as reinforced concrete beams, slabs and beam

column joints under monotonic loads.

In summary, the solutions proposed so far are hampered by the following limitations:

(a) bond is typically lumped at the nodes of the FE model, where concentrated springs with

appropriate constitutive relationships connect the reinforcing bar with the surrounding

concrete; (b) the models are limited to linear elastic behavior in either steel or bond behavior,

rarely include the nonlinear behavior of both and are not capable of simulating cyclic
- - -

behavior and bond deterioration; (c) most existing models are based on the displacement

(stiffness) method of analysis and, thus, center on the assumption of a -displacement

interpolation function for the relative slip. The presence of very steep slip gradients along the

yielding portion of reinforcing bars demands a large number of elements for good accuracy.

Even so, displacement based models are plagued by numerical problems in the presence of

bond softening, as few studies to date have shown (Viwathanatepa et al. 1979); (d) models

pr'oposed to date lack a clear implementation in a general purpose finite element program.

Recent studies (Filippou 1986, Zulfiqar and Filippou 1990) have shown that, on

account of the smooth character of stress distributions, it is numerically advantageous to

appr~ximate the bond or steel stress distribution rather than the relative slip along the

anchored reinforcing bar.

The desire to base the element fonnulation on the approximation of the steel or bond

stress distribution along the anchored reinforcing bar leads to a force (flexibility) based

element formulation. Such an approach has not received much attention in- finite element

models to date, because of the difficulty of implementing a flexibility based nonlinear_

element in a general' purpose finite element program that centers on the displacement

(stiffness) method. Ciampi and Carlesimo (1986) were the first to propose a consistent

implementation of a flexibility based element in a program that is based on the displacement

method of analysis. Their method was refined and extended by Taucer et al. (1991) within the

general purpose finite element program FEAP documented in Zienkiewicz and Taylor (1989

and 1991).
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1.3 Objectives and Scope

This study presents the development and 'the numerical implementation of a finite

element for anchored reinforcing bars. The objective of the study is the development of a

robust and efficient model within the framework of classical finite element methodology, so

that the model can be later implemented in the analysis of reinforced concrete members, such

as beam-column joints, where the interaction between reinforcing steel and concrete through

bond plays an essential role in the characterization of the hysteretic behavior.

The development of the proposed model is based on the flexibility method of

analysis. In this case force interpolation functions are used to approximate the force fields in

the governing differential equations of the problem. For the problem of stress transfer

between reinforcing steel and concrete through bond the force fields are the steel stress in the

reinforcement and the bond stress acting on the circumference of the anchored bar. Since

these two fields are, however, related by the equilibrium equation of the problem, only one

can be selected independently. The development of the flexibility based model is motivated

by the fact that anchored reinforcing bars that are subjected to large deformation reversals

exhibit a smooth distribution of steel stress, while the strain and relative displacement

between reinforcing steel and surrounding concrete are characterized by steep gradients in the

inelastic portion of the anchored bar.

In Chapter 2 the theoretical formulation of the flexibility-based finite element is

presented along with a comparison between the stiffness and flexibility method and some

important considerations regarding the selection of shape functions. The chapter concludes

with the implementation of the proposed element in general purpose finite element analysis

program and the summary of the state determination algorithm. Chapters 3 and 4 contain

several correlation studies of the model with experimental results from anchored reinforcing

bars. Chapter 3 is concerned with monotonic loads and Chapter 4 with cyclic. A series of

parameters studies are also included in these chapters for the purpose of assessing the

influence of key material parameters on the hysteretic behavior of anchored reinforcing bars.
. .'

Conclusions of the study are offered in Chapter 5.



CHAPTER 2

FINITE ELEMENT FORMULATION

2.1 General

This chapter presents the development of a finite element model for a reinforcing bar

anchored in concrete with continuous bond. In the systematic derivation of the proposed

solution method the model is viewed as a simple mechanical system that is made up of two

components in parallel. The first component is the reinforcing bar and the second is the

interface between reinforcing steel and surrounding concrete (Fig. 2.1). The nonlinear

hysteretic behavior of the model derives entirely from the nonlinear constitutive behavior of

these two components. The hysteretic behavior of the reinforcing bar is described by a cyclic

steel stress-strain relation, while the hysteretic behavior of the interface derives from a cyclic

bond stress-slip relation that includes a damage parameter for representing the progressive

deterioration of bond. These material models are discussed in Appendix A. A fundamental

difficulty of this model arises from the fact that the constitutive behavior of one component is

of the stress-strain type, while the constitutive behavior of the other is of the stress

displacement type. In a strict sense, the latter cannot be considered a pure constitutive law

and is typically called a "local" constitutive relation.

The analytical models proposed to date fall into two categories. The first group is

made up of models that are developed for implementation in finite element analysis

programs. These include the effect of bond by means of concentrated bond-link elements that

connect the reinforcing steel nodes to the corresponding concrete nodes. The bond link

elerne!lt is extremely limited in its ability to represent the actual continuous bond conditions

along'anchored reinforcing bars, as pointed out in a study by Keuser and Mehlhorn (1987),

who overcame these limitations with a continuous bond element. Most importantly, existing

finite element models for reinforcing bars with bond-slip are based on displacement

interpolation functions and the stiffness method of analysis. In order to simulate the steep

displacement gradients associated with the spread of yielding in anchored reinforcing bars,

analysts resort to a fine finite element mesh with significant increase in computational cost.

5
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In spite of this, stiffness based elements have been plagued by numerical instabilities and lack

of convergence in the post-peak, softening range of the force-displacement relation.

In the second group of anchored reinforcing bar models fall special purpose models of

a single reinforcing bar. These devote great attention to representing the continuous nature of

bond along the reinforcing bar and devising special solution strategies for bypas~ing the

numerical difficulties of displacement based models. While several such models have been

successfully used in the simulation of the hysteretic behavior of anchored reinforcing bars,

their implementation' in a finite element analysis program is, at best, unclear, if not

impossible. Another limitation of these models is their lack of a clear theoretical

underpinning of the proposed solution algorithm.

concrete

cr
...

0 0 0 0 0

0
o 0 0

bar 0
0 00 0

0

...-- ...-- ...-..., ...-- ...-- ...-- ...-- cr+dcr

...-- ...-- ...-- ...-- ...-- ...-- --- q(u)

~~
0

00000
o 0 0 --

~O~

I~
dx

~I

FIGURE 2.1 INFINITESIMAL SEGMENT OF ANCHORED REINFORCING BAR

To proposed anchored reinforcing bar model overcomes these limitations. It is based

on the flexibility method of analysis so that force instead of displacement interpolation

functions form the star!ing point of the formulation. With this approach the inclusion of

continuous bond is rather straightforward by means of an interpolation function. The steel

force interpolation function is selected so as to satisfy equilibrium with the bond forces

pointwise along the element. Since bond and reinforcing steel forces change smoothly along
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the anchored reinforcing bar, a small number of elements suffices to yield accurate results.

Most importantly, the method is characterized by robust and stable numerical behavior even

in the post-peak, softening range of response.

After the derivation of the governing differential equations for an anchored

reinforcing bar the consistent formulation of the stiffness and flexibility method are

juxtaposed in this chapter in the interest of gaining insight in the similarities and differences

of these two approaches. The chapter then concludes with the numerical implementation of

the proposed flexibility-based model for an anchored reinforcing bar.

2.2 Governing Differential Equations of the Problem

The boundary value problem of a -reinforcing bar anchored in concrete (Fig. 2.1)

involves four unknown fields: the stress cr =cr(x) in the reinforcing bar, the bond stress

q =q(x) at the interface between bar and concrete, the strain E=E(x) in the reinforcing bar

and the slip u =u(x) of the reinforcing bar relative to the surrounding concrete. The relative

slip u =u(x) is the difference between steel and concrete displacements at location x. In the

present study the concrete deformations are neglected, so that Ec(X) == O. Consequently, u(x)

is simply the displacement field of the steel bar. All unknown fields are defined in the one
dimensional {x} domain Q of the embedded length L of the bar.

The four fields are related by the governing equations of the stress transfer problem. These

relations are schematically illustrated in Fig. 2.2:

dcr
in Q = (O,L) (equilibrium) (2.1)-=pq

dx

du
in n = (O,L) (compatibility) (2.2)-=E-E =Edx c

cr = cr(E) (steel constitutive relation) (2.3)

q= q(u) (bond constitutive relation) (2.4)

where d is the reinforcing bar diameter and p =(red)/(red 2/4) =4/d is the ratio of bar

circumference to bar area per unit of length..

The boundary conditions on the domain boundary r can be eitherof the essential type

u= Un on . r
u
={a}

on ru ={L}
(2.5)
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or of the naturaLtype

- 0'=0'0

a=aL

depending on the problem at hand.

on la ={o}
on la = {L}

(2.6)

q
r----:-=====:=J q(x)

dO'
-rxq
dx

(Mel1egono-Pil1to 1972)

Note: the shapes of the fields are arbitrary. ,

FIGURE 2.2 RELATION AMONG THE FOUR FIELDS

In order to deal with the nonlinear character of the governing equations a linearization

is performed. The four fields are expressed in incremental form (~a, ~q, !!.n, ~£) and the

strong form of the problem is written in incremental terms:

d .
-~a(x) =p~(x)
dx

d-!!.n(x) = &(x)
dx

Lla(x) = Ea(x)· ~£(x)

~(x) = Eq(x)· LlU(X)

(2.7)

(2.8)

(2.9)

(2.10)

where Ea is the tangent stiffness of the steel stress-strain relation, Eq is the tangent stiffness

of the bond stress-slip relation and Ll denotes the variation of the corresponding field. The

essential boundary conditions become
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till=~

till =tillL
and the natural boundary conditions are

.1.cr = .1.cr0

.1.cr = .1.crL

2.3 Finite Element Approximation

on ru ={OJ
on r" = {L}

on r a ={OJ
on ra ={L}

9

(2.11 )

(2.12)

In passing from the governing differential equations in Eqs. (2.7)-(2.10) to the finite

element approximation the following steps are undertaken (Reddy 1993):

(1) The domain n is subdivided into a set of finite elements ne =(x"x J )

where I and J denote the element boundaries;

(2) The weak form of the problem is constructed within a single element;

(3) One or more unknown fields are approximated by a polynomial within the

element;

(4) The governing equations of the finite element approximation result from

the substitution of the field approximations into the weak form of step 2.

A

The integration of the weak form is performed numerically for the master element n
in the local coordinate system g} defined by: n== {-I < ~ < I} = (-1, 1). The bar master

element is illustrated in Fig. 2.3. The element.end forces, end displacements and bond forces

are shown in the positive direction ..For the sake of compact notation these are grouped in the

following vectors:

s={S[ SJV
U = {u[ uJr

element end forces

element end displacements

. (2.13)

(2.14)

q={q[ qJV element bond forces (2.15)

The local coordinate systems {x} and {~} are shown in Fig. 2.3. The transformation between

these two systems is such that:

dx = J e · d~ or or d~=r' .
dx e

(2.16)

where Je is the Jacobian of the transformation, which forstraight elements is
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J = L
e 2

~-------------+---l"~ X
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(2.17)

x o L

r-------+-------+---1...~ ~.

~ =-1 0 1

FIGURE 2.3 . BAR ELEMENT WITH END FORCES, DISPLACEMENTS AND·BOND STRESSES

The polynomial approximation of generic field n is defined in the· g} -coordinate

system by

(2.18)

where L1n is the vector of node value increments of field n(~) and N(~) is the row vector of

element interpolation functions. The selection of the field that is to be approximated by the

element interpolation functions N(~) determines the form of th~ finite element equations in

, Step 2 above and the type of method. The approximation of the displacement field gives rise'

to the classical stiffness method, whereas the approximation of the stress field leads to the

flexibility approach.

In the following the differences between these two methods will be highlighted. The

commonly used stiffness method is dealt with by adhering to common practice: a compatible

displacement field approximation is selected and substituted into the weak form that is

derived with the virtual displacement principle. This process transforms the set of differential

equations into a set of algebraic equations. Special emphasis is placed on· the flexibility

method, which is much less common in finite element analysis, since this forms the basis of

the proposed model. Particular attention is paid to establishing criteria for the selection of

force interpolation functions for the proposed model.
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2.4 Stiffness Formulation

(2.19)inn=(O,L)

In the stiffness approach the differential equations are recast in tenns of the
displacement field ~u(x) as the only unknown. Upon substitution of Eqs. (2.9) and (2.10)

into Eg. (2.7) and using Eg. (2.8) the following relation results

!!-(E '!!-~U)=P'E .~
dx a dx. q

This governing equation is supplemented by the boundary conditions in Eq. (2.11) or
Eq. (2.12).

The weak fonn is obtained as follows:

(1) Each term is transferred to the left side of the equation which is then pre-multiplied by

an arbitrary weight function w(x) and integrated over the element domain ne

Iw(X)[~ (E. ~ &t)-PE, &t]dx =0 (2.20)

(2) Differentiation is traded from ~U to w using integration by parts

(
W' E .!!-~U) -fdw .E .!!-l1u .dx - P.fW . E .~ .dx =0

a dx " dx a dx . q .

n" n'

(2.21 )

where the first term represents the natural boundary conditions

(W-E. -~ &tt =(w-E.&)lr; =(w~(J)lr;
a

(2.22)

With the commonly adopted sign convention that stresses are positive in traction

~cr(x,) =-!!S,

~cr(xJ)=!!SJ
(2.23)

the boundary terms become

w( X I ) . I1cr(x, ) =WI' (-!!S, )

w(X J) .~cr(X J) = WJ . !!SJ

The variational statement assumes the following incremental form

f dw .E .!!-~U .dx + P. f w .E .l1u .dx - w .!!S - w .!!S = 0dx a dx q' , J J

n' n'

(2.24)

(2.25)

that represents the weak form of the problem.

The next step is to assume a polynomial approximation for the unknown displacement
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field over the domain Q as follows:

tlu(~) z N(~) ·tlu

CHAPTER 2

(2.26)

where tlu is the vector of node displacement increments and N(~) is the row vector of

element displacement interpolation functions. In order to guarantee convergence of N(~)· tlu

to the actual solution tlu(~) with increasing number of elements, the shape functions N(~)

should be:

1. smooth as required by the weak form,

2. complete in the sense that the polynomial should include all lower-order terms up to

the highest order, and

3. continuous across the nodes of the finite element. This requirement implies that
n

LNA~)= 1.
j=1

Conditions 1 and 3 are often referred to as compatibility conditions.

The selection of the displacement field as basic unknown results in the approximation

of the strain field according to Eqs. (2.8) and (2.16)

M:(~) ~ ~ tlu(~) = :~ tlu(~)· ~; z :~ N(~)· tlu· J;' =B(~)· tlu· J;1 (2.27)

where

B(~) =!!- N(~)
d~

(2.28)

is the row vector of shape function derivatives. Note that, in order for the compatibility

equation (Eq. 2.8) to be satisfied, B(~) must include at least anon-zero constant strairi field

thus leading to at least a linear function approximation of the displacement field.

In the next step the approximation of the displacement field in Eq. (2.26) is

substituted in the weak form of Eq. (2.25) and a Bubnov-Galerkin approximation is selected

for the weight function

yielding

and

w(~) ~ N(~). w

~ w(~) = :~ w(~). ~ z :~ N(~)· w . J;' = B(~)· w . ~:I

. (2.29)

(2.30)
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w
T {[fDT EoB .J;'~}u +p[f NT E, N J.di;]£\o - N; M, - N~ M,} = 0 (2.31)

where N I = NI~=_1 and N J = NI~=J' Finally, from the fact that w is arbitrary, and, by

definition, N l =[1 0] and N J =[0 1), the following matrix equation results

[Ka +Kq ] . ~u = .1S (2.32)

where K a is the element stiffness matrix
[

K a =J BT(~)·Ea(~)·B(~)'J:l d~
-[

and K q is the geometric stiffness matrix

1

K, = PJNT (i;). E, (i;). N(i;) J. ~
-I

(2.33)

(2.34)

The shape functions N(~) must be selected so thaL the continuity requirements in

Eq.(2.31) are satisfied, which means that the first derivative ofN(~) should be square-

integrable. Experimental results reveal, however, that very steep displacement gradients

occur at the two ends of the solution domain .Q. Consequently, a finer mesh becomes

necessary near the ends of the bar resulting in considerable increase of computational effort.

Alternatively, higher order elements might be developed with the addition of internal nodes

that are subsequently condensed out, but the computational cost still increases appreciably.

Most importantly, the displacement interpolation. functions cannot follow the dramatic

changes that take place at the ends of reinforcing bar anchorages due to loss of bond.

Stiffness based elements have, thus, been plagued by numerical instabilities and lack of

convergence in the post-peak, softening range of the force-displacement relation.

Studies by Ciampi and Carlesimo (1986), Zeris and Mahin (1988) and Taucer et al.

(1991) among others have shown that flexibility based elements exhibit excellent numerical

characteristics in the post-peak, softening range of the force-displacement relation by virtue

of the fact that the force interpolation functions remain exact in the nonlinear range of

response. Such a flexibility based element is proposed in the following for reinforcing bar

anchorages under seismic excitations.
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2.5 Flexibility Formulation

Studies by Filippou et al. (1983), Filippou (1986) and Zulfiqar and Filippou (1990)

have shown that the approximation of .the bond stress distribution in an anchored reinforcing

bar leads to a simpler, and more stable and economical solution of the problem than the

approximation of the relative slip distribution. These studies failed, however, to develop a

consistent theoretical basis for the implementation of this approach in a finite element

analysis program. This is the objective of the following discussion which starts with the

theoretical formulation of a flexibility based element for an anchored reinforcing bar and

concludes with its implementation in a finite element analysis program.

In the flexibility method the governing differential equations are recast in terms of the

stress field ~cr(x) as the only unknown field. To this end the constitutive relations for steel

and bond in Eqs. (2.9) and (2.10), respectively, need to be inverted and become

.1E(X) = E~I(X)' .1cr(x) =F(J(x), .1cr(x)

~(x) = E;'(x). Lit](x) = F/x), Lit](x)

(2.35)

(2.36)

(2.37)in'o=(O,L)

where Fa is the steel flexibility and ~ is the bond flexibility. Substituting Eqs. (2.35) and

(2.36) into Eq. (2.8) and making use of Eq. (2.7) results in the following differential equation

'Y '~(F .~~cr) = F·.1crd.x q d.x a

where d is the bar diameter and 'Y = p-l = d/4. This governing equation is supplemented by

the boundary conditions in Eq. (2.11) or Eq. (2.12).

The' weak form is obtained with the following process:

1) Each term in Eq. (2.37) is transferred to the left side of the equation, which is then

pre-multiplied by an arbitrary weight function w(x) and integrated over the element

domain ,Oe

(2-.38)

2) Differentiation is traded from .1cr to w using integration by parts

( w . F . 'Y .~ .1cr) - 'Y .fdw . F .~ !icr .d.x - fw . F ·.1cr· d.x =°
q d.x r' d.x q d.x a

n' n'

(2.39)
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where the first tenn represents the essential boundary conditions

( W . Fq . Y' ~ ~cr) , = (w. Fq . &;t,: = (w. !!Au)Ir,:
r"

After setting

W(XI )· !!Au(x l ) = WI' !!Au,

w( X J ) . !!Au(x J ) = WJ . !!AuJ

the variational statement assumes the following incremental fonn

Y .Jdw . F .!!..- ~(j . dx +Jw· F .~(j. dx + W . ~u - W . ~u =0dx q dx CT I I J J

n' n'-

Eq. (2.42) represents the weak form of the problem.

2.5.1 Approximation of Stress Field

15

(2.40)

(2.41)

(2.42)

The proposed reinforcing bar model can be viewed as a simple system that is made up

of two components in parallel: the reinforcing bar .and the interface between reinforcing bar

and surrounding concrete. Since the model fonnulation is based on the flexibility method, the

selection of force interpolation functions is guided by the requirement that these satisfy

equilibrium within the element in a strict sense. For the system at hand this implies that the

selected force interpolation functions should satisfy Eq. (2.7) pointwise. According to

Eq. (2.7) the bond force is the derivative of the force in the reinforcing steel. A clear relation,

thus, exists between the interpolation functions of the corresponding force fields so that only

one can be selected independently. Using the bond force field for the purpose the

approximation is written in the form

(2.43)

(2.44)

where Bq(~) is the row vector of bond. interpolation functions. With the inclusion of internal

element nodes a higher order polynomial approximation of the bond distribution is possible.

In such case the degree of the selected interpolation polynomial is n - 1 for an element with n
nodes'" and vectors. Bq(~) and ~q have dimensions (lxn) and (nxl), respectively.

Substitution of Eq. (2.43) in Eq. (2.7) yields

d
d~ ~cr(~) z J e P' Bq(~)' ~q

Eq. (2.44) expresses the dependence of the steel stress field approximation on the selected
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bond interpolation functions Bq(~) and on the bond stressincrements at the nodes ~q 0 The

integration of Eq. (2.44) yields

~

8cr(~) =pfB,(I;) J, dl; ·8q +c

-I

The integration constant c is determined from the boundary conditions
-I

8~<=_1 = -"-5, = pf B,(~)J,d~· 8q + C = C .

-I.

I

~crl~=1 =M J =p.JBq(~)Jed~· ~q + c

-I

With the introduction of the notation

1 =[1 1]
the above two equations can be combiried to a single equation

I

!!SJ + !!Sf =1· L\S = JePJBq(~)d~· ~q
-I

(2.45)

(2.46)

(2.47)

(2.48)

which represents the statement of element equilibrium. Given the steel stress increment at

one end of the element !!Sf and the bond stress increments at the nodes .1q, Eq. (2.48) serves

to uniquely determine the steel stress increment at the other end of the element !!SJ so that

element equilibrium is satisfied.

While it is possible to use either one equation in (2.46) to solve for integration

constant c, such an approach would result in a undesirable breakdown of symmetry of the

solution relative to the two stresses !!Sf and !!S J at the ends of the element. In order to

include both boundary conditions in the expression for integration constant c, these are

added up in Eqo (2.46) and the resulting expression is solved for c yielding

(2.49)

The substitution of c from Eqo (2.49) in Eqo (2.45) yields the stress field approximation in

terms of the steel stress and bond stress values at the nodes of the element
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where

and

~ I

Nq(~) =fBq(1;)d1; - tfBq(~)~
-I -I
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(2.50)

(2.51)

(2.52)

The expression N
j
••~ in Eq. (2.50) represents the average value· of the steel stress

increments at the element ends.

The evaluation of Eq. (2.50) at the two element ends yields the following matrix

relation

~ =J,p[-:,;r}A<Jf:" l~ =J, p[-:;}A<J+mT
•N,·~ (253)

where N ql ='N ql~=-1 and N qJ = N ql~=1 are the values of the row vector of interpolation

functions at nodes I and J. respectively. and

m=[-1 1] (2.54)

The sign convention in Eq. (2.53) adheres to the definition in Eq. (2.23).

The proposed anchored reinforcing bar element is formulated with the stress field
approximations &j(~) and ~cr(~) in Eqs. (2.43) and (2.50), respectively. These stress field

approximations satisfy the equilibrium conditions along the element pointwise.. In the

implementation of the element ina finite element analysis program node compatibility is also

maintained by keeping the displacement increments at the nodes fixed during the element

state determination phase of the algorithm. Since the bond force and stiffness only depend on

the node displacements ~u , these also remain constant during the element state
determination. Thus, the iterative algorithm only adjusts the steel strain field &(~)' in the

element until it agrees with the imposed node displacements. The proposed element state

determination procedure is discussed in detail in the following section.

2.5.2 Element State Determination

The state determination procedure is a fundamental· step in the implementation of a

nonlinear element in a finite element analysis program. Finite element analysis programs are
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almost exclusively based on the direct stiffness method.' In ihis case the displacement

increments at the nodes of the structure are determined in each load step from the applied

load increments and the current structure stiffness matrix, The element state determination

phase of the algorithm encompasses' the set of operations for determining the element

stiffness matrix and the element resisting forces that correspond to the current node

displacements. In a stiffness-based element these operations are rather straightforward,

because the element stiffness matrix and the .element resisting forces are the weighted

integrals of the corresponding section quantities with the displacement shape functions

serving as weightS. In a flexibility-based element the state determination requires particular

attention, because ther~ is no direct way to determine the element resisting forces from the

section forces and the available force interpolation functions.

The element state determination phase of the algorithm in a finite element analysis

program starts from the current displacements u at the nodes of the structure. The

corresponding element end displacements are extracted from the structure ,displacement

vector U by compatIbility consider~tions. In the proposed anchored reinforcing bar element it

is possible to immediately calculate the bond stress and corresponding stiffness at the nodes

of the element using the element end displacements u and the bond constitutive relation

q =q(u)

Eq = E/u)

(2.55)

(2.56)

This completes the state determination of the bond component of the proposed

element. For the state determination of the reinforcing steel bar this is treated as a simple

truss element with imposed nodal displacements u and with a distributed load q due to bond.

The reinforcing bar state determination follows the algorithm of Taucer et al. (1991) for

flexibility-ba'sed elements. In the interest of brevity the theoretical background of the state

determination algorithm is not discussed here. It suffices to recall that the iterations are based

on successive corrections of the element deformations, until these satisfy compatibility with

the imposed eiement end displacements. Of particular interest is the determination of the
.' • • • ' I

element stiffness matrix and of the residual end displacements which are discussed in the

following sections. The summary of the element state determination algorithm is presented in

Section 2.7.
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2.5.3 Determination of Element Stiffness Matrix

19

The determination of the element stiffness matrix depends on the selection of the

weight function in Eq. 2.42. The choice of a Bubnov-Galerkin approximation for the weight

function yields

(2.57)

v and w can be interpreted as virtual variations of the corresponding nodal quantities and the

weight function can be regarded as a virtual variation of the stress field along the bar. It is
important to note that v and w must be such that w(~) represents a virtual variation of the

stress field in equilibrium. On account of the arbitrariness of the virtual stress field and in the

interest of simplifying the element state determination it is assumed that v =0, so that

(2.58)

This selection results in a uniform weight function along the reinforcing bar.

The approximate form of the stress field Llcr(~) in Eq. (2.50) and the weight function

w(~) in Eq. (2.58) are substituted in the weak form of Eq. (2.42). Noting that dw(~)/dx =0

the first term vanishes and, after elimination of w T with the standard argument of the

arbitrariness of the weight function, the following relation results

With the linearization introduced in Section 2.2 the values of bond stress increments

at the nodes are expressed in terms of the displacement increments

where E q is the bond stiffness matrix

. _[Eq/

Eq - 0

Wi~h the use of vector m from Eq. (2.54)

LluJ - Llu, =m· LlU
Eq. (2.59) becomes

[[ Ni F. Ns · J.~] M= {Ni m - J. pI Ni F. N,J. ~E+~U

(2.60)

(2.61 )

(2.62)

(2.63)
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Since N~ does not depend on ~ , it can be factored out of the integral and canceled out. After

simplifying and rearranging Eq. (2.63) the following expression results

After substitution of Eqs. (2.60) and (2.64) in Eq. (2.53) it becomes

M = J,p[::lE,~U+ [f F. J, ~rmT .{m- J,pjF. N,J, ~E+OO (2.65)

where Nq, =Nql~=_l and Nq] =Nql~=l are the values of the row vector of interpolation

function at nodes I and]. Finally, after regrouping terms and introducing the notation

1

NQ =f F.(~)N.(~) J, ~
-I

Eq. (2.65) becomes

~ =[K s + K q ] . .1u =K ..1u

where K is the element stiffness matrix defined by

K =K s +K q

The-first stiffness contribution in Eq. (2.69), namely

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

is the stiffness matrix of the simple truss element. Note that it is determined by inversion of

the element flexibility according to Eq. (2.66), which is a scalar in this case. The second

contribution

(2.7])

is the geometric stiffness matrix of the element. The latter arises from the action of the
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distributed bond forces along the reinforcing bar.

It is interesting to note that the combined element stiffness matrix in Eq. (2.69) is

invertible. The rigid body modes in the truss element stiffness matrix are eliminated by the

action of bond forces along the reinforcing bar, and, consequently, an assembly of such

elements does not need to be restrained.

2.5.4 Determination of Residual Displacements

The determination of element resisting forces follows the nonlinear algorithm of

Taucer et al. (1991). The algorithm centers around the determination of residual strains at the

integration points of the element and the subsequent determination of the corresponding

residual displacements at the element ends by integration. According to the procedure in
Taucer et al. (1991) the residual steel strains £r(~) at the section are determined with the

following procedure:

1. With the known steel stress increment L\(J'(~) and the current flexibility of the steel

stress-strain relation determine the steel strain increment L\E(~) and update the steel

strain field E(~)

L\£(~) = Fcr(~) L\(J'(~)

E(~) =£(~) + L\£(~)

(2.72)

(2.73)

2. Determine the resisting stress (J' R(~) and the tangent flexibility of the steel stress

strain relation that corresponds to the new total steel strain E(~)

(2.74)

3. Determine the difference between applied stress (J'(~) and resisting stress crR(~)

(2.75)

4. Determine the residual strain Er(~) that is associated with the unbalanced stress

(J'u(~)

(2.76)

The residual strain field Er(~) along the element gives rise to residual displacements

u r at the element ends. These are determined by selecting a virtual stress field 8cr(~) In

equilibrium and applying the virtual force principle
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(2.77)

I

liS' .u, =J/io"(~) E,(~) J, d~
-I

where the virtual nodal forces OS are in equilibrium with the virtual stress fieldoo(~). The

expression under the integral is the complementary work of the virtual stress field variation

on the actual strain field. The most general form of the virtual stress field is

(2.78)

Similar to the simplification in Section 2.5.2. 1, 8q'is assumed to be zero, so that

(2.79)

Substitution of Eq: (2.73) in Eq. (2.71) and cancelJationof OST with the standard argument of

the arbitrariness of the virtual stress field yields

1

u r=J N~ £r(~) Je d~
-I

(2.80)

The role of the residual strains and corresponding end displacements in the nonlinear

algorithm of element state determination is presented in Section 2.7.

2.5.5 Selection of Interpolation Functions and Explicit Forms of Element Stiffness

Matrix and'Displacement Residuals

From Eqs. (2.43) and (2.5 I) it is clear that the force interpolation functions depend on

the selected approximation of the bond stress field along the reinforcing bar. For the proposed

two-node element the simplest choice is the following linear approximation of the bond stress

field, which is used in this study:

(2.81)

According to Eq. (2.51) the steel stress interpolation functions Nq(~) in Eq. (2.50) become

(2.82)

With this selection of interpolation functions the element stiffness matrix becomes

(2.83)
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(2.84)

where k] and N Q are given by Eqs. (2.66) and (2.67), respectively and 1 =[I 1]. It is

interesting to note that the element stiffness matrix is symmetric for the linear elastic case

[I -1] [SEql Eq;]
K = k l -1 I + iJ.p Eql SEq;

since Eq, =Eq; in this case. K, however, becomes nonsymmetric as soon as the bond slip

value at either end enters the nonlinear range.

Finally, the substitution of Eq. (2.52) in Eq. (2.80) yields the following expression for

the residual displacements at the element ends

(2.85)

(2.86)

2;6 Numerical Integration

The integrals that appear in the equations of the element state, determination are

evaluated numerically with the Gauss-Lobatto integration scheme. This IS based on the

expression

\ m~,

1= fg(~)·~=~·g(-I)+L~·g(~h)+Wm·g(1)
-I' h=2

where h denotes the monitored section and ~ is the corresponding weight factor (Stroud and

Secrest 1966). The Gauss-Lobatto scheme with m integration points permits the exact

integration of polynomials of degree up to (2m-3). This procedure is superior to the'classical

Gauss integration method when it is important to include in the numerical evaluation of the

integrals the end points of the element. Table 1 lists the values of ~h and Wh for different

values m of the number of integration points.

,,With the Gauss-Lobatto integration scheme the element integrals become

m

NQ = L Fcr(~h) Nq(~h)J. Wh

h=\

(2.87)

(2.88)
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,lllh,
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TABLE 2.1 INTEGRATION POINTS AND WEIGHTS FOR GAuss-LoBATTO SCHEME

The minimum number of integration points that yield sufficient accuracy for anchored

reinforcing bar elements was four (4). This selection is discussed in some detail in the

following chapter. The choice of four integration points implies that the numerical scheme
integrates exactly a fifth degree polynomial. Since function N q is quadratic, any variation of

the steel flexibility ~(~) up to a cubic polynomial is integrated exactly.

2.7 Summary of"Element State""Determination Algorithm

The proposed anchored reinforcing bar element was implemented in program FEAP

(Finite Element Analysis Program) that is well documented by Zienkiewicz and Taylor (1989

and 1991). In program FEAP the element subroutines handle all element specific operations

such as the detennination of the stiffness matrix and the resisting forces, while the main

program perfonns the assembly of the element stiffness matrices and the resisting forces into

the global stiffness matrix and resisting force vector of the structure. The main program is

also responsible for the solution of the global equations of equilibrium and returns to the

element subroutine the displacement increments for a given load increment. From this clear

division between element and structure it is apparent that the nonlinear solution strategy is

independent from the element state detennination algorithm.
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Program FEAP offers several alternative strategies for the solution of the nonlinear

global equilibrium equations. In this study the classical Newton-Raphson algorithm is used.

In this case the main program expects from the element subroutine the current tangent
stiffness matrix. This is determined according to Eq: (2.84) from the bond stiffness Eql and

E J at the two end nodes of the element and the reinforcing bar stiffness k1• The latter is
q '.

determined according to (2.87) by inverting the reinforcing bar flexibility, which is the
integral of the flexibilities Fa(~h) at the control sections; The bon"d stiffness and section

flexibilities depend on the material laws for bond stress-slip and steel stress-strain which are

discussed in Appendix A. Different global solution strategies could be readily implemented

by revising the type of stiffness that the element returns to the main program. With the

material laws in Appendix A it is possible to also use initial stiffness, initial secant and

incremental secant stiffness methods without any complications.

In the following summary of the element state determination no mention is made of

the global solution strategy. The element state determination' is based on the current

displacement increments ~U and the total displacements u at the ends of the element which

the main program passes to the element subroutine at the start of a new iteration of the global

solution strategy. A detailed discussion of the relation between global solution strategy and

element state determination in the context of a flexibility-based element is presented by

Taucer et al. (1991).

The element state determination algorithm consists of the following steps:

(1) Start of element state determination.

Set}=1.

(2) '. Bond state determination.

Determine the bond stress and corresponding stiffness from the displacements u at

the element ends

q= q(u)

Eq=Eq(u)

From the current and last value of bond stress determine the bond stress increments

~q.

(3) Determine the steel force increments.
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With the current reinforcing bar stiffness K s and the displacement increments tm at

the element ends determine the corresponding steel stress increments DS s and update

the steel stress vector Ss

DSs =K s ·~u

Ss =Ss +DSs

(4) Determine the sieelforce increments at each control section.

Using the bond and steel force increments at the element ends the force interpolation

functions yield the steel stress increment at each control section. With these the

corresponding stress is updated to the current value

~cr(~h) =P Je Nq(~h)' ~q + Ns ·DSs. .

cr(~h) =cr(~h) + ~cr(~h)

Noting that the element end displacements do not change in subsequent iterations and,.

thus, ~u == 0 for j> 1, so is also ~q == o.

(5) Determine the steel strain increments at each control section.

The steel strain increments at each control section are derived the current stress

increment ~cr and the last value of residual strain Cr' The total strain at the section is

updated to the current value.

~E(~h) = Er(~h) + Fcr(~h) ~cr(~h)

C(~h) =C(~h) + ~E(~h)

(6) Reinforcing bar state determination.

With the current strain value C(~h) at each control section the steel stress-strain

. relation yields the resisting stress crR(~h) and tangent flexibility ~(~h) at the section.

crR(~h) = cr R[E(~h)]

Fcr(~h) =Fcr[E(~h)]

(7) Calculate the steel stress unbalance and residual strain at each control section.

The difference between applied and resisting steel stress yield the steel stress

unbalance at each control section. The product of the steel stress unbalance with the

current value of section flexibility yields the residual strain at each control section
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(jU(~h) =(j(~h)-(jR(~h)

£r(~h) =Fa(~h)' (jU(~h)

(8) Determine the reinforcing bar stiffness matrix.

27

The reinforcing bar stiffness matrix is the sum of section flexibilities at the m

monitored sections

(9) Checkfor element convergence.

The criterion for element convergence is identical to that used by Taucer et al. (1991).

(a) If the convergence.criterion is satisfied, the element stiffness matrix K and the

element resisting forces S are determined from

The element stiffness matrix K and the element reslstmg forces S are

returned to the main program which assembles the global stiffness matrix and

the structure resisting force vector.

(b) If the convergence criterion is not satisfied, the residual end displacements are

determined from the residual strains at the control sections according to

whereupon iteration index j is increased by one to j+ 1 and steps (3) through

(9) are repeated with ~U = -ur until convergence is achieved.





CHAPTER 3

ANALYTICAL STUDIES UNDER MONOTONIC LOADING

3.1 General

The validity of the proposed model is established in this chapter by correlation studies

with experimental results of anchored reinforcing bars under monotonic loading conditions.

Similar correlation studies under cyclic loading conditions are deferred to the following

chapter. Since the hysteretic behavior of anchored reinforcing bars is very sensitive to key

material parameters, the material parameters for these correlation studies are provided in.

tables and graphs either in Chapters 3 and 4 or in Appendix A, which discusses the material

models for the steel stress-strain and bond stress-slip relation.

The present chapter is divided in three parts. The first part encompasses the

correlation studies with experimental results of two anchored straight reinforcing bars under

different monotonic loading conditions: one anchorage is subjected to monotonic pull-out at

one end only, while the second is subjected to monotonic pull-out at one end and

simultaneous push-in at the other. These studies intend to establish the validity and accuracy

of the proposed model. The second part is devoted to .parametric studies of the numerical

characteristics of the proposed model, such as the effect of the number of elements and the

number of integration points on the accuracy and stability of the results. Finally, the last part

deals with parametric studies of the influence of key model parameters. on monotonic

response.

3.2 Correlation Studies with Experimental Results

Several specimens were tested by Viwathanatepa et al. (1979) under conditions

simulating the effect of seismic excitations on anchored reinforcing bars in interior beam

column joints. From these tests two are selected in the following to study the accuracy of the

proposed finite element model. Both tests were conducted on a straight #8 (24.5 mm

diameter) reinforcing bar that was embedded in a well confined concrete block of 612.5 mm

29
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width. The anchorage length, thus, amounts to 25 bar diameters. In the first test the specimen

was subjected to a monotonic pull-out under displacement control at one end only, while in

the second test itwas subjected to monotonic pull-out at one end and simultaneous push-in at. .
the other. The imposed relative bar displacements and resulting forces were measured at the

loaded ends of the anchored reinforcing bars. Both specimens were the subject of previous

analytical correlation studies in Viwathanatepa et al. (1979), Ciampi et al. (1982),

Yankelevsky (1985) and Filippou (1986). In the original tests two elastic cycles were

performed prior to imposing the final monotonic loading to failure. These initial cycles are

neglected in. this study, since they have negligible effect on the nonlinear monotonic

response. The material parameters of the reinforcing steel stress-strain relation and the bond

stress-slip relation are the same as those used in the study by Filippou (1986) and are

summarized in Fig~ 3.1.

PARAMETERS FOR
BOND-SLIP
RELATION

q, = 13.5 MPa

q3 =6.00 MPa
u = 1.00 mm
u' =3.00 mm
u

2
=10.5mm

3

FIGURE 3.1 MATERIAL PARAMETERS FOR STEEL AND BOND MODEL

- The anchored reinforcing bars are represented with 5 finite elements having 4 Gauss

Lobatto integration points each. A great advantage of the proposed model lies in the element

size, which is significantly larger than in displacement based models (Ciampi et aL 1982) and

need not vary along the anchored reinforcing bar. Another significant advantage concerns the

bond stress-slip relation along the anchored reinforcing bar. It is well established that bond

conditions are inferior in the unconfined cover portion of interior beam-column joints where

a pull':otit cone forms under large pull-out values. If small size elements are used in this zone,

it becomes necessary to assign a bond stress-slip relation to the end nodes of these elements.

No experimental data are presently available for the bond behavior in unconfined and

partially confined zones under cyclic loading conditions. Moreover, assigning different bond
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slip relations along the anchored reinforcing bar results in appreciable increase of the

complexity and cost of the model. With the large size elements pennitted by the flexibility

method this problem is bypassed, since one element now spans the entire unconfined zone.

The bond slip relation at the end of the element that coincides with the end of the anchored

bar is damaged very rapidly and has little effect on the response. The other end is far enough,

so that the bond slip relation for confined concrete is sufficiently accurate. The linear bond

stress distribution within the element is a good approximation of the gradual penetration of

bond damage and is very similar to the idea of the simplified model proposed by Filippou

(1986) and later extended by Zulfiqar and Filippou (1990). Thus, the correlation studies in

this and the following chapter use a single bond stress-slip relation along the anchored

reinforcing bar.

2016B 12
SLIP (mm)

4
o~--"..................~.........--..........~~.................--.........~........................................."""-.........~

o

FIGURE 3.2 ANCHORED BAR SPECIMEN FROM VIWATHANATEPA ET AL. (1979):
MONOTONIC PULL-OUT TEST

CASE A: q, =13.5 MPa AND q3 = 6 MPa

CASE B: ql =14.85 MPa AND q3 =6.6 MPa

The agreement between analytical and experimental results in Figs. 3.2 and 3.3. is

very satisfactory. The observed discrepancy in the last portion of the monotonic pull-out test

in Fig. 3.2 is caused by the limitation of the reinforcing steel model, which assumes a

constant strain hardening ratio in the post-yield range. Actual reinforcing steel behavior is
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characterized by nonlinear strain hardening that becomes smaller with increasing strain until

necking occurs. In the push-pull test in Fig. 3.3 there isa notable discrepancy between

analysis. and experiment regarding the onset of softening. The analytical results for case A

correspond to the material parameters for the bond-slip relation in· Fig. 3.1. Experimental

observations, however, by Eligehausen et al. (1983) show that the bond strength scatters as

much as 15% from the average value. Consequently, a second analysis was .conducted with

bond strength values ql and % 10% higher than the values in Fig. 3.1, in agreement with a

similar conclusion by Ciampi et al. (1982). The analytical results for case B '!re also shown in

Fig. 33 where the agreement with the experimental values is remarkable.
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FIGURE 3.3 ANCHORED BAR SPECIMEN FROMVIWATHANATEPA ET AL. (1979):
MONOTONIC PUSH-PULL TEST

CASE A: ql =13.5 MPa AND q3 =6 MPa

CASE B: ql = 14.85 MPa AND q] = 6.6 MPa

3.3 Assessment of Model Accuracy and Convergence Characteristics

A series of tests were conducted with the objective to assess the accuracy and

convergence characteristics of the model. The tests involve an anchored reinforcing bar that

is subjected to monotonic pull-out at one end. The parametric studies focus on the effect of

the number of elements and integration points in the finite element model on the response of
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the anchored reinforcing bar. The bond properties· are the same as those used in the

correlation study of the previous section.

At first, a single element is used to model a short anchored reinforcing bar for

studying the effect of the number of integration points on the response. The length of the

anchorage is 10 bar diameters and was selected based on the following considerations: a

shorter anchorage length does not suffice to induce yielding of the reinforcing bar, so that the

number of integration points does not have any effect on the response; a long anchorage, on

the other hand, cannot be represented with a single element, because the resulting bond stress

distribution is grossly inaccurate, ifit is only based on the values at the element ends, as is

the case in the proposed model.

100

lOll

6

SUP (mm)

(a) 3 Integration Points

SLIP (mm)

(c) 5 Integration Points

10

\0

100

SUP (mm)

(b) 4 Integration Points

SUP (mm)

(d) Comparison for Yield Strength of 380 MPa

10

FIGURE 3.4 MONOTONIC LOADING OF A SINGLE ELEMENT
WITH VARIABLE NUMBER OF INTEGRATION POINTS
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The response of the single element under monotonic pull-out at one end is compared

in Fig. 3.4 for variable number of integration points in the model. The penetration of-yielding

into the anchorage is controlled by .the yield strength of steel. In this. respect three cases are

shown in Pig. 3.4: (a) an elastic reinforcing bar, (b) a reinforcing bar with a yield strength 9f

550 MPa, and (c) a reinforcing bar with a yield strength of 380 MPa. In the first case no

yielding takes place in the .reinforcing bar and the response is. not affected by the variation in

the number of integration points nGL in the model, as is apparent in Figs. 3.4a,· band c. In

the second case the spread of yielding is limited, since significant bond damage along the

anchored bar, precedes the onset of yielding that is denoted by Y in the figures. There is some

change in the response in Figs. 3.4a, band c by increasing the number of integration points

from three to four and little additional change when going from four to five integration

·points. The most interesting case of the effect of the number of integration points on the

response is the third case. In this case the yield strength of the reinforcing bar is sufficiently

low, that yielding spreads over an extensive portion of the bar before bond is completely

damaged imd the bar pulls out at point U of the stress-slip relation. Consequently, the number

of integration points plays an important role in the determination of the stiffness and resisting

force of the reinforcing steel component of the model. To facilitate the comparison four cases

are singled out for presentation in Fig. 3.4d. It is remarkable to note the relative insensitivity

of the model to the number of integration points. With as few as three integration points the

element yields very satisfactory results, even though clearly, the smaller the number of

integration points, the more sudden is the stiffness change of the anchored reinforcing bar. It

is also interesting to note that the numerical stability of the model is not affected by the

number of integration points.

To further explore the issue of accuracy and stability of the model under variable·

number of integration points a second series of parametric studies is conducted on longer

anchorages with variable number of elements in the analytical model of the anchored ba( In

.these studies the reinforcing steel properties are also kept constant. These correspond very

closely to the values of the specimen that was used in the correlation studies of the previous

section, so that a comparison with experimental data is also possible. The anchorage length of

the reinforcing bar is equal to 25 bar diameters. Figs. 3.5a-d depict the analytical response of

the anchored reinforcing bar for a total of sixteen cases. The number of integration points

varies from figure to figure and covers the cases ofthree, four, five and ten integration points.

For each case the response is compared for two, three, four and five elements.



CHAPTER 3 35

'0
SUP (mml

--::=:~(0): 4 elemon" ..

I. .. • I 5 elemon" ----
l .

'0
SLIP (mm)

_600~~~
:.
!.
III
III

~400Hc;.......~--~-"""~r-"",,,,~'-i;-'-+-"'+"-+;"';"''''''''~''''''
III
....
101

I!!
III 200 1+---""""":'+'-,-':'-""";'"

(a) 3 Integration Points (b) 4 Integration Points

'0

'0

6

SUP (mm)

i
SUP (mm)

nGL = 10

.,:,',"',""", '~,i=,:,1- :::::
'" ',' .",.~ . '. 4 elemonlo

I ... . ~, . 5 elemon"

(f) 5 Elements

(d) 10 Integration .Points

'0
SLIP (mm)

(c) 5 Integration Points

BOO

I, =470 MPa
b=1.4%

_600.....
!.
III
III
1011= 400
III
....
101

I!!
III 200

0
0 6 10

SUP (mml

(e) 3 Elements

FIGURE 3.5 MONOTONIC LOADING OF ANCHORED REINFORCING BAR .
WITH VARIABLE NUMBER OF ELEMENTS AND INTEGRATION POINTS



36 CHAPTER 3

Figs. 3.5e and f depiCt the response of the anchored reinforcing bar for three and five

elements, respectively, and different number of integration points. The e~xperimental results

are also included. in Fig. 3.5e and Hor reference, even though the yield strength of reinforcing

steel in the parametric studies (fv =470 MPa) does not exactly match the yield strength of.

the anchored bar in the specimen (Iv =468.5 MPa) .

The following observations result from the study of Fig. 3.5:

• The model shows excellent consistency and convergence characteristics. As the

number of either the integration points or the elements. is increased, the results

converge to, the analytical solution of the problem, which agrees quite well with the

experimental results in Figs. 3.5e and f.

• The response of the model with two (2) elements and three (3) integration points in

Fig. 3.5a is characterized by abrupt stiffness changes and an unsatisfactory softening

trend under large pull-out values. Clearly, the accurate evaluation of the stiffness and

resisting force integrals in Chapter 2 requires at least 4 integration points. With this

number of integration points even two (2) elements result in very satisfactory results

in 'Fig. 3.5b. On the other hand it is surprising to see that even three (3) integration

points yield excellent results in Fig. 3.5a, as long as more than three (3) elements are

used in the anchored reinforcing bar model.

• The conclusion from the parametric studies in Fig. 3.5 is that, while the proposed

model shows impressive accuracy and convergence characteristics, at least four (4)

integration points should be used in each element. While the accuracy of the results

improves with the number of the elements, this improvement is so small that is does

.not justify the associated increase in computational cost. The distinction of the

proposed model lies in its impressive accuracy and convergence characteristics, even

for asmall number of elements.

3.4 Parameter Studies

3.4.1 Effed of Steel Hardening on Spread of Yielding

The following parametric studies are conducted on a anchored reinforcing bar with an

anchorage length of 25 bar diameters. The bar is modeled by 5 elements with 5 integration
oj
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points each and the objective of the study is to investigate the spread of yielding into the bar

as a function of the steel strain hardening ratio.
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The analyses in Figs. 3.6-3.8 were conducted with three values of strain hardening

ratio b for the reinforcing steel: these were equal to 1.4%,7%, and 14% (see Fig. 3.1). The

first two values are characteristic of the hardening ratio of mild and cold-Jorrned construction

steel, respectively. Figs. 3.6-3.8 show the response to an imposed monotonic pull-out

displacement at node 6. Each figure is divided in two parts: part A shows the steel stress at

each node against the slip at the pull-out end of the bar, while part B shows the relative slip at

each node against the slip at the pull-out end of the bar. For b=1.4% and b= 7% the yield

penetration is "more pronounced as the hardening ratio increases. For the strain hardening

ratio of b=1.4% in Fig. 3.6 node'5 experiences yielding only when the relative slip at node 6

reaches the value of 6 mm. At the final pull-out stage slip is essentially concentrated at the

pull-out node and the difference in the relative slip value between node 6 and node 5 is about

9 mm, implying that about 90% of the pull-out displacement stems from the extension of the

first 5 diameter segment of the bar. For the strain hardening ratio of b=7%inFig. 3.7 node 5

experiences yielding when the pull-out at node 6 reaches the value of only 2 mm. Node 4

experiences yielding when the pull-out at node 6 reaches the value of 6 mm. At the final pull

out slip is distributed in the first half of the bar and the difference in the relative slip value

between nodes 6 and 5 is about 5 mm, and that between nodes 5 and 4 is about 4 mm,

indicating that about 90% of the pull-out displacement stems from the extension of the first

10 diameter segment of the bar.

The third case with a strain hardening value of b=14% in Fig. 3.8 was selected for the

purpose of studying the behavior of the model under an extreme case. In fact, when the

relative slip value at node 6 reaches about 9 mm the displacement gradient is the sa~e for all

six nodes indicating that the bond-stress slip relation has reached the friction plateau at all

nodes. Even though the anchored bar can still resist a certain force, it slips through the

concrete block as a rigid body, since the bond stiffness is equal to zero at all nodes.

3.4.2 Effect of Yield Strength, Anchorage Length and Hardening Ratio Under Monotonic

Pull~Out

Figs. 3.9 through 3.11 illustrate the results of parametric studies on anchored

reinforcing bars of different anchorage length, yield strength and strain hardening ratio of

reinforcing steel under monotonic pull-out. The following values are used in the parametric

studies:

(a) the anchorage length is equal to 15, 20, 25 and 30 bar diameters;
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(b) the steel strain hardening ratio assumes values of 1.4%, 3.5% and 7% ;

(c) the yield strength assumes values of 380 MPa and 550 MPa.

For strain hardening ratio values of b=1.4% and b=3.5% the reinforcing .bars show

stable behavior for all four anchorage lengths, i.e. no pull-out takes place, as is evident by the

absence of any strength loss in the stress-slip relations in Figs. 3.9 and 3.10. The only

exception is the shortest bar with an anchorage length of 15 bar diameters, a strain hardening

ratio of 3.5% and a yield strength of 550 MPa, which pulls-out of the anchorage block at a

pull-out value of about 6 mm in Fig. 3. lOb.

For a strain hardening ratio value of b=7% there are more cases of loss of strength and

pull-out in Fig. 3.11. For a low yield strength value of 380 MPa for which the anchored bar

yields while the bond stress-slip.relation is on the ascending branch, only the bar with an

anchorage length of 15 bar diameters shows signs of pull-out at a pull-out value of about 6

mm. For the higher yield strength value of 550 MPa for which the anchored bar yields while

the bond stress-slip relation is on the horizontal plateau, the bar with an anchorage length of

20 bar diameters also shows signs of pull-out at a pull-out value· of about 8 mm, while the

shorter bar pulls-out at a pull-out value of a little less than 4 mm. In both yield strength cases

the reinforcing bars with anchorage lengths of 25 and 30 bar diameters do not pull-out.

These parametric studies confirm the observations of earlier studies (Ciampi et al.

1982), that not only the yield strength, but also the strain hardening ratio of the reinforcing

steel are key parameters that affect the anchorage length.

3.4.3 EffeCt of Yield Strength, Anchorage Length and Hardening Ratio Under Monotonic

Push-Pull

The behavior of anchored reinforcing bars is even more profoundly affected by the

yield strength, the strain hardening ratio and the anchorage length under loading conditions

that induce a pull-out at one end and a push-in at the other end of the anchored bar. The

parametric studies in Figs. 3.12 through 3.14 are conducted for the same parameter values are

in the previous section, namely, the strain hardening ratio assumes values of 1.4%, 3.5% and
7%, the yield strength takes on the values of .1;,=380 MPa and 550 MPa and the anchorage

length is equal to 15,20,25 and 30 bar diameters.
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In the push-pull case an anchorage length of 30 bar diameters is not sufficient to

prevent the pull-out of the bar with a 3.5% strain hardening ratio and a yield strength of

550 MPa and the same is true for both yield strength values, if the strain hardening ratio is

equal to 7.0%. The reinforcing bar with,anchorage lengths of 15 and 20 bar diameters slips

through the anchorage block under small pull-out values:

The parametric studies in this chapter illustrate the capability of the proposed

reinforcing bar model to simulate the behavior of anchorages under conditions of significant

bond damage and strength loss due to pull-out. It can thus be a very valuable tool in the

establishment of design guidelines for anchorage lengths under extreme loading conditions

and in the simulation .of the behavior of anchored bars in analytical studies of entire

structures.
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ANALYTICAL STUDIES UNDER CYCLIC LOADING

4.1 General

A number of analytical. studies are presented in this chapter with, the, objective of

establishing the ability of the proposed model to simulate the response of an anchored
, '

reinforcing bar under cyclic displacement histories.

In the first part of the chapter two correlation studies between experimental and

analytical results are conducted on reinforcing bars anchored, in the first case, in an exterior

joint and, in the second case, in an interior beam-column joint-Some attention is devoted in

these studies to the sensitivity of the response to the modeling of the anchored bar and to the

selected bond stress-slip relation for simulating different confinement conditions along the

bar anchorage. For the anchored bar in the exterior joint plots of the stress-slip response at the

loaded end of the bar are presented along with stress, slip and bond distributions at different

loading stages. ,For the straight reinforcing bar that simulates conditions in an interior beam

column joint plots of the stress-slip response at the bar ends are presented for cycles before

and after the onset of yielding of the reinforcing steel.

In the second part of the chapter parametric push-pull studies are conducted with the

objective of assessing the effect of anchorage length, yield strength and hardening ratio on the

hysteretic response of the anchored ,reinforcing bar. These studies are conducted with the

same parameter values as those of Chapter 3 and, thus, complement the conclusions about the

monotonic behavior of anchored reinforcing bars. The studies in this chapter also address the

importance of including the effect of progressive damage in the bond-slip relation. The

evolution of progressive damage along the anchored bar is studied in some detail and

conclusions are derived about the design' of anchorages under cyclic l~ading conditions.

4.2 Correlation Studies

This section presents the correlation studies between analytical and experimental

results for two reinforcing bars. The first bar is anchored in an exterior beam-column joint

49
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with a standard 90· hook, while the second bar is straight, thus simulating conditions in an

interior beam-column joint. These correlation studie,s are used to verify the ability of the

proposed finite element model to represent the hysteretic behavior of anchored reinforcing

bars under severe cyclic loading.

4.2.1 Bar Specimen B850f Lin and Hawkins (1982)

The experimental results from an exterior anchored bar specimen called B85 and

tested by Lin and Hawkins (1982) are compared with the results obtained with the proposed

finite element model. The specimen consists of a #8 (bar diameter=24.5 mm) reinforcing bar

anchored in an exterior beam-column joint with a standard 90· hook, as shown in Fig.' 4.1.'

The dimensions of the concrete anchorage block are 1620 mm by 590 mm by 200 mm. The

finite element model is shown in the lower part of Fig. 4.1. Following the recommendation of

Eligehausen et al. (1982) the hook is represented by an equivalent straight portion. with

modified bond stress-slip relation. The extent of the equivalent straight portion is equal to

four (4) bar diameters (Fig. 4.1)~

3 4 5 6 7
• fi%:0t$M~M¥6#jf1·MW5.fWM

Uneonf.

..!

';140mm,
Confined
585mm

FIGURE 4.1 SPECIMEN B85 OF LIN, HAWKINS (1982): GEOMETRY AND ANITE ELEMENT MODEL

A cyclic pulling or pushing force is applied at the end of the bar with the load history

of Fig. 4.2, which is expressed in terms of displacement ductility, i.e. the ratio of pull-out or

push-in slip to pull-out displacement at the onset of yielding of the reinforcing bar. The

applied force and .the resulting relative slip were measured at the loaded end of the bar.
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FIGURE 4.2 CYCLIC LOADING HISTORY FOR SPECIMEN B8S OF LIN AND HAWKINS (1982)

Eo =.199955.0 MPa

E, = 1785.7 MPa

E2 = 6026.5 MPa

0y = 468.5 MPa

£8h = 0.00374

b = 0.02

Bauschlnger effect:

A, =18.5

A 2 ::: 0.15

Isotropic hardening:

A 3 = 0.05

A.i = 1.6

FIGURE 4.3 STEEL STRESS-STRAIN RELAnON: MONOTONIC ENVELOPE

In the correlation study the exterior bar is slibjected to the slip values measured at the

loaded end of the anchored bar and shown Fig. 4.2. The finite element model of the anchored

bar is subdivided into six (6) elements in Fig. 4.1 with four (4) Gauss-Lobatto integration

points in each element. The first element represents the hook portion of the bar, the three

middle elements the confined part and the last two the unconfined section of the bar. The

length of the unconfined region (140 mm) is determined by adding the clear cover of 63.5



52

mm to half the spacing of the column ties in the joint, which amounts to 76 mm.

CHAPTER 4

The monotonic envelope of the steel stress-strain relation is presented in Fig. 4.3. The

mechanical properties of the reinforcing bar are derived from experiment~l data of steel

coupon specimens under cyclic loading conditions and the selected values are listed in

Fig. 4.3. The monotonic envelopes of the nonlinear bond stress-slip relation for the hook

equivalent portion and .the confined and unconfined bar straight portions are shown in

Fig. 4.4. The material properties for #8 bars embedded in confined concrete and for the

standard 90' hook are those used by Zulfiqar and Filippou (1990) and summarized in Fig 4.4.

PARAMETERS FOR

HOOK EQUIVALENT

PORTION

q = 22.0 MPa
1

q = 5.00 MPa
3

u "l.00mm
u 1 = 3.00mm

u
2

= lOOmm
3

q

'U

PARAMETERS FOR

UNCONFINED STRAIGHT .

PORTION

q1 = 5.00 MPa
q3 =0.10MPa
u =0.30mm
u 1. = 0.30 mm

2 .
U = 1.00 mm

3

PARAMETERS FOR

CONFINED STflAIGHT

PORTION

q1 = 13.5 MPa

q3 =5.ooMPa
u = 1.00 mm
u 1 = 3.00 mm

u
2

=10.5mm
3

FIGURE 4.4 BOND FORCE-SLIP MODEL: MONOTONIC ENVELOPES

Fig. 4.5 shows the comparison between experimental and analytical results in terms of

steel stress versus end slip displacement of the anchored bar. The analytical simulations show

excellent agreement with experimental results both in terms of strength and stiffness of the

anchored bar. Some differences are observed in the unloading and reloading phases. They can

be probably attributed to the unloading slope of the proposed bond stress-slip model, which

might be too steep and, thus, does not account for· the elastic deformation of the concrete

zone around the deformed bar. It is interesting to note that this discrepancy increases under

increasing bar pull-out, reflecting the state of damage in the concrete zone surrounding the

deformed bar. It should be noted, however, that experimental results are error prone during

the sensitive unloading phase of the specimen, when load increments are typically large. It is

important to note that the good agreement of the simulated with the observed strength of the

specimen under, both, pull-out and push-in loading conditions in Fig. 4.5.
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FIGURE 4.5 COMPARISON BETWEEN EXPERIMENTAL AND ANALYfICALRESULTS:

STEEL STRESS- BAR PULL OUT RELATION

The distributions of steel stress, relative slip between steel and concrete and bond

stress along the anchored reinforcing bar are shown in Figs. 4.6 through 4.8, both, under

conditions of pull-out and push-in at the loaded end of the bar. The distributions are

identified by the loading cycle number that corresponds to the loading" cycle number in Figs.

4.2 and 4.5. The steel stress distributions in Fig. 4.6 highlight the progressive spread of

yielding into the anchorage zone as the magnitude of pull-out increases. It "is interesting to

observe that a large portion of the reinforcing bar remains elastic during the entire loading

history. The bond stress distributions in. Fig. 4.8 permit the observation that the bond in the

unconfined outer portion of the bar is completely destroyed after the first two loading cycles.

This reflects the gradual formation of a pull-out cone at the loaded end of the bar, as has been

observed in several experiments. When the loaded end of the bar is pushed-in, the cone is

pushed back in contact and some bond stress transfer is possible for a few following cycles,

as shown on the right of Fig. 4.8. The discontinuities in the bond stress distributions in Fig.

4.8 stem from the different bond stress-slip relations that are assigned to the bar segments to

the left and right of nodes 2 and 5. At node 2 the transition from the hook to the straight

confined portion necessitates a change in the bond stress-slip relation, while at node 5 the

same is true for the transition from the confined to the unconfined portion of the anchored

reinforcing bar. This is also evident in Fig. 4.9 which depicts the bond stress-slip history at
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the nodes of the finite element model.
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It is important to note that the extreme irregularity of the bond-slip relation in the

unconfined portion of the anchored bar does not affect the numerical convergence of the'

finite element model, which by virtue of its flexibility-based formulation is extremely robust

in the presence of strength loss and softening.
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4.2.2 Straight Anchored Bar of Viwathanatepa et aI. (1979)

CHAfYfER 4

Viwathanatepa, Popov and Bertero (1979) tested several anchored reinforcing bars

simulating anchorage and -loading conditions in interior beam-column joints and moment

resisting frames under the combined action of gravity and high lateral loads.

One of these specimens is selected for comparison with the proposed finite element

model of a reinforcing bar with bond":slip. The specimen is a #8 reinforcing bar. anchored in a

well confined block of 25 inches width corresponding. to an anchorage length of 25 bar

diameters. It was subjected to a cyclic push-pull loading history with cycles of gradually

increasing end displacement. The finite element model of the anchored bar is discretized into

five elements with four Gauss-Lobatto integration points in each element.

The experim-ental and analytical results are shown in Figs. 4.10 and 4.11. In order to

facilitate the direct comparison with the experiinental data in Viwathanatepa, Popov and

Bertero (1979) the analytical results are reported in the American System of Units, rather than

the SI units that are used in the rest of the chapter.

Fig.. 4.1 0 shows the end stress-slip relation of the reinforcing bar under cyclic push

pull loading. Fig. 4. lOa shows the cycles before yielding of the reinforcement and Fig. 4.lOb

shows the entire response. The corresponding experimental responses are shown in Figs.

4.11a and b. The results of the proposed model show very good agreement with experimental

data under large end displacement values, as reflected in the latter cycles of Figs 4. lOb and

4.11 b. It is noteworthy that the model is capable to simulate the gradual damage of bond and

the resulting. loss of strength and stiffness of the anchored reinforcing bar. The discrepancy

between analytical and experimental results is, however, pronounced in the cycles before

yielding of the reinforcing steel in Figs 4.1 Oa and 4.11 a. The major cause of this discrepancy

is the assumed friction strength' of the bond stress-slip relation. The analytical results are

obtained' with a friction strength of 5 Mpa, as supported by experimental evidence from

reinforcing bars with short anchorage lengths in the studies by Eligehausen et aI. (1982). The

experimental results show a complete loss of frictional bond resistance during the reloading

phase of the specimen even for end slip values smaller than 0.01 in. This is a very surprising

result and casts some doubt on the accuracy and reliability of the measurements in the very

sensitive reloading phase of the specimen.
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4.3 Parameter Studies under Cyclic Push-Pull Loading Conditions

59

A series of parameter studies on·the hysteretic behavior of an anchored reinforcing bar

under cyclic push-pull loading conditions are presented in this section. The anchored bar

simulates the geometry and loading conditions typical of reinforcing bars in interior beam

column joints under the combination of gravity and lateral loads. The bar has a diameter of

24 mm and is embedded in a well confined block. The properties of the bond stress-slip

relation are the same as those used in Section 3.2.1, i.e. : u, = 0.7 mm, ~ =2.0 mm,

u3 = lOu;, ql = 16.2 MPa, q3 = 6.0 MPa and qj = 3.0 MPa. Young's modulus of reinforcing

steel is equal to 205000 MPa, while the yield strength and strain hardening ratio are subject to

parameter variation. The objective of the parameter studies is to investigate the sensitivity of

the hysteretic behavior of the anchored bar relative to the following three parameters: 1)

anchorage length, 2) yield strength of reinforcing steel, and 3) steel strain hardening ratio.

Table 4.1 summarizes the range of selected values for these parameters. These values are the

same as those used in the parameter studies of Chapter 3 are monotonic loading conditions.
,

Anchorage Length Steet YieJd:Strength SteelSttain Harde.ningRatio

15 bar diameters 380 MPa 1.4%
25 bar diameters 470 MPa 3.5%
35 bar diameters 550 MPa

TABLE 4.1 SELECTED PARAMETER VALUES

Each analysis with a given set of parameter values is performed twice: first with a

bond stress-slip relation that does not include damage, so that the original envelope values of

the bond stress-slip relation remain unaltered during the loading history, and, secondly with a

bond slip-relation that includes damage, so that the original envelope values change as a

function of the maximum previous slip and the total energy dissipation following the damage

law proposed by Eligehausen et al. (1982) and Ciampi et al. (1982).

The finite element model of the anchored reinforcing bar consists of four elements

with four Gauss-Lobatto integration points in each element. The following parameter studies

evaluate the hysteretic response in terms of the hysteretic stress-slip relation at the end of the

anchored bar and the damage distribution along the anchorage length.
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4.3.1 ReiIrlforcing Bar with Anchorage Length of 15 Bar Diameters

The parameter studies for this case are limited to one case only, namely a reinforcing

bar with a yield strength of 380 MPa and strain hardening ratio of 1.4% in Fig. 4.12. Since

the anchorage length is insufficient to transfer the imposed stresses· at the ends of the

anchored bar, the bar slips through the anchorage block before yielding of the reinforcement.

Consequently, the change in the material parameters of reinforcing steel does not affect the

hysteretic behavior of the anchored bar in Fig. 4.12. This behavior is, thus, dominated by the

adopted bond stress-slip relation and the results in Fig. 4.12 are a vivid illustration of the

effect of damage on the hysteretic bond-slip law.

1086

,
~ - I

--~--~, ' I

4

--~--

t .........--'--_....l.-......." L = 15 db
no damage •.••••.•.• b =all values

damage -- fy =all values

-2 0 2
SLIP (mm)

-4-8

~~~R.:
~~~~lf£=.i?"F-H-IF---+--.ri+

: I

.1000 L-__...L....__:""':"'_...:...l .L.....---:......1!::======!...>====:dI
·10

1000
4 elements nG1.=4

750 ===Ci'
500

I- L ·1Q.

::E
250-en

enw
~

0

en
...I

-250W
W.-
en

·500
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4.3.2 Reinforcing Bar with Anchorage Length of 25 Bar Diameters

Figs. 4.13 and 4.14 present the effect of yield strength and strain hardening ratio of

reinforcing steel on the hysteretic behavior of an anchored reinforcing bar with an anchorage

length of 25 bar diameters. The results show the significant influence of the damage law on

the hysteretic behavior the anchored bar. The absence of any damage in the bond stress-slip

relation might lead to the erroneous conclusion that an anchorage length of 25 db is sufficient

for all but the highest yield strength case. By contrast, the experimentally observed damage of

the hysteretic bond stress-slip relation leads to very unsatisfactory behavior of the anchored

bar, even for the lowest yield strength and strain hardening ratio for this extreme loading case

of imposed displacements of equal magnitude at the ends of the anchored bar.
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It is evident from the results in Figs. 4.13 and 4.14 that the strength deterioration of

the anchored reinforcing bar is more rapid for higher values of yield strength and hardening

ratio. It is also clear from these results that the mechanical properties of reinJorcing steel play

a very important role in the determination of the anchorage length of reinforcing bars under

cyclic loading conditions. While current codes address the effect of the yield strength of

reinforcing steel, no attention is paid to the effect of strain hardening ratio which is

important. A comparison of the response of the anchored reinforcing bar with a yield strength

of 470 MPa in Figs. 4.13 and 4.14 demonstrates clearly the effect of strain hardening ratio,

which is more pronounced in the case of no damage.

4.3.3 Reinforcing Bar with Anchorage Length of 3S Bar Diameters

Figs. 4.15 and 4.16 present the effect of yield strength and strain hardening ratio of

reinforcing steel on the hysteretic behavior of an anchored reinforcing bar with an anchorag~

length of 35 bar diameters. The results show the significant influence of the damage law on

the hysteretic behavior the anchored bar. The models of the anchored reinforcing bar that do

not include the effect of damage on the bond stress-slip relation show stable hysteretic

behavior for all values of yield strength and strain hardening ratio of reinforcing steel. The

inclusion of damage in the bond stress-slip relation changes the hysteretic behavior

dramatically. Fig. 4.15 indicates that for a strain hardening ratio of 1.4% the reinforcing bars. . , '.
with yield strengths of 380 and 470 MPa do not show signs of pull-out. The reinforcing bar

with yield strength of 550 MPa experiences a sudden drop in strength and stiffness after the

loading cycle with an end slip value of 6 mm. For the reinforcing bar with a strain hardening

ratio of 3.5% in Fig. 4.16 only the bar with yield strength of 380 MPa shows stable behavior

after several cycles, while the bars withyield strength of 470 and 550 MPa exhibit abrupt loss

of strength and pull~out after only a few cycles. These results further corroborate the previous

finding about the importance of strain hardening ratio in the evaluation of anchorage lengths

under monotonic and cyclic load conditions.

4.3.4 Bond Damage Distribution Along Anchorage

Figs. 4.18 and 4.18 show the distribution of bond damage along the bar anchorage for

the parameter studies of Section 4.3. Bond damage is represented by the scalar value d of the

bond stress-slip model of Eligehausen et al. (1982) and is shown at the instant of load

reversal. A summary of the salient features of the model and of relevant equations is provided

in Appendix A. The bond damage index d shown in Figs. 4.7 and 4.8 at the five nodes of the

finite element model is defined in Eq. (A.7).
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The nature of Eq. (A.7) indicates that the bond damage index d approaches the value

of 1 only asymptotically. Thus, Figs. 4.17 and 4.18 suggest that a damage index v~lue of 0.90

essentially implies complete damage, while a damage index value of value of zero signifie~

no damage.

A study of the distribution of bond damage III Figs. 4.17 and 4.18 underlines the
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previous conclusions on the importance of yield strength, strain hardening ratio and, most

importantly anchorage length on the hysteretic behavior of anchored reinforcing bars. It is

particularly interesting to compare the bond damage of cases that only differ by the value of

the steel strain hardening ratio and are plotted side by side. Two such cases are shown in

Fig.4.18 for a bar with yield strengths of 380 MPa and 470 MPa. In these cases the effect of

the steel strain hardening ratio on the spread of bond damage into the anchorage length of the

bar is clearly evident.
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It is important to point out that the distributions of bond damage in Figs. 4.17 and

4.18 are mesh independent. The damage index value at each node depends on the total energy

dissipation in previous load cycles, and, thus, depends on the value of relative slip and bond

stress at the corresponding node. Consequently, the damage index depends on the solution

accuracy at each node and, since this does not improve appreciably in models with more than

four elements, as already illustrated in Section 3.3.2, the damage distribution is not affected

much by refining the anchored bar model beyond four elements. In order to verify the

independence of the bond damage distribution from the size of the finite element mesh the

reinforcing bar with an anchorage length of 35 bar diameters, a yield strength of 380 MPa and

a strain hardening ratio of 1.4% is reanalyzed with a model that consists of eight (8) instead

of four (4) elements. The damage distribution in Fig. 4.19 shows slight differences with

respect to the corresponding distribution in Fig. 4.18 near the ends of the anchored bar,

because of the presence of additional nodes. The damage index values at the common nodes

of the two mesh configurations are, however, essentially identical.
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CONCLUSIONS

This study presents the development and the numerical implementation of a finite

element for anchored reinforcing bars. The objective of the study is the development of a

robust and efficient model within the framework of classical finite element methodology, so

that the model can be later implemented in the analysis of reinforced concrete members, such

as beam-column joints, where the interaction between reinforcing steel and concrete through

bond plays an essential role in the characterization of the hysteretic behavior.

The development of the proposed model is based on the flexibility method of analysis.

In this case force interpolation functions are used to approximate the force fields in the

governing differential equations of the problem. For the problem of stress transfer between

reinforcing steel and concrete through bond the force fields are the steel stress in the

reinforcement and the bond stress acting on the circumference of the anchored bar. Since

these two fields are, however, related by the equilibrium equation of the problem, only one

can be selected independently. The development of the flexibility based· model is motivated

by the fact that anchored reinforcing bars that are subjected to large deformation reversals

exhibit a smooth distribution of steel stress, while the strain and relative displacement

between reinforcing steel and surrounding concrete are characterized by steep gradients in the

inelastic portion of the anchored bar. In agreement with this physical observation only few

elements suffice to approximate the steel stress distribution along the anchored bar and no

provisions are necessary for refining the mesh of the model in the inelastic portion of the bar.

For the same reason the model exhibits great numerical stability and convergence

characteristics, even in the presence of strength loss and pull-out of the anchored reinforcing

bar. This sets it apart from displacement based models that are known to be plagued by

mimerical instability and spurious unloading problems in the face of strength loss and

softening.

The implementation of the flexibility based model in a standard finite element analysis

program is, however, a challenging problem. This is accomplished in the proposed study by

adapting a general method that has been proposed earlier by Ciampi and Carlesimo (1986)
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and, subsequently, refined by Taucer et al. (1991). With this method the proposed element is

incorporated in the well known general purpose Jinite element analysis program FEAP by

R. L. Taylor.

The study concludes with correlations of analytical with a few experimental results

from anchored reinforcing bars under severe cyclic excitations in order to illustrate the ability

of the model to simulate the complex hysteretic behavior. The hysteretic material model that

is used to describe the bond stress-slip relation includes the effect of damage and is, thus,

able to simulate the cyclic bond deterioration along the anchored bar, which causes strength

and stiffness loss of the bar.

Finally, a series of parameter studies under monotonic and cyclic loads illustrate the

potential of the model as a tool for the assessment of the hysteretic behavior of reinforcing

bar anchorages. In this respect it is interesting to conclude that material properties that are not

accounted for in present design guidelines, such as the strain hardening ratio of reinforcing

steel, play an important role in the hysteretic behavior of anchored reinforcing bars.

The potential of the model to serve as a building block of models for reinforced

concrete members where the interaction between reinforcing steel and concrete through bond

plays an essential role in the characterization of the hysteretic behavior is great by virtue of its

efficiency, its numerical stability and its implementation in a general purpose finite element

analysis program. This issue will be the subject of future studies.



REFERENCES

Bertero, V.V. and Popov, E.P. (1977). "Seismic Behavior of Ductile Moment-Resisting Reinforced Concrete
Frames", Reinforced Concrete Structures in Seismic Zones, ACI special publication SP-53, Detroit.

Ciampi, V., Eligehausen, R., Bertero V.V. and Popov, E.P. (1982). "Analytical Model for Concrete Anchorages
of Reinforcing Bars under Generalized Excitations." Report EERC 82-23, Earthquake Engineering
Research Center, University of California, Berkeley.

Ciampi, V. and Carlesimo, L. (1986). A Nonlinear Beam Element for Seismic Analysis of Structures.
Proceedings 8th European Conference on Earthquake Engineering, Lisbon.

deGroot, A.K., Kusters. G.M.A. and Monnier, T. (1981). "Numerical Modeling of Bond-Slip Behavior." Heron,
Concrete Mechanics, Vol. 26, No.IB.

Eligehausen, R., Popov, E.P., and Bertero, V.V. (1982). "Hysteretic Behaviour of Reinforcing Deformed
Hooked Bars in Reinforced Concrete Joints," Proceedings. 7th European Conference on Earthquake
Engineering, Athens, Vol. 4, pp. 171-178.

Eligehausen, R., Popov, E.P. and Bertero V.V. (1983). "Local Bond Stress-Slip Relationships of Defonned Bars
under Generalized Excitations." Report EERC 83-23, Earthquake Engineering Research Center,
University of California, Berkeley.

Filippou, F.e., Popov, E.P. and Bertero, V.V. (1983). "Effects of Bond Deterioration on Hysteretic Behavior of
Reinforced Concrete Joints". Report EERC 83-19, Earthquake Engineering Research. Center, University
of California, Berkeley.

Filippou, F.e. (1986). "A Simple Model for Reinforcing Bar Anchorages Under Cyclic Excitations". Journal of
Structural Engineering, ASCE, lI2(STI), pp.1639-1659.

Kwak, H.G. and Filippou, F.e. (1990). "Finite Element Analysis of Reinforced Concrete Structures Under
Monotonic Loading", Report No. UCB/SEMM-90/l4, Structural Engineering, Mechanics and Materials,
Department of Civil Engineering, University of California, Berkeley.

Keuser, M. and Mehlhorn, G. (1987). "Finite Elements Models for Bond Problems". Journal of Structural
Engineering, ASCE, 113(STlO), pp. 2160-2173.

Menegotto, M. and Pinto, P.E. (1973). "Method of Analysis for Cyclically Loaded Reinfoced Concrete Plane
Frames Including Changes in Geometry and Non-Elastic Behavior of Elements Under Combined Nonnal
Force and Bending." Proceedings. lABSE Symposium on "Resistance and Ultimate Deformability of
Structures Acted on by Well Defined Repeated Loads", Lisbon. j

Ngo, D. and Scordelis, A.C. (1967). "Finite Element Analysis of Reinforced Concrete Beams." Journal of ACI.
Vol. 64, No.3, pp. 152-163.

Nilson, A.H. (1971). "Internal Measurement of Bond-Slip". Journal ofAC1, Vol. 69, No.7, pp. 439-441.

Reddy, IN. (1993). An Introduction to the Finite Element Method. Second edition. McGraw Hill Book
Company, New York.

Stroud, A. H. and Secrest, D. (1966). Gaussian Quadrature Formulas, Prentice Hall, New Jersey.

Taucer, F., Spacone, E. and Filippou, F.e. (1991). "A Fiber Beam-Column Element for Seismic Response
Analysis of Reinforced Concrete Structures." Report EERC 91-17, Earthquake Engineering Research
Center, University of California, Berkeley.

71



72 REFERENCES

Viwathanatepa, S., Popov, E.P. and Bertero, V.V. (1979). "Effects of Generalized Loadings on Bond of
Reinforcing Bars Embedded in Confined Concrete Blocks" EERC 79-22, Earthquake Engineering
Research Center, University of California, Berkeley.

Yankelevsky, D.Z. (1985). "New Finite Elementfor Bond-Slip Analysis". Journal of Structural Engineering,
ASCE, 111(S1'7), pp. 1533-1542.

Zienkiewicz, O.e. and Taylor, R.L. (1989). The Finite Element Method. Volume I. Basic Formulation and
Linear Problems. Fourth edition. McGraw Hill, London.

Zienkiewicz, O.e. and Taylor, R.L. (1991). The Finite Element Method. Volume 2. Solid and Fluid Mechanics.
Dynamics and Non-Linearity. Fourth edition. McGraw Hill, London.

Zulfiqar, N. and Filippou. F.e. (1990). "Model of Critical Regions in Reinforced concrete Frames under
Earthquake Excitations." Report EERC 90-06, Earthquake Engineering Research Center. University of
California, Berkeley.



APPENDIX A

MATERIAL MODELS

A.I Steel Stress-Strain Relation

The reinforcing steel stress-strain behavior is described by the nonlinear model of

Menegotto and Pinto (1973), as modified by Filippou et al. (1983) to include isotropic strain

hardening (Fig. A.I). The model is computationally efficient and agrees very well with

experimental results from cyclic tests on reinforcing steel bars.
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FIGURE A.I MENEGOTIO-PINTO REINFORCING STEEL MODEL

The model, as presented in Menegotto and Pinto (1973) takes on the form

73
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where

and

• £- £r
£ =--'-

• a-Or° =--'-
00 -or

APPENDIX

(Al)

(A2)

(A3)

Eq. (At) represents a curved transition from a straight line asymptote with slope Eo

to another asymptote with slope E] (lInes (a) and (b), respectively, in Fig. At). 00 and £0 are

the stress and strain at the point where the two asymptotes of the branch under consideration

meet (point B in Fig. At); similarly, or and £r are the stress and strain atthe point where the

last strain reversal took place (point A in Fig. A.t); b is the str~in hardening ratio, that is the
ratio between slope E) and Eo and R is a parameter that influences the shape of the transition

curve and allows a good representation of the Bauschinger effect. As indicated in Fig. A.t,

(£0' (0) and (£r' or) are updated after each strain reversal.
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(A.4)

R is considered dependent on the strain difference between the current asymptote

intersection point (point A in Fig. A.2) and the previous load reversal point with maximum or

minimum strain depending on whether'the corresponding steel stress is positive or negative

(point B in Fig. A.2). The expression for R takes the form suggested in Menegotto and Pinto

(1973)

R=Ro-~
a2 +~

where S is updated following a strain reversal. Ro is the value of the parameter R during first

loading and ai' a2 are experimentally determined parameters to be defined together with Ro.
The definition of S remains valid in case that reloading occurs after partial unloading.

Some clarification is needed in connection with the set of rules for unloading and

reloading which complement Eqs. (A.2) and (A.3), allowing for a generalized load history. If

the analytical model had a memory extending over all previous branches of the stress-strain

history, it would follow the previous reloading branch, as soon as the new reloading curve

reached it. This would require that the model store all necessary information to retrace all

previous reloading curves which were left incomplete. This is clearly impractical from a

computational standpoint. Memory of the past stress-strain history is, therefore, limited to a

predefined number of controlling curves, which in the present model include,

1. the monotonic envelope,

2. the ascending upper branch curve originating at the reversal point with smallest E value,

3. the descending lower branch curve originating at the reversal point with largest E value,

4. the current curve, originating at the most recent reversal point.

Due to the above restrictions reloading after partial unloading does not rejoin the

original reloading curve after reaching the point from which unloading started, but, instead,

continues on the new reloading curve until reaching the envelope. However, the discrepancy

between the analytical model and the actual behavior is typically very small, as discussed in

detail by Filippou et al. (1983).

The above implementation of the model corresponds to its simplest form, as proposed

in Menegotto and Pinto (1973): elastic and yield asymptotes are assumed to be straight lines,

the position of the limiting asymptotes corresponding to the yield surface is assumed to be
fixed at all times and the slope Eo remains constant (Fig. A.l).
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In spite of the simplicity in formulation, the model is capable of reproducing well

experimental results. Its major drawback stems from its failure to allow for isotropic

hardening. To account for this effect Filippou et aJ. (1983) proposed a stress shift in the linear

yield asymptote as a function of the maximum plastic strain as follows:

crst = a3 . (Ema.x - a4 J (A.5)
cry Ey .

where Emax is the absolute maximum strain at the instant of strain reversal, Ey ' cry are,

respectively, the strain and stress at yield, and G3 and G4 are experimentally determined

parameters. The model used in this study was implemented without the isotropic strain

hardening option. For this case the parameter values are: Ro =20, Gj =18.5, G 2 =0.15,

G3 = O. ,G4 = O. With the exception of the last two parameters the values used are those in the

original model of Menegotto and Pinto (1973).

A.2 Bond Stress-Slip Model

An accurate formulation of the bond stress-slip relation between reinforcing bars and

surrounding concrete under random cyclic excitations is of great importance to analytical

models of the hysteretic behavior of critical regions in reinforced concrete frames.

Extensive experimental and analytical studies of the bond-slip behavior of reinforcing

bars under monotonic loading have been conducted to date (Goto 1971, Nilson 1971, Mirza

and Houde 1976, Viwathanatepa et aJ. 1979, Somayaji and Shah 1981). A few more studies

under repeated loads with a peak bond stress well below the bond strength have been

conducted (Bresler and Bertero 1968, Rehm and Eligehausen 1979, HarajIi 1988). The first

model of the local bond stress-slip relation under cyclic loading was proposed by Morita and

Kaku (1973). The model exhibits good agreement with experimental observations during the

early load cycles. The observed deterioration of bond resistance under large slip values and

the deterioration of frictional bond resistance with increasing number of cycles is, however,

not taken into account. The model of Viwathanatepa et. al. (1979) takes into account several

features of the experimentally observed behavior and is valid for cycling between arbitrary

slip values. In spite of its complexity, this model is not general, since it depends on many

parameters which must be derived from experimental data.
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In .1983 Eligehausen et al. (1983) conducted an extensive experimentalinvestigation

of the local bond stress-slip relation of reinforcing bars under large slip reversals. 125

reinforcing bar specimens anchored in confined concrete with a short embedment .length of

five bar diameters were tested. The specimens simulated the. confinement and loading

conditions in interior and exterior joints of moment resisting frames. The influence of a

number of parameters, such as bar diameter, concrete strength and transverse confining

pressure on the local bond stress-slip relation was investigated. Based on these experimental

results a general analytical model was proposed. This model is valid for a wide range .of slip

values which are of interest in seismic response analysis of RC structures. The key aspects of

the model will be summarized below.

A.2.1 General Model Description

The model of the local bond stress-slip relation between reinforcing bars and

surrounding concrete consists of the following parts:

a,b MONOTONIC ENVELOPES

c UNLOADING
d RELOADING
e REDUCED ENVELOPES
t FIRST RELOADING

FIGURE A.3 BOND STRESS-SLIP RELAnON

(1) Two monotonic envelopes, one in tension and one in compression, which are updated

at each slip reversal to reflect incurred damage (curves (a) and (b) in Fig. A.3).
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(2) A typical unloading-reloading path described by the unloading curve (c), the current
frictional bond resistance qr and a reloading curve (d), along with a set of rules for

unloading and reloading for incomplete cycles (Fig. A.3).

(3) A set of relations for updating the monotonic envelope values and the frictional bond

resistance as a function of incurred damage.

The parts of the model are described in more detail below.

Monotonic Bond Stress-Slip Envelope.- The monotonic envelope consists of an initial

nonlinear relation q = ql .(u/ u\r'valid for U $u" followed by a plateau q = qI for uj $ U $ u2 ·

For U~ u2' q decreases linearly to the value of ultimate frictional bond resistance q3 at a slip

value of u3 which is assumed to be equal to the clear distance between the lugs of deformed

bars.

Behavior during Unloading.-When the load is reversed at some slip value, unloading takes
place along a steep straight line until the frictional bond resistance qr is reached (curve c

Fig. A.3).

Behavior during Reloading.- The reloading curve is described by a fourth degree

polynomial (curve d in Fig. A.3) starting from the frictional bond resistance value and leading

to the intersection between reduced envelope and previous unloading curve. In case that no

slip has been previously imposed in the same loading direction, reloading takes place along a

horizontal line until reaching the reduced envelope (curve f in Fig. A.3). The use of a fourth

degree polynomial for the reloading curve was first introduced by Filippou et al. (1983) to

better account for the experimentally observed bond stress-slip behavior.

Reduced Bond Stress-Slip Envelope.- During each half cycle following the first unloading,

the monotonic envelopes are updated (curve e Fig. A.3) by reducing the characteristic bond

stress values qj and ql by a factor, which is function of the 'damage parameter' d. The

reduction in stress is given by (Eligehausen et al. 1983)

(A.6)

where q[ is the chanicteristic value of the virgin envelope curve and qj(N) is the

corresponding value after N cycles.. The damage parameter depends on the total energy.

dissipated by the bond-slip process and is given by

d =1- e-12(E/Eo)" (A.7)
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where E is the total dissipated energy. Eo is the energy absorbed under monotonically

increasing slip up to the value u3 and is used as a normalization parameter.

Analougosly, the friction stress value q! is reduced by a factor which is function of a 'damage

parameter' d f' The reduction in stress is given by (Eligehausen et al. 1983)

(A.8)

where qj is the characteristic value of the virgin envelope curve and qj (N) is the

corresponding value after N cycles. The damage parameter depends on the frictional energy

dissipated by the bond-slip process and is given by

(A.9)

where Ef is the frictional energy, that is the energy dissipated on the reloading branches

when /)"u' u < 0, where /)"U is the current slip increment and u is the current slip value.
EOf = qf .u3 is the frictional energy absorbed under monotonically increasing slip up to the

value u3 and is used as a normalization parameter.

Frictional Bond Resistance.- The frictional bond resistance q r depends on the maximum

value of previous slip umax in either direction of loading and the ultimate bond resistance

q3(N) of the corresponding reduced envelope curve. If cyclic reversals are performed under

fixed values of slip, qr is further reduced by multiplying its initial value with a factor which

depends on the energy dissipated by friction alone. Explicit expressions for these relations are

given by Eligehausen et al. (1983).

In the nonlinear bond stress-slip model all expressions are cast in dimensionless form

except for the characteristic values of the monotonic envelope curve. The model can thus be

readily extended to describe the local bond stress-slip relation of reinforcing bars under

different bond and loading conditions by only changing the characteristic values of the

monotonic envelope curve. These characteristic values depend on several parameters such as

bar diameter, concrete strength, bar deformation pattern, clear spacing between bars and

transverse pressure due to loading or confinement. Ideally, the characteristic values should be

derived from experiments which simulate the actual geometric and loading conditions of the

structure under investigation. In the absence of experimental data the characteristic values of

the envelope curve can be based on the· recommendations given below for different

conditions of bond and loading.
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U1 U2 U3 q, q3

[mm] [mm] [mm] [MPa] [MPa] a

Tension 1.00 3.00 10.50 13.50 5.00 0.40

Compression 1.00 3.00 10.50 13.50 5.00 0.40

TABLE A.I CHARACTERISTIC VALVES OF MONOTONIC ENVELOPE OF BOND STRESS-SLIP

RELATION FOR DEFORMED STRAIGHT BARS EMBEDDED IN CONFINED CONCRETE

A.2.2 Bond Stress-Slip Relation in Confined Concrete

The recommendations for the characteristic values of the monotonic envelope curve

for bars embedded in well confined concrete are based on the experiments conducted by

Eligehausen et al. (1983). Identical envelopes of the bond stress-slip relation are observed in

tension and compression, i.e. in case the bar is pulled or pushed. Table A.I lists the

characteristic monotonic envelope values for average bond conditions of #8 reinforcing bars.

The compressive strength of the concrete surrounding the bars is and no external transverse

pressure is applied. The clear spacing between bars is four times the bar diameter.

Due to inevitable scatter of experimental results the values of ql' q3 and a may well

vary by up to ±15%.

These values need to be modified to account for differences in bar diameter, concrete

strength, clear spacing between bars, deformation pattern and external pressure. The

modifications follow the recommendations of Eligehausen et al. (1983) and are summarized

here for the sake of completeness.

(1) q\ should be increased by 10%, if #6 ba"rs are used~ and ql should be reduced by 10%,

if #10 bars are used instead of #8 bars.

(2) The influence of concrete strength can be taken into account by multiplying ql and q3

with ~.!c'/30 where h' is the concrete compressive strength in MPa. Similarly, the

value of u, should be modified in direct proportion to ~30/ .!c' .

(3) If the clear spacing between bars is smaller than 4db, where db is the bar diameter, q\

and q3 should be reduced using the information in Fig. 4.15 of the report by
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Eligehausen et al. (1983). For 3dh the reduction is approximately 2%, for 2dh 7% and

for Idb 17%.

(4) The values of up u2 and u3 should be multiplied by c1/1 0.5, where c1 is, the clear

spacing between lugs in mm, but this modification should not be greater than ±30%.

(5) If the value of the relative rib area a SR differs from 0.065, its influence should be

taken into account by modifying u1' ql and a according to the information in

Fig. 2.14 of the report by Eligehausen et al. (1983).

(6) The influence of external transverse pressure p such as axial compressive column

forces can be taken into account by increasing ql and q3 according to Fig. 4.17 of the

report by Eligehausen et al. (1983). For p = 5MPa the increase is approximately

18%, for p =10 MPa about 22% and for p =15 MPa about 25%.

(7) The unloading slope is equal to 180N/mm3 for #8 bars. It should be modified in the

same way as ql for different conditions.

A.2.3 Bond Stress-Slip Relation in Hook Anchorages

Experiments were conducted by Eligehausen et al. (1982) to study the bond stress-slip

relation of deformed hooked bars embedded in well confined concrete and subjected to

monotonic and cyclic loadings. Based on these experimental results it was concluded that the

model proposed by Eligehausen et al. (1983) can be readily extended to describe the bond

stress-slip behavior of the hook by idealizing the hook as a straight bar with an equivalent

length of five bar diameters and proposing new characteristic values for the monotonic

envelope in tension and compression. The proposed characteristic values for #8 bars which

are anchored in concrete of compressive strength are listed in Table A.2 (Eligehausen et al.

1982).

Identical envelopes apply in tension and compression. The bond stress-slip behavior

under cyclic load reversals is defined by the same damage parameter, which is used for

straight bars in confined concrete.
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U1 Uz U3 ql q3 a
[mm] [mm] [mm] [MPa] [MPa]

Hooks bent against 1.00 3.00 100.00 22.00 4.00 0.20

direction of casting

Hooks bent in 2.00 . 3.00 100.00 22.00 4.00 0.20

direction of casting

TABLE A.2 CHARACTERISTIC VALVES OF MONOTONIC ENVELOPE OF BOND STRESS-SLIP

RELATION FOR HOOKED BARS EMBEDDED IN CONFINED CONCRETE
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